WO2020211458A1 - 一种混合式级联apf拓扑结构及其控制方法 - Google Patents

一种混合式级联apf拓扑结构及其控制方法 Download PDF

Info

Publication number
WO2020211458A1
WO2020211458A1 PCT/CN2019/129556 CN2019129556W WO2020211458A1 WO 2020211458 A1 WO2020211458 A1 WO 2020211458A1 CN 2019129556 W CN2019129556 W CN 2019129556W WO 2020211458 A1 WO2020211458 A1 WO 2020211458A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
bridge
cascaded
control method
voltage
Prior art date
Application number
PCT/CN2019/129556
Other languages
English (en)
French (fr)
Inventor
张承慧
刘玺
耿华
邢相洋
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/159,884 priority Critical patent/US11368018B2/en
Publication of WO2020211458A1 publication Critical patent/WO2020211458A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Definitions

  • the present disclosure relates to a hybrid cascaded APF topology structure and a control method thereof.
  • Active Power Filter compared with passive filters that can only passively absorb harmonics of fixed frequencies and magnitudes, can quickly track and dynamically compensate harmonics of different sizes and frequencies, effectively reducing
  • the harmonic content of the power grid has a good improvement effect on the improvement of power quality.
  • the cascaded H-bridge APF has been widely used because of its simple main circuit design, easy multi-level design and modular technology.
  • the traditional cascaded H-bridge APF mostly uses Si power devices, and the switching frequency is low, which makes it difficult for the APF to compensate for higher harmonics. If the SiC power device is used, the APF can be made to work at a high switching frequency, and the higher harmonics can be effectively compensated under the condition of low switching loss.
  • high-voltage SiC power devices are relatively expensive and are not suitable for large-scale engineering applications.
  • the present disclosure proposes a hybrid cascaded APF topology and its control method.
  • the present disclosure can enhance the system's higher harmonic compensation capability, improve the power quality of the output current, and has a lower cost.
  • the present disclosure adopts the following technical solutions:
  • a hybrid cascaded APF topology structure including a three-phase cascaded H bridge.
  • the three-phase cascaded H bridge includes a three-phase bridge arm.
  • Each phase bridge arm includes a plurality of series-connected H bridge units, and the three-phase bridge arms pass
  • the inductor is connected to the power system that requires active filtering;
  • a three-phase H-bridge circuit is connected at the star connection point of the three-phase cascaded H-bridge, and the three-phase H-bridge circuit includes a three-phase branch and two capacitors connected in parallel at both ends of the three-phase branch , Each phase branch includes two switch tubes connected in series;
  • the switch tube of the H-bridge unit adopts Si devices
  • the switch tube of the three-phase H-bridge circuit adopts SiC devices.
  • the present disclosure adds a three-phase H-bridge circuit, and the added three-phase H-bridge circuit adopts SiC power devices, which can reduce system switching loss, increase switching frequency, and realize effective compensation of higher harmonics; three-phase cascade
  • the H bridge selects Si power devices.
  • the three-phase cascaded H bridge is used to reduce the voltage borne by the SiC power devices; the Si power device and the SiC power device are mixed to form the APF topology, which improves the APF Topological cost performance.
  • the midpoint of the two capacitors of the three-phase H-bridge circuit leads to a bridge arm, which is connected to the power system. This makes the APF topology structure suitable for three-phase four-wire system operating conditions.
  • the number of H-bridge units of each phase bridge arm is determined according to actual voltage level requirements.
  • the method can be widely used in different occasions such as low and medium voltage, and has strong scalability and practicability.
  • the H-bridge unit uses the first switching frequency to generate the fundamental voltage required by the APF topology; the three-phase H-bridge circuit only undertakes a part or does not assume the fundamental voltage, and the three-phase The H-bridge circuit uses the second switching frequency to compensate for harmonics.
  • the second switching frequency is higher than the first switching frequency.
  • the part of the fundamental wave voltage is 0%-40% of the total fundamental wave voltage.
  • the modulation wave is decomposed into two parts, the fundamental modulation wave and the harmonic modulation wave, the sizes of the fundamental modulation wave and the low-frequency carrier are compared, and the switching tubes of the H-bridge unit are driven according to the comparison result;
  • the phase angle is obtained according to the three-phase voltage on the grid side, and the abc/dq and dq/abc coordinate transformations are performed based on the phase angle, and the harmonic current value of the three-phase current before compensation is obtained through the instantaneous reactive power theory.
  • the harmonic current value as the current given value, transform the output current of the topology structure to coordinate to generate the initial modulation wave;
  • a computer-readable storage medium stores a plurality of instructions, and the instructions are suitable for being loaded by a processor of a terminal device and executing the control method.
  • a terminal device including a processor and a computer-readable storage medium, the processor is used to implement each instruction; the computer-readable storage medium is used to store a plurality of instructions, the instruction is suitable for being loaded by the processor and executing the control method .
  • the present disclosure adopts SiC power devices to reduce system switching losses, increase switching frequency, and realize effective compensation of higher harmonics
  • the fundamental wave voltage is shared by the H bridge unit composed of Si power devices, which effectively reduces the voltage borne by the SiC power devices and reduces the topology cost;
  • the present disclosure uses Si power devices and SiC power devices to form an APF topology, which improves the cost performance of the APF topology;
  • the present disclosure can be applied to the operating conditions of the three-phase four-wire system through simple improvements, and has strong practicability;
  • the present disclosure can select the number of H-bridges according to actual voltage level requirements. Therefore, the topology and control method of this disclosure can be widely used in different occasions such as low and medium voltage, and has strong scalability and practicability.
  • Figure 1 shows a hybrid cascaded APF topology
  • FIG. 2 is a block diagram of system control in this embodiment
  • Figure 3 is a schematic diagram of a hybrid cascaded APF compensation effect
