WO2020211394A1 - 一种基于声学截止的散热风扇降噪装置及其方法 - Google Patents

一种基于声学截止的散热风扇降噪装置及其方法 Download PDF

Info

Publication number
WO2020211394A1
WO2020211394A1 PCT/CN2019/122890 CN2019122890W WO2020211394A1 WO 2020211394 A1 WO2020211394 A1 WO 2020211394A1 CN 2019122890 W CN2019122890 W CN 2019122890W WO 2020211394 A1 WO2020211394 A1 WO 2020211394A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
noise reduction
reduction device
cooling fan
acoustic
Prior art date
Application number
PCT/CN2019/122890
Other languages
English (en)
French (fr)
Inventor
孙宗翰
田杰
欧阳华
Original Assignee
上海交通大学
上海交大航空发动机科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 上海交大航空发动机科技有限公司 filed Critical 上海交通大学
Publication of WO2020211394A1 publication Critical patent/WO2020211394A1/zh
Priority to US17/501,220 priority Critical patent/US20220082112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation

Definitions

  • the invention relates to the technical field of fan noise reduction, and in particular to a noise reduction device and method for a cooling fan based on acoustic cutoff.
  • cooling fans with a moving and static blade interference structure are widely used in computer servers and communication router cabinets. Since the electronic components in the cabinet are closely arranged to generate heat, it is often necessary to connect multiple variable-speed axial cooling fans in parallel to form a cooling unit to dissipate heat to ensure normal operation of the equipment. In order to meet the requirements of air volume, this type of cooling fan often rotates at a high speed, but the high-speed operation of multiple fans brings high aerodynamic noise, which brings great troubles to people, especially in server rooms where multiple cabinets are centralized. The noise is even more unbearable.
  • the aerodynamic noise of the cooling fan is mainly the discrete single-tone noise of the blade passing frequency and its multiplier frequency.
  • a common approach is to improve the contours of the fan's moving blades and upstream and downstream stator blade supports to suppress noise.
  • Similar blades Improvements in shapes such as trailing edge serrations and blade openings will also bring about problems such as increased manufacturing difficulty and increased cost.
  • a common fan with an interference structure of moving and stationary blades which is similar to a cooling fan, generates a rotating circumferential sound mode that propagates in the axial direction.
  • the technical problem to be solved by the present invention is how to effectively suppress the fan aerodynamic noise circumferential modal propagation through the duct acoustic cut-off under the premise that the effect on the performance of the cooling fan is minimized to achieve the noise reduction effect.
  • the present invention provides a noise reduction device for a cooling fan based on acoustic cutoff, which includes a short pipe deflector and a fixed bracket.
  • the short pipe deflector has a cylindrical shape and is adapted to the shape of the fan.
  • the short pipe shroud is arranged on the fixed support, and is arranged on the heat dissipation fan through the fixed support, is located upstream or downstream of the flow area of the heat dissipation fan, and closely fits the heat dissipation fan.
  • the inner diameter D of the air deflector is determined by the size and speed of the fan, the axial length L of the short-pipe air deflector is determined by the acoustic cut-off condition, and the heat dissipation fan is a fan with a moving and stationary blade interference structure.
  • the inner diameter D of the short pipe shroud is not less than the flow diameter of the heat dissipation fan, and no greater than the outer frame of the heat dissipation fan.
  • the shroud axially
  • the length L and the inner diameter D satisfy 0.15 ⁇ L/D ⁇ 0.35.
  • the inner wall of the short tube shroud is smooth and meets the absolute hard boundary condition of the acoustic cut-off of the round tube.
  • the thickness of the tube wall of the short tube guide cover meets the structural strength requirement, and the natural frequency of the vibration of the noise reduction device avoids the passing frequency of the fan blade and its frequency multiplication to avoid resonance.
