WO2020213212A1 - アルカリ乾電池用ガスケットおよびアルカリ乾電池 - Google Patents

アルカリ乾電池用ガスケットおよびアルカリ乾電池 Download PDF

Info

Publication number
WO2020213212A1
WO2020213212A1 PCT/JP2019/049646 JP2019049646W WO2020213212A1 WO 2020213212 A1 WO2020213212 A1 WO 2020213212A1 JP 2019049646 W JP2019049646 W JP 2019049646W WO 2020213212 A1 WO2020213212 A1 WO 2020213212A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasket
polyamide
alkaline
less
butyl
Prior art date
Application number
PCT/JP2019/049646
Other languages
English (en)
French (fr)
Inventor
威 大窪
祐基 末弘
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020213212A1 publication Critical patent/WO2020213212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Definitions

  • the present invention relates to a gasket for sealing an alkaline battery.
  • Alkaline batteries have a structure in which a power generation element containing an alkaline electrolyte is stored in a battery case, and then a sealing unit with a gasket is placed in the opening of the battery case, and the opening of the battery case is crimped and sealed. are doing.
  • Gaskets are generally manufactured by an injection molding method in which a thermoplastic resin melted and kneaded at a high temperature is poured into a mold at a high pressure.
  • thermoplastic resin used for the gasket for example, as illustrated in Patent Document 1, a polyamide resin having excellent heat resistance is used. From the viewpoint of availability and economy, 6,6 polyamide is the majority.
  • Alkaline batteries are widely used as a power source for various devices. Recently, it is used as a power source for lights, radios, chargers and emergency equipment during natural disasters such as typhoons and earthquakes, and may be stored for a long time after purchasing alkaline batteries. For this reason, alkaline batteries are required to have liquid leakage resistance of more than 10 years at room temperature.
  • the gasket is required to be less brittle with the alkaline electrolytic solution and not to cause cracks so that the sealing property can be maintained for a long period of time.
  • One aspect of the present disclosure relates to a gasket for an alkaline battery made of 4,10 polyamide or 4,12 polyamide.
  • Another aspect of the present disclosure relates to an alkaline dry battery in which the opening of a battery case containing a power generation element containing an alkaline electrolytic solution is sealed with a gasket made of 4,10 polyamide or 4,12 polyamide.
  • the sealing performance of alkaline batteries can be maintained for a long period of time.
  • the gasket for alkaline batteries of the present disclosure is made of 4,10 polyamide or 4,12 polyamide. It is mainly composed of 4,10 polyamide or 4,12 polyamide, and is composed of 4,10 polyamide or 4,12 polyamide in an amount of 90% by mass or more based on the total mass of the gasket.
  • 4,10 polyamide is obtained, for example, by a polycondensation reaction of tetramethylenediamine and decanedioic acid.
  • the 4,12 polyamide is obtained, for example, by a polycondensation reaction of tetramethylenediamine and dodecanedioic acid.
  • melt polymerization melt polymerization, interfacial polymerization, solution polymerization, bulk polymerization, solid phase polymerization, and a method combining these methods can be used. Usually, melt polymerization is preferably used.
  • the weight average molecular weight Mw of 4,10 polyamide or 4,12 polyamide may be, for example, in the range of 5,000 to 50,000 or in the range of 20,000 to 35,000 in consideration of moldability.
  • the low molecular weight polyamide of 1% or less of the weight average molecular weight Mw to less than 20% with respect to the mass of the gasket. Further, it may be less than 10%. When set in this way, the crystallinity is enhanced, and the alkali resistance after molding into the gasket can be improved.
  • the polymer polyamide having a weight average molecular weight Mw of 100 times or more to less than 20% with respect to the mass of the gasket. Further, it may be less than 10%. When set in this way, the fluidity of the resin is increased and the moldability is easily improved.
  • the ratio Mw / Mn of the weight average molecular weight Mw and the number average molecular weight Mn may be in the range of 1.5 to 3.0, and may be in the range of 1.5 to 2.5.
  • the 4,10 polyamide or 4,12 polyamide used in the present invention may contain a polymer other than the above-mentioned polyamide resin as long as the effects of the present invention are not impaired.
  • polymers include polypropylene, ABS resin, polyphenylene oxide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyarylate, liquid crystal polyester, and various elastomers. These may be used alone or in combination of two or more.
  • the 4,10 polyamide or 4,12 polyamide used in the present invention includes other components such as a crystal nucleating agent, a mold release agent, an antioxidant, a weather resistant agent, a pigment, a dye, and a plasticizer as long as the effects of the present invention are not impaired.
  • Antistatic agents, flame retardants, moldability improvers, heat stabilizers, light stabilizers and the like may be added at any stage. These may be used alone or in combination of two or more.
  • crystal nucleating agent examples include inorganic fine particles such as talc, calcined kaolin and magnesium silicate, metal oxides such as aluminum oxide, and fatty acid metal salts such as aluminum stearate.