  • Figures 4(a) and 4(b) are THD effect diagrams before and after compensating current harmonics in this embodiment
  • Figure 5 is a schematic diagram of capacitor voltage equalization in this embodiment.
  • a hybrid cascaded APF topology includes a three-phase cascaded H-bridge composed of H-bridge units, and a three-phase H-bridge circuit with a capacitor connected at the traditional cascaded H-bridge adjacent to the star connection point.
  • the switch tube of the H-bridge unit adopts Si devices
  • the switch tube of the three-phase H-bridge circuit adopts SiC devices.
  • the APF three-phase bridge arm is connected to the power system that requires active filtering through an inductor.
  • a bridge arm can be drawn from the midpoint of the capacitor of the three-phase H-bridge circuit, making this APF topology suitable for three-phase four-wire system operating conditions.
  • control method based on the above-mentioned hybrid cascaded APF topology has two parts:
  • the H-bridge unit and the three-phase H-bridge circuit adopt different switching frequencies and modulation methods: the H-bridge unit uses a low switching frequency to generate the fundamental voltage required by the APF; the three-phase H-bridge circuit (referred to as three-phase H The bridge) only bears little or no fundamental voltage, and adopts high switching frequency to compensate for harmonics; this constitutes the above-mentioned multi-level hybrid modulation method of the hybrid cascaded APF topology.
  • Hybrid cascaded APF system control method obtain the harmonic current value that needs to be compensated based on the instantaneous reactive power theory; ensure the stability of the capacitor voltage through the capacitor voltage stabilizing module; realize the compensation of the harmonic current through the above-mentioned hybrid modulation method.
  • Figure 1 shows a hybrid cascaded APF topology. It includes a cascaded H bridge composed of H bridge units; a three-phase H bridge circuit with a capacitor connected at the cascaded H bridge near the star connection point.
  • the switch tube of the cascaded H-bridge unit adopts Si devices
  • the switch tube of the three-phase H-bridge adopts SiC devices.
  • the APF three-phase bridge arm is connected to the power system that requires active filtering through an inductor.
  • a bridge arm can be drawn from the capacitor midpoint O of the three-phase H-bridge, making this APF topology suitable for three-phase four-wire system operating conditions.
  • This embodiment adopts different switching frequencies and modulation methods for the H-bridge unit and the three-phase H-bridge.
  • the method of this embodiment is applicable to multiple H-bridge units per phase, and a single H-bridge unit per phase is used as an example for specific explanation.
  • the modulation wave is decomposed into two parts: the fundamental modulation wave and the harmonic modulation wave: the fundamental modulation wave and the low-frequency carrier are used to drive the H-bridge unit. If the modulation wave is greater than or equal to the carrier wave, the H-bridge unit switches (S 1 , S 2 , S 3 , S 4 ) take the value (1,0,0,1), otherwise take the value (0,1,1,0); the harmonic modulation wave drives the three-phase H bridge by comparing with the high frequency carrier, The driving method is similar to that of a two-level three-phase inverter.
  • FIG. 2 is a block diagram of the control system controller of this embodiment.
  • the phase angle ⁇ is obtained through the phase-locked loop PLL, which is used for abc/dq and dq/abc coordinate transformation.
  • the harmonic current values i hd , i hq of the currents i la , i lb , i lc before compensation are obtained, where LPF is a low-frequency filter.
  • the DC side voltage value of the three-phase cascaded H-bridge is stabilized by adding a DC side capacitor voltage stabilizing loop to the harmonic current, u d is the measured value of the DC side voltage, and u d * is the given value of the DC side voltage.
  • the harmonic current values i hd , i hq as the given current values the APF output current i a , i b , and i c generate the initial modulation wave m abc * through coordinate transformation and current loop.
  • a voltage equalization controller can be formed by forming a PI loop by the voltage value u abc and the given value u abc * in a similar way to the DC capacitor voltage stabilization.
  • Figure 3 is a schematic diagram of the compensation effect of a hybrid cascaded APF. From top to bottom, the currents i la , i lb , i lc before compensation, the currents i ga , i gb , i gc after compensation, and the compensation currents i a , i b ,i c . It can be seen from the waveform that the system current is well compensated.
  • FIG. 4 (a) is THD before compensation, (b) is THD after compensation. From the THD effect after FFT analysis before and after compensating the current harmonics, it can be seen that the system current is well compensated.
  • FIG. 5 is a schematic diagram of capacitor voltage equalization in this embodiment.
  • a single H-bridge unit per phase is taken as an example. From top to bottom, the capacitor voltage values of the a-phase H-bridge unit, the b-phase H-bridge unit capacitor voltage, and the c-phase H Bridge unit capacitor voltage value, three-phase H-bridge unit DC capacitor voltage value. It can be seen that the capacitor voltage is controlled.
  • the method of this embodiment uses a mixture of SiC devices and Si devices to achieve cost-effective, high-efficiency, and high-order harmonic compensation: a three-phase cascaded H bridge composed of H bridge units, which is close to the satellite in the traditional cascaded H bridge.
  • the switch tube of the H-bridge unit adopts Si devices
  • the switch tube of the three-phase H-bridge adopts SiC devices.
  • the APF three-phase bridge arm is connected to the power system that requires active filtering through an inductor.
  • the H-bridge unit and the three-phase H-bridge adopt different switching frequencies and modulation methods: the H-bridge unit uses a low switching frequency to generate the fundamental voltage required by the APF; the three-phase H-bridge only bears little or no fundamental voltage.
  • the high switching frequency is used to compensate for harmonics.
  • the related control is mainly used for the harmonic acquisition and voltage regulation control of APF.
  • this embodiment can be applied to three-phase four-wire system operating conditions, and has strong practicability; the number of H bridges can be selected according to the actual voltage level requirements, so that this method can be widely used in low and medium voltage, etc. In different occasions, it has strong scalability and practicality.
  • the method is simple to implement, has strong expandability, simple application, strong practicability, and has broad prospects in the field of power systems and renewable energy power generation.
  • the embodiments of the present disclosure can be provided as methods, systems, or computer program products. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