  • a microporous plate structure is arranged inside the tube wall of the short pipe deflector to achieve further noise reduction, and when the noise reduction device is arranged upstream of the flow area of the cooling fan, the front end of the short pipe deflector is arranged There is a horn air inlet.
  • the pore size and porosity of the microporous plate structure change with the frequency of fan noise, the thickness of the microporous plate structure does not exceed 1mm, the pore diameter does not exceed 1mm, and the porosity is 1%-3%.
  • the air port and the short pipe deflector are integrally formed or assembled separately, and the assembly place is flat and smooth.
  • the cooling fan is a series or parallel form of a plurality of cooling fans, and the installation method of the noise reduction device changes correspondingly with the arrangement of the cooling fans.
  • the fixing bracket is in the shape of a box with rounded chamfers, the fixing bracket is connected to the heat dissipation fan by a fastener, and the fixing bracket and the short pipe shroud are an integral structure.
  • a vibration isolation rubber pad is arranged between the fixed bracket and the outer frame of the heat dissipation fan, and a sealing ring is arranged between the short pipe shroud and the heat dissipation fan.
  • the heat dissipation fan is a fan with a moving blade interference structure.
  • a method for manufacturing and using the acoustic cut-off-based noise reduction device for cooling fans includes the following steps:
  • Step 1 Make a noise reduction device according to the shape of the fan with the interference structure of moving and static blades, determine the inner diameter D of the short pipe shroud according to the fan size and speed, and determine the axial length of the shroud as L according to the acoustic cut-off condition;
  • Step 2 Install the noise reduction device in step 1 upstream or downstream of the fan's flow area, and the short pipe deflector is closely attached to the fan through a fixed bracket.
  • the present invention can suppress the axial propagation of the aerodynamic noise generated by the cooling fan in the circumferential sound mode.
  • the device of the invention is installed upstream of the cooling fan and can also correct the flow distortion at the inlet of the cooling fan, thereby reducing the discrete single-tone noise radiated by the cooling fan.
  • Figure 1 is a schematic diagram of the installation of a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of the three-dimensional structure of a preferred embodiment of the present invention.
  • Figure 3 is a top view of a preferred embodiment of the present invention.
  • Figure 4 is a side view of a preferred embodiment of the present invention.
  • Figure 5 is the exponential decay curve of modal wave with distance corresponding to different harmonics of blade passing frequency (harmonic number 1, circumferential mode number 1, radial mode number 0);
  • Figure 6 is the exponential attenuation curve of modal waves with distance corresponding to different harmonics of the blade passing through the frequency (harmonic number 2, circumferential mode number 2, radial mode number 0);
  • Fig. 7 is the exponential decay curve of the modal wave with distance corresponding to different harmonics of the blade passing through the frequency (harmonic number 3, circumferential mode number 3, radial mode number 0).
  • the acoustic cut-off cooling fan noise reduction device 2 of this embodiment includes a short pipe deflector 3 and a fixed bracket 4.
  • the short pipe deflector 3 is installed on a fixed bracket 4
  • the cooling fan 1 with the moving blade interference structure is upstream or downstream of the flow area and closely fits the cooling fan 1.
  • the inner diameter D of the short tube shroud 3 is determined according to the size and speed of the cooling fan 1, and the short tube guides the flow
  • the axial length L of the cover 3 is determined according to the acoustic cut-off condition.
  • the short tube shroud 3 is a cylindrical shape penetrating up and down, with a certain diameter and wall thickness.
  • the short pipe shroud 3 is equivalent to a section of pipe.
