WO2020211287A1 - Filtre diélectrique et dispositif de communication 5g - Google Patents

Filtre diélectrique et dispositif de communication 5g Download PDF

Info

Publication number
WO2020211287A1
WO2020211287A1 PCT/CN2019/107183 CN2019107183W WO2020211287A1 WO 2020211287 A1 WO2020211287 A1 WO 2020211287A1 CN 2019107183 W CN2019107183 W CN 2019107183W WO 2020211287 A1 WO2020211287 A1 WO 2020211287A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
dielectric filter
filter
resonator
conductive layer
Prior art date
Application number
PCT/CN2019/107183
Other languages
English (en)
Chinese (zh)
Inventor
江顺喜
殷实
梁国春
张丽玲
冯冬琼
项显
王磊
Original Assignee
江苏贝孚德通讯科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏贝孚德通讯科技股份有限公司 filed Critical 江苏贝孚德通讯科技股份有限公司
Publication of WO2020211287A1 publication Critical patent/WO2020211287A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the present invention relates to a filter, in particular to a dielectric filter with negative cross coupling that can be used for 5G communication.
  • 5G communication is currently the most cutting-edge communication technology, and various communication companies are racing to carry out related research.
  • Sub 6GHz uses MIMO technology, so a large number of filters are required to be integrated inside the antenna, so the volume and weight of the filters have higher requirements.
  • the traditional metal filter cannot be integrated with the antenna due to its large size and weight.
  • the miniaturized dielectric filter realized by the use of high dielectric constant materials, because its size and weight are lower than 1/100 of the traditional filter, is an effective solution for the current realization of the Sub 6GHz MIMO communication system.
  • This type of dielectric filter uses a body made of a solid dielectric material (such as a ceramic material with a high dielectric constant), and metalization (such as silver plating) on the surface of the body to form a dielectric resonator; through multiple dielectrics connected in sequence
  • the resonators and the coupling between each resonator (including direct coupling between adjacent dielectric resonators and cross coupling between non-adjacent dielectric resonators) form a dielectric filter.
  • the coupling between each resonator can be divided into positive coupling (also called inductive coupling) and negative coupling (also called capacitive coupling) according to polarity.
  • positive coupling also called inductive coupling
  • negative coupling also called capacitive coupling
  • a dielectric filter only needs one piece of medium, which is conducive to mass production, but the blind hole forming negative cross coupling is very deep, and the medium from the bottom of the blind hole to the opposite side is very thin.
  • it requires high manufacturing precision and cannot be debugged. The accuracy is difficult to control, and on the other hand, it will seriously affect the mechanical strength of the dielectric filter and is easy to break.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a dielectric filter that can easily realize the cross-coupling of the negative polarity without reducing the mechanical strength of the filter, and the preparation process is simple, which is convenient for mass production .
  • a dielectric filter comprising at least three dielectric resonators connected in sequence, each dielectric resonator comprising a body made of a solid dielectric material and a conductive layer covering the surface of the body; at least one except the head and tail positions
  • the surface of the body of the dielectric resonator is provided with a trench structure covering the conductive layer for capacitive cross coupling, and the trench structure and the dielectric resonator where it is located together form a secondary mode resonant cavity.
  • the groove structure has one of the following forms: "L” type, “Z” type, “I” type, “X” type, arc type, ellipse type, "S” type, long strip shape.
  • At least one dielectric resonator has a body surface provided with at least one blind hole covering the conductive layer.
  • the size of the area is related to the resonance frequency of the dielectric resonator where the blind hole is located.
  • the area of the area is related to the coupling amount of the capacitive cross coupling.
  • the solid dielectric material is a ceramic material.
  • the bodies of all dielectric resonators are integrally formed from the same piece of solid dielectric material.
  • the dielectric filter further includes two input and output ports respectively arranged on the dielectric resonator at the head and tail positions.
  • the input and output ports are welded to the dielectric filter by means of vertical pins.
  • a 5G communication device includes at least one dielectric filter as described in any of the above technical solutions.
  • the invention cleverly uses the secondary mode resonator technology to realize the capacitive cross-coupling of the dielectric filter.
  • the realization process is simple.
  • the whole filter can be realized by integral processing of a piece of medium, which is convenient for industrialized mass production.
  • the invention adopts the medium of the dielectric resonator.
  • the surface of the material body is provided with a trench structure to realize the secondary mode resonant cavity, which can achieve larger capacitance loading, thereby greatly reducing the volume of the resonant cavity, while improving the Q value and reducing the insertion loss; and the depth of the trench structure does not require It is very deep, so it will not affect the mechanical strength of the filter.
  • there are various specific implementation forms of the groove structure which can be flexibly selected according to actual needs.
  • FIG. 1 is a schematic diagram of one surface of the first embodiment of the dielectric filter of the present invention
  • FIG. 2 is a schematic structural diagram of another side of the first embodiment of the dielectric filter of the present invention.
  • Figure 3 is a field distribution diagram of a dual-mode resonant cavity
  • Figure 4 is a frequency response curve of the first embodiment of the dielectric filter of the present invention.
  • FIG. 5 is a schematic diagram of the groove structure of the second embodiment of the dielectric filter of the present invention.
  • FIG. 6 is a schematic diagram of the groove structure of the third embodiment of the dielectric filter of the present invention.
  • FIG. 7 is a schematic diagram of the groove structure of the fourth embodiment of the dielectric filter of the present invention.
  • FIG. 8 is a schematic diagram of the groove structure of the fifth embodiment of the dielectric filter of the present invention.
