WO2020213265A1 - 監視装置、および監視方法 - Google Patents

監視装置、および監視方法 Download PDF

Info

Publication number
WO2020213265A1
WO2020213265A1 PCT/JP2020/008225 JP2020008225W WO2020213265A1 WO 2020213265 A1 WO2020213265 A1 WO 2020213265A1 JP 2020008225 W JP2020008225 W JP 2020008225W WO 2020213265 A1 WO2020213265 A1 WO 2020213265A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
monitoring device
state
current
feature amount
Prior art date
Application number
PCT/JP2020/008225
Other languages
English (en)
French (fr)
Inventor
広斌 周
中村 明博
見多 出口
金子 悟
岩路 善尚
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2020213265A1 publication Critical patent/WO2020213265A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to a monitoring technique, and more particularly to a device for monitoring the state of equipment such as a machine tool.
  • Machine tools such as machining centers have an automatic tool change function, and can perform numerical control of different types of machining such as milling, boring, drilling, and screwing according to the purpose.
  • machine tools are used for machining various parts because a large number of cutting tools are stored in the tool magazine and machining can be performed automatically by computer numerical control commands.
  • tools used in machine tools may eventually break due to wear of the cutting edge and increased cutting resistance over time.
  • Patent Document 1 the disturbance torques ys and yz acting on the current of the spindle motor or the Z-axis (feed shaft) motor are estimated, calculated and recorded in the data table, and the current estimated values and the movement fluctuation thresholds for ys and yz are obtained. , Compare them, and disclose the technology to determine the abnormality of the tool.
  • motor control information such as the speed signal of the drive motor and the torque command value is required to determine the abnormality of the tool. Therefore, in Patent Document 1, since it is necessary to provide the motor control information by some means, there is a problem that work such as additional wiring occurs in the case of the existing device. Therefore, a technique for monitoring based on the current information of the motor is required so that the existing device can be used while avoiding additional wiring.
  • machining is carried out with the same configuration (drive motor) from large diameter tools to small diameter tools.
  • drive motor drive motor
  • the machining load is large and the current of the drive motor is also large.
  • the machining load is small and the current of the drive motor is also small.
  • An object of the present invention is to provide a monitoring device and a monitoring method for sensitively determining an abnormality in a device state based on current information of a plurality of drive motors.
  • a preferred example of the present invention is a current sensor that detects two-phase current information for each of a plurality of drive motors.
  • a motor information calculation unit that calculates the torque current or rotation speed of the corresponding drive motor from the current information
  • a feature amount calculation unit that calculates a feature amount for the torque current or the rotation speed of the plurality of drive motors
  • a state estimation unit that estimates the device state based on the feature amount of the drive motor that is correlated among the plurality of drive motors
  • a data storage unit that records reference value data and It is a monitoring device including an abnormality determination unit that determines an abnormality state based on the estimated device state and the reference value data.
  • Another preferred example of the present invention is to detect two-phase current information for each of the plurality of drive motors.
  • the torque current or rotation speed of the corresponding drive motor is calculated from the current information, Calculate the feature amount for the torque current or the rotation speed in a plurality of drive motors,
  • the equipment state is estimated based on the feature amount of the drive motor that is correlated among the plurality of drive motors. This is a monitoring method for determining an abnormal state based on the recorded reference value data and the estimated device state.
  • the present invention it is possible to determine an abnormality in the device state with high sensitivity based on the current information of a plurality of drive motors.
  • FIG. It is a block diagram of the motor control system in Example 1.
  • FIG. It is a block diagram of the monitoring device in Example 1. It is a block diagram of the motor information calculation part in Example 1.
  • FIG. It is a figure which shows the structural example of the machine tool in Example 1.
  • FIG. It is a figure which shows the mechanism of the machining quality deterioration and the tool breakage occurrence due to the tool wear in Example 1.
  • FIG. It is the schematic of the feature amount extraction from the motor information in Example 1.
  • FIG. It is a figure about the method of estimating tool wear from the motor current information in Example 1.
  • Example 2 It is a block diagram of the monitoring device in Example 2. It is the schematic of the feature amount extraction at the time of using a plurality of processing shaft motors in Example 2. It is a block diagram of the motor control system in Example 3. It is a block diagram of the motor control system in Example 4. It is a block diagram of the motor control system in Example 5. It is a block diagram of the motor drive servo amplifier in Example 6. It is a block diagram of the motor drive servo amplifier in Example 7. It is a block diagram of the industrial controller in Example 8. It is the schematic of the machine tool in Example 9.
  • FIG. 1 is a block diagram of a two-axis motor control system 101 for driving a tool of a device such as a machine tool according to the first embodiment.
  • the two-axis motor here is assumed to be a spindle motor and a feed shaft motor (Z-axis motor) that have a correlation with the machining load during drilling.
  • the motor control system 101 includes 10-1 of the motor 1, 10-2 of the motor 2, a drive device 20, a monitoring device 40, and a current sensor 41.
  • the drive device 20 includes an inverter 22, a current sensor 24, and a control unit 30.
  • the rotating shaft 14 of the motor 10-1 is connected to the tool 16 via mechanical parts (not shown) such as gears and ball screws, or directly connected to the tool 16.
  • the motor 2 also drives the tool 16 directly or via a mechanism (not shown).
  • Each inverter 22 applies a three-phase AC voltage to 10-1 of the motor 1 or 10-2 of the motor 2 based on the control of the respective control units 30.
  • the control unit 30 includes hardware as a general computer such as a CPU, DSP, RAM, and ROM, and the ROM contains a control program executed by the CPU, a microprogram executed by the DSP, various data, and the like. Is stored.
  • control unit 30 shows the functions realized by the control program, the microprocessor, and the like as blocks. That is, the control unit 30 includes a command generation unit 32, a deviation calculation unit 33, a vector control unit 34, a dq / 3 ⁇ conversion unit 36, and a 3 ⁇ / dq conversion unit 38.
  • control unit 30 performs vector control on the motor 10 to improve the responsiveness of the motor 10-1.
  • the inverter 22 outputs U-phase, V-phase, and W-phase alternating currents to the motor 10-1.
  • the current sensor 24 detects the two-phase currents. That is, in the illustrated example, the U-phase and W-phase currents are detected, and the results are output as the current detection values I us and I ws .
  • the axes that are orthogonal to each other in the rotating coordinate are called the d-axis and the q-axis, and the current supplied to the motor 10-1 is expressed as the amount of DC in this rotating coordinate.
  • the current on the q-axis is a current component that determines the torque of the motor 10, and is hereinafter referred to as torque current. Further, the current on the d-axis is a component that becomes the exciting current of the motor 10-1, and hereinafter, this is referred to as an exciting current.
  • the 3 ⁇ / dq conversion unit 38 outputs the exciting current detection value I d and the torque current detection value I q based on the current detection values I us and I ws .
  • the command generation unit 32 receives the torque command value ⁇ * from a higher-level device (not shown), and based on the torque command value ⁇ *, sets the exciting current command value I d * and the torque current command value I q *. Generate.
  • Deviation calculation unit 33 * current command value I d, and I q *, the current detection value I d, based on the I q, deviation I d * -I d, and outputs the I q * -I q.
  • Vector control unit 34 on the basis the deviation I d * -I d, the I q * -I q like, and the excitation voltage command value V d *, and outputs the torque voltage command value V q *.
  • the vector control unit 34 obtains the phase command ⁇ 1 (not shown) by integrating the frequency command ⁇ 1. Further, the vector control unit 34 multiplies the vector formed by the current command values I d * and I q * by the impedance vector of the motor 10-1, and as a result, the voltage command values V d * and V q. * Calculate.
  • the dq / 3 ⁇ conversion unit 36 outputs a PWM signal for driving the inverter 22 based on the voltage command values V d * and V q * of the rotating coordinate system.
  • the inverter 22 switches the supplied DC voltage (not shown) based on the supplied PWM signal, and outputs U-phase, V-phase, and W-phase voltages to the motor 10-1.
  • FIG. 2 is a block diagram of the monitoring device 40. Similar to the control unit 30 described above, the monitoring device 40 includes hardware as a general computer such as a CPU, DSP, RAM, and ROM, and the ROM includes a control program executed by the CPU and a DSP. The microprogram to be executed and various data are stored.
  • the monitoring device 40 includes hardware as a general computer such as a CPU, DSP, RAM, and ROM, and the ROM includes a control program executed by the CPU and a DSP. The microprogram to be executed and various data are stored.
  • the inside of the monitoring device 40 shows the functions realized by the control program, the microprocessor, and the like as blocks. That is, the monitoring device 40 includes a motor information calculation unit 42, a feature amount calculation unit 44, a state estimation unit 45, a data storage unit 46, and an abnormality determination unit 47.
  • the motor information calculation unit 42 receives the current detection value I u1 of the U phase of 10-1 of the motor 1, the current detection value I w1 of the W phase, and the U of 10-2 of the motor 2 from the corresponding current sensors 41, respectively.
  • the phase current detection value I u2 and the W phase current detection value I w2 are acquired.
  • the motor information calculation unit 42 outputs the respective motor torque currents (real part currents) Ir1 and Ir2 and the mechanical frequencies ⁇ rs1 and ⁇ rs2 (rotational speed) based on these detected values.
  • FIG. 3 is a block diagram of the motor information calculation unit 42.
  • the motor information calculation unit 42 includes a 3 ⁇ / ⁇ converter 52, an inverse tangent converter 54 (phase detection unit), a subtractor 56 (PLL calculation unit), and a phase calculation unit 60 (PLL calculation unit, rotation speed calculation unit). , Rotation speed calculation process), a rotation coordinate converter 70, an integrator 72 (PLL calculation unit), and a multiplier 74. Further, the phase calculator 60 includes multipliers 62 and 64, an integrator 66, and an adder 68.
  • the 3 ⁇ / ⁇ converter 52 converts the current detection values I u and I w into orthogonal two-phase alternating currents I ⁇ and I ⁇ .
  • the inverse tangent converter 54 calculates the AC current phase angle detection value ⁇ i * based on these AC currents I ⁇ and I ⁇ .
  • the subtractor 56 subtracts the AC current phase angle detection value ⁇ i * from the AC current phase angle ⁇ i (details will be described later).