  • the crystal nucleating agent may be added in the range of 0.0001 to 5% by mass with respect to the entire resin. Its maximum particle size is preferably 2.0 ⁇ m or less. If it exceeds 2.0 ⁇ m, the crystals tend to grow large and the elongation of the polyamide tends to increase.
  • the gasket When the gasket is provided with a thin-walled portion that functions as an explosion-proof valve when the internal pressure of the battery rises, if the polyamide crystals grow large, the thin-walled portion is less likely to break and the operating pressure of the explosion-proof valve may increase. possible.
  • the amount of the crystal nucleating agent added is relative to the entire resin. It is preferably in the range of 0.0001 to 5% by mass, more preferably 3% by mass or less.
  • A1 type dumbbell test piece (based on JIS K7139) with a total length of 170 mm, a parallel part in the center of 80 mm, and a parallel part in the center.
  • a test piece having a width of 10 mm and a thickness of a parallel portion of 4 mm was conditioned for 48 hours in an environment of a temperature of 30 ° C. and a humidity of 50%, and fracture elongation was performed under the condition of a tensile test speed of 10 mm / min. It is preferable that the tensile elongation rate of the above is as follows.
  • the elongation rate at a stress of 50 N / mm2 at 23 ° C. is 50% or less, and the elongation rate at a stress of 20 N / mm2 at 150 ° C. is 50% or less.
  • the elongation rate under stress of 50 N / mm2 at 23 ° C. may be 30% or less, and the elongation rate under stress of 20 N / mm2 at 150 ° C. may be 30% or less.
  • the release agent includes a long-chain alkyl fatty acid metal salt such as magnesium stearate, barium stearate, and magnesium montanate, and a long-chain alkyl fatty acid ester.
  • the amount of the release agent added is preferably 0.5% by mass or less, which does not affect the physical properties of the resin, based on the entire resin.
  • antioxidants examples include a hindered phenol-based antioxidant, a phosphorus-based antioxidant, a sulfur-based antioxidant, and the like, and these can also be used in combination.
  • hindered phenolic antioxidants are preferable.
  • a hindered phenol-based antioxidant and a phosphorus-based antioxidant or a sulfur-based antioxidant can be used in combination.
  • hindered phenolic antioxidant used in the present invention examples include 1,1,3-tris (2-methyl-1-hydroxy-5-t-butylphenyl) butane and tetrakis (2,4-di-t-butyl).
  • the phosphorus-based antioxidants used in the present invention include trisnonylphenylphosphite, tris (2,4-di-t-butylphenyl) phosphite, bis (nonylphenyl) pentaerythritol diphosphite, and distearyl pentaerythritoldi.
  • Phosphite bis (2,4-di-t-butylphenyl) pentaerythritol phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol phosphite, 2,2-methylenebis (4) , 6-di-t-butylphenyl) octylphosphite, tetrakis (2,4-di-butylphenyl) -4,4'-biphenylene-di-phosphonite-2,4,8,10-tetraoxa-3,9 -Didiphosphaspiro [5,5] undecane is preferably used, especially bis (2,6,di-t-butyl-4-methylphenyl) pentaerythritol phosphite, 2,4,8,10-tetraoxa-. 3,9-Didiphosphaspiro [5,5] undecane is preferred.
  • sulfur-based antioxidant used in the present invention examples include distearyl 3,3'-thiodipropionate, pentaerythrityl tetrakis (3-lauryl thiopropionate), 2-mercaptobenzimidazole, and didodecyl 3,3'-.
  • the amount of the antioxidant added is 0.001 to 0.1% by mass, preferably 0.001 to 0.05% by mass, based on the polyamide resin. If the addition amount is less than 0.001% by mass, the effect of improving the moist heat resistance is small, and if it exceeds 0.1% by mass, the mold is likely to be soiled during molding and molding defects are likely to occur, which is not preferable.
  • the mixing ratio when two or more kinds of antioxidants are used in combination, but for example, when a hindered phenolic antioxidant and other antioxidants are mixed, the hindered phenolic compound is added to the total of both.
  • the proportion of the antioxidant is preferably 100 to 30% by mass, more preferably 100 to 50% by mass.
  • the polyamide resin composition used in the present invention may contain other additives listed below as long as the effects of the present invention are not impaired.
  • Weather retardants resorcinol, salicylate, benzotriazole, benzophenone, hinderedamine, etc.
  • pigments cadmium sulfide, phthalocyanine, carbon black, metallic pigments, etc.
  • dyes niglosin, etc.
  • plasticizers p-oxybenzoic acid
  • antistatic agents alkylsulfate-type anionic antistatic agents, quaternary ammonium salt-type cationic antistatic agents, nonionic antistatic agents such as polyoxyethylene sorbitan monostearate Agents, betaine-based antistatic agents, etc.
  • flame retardants eg, hydroxides such as red phosphorus, melamine cyanurate, magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, brominated
  • the degree of polymerization of the component polyamide resin is preferably a degree of polymerization in which the relative viscosity at 25 ° C. is 1.8 to 3.8, and the degree of polymerization is 1.9 to 3.5.
  • the degree is more preferable, and the degree of polymerization is more preferably 2.0 to 3.3. The same applies when a component other than the polyamide resin is contained.