  • the cut-off effect is directly related to the inner diameter D of the air deflector 3 and the fan speed, and the cut-off effect is related to the axial length L of the air deflector 3.
  • the flow diameter of the cooling fan 1 is 11.6cm, and the speed is 9000rpm.
  • the specific short tube The inner diameter and wall thickness of the air deflector 3 should be determined according to the size and speed of the cooling fan 1, and the size of the cabinet.
  • the ratio of the length L to the inner diameter D of the short pipe air deflector 3 should meet the acoustic cut-off requirements.
  • a structurally better solution is that the inner diameter D of the short tube shroud 3 and the outer diameter of the fan inlet tapered section are the same as 13cm to ensure that the inlet tapered section plays a rectifying effect.
  • the circumferential acoustic modes that can be transmitted are very limited.
  • is the rotational angular velocity of the rotor blade 942.48rad/s
  • r 0 is the tube wall radius 0.065m
  • c is the sound speed 344m/s
  • n is the harmonic number 1, 2, 3, ... of the blade passing frequency
  • B is the rotor blade Number 7, it can be deduced that the circumferential acoustic modes satisfying the cut-off condition are
  • the length L of the short pipe shroud 3 is too long, not only is the space occupied by the cooling fan 1 limited, but also the air volume of the cooling fan 1 may also be affected.
  • the pressure loss of the pipe lengthening increases, and the performance of the cooling fan 1 decreases when the flow rate decreases. .
  • Experiments on a certain type of cooling fan 1 in an anechoic room have verified the noise reduction effect of the duct cutoff, and the noise level at 1m in the far field can be reduced by an average of 2.5dB(A) under the condition that the performance of the cooling fan 1 is limited.
  • the fixing bracket 4 in this example is selected as a box shape with rounded chamfers according to the shape of the cooling fan 1, and is integrally formed with the short pipe shroud 3.
  • the square fan profile can be fixed in a close fit manner.
  • a vibration isolation rubber pad is installed between the fixed bracket 4 and the outer frame of the cooling fan 1 to further reduce vibration.
  • the gap between the short pipe shroud 3 and the cooling fan 1 is guaranteed by a sealing ring Air tightness. It is foreseeable that if the shape of the cooling fan 1 changes, the fixing bracket 4 as a minor aspect of the present invention can be adjusted accordingly.
  • a noise reduction device according to the shape of the fan with the interference structure of the moving and static blades, in which the inner diameter D of the short pipe shroud is determined according to the fan size and speed, and the axial length of the shroud is determined to be L according to the acoustic cut-off condition. ; Then the noise reduction device is installed upstream or downstream of the fan flow area, and the short pipe shroud is closely attached to the fan through the fixing bracket.
  • a microporous plate structure is added to the inner wall of the short tube deflector 3, and a horn air inlet is added when installed in the upstream area of the cooling fan 1, which will also cause a certain range of broadband noise Inhibition.
  • the thickness of the microplate structure is not more than 1mm
  • the hole diameter is not more than 1mm
  • the perforation rate is 1%-3%.
  • the horn air inlet and the short pipe deflector 3 can be integrated or spliced or spliced. The place is smooth and flat.
  • the application of multiple cooling fans 1 in series and parallel does not change the principle and mode of action of the duct cutoff.
  • the present invention can also be applied to complex fan arrangements. It should be noted that the structural strength is guaranteed after installation, which is inherent The frequency avoids the blade through frequency and harmonic frequency to avoid resonance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种基于声学截止的散热风扇(1)降噪装置(2)及其方法,涉及风扇降噪技术领域,包括短管导流罩(3)和固定支架(4),所述短管导流罩(3)是圆筒形状,并与风扇外形相适应,所述短管导流罩(3)设置于所述固定支架(4)上,并通过所述固定支架(4)设置于散热风扇(1)上,位于散热风扇(1)通流区域的上游或下游,并与散热风扇(1)紧密贴合,所述短管导流罩(3)内径D由散热风扇(1)尺寸及转速确定,所述导流罩(3)轴向长度L由声学截止条件确定,所述散热风扇(1)是具有动静叶干涉结构的风扇。该降噪装置(2)能够对散热风扇(1)产生的气动噪声周向声模态的轴向传播起到抑制作用,安装在散热风扇(1)上游还可以矫正散热风扇(1)的进口来流变形,从而降低散热风扇(1)辐射的离散单音噪声。