  • the multiplier 62 multiplies the difference value “ ⁇ i * ⁇ i ” by a predetermined proportional gain KpPLL.
  • the multiplication result in the multiplier 62 is the proportional signal PLL_P described above. Further, the multiplier 64 multiplies the difference value “ ⁇ i * ⁇ i ” by a predetermined integral gain KiPL, and the integrator 66 integrates the multiplication result.
  • the integration result in the integrator 66 is called an integration signal PLL_I.
  • the adder 68 adds the proportional signal PLL_P and the integral signal PLL_I, and outputs the addition result as the frequency signal ⁇ 1s .
  • the integrator 72 integrates the frequency signal ⁇ 1s and outputs an alternating current phase angle ⁇ i .
  • the AC current phase angle ⁇ i is supplied to the subtractor 56 and also to the rotating coordinate converter 70.
  • the multiplier 74 multiplies the frequency signal ⁇ 1 s by "2 / P" (where P is the number of poles of the motor 10), and outputs the multiplication result as the mechanical frequency ⁇ rs .
  • the mechanical frequency ⁇ rs is a signal corresponding to the actual speed of the motor 10 (see FIG. 1) (in the case of an induction motor, the speed including slip).
  • the rotating coordinate converter 70 converts the two-phase alternating currents I ⁇ and I ⁇ into biaxial DC quantities I r and I i in the rotating coordinate system rotating with the frequency signal ⁇ 1s .
  • the subtractor 56, the phase calculator 60, and the integrator 72 function as a PLL (Phase Locked Loop) calculation unit, and the difference value “ ⁇ i * ⁇ i ” output by the subtractor 56 is “0”. Outputs a frequency signal ⁇ 1s and an AC current phase angle ⁇ i that approaches.
  • PLL Phase Locked Loop
  • Feature amount calculation unit 44 the maximum value of the torque current I r of the motor, the mean value, FFT (fast Fourier transform), and the motor rotation speed ⁇ maximum value of rs, the average value, and extracts a feature amount such as FFT.
  • FFT fast Fourier transform
  • the estimated state amount is compared with the reference value data recorded in the data storage unit 46, and the abnormality determination unit 47 detects whether or not the state amount is abnormal. Further, the abnormality determination unit 47 outputs various alarm signals to the outside.
  • the alarm signal may be any means that can notify the administrator, such as lighting a lamp, sounding an alarm, or transmitting radio waves by wireless communication means.
  • the monitoring device 40 in this embodiment When the monitoring device 40 in this embodiment is installed in a harsh environment, it is preferable to store the monitoring device 40 in a monitoring device case provided with dustproof and waterproof measures. Further, when the monitoring device 40 is installed near a device that generates noise such as an inverter 22, it is preferable to take noise countermeasures on the monitoring device 40.
  • the monitoring device 40 uses its own coordinates and can convert AC to DC from only the current information flowing through the correlated drive motor by a simple algorithm, and thus determines that it is abnormal. Edge processing for this can also be performed in the monitoring device. As a result, the amount of data can be significantly reduced and the analysis / diagnosis work becomes easy.
  • FIG. 4 shows an example of a tool drive shaft of a machine tool such as a machining center.
  • the types of machining centers are roughly classified into horizontal and vertical types according to the direction of the spindle, and the horizontal type is mounted with the spindle in the horizontal direction and the cubic is mounted in the vertical direction.
  • the spindle is the most major axis of the machine tool to which the machine tool to be machined or to attach and rotate the tool.
  • a vertical machining center with a basic structure is generally 3-axis machining.
  • the main axis moves in the vertical direction (Z axis), and the table on which the processed product is fixed moves in the same direction as a bed-type milling machine that moves back and forth (Y axis) and left and right (X axis).
  • the feed axis changes depending on the processing type.
  • the Z-axis is the feed axis
  • the X-axis and the Y-axis are also the feed axes in addition to the Z-axis.
  • a vertical machining center for 5-axis machining uses an index table with table rotation (C-axis) and tilt angle (B-axis) in addition to XYZ 3-axis movement in the axial direction for 5-axis machining. It is possible (not shown).
  • the number of motors that correlate with machining changes depending on the equipment and machining content.
  • the correlated motors are the spindle motor and the feed shaft motor (Z-axis motor)
  • the correlated motors are the spindle motor and the feed shaft motor (X-axis motor, Y).
  • FIG. 5 shows the flow of machining quality deterioration and tool breakage due to tool wear.
  • the machining time elapses, the cutting edge of the tool wears and the cutting resistance increases, which may eventually lead to breakage. Further, as the tool wear progresses, the machining accuracy deteriorates, and it is not possible to maintain the predetermined machining accuracy required for the machined product.
  • FIG. 6 shows changes in the forces of the spindle and feed shaft and the motor torque current in each shaft due to tool wear.
  • the blade of the tool becomes slippery, and as a result, the load on the spindle motor decreases, and as a result, the torque current of the spindle motor decreases.
  • the load of the feed shaft motor increases, and as a result, the torque current of the feed shaft motor increases. That is, it is possible to estimate the tool wear state by monitoring the changes in the spindle and feed shaft motor currents.
  • FIG. 7 is a schematic diagram for extracting the feature amounts of the motor torque current and the motor rotation speed of the spindle and the feed shaft for each predetermined machining section. For example, with the passage of machining time, feature quantities such as maximum value, standard deviation, average value, FFT, and maximum value, standard deviation, average value, and FFT of torque current in a predetermined machining section for each machining section are extracted. To do.
  • the torque current value or rotation speed value of a predetermined single motor or a plurality of correlated motors is used as a trigger for feature amount extraction, and the feature amount in a specified section is calculated to determine the sampling frequency and the calculated amount as necessary. Adjustment is possible. As a result, the amount of data can be significantly reduced and the analysis / diagnosis work becomes easy. Further, since the machining operation type can be discriminated from the current waveform of the feed shaft motor, more accurate feature extraction becomes possible.
  • the tool wear degree can be estimated more accurately by changing the combination of the feature amount for estimating the tool wear degree based on the spindle motor current information and the feed shaft motor current information according to the change in the tool diameter and the machining load. It is possible.
  • FIG. 8 is a diagram illustrating a method of estimating the degree of tool wear (the device state quantity) using the generalized linear model method. As an example, a method of estimating the degree of wear when it is the wear width of the tool blade will be described.
  • an estimated model formula can be constructed by a method such as multivariate analysis based on the feature amount extracted from the motor current information.
  • the estimation model formula is an arithmetic formula expressing the correspondence between the feature amount exemplified above of the plurality of drive motors and the tool wear degree.
  • An example of the estimation model shown by the generalized linear model is as follows (Equation 1).
  • Y a + b x mean value of feed shaft motor torque current + c x maximum value of feed shaft motor rotation speed d x mean value of spindle motor torque current + e x standard deviation of spindle motor rotation speed + ...
  • Equation 1 Y is the tool wear degree estimated from the estimation model formula, and a, b, c, d, and e are constants. That is, it is possible to estimate the tool wear degree Y based on the correlated motor current information.
  • the degree of control over the objective variable Y can be changed, so that the estimation accuracy is improved. can do.
  • the feed shaft motor current and rotation speed significantly indicate the degree of wear. Therefore, in the case of a small-diameter drill (small machining load), if a weight (contribution) is added to the feed shaft motor current and rotation speed, the drill wear can be estimated with higher accuracy. In this way, by changing the estimation model formula according to the drill that is the target device, the state of the device can be estimated with high sensitivity.
  • k 1 (L), k 2 (L), ... are measured in advance from the equipment processing load and processing pattern and saved in the data storage unit, and the accuracy is improved from the accumulated data by machine learning. It is also possible to do.
  • the tool wear limit M 0 is determined by the machining quality and the like. If there is no estimation error or variation, the upper limit of the estimated tool wear degree Y is Y 1 corresponding to M 0 , but if the estimated variation is taken into consideration, the upper limit of the estimated tool wear degree is Y 2 .
  • the generalized linear model method has been described here as an example. If it is a model construction method that shows the relationship between the degree of tool wear and the feature amount extracted from the motor current, it is not necessary to limit the model to a generalized linear model method such as a model using a statistical method.
  • FIG. 9 is a flowchart of a tool wear detection routine executed by the monitoring device 40. This tool wear detection routine is executed at predetermined sampling cycles.
  • the tool wear detection routine starts (START) and the motor current measurement process is executed (step S2). Then, the motor information calculation unit 42 of the monitoring device 40 (see FIG. 2) uses the current sensors 41 (see FIG. 1) of the motor of each axis such as the spindle to detect the currents of the motor of the first axis I U1 and I W1. And the current detection values I U2 and I W2 of the motor of the second axis are acquired.
  • the motor information calculation unit 42 receives the torque current Ir1 and the rotation speed ⁇ rs1 of the corresponding motor 10-1 of the first axis.
  • the torque current Ir2 and the rotation speed ⁇ rs2 of the two-axis motor 10-2 are calculated. That is, the torque current I r of the motor of each axis, output and a machine frequency omega rs (step S3).
  • the feature amount calculation unit 44 extracts feature amounts such as the maximum value, standard deviation, mean value, and FFT of the torque current in a predetermined section, and the maximum value, standard deviation, mean value, and FFT of the motor rotation speed (. Step S4).
  • the state estimation unit 45 executes the calculation of (Equation 1) based on the estimation model described above, using the feature amount acquired from the data storage unit 46 and the contribution of the correlation motor corresponding to the load. Calculate the degree of tool wear. (Step S5)
  • the contribution of the correlation motor corresponding to the load used in the estimation of the state estimation unit 45 and the reference value used in the abnormality determination unit 47 are stored in advance in the data storage unit 46 (step S6).
  • the contribution degree and the reference value may be updated based on the torque current Ir.
  • the abnormality determination unit 47 as compared with the reference value data and the torque current I r is determined to lower than set limit value I r0, and is determined to be in a motor rotational state ( ⁇ rs> 0) (the step S7 Yes), the abnormality determination unit 47 outputs an alarm signal indicating that the tool is in a broken state to the outside (step S9).
  • step S8 determines that the degree of wear Y exceeds the set limit value Y 2 and determines that the motor is in the rotating state ( ⁇ rs > 0) (step S8 is Yes).
