WO2020209511A1 - 전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물 - Google Patents

전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물 Download PDF

Info

Publication number
WO2020209511A1
WO2020209511A1 PCT/KR2020/003385 KR2020003385W WO2020209511A1 WO 2020209511 A1 WO2020209511 A1 WO 2020209511A1 KR 2020003385 W KR2020003385 W KR 2020003385W WO 2020209511 A1 WO2020209511 A1 WO 2020209511A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
solid polymer
plasticizer
electrolyte composition
branched
Prior art date
Application number
PCT/KR2020/003385
Other languages
English (en)
French (fr)
Inventor
강영구
김동욱
최웅희
성병기
김인중
오효진
문병태
Original Assignee
한국화학연구원
주식회사 한농화성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 주식회사 한농화성 filed Critical 한국화학연구원
Publication of WO2020209511A1 publication Critical patent/WO2020209511A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a multi-branched ethylene oxide-propylene oxide plasticizer for an all-solid polymer electrolyte, an all-solid polymer electrolyte composition including the same, and a lithium polymer secondary battery and a fuel cell including the all-solid polymer electrolyte composition.
  • lithium secondary batteries are used not only for power supplies for IT devices such as smartphones and laptops, which are always used in everyday life, but also for power supplies for transportation such as electric vehicles, and power for large-scale power storage such as ESS (energy storage system).
  • ESS energy storage system
  • a lithium secondary battery is an electrochemical device that can be used by storing electricity as chemical energy and converting it to electricity when needed, and is composed of four key elements such as a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the high molecular solid electrolyte has the advantages of superior safety compared to the liquid electrolyte, a variety of chemical structure designs, the electrolyte can be manufactured as a thin film, and is relatively easy to apply to a battery manufacturing process. Therefore, the batteries of electronic devices such as notebook computers, digital camcorders, portable game consoles, digital cameras, and mobile phones, which are increasing consumer demand due to high capacity, stability and miniaturization, are expected to be rapidly replaced by lithium polymer batteries from existing lithium ion batteries. Polymer batteries are expected to be applied to high-capacity lithium secondary batteries such as hybrid electric vehicles, and are attracting attention as next-generation batteries.
  • a semi-IPN Interpenetrating Polymer Network
  • a plasticizer is entangled in a rigid network structure generated by polymerization of a multi-branched crosslinking agent.
  • the network structure by the crosslinking agent provides mechanical properties to the polymer electrolyte, and the plasticizer imparts ion conduction properties.
  • an EO-based linear polymer is used as a plasticizer that imparts ionic conduction properties, crystallization occurs at a low temperature, and the ionic conduction characteristics at a low temperature tend to decrease rapidly.
  • An object of the present invention is to provide a multi-branched EO-PO plasticizer for an all-solid polymer electrolyte having excellent ionic conductivity.
  • Another object of the present invention is to provide a semi-IPN (Interpenetrating Polymer Network) type all-solid polymer electrolyte composition comprising the multi-branched EO-PO plasticizer for the all-solid polymer electrolyte.
  • IPN Interpenetrating Polymer Network
  • Another object of the present invention is to provide an all-solid polymer electrolyte comprising the composition.
  • Another object of the present invention is to provide a lithium polymer secondary battery comprising the composition.
  • Another object of the present invention is to provide a fuel cell comprising the composition.
  • the present invention provides a multi-branched EO-PO plasticizer for an all-solid polymer electrolyte represented by the following formula (1).
  • x represents the average number of moles added of propylene oxide and is 0.01 to 10;
  • y represents the average added mole number of ethylene oxide and is 0.1 to 15.
  • x represents the average number of moles added of propylene oxide and is 0.01 to 10;
  • y represents the average added mole number of ethylene oxide and is 0.1 to 15.
  • n represents the average number of moles added of propylene oxide and is 0.01 to 10;
  • n represents the average added mole number of ethylene oxide and is 0.1 to 15.
  • the present invention provides an all-solid polymer electrolyte comprising the composition.
  • the present invention provides a lithium polymer secondary battery comprising the composition.
  • the present invention provides a fuel cell including the composition.
  • the semi-IPN (Interpenetrating Polymer Network) type all-solid polymer electrolyte composition comprising a multi-branched EO-PO plasticizer and a crosslinking agent for an all-solid polymer electrolyte according to the present invention reduces the crystallization of EO groups of the plasticizer even at low temperatures (room temperature). As a result, ion conductivity is greatly improved, and electrochemical stability and battery characteristics are excellent, so lithium polymer secondary batteries. It can be usefully used as an all-solid polymer electrolyte for electrochemical devices such as fuel cells.