Description

一种基于声学截止的散热风扇降噪装置及其方法 技术领域
本发明涉及风扇降噪技术领域,尤其涉及一种基于声学截止的散热风扇降噪装置及其方法。
背景技术
目前,具有动静叶干涉结构的散热风扇大量应用于计算机服务器和通讯路由器机柜。由于机柜中电子器件排列紧密发热严重,往往需要多个变速轴流散热风扇并联形成散热单元排出热量,保证设备的正常运行。这类散热风扇为了满足风量要求往往转速较高,但多个风扇的高速运转带来了很高的气动噪声,给人们带来很大困扰,尤其是在多个机柜集中安放的服务器房间内,噪声更是让人无法忍受。
散热风扇的气动噪声主要是叶片通过频率及其倍频的离散单音噪声。为了降低风扇噪声,一种常见的做法是改进风扇动叶片和上下游静叶支撑的外形轮廓,达到抑制噪声产生的作用,但经过多年的尝试这类改进的进步空间已然不大,此外类似叶片后缘锯齿及叶片开孔等造型的改进还会带来制造难度增大和成本增加等问题。
因此,如何在有限的空间内既不对风扇的性能造成很大影响,又能实现进一步降噪是一个亟待解决的问题。而常见的类似散热风扇的具有动静叶干涉结构的风扇,会产生沿轴向传播的旋转周向声模态。
因此,本领域的技术人员致力于开发一种能够从噪声周向模态传播上对散热风扇气动噪声进行抑制的装置及其方法。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是在对散热风扇性能影响尽量小的前提下,如何通过管道声学截止有效抑制风扇气动噪声周向模态传播来实现降噪效果。
为实现上述目的,本发明提供了一种基于声学截止的散热风扇降噪装置,包括短管导流罩和固定支架,所述短管导流罩是圆筒形状,并与风扇外形相适应,所述短管导流罩设置于所述固定支架上,并通过所述固定支架设置于散热风扇上,位于散热风扇通流区域的上游或下游,并与散热风扇紧密贴合,所述短管导流罩内径D由风扇尺寸及转速确定,所述短管导流罩轴向长度L由声学截止条件确定,所述散热风扇是具有动静叶干涉结构的风扇。
进一步地,所述短管导流罩内径D不小于散热风扇通流直径,不大于散热风扇外 框,为达到声学截止效果且不至于过度影响散热风扇所占空间,所述导流罩轴向长度L与内径D满足0.15≤L/D≤0.35。
进一步地,所述短管导流罩内壁光滑,满足圆管声学截止的绝对硬边界条件。
进一步地,所述短管导流罩管壁厚度满足结构强度要求,所述降噪装置的振动固有频率避开风扇叶片通过频率及其倍频以避免共振。
进一步地,所述短管导流罩管壁内部设置有微孔板结构以实现进一步降噪,所述降噪装置设置于散热风扇通流区域的上游时,所述短管导流罩前端设置有喇叭进气口。
进一步地,所述微孔板结构孔径大小及孔隙率随风扇噪声频率变化,所述微孔板结构板厚不超过1mm,孔径不超过1mm,孔隙率是1%-3%,所述喇叭进气口与所述短管导流罩是一体成型或分体拼装,且拼装处平整光滑。
进一步地,所述散热风扇是多个散热风扇的串联或并联形式,所述降噪装置的安装方式随散热风扇排列方式做出相应变化。
进一步地,所述固定支架是带圆倒角的方框形状,所述固定支架通过紧固件与散热风扇连接,所述固定支架与所述短管导流罩是一体结构。
进一步地,所述固定支架与所述散热风扇的外边框之间设置有隔振胶垫,所述短管导流罩与所述散热风扇之间设有密封圈。
进一步地,所述散热风扇是具有动静叶干涉结构的风扇。
进一步地,一种制作和使用所述基于声学截止的散热风扇降噪装置的方法,所述方法包括以下步骤:
步骤1、根据所述具有动静叶干涉结构的风扇外形制作一个降噪装置,根据风扇尺寸及转速确定短管导流罩内径D,根据声学截止条件确定导流罩轴向长度为L;
步骤2、将步骤1所述降噪装置安装在风扇通流区域的上游或下游,所述短管导流罩通过固定支架与风扇紧密贴合。
与现有技术相比,在机柜有限空间内,适于安装且对散热风扇风量影响较小的前提下,本发明可以对散热风扇产生的气动噪声周向声模态的轴向传播起到抑制作用,本发明装置安装在散热风扇上游还可以矫正散热风扇的进口来流变形,从而降低散热风扇辐射的离散单音噪声。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明一个较佳实施例安装示意图;
图2是本发明一个较佳实施例三维结构示意图;
图3是本发明一个较佳实施例俯视图;
图4是本发明一个较佳实施例侧视图;
图5是叶片通过频率不同谐波对应模态波随距离的指数衰减曲线(谐波数1,周向模态数1,径向模态数0);