  • the abnormality determination unit 47 determines.
  • An alarm signal indicating that the tool is in a worn state is output to the outside (step S10).
  • the tool wear state can be detected based on the current values I U and I W of at least two phases of the plurality of correlated motors, respectively. That is, the average service life of the tool can be extended without adding an acceleration sensor, an AE sensor, or the like.
  • the abnormality determination unit 47 outputs an alarm signal when the tool wear state is detected. This makes it possible to notify the administrator of various abnormalities.
  • the abnormality of the equipment state can be determined with high sensitivity based on the current information of a plurality of drive motors.
  • the tool used in the cutting process has a variation in life until breakage due to individual differences. large. For this reason, if the tool is shorter than the average life, as in the conventional life management method in which the average life is used as a guideline and replaced at a fixed number of times, product defects will occur due to deterioration in machining performance. Although it may occur, such product defects can be avoided in this embodiment.
  • FIG. 10 is a block diagram of the motor control system 102 according to the second embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the other embodiments described above, and the description thereof may be omitted.
  • the motor control system 102 includes N units (N is a natural number of 3 or more) of motors 10-1 to 10-N, and a tool 16 coupled to these motors 16 via a rotating shaft 14. ..
  • two current sensors 41 are mounted on the U-phase and W-phase of each motor 10-1 to 10-N, and these current detection values I u1 to I uN and I w1 ⁇ I wN is supplied to the monitoring device 150 (tool wear degree monitoring device).
  • the configuration of the monitoring device 150 As shown in FIG. 11, in the monitoring device 40 (see FIG. 2) of the first embodiment, instead of the two correlated motor information calculation units 42, there are N correlations. It is the same as the configuration provided with a certain motor information calculation unit.
  • the drive motor on the Z-axis, X-axis, or Y-axis, which is the feed axis in the case of milling described above may be a correlated drive motor.
  • the drive motor for the rotation (C axis) and the inclination angle (B axis) of the table in the vertical machining center for 5-axis machining may be included in the drive motor having a correlation.
  • the configuration and operation of this embodiment other than those described above are substantially the same as those of the first embodiment.
  • FIG. 12 is a diagram illustrating a case where a feature amount correlating with the device state is extracted from the current information of a plurality of motors. Similar to FIG. 8 of the first embodiment, it is possible to estimate the device state using a method such as a generalized linear model of features. In the case of complicated machining, it is possible to improve the estimation accuracy of the equipment state by using the information of a plurality of motors having a correlation that contributes to the machining load.
  • FIG. 13 is a block diagram of the motor control system 103 according to the third embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the other embodiments described above, and the description thereof may be omitted.
  • the motor control system 103 includes a monitoring device 160 (equipment state monitoring device) instead of the monitoring device 40 (see FIG. 2) of the first embodiment.
  • the configuration of the monitoring device 160 is substantially the same as that of the monitoring device 40, but the abnormality determination unit 47 outputs a tool wear alarm signal (see FIG. 2) and outputs a tool wear alarm signal (see FIG. 2) to the command generation unit 32 in the drive device 20. And output control commands as needed.
  • control command is, for example, a command for stopping or accelerating / decelerating the motor 10-1, which enables the optimum operation for extending the tool life and maintaining the machining quality, for example.
  • the abnormality determination unit 47 when the abnormality determination unit 47 detects an abnormality in the equipment state (excessive wear of the tool, breakage, etc.), the abnormality determination unit 47 outputs a control command for changing the control state to the control unit 30. To do.
  • the control command in this case includes a control command such as stopping the drive motor or reducing the rotation speed. As a result, the control state in the control unit 30 can be changed to an appropriate state.
  • FIG. 14 is a block diagram of the motor control system 104 according to the fourth embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the other embodiments described above, and the description thereof may be omitted.
  • the motor control system 104 includes a monitoring device 170 (equipment state monitoring device) instead of the monitoring device 40 (see FIG. 11) of the second embodiment.
  • the configuration of the monitoring device 170 is substantially the same as that of the monitoring device 150, but the abnormality determination unit 47 outputs an equipment status abnormality alarm signal (see FIG. 11) and outputs a command generation unit 32 in the drive device 20. On the other hand, control commands are output as needed.
  • control command is, for example, a command for stopping or accelerating / decelerating the motor 10-1, which enables optimum operation for extending the tool life and maintaining the machining quality.
  • the abnormality determination unit 47 when the abnormality determination unit 47 detects an abnormality in the equipment state (excessive wear of the tool, breakage, etc.), the abnormality determination unit 47 outputs a control command for changing the control state to the control unit 30. To do. As a result, the control state in the control unit 30 can be changed to an appropriate state.
  • FIG. 15 is a block diagram of the motor control system 105 according to the fifth embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the other embodiments described above, and the description thereof may be omitted.
  • the motor control system 105 includes a drive / monitoring device 180, motors 10-1 to 10-N, and a tool 16 coupled via a rotating shaft 14.
  • the drive / monitoring device 180 includes a control unit 30, an inverter 22, and a monitoring device 190 (detection of equipment state abnormality).
  • the configuration of the control unit 30 and the inverter 22 is the same as that of the first embodiment (see FIG. 1), and the configuration of the monitoring device 190 is the same as that of the monitoring device 170 (see FIG. 14) of the fourth embodiment. Therefore, the drive / monitoring device 180 of this embodiment has a function that combines the functions of the drive device 20 and the monitoring device 170 of the fourth embodiment. Note that this embodiment can also be configured by adding a monitoring device 190 to the existing drive device 20 (see FIG. 14).
  • FIG. 16 is a block diagram of the motor-driven servo amplifier 106 according to the sixth embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the other embodiments described above, and the description thereof may be omitted.
  • the servo amplifier 106 includes a motor 10-1, a rotating shaft 14, a tool 16, a servo amplifier 106, and a monitoring device 210. Further, current sensors 41 are mounted on the U phase and W phase of the motor 10-1, and the current detection values I u1 and I w1 of these , and the current detection values I u2 of the motor 10-2 from the servo amplifier 2 are I w2 is supplied to the monitoring device 210 (equipment status monitoring device).
  • the configuration of the monitoring device 210 is the same as the configuration in which the monitoring device 40 (see FIG. 2) of the first embodiment is provided with two motor information calculation units 42.
  • the configuration and operation of this embodiment other than those described above are substantially the same as those of the first embodiment.
  • FIG. 17 is a block diagram of the motor-driven servo amplifier 107 according to the seventh embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the other embodiments described above, and the description thereof may be omitted.
  • the servo amplifier 107 includes N motors 10-1 to 10-N (N is a natural number of 3 or more), a rotating shaft 14, a tool 16, a servo amplifier 107, and a monitoring device 220. I have.
  • the configuration of the monitoring device 220 is the same as the configuration in which N motor information calculation units are provided.
  • the configuration and operation of this embodiment other than those described above are substantially the same as those of the first embodiment.
  • FIG. 18 is a block diagram of the industrial controller 108 according to the eighth embodiment.
  • the industrial controller 108 cooperates with the production line and equipment of a networked factory to realize robot control, collection of equipment data from various sensors, and seamless vertical integration with a higher-level information system.
  • the industrial controller 108 integrates the functions of the industrial computer and the open integrated development environment of the PLC (programmable logic controller) into one unit. By collecting and analyzing information as well as controlling the equipment in the factory, it is possible to optimize the entire factory and supply chain.
  • PLC programmable logic controller
  • the industrial controller 108 includes an information collecting unit 240 and a monitoring device 230. Further, the current detection values I u1 to I uN and I w1 to I wN of the motors 10-1 to 10-N are supplied to the information collecting unit 240 from the inverter or the servo amplifier.
  • the configuration of the monitoring device 230 is the same as the configuration in which N motor information calculation units are provided.
  • the configuration and operation of this embodiment other than those described above are substantially the same as those of the first embodiment.
  • FIG. 19 is a schematic view of the machine tool according to the ninth embodiment.
  • the same reference numerals may be given to the parts corresponding to the respective parts of the other embodiments described above, and the description thereof may be omitted.
  • the machine tool 109 is provided with a Z-axis motor servo amplifier, a spindle motor inverter, an X-axis motor servo amplifier, a Y-axis motor servo amplifier, and a monitoring device 250 in its control unit. Further, the current detection value of each shaft motor is supplied to the monitoring device from the servo amplifier or the inverter. Tool wear information may be output from the monitoring device to the control operation screen (panel) of the machine tool, and an alarm or warning message may be displayed (not shown).
  • control lines and information lines shown in the figure show what is considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary for the product. In practice, it can be considered that almost all configurations are interconnected. Possible modifications with respect to the above embodiment are, for example, as follows.
  • FIGS. 2 and 3 show.
  • the algorithm shown, the program corresponding to the flowchart shown in FIG. 9, and the like may be stored in a storage medium or distributed via a transmission line.
  • FIGS. 2 and 3 or the flowchart shown in FIG. 9 was described as software-like processing using a program in each embodiment. However, a part or all of them may be replaced with hardware-like processing using ASIC (Application Specific Integrated Circuit; IC for specific applications), FPGA (field-programmable gate array), or the like.
  • ASIC Application Specific Integrated Circuit
  • FPGA field-programmable gate array
  • the application example to the inverter and the servo amplifier has been described, but it can also be applied to the power conversion device such as the DCBL controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