  • the viscosity number of the polyamide resin composition (based on JIS K6933) is preferably in the range of 90 ml / g or more and 170 ml / g or less.
  • the viscosity number of the polyamide resin composition is preferably in the range of 90 ml / g or more and 170 ml / g or less as described above. Considering the variation depending on the material lot, the viscosity number is preferably 100 ml / g or more and 160 ml / g or less. Further, 110 ml / g or more and 150 ml / g or less are particularly preferable.
  • the gasket for alkaline batteries of the present invention is molded by an injection molding method, but the type of injection molding die used for manufacturing the gasket is not limited.
  • the injection molding die is a cold runner type die when stabilizing the quality of the gasket is prioritized, and a hot runner type die when productivity is prioritized. If this is taken into consideration, a semi-hot runner type mold can be used.
  • the temperature of the molten resin is 250 ° C. or higher and 300 ° C. or lower, and the mold temperature at 60 ° C. or higher and 90 ° C. or lower.
  • the gasket 5 may be used in a state where water is appropriately absorbed in order to prevent the boss portion 5b from cracking when the negative electrode current collector 6 is press-fitted into the boss portion 5b, or is molded by an injection molding method.
  • the gasket may be used as it is.
  • the gasket may have a hollow tubular boss portion in the center, an outer peripheral portion in contact with the battery case, and a connecting portion for connecting the boss portion and the outer peripheral portion.
  • the inner diameter of the boss portion of the gasket should be set to 0.92 to 0.97 times the outer diameter of the rod-shaped current collector (negative electrode current collector) inserted into the hollow portion. With this setting, stress cracks are likely to be suppressed.
  • the thin-walled portion of the gasket may be provided on the entire circumference along the boss portion, or may be provided on a part of the connecting portion.
  • the thickness of the thin portion may be set to 0.10 to 0.35 mm, for example, when the entire circumference is provided along the boss portion. When it is provided in a part of the connecting portion, it may be set to 0.05 to 0.2 mm. When set in this way, it can function as an appropriate explosion-proof valve.
  • FIG. 1 is a cross-sectional view of a partial notch of an alkaline battery as an embodiment of the present invention.
  • a positive electrode 2 containing manganese dioxide and graphite and a negative electrode 3 containing zinc are housed in a bottomed cylindrical battery case 1 via a separator 4, and an opening of the battery case 1 is opened. It is sealed with a sealing unit 9, and the outer surface of the battery case is covered with an exterior label 8.
  • At least the positive electrode, negative electrode, and separator contain an alkaline electrolyte (not shown).
  • the alkaline electrolyte contains potassium hydroxide and sodium hydroxide.
  • the sealing unit 9 is composed of a negative electrode terminal plate 7 electrically connected to the negative electrode current collector 6 and a gasket 5.
  • the gasket 5 is formed with a thin portion 5a that breaks as an explosion-proof valve when the abnormal pressure inside the battery rises. Further, in the center of the gasket 5, a hollow tubular boss portion 5b fitted with the negative electrode current collector 6 is formed.
  • the thin part 5a and the boss part 5b are liable to crack due to the influence of the alkaline electrolytic solution.
  • each of the materials and compositions shown in Table 1 was melted, kneaded, and injection molded to prepare a gasket 5 similar to that shown in FIG.
  • the melting temperature of the material is about 280 ° C.
  • the kneaded product is put into an injection molding machine, and the kneaded product is injected into a molding die held at about 80 ° C. in 2 seconds by applying a pressure of 100 MPa and held for 2 seconds. After further cooling in the mold for 5 seconds, the gasket 5 was taken out.
  • the gasket made of 4,10 polyamide (Example 1) or 4,12 polyamide (Example 2) seals the alkaline battery for a longer period of time than the gasket made of 6,6 polyamide (Comparative Example). It turns out that the sex can be maintained. It is considered that this is because 4,10 polyamide or 4,12 polyamide is less likely to be deteriorated in the alkaline electrolytic solution as compared with 6,6 polyamide.
  • the gasket made of 4,10 polyamide (Example 1) or 4,12 polyamide (Example 2) has the same number of bursts as the gasket made of 6,6 polyamide (Comparative Example) in a normal charging test.
  • the number of bursts after being left at 150 ° C. is specifically small, safety after misuse can be ensured in a harsh environment, and excellent reliability is obtained.
  • 4,10 polyamide and 4,12 polyamide have the property of maintaining hardness even at high temperatures compared to other polyamides, so the explosion-proof valve does not fully extend even when exposed to high temperatures and operates normally. It is probable that it was done.
  • the alkaline dry battery of the present invention has excellent liquid leakage resistance for a long period of time, and is suitably used for all devices powered by the dry battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