一种混合式级联APF拓扑结构及其控制方法,拓扑结构包括三相级联H桥,三相级联H桥包括三相桥臂,每相桥臂包括多个串联的H桥单元,三相桥臂通过电感连接至需要有源滤波的电力系统;三相级联H桥的星型连接点处连接一个三相H桥式电路,三相H桥式电路包括三相支路和并联在所述三相支路两端的两个电容器,每相支路包括两个串联的开关管;H桥单元的开关管采用Si器件,三相H桥式电路的开关管采用SiC器件。可以增强系统的高次谐波补偿能力,提高输出电流的电能质量,且成本较低。

Description

一种混合式级联APF拓扑结构及其控制方法 技术领域
本公开涉及一种混合式级联APF拓扑结构及其控制方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
随着电力电子技术的迅速发展,大量非线性器件在变流技术领域得到了广泛运用。非线性器件的大量使用成为电网谐波的主要来源,严重影响了电网的电能质量。因此,有效治理电力系统中的谐波,对电网安全、高效、稳定、经济运行具有重要意义。
有源电力滤波器(Active Power Filter,APF),相比只能被动吸收固定频率与大小的谐波的无源滤波器,能够对不同大小和频率的谐波进行快速跟踪与动态补偿,有效降低电网的谐波含量,对电能质量的提高具有良好的改善作用。其中级联H桥APF因其主电路设计简单,易于多电平设计及模块化技术得到了广泛应用。
但据发明人了解,传统级联H桥APF多采用Si功率器件,开关频率较低,导致APF难以补偿高次谐波。若采用SiC功率器件,可以使得APF工作在高开关频率状态,在开关损耗较低的情况下有效补偿高次谐波。然而,高压SiC功率器件成本较高,并不适合大规模工程应用。
发明内容
本公开为了解决上述问题,提出了一种混合式级联APF拓扑结构及其控制 方法,本公开可以增强系统的高次谐波补偿能力,提高输出电流的电能质量,且成本较低。
根据一些实施例,本公开采用如下技术方案:
一种混合式级联APF拓扑结构,包括三相级联H桥,所述三相级联H桥包括三相桥臂,每相桥臂包括多个串联的H桥单元,三相桥臂通过电感连接至需要有源滤波的电力系统;
所述三相级联H桥的星型连接点处连接一个三相H桥式电路,所述三相H桥式电路包括三相支路和并联在所述三相支路两端的两个电容器,每相支路包括两个串联的开关管;
所述H桥单元的开关管采用Si器件,三相H桥式电路的开关管采用SiC器件。
本公开通过增设一个三相H桥式电路,且增设的三相H桥式电路,采用SiC功率器件,能够降低系统开关损耗,提高开关频率,实现高次谐波的有效补偿;三相级联H桥选用Si功率器件,在降低拓扑成本的基础上,利用组成的三相级联H桥降低了SiC功率器件承受的电压;以Si功率器件与SiC功率器件混联形成APF拓扑,提升了APF拓扑的性价比。
作为一种实施方式,所述三相H桥式电路的两个电容器的中点引出一条桥臂,该桥臂连接至电力系统。使得此APF拓扑结构也能够适用于三相四线制的系统工况。
作为一种实施方式,根据实际电压等级需要,确定每相桥臂的H桥单元的数目。使本方法可广泛应用于低中压等不同场合,具有较强的扩展性和实用性。
基于上述拓扑结构的控制方法,所述H桥单元采用第一开关频率产生APF 拓扑结构所需的基波电压;三相H桥式电路仅承担一部分或不承担基波电压,且所述三相H桥式电路采用第二开关频率进行补偿谐波。
作为一种实施方式,所述第二开关频率高于第一开关频率。
作为一种实施方式,所述一部分基波电压为总基波电压的0%-40%。
作为一种实施方式,将调制波分解为基波调制波与谐波调制波两部分,比较基波调制波与低频载波的大小,并根据比较结果驱动H桥单元的各开关管;
比较谐波调制波通过与高频载波的大小,并根据比较结果驱动三相H桥电路的各开关管。
基于上述拓扑结构的控制方法,根据网侧三相电压得到相角,基于相角进行abc/dq和dq/abc坐标变换,通过瞬时无功理论,取得补偿前的三相电流的谐波电流值,以谐波电流值作为电流给定值,将拓扑结构的输出电流进行坐标变换,产生初始调制波;
根据三相桥臂的H桥单元的电容电压值与给定值,产生均压信号;
叠加均压信号与初始调制波,产生最终的调制信号。
一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行所述的控制方法。
一种终端设备,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行所述的控制方法。
与现有技术相比,本公开的有益效果为:
1、本公开采用SiC功率器件,降低系统开关损耗,提高开关频率,实现高次谐波的有效补偿;
2、本公开通过Si功率器件组成的H桥单元分担基波电压,有效降低了SiC功率器件承受的电压,降低了拓扑成本;
3、本公开以Si功率器件与SiC功率器件混联形成APF拓扑,提升了APF拓扑的性价比;
4、本公开可以通过简单改进适用于三相四线制的系统工况,实用性强;
5、本公开可根据实际电压等级需要,选择H桥的数目,因而本拓扑结构和控制方法可广泛应用于低中压等不同场合,具有较强的扩展性和实用性。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。
图1为一种混合式级联APF拓扑;
图2为本实施例系统控制控制框图;
图3为一种混合式级联APF补偿效果示意图;
图4(a)和图4(b)为本实施例补偿电流谐波前后THD效果图;
图5为本实施例电容均压示意图。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确 指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
一种混合式级联APF拓扑,包括由H桥单元组成的三相级联H桥,在传统的级联H桥临近星型连接点处连接的一个带电容器的三相H桥式电路。其中H桥单元的开关管采用Si器件,三相H桥式电路的开关管采用SiC器件。APF三相桥臂通过电感连接至需要有源滤波的电力系统。此外,可以从三相H桥式电路的电容器中点引出一条桥臂,使得此APF拓扑适用于三相四线制的系统工况。
基于上述混合式级联APF拓扑的控制方法,具体为两部分:
1、H桥单元和三相H桥式电路采用不同的开关频率和调制方法:通过H桥单元采用低开关频率产生APF所需的基波电压;三相H桥式电路(简称为三相H桥)仅承担很少甚至不承担基波电压,采用高开关频率用于补偿谐波;由此组成上述混合式级联APF拓扑的多电平混合调制方法。
2、混合式级联APF系统控制方法:基于瞬时无功功率理论获得需要补偿的谐波电流值;通过电容稳压模块保障电容电压的稳定;通过上述混合调制方法实现谐波电流的补偿。
图1为一种混合式级联APF拓扑。包括由H桥单元组成的级联H桥;在级联H桥临近星型连接点处连接的一个带电容器的三相H桥式电路。其中级联H桥单元的开关管采用Si器件,三相H桥的开关管采用SiC器件。APF三相桥臂通过电感连接至需要有源滤波的电力系统。此外,可以从三相H桥的电容器中点O引出一条桥臂,使得此APF拓扑适用于三相四线制的系统工况。
本实施例针对H桥单元和三相H桥采用不同的开关频率和调制方法。本实 施例方法对于每相多个H桥单元均适用,下面以每相单个H桥单元为例进行具体阐述。
将调制波分解为基波调制波与谐波调制波两部分:基波调制波与低频载波比较用于驱动H桥单元,若调制波大于等于载波,图1中H桥单元开关(S 1,S 2,S 3,S 4)取值(1,0,0,1),否则取值(0,1,1,0);谐波调制波通过与高频载波比较驱动三相H桥,其驱动方式与两电平三相逆变器相似。
图2为本实施例控制系统控制器框图。
通过网侧三相电压u sa,u sb,u sc,通过锁相环PLL得到相角θ,用于abc/dq和dq/abc坐标变换。通过瞬时无功理论,取得补偿前的电流i la,i lb,i lc的谐波电流值i hd,i hq,其中LPF为低频滤波器。通过在谐波电流中加入直流侧电容稳压环来稳定三相级联H桥的直流侧电压值,u d为直流侧电压测量值,u d*为直流侧电压给定值。以谐波电流值i hd,i hq作为电流给定值,APF输出电流i a,i b,i c通过坐标变换与电流环,产生初始调制波m abc*。通过abc三相的H桥单元的电容电压值u abc与给定值u abc*经过控制器,产生均压信号与初始调制波m abc*叠加,产生用于调制的调制信号m abc。以每相单个H桥单元为例,可以类似直流电容稳压的办法通过电压值u abc与给定值u abc*组成PI环来构成均压控制器。
图3为一种混合式级联APF补偿效果示意图,从上到下依次是补偿前电流i la,i lb,i lc,补偿后电流i ga,i gb,i gc,补偿电流i a,i b,i c。从波形中看出系统电流得到良好补偿。
图4(a)为补偿前THD,(b)为补偿后THD。从补偿电流谐波前后FFT分析后的THD效果可以看出系统电流得到良好补偿。
图5为本实施例电容均压示意图,图中以每相单个H桥单元为例,从上到下 依次是a相H桥单元电容电压值,b相H桥单元电容电压值,c相H桥单元电容电压值,三相H桥单元直流电容电压值。图中可以看出电容电压得到控制。