監視装置は、複数の駆動モータのそれぞれについて、二相の電流情報を検出する電流センサと、電流情報から対応する駆動モータのトルク電流または回転速度を演算するモータ情報演算部と、複数の駆動モータにおけるトルク電流または回転速度についての特徴量を演算する特徴量演算部と、複数の駆動モータのうち相関関係にある駆動モータの特徴量に基づいて機器状態を推定する状態推定部と、基準値データを記録するデータ記憶部と、推定した機器状態と基準値データに基づいて、異常状態を判定する異常判定部とを備える。

Description

監視装置、および監視方法
 本発明は、監視する技術に関し、特に、工作機械などの機器状態を監視する装置に関する。
 マシニングセンタなどの工作機械は、自動工具交換機能をもち、目的に合わせてフライス削り、中ぐり、穴あけ、ねじ立てなどの異種加工を1台で行う数値制御ができる。また、工作機械は、工具マガジンには多数の切削工具を格納し、コンピュータ数値制御の指令によって自動的に加工を行えるため、さまざまな部品加工に使われている。
 しかしながら、工作機械で使用される工具は、加工使用時間の経過とともに刃先が摩耗して切削抵抗が増加し、最終的には折損に至る場合がある。
 特許文献1では、主軸モータまたはZ軸(送り軸)モータの電流に働く外乱トルクysとyzを推定、算出してデータテーブルに記録し、そしてysとyzについて現状推定値と移動変動しきい値を求め、それらを比較し、工具の異常を判定する技術を開示する。
特開2003-326438
 特許文献1の段落番号0033には、「主軸モータの速度信号と主軸モータへのトルク指令値を基にして、主軸モータに働く外乱トルクysを推定する。」こと、および、「送り軸モータの速度信号と送り軸モータのトルク指令値を基にして、送り軸モータに働く外乱トルクyzを推定する。」ことが記載されている。
 つまり、工具の異常を判定するには、駆動モータの速度信号やトルク指令値といったモータ制御情報が必要となる。よって、特許文献1では、モータ制御情報をなんらかの手段で提供する必要があるため、既設装置の場合は追加配線など作業が発生する課題がある。そこで、追加配線などを避け、既設装置を使えるように、モータの電流情報に基づいて監視する技術が求められる。
 また、工作機械において、大径工具から小径工具まで同じ構成(駆動モータ)で加工を実施している。大径工具による加工の場合、加工負荷が大きく駆動モータの電流も大きい。一方、小径工具による加工の場合、加工負荷が小さく駆動モータの電流も小さい。
 特許文献1のように、送り軸モータなど個々のモータごとに外乱トルクを推定するようにすると、特に、小径工具による加工の場合、主軸を駆動する主軸モータ(スピンドルモータ)の電流において、加工によるモータ電流変化が小さくなる。そのため空転(加工しない)時の電流に埋もれて感度のよい計測が困難である。
 本発明の目的は、複数の駆動モータの電流情報に基づき、感度よく機器状態の異常の判定をする監視装置および監視方法を提供することにある。
 本発明の好ましい一例は、複数の駆動モータのそれぞれについて、二相の電流情報を検出する電流センサと、
前記電流情報から対応する前記駆動モータのトルク電流または回転速度を演算するモータ情報演算部と、
複数の前記駆動モータにおける前記トルク電流または前記回転速度についての特徴量を演算する特徴量演算部と、
複数の前記駆動モータのうち相関関係にある前記駆動モータの前記特徴量に基づいて機器状態を推定する状態推定部と、
基準値データを記録するデータ記憶部と、
推定した前記機器状態と前記基準値データに基づいて、異常状態を判定する異常判定部と、を備える監視装置である。
 本発明の好ましい他の例は、複数の駆動モータのそれぞれについて、二相の電流情報を検出し、
前記電流情報から対応する前記駆動モータのトルク電流または回転速度を演算し、
複数の駆動モータにおける前記トルク電流または前記回転速度についての特徴量を演算し、
複数の前記駆動モータのうち相関関係にある前記駆動モータの前記特徴量に基づいて機器状態を推定し、
記録しておいた基準値データと、推定した前記機器状態とに基づいて、異常状態を判定する監視方法である。
 本発明によれば、複数の駆動モータの電流情報に基づき、感度よく機器状態の異常を判定できる。
実施例1におけるモータ制御システムのブロック図である。 実施例1における監視装置のブロック図である。 実施例1におけるモータ情報演算部のブロック図である。 実施例1における工作機械の構成例を示す図である。 実施例1における工具摩耗による加工品質低下および工具折損発生のメカニズムを示す図である。 実施例1における工具摩耗に伴うモータ電流変化を示す図である。 実施例1におけるモータ情報からの特徴量抽出の概略図である。 実施例1におけるモータ電流情報から工具摩耗を推定方法についての図である。 実施例1における工具摩耗検知ルーチンのフローチャートである。 実施例2におけるモータ制御システムのブロック図である。 実施例2における監視装置のブロック図である。 実施例2における複数の加工軸モータを使う場合の特徴量抽出の概略図である。 実施例3におけるモータ制御システムのブロック図である。 実施例4におけるモータ制御システムのブロック図である。 実施例5におけるモータ制御システムのブロック図である。 実施例6におけるモータ駆動サーボアンプのブロック図である。 実施例7におけるモータ駆動サーボアンプのブロック図である。 実施例8における産業用コントローラのブロック図である。 実施例9における工作機械の概略図である。
 以下、実施例を図面に従い説明する。なお、各実施例に対応する図面において、同一構成物は同一の数番を付した。
 図1は、実施例1による工作機械など装置の工具を駆動する2軸のモータ制御システム101のブロック図である。ここの2軸モータは、ドリル加工時の加工負荷に相関関係のある主軸モータと送り軸モータ(Z軸モータ)を想定している。
 図1において、モータ制御システム101は、モータ1の10-1、モータ2の10-2と、駆動装置20と、監視装置40と、電流センサ41と、を備えている。駆動装置20は、インバータ22と、電流センサ24と、制御部30と、を備えている。
 モータ10-1の回転軸14は、ギアやボールネジ等の機械部品(図示せず)を介して、または直結で工具16に接続されている。また、モータ2も直接、または機構を介して工具16を駆動する(図示せず)。それぞれのインバータ22は、それぞれの制御部30の制御に基づいて、モータ1の10-1またはモータ2の10-2に対して三相交流電圧を印加する。
 制御部30は、CPU、DSP、RAM、ROM等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラム、DSPによって実行されるマイクロプログラムおよび各種データ等が格納されている。
 図1において、制御部30の内部は、制御プログラムおよびマイクロプログラム等によって実現される機能を、ブロックとして示している。すなわち、制御部30は、指令生成部32と、偏差演算部33と、ベクトル制御部34と、dq/3Φ変換部36と、3Φ/dq変換部38と、を備えている。
 制御部30は、これらの構成により、モータ10に対してベクトル制御を行い、モータ10-1の応答性を向上させようとするものである。
 インバータ22は、モータ10-1に対してU相、V相、W相の交流電流を出力する。電流センサ24は、そのうち二相の電流を検出する。すなわち、図示の例においては、U相、W相の電流を検出し、その結果を電流検出値Ius、Iwsとして出力する。
 ここで、周波数fで回転する回転座標を想定し、この回転座標において直交する軸をd軸およびq軸と呼び、モータ10-1に供給される電流をこの回転座標における直流量として表現する。
 q軸における電流は、モータ10のトルクを決定する電流成分であり、以下、これをトルク電流と呼ぶ。また、d軸における電流は、モータ10-1の励磁電流になる成分であり、以下、これを励磁電流と呼ぶ。
 3Φ/dq変換部38は、電流検出値Ius、Iwsに基づいて、励磁電流検出値Idと、トルク電流検出値Iqとを出力する。指令生成部32は、図示せぬ上位装置から、トルク指令値τ*を受信し、トルク指令値τ*に基づいて、励磁電流指令値Id*と、トルク電流指令値Iq*と、を生成する。
 偏差演算部33は、電流指令値Id*、Iq*と、電流検出値Id、Iqとに基づいて、偏差Id*-Id、Iq*-Iqを出力する。ベクトル制御部34は、偏差Id*-Id、Iq*-Iq等に基づいて、励磁電圧指令値Vd*と、トルク電圧指令値Vq*とを出力する。
 ベクトル制御部34の動作をさらに詳細に説明すると、ベクトル制御部34は、偏差Id*-Id、Iq*-Iqに対して比例積分制御を行い、同速度の指令値である周波数指令ω1(図示せず)を求める。
 さらに、ベクトル制御部34は、周波数指令ω1を積分することによって位相指令θ1(図示せず)を求める。さらに、ベクトル制御部34は、電流指令値Id*、Iq*が構成するベクトル対して、モータ10-1のインピーダンスのベクトルを乗算し、その結果として、電圧指令値Vd*、Vq*を算出する。