アルカリ電解液を含む発電要素を収納した電池ケースの開口部を、4,10ポリアミドまたは4,12ポリアミドから成るガスケットで密封する。

Description

アルカリ乾電池用ガスケットおよびアルカリ乾電池
 本発明はアルカリ乾電池を密封するガスケットに関する。
 アルカリ乾電池は、電池ケース内にアルカリ電解液を含む発電要素を収納した後、電池ケースの開口部に、ガスケットを備えた封口ユニットを配置し、電池ケースの開口部をかしめて密封する構造を有している。
 ガスケットは、一般的に、高温で溶融、混練した熱可塑性樹脂を、高圧で金型に流し込む射出成形法により製造される。
 ガスケットに用いる熱可塑性樹脂は、例えば、特許文献1に例示できるように、耐熱性に優れたポリアミド樹脂が用いられている。入手性や経済性の観点から、6,6ポリアミドが大半を占める。
特開2012-146501号公報
 アルカリ乾電池は、さまざまな機器の電源として幅広く用いられている。昨今、台風や地震などの自然災害時におけるライト、ラジオ、充電器や非常用機器の電源として使用され、アルカリ乾電池の購入後、長期間保存される場合もある。このため、常温で10年超の耐漏液性がアルカリ乾電池に求められている。
 そこで、ガスケットには、密封性を長期に渡って維持できるよう、アルカリ電解液に対して脆化しにくいこと、クラックを起こさないことが求められている。
 本開示の一局面は、4,10ポリアミドまたは4,12ポリアミドから成るアルカリ乾電池用ガスケットに関する。
 本開示の他の局面は、アルカリ電解液を含む発電要素を収納した電池ケースの開口部を、4,10ポリアミドまたは4,12ポリアミドから成るガスケットで密封したアルカリ乾電池に関する。
 長期に渡って、アルカリ乾電池の密封性を維持できる。
本発明の一実施の形態としてのアルカリ乾電池の一部切欠きの断面図である。
 本開示のアルカリ乾電池用ガスケットは、4,10ポリアミドまたは4,12ポリアミドから成る。4,10ポリアミドまたは4,12ポリアミドを主成分とし、ガスケット総質量に対して90質量%以上の4,10ポリアミドまたは4,12ポリアミドで構成される。
 4,10ポリアミドは、例えば、テトラメチレンジアミンとデカン二酸との共縮重合反応で得られる。4,12ポリアミドは、例えば、テトラメチレンジアミンとドデカン二酸との共縮重合反応で得られる。重合方法は、溶融重合、界面重合、溶液重合、塊状重合、固相重合、およびこれらの方法を組み合わせた方法を利用することができる。通常、溶融重合が好ましく用いられる。
 4,10ポリアミドまたは4,12ポリアミドの重量平均分子量Mwは、成形性を考慮して、例えば5000~50000の範囲としてもよく、20000~35000の範囲としてもよい。
 重量平均分子量Mwの1%以下の低分子ポリアミドを、ガスケットの質量に対して20%未満に抑えるとよい。さらに10%未満としてもよい。このように設定すると、結晶性が高まり、ガスケットに成形した後の耐アルカリ性を向上させることができる。
 重量平均分子量Mwの100倍以上の高分子ポリアミドを、ガスケットの質量に対して20%未満に抑えるとよい。さらに10%未満としてもよい。このように設定すると、樹脂の流動性を高めて成形性が良化されやすくなる。
 重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnは、1.5~3.0の範囲とすればよく、1.5~2.5の範囲としてもよい。このように設定すると、樹脂の流動性を高めて成形性が良化されやすくなる。また、結晶性が高まり、ガスケットに成形した後の耐アルカリ性を向上させることができる。
 本発明で用いる4,10ポリアミドまたは4,12ポリアミドは、本発明の効果を損なわない範囲で、上述のポリアミド樹脂以外のポリマーを含有してもよい。このようなポリマーとしては、例えば、ポリプロピレン、ABS樹脂、ポリフェニレンオキサイド、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアリレート、液晶ポリエステル、各種エラストマーが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 本発明で用いる4,10ポリアミドまたは4,12ポリアミドは、本発明の効果を損なわない範囲で他の成分、例えば結晶核剤、離型剤、酸化防止剤、耐候剤、顔料、染料、可塑剤、帯電防止剤、難燃剤、成形性改良剤、熱安定剤、光安定剤等の各種添加剤を任意の段階で添加されてもよい。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 結晶核剤としては、タルク、焼成カオリン、ケイ酸マグネシウムなどの無機微粒子、酸化アルミニウムなどの金属酸化物、ステアリン酸アルミニウムなどの脂肪酸金属塩が挙げられる。結晶核剤は、樹脂全体に対して0.0001~5質量%の範囲で添加するとよい。その最大粒径は2.0μm以下であることが好ましい。2.0μmを超えると、結晶が大きく育ってポリアミドの伸びが大きくなる傾向にある。
 ガスケットに、電池の内圧が上昇した際に防爆弁として機能する薄肉部を設ける場合には、ポリアミドの結晶が大きく育つと、薄肉部が破断しにくくなって防爆弁の作動圧が高くなることもあり得る。防爆弁として、より安定に機能させるためには、ポリアミドの結晶は2.0μm以下の微細な球晶の状態に形成させることが好ましく、この観点から結晶核剤のサイズは1.0μm以下が特に好ましい。
 一方、結晶核剤の添加量が多いと、結晶核剤自身が補強効果を示し、防爆弁の作動圧にバラツキが発生しやすくなる傾向があり、結晶核剤の添加量は樹脂全体に対して0.0001~5質量%の範囲であることが好ましく、さらに、好ましいのは、3質量%以下である。
 ガスケットに設けた薄肉部の防爆弁の破断し易さの観点から、A1型ダンベル試験片(JIS K 7139に準拠)である全長170mm、中央部の平行部の長さ80mm、中央部の平行部の横幅10mm、平行部の厚さ4mmの試験片を、温度30℃、湿度50%の環境下で48時間調湿し、引張り試験速度10mm/分の条件で引張り試験を行ったときの破断伸びの引張り伸び率が以下であることが好ましい。
