WO2020211192A1 - 一种母岩对储层物性影响的评估方法 - Google Patents

一种母岩对储层物性影响的评估方法 Download PDF

Info

Publication number
WO2020211192A1
WO2020211192A1 PCT/CN2019/092903 CN2019092903W WO2020211192A1 WO 2020211192 A1 WO2020211192 A1 WO 2020211192A1 CN 2019092903 W CN2019092903 W CN 2019092903W WO 2020211192 A1 WO2020211192 A1 WO 2020211192A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
reaction
sample
rock
temperature
Prior art date
Application number
PCT/CN2019/092903
Other languages
English (en)
French (fr)
Inventor
曲希玉
曹英权
王冠民
王清斌
陈思芮
张洋晨
高山
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2020211192A1 publication Critical patent/WO2020211192A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Definitions

  • the invention relates to a method for evaluating the influence of a parent rock on the physical properties of a reservoir, and belongs to the field of oilfield exploration and production.
  • the content and type of cuttings also determine the quality of the reservoir.
  • the dissolution of magmatic rock cuttings is generally good, and its content is directly proportional to the secondary face ratio; metamorphic rock cuttings are not easy to dissolve, and the content is inversely proportional to the face ratio.
  • the content of acidic extruded rock and mixed granite cuttings and the porosity are also positively correlated, which also shows that the type and content of the parent rock are important factors affecting the physical properties of the reservoir. Therefore, in the oilfield production, proving the influence of the parent rock type on the physical properties of the reservoir is also conducive to the prediction of high-quality reservoirs and plays a vital role in the exploration and development of the oilfield.
  • the technical problem to be solved by the invention is to determine the influence of different types of parent rocks on the physical properties of the reservoir under certain temperature and pressure conditions, and then to clarify which parent rocks are beneficial to the formation of the reservoir.
  • a method for evaluating the impact of parent rock on reservoir physical properties including the following steps:
  • the cut shape of the rock sample is one of a cube, a rectangular parallelepiped, or a cylinder.
  • the acid solution is based on the type and quantity of organic acids discharged from the kerogen pyrolysis in the core, the reaction solution is prepared with organic acids, and the organic acid is preferably one or more of formic acid, acetic acid and oxalic acid;
  • the pH value of the acid solution is 2-5; the volume ratio of the core sample to the acid solution in step 2) is 1:100-3000.
  • step 3 the heating rate of the heating process is 0.2-3°C/min; the target temperature and pressure are the actual temperature and pressure of the target rock formation underground, the target temperature is 80-300°C, and the target pressure is 10 -50MPa.
  • the analysis in step 4) includes one or more of mass loss analysis, X-ray diffraction analysis, pH change analysis, common ion concentration analysis, scanning electron microscope analysis, and microscope analysis.
  • the X-ray diffraction analysis is to analyze the unreacted sample to determine the main components and content of the sample, and to provide a basis for the subsequent analysis of the influence of the sample components on the experimental results.
  • the mass loss analysis is to measure the mass of the sample before and after the reaction to determine the mass change and the mass loss percentage of the sample under different temperature and pressure conditions.
  • the pH change analysis is to measure the pH value of the solution before and after the reaction, and determine the strength of the reaction by calculating the amount of hydrogen ions consumed by the reaction between the sample and the acid.
  • the common ion concentration analysis is to measure the ion concentration of common ions in the acid solution before and after the reaction.
  • the type of eluted ions is combined with the X-ray diffraction analysis to determine the minerals participating in the reaction, and the amount of leached ions is used to determine various minerals.
  • the relationship between the strength and weakness of the reaction with organic acids is determined by calculating the sum of the concentration of dissolved ions after the reaction; the common ions are K + , Na + , Ca 2+ , Mg 2+ , Al 3+ , Fe 3 + , One or more of SiO 3 2- .
  • the scanning electron microscopy analysis is to observe the samples before and after the reaction by scanning electron microscopy, use energy spectrum analysis to determine the type of minerals, compare the dissolution phenomena of the main minerals under different temperature and pressure conditions, and determine the degree of dissolution of different minerals.
  • the microscopic analysis is to observe the samples before and after the reaction made into cast slices, and compare them under different temperature and pressure conditions to determine the type of minerals that dissolve and the degree of dissolution.