因此,采用本实施例方法使用SiC器件与Si器件混用以达到高性价比、高效率和高次谐波补偿:由H桥单元组成的三相级联H桥,在传统的级联H桥临近星型连接点处连接的一个带电容器的三相H桥式电路。其中H桥单元的开关管采用Si器件,三相H桥的开关管采用SiC器件。APF三相桥臂通过电感连接至需要有源滤波的电力系统。H桥单元和三相H桥采用不同的开关频率和调制方法:通过H桥单元采用低开关频率产生APF所需的基波电压;三相H桥仅承担很少甚至不承担基波电压,采用高开关频率用于补偿谐波。相关控制主要用于APF的谐波获取与稳压控制。
同时,通过简单改进,本实施例可以适用于三相四线制的系统工况,实用性强;可根据实际电压等级需要,选择H桥的数目,使本方法可广泛应用于低中压等不同场合,具有较强的扩展性和实用性。本方法实现简单,拓展性强,应用简单,实用性强,在电力系统、可再生能源发电领域前景广阔。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或 方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种混合式级联APF拓扑结构,其特征是:包括三相级联H桥,所述三相级联H桥包括三相桥臂,每相桥臂包括多个串联的H桥单元,三相桥臂通过电感连接至需要有源滤波的电力系统;
    所述三相级联H桥的星型连接点处连接一个三相H桥式电路,所述三相H桥式电路包括三相支路和并联在所述三相支路两端的两个电容器,每相支路包括两个串联的开关管;
    所述H桥单元的开关管采用Si器件,三相H桥式电路的开关管采用SiC器件。
  2. 如权利要求1所述的一种混合式级联APF拓扑结构,其特征是:所述三相H桥式电路的两个电容器的中点引出一条桥臂,该桥臂连接至电力系统。
  3. 如权利要求1所述的一种混合式级联APF拓扑结构,其特征是:根据实际电压等级需要,确定每相桥臂的H桥单元的数目。
  4. 基于权利要求1-3中任一项所述的拓扑结构的控制方法,其特征是:所述H桥单元采用第一开关频率产生APF拓扑结构所需的基波电压;三相H桥式电路仅承担一部分或不承担基波电压,且所述三相H桥式电路采用第二开关频率进行补偿谐波。
  5. 如权利要求4所述的控制方法,其特征是:所述第二开关频率高于第一开关频率。
  6. 如权利要求4所述的控制方法,其特征是:所述一部分基波电压为总基波电压的0%-40%。
  7. 如权利要求4所述的控制方法,其特征是:将调制波分解为基波调制波与谐波调制波两部分,比较基波调制波与低频载波的大小,并根据比较结果驱 动H桥单元的各开关管;
    比较谐波调制波通过与高频载波的大小,并根据比较结果驱动三相H桥电路的各开关管。
  8. 基于权利要求1-3中任一项所述的拓扑结构的控制方法,其特征是:根据网侧三相电压得到相角,基于相角进行abc/dq和dq/abc坐标变换,通过瞬时无功理论,取得补偿前的三相电流的谐波电流值,以谐波电流值作为电流给定值,将拓扑结构的输出电流进行坐标变换,产生初始调制波;
    根据三相桥臂的H桥单元的电容电压值与给定值,产生均压信号;
    叠加均压信号与初始调制波,产生最终的调制信号。
  9. 一种计算机可读存储介质,其特征是:其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行权利要求4-8中任一项所述的控制方法。
  10. 一种终端设备,其特征是:包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行权利要求4-8中任一项所述的控制方法。
PCT/CN2019/129556 2019-04-17 2019-12-28 一种混合式级联apf拓扑结构及其控制方法 WO2020211458A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/159,884 US11368018B2 (en) 2019-04-17 2019-12-28 Hybrid cascaded APF topology and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910308299.X 2019-04-17
CN201910308299.XA CN109873424B (zh) 2019-04-17 2019-04-17 一种混合式级联apf拓扑结构及其控制方法