  • FIG. 9 is a schematic diagram of the groove structure of the sixth embodiment of the dielectric filter of the present invention.
  • 1 is the input and output port
  • 2 is the blind hole
  • 3 is the groove structure.
  • the solution of the present invention is to realize the secondary mode resonant cavity by arranging a groove structure on the surface of the dielectric material body of the dielectric resonator, and use the secondary mode resonant cavity technology to realize the capacitive cross of the dielectric filter Coupling, its realization process is simple, the whole filter can be realized by a piece of medium as a whole, which is convenient for industrialized mass production; this scheme can realize larger capacitance loading, thereby greatly reducing the volume of the resonant cavity, increasing the Q value, reducing the insertion loss, and Will not affect the mechanical strength of the filter.
  • a dielectric filter comprising at least three dielectric resonators connected in sequence, each dielectric resonator comprising a body made of a solid dielectric material and a conductive layer covering the surface of the body; at least one except the head and tail positions
  • the surface of the body of the dielectric resonator is provided with a trench structure covering the conductive layer for capacitive cross coupling, and the trench structure and the dielectric resonator where it is located together form a secondary mode resonant cavity.
  • the groove structure can realize negative cross-coupling between groups of dielectric resonators on both sides of the dielectric resonator, and is not limited to the negative cross-coupling between two dielectric resonators on the two sides immediately adjacent to it.
  • One or more secondary mode resonant cavities can be set in the dielectric filter, usually only one secondary mode resonant cavity, if the filter is composed of more dielectric resonators, you can choose to increase according to the actual filter structure The number of secondary mode resonant cavities.
  • the specific form and size parameters of the groove structure can be designed through electromagnetic simulation software such as HFSS, Momentum, EMX, etc. according to the performance requirements of the filter and the specific parameters of the dielectric resonator. From the viewpoint of simplifying the manufacturing process, it is preferable to adopt simple structures such as "L”, “Z”, “ ⁇ ”, “X”, arc, ellipse, "S”, and long strips.
  • the solid dielectric material and the conductive layer can use various existing materials, preferably the most commonly used dielectric ceramic material is used as the solid dielectric material, and silver is used as the conductive layer.
  • blind holes covering the conductive layer can be provided on the body surface of other dielectric resonators except for the dielectric resonator with a trench structure to form a capacitive loading.
  • the number of dielectric resonators with blind holes and the specific number and position of the blind holes on each dielectric resonator can also be designed through electromagnetic simulation software such as HFSS, Momentum, and EMX according to actual needs.
  • the groove structure and the blind hole surface can be provided with a part of the area not covered by the conductive layer, so that the negative cross-coupling amount and the resonant frequency of the dielectric resonator where the blind hole is located can be adjusted respectively through these areas. Fine-tune the shape and size of the body.
  • the body part of the dielectric filter of the present invention can be assembled by using multiple pieces of dielectric material, or it can be integrally formed with the same piece of dielectric material. From the viewpoint of simplifying the process and reducing the cost, it is preferable to use the same piece of solid dielectric material It is integrally formed into the body of all dielectric resonators.
  • the specific structure of the first embodiment is shown in Figure 1 and Figure 2. It is a ceramic dielectric filter with 6 dielectric resonators and two zero points.
  • the dielectric body of the entire filter is a ceramic with high dielectric constant. Dielectric material, the surface of the body is silver-plated and metallized to achieve metal boundary conditions.
  • 1 in Figure 1 is the input and output ports of the filter, the port impedance is 50 ohms, and the two input and output ports are respectively welded to the dielectric resonator at the beginning and the end of the filter by means of vertical pins.
  • the dielectric filter of this embodiment is provided with an "L"-shaped groove structure 3 on the body surface of the third dielectric resonator from the left, and the loading of the "L"-shaped groove structure 3 makes it
  • the third dielectric resonator where it is located becomes a second-mode resonant cavity, and the resonant frequency of the second-mode resonant cavity is the second resonant mode.
  • the first and second dielectrics can be realized through the second-mode resonant cavity.
  • the resonator and the fourth, fifth, and sixth dielectric resonators are cross-coupled with negative polarity.
  • a metalized blind hole 2 is provided on the body surface of each dielectric resonator except the third dielectric resonator, which is used to form a capacitive load on the dielectric resonator, thereby effectively reducing the filter volume.
  • Fig. 3 shows the field distribution of the above-mentioned secondary mode resonant cavity, and the present invention uses this secondary resonant mode to achieve cross-coupling polarity reversal.
  • Figure 4 shows the frequency response curve of the dielectric filter. It can be seen from the curve that through the negative cross-coupling between the second resonator and the fifth resonator, one transmission zero point on the left and right of the filter passband can be realized.
  • Figures 5-9 respectively show another five specific embodiments of the dielectric filter of the present invention, which respectively adopt a strip type (as shown in FIG. 5), an I-shape (as shown in FIG. 6), and a Z-shape ( As shown in Fig. 7), elliptical (as shown in Fig. 8), and S-shaped (as shown in Fig. 9) trench structures to construct a secondary mode resonant cavity, and then realize negative cross-coupling, these five specific implementations
  • the rest of the example is the same as the first specific embodiment, and will not be repeated here.
  • the dielectric filter of the present invention can be widely used in 5G communication equipment such as MIMO antennas and transceivers.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

