WO2010013610A1 - 平面アンテナ - Google Patents

平面アンテナ Download PDF

Info

Publication number
WO2010013610A1
WO2010013610A1 PCT/JP2009/062969 JP2009062969W WO2010013610A1 WO 2010013610 A1 WO2010013610 A1 WO 2010013610A1 JP 2009062969 W JP2009062969 W JP 2009062969W WO 2010013610 A1 WO2010013610 A1 WO 2010013610A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna
pad
dielectric layer
ground
Prior art date
Application number
PCT/JP2009/062969
Other languages
English (en)
French (fr)
Inventor
健 森下
直樹 小林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/055,856 priority Critical patent/US20110122041A1/en
Priority to JP2010522678A priority patent/JPWO2010013610A1/ja
Publication of WO2010013610A1 publication Critical patent/WO2010013610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates to a planar antenna used for a wireless communication device or the like.
  • a flat antenna having a patch antenna structure in which a ground conductor and a rectangular (rectangular or square) or circular antenna conductor are formed on a dielectric substrate is widely used.
  • the resonance frequency is determined by the size of the antenna conductor and the dielectric constant of the dielectric substrate. In general, the lower the frequency band to be used, the larger the size of the antenna conductor, requiring a wider mounting area. In order to reduce the size of the antenna, the resonance frequency may be lowered without changing the size of the antenna conductor.
  • FIG. 1 of Patent Document 1 proposes a built-in antenna for the purpose of miniaturization, high performance, high integration, and the like.
  • This built-in antenna includes a microstrip antenna 1 having an antenna pattern 12 formed on a printed board 11 and a dielectric substrate 2 disposed on the surface of the microstrip antenna 1.
  • FIG. 1 of Patent Document 2 proposes a planar antenna device for reducing the resonance frequency and miniaturizing the antenna.
  • the planar antenna device includes a capacitor electrode portion 8 extending substantially at right angles from an outer edge portion of the radiating conductor layer 7 functioning as an antenna, a ground conductor layer 10 facing the radiating conductor layer 7 at a predetermined interval, A metal case 2 having an upper opening 2a for projecting the radiation conductor layer 7 and electrically connected to the ground conductor layer 10 is provided.
  • the side wall portion 2b of the metal case 2 that operates as an electrical ground is disposed outside the capacitor electrode portion 8 so as to be opposed to each other, and the side wall portion 2b and the capacitor electrode portion 8 are capacitively coupled. Has been.
  • FIG. 2 of Patent Document 4 proposes a chip antenna 10 for the purpose of widening and downsizing the chip antenna.
  • the chip antenna 10 includes a rectangular parallelepiped base 11 having a mounting surface 111, and a power supply electrode 12 and a ground electrode 13 are provided on the surface of the base 11.
  • a second dielectric substrate is required in addition to the printed circuit board (dielectric substrate) on which the microstrip antenna is formed.
  • the resonance frequency is lowered by the wavelength shortening effect of the electric field in the second dielectric substrate described above.
  • an antenna conductor and a ground conductor formed on a dielectric substrate are electromagnetically strongly coupled, and an electric field is not easily concentrated on the second dielectric substrate.
  • the second dielectric substrate has a dielectric constant that is several to several tens of times greater than that of the first dielectric substrate, and is electrically Therefore, it is necessary to form the second dielectric substrate so as to have a thickness that cannot be ignored.
  • An object of the present invention is to solve the above-described problems, and one of the objects is to reduce the resonance frequency of the antenna conductor without using a special material or structure, thereby enabling miniaturization and high integration. Is to provide a flat antenna.
  • a planar antenna includes a first dielectric layer and a second dielectric layer, and a first dielectric layer and a second dielectric layer.
  • the first dielectric layer is disposed so as to be sandwiched between the antenna conductor and the ground conductor.
  • the second dielectric layer is disposed between one of the antenna conductor and the ground conductor and the pad conductor.
  • the planar antenna includes a connection conductor that electrically connects the other of the antenna conductor and the ground conductor to the pad conductor.
  • a planar antenna according to a second aspect of the present invention includes a first dielectric layer, a second dielectric layer, and a third dielectric layer, a first dielectric layer, a second dielectric layer, And an antenna conductor, a ground conductor, a first pad conductor, and a second pad conductor provided so as to sandwich the third dielectric layer in the stacking direction.
  • the first dielectric layer is disposed between the antenna conductor and the ground conductor.
  • the second dielectric layer is disposed between one of the antenna conductor and the ground conductor and the pad conductor.
  • the third dielectric layer is disposed between the other of the antenna conductor and the ground conductor and the pad conductor.
  • the planar antenna includes a first connection conductor that electrically connects the other of the antenna conductor and the ground conductor and the first pad conductor, one of the antenna conductor and the ground conductor, and a second pad conductor.
  • a second connection conductor for electrical connection.
  • the resonance frequency of the antenna conductor can be lowered, and as a result, the planar antenna can be reduced in size. Can be realized.
  • planar antenna According to the planar antenna according to the second aspect of the present invention, two capacitances (first capacitance and second capacitance) are added between the antenna conductor and the ground conductor, as in the first aspect. Therefore, the resonance frequency of the antenna conductor can be reduced, and as a result, the planar antenna can be reduced in size.
  • the non-conductive portion is provided in the antenna conductor or the ground conductor, and the ground conductor or the antenna conductor and the pad conductor are provided with a simple connection structure.
  • the connection conductor can electrically connect the ground conductor or the antenna conductor and the pad conductor via the non-conductive portion, and the manufacturing cost of the planar antenna can be reduced.
  • planar antenna of 1st Embodiment It is a disassembled perspective view which shows the planar antenna of 1st Embodiment.
  • the planar antenna of 1st Embodiment it is a perspective view which shows the connection form by a connection conductor.
  • a disassembled perspective view which shows the other structure of the planar antenna of 1st Embodiment.
  • FIG. 1 It is a disassembled perspective view which shows other structure of the planar antenna of 1st Embodiment. It is a perspective view which shows the connection form by a connection conductor in other structure of the planar antenna of 1st Embodiment. It is a disassembled perspective view which shows other structure of the planar antenna of 1st Embodiment. It is a perspective view which shows the connection form by a connection conductor in other structure of the planar antenna of 1st Embodiment. It is a disassembled perspective view which shows the planar antenna of 2nd Embodiment. It is a perspective view which shows the connection form by a connection conductor in the planar antenna of 2nd Embodiment. FIG.
  • FIG. 5 is an exploded perspective view showing a planar antenna having a patch antenna structure in which an antenna conductor and a ground conductor are formed on a dielectric substrate. It is a disassembled perspective view which shows the electromagnetic field simulation model of the planar antenna which concerns on this invention. It is a top view which shows the arrangement
  • planar antenna of the embodiment will be described with reference to the drawings.
  • the planar antenna according to the present invention is provided so as to sandwich the first dielectric layer 1 and the second dielectric layer 2 and the first dielectric layer 1 and the second dielectric layer 2 in the stacking direction, respectively.
  • the planar antennas 10A, 10B, 10C, and 10D (the planar antenna according to the first aspect.
  • the “planar antenna according to the first embodiment”) including the antenna conductor 4, the ground conductor 5, and the pad conductor 6. (See FIGS. 1, 2, 4 and 5).
  • the planar antenna according to the present invention includes a first dielectric layer 1, a second dielectric layer 2, and a third dielectric layer 3, and these first dielectric layer 1 and second dielectric layer.
  • FIGS. 1A and 1B, FIGS. 2A and 2B, FIGS. 4A and 4B, and FIGS. 5A and 5B are schematic configuration diagrams illustrating examples of the planar antenna according to the first embodiment.
  • 1A, 2A, 4A, and 5A are exploded perspective views
  • FIGS. 1B, 2B, 4B, and 5B are perspective views of connection forms using connection conductors.
  • the planar antenna of the first embodiment is configured such that the antenna conductor 4 and the ground conductor 5 face each other with the first dielectric layer 1 in between.
  • One of the conductor 4 and the ground conductor 5 ”and the pad conductor 6 are arranged to face each other with the second dielectric layer 2 interposed therebetween, and“ the other of the antenna conductor 4 and the ground conductor 5 ”and the pad conductor 6 are connected to each other. 7 to be electrically connected.
  • one of the antenna conductor 4 and the ground conductor 5 refers to one of the antenna conductor 4 and the ground conductor 5, and “the other of the antenna conductor 4 and the ground conductor 5” is the other.
  • One of the things For example, when “one of the antenna conductor 4 and the ground conductor 5” is the antenna conductor 4, “the other of the antenna conductor 4 and the ground conductor 5” becomes the ground conductor 5, and conversely, “the antenna conductor 4 and the ground conductor 5”. If “one of the two” is the ground conductor 5, “the other of the antenna conductor 4 and the ground conductor 5” is the antenna conductor 4.
  • the antenna conductor 4 and the pad conductor 6 are arranged with capacitance (second dielectric layer 2), and “the other of the antenna conductor 4 and the ground conductor 5” and the pad conductor 6 are electrically connected by the connection conductor 7. Since they are connected, the above-described capacitance is added between the antenna conductor 4 and the ground conductor 5. The capacitance acts on the voltage between the antenna conductor 4 and the ground conductor 5. For this reason, by electrically connecting the pad conductor to “the other of the antenna conductor 4 and the ground conductor 5”, the resonance frequency can be effectively reduced, and the planar antenna can be reduced in size.
  • FIGS. 1A, 1B, 2A, 2B, 4A, 4B, 5A, and 5B will be described in detail.
  • FIG. 1A and 1B are schematic configuration diagrams illustrating an example of a planar antenna 10A according to the first embodiment.
  • 2A and 2B are schematic configuration diagrams illustrating another example of the planar antenna 10B according to the first embodiment.
  • 1A and 2A are exploded perspective views, and FIGS. 1B and 2B are perspective views showing an electrical connection state between the pad conductor 6 and the ground conductor 5.
  • FIG. The planar antennas 10A and 10B shown in FIG. 1A and FIG. 2A have a ground conductor 5, a first dielectric layer 1, an antenna conductor 4, a second dielectric layer 2, and a pad conductor from the bottom to the top in the drawings. They are arranged in the order of 6.
  • the first dielectric layer 1 is sandwiched between the antenna conductor 4 and the ground conductor 5, and the second dielectric layer 2 is sandwiched between the antenna conductor 4 and the pad conductor 6.
  • the ground conductor 5 and the pad conductor 6 are electrically connected by the connection conductor 7.
  • the ground conductor 5 and the antenna conductor 4 are respectively disposed on both surfaces of the first dielectric layer 1, and the antenna conductor 4 and the pad conductor 6 are disposed on both surfaces of the second dielectric layer 2.
  • the ground conductor 5 and the pad conductor 6 are electrically connected by the connection conductor 7.
  • Examples of the material of the antenna conductor 4, the ground conductor 5, and the pad conductor 6 include copper, aluminum, and other materials commonly used as conductor materials for planar antennas.
  • Examples of the material of the first dielectric layer 1 and the second dielectric layer 2 include a resin-based material used for a printed board and a ceramic-based material used for a dielectric substrate. .
  • the size, shape, thickness, etc. of each of the conductors 4, 5, 6 and the dielectric layers 1, 2 may be considered so as to obtain a desired resonance frequency, and are not particularly limited. May be set to a size, a shape, a thickness, and the like.
  • the antenna conductor 4 is formed in a square shape (square or rectangular shape) and is smaller than the ground conductor 5.
  • the pad conductors 6 are disposed at both ends of the antenna conductor 4 in the X-axis direction, and are formed with a predetermined width so as to extend in the Y-axis direction.
  • the pad conductor 6 is formed in a strip shape extending linearly in the Y-axis direction in the configuration example shown in FIG. 1A, and is divided into a plurality of square shapes in the configuration example shown in FIG. It is arranged in the axial direction.
  • connection conductor 7 is not particularly limited as long as it is a structure that electrically connects the ground conductor 5 and the pad conductor 6.
  • the connection conductor 7 is formed as a columnar conductor. Is preferred.
  • the material of the connection conductor 7 include conductive materials such as copper and aluminum.
  • Such a connection conductor 7 is preferably in the form of a so-called “via” in which wiring layers inside the multilayer wiring board are electrically connected through a through hole.
  • a via is formed, for example, in the first dielectric layer 1 or the second dielectric layer 2 by a plating means (electroless plating, electrolytic plating, etc.), and further filled with the through hole. Can be formed.
  • connection conductor 7 penetrates the antenna conductor 4 in the stacking direction in order to electrically connect the ground conductor 5 and the pad conductor 6.
  • the antenna conductor 4 is preferably provided with a non-conductive portion 8 (also referred to as a clearance hole) for preventing contact with the connection conductor 7, and the connection conductor 7 passes through the non-conductive portion 8.
  • a non-conductive portion 8 is formed with a via (connection conductor 7) after the above-described through hole is formed, an electrical hole shape is formed by removing the conductor portion around the via by etching or the like. It can be formed by using a (cylindrical shape in which electricity does not flow).
  • connection conductors 7 are electrically connected to the ground conductor 5 as shown in FIG. 1B.
  • connection conductors 7 are provided corresponding to the respective pad conductors 6 (6a1... 6an, 6b1... 6bn). Is electrically connected to the ground conductor 5 as shown in FIG.
  • the ground conductor 5 and the pad conductor 6 are electrically connected in the stacking direction via a non-conductive portion 8 provided in the antenna conductor 4. For this reason, the connection distance between the ground conductor 5 and the pad conductor 6 is relatively short and the connection structure is simple. Further, by using a connection member such as a through hole or a via as described above, The pad conductor 6 can be easily connected. As a result, it is advantageous in providing a low-cost planar antenna. By adopting such a connection structure, a capacitance is added between the antenna conductor 4 and the ground conductor 5.
  • the pad conductor 6 is preferably provided at a position where the voltage between the antenna conductor 4 and the ground conductor 5 is maximum at the resonance frequency of the antenna.
  • the patch antenna 10 ⁇ / b> A of the present embodiment in which the rectangular antenna conductor 4 is disposed on the ground conductor 5 via the first dielectric layer 1, a half-wave voltage is applied between the antenna conductor 4 and the ground conductor 5.
  • a fundamental resonance mode in which a standing wave is generated is mainly used.
  • the voltage generated between the antenna conductor 4 and the ground conductor 5 is maximum in each region at both end portions farthest among the formation regions of the antenna conductor 4, and is minimum at the central portion between both end portions. become. That is, in the region where the antenna conductor 4 is formed, the voltage generated in each region at both ends where the separation distance is maximum is maximum, and the voltage generated in the central region between these both ends is minimum.
  • a capacitance is added between the antenna conductor 4 and the ground conductor 5, and the capacitance acts on the voltage between the antenna conductor 4 and the ground conductor 5. For this reason, by arranging the pad conductor 6 at a position where the voltage between the antenna conductor 4 and the ground conductor 5 is maximized, the resonance frequency can be effectively reduced.
  • FIGS. 1A and 1B is a configuration in the case of a fundamental resonance mode in which a half-wave voltage standing wave is generated between the antenna conductor 4 and the ground conductor 5, and the pad conductors 6a and 6b are connected to the planar antenna 10A.
  • the regions where the antenna conductor 4 is formed as viewed in a plan view the regions at the farthest ends of the antenna conductor 4 (in FIG. 1A, the X-axis direction of the rectangular antenna conductor 4 (the horizontal direction in the figure)). Both ends are provided in a region extending in the Y-axis direction).
  • planar antenna 10A when the planar antenna 10A is viewed in a plan view, in a region where the ground conductor 5 and the rectangular antenna conductor 4 overlap, a predetermined width is formed along opposite sides of the rectangular antenna conductor 4. Pad conductors 6a and 6b are provided.
  • FIGS. 2A and 2B is a resonance mode in which a voltage standing wave of one wavelength is generated between the antenna conductor 4 and the ground conductor 5, and the pad conductors (6a1... 6an, 6b1... 6bn)
  • the areas of the antenna conductor 4 that are the farthest away from each other in FIG. 2A, the X-axis direction of the rectangular antenna conductor 4 (FIG. (Regions extending in the Y-axis direction) at both ends in the middle and left-right direction).
  • the pad conductors 6a and 6b having a predetermined width are formed at predetermined intervals along opposite sides of the rectangular antenna conductor 4. It is divided and provided.
  • FIG. 3A shows a patch antenna in which a ground conductor 5 is formed on one surface (lower surface) of the first dielectric substrate 1 and a rectangular antenna conductor 4 is formed on the other surface (upper surface).
  • FIG. 3B shows the voltage distribution in the TE10 mode
  • FIG. 3C shows the voltage distribution in the TE20 mode.
  • a fundamental resonance mode in which a half-wave voltage standing wave is generated between the antenna conductor 4 and the ground conductor 5 is mainly used.
  • a voltage as shown in FIG. 3B is generated between the antenna conductor 4 and the ground conductor 5 in this basic resonance mode. That is, the patch antenna shown in FIG. 3A has no distribution with respect to the Y-axis direction.
  • the voltage is maximum at both ends in the X-axis direction and the voltage is at the center in the X-axis direction.
  • a voltage standing wave having a minimum half wavelength is generated.
  • the capacitance arranged between the antenna conductor 4 and the pad conductor 6 (6a, 6b) is the pad conductor 6 and the ground conductor. 5 is electrically connected by the connecting conductor 7, and is added between the antenna conductor 4 and the ground conductor 5.
  • the capacitance acts on the voltage between the antenna conductor 4 and the ground conductor 5. For this reason, the resonant frequency can be effectively lowered by arranging the pad conductor 6 at a position where the voltage generated between the antenna conductor 4 and the ground conductor 5 becomes maximum at the resonant frequency of the antenna.
  • 2A and 2B are examples of a fundamental resonance mode in which a half-wave voltage standing wave is generated between the antenna conductor 4 and the ground conductor 5, but the X of the antenna conductor 4 that maximizes the voltage is shown.
  • Opposing pad conductors 6a and 6b are formed at both ends in the axial direction.
  • the pad conductor 6 may be formed so that a capacitance is added at a position where the voltage at the time of resonance is maximized, as described above.
  • the pad conductor 6 may be formed so that a capacitance is added at a position where the voltage at the time of resonance is maximized, as described above.
  • the pad conductor 6 may be formed so that a capacitance is added at a position where the voltage at the time of resonance is maximized, as described above.
  • the pad conductor 6 may be formed so that a capacitance is added at a position where the voltage at the time of resonance is maximized, as described above.
  • FIG. 3C in a resonance mode in which a voltage standing wave of one wavelength is generated between the antenna conductor 4 and the ground conductor 5, the voltage between the antenna conductor 4 and the ground conductor 5 is the maximum.
  • the positions to be are the both end portions and the central portion between the both end portions. Therefore, like the planar antenna 10C shown in FIG.
  • the pad conductors 6a and 6b are provided at both end portions that are farthest apart in the formation area of the antenna conductor 4, and the pad conductor 6c is also provided at the center portion between the both end portions. As a result, it is possible to effectively reduce the resonance frequency.
  • the other configuration of the planar antenna 10C illustrated in FIG. 4A is the same as that of the planar antennas 10A and 10B illustrated in FIGS. 1A and 2A, and thus description thereof is omitted.
  • FIG. 5A and 5B are exploded perspective views showing still another example of the planar antenna according to the first embodiment, FIG. 5A is an exploded perspective view, and FIG. 5B is a connection form between the pad conductor 6 and the antenna conductor 4.
  • FIG. 10D shown in FIG. 5A the antenna conductor 4 and the ground conductor 5 are arranged to face each other with the first dielectric layer 1 interposed therebetween, and “one of the antenna conductor 4 and the ground conductor 5” and the pad conductor 6 Are arranged so as to face each other with the second dielectric layer 2 interposed therebetween, and “the other of the antenna conductor 4 and the ground conductor 5” and the pad conductor 6 are electrically connected by the connection conductor 7.
  • This is conceptually the same as the planar antennas 10A, 10B, and 10C shown in FIGS. 1A, 2A, and 4A.
  • FIG. 5A when viewed from the lower side toward the upper side, the pad conductor 6, the second dielectric layer 2, the ground conductor 5, the first dielectric layer 1, and the antenna conductor 4 are stacked in this order.
  • the specific arrangement of the pad conductor 6 is different from the planar antennas 10A, 10B, and 10C shown in FIGS. 1A, 2A, and 4A.
  • the antenna conductor 4 and the ground conductor 5 are the same as those in FIG. 1 in that the antenna conductor 4 and the ground conductor 5 are opposed to each other with the first dielectric layer 1 interposed therebetween.
  • 1A and the like in that the antenna conductor 4 and the pad conductor 6 are electrically connected by the connection conductor 7.
  • the ground conductor 5 is replaced with each other.
  • the ground conductor 5 and the antenna conductor 4 are arranged on both surfaces of the first dielectric layer 1 in the same manner as shown in FIG.
  • the ground conductor 5 and the pad conductor 6 are arranged on both surfaces, and the antenna conductor 4 and the pad conductor 6 are electrically connected by the connection conductor 7.
  • the conductor 5 is replaced with each other.
  • the configuration shown in FIG. 5A and the configuration shown in FIGS. 1A, 2A, and 4A are modes in which only the positional relationship between the antenna conductor 4 and the ground conductor 5 is exchanged.
  • 5A the structure shown in FIG. 5A is the same as the structure shown in FIG. 1A.
  • connection conductor 7 that electrically connects the antenna conductor 4 and the pad conductor 6 is provided so as to penetrate the ground conductor 5, and therefore, between the pad conductor 6 and the ground conductor 5.
  • the first dielectric layer 1 functions as a capacitance added between the antenna conductor 4 and the ground conductor 5.
  • the antenna conductor 4, the ground conductor 5, the pad conductor 6, the connection conductor 7, the non-conductive portion 8, and the like are the same as those shown in FIG.
  • the effect of lowering the resonance frequency is obtained by the capacitance added between the antenna conductor 4 and the ground conductor 5.
  • the same effect can be obtained regardless of whether the pad conductor 6 is formed opposite to the antenna conductor 4 or the ground conductor 5.
  • the pad conductor 6 may be provided to face the antenna conductor 4 depending on the layer configuration of the printed circuit board and the configuration of the power feeding circuit to the antenna. Further, it may be provided so as to face the ground conductor 5, and the range of selection is expanded.
  • FIG. 6A and 6B are schematic configuration diagrams showing an example of the planar antenna according to the second embodiment
  • FIG. 6A is an exploded perspective view
  • FIG. 6B is a connection structure between the first pad conductor and the ground conductor
  • FIG. It is a perspective view which shows the connection structure of an antenna conductor and a 2nd pad conductor.
  • the planar antenna 10E of the second embodiment has an antenna conductor so as to sandwich the first dielectric layer 1, the second dielectric layer 2, and the third dielectric layer 3, respectively. 4, a ground antenna 5, a first pad conductor 6, and a second pad conductor 9.
  • the antenna conductor 4 and the ground conductor 5 are arranged to face each other with the first dielectric layer 1 interposed therebetween, and “one of the antenna conductor 4 and the ground conductor 5” and the first pad conductor 6 are the second. Are disposed opposite to each other with the dielectric layer 9 therebetween.
  • “the other of the antenna conductor 4 and the ground conductor 5” and the first pad conductor 6 are electrically connected by the first connection conductor 7, and “the other of the antenna conductor 4 and the ground conductor 5” and the first
  • the two pad conductors 9 are arranged to face each other with the third dielectric layer 3 interposed therebetween, and “one of the antenna conductor 4 and the ground conductor 5” and the second pad conductor 9 are the second connection conductors 7.
  • one of the antenna conductor 4 and the ground conductor 5 refers to one of the antenna conductor 4 and the ground conductor 5, and “the other of the antenna conductor 4 and the ground conductor 5”. Means the other one which is not one of the above.
  • the voltage between the antenna conductor 4 and the ground conductor 5 facing each other across the first dielectric layer 1 is maximum.
  • the second dielectric layer 2 (which becomes the first capacitance) is disposed between “one of the antenna conductor 4 and the ground conductor 5” and the “first pad conductor 6”.
  • a third dielectric layer 3 (which becomes a second capacitance) is disposed between “the other of the antenna conductor 4 and the ground conductor 5” and the “second pad conductor 9”.
  • the “one pad conductor 6” is electrically connected to “the other of the antenna conductor 4 and the ground conductor 5” by the connection conductor 7, and “the second pad conductor 9” is “one of the antenna conductor 4 and the ground conductor 5”. Connected electrically with connecting conductor 7 ' To have. Therefore, the first capacitance is added between the antenna conductor 4 and the ground conductor 5. On the other hand, a second capacitance is also added between the antenna conductor 4 and the ground conductor 5. Further, since the first capacitance and the second capacitance act on the voltage generated between both the antenna conductor 4 and the ground conductor 5, the first pad conductor 6 is “the antenna conductor 4 and the ground conductor”. 5 ”and the second pad conductor 9 is electrically connected to“ one of the antenna conductor 4 and the ground conductor 5 ”, thereby effectively reducing the resonance frequency. The downsizing of the planar antenna can be realized.
  • the planar antenna 10E shown in FIG. 6A includes a second pad conductor 9, a third dielectric layer 3, a ground conductor 5, and a first dielectric layer from the bottom to the top in the drawing. 1, the antenna conductor 4, the second dielectric layer 2, and the first pad conductor 6 are laminated in this order.
  • the first dielectric layer 1 is disposed between the antenna conductor 4 and the ground conductor 5
  • the second dielectric layer 2 is disposed between the antenna conductor 4 and the first pad conductor 6.
  • the third dielectric layer 3 is sandwiched and disposed between the ground conductor 5 and the second pad conductor 9.
  • the ground conductor 5 and the first pad conductor 6 are electrically connected by the connection conductor 7, and the antenna conductor 4 and the second pad conductor 9 are electrically connected by the connection conductor 7 '.
  • the ground conductor 5 and the antenna conductor 4 are respectively disposed on both surfaces of the first dielectric layer 1, and the antenna conductor 4 and the first pad conductor 6 are respectively disposed on both surfaces of the second dielectric layer 2.
  • the ground conductor 5 and the second pad conductor 9 are respectively disposed on both surfaces of the third dielectric layer 3.
  • the ground conductor 5 and the first pad conductor 6 are electrically connected by the connection conductor 7, and the antenna conductor 4 and the second pad conductor 9 are electrically connected by the connection conductor 7 '.
  • the components constituting the planar antenna of the second embodiment are the same as those of the planar antenna of the first embodiment described above.
  • the antenna conductor 4, the ground conductor 5, the first pad conductor 6, and the second Examples of the material of the pad conductor 9 include copper, aluminum, and other materials generally used as a conductor material for a planar antenna.
  • the first dielectric layer 1, the second dielectric layer 2, and the third dielectric layer 3 may be made of a resin material used for a printed circuit board or a dielectric substrate, for example. Examples thereof include ceramic materials.
  • the size, shape, thickness, and the like are not particularly limited as long as a desired resonance frequency can be obtained, and can be set to various sizes, shapes, thicknesses, and the like. .
  • the first pad conductor 6 provided on the upper surface of the second dielectric layer 2 is arranged in the X-axis direction of the antenna conductor 4 (FIG. 1A, FIG. 4A and the like) are formed in a square shape divided into a plurality of portions in the Y-axis direction.
  • a total of 2n pieces are provided at each end, and constitute a first pad conductor 6 (6a1... 6an, 6b1... 6bn).
  • each of the first pad conductors 6 (6a1... 6an, 6b1... 6bn) is provided with a connection conductor 7, and the plurality of connection conductors 7 are connected to the antenna as shown in FIG.
  • the non-conductive portion 8 of the conductor 4 is penetrated and electrically connected to the ground conductor 5.
  • the third pad conductor 9 provided on the lower surface of the third dielectric layer 3 is located in a central region between both ends of the antenna conductor 4 in the X-axis direction (see FIGS. 1A, 4A, etc.) It is formed in a square shape divided into a plurality in the Y-axis direction.
  • n pieces are provided in a central region of the central portion, and constitute a third pad conductor 9 (9a1... 9an).
  • each of the third pad conductors 9 (9a1... 9an) provided on the lower surface of the third dielectric layer 3 is provided with a connection conductor 7 ′, and the plurality of connection conductors 7 are provided. 'Is electrically connected to the antenna conductor 4 through the non-conductive portion 8' of the ground conductor 5 as shown in FIG. 6B.
  • the first pad conductors 6a and 6b provided on the upper surface of the second dielectric layer 2 are positions where the voltage between the antenna conductor 4 and the ground conductor 5 becomes maximum. That is, the antenna conductor 4 is provided at a position facing each of the regions at the farthest ends in the region where the antenna conductor 4 is formed. Even if this position is a fundamental resonance mode in which a half-wave voltage standing wave is generated between the antenna conductor 4 and the ground conductor 5, a one-wave voltage standing wave is generated between the antenna conductor 4 and the ground conductor 5. Even in a resonance mode in which the voltage occurs, the voltage is at a maximum position.
  • the first capacitance acts on the voltage between the antenna conductor 4 and the ground conductor 5.
  • the second pad conductor 9 provided on the lower surface of the third dielectric layer 3 is provided in a central region between both ends of the antenna conductor 4 in the X-axis direction (see FIGS. 1A, 4A, etc.). However, this region is a position where the maximum is the same as the voltage at both ends in the resonance mode in which a voltage standing wave of one wavelength is generated between the antenna conductor 4 and the ground conductor 5.
  • the second capacitance (third dielectric layer 3) disposed between the ground conductor 5 and the second pad conductor 9 is such that the antenna conductor 4 and the second pad conductor 9 are connected conductors 7 ′.
  • the resonance frequency is effectively lowered by providing the second pad conductor 9 in the central region where the voltage between the antenna conductor 4 and the ground conductor 5 is maximized. be able to.
  • connection conductor 7 that penetrates in the stacking direction via a non-conductive portion 8 provided in the antenna conductor 4.
  • the second pad conductor 9 is electrically connected by a connection conductor 7 ′ penetrating in the stacking direction via a nonconductive portion 8 ′ provided in the ground conductor 5.
  • this embodiment has a short connection distance and a simple connection structure, and can be easily connected using connection members such as through holes and vias, as in the planar antenna of the first embodiment. .
  • connection structures of the second embodiment functions to add capacitance between the antenna conductor 4 and the ground conductor 5.
  • connection conductors 7 and 7 ′ and the non-conductive portions 8 and 8 ′ have the same configuration as that of the planar antenna according to the first embodiment described above, and thus description thereof is omitted.
  • the first capacitance and the second capacitance are added between the antenna conductor 4 and the ground conductor 5, the first implementation in which one capacitance is added.
  • the capacitance can be increased as compared with the planar antenna of the form, the resonance frequency can be more effectively reduced, and further downsizing of the planar antenna can be realized.
  • the planar antenna according to the first and second embodiments of the present invention includes the pad conductor and the antenna according to the size, shape, and arrangement position of the pad conductor, and the thickness and dielectric constant of the dielectric layer forming the pad conductor. By changing the capacitance formed between the conductor and the ground conductor, it is possible to control the reduction rate of the resonance frequency.
  • FIG. 7 is an exploded perspective view showing a planar antenna having a patch antenna structure in which an antenna conductor 4 and a ground conductor 5 are formed on a dielectric substrate (hereinafter referred to as a dielectric substrate 1) which is the first dielectric layer 1. It is.
  • FIG. 8 is an exploded perspective view showing an electromagnetic field simulation model of the planar antenna according to the present invention.
  • 9A, 9B, and 9C are plan views showing an arrangement pattern of the pad conductor 6.
  • FIG. 9A shows an example (hereinafter referred to as “pattern 1”) in which there are six first pad conductors in total.
  • FIG. 9B shows an example (hereinafter referred to as “pattern 2”) in which there are a total of ten first pad conductors.
  • FIG. 9C shows an example (hereinafter referred to as “pattern 3”) having a total of 14 first pad conductors.
  • a ground conductor 5 having a size of 50 mm ⁇ 50 mm is formed on the bottom surface of the dielectric substrate 1 having a size of 50 mm ⁇ 50 mm and a thickness t 1.
  • An antenna conductor 4 having a size of 30 mm ⁇ 30 mm is formed at the center of the upper surface.
  • the dielectric substrate 1 is made of a fluororesin substrate and has a relative dielectric constant of “2.4” and a dielectric loss tangent of “0.002”.
  • a 50 ⁇ resistor and a voltage source are connected in series between the antenna conductor 4 and the ground conductor 5 to form a power feeding unit for the antenna.
  • the patch antenna is used in a fundamental mode that generates a half-wave voltage standing wave in the X-axis direction, and the X-axis direction of the antenna conductor 4 is used in order to match the resistance of the feeder and the input impedance of the antenna.
  • a signal source connection position P is provided at the center, which is a position 10.5 mm from the end and 15 mm from the end in the Y-axis direction.
  • FIG. 8 is an exploded perspective view showing the planar antenna of the present embodiment.
  • a second dielectric layer 2 having a thickness t2 is formed on the top of the antenna conductor 4, and the X-axis direction of the antenna conductor 4 at which the voltage becomes maximum at the time of resonance.
  • An example is shown in which a plurality of square pad conductors 6 having a size (d ⁇ d) are arranged on the upper surface of the second dielectric layer 2 facing both ends.
  • FIGS. 9A to 9C There are three types of pad conductors 6 shown in FIGS. 9A to 9C, which are referred to as patterns 1 to 3, respectively.
  • connection conductor 7 that passes through the antenna conductor 4 via the nonconductive portion 8 of the antenna conductor 4, as in FIG. 1B.
  • the diameter of the connecting conductor 7 is 0.3 mm, and the diameter of the nonconductive portion 8 (clearance hole) is 1.0 mm.
  • the power reflection coefficient which is the ratio of the input power from the signal source to the reflected power
  • FDTD Finite Difference Time Domain
  • the simulation results for the arrangement patterns 1 to 3 of the pad conductor 6 (corresponding to FIGS. 9A to 9C, respectively) are shown.
  • the arrangement of the pad conductors 6 corresponds to pattern 1 (corresponding to FIG. 9A).
  • This is a simulation result for the size d 3 mm, 5 mm, and 7 mm of the pad conductor 6.
  • the arrangement of the pad conductor 6 is the same as the configuration shown in FIG. 13.
  • FIGS. 10 to 15 show only the results near the resonance frequency in the fundamental mode among the simulated power reflection coefficients.
  • the frequency that minimizes the power reflection coefficient is the resonance frequency.
  • the second dielectric layer 2 is thinned, that is, the pad conductors 6 and the antenna conductors 4
  • the resonance frequency decreases as the capacitance formed between the two increases. Further, as shown in FIGS. 13 to 15, even if the capacitance between the pad conductor 6 and the antenna conductor 4 is the same, the thickness of the dielectric layer 1 between the antenna conductor 4 and the ground conductor 5 is the same. The greater the is, the greater the degree of decrease in the resonance frequency.
  • the rate of decrease in the resonance frequency can be increased. Adjustable.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本発明は、第1の誘電体層(1)及び第2の誘電体層(2)と、第1の誘電体層(1)及び第2の誘電体層(2)を積層方向にそれぞれ挟むように設けられた、アンテナ導体(4)、グラウンド導体(5)、及びパッド導体(6)と、を備える。第1の誘電体層(1)は、アンテナ導体(4)とグランド導体(5)との間に挟まれて配置される。第2の誘電体層(2)は、アンテナ導体(4)及びグランド導体(5)の一方と、パッド導体(6)との間に挟まれて配置される。アンテナ導体(4)及びグラウンド導体(5)の他方と、パッド導体(6)とを電気的に接続する接続導体(7)を備える。

Description

平面アンテナ
 本発明は、無線通信機器等に用いられる平面アンテナに関する。
 高速かつ大容量のデータ通信を行うために、マイクロ波やミリ波を用いた無線通信の普及が進んでいる。無線通信を行う電子機器には、機器自身の小型化、軽量化や、複数の電子デバイスを搭載するための高密度実装化が要求されている。このため、無線通信機器は、電波を送受信するために不可欠なアンテナの小型化も要求されている。
 無線通信機器のアンテナとしては、誘電体基板上に、グラウンド導体及び方形状(長方形状又は正方形状)や円形状のアンテナ導体が形成されたパッチアンテナ構造の平面アンテナが広く用いられている。このパッチアンテナ構造の平面アンテナでは、アンテナ導体の大きさと誘電体基板の誘電率とによって、共振周波数が決まる。一般に、使用する周波数帯域が低いほどアンテナ導体の大きさが大きくなり、広い実装面積が必要になる。アンテナを小型化するためには、アンテナ導体の大きさを変えずに共振周波数を低周波化すればよい。
 平面アンテナの小型化に関して、特許文献1の図1には、小型化、高性能化及び高集積化等を目的とする内蔵アンテナが提案されている。この内蔵アンテナは、プリント基板11上にアンテナパターン12が形成されたマイクロストリップアンテナ1と、そのマイクロストリップアンテナ1表面に配設する誘電体基板2とを備えている。また、特許文献2の図1には、共振周波数を低くし、アンテナを小型化することを目的とする平面アンテナ装置が提案されている。この平面アンテナ装置は、アンテナとして機能する放射導体層7の外縁部から略直角に延出するコンデンサ電極部8と、放射導体層7と所定の間隔を存して対向する接地導体層10と、放射導体層7を臨出させる上部開口2aを有して接地導体層10と電気的に接続された金属ケース2とを備えている。そして、この平面アンテナ装置は、電気的にグラウンドとして動作する金属ケース2の側壁部2bが、コンデンサ電極部8の外方に配置されて対向させ、側壁部2bとコンデンサ電極部8とが容量結合されている。
 また、本発明に関連する技術として、特許文献3の図1等には、アンテナ装置の広帯域化と小型化を目的とするアンテナ装置が提案されている。このアンテナ装置は、絶縁基板12上のグランドパターン14の縁から離れた位置に、アンテナ搭載用のパッド18が設けられ、給電端子側をグランドパターン14側に向けてパッド18とグランドパターン14とに跨るようにチップアンテナ16が実装されている。また、特許文献4の図2には、チップアンテナの広帯域化と小型化を目的とするチップアンテナ10が提案されている。このチップアンテナ10は、実装面111を有する直方体状の基体11を備えており、基体11の表面には、給電用電極12とグランド電極13とが設けられている。
特開2003-179427号公報 特開2007-13857号公報 特開2002-314317号公報 特開平11-177334号公報
 上述した特許文献1に記載の構成では、マイクロストリップアンテナが形成されたプリント基板(誘電体基板)に加えて、第2の誘電体基板が必要になる。この第2の誘電体基板をマイクロストリップアンテナ上に固定するために、別々に形成された2つの誘電体基板を接合する工程が必要になる。また、特許文献1に記載の構成では、上述した第2の誘電体基板内における電界の波長短縮効果によって共振周波数を低下させている。一般にパッチアンテナ構造では、誘電体基板に形成されたアンテナ導体とグラウンド導体とが電磁的に強く結合されており、第2の誘電体基板に対して電界が容易に集中しない。このため、共振周波数を効果的に低周波化させるために、第2の誘電体基板は、その誘電率が第1の誘電体基板よりも数倍から数十倍大きく形成し、かつ、電気的に無視し得ない程度の厚みを有するように形成する必要があり、第2の誘電体基板の形成が煩雑である。
 また、特許文献2に記載の構成では、放射導体層から延ばして形成されたコンデンサ電極部と金属ケースとを電磁的に結合させるために、コンデンサ電極部と金属ケースとを近傍で対向させる必要がある。しかしながら、他の電子回路と共にプリント基板の一部分に平面アンテナが形成された場合には、平面アンテナの周囲にも多数の電子部品が実装されるので、金属ケースをプリント基板に接近させることが困難である。また、金属ケースの近傍の位置まで、プリント基板上の放射導体層からコンデンサ電極部を延ばす構造にするためには、その製造に手間がかかるという構造に起因する問題もある。さらに、金属ケースを採用しない電子機器では、このような技術を実現できないという問題もある。
 本発明の目的は、上述した問題を解決するものであって、その目的の1つは、特別な材料や構造を用いずにアンテナ導体の共振周波数を低下させ、小型化、高集積化が可能な平面アンテナを提供することにある。
 上記の目的を達成するため、本発明の第1の態様に係る平面アンテナは、第1の誘電体層及び第2の誘電体層と、第1の誘電体層及び第2の誘電体層を積層方向にそれぞれ挟むように設けられた、アンテナ導体、グラウンド導体、及びパッド導体と、を備える。第1の誘電体層は、アンテナ導体とグランド導体との間に挟まれて配置される。第2の誘電体層は、アンテナ導体及びグランド導体の一方と、パッド導体との間に挟まれて配置される。また、平面アンテナは、アンテナ導体及びグラウンド導体の他方と、パッド導体とを電気的に接続する接続導体を備える。
 本発明の第2の態様に係る平面アンテナは、第1の誘電体層、第2の誘電体層、及び第3の誘電体層と、第1の誘電体層、第2の誘電体層、及び第3の誘電体層を積層方向にそれぞれ挟むように設けられた、アンテナ導体、グラウンド導体、第1のパッド導体、及び第2のパッド導体と、を備える。第1の誘電体層は、アンテナ導体とグラウンド導体との間に挟まれて配置される。第2の誘電体層は、アンテナ導体及びグランド導体の一方と、パッド導体との間に挟まれて配置される。第3の誘電体層は、アンテナ導体及びグランド導体の他方と、パッド導体との間に挟まれて配置される。また、平面アンテナは、アンテナ導体及びグラウンド導体の他方と、第1のパッド導体とを電気的に接続する第1の接続導体と、アンテナ導体及びグラウンド導体の一方と、第2のパッド導体とを電気的に接続する第2の接続導体と、を備える。
 本発明の第1の態様に係る平面アンテナによれば、アンテナ導体とグラウンド導体との間にキャパシタンスが付加されるので、アンテナ導体の共振周波数を低下させることができ、その結果、平面アンテナの小型化を実現できる。
 本発明の第2の態様に係る平面アンテナによれば、第1の態様に係る発明と同様に、2つのキャパシタンス(第1キャパシタンスと第2キャパシタンス)がアンテナ導体とグラウンド導体との間に付加されるので、アンテナ導体の共振周波数を低下させることができ、その結果、平面アンテナの小型化を実現できる。
 また、本発明の平面アンテナによれば、アンテナ導体又はグラウンド導体に非導電部が設けられて、グラウンド導体又はアンテナ導体とパッド導体とが電気的に接続される簡素な接続構造を備えているので、接続導体がその非導電部を経由してグラウンド導体又はアンテナ導体とパッド導体とを電気的に接続することが可能になり、平面アンテナの製造コストを低減できる。
第1の実施形態の平面アンテナを示す分解斜視図である。 第1の実施形態の平面アンテナにおいて、接続導体による接続形態を示す斜視図である。 第1の実施形態の平面アンテナの他の構成を示す分解斜視図である。 第1の実施形態の平面アンテナの他の構成において、接続導体による接続形態を示す斜視図である。 パッチアンテナの構成を示す図である。 TE10モードの電圧分布を示す模式的な図である。 TE20モードの電圧分布を示す模式的な図である。 第1の実施形態の平面アンテナのさらに他の構成を示す分解斜視図である。 第1の実施形態の平面アンテナのさらに他の構成において、接続導体による接続形態を示す斜視図である。 第1の実施形態の平面アンテナのさらに他の構成を示す分解斜視図である。 第1の実施形態の平面アンテナのさらに他の構成において、接続導体による接続形態を示す斜視図である。 第2の実施形態の平面アンテナを示す分解斜視図である。 第2の実施形態の平面アンテナにおいて、接続導体による接続形態を示す斜視図である。 誘電体基板にアンテナ導体とグラウンド導体が形成されたパッチアンテナ構造の平面アンテナを示す分解斜視図である。 本発明に係る平面アンテナの電磁界シミュレーションモデルを示す分解斜視図である。 合計6個のパッド導体を有する配置パターンを示す平面図である。 合計10個のパッド導体を有する配置パターンを示す平面図である。 合計14個のパッド導体を有する配置パターンを示す平面図である。 パッド導体の個数を変化させたときの電力反射係数のシミュレーション結果を示す図である。 パッド導体の大きさを変化させたときの電力反射係数のシミュレーション結果を示す図である。 パッド導体とアンテナ導体との間に配置された誘電体層の厚さを変化させたときの電力反射係数のシミュレーション結果を示す図である。 パッド導体とアンテナ導体との間に配置された誘電体層の厚さを1.6mmとしたときの電力反射係数のシミュレーション結果を示す図である。 パッド導体とアンテナ導体との間に配置された誘電体層の厚さを1.2mmとしたときの電力反射係数のシミュレーション結果を示す図である。 パッド導体とアンテナ導体との間に配置された誘電体層の厚さを0.8mmとしたときの電力反射係数のシミュレーション結果を示す図である。
 実施形態の平面アンテナについて、図面を参照して説明する。
 本発明に係る平面アンテナは、第1の誘電体層1及び第2の誘電体層2と、これら第1の誘電体層1及び第2の誘電体層2を積層方向にそれぞれ挟むように設けられた、アンテナ導体4、グラウンド導体5、及びパッド導体6と、を備える平面アンテナ10A,10B,10C,10D(第1の態様に係る平面アンテナ。以下「第1の実施形態の平面アンテナ」と呼ぶ。図1,2,4,5を参照。)を含んでいる。
 また、本発明に係る平面アンテナは、第1の誘電体層1、第2の誘電体層2、及び第3の誘電体層3と、これら第1の誘電体層1、第2の誘電体層2、及び第3の誘電体層3を積層方向にそれぞれ挟むように設けられた、アンテナ導体4、グラウンド導体5、第1のパッド導体6、及び第2のパッド導体9と、を備える平面アンテナ10E(第2の態様に係る平面アンテナ。以下「第2の実施形態の平面アンテナ」と呼ぶ。図6を参照。)を含んでいる。
 [第1の実施形態]
 図1A,1B、図2A,2B、図4A,4B及び図5A,5Bは、第1の実施形態の平面アンテナの例を示す概略構成図である。図1A,2A,4A,5Aは分解斜視図であり、図1B,2B,4B,5Bは接続導体による接続形態の斜視図である。
 第1の実施形態の平面アンテナは、図1A,2A,4A,5Aに示すように、アンテナ導体4とグラウンド導体5とが第1の誘電体層1を挟んで対向して配置され、「アンテナ導体4及びグラウンド導体5の一方」とパッド導体6とが第2の誘電体層2を挟んで対向して配置され、「アンテナ導体4及びグラウンド導体5の他方」とパッド導体6とが接続導体7によって電気的に接続されているように構成されている。
 なお、「アンテナ導体4及びグラウンド導体5の一方」とは、アンテナ導体4及びグラウンド導体5のうちのいずれか一方のことを指しており、「アンテナ導体4及びグラウンド導体5の他方」とは他の一方のことを指している。例えば、「アンテナ導体4及びグラウンド導体5の一方」がアンテナ導体4である場合には、「アンテナ導体4及びグラウンド導体5の他方」はグラウンド導体5となり、逆に「アンテナ導体4及びグラウンド導体5の一方」がグラウンド導体5である場合には、「アンテナ導体4及びグラウンド導体5の他方」はアンテナ導体4となる。
 このような第1の実施形態の平面アンテナによれば、第1の誘電体層1を挟んで対向するアンテナ導体4とグラウンド導体5との間に生じる電圧が最大となる位置において、そのアンテナ導体4とパッド導体6との間にキャパシタンス(第2の誘電体層2)が配置されており、さらに「アンテナ導体4及びグラウンド導体5の他方」とパッド導体6とが接続導体7によって電気的に接続されているので、上述のキャパシタンスは、アンテナ導体4とグラウンド導体5との間に付加されることになる。そして、そのキャパシタンスは、アンテナ導体4とグラウンド導体5との間の電圧に対して作用する。このため、パッド導体を、「アンテナ導体4及びグラウンド導体5の他方」と電気的に接続することによって、共振周波数を効果的に低下させることができ、平面アンテナの小型化を実現できる。
 以下、図1A,1B,2A,2B,4A,4B,5A,5Bに示す平面アンテナについて具体的に説明する。
 図1A,1Bは、第1の実施形態の平面アンテナ10Aの一例を示す概略構成図である。図2A,2Bは、第1の実施形態の平面アンテナ10Bの他の一例を示す概略構成図である。図1A,2Aは分解斜視図であり、図1B,2Bはパッド導体6とグラウンド導体5との電気的な接続状態を示す斜視図である。図1A及び図2Aに示す平面アンテナ10A,10Bは、図面において下側から上側に向かって、グラウンド導体5、第1の誘電体層1、アンテナ導体4、第2の誘電体層2、パッド導体6の順序で積層されて配置されている。
 言い換えれば、第1の誘電体層1がアンテナ導体4とグラウンド導体5との間に挟まれて配置され、第2の誘電体層2がアンテナ導体4とパッド導体6との間に挟まれて配置されている。そして、グラウンド導体5とパッド導体6とが接続導体7によって電気的に接続されている。さらに言い換えれば、第1の誘電体層1の両面に、グラウンド導体5とアンテナ導体4とがそれぞれ配置され、第2の誘電体層2の両面にアンテナ導体4とパッド導体6とが配置され、グラウンド導体5とパッド導体6とが接続導体7によって電気的に接続されている。
 アンテナ導体4、グラウンド導体5及びパッド導体6の材質としては、例えば銅、アルミニウム、その他の平面アンテナ用の導体材料として一般的に用いられているものが挙げられる。また、第1の誘電体層1及び第2の誘電体層2の材質としては、例えばプリント基板に用いられている樹脂系材料や、誘電体基板に用いられているセラミクス系材料等が挙げられる。また、各導体4,5,6及び誘電体層1,2の大きさ、形状、厚さ等は、所望の共振周波数を得ることができるように考慮されればよく、特に限定されず、種々の大きさ、形状、厚さ等に設定されてよい。
 図1Aに示す例において、アンテナ導体4は、方形状(正方形状又は長方形状)に形成され、グラウンド導体5よりも小さく形成されている。パッド導体6は、アンテナ導体4のX軸方向の両端部に配置されており、Y軸方向に延びるように所定の幅で形成されている。パッド導体6は、図1Aに示す構成例において、Y軸方向に直線状に延ばされた短冊状に形成されており、図2Aに示す構成例において、複数の方形形状に分割されて、Y軸方向に配列されている。
 接続導体7は、グラウンド導体5とパッド導体6とを電気的に接続する構造であればその形状等は特に限定されないが、例えば図1A及び図2Bに示すように、柱状導体に形成されるのが好ましい。接続導体7の材質としては、例えば銅、アルミニウム等の導電性材料が挙げられる。このような接続導体7としては、多層配線基板の内部の配線層間を、貫通孔を介して電気的に接続する、いわゆる「ビア」の形態が好ましい。このようなビアは、例えば第1の誘電体層1や第2の誘電体層2に、めっき手段(無電解めっきや電解めっき等)等でスルーホールを形成し、さらにそのスルーホールを充填することによって形成できる。
 接続導体7は、図1B及び図2Bに示すように、グラウンド導体5とパッド導体6とを電気的に接続するためにアンテナ導体4を積層方向に貫通する。このため、アンテナ導体4には、接続導体7との接触を防ぐための非導電部8(クリアランスホールともいう)が設けられ、接続導体7が非導電部8を経由する構造が好ましい。このような非導電部8は、上述したスルーホールを形成した後にビア(接続導体7)を形成するような場合、そのビアの周囲の導体部をエッチング等で除去することによって電気的な穴形状(電気が流れない円柱形状)にすることで、形成することができる。
 複数のパッド導体6が、例えば図1Aに示すように、第2の誘電体層2の各端部にそれぞれ1つずつ、合計2つ設けられている場合には、それぞれのパッド導体6(6a,6b)に、複数の接続導体7が任意の間隔で配置されていることが好ましい。このような複数の接続導体7は、図1Bに示すように、グラウンド導体5にそれぞれ電気的に接続される。また、複数のパッド導体6が、例えば図2Aに示すように、第2の誘電体層2の各端部に配列されている(図2Aに示す例では各端部にn個ずつ配列されて計2n個が配置されている)場合には、それぞれのパッド導体6(6a1…6an,6b1…6bn)に対応して接続導体7がそれぞれ設けられて、これら複数の接続導体7が、図2Bに示すようにグラウンド導体5に電気的に接続されている。
 グラウンド導体5とパッド導体6は、アンテナ導体4に設けられた非導電部8を経由して、積層方向において電気的に接続される。このため、グラウンド導体5とパッド導体6との接続距離が比較的短く、かつ接続構造が簡素であり、さらに上述のようなスルーホールやビアなどの接続部材を利用することで、グラウンド導体5とパッド導体6とを簡単に接続できる。その結果、低コストの平面アンテナを提供する上で有利になる。なお、このような接続構造を採ることによって、アンテナ導体4とグラウンド導体5との間にキャパシタンスが付加される。
 パッド導体6は、アンテナの共振周波数において、アンテナ導体4とグラウンド導体5との間の電圧が最大となる位置に設けられていることが好ましい。グラウンド導体5上に第1の誘電体層1を介して方形状のアンテナ導体4が配置された、本実施形態のパッチアンテナ10Aでは、アンテナ導体4とグラウンド導体5との間に半波長の電圧定在波が生じる基本共振モードが主に使用される。この基本共振モードでは、アンテナ導体4とグラウンド導体5との間に生じる電圧が、アンテナ導体4の形成領域のうち最も離間した両端部の各領域で最大になり、両端部間の中央部で最小になる。つまり、アンテナ導体4の形成領域において、離間距離が最大となる両端部の各領域で生じる電圧が最大となり、これら両端部間の中央部の領域で生じる電圧が最小になる。
 そして、本実施形態では、アンテナ導体4とグラウンド導体5との間にキャパシタンスが付加され、そのキャパシタンスがアンテナ導体4とグラウンド導体5との間の電圧に対して作用する。このため、パッド導体6を、アンテナ導体4とグラウンド導体5との間の電圧が最大となる位置に配置することによって、共振周波数を効果的に低下させることができる。
 図1A,1Bに示す例は、アンテナ導体4とグラウンド導体5との間に半波長の電圧定在波が生じる基本共振モードの場合の構成であり、パッド導体6a,6bが、平面アンテナ10Aを平面図で見たときにおけるアンテナ導体4の形成領域のうち、アンテナ導体4において最も離間する両端部の各領域(図1Aでは、方形状のアンテナ導体4のX軸方向(図中左右方向)の両端部がY軸方向に対して延びる領域)に設けられている。すなわち、平面アンテナ10Aを平面図で見たときに、グラウンド導体5と方形状のアンテナ導体4とが重なる領域において、その方形状のアンテナ導体4の対向する両辺に沿って、所定の幅に形成されたパッド導体6a,6bがそれぞれ設けられている。
 一方、図2A,2Bに示す例は、アンテナ導体4とグラウンド導体5との間に1波長の電圧定在波が生じる共振モードの場合であり、パッド導体(6a1…6an,6b1…6bn)は、平面アンテナ10Bを平面図で見た場合におけるアンテナ導体4の形成領域のうち、アンテナ導体4の最も離間した両端部の各領域(図2Aでは、方形状のアンテナ導体4のX軸方向(図中左右方向)の両端部のY軸方向に延びる領域)に分割された方形形態で設けられている。すなわち、平面視でグラウンド導体5と方形状のアンテナ導体4とが重なる領域において、その方形状のアンテナ導体4の対向する両辺に沿って所定の幅からなるパッド導体6a,6bが所定の間隔で分割されて設けられている。
 ここで、アンテナ導体4の共振モードと、パッド導体6の形成位置との関係について詳しく説明する。図3Aに、第1の誘電体基板1の一方の面(下面)にグラウンド導体5が形成され、他方の面(上面)に方形状のアンテナ導体4が形成されたパッチアンテナを示す。また、図3Bは、TE10モードにおける電圧分布であり、図3Cは、TE20モードにおける電圧分布である。
 パッチアンテナでは、アンテナ導体4とグラウンド導体5との間に半波長の電圧定在波が生じる基本共振モードが主に使用される。図3Aに示す構成例では、この基本共振モードにおいて、アンテナ導体4とグラウンド導体5との間に図3Bに示すような電圧が生じる。すなわち、図3Aに示すパッチアンテナでは、Y軸方向に対して分布を持たず、図3Bに示すように、X軸方向の両端部で電圧が最大となると共にX軸方向の中央部で電圧が最小となる半波長の電圧定在波が生じる。
 本実施形態の平面アンテナでは、図1A,1B及び図2A,2Bに示すように、アンテナ導体4とパッド導体6(6a,6b)との間に配置されたキャパシタンスは、パッド導体6とグラウンド導体5とが接続導体7で電気的に接続されることにより、アンテナ導体4とグラウンド導体5との間に付加される。そして、そのキャパシタンスは、アンテナ導体4とグラウンド導体5との間の電圧に対して作用する。このため、パッド導体6を、アンテナの共振周波数において、アンテナ導体4とグラウンド導体5との間に生じる電圧が最大となる位置に配置することによって、共振周波数を効果的に低下させることができる。図1A,1B及び図2A,2Bでは、アンテナ導体4とグラウンド導体5との間に半波長の電圧定在波が生じる基本共振モードの例であるが、電圧が最大となるアンテナ導体4のX軸方向の両端部に、対向するパッド導体6a,6bが形成されている。
 なお、更に高周波で生じる共振モードを使用する場合にも、上述と同様に、共振時の電圧が最大となる位置にキャパシタンスが付加されるようにパッド導体6を形成すればよい。例えば、図3Cに示すように、アンテナ導体4とグラウンド導体5との間に1波長の電圧定在波が生じる共振モードの場合には、アンテナ導体4とグラウンド導体5との間の電圧が最大となる位置は、両端部と、両端部間の中央部となる。そのため、図4に示す平面アンテナ10Cのように、アンテナ導体4の形成領域において最も離間した両端部にパッド導体6a,6bが設けられ、さらに、両端部間の中央部にもパッド導体6cが設けられることが好ましく、その結果、効果的に共振周波数を低下させることが可能となる。なお、図4Aに示す平面アンテナ10Cのその他の構成は、図1A及び図2Aに示した平面アンテナ10A,10Bと同様であるので、その説明は省略する。
 図5A,5Bは、第1の実施形態の平面アンテナのさらに他の一例を示す分解斜視図であり、図5Aは分解斜視図であり、図5Bはパッド導体6とアンテナ導体4との接続形態を示す斜視図である。図5Aに示す平面アンテナ10Dは、アンテナ導体4とグラウンド導体5とが第1の誘電体層1を挟んで対向して配置され、「アンテナ導体4及びグラウンド導体5の一方」とパッド導体6とが第2の誘電体層2を挟んで対向して配置され、「アンテナ導体4及びグラウンド導体5の他方」とパッド導体6とが接続導体7によって電気的に接続されているように構成されている点では、図1A,2A,4Aに示す平面アンテナ10A,10B,10Cと概念上、同じである。
 しかし、図5Aにおいて、下側から上側に向かって見たとき、パッド導体6、第2の誘電体層2、グラウンド導体5、第1の誘電体層1、アンテナ導体4の順で積層配置されており、図1A,2A,4Aに示す平面アンテナ10A,10B,10Cとはパッド導体6の具体的な配置が異なっている。言い換えれば、アンテナ導体4とグラウンド導体5とが第1の誘電体層1を挟んで対向して配置されている点では図1等とは同じでるが、グラウンド導体5とパッド導体6とが第2の誘電体層2を挟んで対向して配置され、アンテナ導体4とパッド導体6とが接続導体7によって電気的に接続されている点では、図1A等に示す態様とはアンテナ導体4とグラウンド導体5とがそれぞれ入れ替わった態様となっている。さらに言い換えれば、第1の誘電体層1の両面にグラウンド導体5とアンテナ導体4とが配置されている点では、図1A等に示す態様と同じであるが、第2の誘電体層2の両面にグラウンド導体5とパッド導体6とが配置され、アンテナ導体4とパッド導体6とが接続導体7によって電気的に接続されている点では、図1A等に示す態様とはアンテナ導体4とグラウンド導体5とがそれぞれ入れ替わった態様となっている。なお、見方を変えれば、図5Aに示した構成と、図1A,2A,4Aに示した構成とは、アンテナ導体4とグラウンド導体5との位置関係のみを交換した態様であり、アンテナ導体4とグラウンド導体5の位置を交換した後に上下反対に見れば、図5Aに示す構造は図1A等に示す構造と同じなっている。
 この平面アンテナ10Dでは、アンテナ導体4とパッド導体6とを電気的に接続する接続導体7が、グラウンド導体5を貫通する態様で設けられているので、パッド導体6とグラウンド導体5との間の第1の誘電体層1が、アンテナ導体4とグラウンド導体5との間に付加されるキャパシタンスとして機能する。
 なお、アンテナ導体4、グラウンド導体5、パッド導体6、接続導体7、非導電部8等については、上述した図1等に示した場合と同様であるので、ここではその説明を省略する。
 図5Aに示す平面アンテナ10Dにおいても、アンテナ導体4とグラウンド導体5との間に付加されるキャパシタンスによって共振周波数を低下させる効果が得られる。このように、第1の実施形態に係る平面アンテナ10A~10Dでは、パッド導体6をアンテナ導体4もしくはグラウンド導体5のどちらと対向して形成されても同様の効果が得られるので、他の電子回路が形成されるプリント基板内にアンテナを設ける際には、プリント基板の層構成やアンテナへの給電回路の構成に応じて、パッド導体6がアンテナ導体4に対向させて設けられてもよいし、グラウンド導体5に対向させて設けられてもよく、選択の幅が拡大する。
 なお、本発明における各図において、アンテナ導体4に対する給電構造を省略しているが、背面給電や共平面給電、及び電磁結合型給電のような構造を用途に応じて採用すればよい。
 [第2の実施形態]
 図6A,6Bは、第2の実施形態の平面アンテナの一例を示す概略構成図であり、図6Aは分解斜視図であり、図6Bは第1のパッド導体とグラウンド導体との接続構造、及びアンテナ導体と第2のパッド導体との接続構造を示す斜視図である。第2の実施形態の平面アンテナ10Eは、図6Aに示すように、第1の誘電体層1と第2の誘電体層2と第3の誘電体層3とをそれぞれ挟むように、アンテナ導体4とグラウンド導体5と第1のパッド導体6と第2のパッド導体9とが設けられた平面アンテナである。そして、アンテナ導体4とグラウンド導体5とが第1の誘電体層1を挟んで対向して配置され、「アンテナ導体4及びグラウンド導体5の一方」と、第1のパッド導体6とが第2の誘電体層9を挟んで対向して配置されている。また、「アンテナ導体4及びグラウンド導体5の他方」と、第1のパッド導体6とが第1の接続導体7によって電気的に接続され、「アンテナ導体4及びグラウンド導体5の他方」と、第2のパッド導体9とが第3の誘電体層3を挟んで対向して配置され、「アンテナ導体4及びグラウンド導体5の一方」と、第2のパッド導体9とが第2の接続導体7’によって電気的に接続されているように構成されている。なお、上述と同様に、「アンテナ導体4及びグラウンド導体5の一方」とは、アンテナ導体4及びグラウンド導体5のうちのいずれか一方を指しており、「アンテナ導体4及びグラウンド導体5の他方」とは、上記一方ではない他の一方を指している。
 第2の実施形態の平面アンテナによれば、第1の実施形態の場合と同様に、第1の誘電体層1を挟んで対向するアンテナ導体4とグラウンド導体5との間の電圧が最大となる位置において、「アンテナ導体4及びグラウンド導体5の一方」と「第1のパッド導体6」との間に第2の誘電体層2(第1キャパシタンスとなる。)が配置されており、さらに、「アンテナ導体4及びグラウンド導体5の他方」と「第2のパッド導体9」との間に第3の誘電体層3(第2キャパシタンスとなる。)が配置されており、さらに、「第1のパッド導体6」は「アンテナ導体4及びグラウンド導体5の他方」と接続導体7で電気的に接続され、「第2のパッド導体9」は「アンテナ導体4及びグラウンド導体5の一方」と接続導体7’で電気的に接続されている。そのため、第1キャパシタンスはアンテナ導体4とグラウンド導体5との間に付加される。一方、第2キャパシタンスもアンテナ導体4とグラウンド導体5との間に付加される。さらに、このような第1キャパシタンスと第2キャパシタンスは、両方のアンテナ導体4とグラウンド導体5との間に生じる電圧に対して作用するので、第1のパッド導体6が「アンテナ導体4及びグラウンド導体5の他方」と電気的に接続され、第2のパッド導体9が「アンテナ導体4及びグラウンド導体5の一方」と電気的に接続されることによって、共振周波数を効果的に低下させることができ、平面アンテナの小型化を実現できる。
 具体的には、図6Aに示す平面アンテナ10Eは、図面において、下側から上側に向かって、第2のパッド導体9、第3の誘電体層3、グラウンド導体5、第1の誘電体層1、アンテナ導体4、第2の誘電体層2、第1のパッド導体6の順序で積層されて配置されている。
 言い換えれば、第1の誘電体層1がアンテナ導体4とグラウンド導体5との間に挟まれて配置され、第2の誘電体層2がアンテナ導体4と第1のパッド導体6との間に挟まれて配置され、第3の誘電体層3がグラウンド導体5と第2のパッド導体9との間に挟まれて配置されている。そして、グラウンド導体5と第1のパッド導体6とが接続導体7によって電気的に接続され、アンテナ導体4と第2のパッド導体9とが接続導体7’によって電気的に接続されている。
 更に言い換えれば、第1の誘電体層1の両面にグラウンド導体5とアンテナ導体4がそれぞれ配置され、第2の誘電体層2の両面にアンテナ導体4と第1のパッド導体6がそれぞれ配置され、第3の誘電体層3の両面にグラウンド導体5と第2のパッド導体9がそれぞれ配置されている。そして、グラウンド導体5と第1のパッド導体6とが接続導体7によって電気的に接続され、アンテナ導体4と第2のパッド導体9とが接続導体7’によって電気的に接続されている。
 この第2の実施形態の平面アンテナを構成する構成要素は、上述した第1の実施形態の平面アンテナと同様であり、例えば、アンテナ導体4、グラウンド導体5、第1のパッド導体6及び第2のパッド導体9の材質としては、例えば銅、アルミニウム、及び、平面アンテナ用の導体材料として一般的に用いられているその他のものが挙げられる。また、第1の誘電体層1、第2の誘電体層2及び第3の誘電体層3の材質としても、例えばプリント基板に用いられている樹脂系材料や、誘電体基板に用いられているセラミクス系材料等が挙げられる。また、それらの大きさ、形状、厚さ等は、所望の共振周波数を得ることができるように考慮されれば特に限定されず、種々の大きさ、形状、厚さ等に設定することができる。
 また、図6Aに示す例では、第2の誘電体層2の上面に設けられた第1のパッド導体6は、図2Aのパッド導体6と同様、アンテナ導体4のX軸方向(図1A,4A等を参照)の両端部にY軸方向に複数に分割された方形状に形成されている。図6Aに示す例では各端部にn個ずつ、合計2n個が設けられ、第1のパッド導体6(6a1…6an,6b1…6bn)を構成している。図6Bに示すように、個々の第1のパッド導体6(6a1…6an,6b1…6bn)それぞれには接続導体7が設けられ、それら複数の接続導体7が、図6Bに示すように、アンテナ導体4の非導電部8を貫通してグラウンド導体5に電気的に接続されている。
 一方、第3の誘電体層3の下面に設けられた第3のパッド導体9は、アンテナ導体4のX軸方向(図1A,4A等を参照)の両端部間の中央部の領域に、Y軸方向に複数に分割された方形形状で形成されている。図6Aに示す例ではその中央部の領域に1列でn個が設けられ、第3のパッド導体9(9a1…9an)を構成している。図6Bに示すように、第3の誘電体層3の下面に設けられた個々の第3のパッド導体9(9a1…9an)それぞれには接続導体7’が設けられ、その複数の接続導体7’は、図6Bに示すように、グラウンド導体5の非導電部8’を貫通してアンテナ導体4に電気的に接続される。
 図6A及び図6Bに示すように、第2の誘電体層2の上面に設けられた第1のパッド導体6a,6bは、アンテナ導体4とグラウンド導体5との間の電圧が最大となる位置、すなわち、アンテナ導体4の形成領域のうち、最も離間した両端部の各領域に対向する位置に設けられている。この位置は、アンテナ導体4とグラウンド導体5との間に半波長の電圧定在波が生じる基本共振モードであっても、アンテナ導体4とグラウンド導体5との間に1波長の電圧定在波が生じる共振モードであっても、電圧が最大になる位置である。そして、アンテナ導体4と第1のパッド導体6(6a,6b)との間に配置された第1キャパシタンス(第2の誘電体層2)は、第1のパッド導体6とグラウンド導体5とが接続導体7によって電気的に接続されることによって、アンテナ導体4とグラウンド導体5との間に付加されることになる。そして、その第1キャパシタンスは、アンテナ導体4とグラウンド導体5との間の電圧に対して作用する。このため、アンテナの共振周波数において、アンテナ導体4とグラウンド導体5との間に生じる電圧が最大となる位置に第1のパッド導体6を配置することによって、共振周波数を効果的に低下させることができる。
 また、第3の誘電体層3の下面に設けられた第2のパッド導体9は、アンテナ導体4のX軸方向(図1A,4A等を参照)の両端部間の中央部の領域に設けられたが、この領域は、アンテナ導体4とグラウンド導体5との間に1波長の電圧定在波が生じる共振モードの場合に、両端部の電圧と同様に最大になる位置である。そして、グラウンド導体5と第2のパッド導体9との間に配置された第2キャパシタンス(第3の誘電体層3)は、アンテナ導体4と第2のパッド導体9とが接続導体7’で電気的に接続されることによってアンテナ導体4とグラウンド導体5との間に付加されることになり、そして、その第2キャパシタンスは、アンテナ導体4とグラウンド導体5との間の電圧に対して作用する。このため、上述の共振モードにおいて、アンテナ導体4とグラウンド導体5との間の電圧が最大となる中央部の領域に第2のパッド導体9が設けられることによって、共振周波数を効果的に低下させることができる。
 グラウンド導体5と第1のパッド導体6は、アンテナ導体4に設けられた非導電部8を経由して積層方向に貫通する接続導体7によって電気的に接続されており、さらに、アンテナ導体4と第2のパッド導体9は、グラウンド導体5に設けられた非導電部8’を経由して積層方向に貫通する接続導体7’によって電気的に接続されている。このため、本実施形態は、接続距離が短く、かつ接続構造が簡素であり、さらに第1の実施形態の平面アンテナと同様に、スルーホールやビアなどの接続部材を利用して簡単に接続できる。
 その結果、低コストの平面アンテナを提供する上で有利である。なお、第2の実施形態の接続構造は、いずれもアンテナ導体4とグラウンド導体5との間にキャパシタンスを付加するように機能する。なお、接続導体7,7’、及び非導電部8,8’は、上述した第1の実施形態の平面アンテナの場合と同様の構成であるので説明を省略する。
 以上説明したように、図6Aに示す平面アンテナ10Eは、第1キャパシタンスと第2キャパシタンスがアンテナ導体4とグラウンド導体5との間に付加されるので、1つのキャパシタンスが付加される第1の実施形態の平面アンテナに比べてキャパシタンスを増すことができ、より一層効果的に共振周波数を低下させることができ、平面アンテナの更なる小型化を実現できる。
 以上、本発明の第1及び第2の実施形態の平面アンテナは、パッド導体の大きさや形状及び配置位置、パッド導体を形成する誘電体層の厚さや誘電率に応じて、パッド導体と、アンテナ導体又はグラウンド導体との間に形成されるキャパシタンスを変化させることで、共振周波数の低下率を制御することが可能である。
  [実施例]
 以下、平面アンテナによる共振周波数の低下に関するシミュレーションを行い、その結果を参照して、本発明についてさらに詳しく説明する。
  [シミュレーション]
 図7は、第1の誘電体層1である誘電体基板(以下、誘電体基板1と称する)に、アンテナ導体4とグラウンド導体5が形成されたパッチアンテナ構造の平面アンテナを示す分解斜視図である。図8は、本発明に係る平面アンテナの電磁界シミュレーションモデルを示す分解斜視図である。図9A,9B、9Cは、パッド導体6の配置パターンを示す平面図である。図9Aに、第1のパッド導体が計6個である例(以下「パターン1」と呼ぶ。)を示す。図9Bに、第1のパッド導体が計10個である例(以下「パターン2」と呼ぶ。)を示す。図9Cに、第1のパッド導体が計14個である例(以下「パターン3」と呼ぶ。)を示す。
 図7に示すように、大きさが50mm×50mm、厚さt1に形成された誘電体基板1の底面に、大きさが50mm×50mmであるグラウンド導体5を形成し、その誘電体基板1の上面の中心部に、大きさが30mm×30mmであるアンテナ導体4を形成する。誘電体基板1は、フッ素樹脂基板を用いて、その比誘電率を「2.4」、誘電正接を「0.002」とする。図7中に示す信号源接続位置Pにおいて、アンテナ導体4とグラウンド導体5との間に、50Ωである抵抗と電圧源とを直列に接続し、アンテナへの給電部とする。ここでは、X軸方向に半波長の電圧定在波を生じる基本モードでパッチアンテナを利用することとし、給電部の抵抗とアンテナの入力インピーダンスとを整合させるために、アンテナ導体4のX軸方向の端から10.5mmの位置、かつ、Y軸方向の端から15mmの位置である中心部に信号源接続位置Pを設ける。
 図8は、本実施形態の平面アンテナを示す分解斜視図である。図8に、図7に示した構造に加えて、厚さt2の第2の誘電体層2をアンテナ導体4の上部に形成し、共振時に電圧が最大となるアンテナ導体4のX軸方向の両端部に対向する第2の誘電体層2の上面に、大きさが(d×d)である正方形状のパッド導体6を複数配置した例を示す。パッド導体6の配置は、図9A~9Cの3種であり、それぞれパターン1~3と呼ぶ。パッド導体6とグラウンド導体5とは、図1Bと同様に、アンテナ導体4の非導電部8を経由してそのアンテナ導体4を貫通する接続導体7によって電気的に接続される。接続導体7の直径は0.3mmであり、非導電部8(クリアランスホール)の直径は1.0mmである。
 図7、図8及び図9A~9Cに示したシミュレーションモデルにおいて、信号源からの入力電力と反射電力との比である電力反射係数を計算した。このシミュレーションには、電磁界解析手法であるFDTD(Finite Difference Time Domain)法を使用した。
  [結果]
 図10は、誘電体基板1の厚さをt1=1.6mmとし、第2の誘電体層2の厚さをt2=0.2mmとし、パッド導体6の一辺の長さをd=3mmとしたとき、パッド導体6の配置パターン1~3(図9A~図9Cにそれぞれ対応する。)に対するシミュレーション結果である。図10において、波形11は、図8に示したシミュレーションモデルのt1=1.6mmにおける電力反射係数を示している。波形21は、図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。波形22は、図9Bに示したシミュレーションモデルのパターン2、t1=1.6mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。波形23は、図9Cに示したシミュレーションモデルのパターン3、t1=1.6mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。
 図11は、誘電体基板1の厚さをt1=1.6mmとし、第2の誘電体層2の厚さをt2=0.2mmとし、パッド導体6の配置をパターン1(図9Aに対応する。)としたときのパッド導体6の大きさd=3mm、5mm、7mmに対するシミュレーション結果である。図11において、波形11は、図8に示したシミュレーションモデルのt1=1.6mmにおける電力反射係数を示している。波形31は、図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。波形32は、図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.2mm、d=5mmにおける電力反射係数を示している。波形33は図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.2mm、d=7mmにおける電力反射係数を示している。
 図12は、誘電体基板1の厚さをt1=1.6mmとし、パッド導体6の大きさをd=3mmとし、パッド導体6の配置をパターン1としたときの、第2の誘電体層2の厚さt2=0.1mm、0.2mm、0.3mmに対するシミュレーション結果である。図12において、波形41は、図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.3mm、d=7mmにおける電力反射係数を示している。波形42は、図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。波形43は、図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.1mm、d=7mmにおける電力反射係数を示している。
 図13は、第2の誘電体層2の厚さをt2=0.2mmとし、パッド導体6の大きさをd=3mmとし、パッド導体6の配置をパターン1としたときの、誘電体基板1の厚さtが1=1.6mmのときのシミュレーション結果である。図13において、波形11は、図8に示したシミュレーションモデルのt1=1.6mmにおける電力反射係数を示している。波形51は、図9Aに示したシミュレーションモデルのパターン1、t1=1.6mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。
 図14に示す構成も図13に示した構成と同様、第2の誘電体層2の厚さをt2=0.2mmとし、パッド導体6の大きさをd=3mmとし、パッド導体6の配置をパターン1とした場合において、誘電体基板1の厚さtが1=1.2mmのときのシミュレーション結果である。図14において、波形12は、図8に示したシミュレーションモデルのt1=1.2mmにおける電力反射係数を示している。波形52は、図9Aに示したシミュレーションモデルのパターン1、t1=1.2mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。
 図15に示す構成も図13に示した構成と同様に、第2の誘電体層2の厚さをt2=0.2mmとし、パッド導体6の大きさをd=3mmとし、パッド導体6の配置をパターン1とした場合において、誘電体基板1の厚さtが1=0.8mmのときのシミュレーション結果である。図15において、波形13は、図8に示したシミュレーションモデルのt1=0.8mmにおける電力反射係数を示している。波形53は、図9Aに示したシミュレーションモデルのパターン1、t1=0.8mm、t2=0.2mm、d=3mmにおける電力反射係数を示している。
 なお、これら図10~図15には、シミュレーションを行った電力反射係数のうち、基本モードにおける共振周波数付近の結果のみを示している。電力反射係数が最小となる周波数が共振周波数である。
 図10~図15に結果を示すように、パッド導体6の個数を増やすほど、パッド導体6を大きくするほど、第2の誘電体層2を薄くするほど、すなわちパッド導体6とアンテナ導体4との間に形成されるキャパシタンスを増加させるほど、共振周波数が低下する。また、図13~図15に結果を示すように、パッド導体6とアンテナ導体4との間のキャパシタンスが同一であっても、アンテナ導体4とグラウンド導体5との間の誘電体層1の厚みが大きいほど、共振周波数の低下の度合いが大きくなる。これは、アンテナ導体4とグラウンド導体5との間の誘電体基板1が厚いほど、アンテナ導体4とグラウンド導体5との間のキャパシタンスが小さくなり、これに付加されるパッド導体6とアンテナ導体4との間のキャパシタンスが相対的に大きくなるからである。
 以上のことから、パッド導体6とアンテナ導体4との間に形成されるキャパシタンス、及びアンテナ導体4とグラウンド導体5との間に形成されるキャパシタンスを変化させることによって、共振周波数の低下する割合が調整可能になる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2008年7月30日に出願された日本出願の特願2008-195660を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 第1の誘電体層
 2 第2の誘電体層
 3 第3の誘電体層
 4 アンテナ導体
 5 グラウンド導体
 6 パッド導体(第1のパッド導体)
 7,7’ 接続導体
 8,8’ 非導電部
 9 パッド導体(第2のパッド導体)
 10A,10B,10C,10D,10E 平面アンテナ

Claims (13)

  1.  第1の誘電体層及び第2の誘電体層と、
     前記第1の誘電体層及び前記第2の誘電体層を積層方向にそれぞれ挟むように設けられた、アンテナ導体、グラウンド導体、及びパッド導体と、を備え、
     前記第1の誘電体層は、前記アンテナ導体と前記グランド導体との間に挟まれて配置され、
     前記第2の誘電体層は、前記アンテナ導体及び前記グランド導体の一方と、前記パッド導体との間に挟まれて配置され、
     前記アンテナ導体及び前記グラウンド導体の他方と、前記パッド導体とを電気的に接続する接続導体を備える平面アンテナ。
  2.  前記アンテナ導体には非導電部が設けられ、
     前記接続導体は、前記非導電部を経由して前記アンテナ導体を積層方向に貫通し、前記グラウンド導体と前記パッド導体とを電気的に接続している、請求項1に記載の平面アンテナ。
  3.  前記グラウンド導体には非導電部が設けられ、
     前記接続導体は、前記非導電部を経由して前記グラウンド導体を積層方向に貫通し、前記アンテナ導体と前記パッド導体とを電気的に接続している、請求項1に記載の平面アンテナ。
  4.  複数の前記パッド導体を備え、
     前記接続導体が前記複数のパッド導体それぞれに電気的に接続されて設けられている、請求項1ないし3のいずれか1項に記載の平面アンテナ。
  5.  前記パッド導体は、アンテナの共振周波数において、前記アンテナ導体と前記グラウンド導体との間の電圧が最大となる位置に設けられている、請求項1ないし4のいずれか1項に記載の平面アンテナ。
  6.  前記パッド導体が、前記第1及び第2誘電体層を挟んで対向する前記アンテナ導体の形成領域において最も離間した両端部の各領域に設けられている、請求項5に記載の平面アンテナ。
  7.  更に他のパッド導体が、前記最も離間した両端部間の中央部の領域にも設けられている、請求項6に記載の平面アンテナ。
  8.  第1の誘電体層、第2の誘電体層、及び第3の誘電体層と、
     前記第1の誘電体層、前記第2の誘電体層、及び前記第3の誘電体層を積層方向にそれぞれ挟むように設けられた、アンテナ導体、グラウンド導体、第1のパッド導体、及び第2のパッド導体と、を備え、
     前記第1の誘電体層は、前記アンテナ導体と前記グラウンド導体との間に挟まれて配置され、
     前記第2の誘電体層は、前記アンテナ導体及び前記グランド導体の一方と、前記パッド導体との間に挟まれて配置され、
     前記第3の誘電体層は、前記アンテナ導体及び前記グランド導体の他方と、前記パッド導体との間に挟まれて配置され、
     前記アンテナ導体及び前記グラウンド導体の他方と、前記第1のパッド導体とを電気的に接続する第1の接続導体と、
     前記アンテナ導体及び前記グラウンド導体の一方と、前記第2のパッド導体とを電気的に接続する第2の接続導体と、を備える平面アンテナ。
  9.  前記アンテナ導体には非導電部が設けられ、
     前記第1及び第2の接続導体は、前記非導電部を経由して前記アンテナ導体を積層方向に貫通し、前記グラウンド導体と前記第1及び第2のパッド導体とをそれぞれ電気的に接続している、請求項8に記載の平面アンテナ。
  10.  前記グラウンド導体には非導電部が設けられ、
     前記第1及び第2の接続導体は、前記非導電部を経由して前記グラウンド導体を積層方向に貫通し、前記アンテナ導体と前記第1及び第2のパッド導体とをそれぞれ電気的に接続している、請求項8に記載の平面アンテナ。
  11.  前記第1及び第2のパッド導体は、アンテナの共振周波数において、前記アンテナ導体と前記グラウンド導体との間の電圧が最大となる位置に設けられている、請求項8ないし10のいずれか1項に記載の平面アンテナ。
  12.  前記第1、第2のパッド導体が、前記第1、第2及び第3の誘電体層を挟んで対向する前記アンテナ導体の形成領域において最も離間した両端部の各領域に設けられている、請求項11に記載の平面アンテナ。
  13.  更に他のパッド導体が、前記最も離間した両端部間の中央部の領域にも設けられている、請求項12に記載の平面アンテナ。
PCT/JP2009/062969 2008-07-30 2009-07-17 平面アンテナ WO2010013610A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/055,856 US20110122041A1 (en) 2008-07-30 2009-07-17 Planar antenna
JP2010522678A JPWO2010013610A1 (ja) 2008-07-30 2009-07-17 平面アンテナ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-195660 2008-07-30
JP2008195660 2008-07-30

Publications (1)

Publication Number Publication Date
WO2010013610A1 true WO2010013610A1 (ja) 2010-02-04

Family

ID=41610310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062969 WO2010013610A1 (ja) 2008-07-30 2009-07-17 平面アンテナ

Country Status (3)

Country Link
US (1) US20110122041A1 (ja)
JP (1) JPWO2010013610A1 (ja)
WO (1) WO2010013610A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075723A (ja) * 2012-10-05 2014-04-24 Yokowo Co Ltd 路側アンテナ
JP2018186349A (ja) * 2017-04-24 2018-11-22 京セラ株式会社 Rfidタグ用基板、rfidタグおよびrfidシステム
WO2021124623A1 (ja) * 2019-12-17 2021-06-24 株式会社村田製作所 Rficモジュール及びrfidタグ
US11211689B2 (en) 2019-08-13 2021-12-28 Samsung Electro-Mechanics Co., Ltd. Chip antenna

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD740261S1 (en) * 2012-03-13 2015-10-06 Megabyte Limited Radio frequency tag
US10122074B2 (en) * 2014-11-19 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Antenna device using EBG structure, wireless communication device, and radar device
JP6525249B2 (ja) * 2015-03-20 2019-06-05 カシオ計算機株式会社 アンテナ装置及び電子機器
JP2019057832A (ja) * 2017-09-21 2019-04-11 株式会社フジクラ アンテナ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248109A (ja) * 1985-08-27 1987-03-02 Mitsubishi Electric Corp アンテナ装置
JPH08316726A (ja) * 1995-05-18 1996-11-29 Hyuk Ko Yang 電界/磁界マイクロストリップアンテナ
JP2000101335A (ja) * 1998-02-13 2000-04-07 Murata Mfg Co Ltd チップアンテナ、アンテナ装置及び移動体通信機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070222696A1 (en) * 2004-05-18 2007-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Closely Packed Dipole Array Antenna
US7446712B2 (en) * 2005-12-21 2008-11-04 The Regents Of The University Of California Composite right/left-handed transmission line based compact resonant antenna for RF module integration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248109A (ja) * 1985-08-27 1987-03-02 Mitsubishi Electric Corp アンテナ装置
JPH08316726A (ja) * 1995-05-18 1996-11-29 Hyuk Ko Yang 電界/磁界マイクロストリップアンテナ
JP2000101335A (ja) * 1998-02-13 2000-04-07 Murata Mfg Co Ltd チップアンテナ、アンテナ装置及び移動体通信機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075723A (ja) * 2012-10-05 2014-04-24 Yokowo Co Ltd 路側アンテナ
JP2018186349A (ja) * 2017-04-24 2018-11-22 京セラ株式会社 Rfidタグ用基板、rfidタグおよびrfidシステム
US11211689B2 (en) 2019-08-13 2021-12-28 Samsung Electro-Mechanics Co., Ltd. Chip antenna
WO2021124623A1 (ja) * 2019-12-17 2021-06-24 株式会社村田製作所 Rficモジュール及びrfidタグ
JP6996670B2 (ja) 2019-12-17 2022-01-17 株式会社村田製作所 Rficモジュール及びrfidタグ
US11966803B2 (en) 2019-12-17 2024-04-23 Murata Manufacturing Co., Ltd. RFIC module and RFID tag

Also Published As

Publication number Publication date
US20110122041A1 (en) 2011-05-26
JPWO2010013610A1 (ja) 2012-01-12

Similar Documents

Publication Publication Date Title
US10218071B2 (en) Antenna and electronic device
US9865928B2 (en) Dual-polarized antenna
EP3257101B1 (en) Radio frequency connection arrangement
WO2010013610A1 (ja) 平面アンテナ
CN104871367B (zh) 多频带用天线
US6903687B1 (en) Feed structure for antennas
US8081123B2 (en) Compact multi-element antenna with phase shift
US8547187B2 (en) Printed circuit board impedance matching step for microwave (millimeter wave) devices
WO2016047234A1 (ja) 小型スロット型アンテナ
JP5794445B2 (ja) 高周波伝送線路の接続・固定方法
KR101577370B1 (ko) 마이크로웨이브 필터
JP2011155479A (ja) 広帯域アンテナ
WO2014157031A1 (ja) 高周波伝送線路、および電子機器
KR20100005616A (ko) 손실 개선을 위한 rf 전송 선로
JP7425554B2 (ja) アンテナ装置
JP2003234613A (ja) アンテナ素子
WO2011070735A1 (ja) 電子機器
JP4867359B2 (ja) 伝送線路層間接続構造
JP7325303B2 (ja) 無線モジュール
JP5365334B2 (ja) 平面アンテナ、無線モジュール及び無線システム
WO2024080072A1 (ja) アレイアンテナ構造体及びアレイアンテナモジュール
JPH11214916A (ja) アンテナ装置およびアンテナ装置の製造方法
JP2002076724A (ja) 導波管−平面線路変換器
JP2007258762A (ja) 多層基板
JP2002076725A (ja) 導波管の変換構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13055856

Country of ref document: US

Ref document number: 2010522678

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802853

Country of ref document: EP

Kind code of ref document: A1