  • Example 3 is a graph in which the crystallinity of the all-solid polymer electrolyte prepared in Example 3 of the present invention according to temperature change is evaluated by DSC data.
  • FIG. 4 is a graph showing changes in ionic conductivity according to temperature of all-solid polymer electrolytes prepared in Example 3, Comparative Example 2, and Comparative Example 3.
  • FIG. 4 is a graph showing changes in ionic conductivity according to temperature of all-solid polymer electrolytes prepared in Example 3, Comparative Example 2, and Comparative Example 3.
  • FIG. 6 is a graph showing the rate-limiting characteristics at 25°C of a lithium polymer secondary battery including an all-solid polymer electrolyte prepared in Comparative Example 3.
  • FIG. 7 is a graph showing the rate-limiting characteristics of a lithium polymer secondary battery including an all-solid polymer electrolyte prepared in Comparative Example 3 at 45°C.
  • FIG. 9 is a graph showing the rate-limiting characteristics at 25° C. of a lithium polymer secondary battery including the all-solid polymer electrolyte prepared in Example 3.
  • FIG. 9 is a graph showing the rate-limiting characteristics at 25° C. of a lithium polymer secondary battery including the all-solid polymer electrolyte prepared in Example 3.
  • FIG. 10 is a graph showing the rate-limiting characteristics at 45° C. of a lithium polymer secondary battery including an all-solid polymer electrolyte prepared in Example 3.
  • FIG. 10 is a graph showing the rate-limiting characteristics at 45° C. of a lithium polymer secondary battery including an all-solid polymer electrolyte prepared in Example 3.
  • FIG. 11 is a graph showing a comparison of rate-limiting characteristics at 25°C and 45°C of a lithium polymer secondary battery including an all-solid polymer electrolyte prepared in Example 3;
  • 2.4 is the average added mole number of ethylene oxide.
  • 2.4 is the average added mole number of ethylene oxide.
  • Trimethylolpropane (134 g, 1 mol) and potassium hydroxide (1.0 g, 17.8 mmol) were added to a high-pressure reactor equipped with a thermometer, agitator, and a nitrogen inlet tube, and the inside of the reactor was replaced with nitrogen while stirring.
  • the reactor temperature was set to 140°C, while maintaining the internal pressure of 2 to 4 kg/cm 2 , ethylene oxide (317 g, 7.2 mol) and propylene oxide (82 g, 1.4 mol) were continuously injected for 2 hours, and additionally Aged for 3 hours to obtain the intermediate compound (A).
  • the intermediate compound (A) 500 g, 0.94 mol
  • sodium hydroxide (135 g, 1.35 mol) were put in a 1L four-neck glass flask equipped with a thermometer, agitator, and a nitrogen inlet tube, and the vacuum pump was used at an internal temperature of 80°C. Performed time dehydration. Thereafter, after nitrogen substitution, dimethyl sulfate (426 g, 3.38 mol) was added dropwise at an internal temperature of 50° C. and reacted for 5 hours. Neutralize with sulfuric acid to pH 5-7, and dehydration under reduced pressure was performed for 2 hours using a vacuum pump at 100° C. to remove moisture contained in the compound.
  • 2.4 is the average added mole number of ethylene oxide.
  • the intermediate compound (A) prepared in Example 1 (400 g, 0.75 mol), acrylic acid (180 g, 2.50 mol), and toluene (360 g, 3.91 mol) prepared in Example 1 in a four-neck reactor equipped with a thermometer, agitator, and a reflux tube. mol) and stirred at room temperature, and methanesulfonic acid (10 g, 0.10 mol) and hydroquinone (0.7 g, 6.36 mmol) were added as catalysts, and ester reaction for 12 hours while the temperature of the reactor was set to 120°C under oxygen conditions. Proceeded.
  • Plasticizer Multi-branched EO-PO plasticizer for all-solid polymer electrolyte prepared in Example 1 (0.8 g, 1.394 mmol);
  • Lithium salt LiN(SO 2 CF 3 ) 2 (0.206 g, 0.718 mmol);
  • Crosslinking agent The multi-branched EO-PO crosslinking agent for the all-solid polymer electrolyte prepared in Example 2 (0.8 g, 1.156 mmol);
  • Initiator t -butyl peroxypivalate (2% by weight relative to the total weight of the crosslinker).
  • the plasticizer and lithium salt were stirred at room temperature until a homogeneous mixture was obtained.