Publications (1)

Publication Number Publication Date
WO2020211458A1 true WO2020211458A1 (zh) 2020-10-22

Family

ID=66922751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129556 WO2020211458A1 (zh) 2019-04-17 2019-12-28 一种混合式级联apf拓扑结构及其控制方法

Country Status (3)

Country Link
US (1) US11368018B2 (zh)
CN (1) CN109873424B (zh)
WO (1) WO2020211458A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629723A (zh) * 2021-07-05 2021-11-09 燕山大学 考虑dg和apf参与电压治理的svg优化配置方法
CN113659608A (zh) * 2021-09-01 2021-11-16 燕山大学 一种隔离级同步调制的混合多电平sst拓扑及控制方法
CN113922385A (zh) * 2021-11-09 2022-01-11 国网辽宁省电力有限公司抚顺供电公司 一种面向电容器组平衡电桥的桥差电流调整策略
CN113992053A (zh) * 2021-10-29 2022-01-28 国网江苏省电力有限公司扬州供电分公司 一种三相串联混合式mmc拓扑结构及控制方法
CN117118262A (zh) * 2023-08-17 2023-11-24 江苏科曜能源科技有限公司 一种高压三相四桥臂拓扑结构及逆变器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109873424B (zh) 2019-04-17 2019-11-22 山东大学 一种混合式级联apf拓扑结构及其控制方法
CN113422367B (zh) * 2021-07-08 2022-08-05 山东大学 高压电能净化装备的负序电压注入四层电容电压均衡方法
CN114498695B (zh) * 2022-03-21 2022-09-27 国能宁夏灵武发电有限公司 储能耦合调频方法、装置、电子设备及存储介质
CN115036929A (zh) * 2022-06-09 2022-09-09 国网河北省电力有限公司电力科学研究院 一种并联apf的控制方法及装置
CN116054186B (zh) * 2023-03-31 2023-05-30 湖南大学 复杂场景下混合型多功能并网变流器系统及控制方法
CN117937964B (zh) * 2024-03-22 2024-05-28 华中科技大学 一种减小输出滤波电感的三相四桥臂逆变器载波调制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102511123A (zh) * 2009-09-16 2012-06-20 三菱电机株式会社 电力转换装置
CN103236800A (zh) * 2013-05-14 2013-08-07 武汉大学 一种新的拓扑结构电压源型逆变器及调节方法
JP5260957B2 (ja) * 2007-12-28 2013-08-14 三菱電機株式会社 電力変換装置
CN104682751A (zh) * 2015-03-02 2015-06-03 上海交通大学 基于pam与pwm混合调制的模块化级联多电平换流器
CN104716656A (zh) * 2014-12-31 2015-06-17 哈尔滨工业大学 具有能量变换单元的级联静止同步无功补偿器拓扑及其控制方法
CN105337281A (zh) * 2015-10-23 2016-02-17 株洲变流技术国家工程研究中心有限公司 星形链式有源电力滤波器直流侧电容电压控制方法
CN109873424A (zh) * 2019-04-17 2019-06-11 山东大学 一种混合式级联apf拓扑结构及其控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7679941B2 (en) * 2007-06-06 2010-03-16 General Electric Company Power conversion system with galvanically isolated high frequency link
WO2009116273A1 (ja) * 2008-03-19 2009-09-24 三菱電機株式会社 電力変換装置
JP2012099353A (ja) * 2010-11-02 2012-05-24 Minebea Co Ltd 放電灯の点灯装置および点灯制御方法
CA2827212A1 (en) * 2011-02-18 2012-08-23 Arteche Lantegi Elkartea, S.A. System and method for monitoring the electric network voltage waveform