 23℃において50N/mm2の応力時の伸び率が50%以下、150℃において20N/mm2の応力時の伸び率が50%以下であることが好ましく。23℃において50N/mm2の応力時の伸び率が30%以下、150℃において20N/mm2の応力時の伸び率が30%以下であってもよい。
 離型剤としては、成形性を向上させることから併用が好ましい。たとえば、離型剤は、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸マグネシウムなどの長鎖アルキル脂肪酸金属塩、長鎖アルキル脂肪酸エステルが挙げられる。離型剤の添加量は樹脂全体に対して、樹脂の物性に影響を与えない0.5質量%以下が好ましい。
 酸化防止剤としては、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等が挙げられ、これらを併用して使用することもできる。本発明においては、上記の中でもヒンダードフェノール系酸化防止剤が好ましい。また、ヒンダードフェノール系酸化防止剤とリン系酸化防止剤または硫黄系酸化防止剤を併用することもできる。
 本発明で用いるヒンダードフェノール系酸化防止剤としては、1,1,3-トリス(2-メチル-1-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス(2,4―ジ-t-ブチルフェニル)4,4’-ビフェニレン-ジ-フォスフォナイト、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノ-ル)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、2,4-ビス[(オクチルチオ)メチル]-O-クレゾール、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]が好ましく用いられるが、とりわけ3,9-ビス{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]が好ましい。
 本発明で用いるリン系酸化防止剤としては、トリスノニルフェネルフォスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-ブチルフェニル)-4,4’-ビフェニレン-ジ-ホスホナイト-2,4,8,10-テトラオキサ-3,9-ジジフォスファスピロ[5,5]ウンデカンが好ましく用いられるが、とりわけビス(2,6,ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールホスファイト、2,4,8,10-テトラオキサ-3,9-ジジフォスファスピロ[5,5]ウンデカンが好ましい。
 本発明で用いる硫黄系酸化防止剤としては、ジステアリル3,3’-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、2-メルカプトベンズイミダゾール、ジドデシル3,3’-チオジプロピオネート、ジオクタデシル3,3’-チオジプロピオネート、ジトリデシル3,4’-チオジプロピオネート、2,2-ビス[[3-(ドデシルチオ)-1-オキソプロポキシ]メチル]-1,3-プロパンジイルエステルが好ましく用いられるが、とりわけジステアリル3,3’-チオジプロピオネート、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)が好ましい。
 酸化防止剤の添加量は、ポリアミド樹脂に対して、0.001~0.1質量%、好ましくは0.001~0.05質量%である。添加量が0.001質量%未満であると、耐湿熱性向上への効果が小さく、0.1質量%を超えると成形時に金型が汚れやすく、成形不良を発生しやすくなり、好ましくない。
 なお、2種以上の酸化防止剤を併用する場合の配合割合に特に制限はないが、例えばヒンダードフェノール系酸化防止剤とその他の酸化防止剤を配合する場合、両者の合計に対するヒンダードフェノール系酸化防止剤の割合が100~30質量%であることが好ましく、100~50質量%であることがより好ましい。
 本発明で用いるポリアミド樹脂組成物には本発明の効果を損なわない範囲で、以下に挙げる他の添加剤を含むことができる。耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、顔料(硫化カドミウム、フタロシアニン、カーボンブラック、メタリック顔料等)、染料(ニグロシン等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(例えば、赤燐、メラミンシアヌレート、水酸化マグネシウム、水酸化アルミニウム等の水酸化物、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化PPO、臭素化PC、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)等を含むことができる。
 成形性・機械特性の観点から成分のポリアミド樹脂の重合度は、25℃における相対粘度が1.8~3.8のとなる重合度であると好ましく、1.9~3.5となる重合度であるとより好ましく、2.0~3.3となる重合度であると更に好ましい。ポリアミド樹脂以外の他の成分を含む場合も同様である。
 また、ポリアミド樹脂組成物の粘度数(JISK6933に準拠)は90ml/g以上170ml/g以下の範囲が好ましい。
 粘度数が低い場合、機械的強度が低下しガスケットのボス部5bに負極集電体6を挿入する際に割れが発生しやすくなる傾向がある。粘度数が高い場合は、流動性が低下し射出成形時にショートショットが発生しやすくなる傾向がある。所定のガスケットの形状を得るためには樹脂の分解温度を超えた温度にまで上げて溶融粘度を下げないと成形できないが、炭化物の発生に繋がり良品率が低下する。
 ポリアミド樹脂組成物の粘度数は、上述のとおり90ml/g以上170ml/g以下の範囲とするとよい。材料ロットによるバラつきを考慮すると、粘度数が100ml/g以上で160ml/g以下が好ましい。さらに、110ml/g以上で150ml/g以下が特に好ましい。