La présente invention concerne un filtre diélectrique. Le filtre diélectrique de la présente invention comprend au moins trois résonateurs diélectriques connectés successivement, et chaque résonateur diélectrique comprend un corps constitué d'un matériau diélectrique à l'état solide et d'une couche électriquement conductrice qui recouvre la surface du corps. La surface du corps d'au moins un résonateur diélectrique en plus des résonateurs diélectriques au niveau des positions de tête et de queue est pourvue d'une structure de tranchée qui recouvre la couche électriquement conductrice pour une utilisation dans la mise en œuvre d'un couplage croisé capacitif, et la structure de tranchée constitue conjointement une cavité résonnante de mode secondaire avec le résonateur diélectrique au niveau duquel la structure de tranchée est située. La présente invention concerne en outre un dispositif de communication 5G. Par rapport à l'état de la technique, la présente invention peut facilement mettre en œuvre un couplage croisé qui a une polarité négative, ne réduit pas la résistance mécanique du filtre, et le procédé de préparation associé est simple et facilite la production de masse.
PCT/CN2019/107183 2019-04-15 2019-09-23 Filtre diélectrique et dispositif de communication 5g WO2020211287A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910298870.4A CN109860966B (zh) 2019-04-15 2019-04-15 介质滤波器及5g通信设备
CN201910298870.4 2019-04-15