图6是叶片通过频率不同谐波对应模态波随距离的指数衰减曲线(谐波数2,周向模态数2,径向模态数0);
图7是叶片通过频率不同谐波对应模态波随距离的指数衰减曲线(谐波数3,周向模态数3,径向模态数0)。
其中:1-散热风扇,2-降噪装置,3-短管导流罩,4-固定支架。
具体实施方式
以下参考说明书附图介绍本发明的优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
实施例1
如图1、2、3、4所示,本实施例基于声学截止的散热风扇降噪装置2包括短管导流罩3和固定支架4,短管导流罩3通过固定支架4安装在具有动静叶干涉结构的散热风扇1通流区域的上游或下游,并与散热风扇1紧密贴合,其中,短管导流罩3的内径D根据散热风扇1的尺寸及转速确定,短管导流罩3的轴向长度L根据声学截止条件确定。
短管导流罩3为上下贯通的圆筒形,具有一定的直径和壁厚。对于具有明显动静叶干涉结构的散热风扇1来说,其会以一定规律产生周向声模态并向自由场中旋转传播,短管导流罩3等同于一段管道,对这类旋转的周向声模态具有明显的截止作用,截止作用与导流罩3内径D及风扇转速有直接关系,截止效果与导流罩3轴向长度L有关。
如图1所示,散热风扇1的通流直径为11.6cm,转速为9000rpm,在满足风扇性能要求的前提下,即保证短管导流罩3内径D≥11.6cm的同时,具体的短管导流罩3的内径和壁厚应根据散热风扇1的尺寸、转速以及机柜的尺寸限制来确定,短管导流罩3的长度L与内径D的比值应满足声学截止要求。一种结构上较优的方案是短管导流罩3内径D与风扇入口渐缩段外径一致为13cm,保证入口渐缩段发挥整流作用,此时对于亚音速叶尖速度的散热风扇,能够传播出的周向声模态很有限。
根据周向声模态截止条件
Figure PCTCN2019122890-appb-000001
其中Ω为动叶旋转角速度942.48rad/s, r 0为管壁半径0.065m,c为声速344m/s,n为叶片通过频率的谐波数1、2、3、……,B为动叶数7,可以推导出满足截止条件的周向声模态有|m|<n(n≤3),这些模态可以沿管道传播,而不满足的模态则以指数形式衰减,根据衰减规律绘制处于截止边缘的模态波的传播因子
Figure PCTCN2019122890-appb-000002
大小随距离的变化曲线如图5、6、7所示,这些模态波衰减最慢,可以看出衰减最慢的模态波在2~3cm距离范围已经衰减50%以上,其他模态波衰减更快,4cm长度管道足以阻断绝大多数模态波的传播,为达到声学截止效果而对风扇性能影响尽量小,考虑到散热风扇1的空间限制,可以选取0.15≤L/D≤0.35。如果短管导流罩3长度L过长不仅受到散热风扇1所占空间的限制,对散热风扇1的风量也可能有影响,管道加长压损增加,流量减小的情况下散热风扇1性能下降。在消声室中对某型散热风扇1进行实验验证了管道截止的降噪效果,在对散热风扇1性能影响有限的情况下实现远场1m处噪声水平平均下降2.5dB(A)。
如图1、2、3、4所示,本例固定支架4根据散热风扇1的外形选取为带圆倒角的方框形,与短管导流罩3一体成型。针对方形风扇轮廓可以采用紧密贴合的方式进行固定,固定支架4与散热风扇1外边框之间安装有隔振胶垫进一步减振,短管导流罩3与散热风扇1间隙有密封圈保证气密性。可以预见,若散热风扇1外形发生改变,作为本发明的较次要方面的固定支架4可以做出相应调整。
具体在使用时,首先根据具有动静叶干涉结构的风扇外形制作一个降噪装置,其中,根据风扇尺寸及转速确定短管导流罩内径D,根据声学截止条件确定导流罩轴向长度为L;然后将该降噪装置安装在风扇通流区域的上游或下游,通过固定支架使得短管导流罩与风扇紧密贴合。
实施例2
基于实施例1的基础上,在短管导流罩3管内壁增加微孔板结构,安装在散热风扇1通流的上游区域时加装喇叭进气口,对一定范围的宽频噪声也会有抑制作用。根据微孔板的原理,微孔板结构板厚不超过1mm,孔径不超过1mm,穿孔率为1%-3%,喇叭进气口与短管导流罩3可以是一体结构或拼接,拼接处光滑平整。
实施例3