  • Figure 1 Schematic diagram of cross-section of high temperature and high pressure acid-resistant reactor
  • Figure 4 Schematic diagram of total ion concentration dissolved under different temperature conditions
  • Figure 5a-f Scanning electron microscope images before and after the reaction:
  • Figure 5a is the albite in the granite before the reaction, with a smooth and flat surface;
  • Figure 5b is the albite surface in the granite with pits (100°C30Mpa);
  • Figure 5c is the granite There is a deep dissolution trench in the albite (200°C30Mpa);
  • Figure 5d is the mica in the gneiss before the reaction, which is closely arranged;
  • Figure 5e is the mica in the gneiss, with dissolution fractures (100°C30Mpa);
  • 5f is the mica in the gneiss, with many dissolution fractures (200°C30Mpa);
  • the materials used in the experiment include fresh surface granite, andesite, rhyolite, slate, schist, gneiss, and phyllite.
  • the massive rock cuttings were processed into 2 groups of rectangular cylinders of length ⁇ width ⁇ height of 10 ⁇ 10 ⁇ 8mm, and the surface was cut. One group was used for the dissolution experiment, and the other group was used for comparison after the reaction. (figure 2).
  • reaction solution was prepared with pure formic acid solution, pure acetic acid solution, solid oxalic acid and distilled water (Table 1).
  • 100°C, 30Mpa and 200°C, 30Mpa were selected as the temperature and pressure conditions of the two experiments.
  • the target horizons of the study area, Dongying Formation and Shahejie Formation belong to medium-deep reservoirs with a depth of about 2000-4500m.
  • the average geothermal gradient in the Bohai Bay Basin is 3.3°C/100m.
  • 100°C and 30Mpa are selected as the temperature and pressure conditions for the first set of experiments.
  • 200°C is selected as the temperature condition of the second set of experiments.
  • the pressure is The influence of organic acid dissolution is small
  • 30Mpa is selected as the pressure condition of the second set of experiments.
  • the experiment was carried out in a KDSF-II high-temperature and high-pressure acid-resistant reactor.
  • the device is mainly composed of a high-pressure liquid injection pump, a piston container, a reactor system, a temperature controller adjustment system and a sampler.
  • the reactor has a volume of 1L.
  • the device has the functions of temperature and pressure pre-setting and temperature and pressure overload protection. At the same time, it is equipped with an electromagnetic stirring paddle, which can stir the reactants during the reaction and accelerate the reaction speed.
  • the prepared sample Before the start of the experiment, put the prepared sample into the hanging basket in the kettle, put 500ml of organic acid solution into the reaction kettle, and quickly seal; then, set the temperature and pressure of the experiment and follow the 0.5°C/min
  • the heating rate is heated to the target temperature.
  • the pressure Before the target temperature is reached, the pressure is intermittently increased to control the pressure to be less than the target pressure between 5-8MPa. After the target temperature is reached, the pressure is continuously increased to the target pressure; then the reactor is kept at a constant temperature, React at constant pressure for 48 hours; after the reaction, power off and cool naturally.
  • the temperature in the kettle drops to room temperature, the sample is taken out and rinsed repeatedly with distilled water, dried and weighed. Scanning electron microscope observation and X-diffraction analysis are performed.
  • the reaction solution is used The disposable needle tube is taken out and put into a non-polluting sample bottle for chemical composition determination.
  • the total ion concentration of the samples is not high and the difference is not big.
  • the dissolved total ion concentration increases.
  • the dissolved ion concentration of rhyolite and andesite at 200°C is significantly higher than that of gneiss and granite; when the temperature is 100°C, due to the lower temperature, Quartz, the main component in slate and schist, and minerals such as pyrophyllite and mica, which are the main components in phyllite, are difficult to dissolve, and the dissolved total ion concentration is low; at 200°C, the dissolved silica ions are produced by the dissolution of quartz.
  • the total ion concentration of slate and schist with higher content is higher than that of phyllite with lower quartz content.
  • the main dissolution minerals are plagioclase and some potassium feldspar. As the temperature increases, the surface of the plagioclase changes from pit-like dissolution It is a deep groove dissolution. Mica and quartz also have a certain degree of dissolution at 200°C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种母岩对储层物性影响的评估方法,包括以下步骤:1)根据目标储层的岩石类型分布,选取有代表性的岩石样品,切割成块状;2)将岩石样品放入反应釜内的吊篮中,加入酸液,密封;3)程序升温到目标温度和压力下,恒温恒压下反应36-72h;4)反应结束后,待反应釜自然冷却,取出样品进行分析;岩石样品的切割后的形状为立方体、长方体或圆柱体中的一种。该方法为母岩对储层物性的影响分析提供了一种新思路,利用研究区岩屑类型及含量等资料,结合实际温压条件,可为优质储层的勘探打下基础。