US9595902B2 (en) * 2011-08-03 2017-03-14 GM Global Technology Operations LLC Methods, systems and apparatus for adjusting modulation index to improve linearity of phase voltage commands
US8711585B2 (en) * 2012-09-05 2014-04-29 The Florida State University Research Foundation, Inc. High-frequency-link power-conversion system having direct double-frequency ripple current control and method of use
EP2897277A4 (en) * 2012-09-13 2016-05-25 Nat Inst Of Advanced Ind Scien MULTI-STAGE ACTION CIRCUITS AND DEVICE THEREFOR
CN103178526A (zh) * 2013-04-10 2013-06-26 西安布伦帕电力无功补偿技术有限公司 复合型滤波器
CN103762596B (zh) * 2014-02-12 2016-03-09 陈峻岭 一种链式有源电力滤波器的差异化控制方法
US9555711B2 (en) * 2014-06-03 2017-01-31 Hamilton Sundstrand Corporation Power converters
US10270327B1 (en) * 2017-10-13 2019-04-23 Deere & Company Voltage sensor-less position detection in an active front end
US10418201B2 (en) * 2018-02-14 2019-09-17 Schweitzer Engineering Laboratories, Inc. Point on wave switching using slow speed processing
EP3567709A1 (en) * 2018-05-11 2019-11-13 ABB Schweiz AG Control of grid connected converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260957B2 (ja) * 2007-12-28 2013-08-14 三菱電機株式会社 電力変換装置
CN102511123A (zh) * 2009-09-16 2012-06-20 三菱电机株式会社 电力转换装置
CN103236800A (zh) * 2013-05-14 2013-08-07 武汉大学 一种新的拓扑结构电压源型逆变器及调节方法
CN104716656A (zh) * 2014-12-31 2015-06-17 哈尔滨工业大学 具有能量变换单元的级联静止同步无功补偿器拓扑及其控制方法
CN104682751A (zh) * 2015-03-02 2015-06-03 上海交通大学 基于pam与pwm混合调制的模块化级联多电平换流器
CN105337281A (zh) * 2015-10-23 2016-02-17 株洲变流技术国家工程研究中心有限公司 星形链式有源电力滤波器直流侧电容电压控制方法
CN109873424A (zh) * 2019-04-17 2019-06-11 山东大学 一种混合式级联apf拓扑结构及其控制方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629723A (zh) * 2021-07-05 2021-11-09 燕山大学 考虑dg和apf参与电压治理的svg优化配置方法
CN113629723B (zh) * 2021-07-05 2024-01-12 燕山大学 考虑dg和apf参与电压治理的svg优化配置方法
CN113659608A (zh) * 2021-09-01 2021-11-16 燕山大学 一种隔离级同步调制的混合多电平sst拓扑及控制方法
CN113659608B (zh) * 2021-09-01 2023-09-22 燕山大学 一种隔离级同步调制的混合多电平sst拓扑及控制方法
CN113992053A (zh) * 2021-10-29 2022-01-28 国网江苏省电力有限公司扬州供电分公司 一种三相串联混合式mmc拓扑结构及控制方法
CN113992053B (zh) * 2021-10-29 2024-01-23 国网江苏省电力有限公司扬州供电分公司 一种三相串联混合式mmc拓扑结构及控制方法
CN113922385A (zh) * 2021-11-09 2022-01-11 国网辽宁省电力有限公司抚顺供电公司 一种面向电容器组平衡电桥的桥差电流调整策略
CN113922385B (zh) * 2021-11-09 2023-10-10 国网辽宁省电力有限公司抚顺供电公司 一种面向电容器组平衡电桥的桥差电流调整策略
CN117118262A (zh) * 2023-08-17 2023-11-24 江苏科曜能源科技有限公司 一种高压三相四桥臂拓扑结构及逆变器
CN117118262B (zh) * 2023-08-17 2024-04-05 江苏科曜能源科技有限公司 一种高压三相四桥臂拓扑结构及逆变器