本实施例对于多个散热风扇1串并联的情况的应用,并不改变管道截止的原理和作用方式,本发明同样可以应用于复杂的风扇排列中,需要注意的是安装后保证结构强度,固有频率避开叶片通过频率及谐波频率避免共振。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得 到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种基于声学截止的散热风扇降噪装置,其特征在于,包括短管导流罩和固定支架,所述短管导流罩是圆筒形状,并与风扇外形相适应,所述短管导流罩设置于所述固定支架上,并通过所述固定支架设置于散热风扇上,位于散热风扇通流区域的上游或下游,并与散热风扇紧密贴合,所述短管导流罩内径D由散热风扇尺寸及转速确定,所述短管导流罩轴向长度L由声学截止条件确定,所述散热风扇是具有动静叶干涉结构的风扇。
  2. 如权利要求1所述基于声学截止的散热风扇降噪装置,其特征在于,所述短管导流罩内径D不小于散热风扇通流直径,不大于散热风扇外框,为达到声学截止效果且不至于过度影响散热风扇所占空间,所述导流罩轴向长度L与内径D满足0.15≤L/D≤0.35。
  3. 如权利要求1所述基于声学截止的散热风扇降噪装置,其特征在于,所述短管导流罩内壁光滑,满足圆管声学截止的绝对硬边界条件。
  4. 如权利要求1所述基于声学截止的散热风扇降噪装置,其特征在于,所述短管导流罩管壁厚度满足结构强度要求,所述降噪装置的振动固有频率避开风扇叶片通过频率及其倍频以避免共振。
  5. 如权利要求1所述基于声学截止的散热风扇降噪装置,其特征在于,所述短管导流罩管壁内部设置有微孔板结构以实现进一步降噪,所述降噪装置设置于散热风扇通流区域的上游时,所述短管导流罩前端设置有喇叭进气口。
  6. 如权利要求5所述基于声学截止的散热风扇降噪装置,其特征在于,所述微孔板结构孔径大小及孔隙率随散热风扇噪声频率变化,所述微孔板结构板厚不超过1mm,孔径不超过1mm,孔隙率是1%-3%,所述喇叭进气口与所述短管导流罩是一体成型或分体拼装,且拼装处平整光滑。
  7. 如权利要求1所述基于声学截止的散热风扇降噪装置,其特征在于,所述散热风扇是多个散热风扇的串联或并联形式,所述降噪装置的安装方式随散热风扇排列方式做出相应变化。
  8. 如权利要求1所述基于声学截止的散热风扇降噪装置,其特征在于,所述固定支架通过紧固件与散热风扇连接,所述固定支架与所述短管导流罩是一体结构。
  9. 如权利要求1所述基于声学截止的散热风扇降噪装置,其特征在于,所述固定支架与所述散热风扇的外边框之间设置有隔振胶垫,所述短管导流罩与所述散热风扇之间设有密封圈。
  10. 一种制作和使用如权利要求1-9任意一项所述基于声学截止的散热风扇降噪装置的方法,其特征在于,所述方法包括以下步骤:
    步骤1、根据所述具有动静叶干涉结构的风扇外形制作一个降噪装置,根据风扇尺寸及转速确定短管导流罩内径D,根据声学截止条件确定导流罩轴向长度为L;
    步骤2、将步骤1所述降噪装置安装在风扇通流区域的上游或下游,所述短管导流罩通过固定支架与风扇紧密贴合。
PCT/CN2019/122890 2019-04-15 2019-12-04 一种基于声学截止的散热风扇降噪装置及其方法 WO2020211394A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/501,220 US20220082112A1 (en) 2019-04-15 2021-10-14 Acoustic cutoff based noise reduction device for heat dissipation fans, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910300235.5 2019-04-15
CN201910300235.5A CN109882452B (zh) 2019-04-15 2019-04-15 一种基于声学截止的散热风扇降噪装置及其方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/501,220 Continuation-In-Part US20220082112A1 (en) 2019-04-15 2021-10-14 Acoustic cutoff based noise reduction device for heat dissipation fans, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020211394A1 true WO2020211394A1 (zh) 2020-10-22