Description

一种母岩对储层物性影响的评估方法 技术领域
本发明涉及一种母岩对储层物性影响的评估方法,属于油田勘探开采领域。
背景技术
不同类型的母岩使得储层的碎屑成分存在差异性,而长石、岩屑等矿物易于溶蚀,可以改善储层物性。因此岩屑的含量以及种类也决定了储层的品质。其中岩浆岩岩屑的溶蚀普遍较好,其含量与次生面孔率成正比;变质岩岩屑不易溶蚀,含量与面孔率成反比。酸性喷出岩与混合花岗岩岩屑含量与面孔率也均为正相关,这也说明了母岩类型以及含量是影响储层物性的重要因素。因此,在油田生产中,探明母岩类型对储层物性的影响,也有利于优质储层的预测,对油田的勘探开发起到了至关重要的作用。
现有技术中对于酸性流体溶蚀作用的模拟实验主要集中于有机酸、大气水、幔源二氧化碳对石英、长石等单矿物的相互作用,很少有模拟有机酸与各种类型的岩屑在实际地层温压条件下的反应。为此,我们设计了一种不同类型母岩对储层物性影响的水岩模拟实验。
发明概述
技术问题
该发明要解决的技术问题是确定不同类型母岩在一定温压条件下对于储层的物性影响,进而明确哪些母岩是有利于形成储层。
问题的解决方案
技术解决方案
一种母岩对储层物性影响的评估方法,包括以下步骤:
1)根据目标储层的岩石类型分布,选取有代表性的岩石样品,切割成块状;
2)将岩石样品放入反应釜内的吊篮中,加入酸液,密封;
3)程序升温到目标温度和压力下,恒温恒压下反应36-72h;
4)反应结束后,待反应釜自然冷却,取出样品进行分析。
步骤1)中所述岩石样品的切割后的形状为立方体、长方体或圆柱体中的一种。
步骤2)中所述酸液是根据岩心中干酪根热解排出的有机酸种类和数量,利用有机酸配制反应液,所述有机酸优选是甲酸、乙酸、草酸中的一种或多种;所述酸液的pH值是2-5;步骤2)中岩心样品和酸液的体积比是1∶100-3000。
步骤3)中升温过程的升温速度为0.2-3℃/min;所述目标温度和压力是目标岩层在地下的真实温度和压力,所述目标温度为80-300℃,所述目标压力为10-50MPa。
步骤4)中所述分析包括质量损失分析、X-衍射分析、pH值变化分析、常见离子浓度分析、扫描电镜分析、显微镜分析中的一种或多种。
所述X-衍射分析是对未反应的样品进行分析,用于确定样品的主要成分及含量,为后续分析样品成分对实验结果的影响提供依据。
所述质量损失分析是在反应前后分别对样品的质量进行测量,确定不同温压条件下样品的质量变化量以及质量损失量的百分比。
所述pH值变化分析是对反应前后溶液的pH值进行测量,通过计算样品与酸反应所消耗氢离子的多少来确定反应的强弱。
所述常见离子浓度分析是对反应前后,酸液中常见离子的离子浓度进行测定,利用溶出离子的类型结合X-衍射分析样品成分来判断参与反应的矿物,利用溶出离子的量判断各种矿物与有机酸反应的强弱关系,通过计算反应后溶出离子的浓度和来判断样品的溶蚀效果;所述常见离子是K +、Na +、Ca 2+、Mg 2+、Al 3+、Fe 3+、SiO 3 2-中的一种或多种。
所述扫描电镜分析是对反应前后的样品进行扫描电镜观察,利用能谱分析确定矿物类型,在不同温压条件下对比其主要矿物的溶蚀现象,确定不同矿物的溶蚀程度。
所述显微镜分析是对反应前后的样品制成铸体薄片进行观察,在不同的温压条件下进行对比,确定发生溶蚀的矿物类型以及溶蚀的程度。
发明的有益效果
有益效果
为母岩对储层物性的影响提供了一种新思路,利用研究区岩屑类型及含量等资料,结合实际温压条件,可为优质储层的勘探打下基础;提供了一种新的溶蚀实验的表征方式,从宏观上的质量损失到微观上的矿物颗粒变化,更好的描述了不同类型岩屑溶蚀作用的差异性。