Publications (1)

Publication Number Publication Date
WO2020211287A1 true WO2020211287A1 (fr) 2020-10-22

Family

ID=66889095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107183 WO2020211287A1 (fr) 2019-04-15 2019-09-23 Filtre diélectrique et dispositif de communication 5g

Country Status (2)

Country Link
CN (1) CN109860966B (fr)
WO (1) WO2020211287A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860966B (zh) * 2019-04-15 2024-04-05 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN110148818A (zh) * 2019-06-13 2019-08-20 无锡惠虹电子有限公司 一种5g通信多层介质波导滤波器
CN110112517A (zh) * 2019-06-13 2019-08-09 无锡惠虹电子有限公司 一种5g通信单层介质波导滤波器
CN110112518B (zh) * 2019-06-14 2020-11-27 广东国华新材料科技股份有限公司 双模介质波导滤波器
CN110277612A (zh) * 2019-06-17 2019-09-24 无锡惠虹电子有限公司 一种具有对称交叉耦合零点的介质波导滤波器
CN110364790A (zh) * 2019-07-05 2019-10-22 京信通信技术(广州)有限公司 滤波器及其多零点实现模块
CN110265754A (zh) * 2019-07-16 2019-09-20 深圳市国人射频通信有限公司 一种介质波导滤波器
US11139548B2 (en) * 2019-12-02 2021-10-05 The Chinese University Of Hong Kong Dual-mode monoblock dielectric filter and control elements

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361117A (zh) * 2011-09-29 2012-02-22 武汉虹信通信技术有限责任公司 一种容性交叉耦合飞杆及其同轴腔体谐振器
CN103326093A (zh) * 2013-04-19 2013-09-25 上海大学 新型交叉耦合基片集成波导带通滤波器
CN103904391A (zh) * 2014-04-08 2014-07-02 电子科技大学 多层混合模六边形基片集成波导滤波器
CN103915667A (zh) * 2014-03-07 2014-07-09 华南理工大学 采用馈电结构来抑制三次谐波的ltcc带通滤波器
CN103956541A (zh) * 2014-04-18 2014-07-30 华南理工大学 一种利用微带线实现交叉耦合的基片集成波导滤波器
CN105244571A (zh) * 2015-09-17 2016-01-13 深圳三星通信技术研究有限公司 一种介质波导滤波器
CN107689482A (zh) * 2017-07-27 2018-02-13 南通大学 一种基于二维周期结构的宽带低剖面介质谐振器天线
CN109860966A (zh) * 2019-04-15 2019-06-07 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN209592274U (zh) * 2019-04-15 2019-11-05 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100311809B1 (ko) * 1998-11-19 2001-11-15 이형도 유전체필터
CN100424927C (zh) * 2006-07-21 2008-10-08 张家港灿勤电子元件有限公司 内置交叉耦合介质滤波器
WO2008019307A2 (fr) * 2006-08-04 2008-02-14 Dielectric Laboratories, Inc. filtre diélectrique à large bande de type guide d'onde
KR101891332B1 (ko) * 2013-05-31 2018-08-23 후아웨이 테크놀러지 컴퍼니 리미티드 유전체 필터, 송수신기 및 기지국
EP2993727B1 (fr) * 2013-06-04 2019-03-20 Huawei Technologies Co., Ltd. Résonateur diélectrique et filtre diélectrique, émetteur-récepteur et station de base les utilisant
WO2017088174A1 (fr) * 2015-11-27 2017-06-01 华为技术有限公司 Filtre diélectrique, émetteur-récepteur et station de base
CN109309272A (zh) * 2018-11-14 2019-02-05 苏州波发特电子科技有限公司 一种用于介质滤波器的电容耦合结构
CN109461995A (zh) * 2018-12-27 2019-03-12 苏州艾福电子通讯有限公司 一种采用陶瓷介质的波导滤波器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361117A (zh) * 2011-09-29 2012-02-22 武汉虹信通信技术有限责任公司 一种容性交叉耦合飞杆及其同轴腔体谐振器
CN103326093A (zh) * 2013-04-19 2013-09-25 上海大学 新型交叉耦合基片集成波导带通滤波器
CN103915667A (zh) * 2014-03-07 2014-07-09 华南理工大学 采用馈电结构来抑制三次谐波的ltcc带通滤波器
CN103904391A (zh) * 2014-04-08 2014-07-02 电子科技大学 多层混合模六边形基片集成波导滤波器
CN103956541A (zh) * 2014-04-18 2014-07-30 华南理工大学 一种利用微带线实现交叉耦合的基片集成波导滤波器
CN105244571A (zh) * 2015-09-17 2016-01-13 深圳三星通信技术研究有限公司 一种介质波导滤波器
CN107689482A (zh) * 2017-07-27 2018-02-13 南通大学 一种基于二维周期结构的宽带低剖面介质谐振器天线
CN109860966A (zh) * 2019-04-15 2019-06-07 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN209592274U (zh) * 2019-04-15 2019-11-05 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备