Family

ID=66937465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122890 WO2020211394A1 (zh) 2019-04-15 2019-12-04 一种基于声学截止的散热风扇降噪装置及其方法

Country Status (3)

Country Link
US (1) US20220082112A1 (zh)
CN (1) CN109882452B (zh)
WO (1) WO2020211394A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847429A (zh) * 2021-08-20 2021-12-28 湖南旭阳显示科技有限公司 一种显示器件降噪密封结构及其制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109882452B (zh) * 2019-04-15 2020-11-06 上海交通大学 一种基于声学截止的散热风扇降噪装置及其方法
CN112524058B (zh) * 2020-12-04 2022-05-17 上海交通大学 一种抑制散热风扇噪声的风扇外框结构及其造型方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038962A2 (en) * 2000-11-08 2002-05-16 Robert Bosch Corporation High-efficiency, inflow-adapted, axial-flow fan
CN201723504U (zh) * 2010-06-09 2011-01-26 张崇臣 一种用于风扇的导流静音装置
CN103717908A (zh) * 2011-05-25 2014-04-09 罗伯特·博世有限公司 具有被成形用于降低噪声的下游边缘的风扇管道
CN106321520A (zh) * 2016-10-20 2017-01-11 珠海格力电器股份有限公司 导流圈结构、轴流风机及空调器
CN207647855U (zh) * 2017-12-04 2018-07-24 中国电子科技集团公司第三十研究所 小型风机共振腔降噪装置
CN109882452A (zh) * 2019-04-15 2019-06-14 上海交通大学 一种基于声学截止的散热风扇降噪装置及其方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104002A (en) * 1976-12-02 1978-08-01 General Electric Company Spiral strip acoustic treatment
US6039532A (en) * 1996-07-18 2000-03-21 Iowa State University Research Foundation, Inc. Blower fan blade passage rate noise control scheme
CN102853515B (zh) * 2012-09-03 2014-11-05 北京科奥克声学技术有限公司 宽频带吸声通风装置
KR101716356B1 (ko) * 2014-10-27 2017-03-14 김범진 포집과 배출이 일체로 된 고효율 와류팬
US11168696B2 (en) * 2014-11-10 2021-11-09 Bascom Hunter Technologies, Inc. Vane-axial fan with a fan housing and shroud having an integral acoustic treatment including a micro-perforated panel and a plurality of compartments in an annular backspace formed by a plurality of shrouds
US20180202464A1 (en) * 2017-01-17 2018-07-19 Driessen Aircraft Interior Systems, Inc. Noise attenuation for systems with blower wheels
CN109027502B (zh) * 2018-09-17 2019-08-02 北京航空航天大学 考虑截面声能量分布的管道降噪方法