对附图的简要说明
附图说明
图1高温高压耐酸反应釜剖面示意图;
图2不同温压条件下的质量损失百分比;
图3不同温压条件下溶液PH变化;
图4不同温度条件下溶出的总离子浓度示意图;
图5a-f反应前后扫描电镜图像:其中图5a是反应前花岗岩中的钠长石,表面光滑平整;图5b是花岗岩中的钠长石表面出现凹坑(100℃30Mpa);图5c是花岗岩中的钠长石出现溶蚀深沟(200℃30Mpa);图5d是反应前片麻岩中的云母,排列紧密;图5e是片麻岩中的云母,出现溶蚀缝(100℃30Mpa);图5f是片麻岩中的云母,出现较多溶蚀缝(200℃30Mpa);
实施该发明的最佳实施例
本发明的最佳实施方式
下面结合说明书附图和实施例对本发明作进一步限定。
实施例1
下面结合具体实施例,以CFD6-4油田东营组储层为例,对本发明做进一步详细说明:
一、实验材料及流程
1.实验样品
实验所用材料包括表面新鲜的花岗岩、安山岩、流纹岩、板岩、片岩、片麻岩、千枚岩。实验前将块状岩屑加工成2组长×宽×高为10×10×8mm的长方柱体,且表面剖光,一组用于溶蚀实验,一组用于反应后与之进行对比(图2)。
2.反应液的配制
由于有机质热演化过程中存在排酸作用,根据已有II1型干酪根热解排出的有机 酸种类和数量,利用纯甲酸溶液、纯乙酸溶液、固体草酸和蒸馏水配制反应液(表1)。
表1岩层中有机质排酸种类及数量统计表
Figure PCTCN2019092903-appb-000001
具体步骤如下:
(1)取甲酸2.9ml,配成1L溶液,取10ml待用;
(2)取4ml乙酸溶液,倒入烧杯中,加入上述10ml甲酸溶液,配成1L溶液,取10ml待用;
(3)将4.93g草酸固体溶于1L水中配成溶液,取10ml待用;
(4)将第2和第3步稀释好的溶液混合,加水至500ml;
(5)所配制溶液的pH=3.71。
3.温压条件
选择了100℃,30Mpa以及200℃,30Mpa作为两组实验的温压条件。研究区目的层位东营组、沙河街组属于中深层储层,深度约2000-4500m。渤海湾盆地平均地温梯度为3.3℃/100m,根据环渤中地区深度与压力关系数据 [1],选取100℃,30Mpa作为第一组实验的温压条件。为了更好的模拟岩屑在地下长时间受有机酸溶蚀,加快反应进程,选取了200℃作为第二组实验的温度条件,考虑到仪器所能承受的压力范围,结合前人研究认为压力对于有机酸溶蚀作用的影响较小,选取30Mpa作为第二组实验的压力条件。
4.实验装置
实验是在KDSF-II型高温高压耐酸反应釜中进行的,该装置主要由高压液体注入泵、活塞容器、反应釜系统、控温仪调节系统和取样器组成,反应釜的容积为1L。装置具有温度、压力预设定和温度、压力过载保护功能,同时配有电磁推动搅拌桨,可在反应过程中对反应物实施搅拌,加快反应速度。
5.实验流程
实验开始前,将制备好的样品放入釜内吊篮内,将500ml有机酸溶液放入反应釜中,并迅速密封;然后,按照设定实验的温度和压力,并按照0.5℃/min的升温速率进行加热到目标温度,在达到目标温度之前,间断性增压以使压力控制在小于目标压力5-8MPa之间,待达到目标温度之后持续增压至目标压力;之后使反应釜恒温、恒压反应48小时;反应结束后,断电自然冷却,待釜内温度降至室温后,取出样品用蒸馏水反复冲洗,并烘干称重,进行扫描电镜观察和X-衍射分析,反应溶液用一次性针管取出,装入无污染的样品瓶中,进行化学成分测定。
二、实验结果的表征方式
1、X-衍射分析