 本発明のアルカリ乾電池用ガスケットは、射出成形法により成形されるがガスケットの作製に使用される射出成形用金型の種類は限定されない。例えば、射出成形用金型は、前述したように、ガスケットの品質の安定化を優先する場合にはコールドランナー方式の金型、生産性を優先させる場合はホットランナー方式の金型、両方のバランスを考慮するならセミホットランナー方式の金型を使用することができる。
 溶融樹脂の温度は250℃以上300℃以下、金型温度は60℃以上90℃以下で設定するのが好ましい。
 ポリアミド樹脂の射出成形品及びその射出成形時に生じたランナーを粉砕し再生材として、いったん射出成形に使用された同種の再生材を一部に、または前記再生材の全部を材料として使用してもよい。
 吸水処理に関しては、ガスケット5は、ボス部5bへ負極集電体6を圧入する際にボス部5bが割れることを防ぐために適宜吸水された状態で使用してもよいし、射出成形法により成形されたガスケットをそのまま使用してもかまわない。
 ガスケットは、中央に中空筒状のボス部と、電池ケースに接する外周部と、ボス部と外周部とを連結する連結部とを形成するとよい。
 ガスケットのボス部の内径は、その中空部分に挿通する棒状の集電体(負極集電子)の外径の0.92~0.97倍に設定するとよい。このように設定すると、応力クラックが抑制されやすい。
 ガスケットの連結部には、電池の内圧が上昇した際に防爆弁として機能する薄肉部を設けるとよい。ガスケットの薄肉部は、ボス部に沿って全周設けてもよく、連結部の一部に設けてもよい。この薄肉部の厚さは、例えば、ボス部に沿って全周設ける場合は、0.10~0.35mmに設定するとよい。連結部の一部に設ける場合は、0.05~0.2mmに設定するとよい。このように設定すると、適切な防爆弁として機能させることができる。
 以下に、本発明を実施するための形態について、図面を参照しながら説明するが、これに限定されるものではない。図1は、本発明の一実施の形態としてのアルカリ乾電池の一部切欠きの断面図である。
 図1に示すように、有底円筒状の電池ケース1内に、セパレータ4を介して二酸化マンガンと黒鉛とを含む正極2と、亜鉛を含む負極3が収納され、電池ケース1の開口部が封口ユニット9で密封されており、電池ケースの外側面は外装ラベル8で被覆されている。
 少なくとも正極、負極、およびセパレータにアルカリ電解液(図示せず)が含まれている。アルカリ電解液は水酸化カリウムや水酸化ナトリウムを含む。
 封口ユニット9は、負極集電体6に電気的に接続された負極端子板7とガスケット5から構成されている。
 ガスケット5は、電池内部の異常な圧力の上昇時に防爆弁として破断する薄肉部5aが形成されている。また、ガスケット5の中央には、負極集電体6と嵌合させた中空筒状のボス部5bが形成されている。
 薄肉部5aやボス部5bが、アルカリ電解液の影響によりクラックを起こしやすい。
 前述のアルカリ乾電池の作製にあたり、表1に示す材料と組成で各々を溶融、混練し、射出成型して、図1に示したものと同様のガスケット5を作製した。材料の溶融温度は約280℃で、混練品を射出成型機に投入して、約80℃に保持した成型金型内へ、100MPaの圧力をかけて2秒で注入して2秒間保圧し、さらに金型内で5秒間冷却した後、ガスケット5を取り出した。
Figure JPOXMLDOC01-appb-T000001
 これらのガスケットを用いて、図1に示す構造と同様の単3形のアルカリ乾電池を作製し、以下に述べる評価を行った。
 <長期保存特性の評価試験>
 ガスケットの長期に渡る密封性を調べるため、各アルカリ乾電池50個ずつを、80℃の環境の恒温槽内に保存した。そして、3ヶ月と4ヶ月の時点で、目視にて漏液している電池の個数を確認し、漏液発生率を算出した。上述の評価で80℃の環境下で3ヶ月間漏液しない場合について長期保存に優れていると判断している。この評価試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、4,10ポリアミド(実施例1)または4,12ポリアミド(実施例2)から成るガスケットは、6,6ポリアミド(比較例)から成るガスケットよりも長期に渡って、アルカリ乾電池の密封性を維持できることがわかる。これは、6,6ポリアミドと比較して4,10ポリアミドまたは4,12ポリアミドが、アルカリ電解液中で劣化しにくいためであると考えられる。
 防爆弁の機能の観点から、電池が誤使用された際の安全性を調べるため、25℃中で各電池10個ずつに定電流電源を接続し、負極端子側から正極端子側へ1Aの電流を印加し充電を行った。また、各電池10個ずつを150℃の恒温槽内に30分放置した後、25℃中で同様の充電を行った。この時、充電中の内圧上昇によりガスケットの薄肉部が破断せず、封口ユニットごと放出された数を破裂数とした。破裂数が少ないほど、例えば電池が誤って逆接続され充電電流が流れた場合にも、安全性が確保できていると判断している。また、150℃放置後の破裂数が少ないほど、電池が意図せず短絡し高温に晒された後でも、上述の安全性が確保できていると判断している。この安全性試験の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、4,10ポリアミド(実施例1)または4,12ポリアミド(実施例2)から成るガスケットは、通常の充電試験での破裂数は6,6ポリアミド(比較例)から成るガスケットと同等である一方、150℃放置後の破裂数が特異的に少なく、過酷な環境下で誤使用後の安全性が確保でき、優れた信頼性を有していることがわかる。これは4,10ポリアミド、および4,12ポリアミドが、他のポリアミドと比較して高温時でも硬さを維持する性質を有するため、高温に晒されても防爆弁が伸び切らずに正常に作動したものと考えられる。
 本発明のアルカリ乾電池は、長期に渡って優れた耐漏液特性を有しており、乾電池を電源とするあらゆる機器に好適に用いられる。
  1    電池ケース
  2    正極
  3    負極
  4    セパレータ
  5    ガスケット
  5a   薄肉部(防爆弁)
  5b   ボス部
  6    負極集電体
  7    負極端子板
  8    外装ラベル
  9    封口ユニット