Also Published As

Publication number Publication date
US20210391719A1 (en) 2021-12-16
CN109873424A (zh) 2019-06-11
US11368018B2 (en) 2022-06-21
CN109873424B (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2020211458A1 (zh) 一种混合式级联apf拓扑结构及其控制方法
CN103199720B (zh) 一种三相功率变流器的综合控制方法
CN102195287B (zh) 一种适用于三相四线电网系统的并联型有源电力滤波器
CN102594106B (zh) 一种并网逆变器电压背景谐波的抑制方法
CN106329979B (zh) 一种用于高速永磁电机系统的mmc双环流抑制方法
WO2021169666A1 (zh) 一种差异化相位校正的谐振控制方法
CN108418226B (zh) 开绕组双逆变器光伏发电系统的无功补偿控制方法
CN111668867A (zh) 一种风电场经vsc-hvdc系统并网的无源滑模控制方法
Deffaf et al. Synergetic control for three-level voltage source inverter-based shunt active power filter to improve power quality
CN105337481A (zh) 一种lcl型并网逆变器控制方法
CN109347211B (zh) 一种不对称级联多电平混合储能控制方法
CN105071390A (zh) 一种h桥三电平有源电力滤波器的控制方法及系统
CN113612398B (zh) 电网畸变工况下高频链矩阵变换器非线性控制方法及系统
CN113964837B (zh) 适用于lcl型并联有源电力滤波器的复合控制方法和系统
CN108282098B (zh) 一种新型级联型变频器功率解耦控制方法
CN106505898A (zh) 基于svpwm的z源npc三电平逆变器恒功率并网控制系统
Wang et al. Unified power control strategy for new generation poloidal field power supply
CN114336660A (zh) 一种基于功角的upqc直接电流预测控制方法
Chang et al. Single-phase voltage source inverter with power decoupling and reactive power control
Asok et al. Proportional Resonant Based Current Control of Three-Phase Single Stage Grid Connected PV System
Xia et al. Current control for the micro-grid connected inverter based on fuzzy control
CN113422367B (zh) 高压电能净化装备的负序电压注入四层电容电压均衡方法
Xie Control Strategy of Active Power Filter Based on Modular Multilevel Converter
Zhu et al. Sliding mode PIR control for a four-IGBT five-level rectifier
Jia et al. A New Control Strategy Based on Capacitor Current Feedback Source Damping for LCL Three-Phase Public Electric Network Inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924661

Country of ref document: EP

Kind code of ref document: A1