对本次实验的样品进行X-衍射分析,发现安山岩、花岗岩,流纹岩以及片麻岩的主要成分为斜长石、钾长石及石英;板岩及片岩的主要成分为石英、粘土矿物及云母,千枚岩的主要成分为叶腊石、粘土矿物及云母(表2)。
表2反应前样品X-衍射分析
样号 石英 钾长石 斜长石 方解石 赤铁矿 叶腊石 粘土矿物及云母
山岩 29 - 67 3 - - 1
花岗岩 19 26 52 - - - 3
流纹岩 14 39 45 - 1 - 1
片麻岩 24 17 57 1 - - 1
板岩 84 3 - - - - 13
片岩 81 - - - - - 19
千枚岩 6 - - - - 56 38
2、质量损失分析
如图2所示,对本次实验的样品反应前后的质量测量可以看出:在100℃、30Mpa以及200℃、30Mpa的条件下安山岩及流纹岩质量损失百分比最高,其次为片麻岩、黑云母花岗岩;板岩、片岩及千枚岩三种变质岩损失百分比均较低。
3、pH值变化分析
如图3所示,本次实验通过对反应钱后溶液的PH值对比可以发现:在100℃时,各样品PH值均变化不大;在200℃时,安山岩及流纹岩的溶液PH值变化较大,其次为花岗岩及片麻岩;板岩、片岩及千枚岩三种变质岩反应后PH值变化较小。
4、常见离子浓度分析
如图4所示,温度为100℃时,样品溶出的总离子浓度均不高且差别不大。随着温度的提升,溶出的总离子浓度均有提升,其中流纹岩及安山岩在200℃的条件下溶出离子浓度明显高于片麻岩以及花岗岩;温度为100℃时,由于温度较低,板岩、片岩中的主要成分石英以及千枚岩中的主要成分叶腊石和云母等矿物难以溶蚀,溶出的总离子浓度较低;200℃时,溶出的二氧化硅离子为石英溶蚀产生,石英含量较高的板岩及片岩溶出的总离子浓度高于石英含量低的千枚岩。
5、扫描电镜分析
对本次实验样品反应前后进行观察,可以发现在不同类型的样品中,主要的溶蚀矿物为斜长石及部分钾长石,随着温度的升高,斜长石表面从凹坑状溶蚀变为深沟状溶蚀。云母及石英在200℃的时候也存在一定程度的溶蚀。
6、显微镜分析
对本次实验反应前后的样品切制成铸体薄片,镜下观察后可以发现:岩浆岩以及片麻岩中主要溶蚀隐晶质的长石以及斜长石,溶蚀效果较好。变质岩中主要为石英及云母的溶蚀,溶蚀效果较差
工业实用性
三、实际应用效果分析
1.溶蚀效果综合分析
对样品的溶蚀效果进行综合分析,确定样品与酸反应的强弱关系;通过对样品的质量损失百分比、PH值变化、溶液离子浓度的变化的对比,确定样品在不同温压条件下主要溶蚀的矿物类型以及各种样品溶蚀的强弱顺序并通过扫描电镜以及铸体薄片的观察加以佐证后得出结论。对本次实验溶蚀效果进行综合分析后可以发现:三种岩浆岩岩屑以及片麻岩岩屑在两组不同的温度条件下溶蚀情况 均强于片岩、板岩、千枚岩。其中流纹岩溶蚀效果最好,其次为安山岩。花岗岩与片麻岩成分结构相似,溶蚀强弱也较为接近,片岩、板岩以及千枚岩由于主要成分为石英,溶蚀效果均不明显。
2.实验结论验证
对实验结果与研究区实际地层情况下的铸体薄片等资料进行对比验证,在相同深度下对比不同类型的岩屑的溶蚀强弱,证明实验结论正确。通过对CFD6-4-1井2970m处的薄片观察(图13),对本次实验结论进行验证可以发现:在相同的条件下,不同类型的岩屑溶蚀情况具有一定的差异性,其中岩浆岩类的溶蚀程度明显好于变质岩;岩浆岩中酸性喷出岩以及安山岩岩屑溶蚀较强烈,变质岩则溶蚀微弱,基本符合实验得出的结论。
以上实施例仅拥有示例性的说明本发明取得的技术效果,以及实施过程,但是,本专业普通技术人员应该明白,在此基础上所做出的未超出权利要求保护范围的任何形式和细节的变化,均属于本发明所要保护的范围。

Claims (10)

  1. 一种母岩对储层物性影响的评估方法,包括以下步骤:
    1)根据目标储层的岩石类型分布,选取有代表性的岩石样品,切割成块状;
    2)将岩石样品放入反应釜内的吊篮中,加入酸液,密封;
    3)程序升温到目标温度和压力下,恒温恒压下反应36-72h;
    4)反应结束后,待反应釜自然冷却,取出样品进行分析;
    所述岩石样品的切割后的形状为立方体、长方体或圆柱体中的一种。
  2. 如权利要求1所述的方法,其特征在于步骤2)中所述酸液是根据岩心中干酪根热解排出的有机酸种类和数量,利用有机酸配制反应液,所述有机酸优选是甲酸、乙酸、草酸中的一种或多种;所述酸液的pH值是2-5;步骤2)中岩心样品和酸液的体积比是1∶100-3000。
  3. 如权利要求1所述的方法,其特征在于步骤3)中升温过程的升温速度为0.2-3℃/min;所述目标温度和压力是目标岩层在地下的真实温度和压力,所述目标温度为80-300℃,所述目标压力为10-50MPa。
  4. 如权利要求1所述的方法,其特征在于步骤4)中所述分析包括质量损失分析、X-衍射分析、pH值变化分析、常见离子浓度分析、扫描电镜分析、显微镜分析中的一种或多种。
  5. 如权利要求1所述的方法,其特征在于所述X-衍射分析是对未反应的样品进行分析,用于确定样品的主要成分及含量,为后续分析样品成分对实验结果的影响提供依据。
  6. 如权利要求1所述的方法,其特征在于所述质量损失分析是在反应前后分别对样品的质量进行测量,确定不同温压条件下样品的质量变化量以及质量损失量的百分比。
  7. 如权利要求1所述的方法,其特征在于所述pH值变化分析是对反应 前后溶液的pH值进行测量,通过计算样品与酸反应所消耗氢离子的多少来确定反应的强弱。
  8. 如权利要求1所述的方法,其特征在于所述常见离子浓度分析是对反应前后,酸液中常见离子的离子浓度进行测定,利用溶出离子的类型结合X-衍射分析样品成分来判断参与反应的矿物,利用溶出离子的量判断各种矿物与有机酸反应的强弱关系,通过计算反应后溶出离子的浓度和来判断样品的溶蚀效果;所述常见离子是K +、Na +、Ca 2+、Mg 2+、Al 3+、Fe 3+、SiO 3 2-中的一种或多种。
  9. 如权利要求1所述的方法,其特征在于所述扫描电镜分析是对反应前后的样品进行扫描电镜观察,利用能谱分析确定矿物类型,在不同温压条件下对比其主要矿物的溶蚀现象,确定不同矿物的溶蚀程度。
  10. 如权利要求1所述的方法,其特征在于所述显微镜分析是对反应前后的样品制成铸体薄片进行观察,在不同的温压条件下进行对比,确定发生溶蚀的矿物类型以及溶蚀的程度。
PCT/CN2019/092903 2019-04-17 2019-06-26 一种母岩对储层物性影响的评估方法 WO2020211192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910310302.1 2019-04-17
CN201910310302.1A CN110118720B (zh) 2019-04-17 2019-04-17 一种母岩对储层物性影响的评估方法

Publications (1)

Publication Number Publication Date
WO2020211192A1 true WO2020211192A1 (zh) 2020-10-22

Family

ID=67521112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092903 WO2020211192A1 (zh) 2019-04-17 2019-06-26 一种母岩对储层物性影响的评估方法

Country Status (2)

Country Link
CN (1) CN110118720B (zh)
WO (1) WO2020211192A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091632A (zh) * 2021-04-15 2021-07-09 陕西延长石油(集团)有限责任公司 一种模拟真实压裂工况下支撑剂嵌入深度测量方法
CN114264689A (zh) * 2021-12-31 2022-04-01 核工业北京地质研究院 一种确认绿色蚀变砂岩蚀变温度的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428092B (zh) * 2020-09-28 2024-03-19 中国石油化工股份有限公司 一种有机质孔隙形成与演化原位观测方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783751A (en) * 1983-08-17 1988-11-08 University Of South Carolina Analysis of pore complexes
WO2007035946A2 (en) * 2005-09-22 2007-03-29 University Of Florida Research Foundation, Inc. Apparatus for estimating the rate of erosion and methods of using same
CN104407118A (zh) * 2014-12-01 2015-03-11 中国石油天然气股份有限公司 一种碳酸盐岩溶蚀作用与溶蚀效应的分析方法
CN204925106U (zh) * 2015-08-24 2015-12-30 中国地质科学院岩溶地质研究所 一种碳酸盐岩储层溶蚀过程模拟试验装置
CN105403497A (zh) * 2015-12-08 2016-03-16 中国石油天然气股份有限公司 岩心渗透率演化模拟方法与系统
CN106855566A (zh) * 2017-01-20 2017-06-16 中国海洋石油总公司 一种针对高温、超压型储层演化模拟的实验方法
CN108956435A (zh) * 2018-06-12 2018-12-07 中国石油天然气股份有限公司 一种高温高压储层溶蚀的模拟实验方法和装置
US20190094125A1 (en) * 2017-09-26 2019-03-28 Chevron U.S.A. Inc. Apparatus and method for evaluating lubricant oil varnish

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9906484D0 (en) * 1999-03-19 1999-05-12 Cleansorb Ltd Method for treatment of underground reservoirs
CN104390881A (zh) * 2014-11-17 2015-03-04 中国石油大学(华东) 一种有机酸生成及其对致密油储层溶蚀作用的实验方法
CN105628596B (zh) * 2015-12-22 2018-03-30 中铁西南科学研究院有限公司 一种溶蚀试验装置及其实现方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783751A (en) * 1983-08-17 1988-11-08 University Of South Carolina Analysis of pore complexes
WO2007035946A2 (en) * 2005-09-22 2007-03-29 University Of Florida Research Foundation, Inc. Apparatus for estimating the rate of erosion and methods of using same
CN104407118A (zh) * 2014-12-01 2015-03-11 中国石油天然气股份有限公司 一种碳酸盐岩溶蚀作用与溶蚀效应的分析方法
CN204925106U (zh) * 2015-08-24 2015-12-30 中国地质科学院岩溶地质研究所 一种碳酸盐岩储层溶蚀过程模拟试验装置
CN105403497A (zh) * 2015-12-08 2016-03-16 中国石油天然气股份有限公司 岩心渗透率演化模拟方法与系统
CN106855566A (zh) * 2017-01-20 2017-06-16 中国海洋石油总公司 一种针对高温、超压型储层演化模拟的实验方法
US20190094125A1 (en) * 2017-09-26 2019-03-28 Chevron U.S.A. Inc. Apparatus and method for evaluating lubricant oil varnish
CN108956435A (zh) * 2018-06-12 2018-12-07 中国石油天然气股份有限公司 一种高温高压储层溶蚀的模拟实验方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091632A (zh) * 2021-04-15 2021-07-09 陕西延长石油(集团)有限责任公司 一种模拟真实压裂工况下支撑剂嵌入深度测量方法
CN113091632B (zh) * 2021-04-15 2022-09-20 陕西延长石油(集团)有限责任公司 一种模拟真实压裂工况下支撑剂嵌入深度测量方法
CN114264689A (zh) * 2021-12-31 2022-04-01 核工业北京地质研究院 一种确认绿色蚀变砂岩蚀变温度的方法
CN114264689B (zh) * 2021-12-31 2024-02-09 核工业北京地质研究院 一种确认绿色蚀变砂岩蚀变温度的方法

Also Published As

Publication number Publication date
CN110118720B (zh) 2022-04-01
CN110118720A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
WO2020211192A1 (zh) 一种母岩对储层物性影响的评估方法
Liu et al. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window
CN105628596B (zh) 一种溶蚀试验装置及其实现方法
Zheng et al. Experimental investigation of sandstone properties under CO2–NaCl solution-rock interactions
CN103196807A (zh) 一种砂岩成岩过程与孔隙演化的分析方法
CN101435331B (zh) 裂缝性岩心的制作方法
CN105388249B (zh) 一种测试酸蚀裂缝导流能力的装置及方法
Ma et al. Tight tuff reservoir characteristics and its controlling factors: A comparative study of the Permian Tiaohu Formation and Carboniferous Haerjiawu Formation in the Santanghu Basin, NW China
CN111595764B (zh) 一种模拟硫酸根离子浓度对碳酸盐岩溶蚀影响的实验方法
CN111595712A (zh) 不同温压条件下碳酸盐岩溶蚀的水岩模拟反应方法
Tan et al. Experimental investigation on the effects of different fracturing fluids on shale surface morphology
CN106198320A (zh) 一种测定高钛型高炉渣中微观物相的方法
CN111595710A (zh) 在不同温度条件下碳酸盐岩溶蚀的水岩反应模拟实验方法
Zheng et al. Paleoclimate and paleoceanographic evolution during the Permian-Triassic transition (western Hubei area, South China) and their geological implications
Wu et al. Corrosion resistance of ceramic proppant in BaO–CaO–P2O5–Al2O3 system
CN111595763B (zh) 一种不同镁离子浓度对碳酸盐岩溶蚀影响的模拟实验方法
CN111781082A (zh) 一种表征水岩模拟实验中长石溶蚀程度的方法
CN107217141B (zh) 离子型稀土原地浸矿再吸附铵根离子临界浓度的计算方法
CN112147053B (zh) 微生物碳酸盐岩储层埋藏热解增孔定量评价方法及装置
Hu et al. Effect of concentration of potassium and calcium cations on soil aggregates stability during fast wetting process
Chen et al. Characteristics and origin of high porosity in nanoporous sandy conglomerates—A case from Shahezi Formation of Xujiaweizi fault depression
CN111879835A (zh) 一种钢中夹杂物无损提取的装置及方法
Zimin Improvement of acid solutions for stimulation of compacted high-temperature carbonate collectors
CN113176186A (zh) 碳酸盐岩原油注入压力和孔喉下限的判断方法
CN104569129A (zh) 钢中单一稀土氧化物含量的测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924908

Country of ref document: EP

Kind code of ref document: A1