Claims (6)

  1.  4,10ポリアミドまたは4,12ポリアミドから成るアルカリ乾電池用ガスケット。
  2.  前記4,10ポリアミドまたは4,12ポリアミドの重量平均分子量Mwが、5000~50000の範囲であることを特徴とする請求項1に記載のアルカリ乾電池用ガスケット。
  3.  前記重量平均分子量Mwの1%以下の低分子ポリアミドを、前記ガスケットの質量に対して20%未満含むことを特徴とする請求項1に記載のアルカリ乾電池用ガスケット。
  4.  前記重量平均分子量Mwの100倍以上の高分子ポリアミドを、前記ガスケットの質量に対して20%未満含むことを特徴とする請求項1に記載のアルカリ乾電池用ガスケット。
  5.  前記重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが、1.5~3.0の範囲であることを特徴とする請求項1に記載のアルカリ乾電池用ガスケット。
  6.  アルカリ電解液を含む発電要素を収納した電池ケースの開口部を、請求項1~5のいずれか1項に記載のガスケットで密封したアルカリ乾電池。
PCT/JP2019/049646 2019-04-15 2019-12-18 アルカリ乾電池用ガスケットおよびアルカリ乾電池 WO2020213212A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-077004 2019-04-15
JP2019077004 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020213212A1 true WO2020213212A1 (ja) 2020-10-22