 dq/3Φ変換部36は、回転座標系の電圧指令値Vd*、Vq*に基づいて、インバータ22を駆動するためのPWM信号を出力する。インバータ22は、供給されたPWM信号に基づいて、供給された直流電圧(図示せず)をスイッチングし、モータ10-1に対して、U相、V相、W相の電圧を出力する。
 〈監視装置40の構成〉
  図2は、監視装置40のブロック図である。監視装置40は、前述した制御部30と同様に、CPU、DSP、RAM、ROM等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラム、DSPによって実行されるマイクロプログラムおよび各種データ等が格納されている。
 図2において、監視装置40の内部は、制御プログラムおよびマイクロプログラム等によって実現される機能を、ブロックとして示している。すなわち、監視装置40は、モータ情報演算部42と、特徴量演算部44と、状態推定部45と、データ記憶部46と、異常判定部47と、を備えている。
 モータ情報演算部42は、それぞれ対応する電流センサ41から、モータ1の10-1のU相の電流検出値Iu1と、W相の電流検出値Iw1と、モータ2の10-2のU相の電流検出値Iu2と、W相の電流検出値Iw2と、を取得する。
 そして、モータ情報演算部42は、これら検出値に基づいて、それぞれのモータトルク電流(実部電流)Ir1、Ir2と、機械周波数ωrs1、ωrs2(回転速度)と、を出力する。
 ここで、図3を参照し、これらモータ情報演算部42から出力される信号の意義を説明する。図3は、モータ情報演算部42のブロック図である。
 モータ情報演算部42は、3Φ/αβ変換器52と、逆正接変換器54(位相検出部)と、減算器56(PLL演算部)と、位相演算器60(PLL演算部、回転速度演算部、回転速度演算過程)と、回転座標変換器70と、積分器72(PLL演算部)と、乗算器74と、を備えている。さらに、位相演算器60は、乗算器62、64と、積分器66と、加算器68と、を備えている。
 3Φ/αβ変換器52は、電流検出値Iu、Iwを、直交する二相の交流電流Iα、Iβに変換する。逆正接変換器54は、これら交流電流Iα、Iβに基づいて、交流電流位相角検出値θi*を計算する。
 減算器56は、交流電流位相角θi(詳細は後述する)から、交流電流位相角検出値θi*を減算する。位相演算器60において、乗算器62は、差分値「θi*-θi」に対して、所定の比例ゲインKpPLLを乗算する。
 乗算器62における乗算結果は、前述した比例信号PLL_Pになる。また、乗算器64は、差分値「θi*-θi」に対して、所定の積分ゲインKiPLLを乗算し、積分器66は、この乗算結果を積分する。
 積分器66における積分結果を積分信号PLL_Iと呼ぶ。加算器68は、比例信号PLL_Pと、積分信号PLL_Iとを加算し、加算結果を周波数信号ω1sとして出力する。
 積分器72は、周波数信号ω1sを積分し、交流電流位相角θiを出力する。交流電流位相角θiは、減算器56に供給されるとともに、回転座標変換器70にも供給される。
 また、乗算器74は、周波数信号ω1sに「2/P」(ここで、Pはモータ10の極数)を乗算し、乗算結果を機械周波数ωrsとして出力する。ここで、機械周波数ωrsは、モータ10(図1参照)の実速度(誘導モータの場合はすべりを含んだ速度)に対応する信号になる。
 回転座標変換器70は、二相の交流電流Iα、Iβを、周波数信号ω1sで回転する回転座標系における二軸の直流量Ir、Iiに変換する。
 このように、減算器56、位相演算器60および積分器72は、PLL(Phase Locked Loop)演算部として機能し、減算器56が出力する差分値「θi*-θi」が「0」に近づくような、周波数信号ω1sおよび交流電流位相角θiを出力する。
 特徴量演算部44は、モータのトルク電流Irの最大値、平均値、FFT(fast Fourier transform)、およびモータ回転速度ωrsの最大値、平均値、FFTなどの特徴量を抽出する。
 状態推定部45は、モータトルク電流Irの最大値、平均値、FFT、およびモータ回転速度ωrsの最大値、平均値、FFTなどの特徴量に基づき、機器状態を推定する。
 推定状態量がデータ記憶部46に記録される基準値データと比べ、その状態量が異常かどうかを異常判定部47が検出する。また、異常判定部47は、外部に各種のアラーム信号を出力する。
 なお、アラーム信号は、ランプの点灯、警報機の発音、または無線通信手段による電波送信等、管理者に通知できる手段であればよい。
 本実施例における監視装置40は、過酷な環境に設置する場合には、防塵防水対策を施した監視装置ケースに収納することが好ましい。さらに、監視装置40をインバータ22等、ノイズを発生するデバイスの近くに設置する場合には、監視装置40にノイズ対策を施すことが好ましい。
 以上のように、監視装置40は、独自の座標を用いて、相関関係のある駆動モータに流れる電流情報のみから、簡単なアルゴリズムによって、交流から直流への変換が可能であるため、異常と判断するためのエッジ処理も監視装置内で実行することができる。これにより、結果として、データ量が大幅に削減でき、分析/診断作業も容易となる。
 〈工具摩耗度の推定〉
 図4は、マシニングセンタなどの工作機械の工具駆動軸の1例を示している。マシニングセンタの種類は、主軸(スピンドル)の方向によって横形と立形に大別され、横形は主軸が水平方向に、立方は垂直方向に取り付けられる。
 主軸は、加工を施す加工品、または工具を取り付けて回転させるその工作機械で最も主要な軸である。基本的な構造の立型マシニングセンタは3軸加工が一般的である。
 機械を正面から見て上下方向(Z軸)に主軸が動き、加工品を固定したテーブルが前後(Y軸)と左右(X軸)に動くベッド型のフライス盤と同じ動きとなる。
 加工種類により、送り軸が変わる。例えば、ドリル加工の場合、Z軸が送り軸とり、フライス加工の場合、Z軸に加えX軸やY軸も送り軸となる。一方、5軸加工の立型マシニングセンタは、XYZの3軸の軸方向の動きに加え、テーブルの回転(C軸)と傾斜角(B軸)がついたインデックステーブルを使用して5軸加工を可能としている(図示せず)。
 つまり、機器や加工内容により、加工に相関関係のあるモータ数が変わる。例えば、ドリル加工の場合、相関関係のあるモータは主軸モータと送り軸モータ(Z軸モータ)であり、フライス加工の場合、相関関係のあるモータは主軸モータ、送り軸モータ(X軸モータ、Y軸モータ、Z軸モータ)である。
 図5は、工具摩耗に伴う加工品質低下および工具折損発生の流れを示している。工具は加工時間の経過と共に刃先が摩耗して切削抵抗が増加し、最終的には折損に至る場合がある。また、工具摩耗が進むと加工精度が悪化し、加工品に求められる所定の加工精度を維持することができない。
 図6は、工具摩耗に伴う主軸および送り軸の力とそれぞれの軸におけるモータトルク電流の変化である。工具摩耗が進行するにつれて、工具の刃が滑りやすくなるため、主軸モータの負荷が減少した結果、主軸モータのトルク電流が減少する。一方、工具の刃が掘り込みにくくなるため、送り軸モータの負荷が増大した結果、送り軸モータのトルク電流が増大する。つまり、主軸および送り軸モータ電流の変化を監視すれば、工具摩耗状態を推定することが可能である。
 図7は、所定の加工区間ごとの主軸および送り軸のモータトルク電流およびモータ回転速度の特徴量を抽出する概略図である。例えば、加工時間経過とともに、加工区間ごとの所定加工区間のトルク電流の最大値、標準偏差、平均値、FFT、およびモータ回転速度の最大値、標準偏差、平均値、FFTなどの特徴量を抽出する。
 また、所定1台モータまたは相関関係のある複数モータのトルク電流値または回転速度値を特徴量抽出のトリガーとし、指定区間の特徴量を演算することにより、必要に応じてサンプリング周波数や演算量の調整が可能となる。これにより、結果として、データ量が大幅に削減でき、分析/診断作業も容易となる。さらに、送り軸モータの電流波形から、加工動作種類を判別できるため、より正確な特徴量抽出が可能となる。
 さらに、工具径や加工負荷の変化に応じて、主軸モータ電流情報および送り軸モータ電流情報に基づく工具摩耗度を推定する特徴量の組合せを変えれば、より正確に工具摩耗度を推定することが可能である。
 図8は、一般化線形モデル手法を用いた工具摩耗度(前記機器状態量)の推定方法について説明する図である。一例として、摩耗度は工具刃の摩耗幅である場合の推定方法を説明する。
 計測工具摩耗幅に対し、前記モータ電流情報から抽出した特徴量に基づき、多変量解析など手法により推定モデル式を構築できる。ここで、推定モデル式は、複数の駆動モータの前記に例示した特徴量と工具摩耗度との対応関係を表した演算式である。一般化線形モデルで示した推定モデルの一例は、次の(式1)のとおりである。
 Y=a+b×送り軸モータトルク電流の平均値+c×送り軸モータ回転速度の最大値d×主軸モータトルク電流の平均値+e×主軸モータ回転速度の標準偏差+・・・(式1)
 ここで、Yは推定モデル式から推定される工具摩耗度、a、b、c、d、eは定数である。つまり、相関関係のあるモータ電流情報に基づき、工具摩耗度Yを推定することが可能である。
 また、加工負荷の変化に応じて、前記定数のb、c、d、eを調整すること(重み付け:寄与度)により、目的変数Yへの支配度合いを変えることができるため、推定精度を向上することができる。