Also Published As

Publication number Publication date
CN109860966A (zh) 2019-06-07
CN109860966B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2020211287A1 (fr) Filtre diélectrique et dispositif de communication 5g
US11139548B2 (en) Dual-mode monoblock dielectric filter and control elements
WO2017107134A1 (fr) Filtre, et dispositif de réseau sans fil
CN105742766A (zh) 一种陶瓷谐振器开槽耦合方式的组合式滤波器
CN110797613B (zh) 一种十阶六陷波的介质波导滤波器
CN103326093A (zh) 新型交叉耦合基片集成波导带通滤波器
CN109149037B (zh) 一种基于tm模式的介质双模带通滤波器及控制方法
CN106992346A (zh) 一种具有双传输零点的毫米波矩形腔体滤波器
WO2021248644A1 (fr) Filtre diélectrique à forte réjection hors bande et antenne
CN109830789B (zh) 一种基于折叠基片集成波导和互补开口谐振环的宽带带通滤波器
CN105489984A (zh) 一种分形缺陷结构四分之一模基片集成波导带通滤波器
CN209592274U (zh) 介质滤波器及5g通信设备
CN111129669A (zh) 混合电磁耦合全介质滤波器
WO2021134997A1 (fr) Filtre et son procédé de fabrication
WO2019104901A1 (fr) Structure de couplage à point zéro négatif d'un filtre à guide d'ondes diélectrique
CN111834715A (zh) 介质滤波器耦合结构、介质滤波器及通信基站
CN111525218A (zh) 一种具有六陷波的高性能介质波导滤波器及通信设备
CN101217209A (zh) 基于方形高次模腔体的基片集成波导多模滤波器
CN201178126Y (zh) 基于方形高次模腔体的基片集成波导多模滤波器
WO2021056415A1 (fr) Filtre diélectrique en céramique
CN114156618B (zh) 一种单腔三模陶瓷波导谐振器及滤波器
WO2021170119A1 (fr) Filtre diélectrique et dispositif de communication
CN115513625A (zh) 高带外抑制的分离式介质滤波器
CN109728390A (zh) 一种双层堆叠式差分微波带通滤波器
CN212182505U (zh) 具有陡峭带外抑制的介质滤波器及天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924923

Country of ref document: EP

Kind code of ref document: A1