CN109469648B (zh) * 2018-10-31 2021-06-04 泛仕达机电股份有限公司 一种风机及其集流器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038962A2 (en) * 2000-11-08 2002-05-16 Robert Bosch Corporation High-efficiency, inflow-adapted, axial-flow fan
CN201723504U (zh) * 2010-06-09 2011-01-26 张崇臣 一种用于风扇的导流静音装置
CN103717908A (zh) * 2011-05-25 2014-04-09 罗伯特·博世有限公司 具有被成形用于降低噪声的下游边缘的风扇管道
CN106321520A (zh) * 2016-10-20 2017-01-11 珠海格力电器股份有限公司 导流圈结构、轴流风机及空调器
CN207647855U (zh) * 2017-12-04 2018-07-24 中国电子科技集团公司第三十研究所 小型风机共振腔降噪装置
CN109882452A (zh) * 2019-04-15 2019-06-14 上海交通大学 一种基于声学截止的散热风扇降噪装置及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113847429A (zh) * 2021-08-20 2021-12-28 湖南旭阳显示科技有限公司 一种显示器件降噪密封结构及其制作方法
CN113847429B (zh) * 2021-08-20 2024-05-10 湖南旭阳显示科技有限公司 一种显示器件降噪密封结构及其制作方法

Also Published As

Publication number Publication date
US20220082112A1 (en) 2022-03-17
CN109882452A (zh) 2019-06-14
CN109882452B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2020211394A1 (zh) 一种基于声学截止的散热风扇降噪装置及其方法
JP2730878B2 (ja) 遠心送風機インレットオリフィス及び回転翼用アセンブリ
US9765787B2 (en) Centrifugal blower housing having surface structures, system, and method of assembly
US10161420B2 (en) Fan
JP5353137B2 (ja) 天井埋込型換気扇
US2252256A (en) Sound attenuator for air impellers
JPH0894146A (ja) 天井埋込形換気扇
JPH1194283A (ja) 横流ファンのためのフロー・スタビライザ
Liu et al. Effect of porous casing on small axial-flow fan noise
CN101968063A (zh) 低噪音风机
WO2021114739A1 (zh) 新型蜗舌结构、风机蜗壳及风机
JP2017537256A (ja) 過給機出口パネル
Liu et al. Reactive control of subsonic axial fan noise in a duct
CN110848153A (zh) 一种带仿生叶片尾缘的轴流通风机及其工作方法
CN211422954U (zh) 一种带仿生叶片尾缘的轴流通风机
CN112524058B (zh) 一种抑制散热风扇噪声的风扇外框结构及其造型方法
JP2006029126A (ja) 羽根車
CN218293988U (zh) 一种离心风机消声器
CN214887909U (zh) 一种基于叶片开孔的降噪离心风轮及吸油烟机
KR101466261B1 (ko) 축류팬의 소음 방지 구조
TW202325993A (zh) 噪音抑制風扇
Maki et al. Study on identification and reduction of aerodynamic noise source on casing in axial flow fan
JPH0544697A (ja) 薄形斜流フアン
WO2020155430A1 (zh) 风叶、风机组件、风道部件及空调器
Wang et al. Acoustic analysis of two small axial-flow fans in series

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925475

Country of ref document: EP

Kind code of ref document: A1