Family

ID=72837228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049646 WO2020213212A1 (ja) 2019-04-15 2019-12-18 アルカリ乾電池用ガスケットおよびアルカリ乾電池

Country Status (1)

Country Link
WO (1) WO2020213212A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162128A (ja) * 1994-11-30 1996-06-21 Kanebo Ltd 有機電解質電池
JP2008280514A (ja) * 2007-04-12 2008-11-20 Asahi Kasei Chemicals Corp ポリアミド樹脂組成物及び成形品
JP2009016080A (ja) * 2007-07-02 2009-01-22 Fdk Energy Co Ltd 密閉型アルカリ電池
WO2016038793A1 (ja) * 2014-09-09 2016-03-17 パナソニックIpマネジメント株式会社 アルカリ乾電池
US20180043656A1 (en) * 2017-09-18 2018-02-15 LiSo Plastics, L.L.C. Oriented Multilayer Porous Film
JP2018181825A (ja) * 2017-04-07 2018-11-15 新生化学工業株式会社 アルカリ乾電池用ガスケットおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162128A (ja) * 1994-11-30 1996-06-21 Kanebo Ltd 有機電解質電池
JP2008280514A (ja) * 2007-04-12 2008-11-20 Asahi Kasei Chemicals Corp ポリアミド樹脂組成物及び成形品
JP2009016080A (ja) * 2007-07-02 2009-01-22 Fdk Energy Co Ltd 密閉型アルカリ電池
WO2016038793A1 (ja) * 2014-09-09 2016-03-17 パナソニックIpマネジメント株式会社 アルカリ乾電池
JP2018181825A (ja) * 2017-04-07 2018-11-15 新生化学工業株式会社 アルカリ乾電池用ガスケットおよびその製造方法
US20180043656A1 (en) * 2017-09-18 2018-02-15 LiSo Plastics, L.L.C. Oriented Multilayer Porous Film

Similar Documents

Publication Publication Date Title
JP6885096B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形品
EP1483798B1 (en) Seal for electrochemical cell
JP2017097978A (ja) 密封型蓄電デバイス用封口板、及びその製造方法、並びに密封型蓄電デバイス。
JP6323971B1 (ja) アルカリ乾電池用ガスケットおよびその製造方法
JP2002533905A (ja) 電気化学電池用の耐衝撃性改良ポリスチレンシール
JP6558030B2 (ja) ポリアリーレンスルフィド樹脂組成物およびそれよりなる二次電池封口板用シール部材
JP2009032639A (ja) 電池ガスケット用ポリアミド樹脂組成物
WO2020213212A1 (ja) アルカリ乾電池用ガスケットおよびアルカリ乾電池
JP2012131896A (ja) ポリアリーレンスルフィド樹脂組成物およびそれよりなる二次電池封口板用シール部材
JP5470611B2 (ja) ポリアミド樹脂組成物及び成形品
JP6083024B2 (ja) アルカリ乾電池用ガスケット
JP5676745B2 (ja) アルカリ電池のためのポリアミドパッキングシール
JP5185758B2 (ja) 電池用ガスケット及びアルカリ乾電池
JP6838425B2 (ja) ポリフェニレンサルファイド樹脂組成物および成形品
JP2009070779A (ja) 電力開閉器用消弧体
JP2006310009A (ja) 気密性スイッチ部品
JP2014148636A (ja) 樹脂組成物及びインサート成形品
JP2014120360A (ja) 密閉型電池用ゴム製弁体、安全弁装置及びアルカリ蓄電池
WO2016038793A1 (ja) アルカリ乾電池
JP2012209035A (ja) アーク遮蔽部材および接点開閉装置
JP2005078890A (ja) 電池ガスケット用ポリアミド樹脂組成物
CN109983078B (zh) 阻燃性聚酰胺树脂组合物及由其形成的成型品
WO2022138430A1 (ja) 樹脂成形体、電池パック
WO2010041327A1 (ja) ポリアミド樹脂組成物及び成形品
JP2020083943A (ja) ポリアリーレンスルフィド組成物およびそれからなるガスケット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP