WO2020211172A1 - 天线及其制造方法和干扰抑制方法 - Google Patents

天线及其制造方法和干扰抑制方法 Download PDF

Info

Publication number
WO2020211172A1
WO2020211172A1 PCT/CN2019/089442 CN2019089442W WO2020211172A1 WO 2020211172 A1 WO2020211172 A1 WO 2020211172A1 CN 2019089442 W CN2019089442 W CN 2019089442W WO 2020211172 A1 WO2020211172 A1 WO 2020211172A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
antenna
radiation source
ground
reference ground
Prior art date
Application number
PCT/CN2019/089442
Other languages
English (en)
French (fr)
Inventor
邹高迪
邹新
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Publication of WO2020211172A1 publication Critical patent/WO2020211172A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the present invention relates to the field of antennas, in particular to an antenna, a manufacturing method thereof, and an interference suppression method.
  • microwave detection technology can detect human activities by emitting a microwave to a detection space
  • microwave detection technology has promising application prospects in many fields such as smart homes.
  • the antenna is the basic hardware of microwave detection technology, which can transmit And/or receive and detect microwave signals to allow subsequent detection of human activities based on the signals output by the microwave Doppler effect.
  • 1A, 1B and 1C respectively show a plan view, a side view and an exploded view of a conventional two-layer structure antenna, where the antenna includes a first substrate 10P, a second substrate 20P, and a second substrate.
  • the first substrate 10P has an upper side surface 11P and a lower side surface 12P corresponding to the upper side surface 11P.
  • the first copper plate 30P is attached to the upper side surface 11P of the first substrate 10P.
  • the second substrate 20P has a top side portion 21P and a bottom side portion 22P corresponding to the top side portion 21P.
  • the second copper plate 40P is mounted on the top side portion 21P of the second substrate 20P.
  • the drive circuit 50P is held on the bottom side portion 22P of the second substrate 20P.
  • the lower side surface 12P of the first substrate 10P is mounted on the second copper plate 40P, so that the first copper plate 30P forms a radiation source 70P of the antenna, and the second copper plate 40P forms a reference ground 80P of the antenna,
  • the first substrate 10P forms a radiation slot 90P of the antenna.
  • the driving circuit 50P penetrates the second substrate 20P and the first substrate 10P, and is electrically connected to the feeding point 71P of the radiation source 70P.
  • the shielding cover 60P is welded to the second substrate 20P, and the shielding cover 60P covers the driving circuit 50P to shield the stray electromagnetic wave radiation generated by the driving circuit 50P when an excitation signal is provided.
  • FIG. 2A, 2B and 2C respectively show a top view, bottom view and exploded view of an existing antenna with a laminated structure. Similar to the antenna shown in Figures 1A to 1C, the drawings The existing antenna shown in FIG. 2A to FIG. 2C includes the first substrate 10P, the second substrate 20P, the first copper plate 30P, the second copper plate 40P, the driving circuit 50P, and the shielding cover 60P.
  • a copper plate 30P is mounted on the upper side 11P of the first substrate 10P, the second copper plate 40P is mounted on the lower side 12P of the first substrate 10P, and the driving circuit 50P is held on the second substrate 20P
  • the bottom side 22P of the second substrate 20P and the first substrate 10P are pressed together in a manner that the top side 21P of the second substrate 20P is attached to the second copper plate 40P, so that the The first copper plate 30P forms the radiation source 70P of the antenna, the second copper plate 40P forms the reference ground 80P of the antenna, and the first substrate 10P forms the radiation slot 90P of the antenna.
  • the driving circuit 50P penetrates the second substrate 20P and the first substrate 10P, and is electrically connected to the feeding point 71P of the radiation source 70P.
  • the shielding cover 60P is welded to the second substrate 20P, and the shielding cover 60P covers the driving circuit 50P to shield the stray electromagnetic radiation generated by the driving circuit 50P when an excitation signal is provided.
  • the antenna needs to be configured with two Two substrates, that is, the antenna needs to be configured with the first substrate 10P and the second substrate 20P.
  • This method not only causes a waste of materials and prevents the antenna from being further thinner, but also the manufacturing process of the antenna is relatively complicated.
  • An object of the present invention is to provide an antenna, a manufacturing method thereof, and an interference suppression method, wherein the antenna has only one substrate to effectively reduce the thickness of the antenna, thereby facilitating the miniaturization and thinning of the antenna .
  • An object of the present invention is to provide an antenna, a manufacturing method thereof, and an interference suppression method, wherein the antenna has only one substrate to save materials, thereby reducing the manufacturing cost of the antenna.
  • An object of the present invention is to provide an antenna, a manufacturing method thereof, and an interference suppression method, wherein the antenna provides a radiation source and a reference ground, and the radiation source and the reference ground are respectively held on the same substrate A radiation gap is formed on different sides to ensure the normal operation of the antenna.
  • the radiation source and the reference ground are respectively formed by metal layers attached to different sides of the same substrate, so that the antenna has higher stability.
  • An object of the present invention is to provide an antenna, a manufacturing method thereof, and an interference suppression method.
  • the antenna provides a shielding ground and a driving circuit, the shielding ground and the radiation source are held on the upper side of the substrate, respectively,
  • the driving circuit and the reference ground are respectively held on the lower side of the substrate, and in the thickness direction of the antenna, the shielding ground and the driving circuit correspond to each other, so that the shielding ground suppresses
  • the stray electromagnetic radiation generated by the driving circuit reduces the interference generated when the antenna is working.
  • An object of the present invention is to provide an antenna and its manufacturing method and interference suppression method, wherein the shielding ground and the radiation source are simultaneously formed by a metal layer attached to the upper side of the substrate, for example, by etching
  • the metal layer can simultaneously form the shielding ground and the radiation source on the upper side of the substrate, thereby reducing the manufacturing cost of the antenna.
  • An object of the present invention is to provide an antenna, a manufacturing method thereof, and an interference suppression method, wherein the radiation source is grounded to reduce the impedance of the antenna. For example, by electrically connecting the radiation source and the reference ground, the radiation source can be grounded, and the impedance of the antenna is reduced, so as to improve the anti-interference ability of the antenna.
  • An object of the present invention is to provide an antenna and its manufacturing method and interference suppression method, wherein the antenna provides a suppression fence which surrounds the drive circuit to suppress the stray electromagnetic wave radiation generated by the drive circuit, thereby reducing The interference generated when the antenna is working.
  • An object of the present invention is to provide an antenna, a manufacturing method thereof, and an interference suppression method, wherein the suppression fence includes a set of fence bodies that extend from the shielding ground to the lower side of the substrate and surround In the driving circuit, the ability to suppress the stray electromagnetic wave radiation generated by the driving circuit is further improved by the mutual cooperation of the shielding ground and the set of fence bodies.
  • the present invention provides an antenna, wherein the antenna has a substrate and a radiation slot, the substrate has an upper side and a lower side corresponding to the upper side, wherein the antenna further includes:
  • a radiation source wherein the radiation source has a feeding point
  • a driving circuit wherein the driving circuit is electrically connected to the feeding point of the radiation source
  • the radiation source and the shielding ground are held adjacent to the upper side of the substrate, and the reference ground and the drive circuit are held adjacent to the substrate.
  • the ground and the driving circuit correspond to each other to allow the shielding ground to suppress stray electromagnetic wave radiation generated by the driving circuit.
  • the reference ground has a conductive gap extending from the edge of the reference ground to the middle of the reference ground
  • the antenna further includes a conductive part
  • the conductive part includes a An over-board conductive element and an extended conductive arm
  • the over-board conductive element extends from the feed point of the radiation source to the lower side of the substrate
  • the extended conductive arm is held at the reference ground
  • the conductive gap of the conductive gap, and the two ends of the extended conductive arm respectively extend to be electrically connected to the over-board conductive element and the driving circuit.
  • the projection of the radiation source on a projection plane parallel to the substrate is included in the projection of the reference ground on the projection plane.
  • the projection of the drive circuit on the projection surface is included in the projection of the shielded ground on the projection surface.
  • the reference ground surrounds the driving circuit.
  • the radiation source is grounded.
  • the radiation source and the reference ground are connected to each other, so that the radiation source is grounded.
  • the antenna further includes a processing circuit, the processing circuit includes at least one electronic component, each of the electronic components has at least two solder feet, wherein the reference ground has at least one The pad, wherein at least one solder foot of the electronic component is fixed to the pad and is electrically connected to the driving circuit.
  • the antenna further includes a suppression fence, wherein the suppression fence includes a set of fence bodies, and the set of fence bodies is separated from the shielding ground in such a manner that adjacent fence bodies are spaced apart from each other. It extends toward the lower side of the substrate, and the set of fence bodies surrounds the driving circuit.
  • the suppression fence includes a set of fence bodies, and the set of fence bodies is separated from the shielding ground in such a manner that adjacent fence bodies are spaced apart from each other. It extends toward the lower side of the substrate, and the set of fence bodies surrounds the driving circuit.
  • the set of fence bodies extend from the reference ground to the upper side surface of the substrate in such a manner that the adjacent fence bodies are spaced apart from each other.
  • At least a part of the fence body in the set of fence bodies is connected to the reference ground.
  • the shielding ground is held at the second end of the substrate in such a manner that the length direction of the shielding ground is consistent with the width direction of the substrate, and the radiation source is The length direction of the source and the length direction of the substrate are held at the first end of the substrate in such a way that the longitudinal center axis of the radiation source deviates from the longitudinal center axis of the substrate; or The shielding ground is held at the second end of the substrate in such a way that the length direction of the shielding ground is consistent with the width direction of the substrate, and the radiation source is aligned with the length direction of the radiation source and the width of the substrate. It is held at the first end of the substrate so that the width direction is consistent.
  • the shielding ground is held at the second end of the substrate in such a manner that the length direction of the shielding ground is consistent with the width direction of the substrate
  • the radiation source is The source is held at the first end of the substrate in such a way that the longitudinal direction of the source and the longitudinal direction of the substrate coincide
  • the processing circuit is held in such a manner that the longitudinal direction of the processing circuit coincides with the longitudinal direction of the substrate At the first end of the substrate and in the thickness direction of the antenna, the radiation source and the processing circuit do not overlap; or the shielding ground is based on the length direction of the shielding ground and the width of the substrate Is held at the second end of the substrate in a consistent direction
  • the radiation source is held at the first end of the substrate in such a manner that the length direction of the radiation source is consistent with the width direction of the substrate
  • the processing circuit is held at the first end of the substrate in such a way that the length direction of the processing circuit is consistent with the width direction of the substrate, and in the thickness direction of the
  • the present invention further provides a manufacturing method of an antenna.
  • the manufacturing method includes the following steps:
  • a drive circuit held in the accommodation space of the third board is formed on the lower side surface of the substrate, and the slot and self-supporting circuit held in the third board are formed An extended conductive arm extending to the middle of the third board on the lower side surface of the substrate;
  • the step (a) further includes the steps:
  • the step (a) further includes the steps:
  • a through-plate grounding element extending from the first plate to the third plate in a manner of penetrating the substrate is formed, so that the radiation The source is connected to the reference ground.
  • At least one pad that is separated from the reference ground is formed on the reference ground by removing a closed loop part of the third board, thereby At least one solder foot of at least one electronic component is allowed to be conductively soldered to the pad and electrically connected to the driving circuit, so that each of the electronic components forms a processing circuit.
  • the formation extends from the periphery of the second plate toward the lower side of the substrate and surrounds the drive A set of fence bodies for circuits.
  • the present invention further provides an interference suppression method to suppress stray electromagnetic wave radiation generated by a driving circuit of an antenna, wherein the interference suppression method includes the following steps:
  • a radiation source and a reference ground of the antenna are allowed to be held on an upper side and a lower side of the substrate in a corresponding manner at a first end of a substrate respectively ;
  • a shielding ground of the antenna and the driving circuit are allowed to be held on the upper side of the substrate in a corresponding manner at a second end of the substrate, respectively And the lower side surface, so that when the drive circuit provides a microwave excitation electrical signal from a feeding point of the radiation source to the radiation source and allows the antenna to generate radiation waves, the shielding suppresses the drive Stray electromagnetic wave radiation generated by the circuit.
  • the projection of the driving circuit on a projection surface parallel to the substrate is included in the projection of the shielding ground on the projection surface.
  • a processing circuit electrically connected to the drive circuit is maintained on the side of the reference ground, so that in the thickness direction of the antenna, by the reference ground Isolate the processing circuit and the radiation source.
  • a set of fence bodies extending from the shielding ground toward the lower side of the substrate and surrounding the driving circuit are formed.
  • At least a part of the fence body in the set of fence bodies and the reference ground are conductively connected.
  • the driving circuit is covered by a shielding cover.
  • the reference ground is covered by a shielding cover.
  • FIG. 1A is a schematic top view of an antenna with a double-layer structure in the prior art.
  • Fig. 1B is a schematic side view of the antenna with a double-layer structure in the prior art.
  • FIG. 1C is an exploded schematic diagram of the antenna with a double-layer structure in the prior art.
  • FIG. 2A is a schematic top view of an antenna with a laminated structure in the prior art.
  • Fig. 2B is a schematic side view of the antenna with a compressed structure in the prior art.
  • Fig. 2C is an exploded schematic diagram of the antenna with a laminated structure in the prior art.
  • Fig. 3 is a perspective view of an antenna according to the first preferred embodiment of the present invention.
  • FIG. 4 is a schematic top view of the antenna according to the above preferred embodiment of the present invention.
  • Fig. 5 is an exploded schematic diagram of the antenna according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 6A is a perspective schematic view of the antenna according to the above-mentioned preferred embodiment of the present invention from a perspective, which depicts the three-dimensional state of the antenna after a shielding cover is removed.
  • FIG. 6B is a schematic perspective view of the antenna according to the above preferred embodiment of the present invention from another perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 7 is a schematic cross-sectional view of the antenna according to the above-mentioned preferred embodiment of the present invention, which depicts the cross-sectional state of the antenna after the shielding cover is removed.
  • FIG 8A is a schematic diagram of one of the manufacturing steps of the antenna according to the above preferred embodiment of the present invention.
  • FIG 8B is a schematic diagram of the second step of manufacturing the antenna according to the above preferred embodiment of the present invention.
  • FIG. 8C is a schematic diagram of the third step of manufacturing the antenna according to the above preferred embodiment of the present invention.
  • 8D is a schematic diagram of the fourth step of manufacturing the antenna according to the above preferred embodiment of the present invention.
  • 8E is a schematic diagram of the fifth step of manufacturing the antenna according to the above preferred embodiment of the present invention.
  • Fig. 9 is a schematic top view of a first modified implementation of the antenna according to the above preferred embodiment of the present invention.
  • Fig. 10 is a schematic top view of a second modified embodiment of the antenna according to the above preferred embodiment of the present invention.
  • Fig. 11 is a schematic top view of a third modified embodiment of the antenna according to the above preferred embodiment of the present invention.
  • FIG. 12 is a schematic top view of a fourth modified embodiment of the antenna according to the above preferred embodiment of the present invention.
  • FIG. 13 is a three-dimensional schematic diagram of the antenna according to the above-mentioned preferred embodiment of the present invention, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 14 is a schematic cross-sectional view of the antenna according to the above-mentioned preferred embodiment of the present invention, which depicts the cross-sectional state of the antenna after the shielding cover is removed.
  • 15 is a schematic top view of a fifth modified embodiment of the antenna according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 16 is a schematic top view of a sixth modified embodiment of the antenna according to the above-mentioned preferred embodiment of the present invention.
  • Fig. 17 is a schematic top view of a seventh modified embodiment of the antenna according to the above preferred embodiment of the present invention.
  • FIG. 18 is a three-dimensional schematic diagram of an eighth modified embodiment of the antenna according to the above-mentioned preferred embodiment of the present invention, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • Fig. 19 is a perspective view of an antenna according to the second preferred embodiment of the present invention.
  • Fig. 20 is a schematic top view of the antenna according to the above preferred embodiment of the present invention.
  • FIG. 21 is an exploded schematic diagram of the antenna according to the above preferred embodiment of the present invention.
  • FIG. 22A is a perspective schematic view of the antenna according to the above preferred embodiment of the present invention from a perspective, which describes the three-dimensional state of the antenna after a shielding cover is removed.
  • 22B is a schematic perspective view of the antenna according to the above preferred embodiment of the present invention from another perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 23 is a schematic cross-sectional view of the antenna according to the above preferred embodiment of the present invention, which depicts the cross-sectional state of the antenna after the shielding cover is removed.
  • FIG. 24 is a schematic top view of a first modified implementation of the antenna according to the above preferred embodiment of the present invention.
  • 25 is a schematic top view of a second modified implementation of the antenna according to the above preferred embodiment of the present invention.
  • FIG. 26 is a schematic top view of a third modified embodiment of the antenna according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 27 is a schematic top view of a fourth modified embodiment of the antenna according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 28 is a perspective schematic view of the antenna according to the above preferred embodiment of the present invention from a perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • Fig. 29 is a perspective schematic view of the antenna according to the above preferred embodiment of the present invention from another perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 30 is a schematic cross-sectional view of the antenna according to the above-mentioned preferred embodiment of the present invention, which depicts the cross-sectional state of the antenna after the shielding cover is removed.
  • FIG. 31 is a schematic top view of the antenna according to a modified embodiment of the above-mentioned preferred embodiment of the present invention.
  • FIG. 32 is a perspective schematic view of the antenna according to the above-mentioned modified embodiment of the present invention from a perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 33 is a three-dimensional schematic diagram of the antenna according to the above-mentioned modified embodiment of the present invention from another perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 34 is a schematic cross-sectional view of the antenna according to the above-mentioned modified embodiment of the present invention, which describes the cross-sectional state of the antenna after the shielding cover is removed.
  • 35 is a schematic top view of a fifth modified embodiment of the antenna according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 36 is a three-dimensional schematic diagram of the antenna according to the above-mentioned preferred embodiment of the present invention, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 37 is a schematic cross-sectional view of the antenna according to the above-mentioned preferred embodiment of the present invention, which depicts the cross-sectional state of the antenna after the shielding cover is removed.
  • Fig. 38 is a schematic top view of a sixth modified embodiment of the antenna according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 39 is a perspective schematic view of the antenna according to the above preferred embodiment of the present invention from a perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • FIG. 40 is a schematic perspective view of the antenna according to the above preferred embodiment of the present invention from another perspective, which describes the three-dimensional state of the antenna after the shielding cover is removed.
  • 41 is a schematic cross-sectional view of the antenna according to the above-mentioned preferred embodiment of the present invention, which depicts the cross-sectional state of the antenna after the shielding cover is removed.
  • the radiation slot 20 includes a radiation source 30, a shielding ground 40, a reference ground 50 and a driving circuit 60.
  • the substrate 10 has an upper side surface 11 and a lower side surface 12 corresponding to the upper side surface 11, wherein the radiation source 30 and the shielding ground 40 are held adjacent to each other on the substrate 10
  • the upper side 11, correspondingly, the reference ground 50 and the driving circuit 60 are held on the lower side 12 of the substrate 10 in a manner of being adjacent to each other.
  • the radiation source 30 has a feeding point 31, and the driving circuit 60 is electrically connected to the feeding point 31 of the radiation source 30, so as to allow the driving circuit 60 to separate from the radiation source 30.
  • the feeding point 31 provides a microwave excitation electrical signal to the radiation source 30.
  • the radiation source 30 and the reference ground 50 correspond to each other so as to be formed by the substrate 10 between the radiation source 30 and the reference ground 50
  • the radiation gap 20, so that when the drive circuit 60 provides a microwave excitation electrical signal from the feed point 31 of the radiation source 30 to the radiation source 30, the radiation source 30 and the reference ground 50 Can cooperate with each other to allow the antenna to generate radiated waves.
  • the shielding ground 40 and the driving circuit 60 correspond to each other, so that the shielding ground 40 suppresses the noise generated by the driving circuit 60 when the microwave excitation signal is provided. Disperse electromagnetic wave radiation, thereby reducing interference generated when the antenna is working.
  • the projection of the radiation source 30 on a projection plane parallel to the substrate 10 is included in the projection of the reference ground 50 on the projection plane. In this way, the detection range of the antenna Can be increased.
  • the projection of the drive circuit 60 on the projection surface is included in the projection of the shielding ground 40 on the projection surface.
  • the shielding ground 40 prevents the drive circuit 60 from generating The suppression effect of the stray electromagnetic wave radiation can be effectively guaranteed, thereby reducing the interference generated when the antenna is working.
  • the reference ground 50 surrounds the driving circuit 60 to further increase the area of the reference ground 50, thereby further increasing the detection range of the antenna.
  • the reference ground 50 may surround three sides or two sides of the driving circuit 60.
  • the antenna has only one substrate 10 to allow the radiation source 30 to be held on the substrate.
  • the upper side 11 of 10 and the reference ground 50 are allowed to be held on the lower side 12 of the substrate 10.
  • the thickness of the antenna can be reduced to facilitate all
  • the material for manufacturing the antenna can be saved and the process of manufacturing the antenna can be reduced, so as to help reduce the manufacturing cost of the antenna.
  • the substrate 10 is a rectangular substrate, so that the substrate 10 has a length direction and a width direction, wherein the substrate The length direction of 10 defines two ends of the substrate 10, and the width direction of the substrate 10 defines two sides of the substrate 10.
  • the two ends of the substrate 10 are respectively named a first end 13 and a second end 14, and the two sides of the substrate 10 are respectively named a first side.
  • Portion 15 and a second side portion 16 therefore, the first end portion 13 and the second end portion 14 of the substrate 10 correspond to each other in the length direction of the substrate 10, and the substrate The first side portion 15 and the second side portion 16 of 10 correspond to each other in the width direction of the substrate 10.
  • the radiation source 30 and the reference ground 50 are held at the first end portion 13 of the substrate 10 in a manner corresponding to each other. Accordingly, the shielding ground 40 and the driving circuit 60 are corresponding to each other. The way is held at the second end 14 of the substrate 10.
  • the purpose of naming the two ends of the substrate 10 as the first end 13 and the second end 14 is to distinguish the positions of the two ends of the substrate 10, and
  • the specific structure or configuration of the two ends of the substrate 10 is not limited.
  • the purpose of naming the two sides of the substrate 10 as the first side 15 and the second side 16 is to distinguish the positions of the two sides of the substrate 10, and is not limited The specific structure or structure of the two sides of the substrate 10.
  • the length direction of the shielding ground 40 is consistent with the width direction of the substrate 10, and the pole of the radiation source 30
  • the chemical direction is consistent with the width direction of the substrate 10, and the central axis of the radiation source 30 parallel to the length direction of the substrate (the straight line passing through the physical midpoint of the radiation source 30) deviates
  • the central axis of the length direction of the substrate 10 (a straight line that passes through the physical midpoint of the substrate 10 and is consistent with the length direction of the substrate 10), that is, the radiation source 30 is arranged as a rectangle
  • the central axis of the length direction deviates from the central axis of the length direction of the substrate 10 (passing through the The physical midpoint of the substrate 10 and a straight line consistent with the length direction of the substrate 10), so that the radiation source 30 is held close to the substrate 10 at the first end 13 of the substrate 10
  • the radiation source 30 is located at the first end 13 of the substrate 10 close to the first side of the substrate 10.
  • the radiation source 30 is located at the first end 13 of the substrate 10 close to the first end 13 of the substrate 10.
  • Two side part 16 is located at the first end 13 of the substrate 10 close to the first end 13 of the substrate 10.
  • the distance parameter between the edge of the radiation source 30 and the edge of the first side portion 15 of the substrate 10 is set to L1
  • the edge of the radiation source 30 is set to
  • the distance parameter between the edges of the second side portion 16 of the substrate 10 is L2, that is, the parameter L2 is the edge of the radiation source 30 and the edge of the substrate 10 in the polarization direction of the radiation source 30
  • the value range of the parameter L2 is: L2 ⁇ 1/16 ⁇ , where ⁇ is the wavelength of the radiation wave of the antenna, so that the radiation source 30 can be excited in its polarization direction to generate radiation
  • the value range of the parameter L1 is preferably: 0 ⁇ L1 ⁇ 1/4 ⁇ to reduce the size of the antenna.
  • Fig. 10 shows a second modified embodiment of the antenna.
  • the difference from the antenna shown in Figs. 3 to 7 is that in this modified embodiment of the antenna shown in Fig. 10
  • the length direction of the radiation source 30 is consistent with the width direction of the substrate 10, and the radiation source 30 is far away from the shielding ground 40.
  • the length direction of the radiation source 30 and the length direction of the shielding ground 40 are both consistent with the width direction of the substrate 10, and the radiation source 30 is far away from the shielding ground 40. .
  • the third modified embodiment of the antenna shown in FIG. 11 is different from the antenna shown in FIGS. 3 to 7 in that in this modified embodiment of the antenna shown in FIG. 11
  • the length direction of the radiation source 30 is consistent with the width direction of the substrate 10, and the radiation source 30 is close to the shielding ground 40.
  • the length direction of the radiation source 30 and the length direction of the shielding ground 40 are both consistent with the width direction of the substrate 10, and the radiation source 30 is close to the shielding ground 40.
  • the substrate 10 has a conductive through hole 17, wherein the conductive through hole 17 penetrates the upper side 11 and the lower side 12 of the substrate 10.
  • the reference ground 50 has a conductive gap 51 extending from the edge to the middle of the reference ground 50, and the conductive through hole 17 of the substrate 10 corresponds to and communicates with the reference ground 50 The conductive gap 51.
  • the antenna further includes a conductive portion 70, wherein the conductive portion 70 includes an overboard conductive element 71 and an extended conductive arm 72, wherein the overboard conductive element 71 is formed in the conductive through hole 17 of the substrate 10 , And the conductive element 71 extends from the feed point 31 of the radiation source 30 to the lower side 12 of the substrate 10, wherein the extended conductive arm 72 is held at the reference ground 50
  • the conductive gap 51 and the two ends of the extended conductive arm 72 respectively extend to be electrically connected to the over-board conductive element 71 and the drive circuit 60, so that the drive circuit 60 conducts electricity through the extension
  • the arm 72 and the over-board conductive element 71 are electrically connected to the feed point 31 of the radiation source 30, so that the drive circuit 60 can sequentially pass through the extended conductive arm 72 and the over-board conductive element 71
  • a microwave excitation electrical signal is provided from the feeding point 31 of the radiation source 30 to the radiation source 30.
  • the width dimension of the conductive gap 51 of the reference ground 50
  • the substrate 10 further includes a shielding cover 80, wherein the shielding cover 80 is arranged on the lower side 12 of the substrate 10, and the shielding cover 80 is arranged to cover the housing
  • the driving circuit 60 is used to suppress stray electromagnetic waves generated by the driving circuit 60.
  • the shielding cover 80 is further configured to cover at least a part of the reference ground 50 so as to conveniently set the shielding cover 80 on the lower side surface 12 of the substrate 10.
  • the shield cover 80 is welded to the lower side 12 of the substrate 10, so that the shield cover 80 covers the reference ground 50 in a manner that allows The shielding cover 80 is conveniently welded to the lower side surface 12 of the substrate 10.
  • the antenna shown in FIG. 11 In the third modified embodiment of the antenna, the radiation source 30 is close to the shielding ground 40. Accordingly, the feeding point 31 is located away from the shielding ground 40 in the width direction of the radiation source 30.
  • the radiation source 30 can cooperate with the reference ground 50 to generate electromagnetic waves under the excitation of the driving circuit 60.
  • the arrangement of the radiation source 30 and the shielding ground 40 close to each other makes the radiation source 30 further correspond to the extended conductive arm 72, so that the radiation source 30 suppresses the extended conductive arm 72 stray electromagnetic wave radiation.
  • the extended conductive arm 72 is set in the form of jumpers to electrically connect the conductive element 71 and the driving circuit 60 to prevent the conductive gap 51 from being placed in place.
  • the setting of the reference ground 50 further maintains the integrity of the reference ground 50 so as to suppress the stray electromagnetic wave radiation of the extended conductive arm 72 that is set by means of jumpers by the complete reference ground 50, thereby suppressing
  • the shaping of round conductors the shaping of flat conductors, insulated cords, naked cords, coaxial shielded cables and other jumper structures.
  • FIGS 8A to 8E show a specific manufacturing process of the antenna of the present invention.
  • a metal layer 1000 is attached or formed on the upper side 11 and the lower side 12 of the substrate 10 respectively.
  • the metal layer 1000 may be a copper plate.
  • a copper plate is attached to the upper side 11 and the lower side 12 of the substrate 10 respectively.
  • the manner of attaching the metal layer 1000 to the upper side 11 and the lower side 12 of the substrate 10 is not limited in the antenna of the present invention.
  • the metal The layer 1000 and the substrate 10 can be bonded to each other by gluing, or the metal layer 1000 and the substrate 10 can be bonded to each other by pressing.
  • the metal layer 1000 attached to the upper side 11 of the substrate 10 is etched so that the metal layer 1000 attached to the upper side 11 of the substrate 10
  • the metal layer 1000 forms a first board 1001 and a second board 1002 adjacent to each other.
  • the metal layer 1000 attached to the lower side surface 12 of the substrate 10 is etched so that the metal layer 1000 attached to the lower side surface 12 of the substrate 10 forms a third plate 1003
  • a receiving space 10031 of the third board 1003 and a slot 10032 extending from the receiving space 10031 to the middle of the third board 1003 are formed.
  • etching of the metal layer 1000 attached to the upper side 11 of the substrate 10 and the etching of the metal layer 1000 attached to the lower side 12 of the substrate 10 The sequence is not limited in the manufacturing process of the antenna of the present invention.
  • the receiving space 10031 of the third board 1003 is a closed space, in other examples of the antenna, all of the third board 1003
  • the accommodation space 10031 may be an open space, that is, the third board 1003 surrounds two or three sides of the accommodation space 10031, so that the accommodation space 10031 of the third board 1003 forms an open space .
  • the driving circuit 60 and the extended conductive arm 72 connected to the driving circuit 60 are formed on the lower side 12 of the substrate 10, wherein the driving circuit 60 is Is held in the accommodating space 10031 of the third plate 1003, the extended conductive arm 72 is held in the slot 10032 of the third plate 1003, so that the extended conductive arm 72 is separated from the drive circuit 60 extends to the middle of the third plate 1003.
  • the third board 1003 surrounds the driving circuit 60. In this way, the third board 1003 The area can be increased.
  • the conductive through holes 17 are formed in the substrate 10 and the conductive through holes 17 are formed in the substrate 10 and extend from the first plate 1001 to the extended conductive arm 72 by a metalized via process.
  • the conductive element 71 of the through plate wherein the first plate 1001 forms the radiation source 30, and the conduction position of the first plate 1001 and the conductive element 71 of the plate forms the radiation source 30
  • the feeding point 31 the second board 1002 forms the shielding ground 40
  • the third board 1003 forms the reference ground 50
  • the substrate 10 located between the radiation source 30 and the reference ground 50 The radiation gap 20 is formed.
  • first board 1001, the second board 1002, and the third board 1003 are preferably configured as copper boards.
  • the first board 1001, the second board 1001, and the second board are formed by a copper clad process.
  • the driving circuit 60 and the shielding ground 40 correspond to each other so as to be able to cooperate with each other to allow the driving circuit 60 to work normally and be suppressed by the shielding ground 40
  • the stray electromagnetic wave radiation generated by the driving circuit 60 are preferably configured as copper boards.
  • the first board 1001, the second board 1001, and the second board are formed by a copper clad process.
  • the conductive through holes 17 are formed in the substrate 10 and the conductive through holes 17 are formed in the conductive through holes 17 by a metalized via process, and the conductive through holes that extend from the first plate 1001 to the extended conductive arms 72 are formed.
  • the steps of element 71 include:
  • an opening connecting the first plate 1001, the substrate 10 and the extending conductive arm 72 is drilled, wherein the portion of the opening formed on the substrate 10 is the conductive through hole 17.
  • the opening may be a through hole that penetrates the first board 1001, the substrate 10 and the extended conductive arm 72, or the opening is a blind hole that penetrates the The first plate 1001 and the substrate 10 extend to the extended conductive arm 72, or extend to the first plate 1001 after passing through the extended conductive arm 72 and the substrate 10, depending on the size of the opening. Drilling direction. It is also worth mentioning that the method of drilling the opening may be, but not limited to, numerical control drilling, mechanical punching, plasma etching, laser drilling, and chemical etching.
  • the drilling dirt generated in the process of drilling the opening is removed.
  • both dry decontamination and wet decontamination can be used to remove the drilling dirt generated in the process of drilling the opening, depending on the process of drilling the opening and the material of the substrate 10.
  • electroless copper is plated on the opening to form the conductive through hole 17 of the substrate 10 to form the over-board conductive element 71 extending from the first plate 1001 to the extended conductive arm 72.
  • the shielding cover 80 is installed on the lower side 12 of the substrate 10, so that the shielding cover 80 covers the driving circuit 60 and the reference ground 50, thereby making The antenna.
  • the substrate 10 is The upper side 11 is attached to the first board 1001 and the second board 1002, and the third board 1003 is attached to the lower side 12 of the substrate 10; secondly, the metallization via process
  • the substrate 10 forms the conductive through holes 17 and the conductive through holes 17 are formed on the conductive through holes 17 to form the over-board conductive element 71 extending from the first plate 1001 to the extended conductive arm 72.
  • the first board 1001 and the first board 1001 and the The second board 1002 and the third board 1003 are attached to the lower side 12 of the substrate 10; secondly, the drive circuit 60 and the extended conductive arm 72 connected to the drive circuit 60 are formed On the lower side 12 of the substrate 10, the drive circuit 60 is held in the receiving space 10031 of the third board 1003, and the extended conductive arm 72 is held on the third board 1003.
  • the slot 10032 is so that the extended conductive arm 72 extends from the driving circuit 60 to the middle of the third board 1003; again, the conductive through hole is formed in the substrate 10 by a metalized via process 17 and the conductive through hole 17 formed in the conductive element 71 extending from the first plate 1001 to the extended conductive arm 72.
  • the present invention further provides a manufacturing method of the antenna.
  • the manufacturing method includes the following steps:
  • the step (a) further includes the steps:
  • step (a) further includes the steps:
  • Figs. 12 to 14 show a fourth modified embodiment of the antenna, which is different from the antenna shown in Figs. 3 to 7 in that the antenna shown in Figs. 12 to 14
  • the antenna further includes a processing circuit 90 which is electrically connected to the drive circuit 60 to process the electrical signal of the drive circuit 60, for example, the processing circuit 90
  • the circuit 90 can amplify the detection of the drive circuit 60.
  • the processing circuit 90 includes at least one electronic component 91, and each of the electronic components 91 has at least two solder feet 911.
  • the reference ground 50 is formed with at least one pad 52 separated from the reference ground 50 by removing a closed loop part of the reference ground 50, wherein the electronic component 91 At least one solder pin 911 is conductively soldered to the pad 52 and then fixed to the substrate 10.
  • the processing circuit 90 may be electrically connected to the circuit of the substrate 10 through the pad 52 of the reference ground 50 and the circuit of the drive circuit 60 to be electrically connected to the circuit of the substrate 10 The driving circuit 60.
  • the separation distance between the reference ground 50 and the pad 52 is less than or equal to 1/64 ⁇ .
  • the radiation source 30 and the processing circuit 90 are respectively held on different sides of the reference ground 50.
  • the processing circuit 90 is The projection of the projection surface is included in the projection of the reference ground 50 on the projection surface, and the projection of the processing circuit 90 on the projection surface and the projection of the radiation source 30 on the projection surface are included In different areas of the projection of the reference ground 50 on the projection surface.
  • the length of the shielding ground 40 is consistent with the width direction of the substrate 10
  • the length direction of the radiation source 30 is the same as the width direction of the substrate 10.
  • the length direction of the substrate 10 is consistent, and the radiation source 30 is close to the first side 15 of the substrate 10
  • the length direction of the processing circuit 90 is consistent with the length direction of the substrate 10
  • the processing circuit 90 is close to the second side portion 16 of the substrate 10.
  • the length of the shielding ground 40 is consistent with the width direction of the substrate 10
  • the length direction of the radiation source 30 is The length direction of the substrate 10 is consistent, and the radiation source 30 is close to the second side portion 16 of the substrate 10
  • the length direction of the processing circuit 90 is consistent with the length direction of the substrate 10 and The processing circuit 90 is close to the first side 15 of the substrate 10.
  • the length direction of the shielding ground 40, the length direction of the radiation source 30, and the length direction of the processing circuit 90 are all the same as those of the substrate
  • the width direction of 10 is consistent, wherein the radiation source 30 is far away from the shielding ground 40 and the processing circuit 90 is close to the shielding ground 40.
  • the length direction of the shielding ground 40, the length direction of the radiation source 30, and the length direction of the processing circuit 90 are all the same as those of the substrate
  • the width direction of 10 is the same, wherein the radiation source 30 is close to the shielding ground 40 and the processing circuit 90 is far away from the shielding ground 40.
  • Fig. 18 shows an eighth modified embodiment of the antenna.
  • the difference from the antenna shown in Figs. 3 to 7 is that in this preferred example of the antenna shown in Fig. 18
  • the antenna further includes a suppression fence 100 that surrounds the drive circuit 60 to suppress stray electromagnetic wave radiation generated by the drive circuit 60.
  • the suppression fence 100 includes a set of fence bodies 101 extending from the shielding ground 40 to the lower side 12 of the substrate 10 in such a manner that adjacent fence bodies 101 are spaced apart from each other, And surround the drive circuit 60 to further suppress the stray electromagnetic wave radiation generated by the drive circuit 60 by the mutual cooperation of the set of fence body 101 and the shielding ground 40, thereby increasing the antenna pair stray Ability to suppress electromagnetic radiation.
  • the set of fence bodies 101 are formed by a metalized via process.
  • the distance between two adjacent fence bodies 101 in the set of fence bodies 101 of the suppression fence 100 is less than or equal to 1/64 ⁇ . More preferably, the distance between two adjacent fence bodies 101 in the set of fence bodies 101 of the suppression fence 100 is less than or equal to 1/128 ⁇ .
  • At least a part of the fence body 101 of the set of fence bodies 101 is connected to the reference ground 50, so that the set of fence bodies 101, the shielding ground 40 and the reference ground 50 In cooperation with each other, the stray electromagnetic wave radiation generated by the driving circuit 60 is further suppressed.
  • an antenna according to the second preferred embodiment of the present invention is disclosed and illustrated in the following description, wherein the antenna has a substrate 10A and a
  • the radiation slot 20A also includes a radiation source 30A, a shielding ground 40A, a reference ground 50A and a driving circuit 60A.
  • the substrate 10A has an upper side 11A and a lower side 12A corresponding to the upper side 11A, wherein the radiation source 30A and the shielding ground 40A are held adjacent to each other on the substrate 10A
  • the upper side 11A, correspondingly, the reference ground 50A and the driving circuit 60A are held on the lower side 12A of the substrate 10A in a manner of being adjacent to each other.
  • the radiation source 30A has a feeding point 31A, and the driving circuit 60A is electrically connected to the feeding point 31A of the radiation source 30A to allow the driving circuit 60A to be separated from the radiation source 30A.
  • the feeding point 31A provides a microwave excitation electrical signal to the radiation source 30A, wherein the radiation source 30A is grounded.
  • the radiation source 30A and the reference ground 50A correspond to each other so as to be formed by the substrate 10A located between the radiation source 30A and the reference ground 50A
  • the radiation gap 20A so that when the driving circuit 60A provides a microwave excitation electrical signal from the feeding point 31A of the radiation source 30A to the radiation source 30A, the radiation source 30A and the reference ground 50A Can cooperate with each other to allow the antenna to generate radiated waves.
  • the shielding ground 40A and the driving circuit 60A correspond to each other, so that the shielding ground 40A suppresses the generation of the driving circuit 60A when providing microwave excitation electrical signals. Stray electromagnetic wave radiation, thereby reducing the interference generated when the antenna is working.
  • the radiation source 30A is grounded, so that the impedance of the antenna can be lowered to narrow the bandwidth of the antenna , So as to help suppress the interference of radiated waves or spurious waves in adjacent frequency bands.
  • the projection of the radiation source 30A on a projection plane parallel to the substrate 10A is included in the projection of the reference ground 50A on the projection plane. In this way, the detection range of the antenna Can be increased.
  • the projection of the driving circuit 60A on the projection surface is included in the projection of the shielding ground 40A on the projection surface.
  • the shielding ground 40A suppresses the generation of the driving circuit 60A.
  • the suppression effect of the stray electromagnetic wave radiation can be effectively guaranteed, thereby reducing the interference generated when the antenna is working.
  • the reference ground 50A surrounds the driving circuit 60A to further increase the area of the reference ground 50A, thereby further increasing the detection range of the antenna.
  • the antenna has only one substrate 10A to allow the radiation source 30A to be held on the substrate.
  • the upper side 11A of 10A and the reference ground 50A are allowed to be held on the lower side 12A of the substrate 10A.
  • the thickness of the antenna can be reduced to facilitate The miniaturization and thinning of the antenna, on the other hand, the material for manufacturing the antenna can be saved, which is beneficial to reducing the manufacturing cost of the antenna.
  • the substrate 10A is a rectangular substrate, so that the substrate 10A has a length direction and a width direction, wherein the substrate
  • the length direction of 10A defines two end portions of the substrate 10A
  • the width direction of the substrate 10A defines two sides of the substrate 10A.
  • the two ends of the substrate 10A are respectively named a first end 13A and a second end 14A
  • the two sides of the substrate 10A are respectively named a first side.
  • Portion 15A and a second side portion 16A Therefore, the first end portion 13A and the second end portion 14A of the substrate 10A correspond to each other in the length direction of the substrate 10A.
  • the first side portion 15A and the second side portion 16A of 10A correspond to each other in the width direction of the substrate 10A.
  • the radiation source 30A and the reference ground 50A are held at the first end 13A of the substrate 10A in a manner corresponding to each other. Accordingly, the shielding ground 40A and the driving circuit 60A correspond to each other.
  • the pattern is held at the second end 14A of the substrate 10A.
  • the length direction of the shielding ground 40A is consistent with the width direction of the substrate 10A, and the pole of the radiation source 30A
  • the chemical direction is consistent with the width direction of the substrate 10A, and the central axis of the length direction of the radiation source 30A (passes through the physical midpoint of the radiation source 30A and is in line with the length direction of the radiation source 30A).
  • a consistent straight line deviates from the central axis of the length direction of the substrate 10A (a straight line passing through the physical midpoint of the substrate 10A and consistent with the length direction of the substrate 10A), so that the radiation source
  • the first end portion 13A of the substrate 10A 30A is held at a position close to the edge of the substrate 10A.
  • the radiation source 30A is close to the first side portion 15A of the substrate 10A, and the radiation source 30A shown in FIG. 24 In the first modified embodiment of the antenna, the radiation source 30A is close to the second side portion 16A of the substrate 10A.
  • the distance parameter between the edge of the radiation source 30A and the edge of the first side portion 15A of the substrate 10A is L1
  • the value range of the parameter L1 is: 0 ⁇ L1 ⁇ 1/4 ⁇
  • the distance parameter between the edge of the radiation source 30A and the edge of the second side portion 16A of the substrate 10A be L2
  • the value range of the parameter L2 is: L2 ⁇ 1/ 16 ⁇ , where ⁇ is the wavelength of the radiation wave of the antenna.
  • FIG. 25 shows a second modified embodiment of the antenna.
  • the difference from the antenna shown in FIGS. 19 to 23 is that in this modified example of the antenna shown in FIG. 25,
  • the polarization direction of the radiation source 30A is consistent with the width direction of the substrate 10A, and the radiation source 30A is far away from the shielding ground 40A.
  • the radiation source 30A is close to the shielding ground 40A.
  • the substrate 10A has a conductive through hole 17A that penetrates the upper side 11A and the lower side 12A of the substrate 10A.
  • the reference ground 50A has a conductive gap 51A that extends from the edge to the middle of the reference ground 50A, and the conductive through hole 17A of the substrate 10A corresponds to the conductive gap of the reference ground 50A. Gap 51A.
  • the antenna further includes a conductive portion 70A, wherein the conductive portion 70A includes an over-board conductive element 71A and an extended conductive arm 72A, wherein the over-board conductive element 71A is formed in the conductive through hole 17A of the substrate 10A , And the conductive element 71A extends from the feed point 31A of the radiation source 30A to the lower side 12A of the substrate 10A, wherein the extended conductive arm 72A is held at the reference ground 50A
  • the conductive gap 51A, and both ends of the extended conductive arm 72A respectively extend to be electrically connected to the over-board conductive element 71A and the driving circuit 60A, so that the driving circuit 60A can pass through the
  • the extended conductive arm 72A and the over-board conductive element 71A are electrically connected to the feeding point 31A of the radiation source 30A, so that the drive circuit 60A can conduct electricity through the extended conductive arm 72A and the over-board in turn
  • the element 71A provides a microwave excitation electrical signal to
  • the substrate 10A further has a ground through hole 18A which penetrates the upper side 11A and the lower side 12A of the substrate 10A.
  • the conductive portion 70A includes a board ground element 73A, wherein the board ground element 73A is formed in the ground through hole 18A of the substrate 10A, and both ends of the board ground element 73A are respectively connected to
  • the radiation source 30A and the reference ground 50A are grounded in a manner that the radiation source 30A and the reference ground 50A are connected through the board ground element 73A.
  • the overboard grounding element 73A is connected to the physical midpoint of the radiation source 30A, so that the physical midpoint of the radiation source 30A is grounded. It is worth mentioning that the through-board ground element 73A is formed by a metallization via process.
  • the substrate 10A further includes a shielding cover 80A, wherein the shielding cover 80A is disposed on the lower side 12A of the substrate 10A, and the shielding cover 80A is disposed to cover
  • the driving circuit 60A suppresses the stray electromagnetic wave radiation generated by the driving circuit 60A.
  • the shielding cover 80A is further configured to cover at least a part of the reference ground 50A, so as to conveniently set the shielding cover 80A on the lower side 12A of the substrate 10A.
  • the shield cover 80A is welded to the lower side 12A of the substrate 10A, so that the shield cover 80A covers the reference ground 50A.
  • the shield cover 80A is conveniently welded to the lower side surface 12A of the substrate 10A.
  • Figures 27 to 30 show a fourth modified implementation of the antenna.
  • the difference from the antenna shown in Figures 19 to 23 is that the antenna shown in Figures 27 to 30
  • the antenna further includes a suppression fence 100A that surrounds the drive circuit 60A to suppress stray electromagnetic wave radiation generated by the drive circuit 60A.
  • the suppression fence 100A includes a set of fence bodies 101A, and the set of fence bodies 101A extends between the upper side 11A and the lower side 12A of the substrate 10A in a manner that the adjacent fence bodies 101A are spaced apart from each other. It surrounds the driving circuit 60A to further improve the suppression effect of suppressing the stray electromagnetic wave radiation generated by the driving circuit 60A through the cooperation of the set of fence bodies 101A and the shielding ground 40A.
  • the set of fence bodies 101A are formed by a metalized via process.
  • each group of fence bodies 101A of the suppression fence 100A and the upper side 11A of the substrate 10A and the shielding ground 40A is less than or equal to 1/128 ⁇ , more preferably, the Each group of fence bodies 101A of the suppression fence 100A extends from the shielding ground 40A to the lower side of the substrate 10A in such a manner that the adjacent fence bodies 101A are spaced apart from each other, that is, each of the suppression fence 100A
  • the fence body 101A is conductively extended to the shielding ground 40A.
  • the distance between two adjacent fence bodies 101A in the set of fence bodies 101A of the suppression fence 100A is less than or equal to 1/64 ⁇ . More preferably, the distance between two adjacent fence bodies 101A in the set of fence bodies 101A of the suppression fence 100A is less than or equal to 1/128 ⁇ .
  • FIGS. 31 to 34 of the accompanying drawings of the specification of the present invention a further modified embodiment of the fourth modified embodiment of the antenna is illustrated, which is different from that shown in FIGS. 27 to 30
  • the fourth modified embodiment of the antenna in the preferred example of the antenna shown in FIGS. 31 to 34, at least a part of the fence body 101A of the set of fence bodies 101A is conductively extended to Between the shielding ground 40A and the reference ground 50A, the set of fence bodies 101A, the shielding ground 40A, and the reference ground 50A cooperate with each other to further improve the suppression of impurities generated by the driving circuit 60A.
  • the suppression fence 100A further surrounds the radiation source 30A, thereby further improving the suppression effect of suppressing the stray electromagnetic wave radiation generated by the driving circuit 60A.
  • the suppression fence 100A surrounding the radiation source 30A is formed by the set of fence bodies 101A, wherein the set of fence bodies 101A respectively extend from the upper side 11A of the substrate 10A to the lower The side surface 12A extends in the direction.
  • Figs. 35 to 37 show a fifth modified embodiment of the antenna.
  • the antenna further includes a processing circuit 90A, and the processing circuit 90A is electrically connected to the driving circuit 60A to process the electrical signal of the driving circuit 60A, for example, the processing circuit 90A
  • the circuit 90A can amplify the detection of the drive circuit 60A.
  • the processing circuit 90A includes at least one electronic component 91A, and each of the electronic components 91A has at least two solder feet 911A.
  • the reference ground 50A is formed with at least one pad 52A separated from the reference ground 50A on the reference ground 50A by removing a closed loop part of the reference ground 50A, wherein the electronic component 91A At least one solder pin 911A is conductively soldered to the pad 52A and then fixed to the substrate 10A.
  • the processing circuit 90A can be electrically connected by the solder pins 911A of the electronic component 91A being electrically connected to the circuit of the substrate 10A and the drive circuit 60A being electrically connected to the circuit of the substrate 10A In the driving circuit 60A.
  • the separation distance between the reference ground 50A and the pad 52A is less than or equal to 1/64 ⁇ .
  • the projection of the processing circuit 90A on the projection surface is included in the projection of the reference ground 50A on the projection surface, and the processing circuit 90A is on the projection surface
  • the projection and the projection of the radiation source 30A on the projection surface are included in different areas of the projection of the reference ground 50A on the projection surface.
  • the length of the shielding ground 40A is consistent with the width direction of the substrate 10A, and the length direction of the radiation source 30A It is consistent with the length direction of the substrate 10A, and the radiation source 30A is close to the first side portion 15A of the substrate 10A.
  • the length direction of the processing circuit 90A is the same as the length direction of the substrate 10A. Same, and the processing circuit 90A is close to the second side portion 16A of the substrate 10A.
  • Figs. 38 to 41 show a sixth modified embodiment of the antenna.
  • the antenna shown in Figs. 35 to 37 is different from the antenna shown in Figs. 38 to 41.
  • the antenna further includes the suppression fence 100A, which surrounds the drive circuit 60A, the radiation source 30A and the processing circuit 90A to further improve the drive circuit 60A and the processing circuit 90A have a suppressing effect on the radiation wave generated by the antenna.
  • the present invention further provides an interference suppression method to suppress stray electromagnetic wave radiation generated by the driving circuit 60A of the antenna, wherein the interference suppression method includes the following steps:
  • the radiation source 30A and the reference ground 50A of the antenna are allowed to be held on the first end 13A of the substrate 10A in a mutually corresponding manner.
  • the shield ground 40A and the drive circuit 60A of the antenna are allowed to be held on the second end 14A of the substrate 10A in a mutually corresponding manner.
  • the upper side 11A and the lower side 12A of the substrate 10A so that when the driving circuit 60A provides a microwave excitation electrical signal from the feeding point 31A of the radiation source 30A to the radiation source 30A, the When the antenna generates radiation waves, the shielding ground 40A suppresses the stray electromagnetic wave radiation generated by the driving circuit 60A.
  • the projection of the driving circuit 60A on the projection surface parallel to the substrate 10A is included in the projection of the shielding ground 40A on the projection surface, so that the shielding The ground 40A effectively suppresses electromagnetic waves generated by the drive circuit 60A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一天线及其制造方法和干扰抑制方法,其中所述天线具有一基板和一辐射缝隙以及包括一参考地、一屏蔽地、一辐射源和一驱动电路,所述驱动电路被电连接于所述辐射源的馈电点。所述辐射源和所述参考地以相邻的方式被保持于所述基板的上侧面,所述参考地和所述驱动电路以相邻的方式被保持于所述基板的下侧面,其中在所述天线的厚度方向,所述辐射源和所述参考地相互对应以允许位于所述辐射源和所述参考地之间的所述基板形成所述辐射缝隙,所述屏蔽地和所述驱动电路相互对应以允许所述屏蔽地抑制所述驱动电路产生的杂散电磁波辐射。

Description

天线及其制造方法和干扰抑制方法 技术领域
本发明涉及天线领域,特别涉及一天线及其制造方法和干扰抑制方法。
背景技术
因微波探测技术能够通过向一探测空间发射一微波的方式探测人体活动,因此,微波探测技术在智能家居等众多领域具有可期的应用前景,其中天线是微波探测技术的基础硬件,其能够发射和/或接收探测微波信号,以允许在后续根据微波多普勒效应输出的信号实现人体活动的探测。
附图1A、图1B以及图1C分别示出了现有的一种双层结构的天线的俯视图、侧视图和分解图,其中该天线包括一第一基板10P、一第二基板20P、一第一铜板30P、一第二铜板40P、一驱动电路50P以及一屏蔽罩60P。该第一基板10P具有一上侧面11P和对应于该上侧面11P的一下侧面12P,该第一铜板30P被贴装于该第一基板10P的该上侧面11P。该第二基板20P具有一顶侧部21P和对应于该顶侧部21P的一底侧部22P,该第二铜板40P被贴装于该第二基板20P的该顶侧部21P,该驱动电路50P被保持于该第二基板20P的该底侧部22P。该第一基板10P的该下侧面12P被贴装于该第二铜板40P,从而使该第一铜板30P形成该天线的一辐射源70P,该第二铜板40P形成该天线的一参考地80P,该第一基板10P形成该天线的一辐射缝隙90P。该驱动电路50P贯穿该第二基板20P和该第一基板10P,并且被电连接于该辐射源70P的馈电点71P。该屏蔽罩60P被焊接于该第二基板20P,并且该屏蔽罩60P罩住该驱动电路50P,以屏蔽该驱动电路50P在提供激励信号时产生的杂散电磁波辐射。
附图2A、图2B和图2C分别示出了现有的一种压合结构的天线的俯视图、仰视图和分解图,与附图1A至图1C示出的该天线类似的是,附图2A至图2C示出的现有的该天线包括该第一基板10P、该第二基板20P、该第一铜板30P、该第二铜板40P、该驱动电路50P以及该屏蔽罩60P,其中该第一铜板30P被贴装 于该第一基板10P的该上侧面11P,该第二铜板40P被贴装于该第一基板10P的该下侧面12P,该驱动电路50P被保持于该第二基板20P的该底侧部22P,其中该第二基板20P和该第一基板10P以该第二基板20P的该顶侧部21P贴合于该第二铜板40P的方式被压合在一起,从而使该第一铜板30P形成该天线的所述辐射源70P,该第二铜板40P形成该天线的该参考地80P,该第一基板10P形成该天线的该辐射缝隙90P。该驱动电路50P贯穿该第二基板20P和该第一基板10P,并且被电连接于该辐射源70P的馈电点71P。该屏蔽罩60P被焊接于该第二基板20P,并且该屏蔽罩60P罩住该驱动电路50P,以屏蔽该驱动电路50P在提供激励信号时产生的杂散电磁辐射。
可见,无论是在附图1A至图1C示出的具有双层结构的该天线中,还是在附图2A至图2C示出的具有压合结构的该天线中,该天线均需要被配置两个基板,即,该天线需要被配置该第一基板10P和该第二基板20P,这样的方式,不仅造成材料的浪费和导致该天线无法被进一步轻薄化,而且制造该天线的工艺比较复杂。
发明内容
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,其中所述天线仅具有一个基板,以有效地降低所述天线的厚度尺寸,从而有利于所述天线的小型化和轻薄化。
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,其中所述天线仅具有一个所述基板,以节约材料,从而降低所述天线的制造成本。
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,其中所述天线提供一辐射源和一参考地,所述辐射源和所述参考地分别被保持在同一个所述基板的不同侧面而形成一辐射缝隙,以保证所述天线的正常工作。例如,所述辐射源和所述参考地分别由被贴附于同一个所述基板的不同侧面的金属层形成,以使所述天线具有更高的稳定性。
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,所述天线提供一屏蔽地和一驱动电路,所述屏蔽地和所述辐射源被分别保持在所述基板的上侧面,所述驱动电路和所述参考地分别被保持在所述基板的下侧面,并且在所述天线的厚度方向,所述屏蔽地和所述驱动电路相互对应,以藉由所述屏蔽地抑 制所述驱动电路产生的杂散电磁辐射,从而降低所述天线工作时产生的干扰。
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,其中所述屏蔽地和所述辐射源由被贴附于所述基板的上侧面的一个金属层同时形成,例如,通过蚀刻所述金属层的方式能够于所述基板的上侧面同时形成所述屏蔽地和所述辐射源,从而降低所述天线的制造成本。
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,其中所述辐射源被接地,以降低所述天线的阻抗。例如,通过电气连接所述辐射源和所述参考地的方式能够使所述辐射源被接地,降低所述天线的阻抗,以提高所述天线的抗干扰能力。
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,其中所述天线提供一抑制篱笆,其环绕于所述驱动电路,以抑制所述驱动电路产生的杂散电磁波辐射,从而降低所述天线工作时产生的干扰。
本发明的一个目的在于提供一天线及其制造方法和干扰抑制方法,其中所述抑制篱笆包括一组篱笆体,所述一组篱笆体自所述屏蔽地延伸至所述基板的下侧面并环绕于所述驱动电路,以藉由所述屏蔽地和所述一组篱笆体相互配合的方式进一步提高抑制所述驱动电路产生的杂散电磁波辐射的能力。
依本发明的一个方面,本发明提供一天线,其中所述天线具有一基板和一辐射缝隙,所述基板具有一上侧面和对应于所述上侧面的一下侧面,其中所述天线进一步包括:
一参考地;
一屏蔽地;
一辐射源,其中所述辐射源具有一馈电点;以及
一驱动电路,其中所述驱动电路被电连接于所述辐射源的所述馈电点;
其中所述辐射源和所述屏蔽地以相邻的方式被保持于所述基板的所述上侧面,所述参考地和所述驱动电路以相邻的方式被保持于所述基板的所述下侧面,其中在所述天线的厚度方向,所述辐射源和所述参考地相互对应以允许位于所述辐射源和所述参考地之间的所述基板形成所述辐射缝隙,所述屏蔽地和所述驱动电路相互对应以允许所述屏蔽地抑制所述驱动电路产生的杂散电磁波辐射。
根据本发明的一个实施例,所述参考地具有一导电缝隙,其自所述参考地的边缘延伸至所述参考地的中部,其中所述天线进一步包括一导电部,所述导电部 包括一过板导电元件和一延伸导电臂,所述过板导电元件自所述辐射源的所述馈电点延伸至所述基板的所述下侧面,所述延伸导电臂被保持于所述参考地的所述导电缝隙,并且所述延伸导电臂的两端分别延伸以被电连接于所述过板导电元件和所述驱动电路。
根据本发明的一个实施例,所述辐射源在平行于所述基板的一投影面的投影被包含在所述参考地于所述投影面的投影的内部。
根据本发明的一个实施例,所述驱动电路在所述投影面的投影被包含在所述屏蔽地于所述投影面的投影的内部。
根据本发明的一个实施例,所述参考地环绕于所述驱动电路。
根据本发明的一个实施例,所述辐射源被接地。
根据本发明的一个实施例,所述辐射源和所述参考地被相互连接,以使所述辐射源被接地。
根据本发明的一个实施例,所述天线进一步包括一处理电路,所述处理电路包括至少一电子元器件,每个所述电子元器件分别具有至少两焊脚,其中所述参考地具有至少一焊盘,其中所述电子元器件的至少一所述焊脚被固定于所述焊盘,并被电连接于所述驱动电路。
根据本发明的一个实施例,所述天线进一步包括一抑制篱笆,其中所述抑制篱笆包括一组篱笆体,所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述屏蔽地向所述基板的所述下侧面方向延伸,并且所述一组篱笆体环绕于所述驱动电路。
根据本发明的一个实施例,所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述参考地延伸至所述基板的所述上侧面。
根据本发明的一个实施例,所述一组篱笆体中的至少一部分所述篱笆体被连接于所述参考地。
根据本发明的一个实施例,所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的长度方向一致的方式被保持于所述基板的第一端部,并且所述辐射源的长度方向的中轴线偏离所述基板的长度方向的中轴线;或者所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的宽度方向 一致的方式被保持于所述基板的第一端部。
根据本发明的一个实施例,所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的长度方向一致的方式被保持于所述基板的第一端部,所述处理电路以所述处理电路的长度方向和所述基板的长度方向一致的方式被保持于所述基板的第一端部,并且在所述天线的厚度方向,所述辐射源和所述处理电路不重合;或者所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第一端部,所述处理电路以所述处理电路的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第一端部,并且在所述天线的厚度方向,所述辐射源和所述处理电路不重合。
依本发明的另一个方面,本发明进一步提供一天线的制造方法,其所述制造方法包括如下步骤:
(a)以一第一板和一第二板相邻的方式保持所述第一板和所述第二板于一基板的一上侧面,和以一第三板的一容纳空间对应于所述第二板的方式保持所述第三板于所述基板的一下侧面,其中所述第三板具有自所述容纳空间延伸至所述第三板的中部的一开槽;
(b)形成被保持在所述第三板的所述容纳空间的一驱动电路于所述基板的所述下侧面,和形成被保持在所述第三板的所述开槽和自所述驱动电路延伸至所述第三板的中部的一延伸导电臂于所述基板的所述下侧面;以及
(c)形成以贯穿所述基板的方式自所述第一板延伸至所述延伸导电臂的一过板导电元件,其中所述第一板形成所述天线的一辐射源,所述第二板形成所述天线的一屏蔽地,所述第三板形成所述天线的一参考地,所述基板的位于所述第一板和所述第三板之间的部分形成所述天线的一辐射缝隙,以制得所述天线。
根据本发明的一个实施例,所述步骤(a)进一步包括步骤:
(a.1)去除被贴附在所述基板的所述上侧面的一个金属层的一部分,以于所述基板的所述上侧面形成所述第一板和所述第二板;和
(a.2)去除被贴附在所述基板的所述下侧面的另一个金属层的一部分,以于所述基板的所述下侧面形成所述第三板。
根据本发明的一个实施例,所述步骤(a)进一步包括步骤:
(a.1')贴附所述第一板和所述第二板于所述基板的所述上侧面;和
(a.2')贴附所述第三板于所述基板的所述下侧面。
根据本发明的一个实施例,在所述步骤(c)中,形成以贯穿所述基板的方式自所述第一板延伸至所述第三板的一过板接地元件,以使所述辐射源被连接于所述参考地。
根据本发明的一个实施例,在所述步骤(c)中,以去除所述第三板的一闭环部分的方式于所述参考地形成与所述参考地相隔断的至少一焊盘,从而允许至少一电子元器件的至少一焊脚被导电焊接于所述焊盘并被电连接于所述驱动电路,以使每个所述电子元器件形成一处理电路。
根据本发明的一个实施例,在所述步骤(b)或所述步骤(c)中,形成自所述第二板的四周向所述基板的所述下侧面方向延伸且环绕于所述驱动电路的一组篱笆体。
依本发明的另一个方面,本发明进一步提供一干扰抑制方法,以抑制一天线的一驱动电路产生的杂散电磁波辐射,其中所述干扰抑制方法包括如下步骤:
(A)在所述天线的厚度方向,允许所述天线的一辐射源和一参考地分别于一基板的一第一端部以相互对应的方式保持于所述基板的一上侧面和一下侧面;和
(B)在所述天线的厚度方向,允许所述天线的一屏蔽地和所述驱动电路分别于所述基板的一第二端部以相互对应的方式保持于所述基板的所述上侧面和所述下侧面,从而当所述驱动电路自所述辐射源的一馈电点提供微波激励电信号至所述辐射源而允许所述天线产生辐射波时,所述屏蔽地抑制所述驱动电路产生的杂散电磁波辐射。
根据本发明的一个实施例,在上述方法中,所述驱动电路在平行于所述基板的一个投影面的投影被包含在所述屏蔽地在所述投影面的投影的内部。
根据本发明的一个实施例,在上述方法中,保持被电连接于所述驱动电路的一处理电路于所述参考地的侧部,以在所述天线的厚度方向,藉由所述参考地隔离所述处理电路和所述辐射源。
根据本发明的一个实施例,在上述方法中,形成自所述屏蔽地的向所述基板的所述下侧面方向延伸且环绕于所述驱动电路的一组篱笆体。
根据本发明的一个实施例,在上述方法中,导通地连接所述一组篱笆体中的 至少一部分所述篱笆体和所述参考地。
根据本发明的一个实施例,在上述方法中,藉由一屏蔽罩罩住所述驱动电路。
根据本发明的一个实施例,在上述方法中,藉由一屏蔽罩罩住所述参考地。
附图说明
图1A是现有技术的具有双层结构的一天线的俯视示意图。
图1B是现有技术的具有双层结构的所述天线的侧视示意图。
图1C是现有技术的具有双层结构的所述天线的分解示意图。
图2A是现有技术的具有压合结构的一天线的俯视示意图。
图2B是现有技术的具有压合结构的所述天线的侧视示意图。
图2C是现有技术的具有压合结构的所述天线的分解示意图。
图3是依本发明的第一较佳实施例的一天线的立体示意图。
图4是依本发明的上述较佳实施例的所述天线的俯视示意图。
图5是依本发明的上述较佳实施例的所述天线的分解示意图。
图6A是依本发明的上述较佳实施例的所述天线的一个视角的立体示意图,其描述了所述天线在被去除一屏蔽罩后的立体状态。
图6B是依本发明的上述较佳实施例的所述天线的另一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图7是依本发明的上述较佳实施例的所述天线的剖视示意图,其描述了所述天线在被去除所述屏蔽罩后的剖视状态。
图8A是依本发明的上述较佳实施例的所述天线的制造步骤之一的示意图。
图8B是依本发明的上述较佳实施例的所述天线的制造步骤之二的示意图。
图8C是依本发明的上述较佳实施例的所述天线的制造步骤之三的示意图。
图8D是依本发明的上述较佳实施例的所述天线的制造步骤之四的示意图。
图8E是依本发明的上述较佳实施例的所述天线的制造步骤之五的示意图。
图9是依本发明的上述较佳实施例的所述天线的第一变形实施方式的俯视示意图。
图10是依本发明的上述较佳实施例的所述天线的第二变形实施方式的俯视示意图。
图11是依本发明的上述较佳实施例的所述天线的第三变形实施方式的俯视 示意图。
图12是依本发明的上述较佳实施例的所述天线的第四变形实施方式的俯视示意图。
图13是依本发明的上述较佳实施例的所述天线的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图14是依本发明的上述较佳实施例的所述天线的剖视示意图,其描述了所述天线在被去除所述屏蔽罩后的剖视状态。
图15是依本发明的上述较佳实施例的所述天线的第五变形实施方式的俯视示意图。
图16是依本发明的上述较佳实施例的所述天线的第六变形实施方式的俯视示意图。
图17是依本发明的上述较佳实施例的所述天线的第七变形实施方式的俯视示意图。
图18是依本发明的上述较佳实施例的所述天线的第八变形实施方式的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图19是依本发明的第二较佳实施例的一天线的立体示意图。
图20依本发明的上述较佳实施例的所述天线的俯视示意图。
图21是依本发明的上述较佳实施例的所述天线的分解示意图。
图22A是依本发明的上述较佳实施例的所述天线的一个视角的立体示意图,其描述了所述天线在被去除一屏蔽罩后的立体状态。
图22B是依本发明的上述较佳实施例的所述天线的另一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图23是依本发明的上述较佳实施例的所述天线的剖视示意图,其描述了所述天线在被去除所述屏蔽罩后的剖视状态。
图24是依本发明的上述较佳实施例的所述天线的第一变形实施方式的俯视示意图。
图25是依本发明的上述较佳实施例的所述天线的第二变形实施方式的俯视示意图。
图26是依本发明的上述较佳实施例的所述天线的第三变形实施方式的俯视示意图。
图27是依本发明的上述较佳实施例的所述天线的第四个变形实施方式的俯视示意图。
图28是依本发明的上述较佳实施例的所述天线的一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图29是依本发明的上述较佳实施例的所述天线的另一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图30是依本发明的上述较佳实施例的所述天线的剖视示意图,其描述了所述天线在被去除所述屏蔽罩后的剖视状态。
图31是依本发明的上述较佳实施例的一变形实施例的所述天线的俯视示意图。
图32是依本发明的上述变形实施例的所述天线的一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图33是依本发明的上述变形实施例的所述天线的另一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图34是依本发明的上述变形实施例的所述天线的剖视示意图,其描述了所述天线在被去除所述屏蔽罩后的剖视状态。
图35是依本发明的上述较佳实施例的所述天线的第五变形实施方式的俯视示意图。
图36是依本发明的上述较佳实施例的所述天线的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图37是依本发明的上述较佳实施例的所述天线的剖视示意图,其描述了所述天线在被去除所述屏蔽罩后的剖视状态。
图38是依本发明的上述较佳实施例的所述天线的第六个变形实施方式的俯视示意图。
图39是依本发明的上述较佳实施例的所述天线的一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图40是依本发明的上述较佳实施例的所述天线的另一个视角的立体示意图,其描述了所述天线在被去除所述屏蔽罩后的立体状态。
图41是依本发明的上述较佳实施例的所述天线的剖视示意图,其描述了所述天线在被去除所述屏蔽罩后的剖视状态。
具体实施方式
根据本发明的权利要求和说明书所公开的内容,本发明的技术方案具体如下文所述。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考本发明的说明书附图之附图3至图7,依本发明的第一较佳实施例的一天线在接下来的描述中被揭露和被阐述,其中所述天线具有一基板10和一辐射缝隙20以及包括一辐射源30、一屏蔽地40、一参考地50和一驱动电路60。
具体地,所述基板10具有一上侧面11和对应于所述上侧面11的一下侧面12,其中所述辐射源30和所述屏蔽地40以相互邻近的方式被保持在所述基板10的所述上侧面11,相应地,所述参考地50和所述驱动电路60以相互邻近的方式被保持在所述基板10的所述下侧面12。所述辐射源30具有一馈电点31,所述驱动电路60被电连接于所述辐射源30的所述馈电点31,以允许所述驱动电路60自所述辐射源30的所述馈电点31提供微波激励电信号至所述辐射源30。
参考附图7,在所述天线的厚度方向,所述辐射源30和所述参考地50相互对应,以藉由位于所述辐射源30和所述参考地50之间的所述基板10形成所述辐射缝隙20,从而当所述驱动电路60自所述辐射源30的所述馈电点31提供微波激励电信号至所述辐射源30时,所述辐射源30和所述参考地50能够相互配合以允许所述天线产生辐射波。
参考附图7在所述天线的厚度方向,所述屏蔽地40和所述驱动电路60相互对应,以藉由所述屏蔽地40抑制所述驱动电路60在提供微波激励电信号时产生的杂散电磁波辐射,从而降低所述天线工作时产生的干扰。
优选地,所述辐射源30在平行于所述基板10的一个投影面的投影被包含在所述参考地50于所述投影面的投影的内部,通过这样的方式,所述天线的探测范围能够被增加。
优选地,所述驱动电路60在所述投影面的投影被包含在所述屏蔽地40在所述投影面的投影的内部,通过这样的方式,所述屏蔽地40抑制所述驱动电路60产生的杂散电磁波辐射的抑制效果能够被有效地保证,从而降低所述天线工作时产生的干扰。
更优选地,参考附图6B,所述参考地50环绕于所述驱动电路60的四周,以进一步增加所述参考地50的面积,从而进一步增加所述天线的探测范围。可选地,在本发明的所述天线的其他示例中,所述参考地50可以包围所述驱动电路60的三个侧部或者两个侧部。
值得一提的是,在附图3至图7示出的所述天线的这个较佳示例中,所述天线仅具有一个所述基板10,以允许所述辐射源30被保持在所述基板10的所述上侧面11和允许所述参考地50被保持在所述基板10的所述下侧面12,通过这样的方式,一方面,所述天线的厚度尺寸能够被降低,以有利于所述天线的小型化和轻薄化,另一方面,制造所述天线的材料能够被节约和制造所述天线的工序被减少,以有利于降低所述天线的制造成本。
继续参考附图3至图7,在本发明的所述天线的这个较佳示例中,所述基板10是一个长方形基板,从而所述基板10具有一长度方向和一宽度方向,其中所述基板10的所述长度方向定义所述基板10的两个端部,所述基板10的所述宽度方向定义所述基板10的两个侧部。为了便于描述和理解,所述基板10的两个端部分别被命名为一第一端部13和一第二端部14,所述基板10的两个侧部分别被命名为一第一侧部15和一第二侧部16,因此,所述基板10的所述第一端部13和所述第二端部14在所述基板10的所述长度方向是相互对应的,所述基板10的所述第一侧部15和所述第二侧部16在所述基板10的所述宽度方向是相互对应的。所述辐射源30和所述参考地50以相互对应的方式被保持在所述基板10的所述第一端部13,相应地,所述屏蔽地40和所述驱动电路60以相互对应的方式被保持在所述基板10的所述第二端部14。
值得一提的是,命名所述基板10的两个端部为所述第一端部13和所述第二端部14的目的是为了区分所述基板10的两个端部的位置,而并不限制所述基板 10的两个端部的具体结构或构造。相应地,命名所述基板10的两个侧部为所述第一侧部15和所述第二侧部16的目的是为了区分所述基板10的两个侧部的位置,而并不限制所述基板10的两个侧部的具体结构或构造。
优选地,在附图3至图7示出的所述天线的这个较佳示例中,所述屏蔽地40的长度方向和所述基板10的所述宽度方向一致,所述辐射源30的极化方向与所述基板10的所述宽度方向一致,并且所述辐射源30的平行于所述基板的所述长度方向的中轴线(穿过所述辐射源30的物理中点的直线)偏离所述基板10的所述长度方向的中轴线(穿过所述基板10的物理中点且与所述基板10的所述长度方向一致的直线),即被设置为长方形的所述辐射源30的长度方向的中轴线(穿过所述辐射源30的物理中点且与所述辐射源30的长度方向一致的直线)偏离所述基板10的所述长度方向的中轴线(穿过所述基板10的物理中点且与所述基板10的所述长度方向一致的直线),以使所述辐射源30于所述基板10的所述第一端部13被保持在靠近所述基板10的边缘的位置。例如,在附图3至图7示出的所述天线的这个具体示例中,所述辐射源30于所述基板10的所述第一端部13靠近所述基板10的所述第一侧部15,而在附图9示出的所述天线的第一个变形实施方式中,所述辐射源30于所述基板10的所述第一端部13靠近所述基板10的所述第二侧部16。
具体地,继续参考附图4,设所述辐射源30的边缘与所述基板10的所述第一侧部15的边缘之间的距离参数为L1,设所述辐射源30的边缘与所述基板10的所述第二侧部16的边缘之间的距离参数为L2,即参数L2为在所述辐射源30的极化方向的所述辐射源30的边缘与所述基板10的边缘之间的距离,其中参数L2的取值范围为:L2≥1/16λ,其中λ是所述天线的辐射波的波长,以使得所述辐射源30能够于其极化方向被激励而产生辐射波,其中参数L1的取值范围优选为:0≤L1≤1/4λ,以减小所述天线的尺寸。
附图10示出了所述天线的第二个变形实施方式,与附图3至图7示出的所述天线不同的是,在附图10示出的所述天线的这个变形实施方式中,所述辐射源30的长度方向与所述基板10的所述宽度方向一致,并且所述辐射源30远离所述屏蔽地40。具体地,参考附图10,所述辐射源30的长度方向和所述屏蔽地40的长度方向均与所述基板10的所述宽度方向一致,并且所述辐射源30远离所述屏蔽地40。
附图11示出的所述天线的第三个变形实施方式,与附图3至图7示出的所述天线不同的是,在附图11示出的所述天线的这个变形实施方式中,所述辐射源30的长度方向与所述基板10的所述宽度方向一致,并且所述辐射源30靠近所述屏蔽地40。具体地,参考附图11,所述辐射源30的长度方向和所述屏蔽地40的长度方向均与所述基板10的宽度方向一致,并且所述辐射源30靠近所述屏蔽地40。
继续参考附图3至图7,所述基板10具有一导电穿孔17,其中所述导电穿孔17贯穿所述基板10的所述上侧面11和所述下侧面12。所述参考地50具有一导电缝隙51,所述导电缝隙51自所述参考地50的边缘延伸至中部,并且所述基板10的所述导电穿孔17对应于和连通于所述参考地50的所述导电缝隙51。所述天线进一步包括一导电部70,其中所述导电部70包括一过板导电元件71和一延伸导电臂72,其中所述过板导电元件71形成于所述基板10的所述导电穿孔17,并且所述过板导电元件71自所述辐射源30的所述馈电点31延伸至所述基板10的所述下侧面12,其中所述延伸导电臂72被保持于所述参考地50的所述导电缝隙51,并且所述延伸导电臂72的两端分别延伸以被电连接于所述过板导电元件71和所述驱动电路60,以使所述驱动电路60通过所述延伸导电臂72和所述过板导电元件71被电连接于所述辐射源30的所述馈电点31,从而所述驱动电路60能够依次经所述延伸导电臂72和所述过板导电元件71自所述辐射源30的所述馈电点31提供微波激励电信号至所述辐射源30。优选地,所述参考地50的所述导电缝隙51的宽度尺寸小于或者等于1/64λ。
继续参考附图3至图7,所述基板10进一步包括一屏蔽罩80,其中所述屏蔽罩80被设置于所述基板10的所述下侧面12,并且所述屏蔽罩80被设置罩住所述驱动电路60,以抑制所述驱动电路60产生的杂散电磁波。优选地,所述屏蔽罩80进一步被设置罩住所述参考地50的至少一部分,以方便地设置所述屏蔽罩80于所述基板10的所述下侧面12。例如,在本发明的所述天线的一个较佳示例中,所述屏蔽罩80被焊接于所述基板10的所述下侧面12,从而所述屏蔽罩80罩住所述参考地50的方式允许所述屏蔽罩80被方便地焊接于所述基板10的所述下侧面12。
可以理解的是,与附图9示出的所述天线的第一个变形实施方式和附图10示出了所述天线的第二个变形实施方式对比,在附图11示出的所述天线的第三 个变形实施方式中,所述辐射源30靠近所述屏蔽地40,相应地,所述馈电点31在所述辐射源30的宽度方向以远离所述屏蔽地40的方式被偏置于所述辐射源30,则所述辐射源30能够与所述参考地50相互配合而在所述驱动电路60的激励下产生电磁波。特别地,所述辐射源30和所述屏蔽地40相互靠近的结构设置使得所述辐射源30进一步与所述延伸导电臂72相对应,以藉由所述辐射源30抑制所述延伸导电臂72的杂散电磁波辐射。
而在本发明的一些实施例中,所述延伸导电臂72采用跳线的方式被设置以电性连接所述过板导电元件71和所述驱动电路60而能够避免所述导电缝隙51于所述参考地50的设置,进而维持所述参考地50的完整性,以藉由完整的所述参考地50抑制采用跳线的方式被设置的所述延伸导电臂72杂散电磁波辐射,进而抑制所述延伸导电臂72的杂散电磁波辐射,其中所述延伸导电臂72的跳线工艺和对应的结构多样,本发明对此不作限制。例如但不限于圆形的导体的整形、扁形导体的整形、绝缘软线、裸体软线、同轴屏蔽电缆等跳线结构。
附图8A至图8E示出了本发明的所述天线的一个具体制造流程。
在附图8A示出的阶段,于所述基板10的所述上侧面11和所述下侧面12分别贴附或者形成一金属层1000。值得一提的是,被贴附于或者形成于所述基板10的所述上侧面11和所述下侧面12的所述金属层1000的类型在本发明的所述天线中不受限制,例如,所述金属层1000可以是铜板。例如,在本发明的所述天线的一个具体示例中,于所述基板10的所述上侧面11和所述下侧面12分别贴附一个铜板。还值得一提的是,贴附所述金属层1000于所述基板10的所述上侧面11和所述下侧面12的方式在本发明的所述天线中不受限制,例如,所述金属层1000和所述基板10能够通过胶合的方式被相互贴合,或者所述金属层1000和所述基板10能够通过压合的方式被相互贴合。
在附图8B示出的阶段,蚀刻被贴附于所述基板10的所述上侧面11的所述金属层1000,以使被贴附于所述基板10的所述上侧面11的所述金属层1000形成相互邻近的一第一板1001和一第二板1002。蚀刻被贴附于所述基板10的所述下侧面12的所述金属层1000,以使被贴附于所述基板10的所述下侧面12的所述金属层1000形成一第三板1003和形成所述第三板1003的一容纳空间10031以及自所述容纳空间10031延伸至所述第三板1003的中部的一开槽10032。
值得一提的是,蚀刻被贴附于所述基板10的所述上侧面11的所述金属层 1000和蚀刻被贴附于所述基板10的所述下侧面12的所述金属层1000的顺序,在本发明的所述天线的制造过程中不受限制。
值得一提的是,尽管在附图8B示出的阶段,所述第三板1003的所述容纳空间10031是一个封闭空间,在所述天线的其他示例中,所述第三板1003的所述容纳空间10031可以是一个开放空间,即,所述第三板1003环绕于所述容纳空间10031的两侧或者三侧,从而使所述第三板1003的所述容纳空间10031形成一个开放空间。
在附图8C示出的阶段,形成所述驱动电路60和被连接于所述驱动电路60的所述延伸导电臂72于所述基板10的所述下侧面12,其中所述驱动电路60被保持在所述第三板1003的所述容纳空间10031,所述延伸导电臂72被保持在所述第三板1003的所述开槽10032,以使所述延伸导电臂72自所述驱动电路60延伸至所述第三板1003的中部。在本发明的所述天线的一个较佳示例中,在所述驱动电路60形成后,所述第三板1003环绕于所述驱动电路60的四周,通过这样的方式,所述第三板1003的面积能够被增加。
在附图8D示出的阶段,藉由金属化过孔工艺在所述基板10形成所述导电穿孔17和于所述导电穿孔17形成自所述第一板1001延伸至所述延伸导电臂72的所述过板导电元件71,其中所述第一板1001形成所述辐射源30、所述第一板1001和所述过板导电元件71的导通位置形成所述辐射源30的所述馈电点31、所述第二板1002形成所述屏蔽地40、所述第三板1003形成所述参考地50、位于所述辐射源30和所述参考地50之间的所述基板10形成所述辐射缝隙20。
值得一提的是,所述第一板1001、所述第二板1002以及所述第三板1003优选地被设置为铜板,如通过覆铜工艺形成所述第一板1001、所述第二板1002以及所述第三板1003,从而形成被设置为覆铜层的所述辐射源30、所述屏蔽地40以及所述参考地50,其中所述辐射源30与所述参考地50相互对应以能够相互配合而允许所述天线产生辐射波,其中所述驱动电路60与所述屏蔽地40相互对应以能够相互配合而允许所述驱动电路60正常工作并藉由所述屏蔽地40抑制所述驱动电路60产生的杂散电磁波辐射。
进一步地,藉由金属化过孔工艺在所述基板10形成所述导电穿孔17和于所述导电穿孔17形成自所述第一板1001延伸至所述延伸导电臂72的所述过板导电元件71的步骤包括:
首先,钻设连通所述第一板1001、所述基板10和所述延伸导电臂72的一个开孔,其中所述开孔的形成于所述基板10的部分为所述导电穿孔17。值得一提的是,所述开孔可以是贯穿孔,其贯穿所述第一板1001、所述基板10和所述延伸导电臂72,或者所述开孔是盲孔,其在贯穿所述第一板1001和所述基板10后延伸至所述延伸导电臂72,或者在贯穿所述延伸导电臂72和所述基板10后延伸至所述第一板1001,这取决于所述开口的钻设方向。还值得一提的是,钻设所述开孔的方式可以是但不限于数控钻孔、机械冲孔、等离子体蚀孔、激光钻孔和化学蚀孔。
其次,去除钻设所述开孔的过程中产生的钻污。例如,干法去污和湿法去污均可以被用于去除钻设所述开孔的过程中产生的钻污,这取决于钻设所述开孔的工艺和所述基板10的材料。
第三,化学镀铜于所述开孔以于所述基板10的所述导电穿孔17形成自所述第一板1001延伸至所述延伸导电臂72的所述过板导电元件71。
在附图8E示出的阶段,安装所述屏蔽罩80于所述基板10的所述下侧面12,以使所述屏蔽罩80罩住所述驱动电路60和所述参考地50,从而制得所述天线。
可选地,在本发明的所述天线的另外的制造工艺中,在提供所述基板10和形成所述驱动电路60与所述延伸导电臂72之后,首先,于所述基板10的所述上侧面11贴附所述第一板1001和所述第二板1002,和于所述基板10的所述下侧面12贴附所述第三板1003;其次,藉由金属化过孔工艺在所述基板10形成所述导电穿孔17和于所所述导电穿孔17形成自所述第一板1001延伸至所述延伸导电臂72的所述过板导电元件71。
可选地,在本发明的所述天线的另外的制造工艺中,在提供所述基板10后,首先,于所述基板10的所述上侧面11贴附所述第一板1001和所述第二板1002,和于所述基板10的所述下侧面12贴附所述第三板1003;其次,形成所述驱动电路60和被连接于所述驱动电路60的所述延伸导电臂72于所述基板10的所述下侧面12,其中所述驱动电路60被保持在所述第三板1003的所述容纳空间10031,所述延伸导电臂72被保持在所述第三板1003的所述开槽10032,以使所述延伸导电臂72自所述驱动电路60延伸至所述第三板1003的中部;再次,藉由金属化过孔工艺在所述基板10形成所述导电穿孔17和于所所述导电穿孔17形成自所述第一板1001延伸至所述延伸导电臂72的所述过板导电元件71。
依本发明的另一个方面,本发明进一步提供所述天线的制造方法,其所述制造方法包括如下步骤:
(a)以所述第一板1001和所述第二板1002相邻的方式保持所述第一板1001和所述第二板1002于所述基板10的所述上侧面11,和以所述第三板1003的所述容纳空间10031对应于所述第二板1002的方式保持所述第三板1003于所述基板10的所述下侧面12,其中所述第三板1003具有自所述容纳空间10031延伸至所述第三板1003的中部的所述开槽10032;
(b)形成被保持在所述第三板1003的所述容纳空间10031的所述驱动电路60于所述基板10的所述下侧面12,和形成被保持在所述第三板1003的所述开槽10032和自所述驱动电路60延伸至所述第三板1003的中部的所述延伸导电臂72于所述基板10的所述下侧面12;以及
(c)形成以贯穿所述基板10的方式自所述第一板1001延伸至所述延伸导电臂72的所述过板导电元件71,其中所述第一板1001形成所述天线的所述辐射源30,所述第二板1002形成所述天线的所述屏蔽地40,所述第三板1003形成所述天线的所述参考地50,所述基板10的位于所述第一板1001和所述第三板1003之间的部分形成所述天线的所述辐射缝隙20,以制得所述天线。
在本发明的所述制造方法的一个较佳示例中,所述步骤(a)进一步包括步骤:
(a.1)去除被贴附在所述基板10的所述上侧面11的一个所述金属层1000的一部分,以于所述基板10的所述上侧面11形成所述第一板1001和所述第二板1002;和
(a.2)去除被贴附在所述基板10的所述下侧面12的另一个所述金属层1000的一部分,以于所述基板10的所述下侧面12形成所述第三板1003。
在本发明的所述制造方法的另一个较佳示例中,所述步骤(a)进一步包括步骤:
(a.1')贴附所述第一板1001和所述第二板1002于所述基板10的所述上侧面11;和
(a.2')贴附所述第三板1003于所述基板10的所述下侧面12。
附图12至图14示出了所述天线的第四个变形实施方式,与附图3至图7示出的所述天线不同的是,在附图12至图14示出的所述天线的这个较佳示例中, 所述天线进一步包括一处理电路90,所述处理电路90被电连接于所述驱动电路60,以对所述驱动电路60的电信号进行处理,例如,所述处理电路90能够对所述驱动电路60的检波进行放大处理。
所述处理电路90包括至少一电子元器件91,每个所述电子元器件91分别具有至少两焊脚911。所述参考地50被以去除所述参考地50的一闭环部分的方式于所述参考地50形成有与所述参考地50相隔断的至少一焊盘52,其中所述电子元器件91的至少一所述焊脚911被导电焊接于所述焊盘52后被固定于所述基板10。所述处理电路90可以通过所述参考地50的所述焊盘52被电连接于所述基板10的电路和所述驱动电路60被电连接于所述基板10的电路的方式被电连接于所述驱动电路60。优选地,所述参考地50与所述焊盘52之间的隔断距离小于或者等于1/64λ。
参考附图14,在所述天线的厚度方向,所述辐射源30和所述处理电路90分别被保持在所述参考地50的不同侧,参考附图12,所述处理电路90在所述投影面的投影被包含在所述参考地50在所述投影面的投影的内部,并且所述处理电路90在所述投影面的投影和所述辐射源30在所述投影面的投影被包含在所述参考地50在所述投影面的投影的不同区域。
例如,在附图12示出的所述天线的这个较佳示例中,所述屏蔽地40的长度尺寸和所述基板10的所述宽度方向一致,所述辐射源30的长度方向与所述基板10的所述长度方向一致,并且所述辐射源30靠近所述基板10的所述第一侧部15,所述处理电路90的长度方向与所述基板10的所述长度方向一致,并且所述处理电路90靠近所述基板10的所述第二侧部16。
在附图15示出的所述天线的第五个变形实施方式中,所述屏蔽地40的长度尺寸和所述基板10的所述宽度方向一致,所述辐射源30的长度方向与所述基板10的所述长度方向一致,并且所述辐射源30靠近所述基板10的所述第二侧部16,所述处理电路90的长度方向与所述基板10的所述长度方向一致,并且所述处理电路90靠近所述基板10的所述第一侧部15。
在附图16示出的所述天线的第六个变形实施方式中,所述屏蔽地40的长度方向、所述辐射源30的长度方向和所述处理电路90的长度方向均与所述基板10的所述宽度方向一致,其中所述辐射源30远离所述屏蔽地40,和所述处理电路90靠近所述屏蔽地40。
在附图17示出的所述天线的第七个变形实施方式中,所述屏蔽地40的长度方向、所述辐射源30的长度方向和所述处理电路90的长度方向均与所述基板10的所述宽度方向一致,其中所述辐射源30靠近所述屏蔽地40,和所述处理电路90远离所述屏蔽地40。
附图18示出了所述天线的第八个变形实施方式,与附图3至图7示出的所述天线不同的是,在附图18示出的所述天线的这个较佳示例中,所述天线进一步包括一抑制篱笆100,所述抑制篱笆100环绕于所述驱动电路60,以抑制所述驱动电路60产生的杂散电磁波辐射。
所述抑制篱笆100包括一组篱笆体101,所述一组篱笆体101以相邻所述篱笆体101相互间隔的方式自所述屏蔽地40延伸至所述基板10的所述下侧面12,并环绕于所述驱动电路60,以藉由所述一组篱笆体101和所述屏蔽地40相互配合而进一步抑制所述驱动电路60产生的杂散电磁波辐射,进而提高所述天线对杂散电磁波辐射的抑制能力。在本发明的所述天线的一个较佳示例中,所述一组篱笆体101藉由金属化过孔工艺形成。
优选地,所述抑制篱笆100的所述一组篱笆体101中的相邻两个所述篱笆体101之间的间距小于或者等于1/64λ。更优选地,所述抑制篱笆100的所述一组篱笆体101中的相邻两个所述篱笆体101之间的间距小于或者等于1/128λ。
优选地,所述一组篱笆体101中的至少一部分所述篱笆体101被连接于所述参考地50,以藉由所述一组篱笆体101、所述屏蔽地40和所述参考地50相互配合而进一步抑制所述驱动电路60产生的杂散电磁波辐射。
参考本发明的说明书附图之附图19至图23,依本发明的第二较佳实施例的一天线在接下来的描述中被揭露和被阐述,其中所述天线具有一基板10A和一辐射缝隙20A以及包括一辐射源30A、一屏蔽地40A、一参考地50A和一驱动电路60A。
具体地,所述基板10A具有一上侧面11A和对应于所述上侧面11A的一下侧面12A,其中所述辐射源30A和所述屏蔽地40A以相互邻近的方式被保持在所述基板10A的所述上侧面11A,相应地,所述参考地50A和所述驱动电路60A以相互邻近的方式被保持在所述基板10A的所述下侧面12A。所述辐射源30A具有一馈电点31A,所述驱动电路60A被电连接于所述辐射源30A的所述馈电点31A,以允许所述驱动电路60A自所述辐射源30A的所述馈电点31A提供微波激励电信 号至所述辐射源30A,其中所述辐射源30A被接地。
参考附图23,在所述天线的厚度方向,所述辐射源30A和所述参考地50A相互对应,以藉由位于所述辐射源30A和所述参考地50A之间的所述基板10A形成所述辐射缝隙20A,从而当所述驱动电路60A自所述辐射源30A的所述馈电点31A提供微波激励电信号至所述辐射源30A时,所述辐射源30A和所述参考地50A能够相互配合以允许所述天线产生辐射波。
参考附图23,在所述天线的厚度方向,所述屏蔽地40A和所述驱动电路60A相互对应,以藉由所述屏蔽地40A抑制所述驱动电路60A在提供微波激励电信号时产生的杂散电磁波辐射,从而降低所述天线工作时产生的干扰。
另外,在附图19至图23示出的所述天线的这个较佳示例中,所述辐射源30A被接地,从而所述天线的阻抗能够被降低,以使所述天线的频宽变窄,从而有利于抑制相邻频段的辐射波或者杂散波干扰。优选地,所述辐射源30A在平行于所述基板10A的一个投影面的投影被包含在所述参考地50A在所述投影面的投影的内部,通过这样的方式,所述天线的探测范围能够被增加。
优选地,所述驱动电路60A在所述投影面的投影被包含在所述屏蔽地40A在所述投影面的投影的内部,通过这样的方式,所述屏蔽地40A抑制所述驱动电路60A产生的杂散电磁波辐射的抑制效果能够被有效地保证,从而降低所述天线工作时产生的干扰。
更优选地,所述参考地50A环绕于所述驱动电路60A的四周,以进一步增加所述参考地50A的面积,从而进一步增加所述天线的探测范围。
值得一提的是,在附图19至图23示出的所述天线的这个较佳示例中,所述天线仅具有一个所述基板10A,以允许所述辐射源30A被保持在所述基板10A的所述上侧面11A和允许所述参考地50A被保持在所述基板10A的所述下侧面12A,通过这样的方式,一方面,所述天线的厚度尺寸能够被降低,以有利于所述天线的小型化和轻薄化,另一方面,制造所述天线的材料能够被节约,以有利于降低所述天线的制造成本。
继续参考附图19至图23,在本发明的所述天线的这个较佳示例中,所述基板10A是一长方形基板,从而所述基板10A具有一长度方向和一宽度方向,其中所述基板10A的所述长度方向定义所述基板10A的两个端部,所述基板10A的所述宽度方向定义所述基板10A的两个侧部。为了便于描述和理解,所述基板10A 的两个端部分别被命名为一第一端部13A和一第二端部14A,所述基板10A的两个侧部分别被命名为一第一侧部15A和一第二侧部16A,因此,所述基板10A的所述第一端部13A和所述第二端部14A在所述基板10A的所述长度方向是相互对应的,所述基板10A的所述第一侧部15A和所述第二侧部16A在所述基板10A的所述宽度方向是相互对应的。所述辐射源30A和所述参考地50A以相互对应的方式被保持在所述基板10A的所述第一端部13A,相应地,所述屏蔽地40A和所述驱动电路60A以相互对应的方式被保持在所述基板10A的所述第二端部14A。
优选地,在附图19至图23示出的所述天线的这个较佳示例中,所述屏蔽地40A的长度方向和所述基板10A的所述宽度方向一致,所述辐射源30A的极化方向与所述基板10A的所述宽度方向一致,并且所述辐射源30A的所述长度方向的中轴线(穿过所述辐射源30A的物理中点且与所述辐射源30A的长度方向一致的直线)偏离所述基板10A的所述长度方向的中轴线(穿过所述基板10A的物理中点且与所述基板10A的所述长度方向一致的直线),以使所述辐射源30A于所述基板10A的所述第一端部13A被保持在靠近所述基板10A的边缘的位置。例如,在附图19至图23示出的所述天线的这个具体示例中,所述辐射源30A靠近所述基板10A的所述第一侧部15A,而在附图24示出的所述天线的第一个变形实施方式中,所述辐射源30A靠近所述基板10A的所述第二侧部16A。
具体地,参考附图20,设所述辐射源30A的边缘与所述基板10A的所述第一侧部15A的边缘之间的距离参数为L1,其中参数L1的取值范围为:0≤L1≤1/4λ,设所述辐射源30A的边缘与所述基板10A的所述第二侧部16A的边缘之间的距离参数为L2,其中参数L2的取值范围为:L2≥1/16λ,其中λ是所述天线的辐射波的波长。
附图25示出了所述天线的第二个变形实施方式,与附图19至图23示出的所述天线不同的是,在附图25示出的所述天线的这个变形示例中,所述辐射源30A的极化方向与所述基板10A的所述宽度方向一致,并且所述辐射源30A远离所述屏蔽地40A。而与附图25示出的所述天线不同的是,在附图26示出的所述天线的第三个变形实施方式中,所述辐射源30A靠近所述屏蔽地40A。
继续参考附图19至图23,所述基板10A具有一导电穿孔17A,其贯穿所述基板10A的所述上侧面11A和所述下侧面12A。所述参考地50A具有一导电缝隙51A,所述导电缝隙51A自所述参考地50A的边缘延伸至中部,并且所述基板10A 的所述导电穿孔17A对应于所述参考地50A的所述导电缝隙51A。所述天线进一步包括一导电部70A,其中所述导电部70A包括一过板导电元件71A和一延伸导电臂72A,其中所述过板导电元件71A形成于所述基板10A的所述导电穿孔17A,并且所述过板导电元件71A自所述辐射源30A的所述馈电点31A延伸至所述基板10A的所述下侧面12A,其中所述延伸导电臂72A被保持于所述参考地50A的所述导电缝隙51A,并且所述延伸导电臂72A的两端分别延伸以被电连接于所述过板导电元件71A和所述驱动电路60A,以使所述驱动电路60A能够藉由所述延伸导电臂72A和所述过板导电元件71A被电连接于所述辐射源30A的所述馈电点31A,从而所述驱动电路60A能够依次经所述延伸导电臂72A和所述过板导电元件71A自所述辐射源30A的所述馈电点31A提供微波激励电信号至所述辐射源30A。
所述基板10A进一步具有一接地穿孔18A,其贯穿所述基板10A的所述上侧面11A和所述下侧面12A。所述导电部70A包括一过板接地元件73A,其中所述过板接地元件73A形成于所述基板10A的所述接地穿孔18A,并且所述过板接地元件73A的两端分别被连接于所述辐射源30A和所述参考地50A,以通过所述过板接地元件73A连接所述辐射源30A和所述参考地50A的方式使所述辐射源30A被接地。
优选地,所述过板接地元件73A被连接于所述辐射源30A的物理中点,从而使所述辐射源30A的物理中点被接地。值得一提的是,所述过板接地元件73A藉由金属化过孔工艺形成。
继续参考附图19至图23,所述基板10A进一步包括一屏蔽罩80A,其中所述屏蔽罩80A被设置于所述基板10A的所述下侧面12A,并且所述屏蔽罩80A被设置罩住所述驱动电路60A,以抑制所述驱动电路60A产生的杂散电磁波辐射。优选地,所述屏蔽罩80A进一步被设置罩住所述参考地50A的至少一部分,以方便地设置所述屏蔽罩80A于所述基板10A的所述下侧面12A。例如,在本发明的所述天线的一个较佳示例中,所述屏蔽罩80A被焊接于所述基板10A的所述下侧面12A,从而所述屏蔽罩80A罩住所述参考地50A的方式允许所述屏蔽罩80A被方便地焊接于所述基板10A的所述下侧面12A。
附图27至30示出了所述天线的第四个变形实施方式,与附图19至图23示出的所述天线不同的是,在附图27至图30示出的所述天线的这个较佳示例中, 所述天线进一步包括一抑制篱笆100A,所述抑制篱笆100A环绕于所述驱动电路60A,以抑制所述驱动电路60A产生的杂散电磁波辐射。
所述抑制篱笆100A包括一组篱笆体101A,所述一组篱笆体101A以相邻所述篱笆体101A相互间隔的方式延伸于所述基板10A的所述上侧面11A和所述下侧面12A之间,并环绕于所述驱动电路60A,以藉由所述一组篱笆体101A和所述屏蔽地40A相互配合而进一步提高抑制所述驱动电路60A产生的杂散电磁波辐射的抑制效果。在本发明的所述天线的一个较佳示例中,所述一组篱笆体101A藉由金属化过孔工艺形成。
优选地,所述抑制篱笆100A的各所述组篱笆体101A于所述基板10A的所述上侧面11A与所述屏蔽地40A之间的距离小于或者等于1/128λ,更优选地,所述抑制篱笆100A的各所述组篱笆体101A以相邻所述篱笆体101A相互间隔的方式自所述屏蔽地40A延伸至所述基板10A的所述下侧面,即所述抑制篱笆100A的各所述组篱笆体101A导电延伸于所述屏蔽地40A。
优选地,所述抑制篱笆100A的所述一组篱笆体101A中的相邻两个所述篱笆体101A之间的间距小于或者等于1/64λ。更优选地,所述抑制篱笆100A的所述一组篱笆体101A中的相邻两个所述篱笆体101A之间的间距小于或者等于1/128λ。
特别地,参考本发明的说明书附图之附图31至图34,所述天线的第四个变形实施方式的进一步变形实施方式被图示说明,其中区别于附图27至图30示出的所述天线的第四变形实施例,在附图31至图34示出的所述天线的这个较佳示例中,所述一组篱笆体101A中的至少一部分所述篱笆体101A被导电延伸于所述屏蔽地40A和所述参考地50A之间,以藉由所述一组篱笆体101A、所述屏蔽地40A和所述参考地50A相互配合而进一步提高抑制所述驱动电路60A产生的杂散电磁波辐射的抑制效果,并藉由所述一组篱笆体101A形成所述屏蔽地40A和所述参考地50A之间的导电连接,进而形成所述屏蔽地40A对所述参考地50A的延伸而提高所述天线的增益。
继续参考附图27至图30,所述抑制篱笆100A进一步环绕于所述辐射源30A,从而进一步提高抑制所述驱动电路60A产生的杂散电磁波辐射的抑制效果。相应地,环绕于所述辐射源30A的所述抑制篱笆100A由所述一组篱笆体101A形成,其中所述一组篱笆体101A分别自所述基板10A的所述上侧面11A向所述下侧面 12A方向延伸。
附图35至图37示出了所述天线的第五个变形实施方式,与附图19至图23示出的所述天线不同的是,在附图35至图37示出的所述天线的这个较佳示例中,所述天线进一步包括一处理电路90A,所述处理电路90A被电连接于所述驱动电路60A,以对所述驱动电路60A的电信号进行处理,例如,所述处理电路90A能够对所述驱动电路60A的检波进行放大处理。
所述处理电路90A包括至少一电子元器件91A,每个所述电子元器件91A分别具有至少两焊脚911A。所述参考地50A被以去除所述参考地50A的一闭环部分的方式于所述参考地50A形成有与所述参考地50A相隔断的至少一焊盘52A,其中所述电子元器件91A的至少一所述焊脚911A被导电焊接于所述焊盘52A后被固定于所述基板10A。所述处理电路90A可以通过所述电子元器件91A的所述焊脚911A被电连接于所述基板10A的电路和所述驱动电路60A被电连接于所述基板10A的电路的方式被电连接于所述驱动电路60A。优选地,所述参考地50A与所述焊盘52A之间的隔断距离小于或者等于1/64λ。
参考附图35至图37,所述处理电路90A在所述投影面的投影被包含在所述参考地50A在所述投影面的投影的内部,并且所述处理电路90A在所述投影面的投影和所述辐射源30A在所述投影面的投影被包含在所述参考地50A在所述投影面的投影的不同区域。
例如,在附图35至图37示出的所述天线的这个较佳示例中,所述屏蔽地40A的长度尺寸和所述基板10A的所述宽度方向一致,所述辐射源30A的长度方向与所述基板10A的所述长度方向一致,并且所述辐射源30A靠近所述基板10A的所述第一侧部15A,所述处理电路90A的长度方向与所述基板10A的所述长度方向一致,并且所述处理电路90A靠近所述基板10A的所述第二侧部16A。
附图38至图41示出了所述天线的第六个变形实施方式,与附图35至图37示出的所述天线不同的是,在附图38至图41示出的所述天线的这个较佳示例中,所述天线进一步包括所述抑制篱笆100A,所述抑制篱笆100A环绕于所述驱动电路60A、所述辐射源30A和所述处理电路90A,以进一步提高所述驱动电路60A和所述处理电路90A对于所述天线产生的辐射波的抑制效果。
依本发明的另一个方面,本发明进一步提供一干扰抑制方法,以抑制所述天线的所述驱动电路60A产生的杂散电磁波辐射,其中所述干扰抑制方法包括如下 步骤:
(A)在所述天线的厚度方向,允许所述天线的所述辐射源30A和所述参考地50A分别于所述基板10A的所述第一端部13A以相互对应的方式保持于所述基板10A的所述上侧面11A和所述下侧面12A;和
(B)在所述天线的厚度方向,允许所述天线的所述屏蔽地40A和所述驱动电路60A分别于所述基板10A的所述第二端部14A以相互对应的方式保持于所述基板10A的所述上侧面11A和所述下侧面12A,从而当所述驱动电路60A自所述辐射源30A的所述馈电点31A提供微波激励电信号至所述辐射源30A而允许所述天线产生辐射波时,所述屏蔽地40A抑制所述驱动电路60A产生的杂散电磁波辐射。
进一步地,在上述方法中,所述驱动电路60A在平行于所述基板10A的所述投影面的投影被包含在所述屏蔽地40A在所述投影面的投影的内部,以使所述屏蔽地40A有效地抑制所述驱动电路60A产生的电磁波。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (37)

  1. 一天线,其特征在于,所述天线具有一基板和一辐射缝隙,所述基板具有一上侧面和对应于所述上侧面的一下侧面,其中所述天线进一步包括:
    一参考地;
    一屏蔽地;
    一辐射源,其中所述辐射源具有一馈电点;以及
    一驱动电路,其中所述驱动电路被电连接于所述辐射源的所述馈电点;
    其中所述辐射源和所述屏蔽地以相邻的方式被保持于所述基板的所述上侧面,所述参考地和所述驱动电路以相邻的方式被保持于所述基板的所述下侧面,其中在所述天线的厚度方向,所述辐射源和所述参考地相互对应以允许位于所述辐射源和所述参考地之间的所述基板形成所述辐射缝隙,所述屏蔽地和所述驱动电路相互对应以允许所述屏蔽地抑制所述驱动电路产生的杂散电磁波辐射。
  2. 根据权利要求1所述的天线,其中所述天线进一步包括一导电部,其中所述导电部包括一过板导电元件和一延伸导电臂,所述过板导电元件自所述辐射源的所述馈电点延伸至所述基板的所述下侧面,所述延伸导电臂的两端分别延伸以被电连接于所述过板导电元件和所述驱动电路。
  3. 根据权利要求2所述的天线,其中所述延伸导电臂采用跳线的方式被设置以电性连接所述过板导电元件和所述驱动电路。
  4. 根据权利要求2所述的天线,其中所述参考地具有一导电缝隙,其自所述参考地的边缘延伸至所述参考地的中部,所述延伸导电臂被保持于所述参考地的所述导电缝隙。
  5. 根据权利要求3所述的天线,其中所述辐射源在平行于所述基板的一投影面的投影被包含在所述参考地在所述投影面的投影的内部。
  6. 根据权利要求5所述的天线,其中所述驱动电路在所述投影面的投影被包含在所述屏蔽地在所述投影面的投影的内部。
  7. 根据权利要求6所述的天线,其中所述参考地环绕于所述驱动电路。
  8. 根据权利要求1至7中任一所述的天线,其中所述辐射源被接地。
  9. 根据权利要求8所述的天线,其中所述辐射源和所述参考地被相互连接,以使所述辐射源被接地。
  10. 根据权利要求1至7中任一所述的天线,进一步包括一处理电路,所述处理电路 包括至少一电子元器件,每个所述电子元器件分别具有至少两焊脚,其中所述参考地被以去除所述参考地的一闭环部分的方式形成有与所述参考地相隔断的至少一焊盘,其中所述电子元器件的至少一所述焊脚被导电焊接于所述焊盘,并被电连接于所述驱动电路。
  11. 根据权利要求9所述的天线,进一步包括一处理电路,所述处理电路包括至少一电子元器件,每个所述电子元器件分别具有至少两焊脚,其中所述参考地被以去除所述参考地的一闭环部分的方式形成有与所述参考地相隔断的至少一焊盘,其中所述电子元器件的至少一所述焊脚被导电焊接于所述焊盘,并被电连接于所述驱动电路。
  12. 根据权利要求1至7中任一所述的天线,进一步包括一抑制篱笆,其中所述抑制篱笆包括一组篱笆体,所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述屏蔽地向所述基板的所述下侧面方向延伸,并且所述一组篱笆体环绕于所述驱动电路。
  13. 根据权利要求9所述的天线,进一步包括一抑制篱笆,其中所述抑制篱笆包括一组篱笆体,所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述屏蔽地向所述基板的所述下侧面方向延伸,并且所述一组篱笆体环绕于所述驱动电路。
  14. 根据权利要求10所述的天线,进一步包括一抑制篱笆,其中所述抑制篱笆包括一组篱笆体,所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述屏蔽地向所述基板的所述下侧面方向延伸,并且所述一组篱笆体环绕于所述驱动电路。
  15. 根据权利要求11所述的天线,进一步包括一抑制篱笆,其中所述抑制篱笆包括一组篱笆体,所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述屏蔽地向所述基板的所述下侧面方向延伸,并且所述一组篱笆体环绕于所述驱动电路。
  16. 根据权利要求12所述的天线,其中所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述参考地延伸至所述基板的所述上侧面。
  17. 根据权利要求13所述的天线,其中所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述参考地延伸至所述基板的所述上侧面。
  18. 根据权利要求15所述的天线,其中所述一组篱笆体以相邻所述篱笆体相互间隔的方式自所述参考地延伸至所述基板的所述上侧面。
  19. 根据权利要求15所述的天线,其中所述一组篱笆体中的至少一部分所述篱笆体被连接于所述参考地。
  20. 根据权利要求1、2、3、4、5、6、7、8、9、12、13、16或17所述的天线,其中所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的长度方向一致的方式 被保持于所述基板的第一端部,并且所述辐射源的长度方向的中轴线偏离所述基板的长度方向的中轴线;或者所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第一端部。
  21. 根据权利要求10、11、14、15、18或19所述的天线,其中所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的长度方向一致的方式被保持于所述基板的第一端部,所述处理电路以所述处理电路的长度方向和所述基板的长度方向一致的方式被保持于所述基板的第一端部,并且在所述天线的厚度方向,所述辐射源和所述处理电路不重合;或者所述屏蔽地以所述屏蔽地的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第二端部,所述辐射源以所述辐射源的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第一端部,所述处理电路以所述处理电路的长度方向和所述基板的宽度方向一致的方式被保持于所述基板的第一端部,并且在所述天线的厚度方向,所述辐射源和所述处理电路不重合。
  22. 一天线的制造方法,其特征在于,所述制造方法包括如下步骤:
    (a)以一第一板和一第二板相邻的方式保持所述第一板和所述第二板于一基板的一上侧面,和以一第三板的一容纳空间对应于所述第二板的方式保持所述第二板于所述基板的一下侧面,其中所述第三板具有自所述容纳空间延伸至所述第三板的中部的一开槽;
    (b)形成被保持在所述第三板的所述容纳空间的一驱动电路于所述基板的所述下侧面,和形成被保持在所述第三板的所述开槽和自所述驱动电路延伸至所述第三板的中部的一延伸导电臂于所述基板的所述下侧面;以及
    (c)形成以贯穿所述基板的方式自所述第一板延伸至所述延伸导电臂的一过板导电元件,其中所述第一板形成所述天线的一辐射源,所述第二板形成所述天线的一屏蔽地,所述第三板形成所述天线的一参考地,所述基板的位于所述第一板和所述第三板之间的部分形成所述天线的一辐射缝隙,以制得所述天线。
  23. 根据权利要求22所述的制造方法,其中所述步骤(a)进一步包括步骤:
    (a.1)去除被贴附在所述基板的所述上侧面的一个金属层的一部分,以于所述基板的所述上侧面形成所述第一板和所述第二板;和
    (a.2)去除被贴附在所述基板的所述下侧面的另一个金属层的一部分,以于所述基板的所述下侧面形成所述第三板。
  24. 根据权利要求22所述的制造方法,其中所述步骤(a)进一步包括步骤:
    (a.1')贴附所述第一板和所述第二板于所述基板的所述上侧面;和
    (a.2')贴附所述第三板于所述基板的所述下侧面。
  25. 根据权利要求22至24中任一所述的制造方法,其中在所述步骤(c)中,形成以贯穿所述基板的方式自所述第一板延伸至所述第三板的一过板接地元件,以使所述辐射源被连接于所述参考地。
  26. 根据权利要求22至24中任一所述的制造方法,其中在所述步骤(c)中,以去除所述第三板的一闭环部分的方式于所述参考地形成与所述参考地相隔断的至少一焊盘,从而允许至少一电子元器件的至少一焊脚被导电焊接于所述焊盘并被电连接于所述驱动电路,以使所述电子元器件形成一处理电路。
  27. 根据权利要求25所述的制造方法,其中在所述步骤(c)中,以去除所述第三板的一闭环部分的方式于所述参考地形成与所述参考地相隔断的至少一焊盘,从而允许至少一电子元器件的至少一焊脚被导电焊接于所述焊盘并被电连接于所述驱动电路,以使所述电子元器件形成一处理电路。
  28. 根据权利要求22至24中任一所述的制造方法,其中在所述步骤(b)或所述步骤(c)中,形成自所述第二板的四周向所述基板的所述下侧面方向延伸且环绕于所述驱动电路的一组篱笆体。
  29. 根据权利要求26所述的制造方法,其中在所述步骤(b)或所述步骤(c)中,形成自所述第二板的四周向所述基板的所述下侧面方向延伸且环绕于所述驱动电路的一组篱笆体。
  30. 根据权利要求27所述的制造方法,其中在所述步骤(b)或所述步骤(c)中,形成自所述第二板的四周向所述基板的所述下侧面方向延伸且环绕于所述驱动电路的一组篱笆体。
  31. 一干扰抑制方法,以抑制一天线的一驱动电路产生的杂散电磁波辐射,其特征在于,所述干扰抑制方法包括如下步骤:
    (A)在所述天线的厚度方向,允许所述天线的一辐射源和一参考地分别于一基板的一第一端部以相互对应的方式保持于所述基板的一上侧面和一下侧面;和
    (B)在所述天线的厚度方向,允许所述天线的一屏蔽地和所述驱动电路分别于所述基板的一第二端部以相互对应的方式保持于所述基板的所述上侧面和所述下侧面,从而当所述驱动电路自所述辐射源的一馈电点提供微波激励电信号至所述辐射源而使得所述天 线产生辐射波时,所述屏蔽地抑制所述驱动电路产生的杂散电磁波辐射。
  32. 根据权利要求31所述的干扰抑制方法,其中在上述方法中,所述驱动电路在平行于所述基板的一个投影面的投影被包含在所述屏蔽地在所述投影面的投影的内部。
  33. 根据权利要求31所述的干扰抑制方法,其中在上述方法中,保持被电连接于所述驱动电路的一处理电路于所述参考地的侧部,以在所述天线的厚度方向,藉由所述参考地隔离所述处理电路和所述辐射源。
  34. 根据权利要求31至33中任一所述的干扰抑制方法,其中在上述方法中,形成自所述屏蔽地的向所述基板的所述下侧面方向延伸且环绕于所述驱动电路的一组篱笆体。
  35. 根据权利要求34所述的干扰抑制方法,其中在上述方法中,导通地连接所述一组篱笆体中的至少一部分所述篱笆体和所述参考地。
  36. 根据权利要求31至33中任一所述的干扰抑制方法,其中在上述方法中,藉由一屏蔽罩罩住所述驱动电路。
  37. 根据权利要求36所述的干扰抑制方法,其中在上述方法中,藉由所述屏蔽罩罩住所述参考地。
PCT/CN2019/089442 2019-04-19 2019-05-31 天线及其制造方法和干扰抑制方法 WO2020211172A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910317039.9A CN110061352A (zh) 2019-04-19 2019-04-19 天线及其制造方法和干扰抑制方法
CN201910317039.9 2019-04-19

Publications (1)

Publication Number Publication Date
WO2020211172A1 true WO2020211172A1 (zh) 2020-10-22

Family

ID=67319735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089442 WO2020211172A1 (zh) 2019-04-19 2019-05-31 天线及其制造方法和干扰抑制方法

Country Status (6)

Country Link
US (1) US20200333430A1 (zh)
EP (1) EP3726653A1 (zh)
CN (1) CN110061352A (zh)
AU (1) AU2019222841A1 (zh)
TW (1) TWI743505B (zh)
WO (1) WO2020211172A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649928A (zh) * 2019-09-20 2020-01-03 深圳迈睿智能科技有限公司 微波多普勒模块
CN111162382A (zh) * 2020-01-10 2020-05-15 深圳迈睿智能科技有限公司 微型化微波探测装置和其制造方法
CN112909544B (zh) * 2021-02-08 2023-03-28 歌尔科技有限公司 一种电子设备及其多天线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231226A1 (en) * 2006-10-11 2009-09-17 Raytheon Company Dual band active array antenna
CN107026309A (zh) * 2017-05-26 2017-08-08 迈锐数据(北京)有限公司 天线组件及车辆检测器
CN107196061A (zh) * 2017-07-03 2017-09-22 华南理工大学 一种基于加载谐振器的三频微带缝隙天线
US20180076521A1 (en) * 2016-09-14 2018-03-15 Kymeta Corporation Impedance matching for an aperture antenna
CN108832280A (zh) * 2018-06-08 2018-11-16 西安电子科技大学 一种可用于5g通信的毫米波全向圆极化天线

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3472430B2 (ja) * 1997-03-21 2003-12-02 シャープ株式会社 アンテナ一体化高周波回路
TWM376071U (en) * 2009-10-09 2010-03-11 Inventec Appliances Corp Circuit board and mobile communication device
JP5408160B2 (ja) * 2011-03-09 2014-02-05 株式会社村田製作所 水平方向放射アンテナ
WO2015015863A1 (ja) * 2013-07-29 2015-02-05 株式会社村田製作所 アンテナ一体型無線モジュールおよびこのモジュールの製造方法
TWI546928B (zh) * 2014-03-17 2016-08-21 矽品精密工業股份有限公司 電子封裝件及其製法
US9391370B2 (en) * 2014-06-30 2016-07-12 Samsung Electronics Co., Ltd. Antenna feed integrated on multi-layer PCB
US9979072B2 (en) * 2014-10-20 2018-05-22 Electronics And Telecommunications Research Institute RFID reader antenna
KR102504859B1 (ko) * 2016-04-19 2023-03-02 스카이워크스 솔루션즈, 인코포레이티드 무선 주파수 모듈의 선택적 차폐
CN107887698B (zh) * 2016-09-29 2020-11-10 矽品精密工业股份有限公司 电子封装结构及其制法
JP6449837B2 (ja) * 2016-12-01 2019-01-09 太陽誘電株式会社 無線モジュール及び無線モジュールの製造方法
JP6408540B2 (ja) * 2016-12-01 2018-10-17 太陽誘電株式会社 無線モジュール及び無線モジュールの製造方法
CN106921030B (zh) * 2017-05-04 2023-09-15 歌尔科技有限公司 用于金属外壳的天线组件和智能穿戴设备
CN112467376B (zh) * 2018-06-11 2024-02-27 深圳迈睿智能科技有限公司 具有抗干扰设置的天线及其制造方法
JP2018201248A (ja) * 2018-09-18 2018-12-20 太陽誘電株式会社 無線モジュール
CN209641834U (zh) * 2019-04-19 2019-11-15 深圳迈睿智能科技有限公司 天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231226A1 (en) * 2006-10-11 2009-09-17 Raytheon Company Dual band active array antenna
US20180076521A1 (en) * 2016-09-14 2018-03-15 Kymeta Corporation Impedance matching for an aperture antenna
CN107026309A (zh) * 2017-05-26 2017-08-08 迈锐数据(北京)有限公司 天线组件及车辆检测器
CN107196061A (zh) * 2017-07-03 2017-09-22 华南理工大学 一种基于加载谐振器的三频微带缝隙天线
CN108832280A (zh) * 2018-06-08 2018-11-16 西安电子科技大学 一种可用于5g通信的毫米波全向圆极化天线

Also Published As

Publication number Publication date
US20200333430A1 (en) 2020-10-22
AU2019222841A1 (en) 2020-11-05
CN110061352A (zh) 2019-07-26
TW202040870A (zh) 2020-11-01
EP3726653A1 (en) 2020-10-21
TWI743505B (zh) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6750738B2 (ja) アンテナモジュールおよび通信装置
JP3863464B2 (ja) フィルタ内蔵アンテナ
TWI743505B (zh) 天線及其製造方法和干擾抑制方法
US6492947B2 (en) Stripline fed aperture coupled microstrip antenna
US7248224B2 (en) Antenna device having radiation characteristics suitable for ultrawideband communications
JP3649168B2 (ja) Rf回路一体型アンテナおよびそれを用いたアンテナモジュールおよびそれを備えた通信機
US8379408B2 (en) Electromagnetic shield structure, wireless device using the structure, and method of manufacturing electromagnetic shield
JP2001044716A (ja) ストリップライン給電装置
EP4089836A1 (en) Antenna assembly and electronic device
WO2010013610A1 (ja) 平面アンテナ
CN113675602B (zh) 天线模组及其制备方法、终端
JP4995174B2 (ja) 無線通信装置
JP4548287B2 (ja) アンテナ装置
JP3517492B2 (ja) 基板埋込型アンテナ及び該アンテナを内蔵した携帯無線電話端末
CN209641834U (zh) 天线
CN114498017B (zh) 一种易加工的毫米波有源双极化天线
JP4069638B2 (ja) アンテナ素子
CN212874751U (zh) 一种具有阻抗匹配功能的天线辐射单元
JPS60134605A (ja) マイクロストリツプアンテナ
JP2004320431A (ja) 平面アンテナ装置
JPH11220325A (ja) アンテナ装置
JP7246583B2 (ja) アンテナ装置
CN214099902U (zh) 一种组合天线及智能停车管理系统
CN113194369B (zh) 一种麦克风
JPH0927715A (ja) 一体型マイクロ波回路を有する誘電体多層基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19924840

Country of ref document: EP

Kind code of ref document: A1