 例えば、図7のドリル加工において、大径ドリル(加工負荷大)の場合、主軸モータのトルク電流および回転速度が磨耗の程度を顕著に表す。そのため、大径ドリル(加工負荷大)の場合は、主軸モータのトルク電流および回転速度に対してより重み(寄与度)をつける。
 一方、小径ドリル(加工負荷小)の場合、送り軸モータ電流および回転速度が磨耗の程度を顕著に表す。そのため、小径ドリル(加工負荷小)の場合、送り軸モータ電流および回転速度に対してより重み(寄与度)をつければ、ドリル摩耗がより高精度に推定される。このように、対象機器であるドリルに応じて推定モデル式を変えることで、感度よく、機器の状態を推定できる。
 推定モデルの(式1)を一般的な関数式に書き換えると以下の(式2)となる。
  Y(I,w,L)=g(I,w)×k(L) + g(I,w)×k(L)+・・・(式2)
 ここで、Iはモータトルク電流、wはモータ回転速度、Lは加工負荷、gはモータ1のトルク電流および回転速度を変数とする関数、gはモータ2のトルク電流および回転速度を変数とする関数、kは加工負荷を変数とするモータ1の関数、kは加工負荷を変数とするモータ2の関数である。
 相関関係のある複数モータの電流情報に基づく複数の特徴量、および負荷Lに応じて変えられる係数(寄与度)を用いて精度よく機器状態を推定することが可能である。
 また、ここでのk(L)、k(L)、…は機器加工負荷や加工パターンから事前に計測してデータ記憶部に保存すること、機械学習などによる蓄積されたデータから精度向上することも可能である。
 実運用時、工具摩耗度の限界Mは、加工品質などにより決められる。推定誤差やバラツキがなければ、推定工具摩耗度Yの上限はMに対応するYとなるが、推定バラツキを考慮すれば、推定工具摩耗度の上限はYとなる。
 つまり、推定工具摩耗度YがYを超えると、加工品が不良品となる。この推定工具摩耗度Yを監視することにより、工具交換時期を正確に把握することが可能である。また、ここでは一般化線形モデル手法を例として説明した。工具摩耗度とモータ電流から抽出した特徴量との関係を示すモデル構築手法であれば、統計手法を用いたモデルなど、一般化線形モデル手法に限定する必要はない。
 さらに、蓄積されたデータに機械学習などを導入することにより、より正確な工具摩耗度推定を実現できる。以上より、相関関係のあるモータ電流情報に基づき、工具摩耗度を推定することが可能であるため、工具の交換時期をより正確に把握することができる。また、工具摩耗度を監視することにより、工具折損の発生を防ぐことも可能である。
 〈実施例1の動作〉
 図9は、監視装置40において実行される工具摩耗検知ルーチンのフローチャートである。この工具摩耗検知ルーチンは、所定のサンプリング周期ごとに実行される。
 図9において、工具摩耗検知ルーチンが開始し(START)、モータ電流計測の処理が実行される(ステップS2)。そして、監視装置40(図2参照)のモータ情報演算部42が、主軸などの各軸のモータの電流センサ41(図1参照)から、第1軸のモータの電流検出値IU1、IW1および第2軸のモータの電流検出値IU2、IW2を取得する。
 次に、第1軸のモータおよび第2軸のモータの電流検出値を受けてモータ情報演算部42は、対応する第1軸のモータ10-1のトルク電流Ir1および回転速度ωrs1、第2軸のモータ10-2のトルク電流Ir2および回転速度ωrs2を演算する。
  すなわち、それぞれの軸のモータのトルク電流I、機械周波数ωrsと、を出力する(ステップS3)。
 次に、特徴量演算部44は、所定区間のトルク電流の最大値、標準偏差、平均値、FFT、およびモータ回転速度の最大値、標準偏差、平均値、FFTなどの特徴量を抽出する(ステップS4)。
 次に、状態推定部45は、前述した推定モデルに基づき、データ記憶部46から取得した特徴量、および負荷に対応した相関モータの寄与度を用いて、(式1)の演算を実行して工具摩耗度を算出する。(ステップS5)
 状態推定部45の推定の際に用いる負荷に対応した相関モータの寄与度や、異常判定部47で用いる基準値をデータ記憶部46に予め記憶しておく(ステップS6)。寄与度や基準値は、トルク電流Irに基づいて更新するようにしてもよい。
 さらに、異常判定部47が、基準値データと比べて、トルク電流Iが設定限界値Ir0より低下する判定し、かつモータ回転状態にある(ωrs>0)と判定すると(ステップS7がYes)、異常判定部47は、工具が折損状態であることを表すアラーム信号を外部に出力する(ステップS9)。
 異常判定部47が、摩耗度Yが設定限界値Yを超えている判定し、かつモータ回転状態にある(ωrs>0)と判定すると(ステップS8がYes)、異常判定部47は、工具が摩耗状態であることを表すアラーム信号を外部に出力する(ステップS10)。
 また、両者のうち何れにも該当しない場合(ステップS7またはステップS8がNo)は、本ルーチンの処理は終了する(END)。
 〈実施例1の効果〉
 以上のように本実施例によれば、相関関係のある複数モータの少なくともそれぞれ2相の電流値I、Iに基づいて工具摩耗状態を検知することができる。すなわち、加速度センサやAEセンサなどを追加することがなく、工具平均使用寿命を延ばすことができる。
 また、工具摩耗度を可視化することにより、工具メンテナンスの省力化を実現しつつ工具折損を未然に防止できる。また、異常判定部47は、工具摩耗状態を検知すると、アラーム信号を出力する。これにより、管理者に対して、各種の異常を報知することができる。
 実施例1によれば、複数の駆動モータの電流情報に基づき、感度よく機器状態の異常を判定できる。
 また、工具の摩耗が進むと加工精度が悪化し、加工品に求められる所定の加工精度を維持することができないので、切削加工において使用される工具は、その個体差により折損までの寿命バラツキが大きい。このため、平均的な寿命を目安として一定の加工数で交換するという従来の寿命管理方法のように、平均的な寿命に比べて短い工具であった場合は、加工性能の低下により製品不良が発生する場合があったが、本実施例ではそのような製品不良を回避できる。
 また、本実施例では、平均的な寿命に比べて長い工具であった場合は、寿命に到達前に交換してしまうことによるロスコストを防ぐことができる。
 また、モータ設置場所に寸法制約がある場合や、過酷な環境条件においては、工具摩耗を検知する加速度センサやAE(Acoustic Emission)センサなどを追加設置することが難しいが、本実施例によれば、そのようなセンサは不要にできる。
 さらに、センサの数が増えれば増えるほどセンサ群の信頼性を確保することが困難となり、監視精度が低下する課題があるが、本実施例によれば、センサを使わないので、そのような課題を解消できる。
 また、センサを使わないので、メンテナンス性、信頼性が大幅に向上する。具体的に、センサの保守点検作業が削減できるほか、センサの故障に伴うシステムダウンを未然に防ぐことができる。また、センサ用システム艤装配線が削減できるので作業コストを削減できる上に、配線トラブルなどの懸念をなくすことができる。
 図10は、実施例2によるモータ制御システム102のブロック図である。なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図10において、モータ制御システム102は、N台(Nは3以上の自然数)のモータ10-1~10-Nと、これらに回転軸14を介して結合された工具16と、を備えている。
 また、各モータ10-1~10-NのU相、W相には、各2個の(合計3N個の)電流センサ41が装着され、これらの電流検出値Iu1~IuN、Iw1~IwNは、監視装置150(工具摩耗度の監視装置)に供給される。
 監視装置150の構成については図11に示すように、実施例1の監視装置40(図2参照)において、2個の相関関係のあるモータ情報演算部42に代えて、N個の相関関係のあるモータ情報演算部を設けた構成と同様である。
 例えば、前述したフライス加工の場合における送り軸であるZ軸やX軸やY軸における駆動モータを相関関係のある駆動モータとする場合も有る。
 また、5軸加工の立型マシニングセンタにおけるテーブルの回転(C軸)と傾斜角(B軸)の駆動モータを相関関係のある駆動モータに含めるようにしてよい。本実施例の前述した以外の構成および動作は、実施例1のものと略同様である。
 図12は、複数モータの電流情報から機器状態に相関する特徴量を抽出する場合を説明する図である。実施例1の図8と同様に、例えば、特徴量の一般化線形モデルなど手法を用いる機器状態を推定できる。複雑加工の場合、加工負荷に寄与する相関関係のある複数モータ電流情報を用いることにより、機器状態の推定精度を向上することができる。
 図13は、実施例3によるモータ制御システム103のブロック図である。なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図13において、モータ制御システム103は、実施例1の監視装置40(図2参照)に代えて、監視装置160(機器状態の監視装置)を備えている。監視装置160の構成は、監視装置40のものと略同様であるが、異常判定部47は、工具摩耗アラーム信号(図2参照)を出力するとともに、駆動装置20内の指令生成部32に対して、必要に応じて制御コマンドを出力する。
 ここで、制御コマンドとは、例えば、モータ10-1の停止または加減速を指令するものであり、これによって、例えば工具使用寿命延長や加工品質維持に最適な運転を実施することができる。
 このように、本実施例によれば、異常判定部47は、機器状態の異常(工具の過度摩耗、折損など)を検知すると、制御部30に対して、制御状態を変更させる制御コマンドを出力する。この場合の制御コマンドとしては、駆動モータの停止もしくは、回転速度を低減するといった制御コマンドがある。これにより、制御部30における制御状態を適切な状態に変更することができる。
 図14は、実施例4によるモータ制御システム104のブロック図である。なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図14において、モータ制御システム104は、実施例2の監視装置40(図11参照)に代えて、監視装置170(機器状態の監視装置)を備えている。監視装置170の構成は、監視装置150のものと略同様であるが、異常判定部47は、機器状態異常アラーム信号(図11参照)を出力するとともに、駆動装置20内の指令生成部32に対して、必要に応じて制御コマンドを出力する。
 ここで、制御コマンドとは、例えば、モータ10-1の停止または加減速を指令するものであり、これによって、工具使用寿命延長や加工品質維持に最適な運転を実施することができる。
 このように、本実施例によれば、異常判定部47は、機器状態の異常(工具の過度摩耗、折損など)を検知すると、制御部30に対して、制御状態を変更させる制御コマンドを出力する。これにより、制御部30における制御状態を適切な状態に変更することができる。
 図15は、実施例5によるモータ制御システム105のブロック図である。なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図15において、モータ制御システム105は、駆動・監視装置180と、モータ10-1~10-Nと、回転軸14を介して結合された工具16と、を備えている。駆動・監視装置180は、制御部30と、インバータ22と、監視装置190(機器状態異常の検知)と、を備えている。
 制御部30、インバータ22の構成は実施例1のもの(図1参照)と同様であり、監視装置190の構成は、実施例4の監視装置170(図14参照)の構成と同様である。従って、本実施例の駆動・監視装置180は、実施例4における駆動装置20および監視装置170の機能を合わせた機能を有する。なお、本実施例は、既設の駆動装置20(図14参照)に対して、監視装置190を増設することによって構成することもできる。
 図16は、実施例6によるモータ駆動サーボアンプ106のブロック図である。なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図16において、サーボアンプ106は、モータ10-1と、回転軸14と、工具16と、サーボアンプ106と、監視装置210と、を備えている。また、モータ10-1のU相、W相には、電流センサ41が装着され、これらの電流検出値Iu1、Iw1、およびサーボアンプ2からのモータ10-2の電流検出値Iu2、Iw2を監視装置210(機器状態の監視装置)に供給される。
 監視装置210の構成については、図2に示すように、実施例1の監視装置40(図2参照)において、2個のモータ情報演算部42を設けた構成と同様である。本実施例の前述した以外の構成および動作は、実施例1のものと略同様である。
 また、本実施例において、モータに電流を供給するサーボアンプに機器状態異常を検知する機能を組み込む実施例を説明したが、モータに電流を供給するインバータに機器異常を検知する機能を組み込めば、同様に工具摩耗状態を検知するインバータを構築することができる(図示せず)。
 以上より、相関関係のある複数モータ電流情報に基づき、機器状態を推定することが可能であるため、機器の工具の交換時期やメンテナンス時期をより正確に把握することができる。
 図17は、実施例7によるモータ駆動サーボアンプ107のブロック図である。なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図17において、サーボアンプ107は、N台(Nは3以上の自然数)のモータ10-1~10-Nと、回転軸14と、工具16と、サーボアンプ107と、監視装置220と、を備えている。
 監視装置220の構成については図11に示すように、N個のモータ情報演算部を設けた構成と同様である。本実施例の前述した以外の構成および動作は、実施例1のものと略同様である。
 以上より、相関関係のある複数モータの電流情報に基づき、機器状態を推定することが可能であるため、機器の工具の交換時期やメンテナンス時期をより正確に把握することができる。
 図18は、実施例8による産業用コントローラ108のブロック図である。産業用コントローラ108は、ネットワーク化された工場の生産ラインや設備と連携し、ロボット制御や各種センサからの設備機器データの収集と、上位の情報システムとのシームレスな垂直統合を実現する。そして、産業用コントローラ108は、産業用コンピュータの機能とPLC(programmable logic controller)のオープン統合開発環境を一台に集約している。工場内の設備機器を制御するだけでなく、情報を収集・分析することで、工場全体やサプライチェーン全体の最適化を図れる。
 なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図18において、産業用コントローラ108は、情報収集部240、監視装置230と、を備えている。また、各モータ10-1~10-Nの電流検出値Iu1~IuN、Iw1~IwNは、インバータまたはサーボアンプから情報収集部240に供給される。
 監視装置230の構成については図11に示すように、N個のモータ情報演算部を設けた構成と同様である。本実施例の前述した以外の構成および動作は、実施例1のものと略同様である。
 以上より、ネットワークに接続する複数のモータの電流情報から、産業用コントローラにおいて複数機器の状態を推定することが可能であるため、それぞれの工具交換時期の最適化やメンテナンスの省力化をより効率的に実現できる。
 図19は、実施例9による工作機械の概略図である。なお、以下の説明において、前述した他の実施例の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図19において、工作機械109は、その制御部に、Z軸モータサーボアンプ、主軸モータインバータ、X軸モータサーボアンプ、Y軸モータサーボアンプ、監視装置250を備えている。また、各軸モータの電流検出値は、サーボアンプまたはインバータから監視装置に供給される。監視装置から工具摩耗情報を工作機械の制御操作画面(パネル)に出力し、アラームまたは警告メッセージを表示してもよい(図示せず)。
 以上より、工作機械の相関関係のある複数軸のモータの電流情報に基づき、工具の摩耗度を推定することが可能であるため、それぞれの工具交換時期の最適化やメンテナンスの省力化をより効率的に実現できる。
 前述した実施例に限定されるものではなく、種々の変形が可能である。前述した実施例は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。
 また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。前記実施例に対して可能な変形は、例えば以下のようなものである。
 (1)前記実施例における制御部30、監視装置40、150、160、170、190、210、220、230、250のハードウエアは、一般的なコンピュータによって実現できるため、図2、図3に示したアルゴリズム、図9に示したフローチャートに対応したプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。
 (2)図2、図3に示したアルゴリズム、または図9に示したフローチャートは、各実施例ではプログラムを用いたソフトウエア的な処理として説明した。しかしながら、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(field-programmable gate array)等を用いたハードウエア的な処理に置き換えてもよい。
 (3)図10等の構成において、複数のインバータが設けられているが、インバータ22は1台のみを設けるようにしてもよい。
 前述した実施例では、主に工具を用いた加工について適用する場合を説明したが、工具の加工時のみならず、ロボットの操作をする場合においても、ロボットを含めた機器の状態の異常を検知するのに役立てることができる。
 前述した実施例では、インバータ、サーボアンプへの適用例で説明したが、DCBLコントローラなどの電力変換装置にも適用できる。
10、10-1~10-N モータ、40、150、160、170、190、210、220、230、250 監視装置、41 電流センサ、42、42-1~42-N モータ情報演算部、44 特徴量演算部、47 異常判定部、101~105 モータ制御システム、108 産業用コントローラ、240 情報収集部

Claims (12)

  1. 複数の駆動モータのそれぞれについて、二相の電流情報を検出する電流センサと、
    前記電流情報から対応する前記駆動モータのトルク電流または回転速度を演算するモータ情報演算部と、
    複数の前記駆動モータにおける前記トルク電流または前記回転速度についての特徴量を演算する特徴量演算部と、
    複数の前記駆動モータのうち相関関係にある前記駆動モータの前記特徴量に基づいて機器状態を推定する状態推定部と、
    基準値データを記録するデータ記憶部と、
    推定した前記機器状態と前記基準値データに基づいて、異常状態を判定する異常判定部と、
    を備えることを特徴とする監視装置。
  2. 請求項1に記載の監視装置において、
    前記機器状態は、前記駆動モータが駆動する工具の磨耗度を示すことを特徴とする監視装置。
  3. 請求項1に記載の監視装置において、
    前記特徴量は、前記駆動モータの前記トルク電流または前記駆動モータの前記回転速度の最大値、標準偏差、平均値、もしくはFFTであることを特徴とする監視装置。
  4. 請求項1に記載の監視装置において、
    前記状態推定部は、
    複数の前記駆動モータの前記特徴量のうち前記機器状態と相関関係にある複数の前記特徴量と、前記特徴量について重み付けをする寄与度とに基づいて、前記機器状態を算出することを特徴とする監視装置。
  5. 請求項4に記載の監視装置において、
    前記駆動モータは、
    主軸モータと送り軸モータを含み、
    前記状態推定部は、
    前記相関関係にある前記主軸モータと前記送り軸モータの前記特徴量に基づいて、前記機器状態を算出することを特徴とする監視装置。
  6. 請求項1に記載の監視装置において、
    前記異常判定部は、
    異常を検出した場合には、前駆駆動モータを制御する制御部に、制御コマンドを出力することを特徴とする監視装置。
  7. 請求項1に記載の監視装置において、
    前記特徴量演算部は、
    1台または相関関係の有る複数台の前記駆動モータの電流値または回転速度値を、前記特徴量を抽出するトリガーとし、指定区間の前記特徴量を演算することを特徴とする監視装置。
  8. 他のサーボポンプからの前記電流情報を入力する請求項1に記載の監視装置を有することを特徴とするサーボアンプ。
  9. 複数のサーボアンプもしくはインバータからの前記電流情報を収集する情報収集部と、
    請求項1に記載の監視装置とを有することを特徴とする産業用コントローラ。
  10. 複数軸のモータ用のインバータもしくはサーボアンプと、
    請求項1に記載の監視装置とを、その制御部に備えたことを特徴とする工作機械。
  11. 請求項4に記載の監視装置において、
    前記状態推定部は、
    加工品を固定するテーブルの回転軸の前記駆動モータと、傾斜角の軸の前記駆動モータの前記特徴量を含めて前記機器状態を算出することを特徴とする監視装置。
  12. 複数の駆動モータのそれぞれについて、二相の電流情報を検出し、
    前記電流情報から対応する前記駆動モータのトルク電流または回転速度を演算し、
    複数の前記駆動モータにおける前記トルク電流または前記回転速度についての特徴量を演算し、
    複数の前記駆動モータのうち相関関係にある前記駆動モータの前記特徴量に基づいて機器状態を推定し、
    記録しておいた基準値データと、推定した前記機器状態とに基づいて、異常状態を判定することを特徴とする監視方法。
PCT/JP2020/008225 2019-04-18 2020-02-28 監視装置、および監視方法 WO2020213265A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079449 2019-04-18
JP2019079449A JP7194069B2 (ja) 2019-04-18 2019-04-18 監視装置、および監視方法

Publications (1)

Publication Number Publication Date
WO2020213265A1 true WO2020213265A1 (ja) 2020-10-22

Family

ID=72838227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008225 WO2020213265A1 (ja) 2019-04-18 2020-02-28 監視装置、および監視方法

Country Status (3)

Country Link
JP (1) JP7194069B2 (ja)
TW (1) TWI759720B (ja)
WO (1) WO2020213265A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068932A1 (en) 2021-10-22 2023-04-27 Universiteit Twente Motor system, stepper motor and rotor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255427B2 (ja) * 2019-09-02 2023-04-11 株式会社プロテリアル 工作機械の監視システム
CN116529013A (zh) 2020-11-25 2023-08-01 发那科株式会社 工具损伤检测装置以及计算机可读取的存储介质
CN113031521A (zh) * 2021-03-08 2021-06-25 西门子工厂自动化工程有限公司 数控机床的刀具监控系统和方法
JP2022175990A (ja) * 2021-05-14 2022-11-25 株式会社日立産機システム 電力変換装置
TWI805093B (zh) * 2021-11-24 2023-06-11 台中精機廠股份有限公司 人機介面機台控制系統
KR102534207B1 (ko) * 2021-12-03 2023-05-17 이희관 Cnc 공작기계의 이송속도 적응제어시 공구파손 및 공구마모 검출 장치 및 그 방법
CN118475820A (zh) * 2021-12-24 2024-08-09 株式会社日立产机系统 动力传递机构的管理装置、动力传递机构的管理方法和管理系统
WO2023209768A1 (ja) * 2022-04-25 2023-11-02 ファナック株式会社 診断用データ収集装置、診断用データ収集方法、記録媒体、及び制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695941A (en) * 1985-07-29 1987-09-22 General Electric Company Loss of electrical feedback detector
JP2014194727A (ja) * 2013-03-28 2014-10-09 Toenec Corp 回転機の良否診断システム
WO2016084213A1 (ja) * 2014-11-28 2016-06-02 株式会社日立産機システム 監視装置と監視方法およびそれらを備える制御装置と制御方法
WO2016092871A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 電動機の診断装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326438A (ja) * 2002-02-28 2003-11-18 Fanuc Ltd 工具異常検出装置
CH706473A1 (de) * 2012-05-04 2013-11-15 Erowa Ag Überwachugungseinrichtung zur Überwachung von Positionen eines Roboters sowie Fertigungsanlage mit einer Überwachungseinrichtung.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695941A (en) * 1985-07-29 1987-09-22 General Electric Company Loss of electrical feedback detector
JP2014194727A (ja) * 2013-03-28 2014-10-09 Toenec Corp 回転機の良否診断システム
WO2016084213A1 (ja) * 2014-11-28 2016-06-02 株式会社日立産機システム 監視装置と監視方法およびそれらを備える制御装置と制御方法
WO2016092871A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 電動機の診断装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068932A1 (en) 2021-10-22 2023-04-27 Universiteit Twente Motor system, stepper motor and rotor
NL2029491B1 (en) * 2021-10-22 2023-05-19 Univ Twente Motor system, stepper motor and rotor

Also Published As

Publication number Publication date
TWI759720B (zh) 2022-04-01
JP2020178454A (ja) 2020-10-29
TW202040918A (zh) 2020-11-01
JP7194069B2 (ja) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2020213265A1 (ja) 監視装置、および監視方法
JP5710391B2 (ja) 工作機械の加工異常検知装置及び加工異常検知方法
Huang et al. Tool wear detection and fault diagnosis based on cutting force monitoring
EP1772960B1 (en) Load monitor
JP5608036B2 (ja) 稼動履歴管理方法、及び稼動履歴管理装置
WO2019049188A1 (ja) 交流電動機の監視装置および監視方法、ならびに電動機駆動システムの監視装置および監視方法
US20140035504A1 (en) Subsea Measurement And Monitoring
Koike et al. A sensorless approach for tool fracture detection in milling by integrating multi-axial servo information
CN111148609B (zh) 异常产生的部位的推定方法和记录执行异常产生的部位的推定的程序的记录介质
EP2998812B1 (en) Measurement processing system for condition monitoring of a wind turbine
US11303236B2 (en) Induction motor overheat monitoring method, induction motor monitoring device, and induction motor control system
JP4073902B2 (ja) 電動弁装置の異常および劣化診断手法ならびに装置
US10396699B2 (en) Anomaly diagnosing device and anomaly diagnosing method
CN110376970A (zh) 参数决定辅助装置和记录有程序的计算机可读介质
JP3566014B2 (ja) 加工装置
WO2021176761A1 (ja) 機器監視装置及び機器監視方法
Miura et al. A method of cutting power monitoring for feed axes in milling by power measurement device
JP6781845B2 (ja) 工作機械の監視システム
JP2006158031A (ja) モータ制御装置およびその制御方法
Jabłoński et al. Industrial implementations of control algorithms for voltage inverters supplying induction motors
JP7255427B2 (ja) 工作機械の監視システム
CN116827193B (zh) 基于参数辨识的抽油机电机参数估计方法
Artono et al. Design of Smart Device for Induction Motor Condition Monitoring
JP2011259579A (ja) サーボモータの健康警告装置およびその計算方法
US20240344521A1 (en) Method for Detecting a Fault, in Particular an Impeller Blockage, in a Centrifugal Pump, and Centrifugal Pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791452

Country of ref document: EP

Kind code of ref document: A1