  • the crosslinking agent and initiator were added to the mixture and stirred to prepare a precursor solution.
  • the precursor solution was coated on a substrate and cured by applying heat to prepare an all-solid polymer electrolyte in a film form.
  • 14.5 is the average added mole number of ethylene oxide.
  • 14.5 is the average added mole number of ethylene oxide.
  • the intermediate compound (B) (517.5 g, 0.5 mol) and sodium hydroxide (24 g, 0.24 mol) were added to a 1L four-neck glass flask equipped with a thermometer, agitator, and a nitrogen inlet tube, and the vacuum pump was used at an internal temperature of 80°C. Performed time dehydration. Thereafter, after replacing with nitrogen, dimethyl sulfate (75.5 g, 0.6 mol) was added dropwise at an internal temperature of 50° C. and reacted for 5 hours. Neutralize with sulfuric acid to pH 5-7, and dehydration under reduced pressure was performed for 2 hours using a vacuum pump at 100°C to remove moisture contained in the compound.
  • Plasticizer Poly(ethylene glycol) dimethyl ether (PEGDME, weight average molecular weight (Mw) 1000) (0.8 g, 0.8 mmol);
  • Lithium salt LiN(SO 2 CF 3 ) 2 (0.282 g, 0.983 mmol);
  • Crosslinking agent The multi-branched EO-PO crosslinking agent for the all-solid polymer electrolyte prepared in Example 2 (0.2 g, 0.289 mmol);
  • Initiator t -butyl peroxypivalate (2% by weight relative to the total weight of the crosslinker).
  • the plasticizer and lithium salt were stirred at room temperature until a homogeneous mixture was obtained.
  • the crosslinking agent and initiator were added to the mixture and stirred to prepare a precursor solution.
  • the precursor solution was coated on a substrate and cured by applying heat to prepare an all-solid polymer electrolyte in a film form.
  • Plasticizer Linear EO-PO plasticizer for all-solid polymer electrolyte prepared in Comparative Example 1 (0.8 g, 0.762 mmol);
  • Lithium salt LiN(SO 2 CF 3 ) 2 (0.263 g, 0.918 mmol);
  • Crosslinking agent The multi-branched EO-PO crosslinking agent for the all-solid polymer electrolyte prepared in Example 2 (0.2 g, 0.289 mmol);
  • Initiator t -butyl peroxypivalate (2% by weight relative to the total weight of the crosslinker).
  • the plasticizer and lithium salt were stirred at room temperature until a homogeneous mixture was obtained.
  • the crosslinking agent and initiator were added to the mixture and stirred to prepare a precursor solution.
  • the precursor solution was coated on a substrate and cured by applying heat to prepare an all-solid polymer electrolyte in a film form.
  • the crystallinity of the all-solid polymer electrolytes prepared in Example 3, Comparative Example 2, and Comparative Example 3 according to temperature change was evaluated by DSC (Differential Scanning Calorimetry). In the temperature range of -80°C to 100°C, the temperature at which the crystallization and melting of the all-solid polymer electrolyte film occurs was measured by observing the change in the amount of heat at a heating rate of 10°C/min.
  • Example 3 is a graph in which the crystallinity of the all-solid polymer electrolyte prepared in Example 3 of the present invention according to temperature change is evaluated by DSC data.
  • the ionic conductivity of the all-solid polymer electrolyte was evaluated as follows. Specifically, the ionic conductivity of the all-solid polymer electrolytes prepared in Example 3, Comparative Example 2, and Comparative Example 3 according to temperature change was measured.
  • Example 3 The precursor solutions prepared in Example 3, Comparative Example 2, and Comparative Example 3 were respectively injected into a conductive glass substrate, polymerized by heat curing, cooled sufficiently, and measured with an AC impedance analyzer. The measured value obtained above was analyzed with a frequency response analyzer (manufacturer: Zahner Elekrik, model name: IM6) to evaluate the ionic conductivity by analyzing complex impedance.
  • a frequency response analyzer manufactured by a frequency response analyzer (manufacturer: Zahner Elekrik, model name: IM6) to evaluate the ionic conductivity by analyzing complex impedance.
  • Example 4 shows the change in ionic conductivity according to the temperature of the all-solid polymer electrolytes prepared in Example 3, Comparative Example 2, and Comparative Example 3.
  • FIG. 4 is a graph showing changes in ionic conductivity according to temperature of all-solid polymer electrolytes prepared in Example 3, Comparative Example 2, and Comparative Example 3.
  • FIG. 4 is a graph showing changes in ionic conductivity according to temperature of all-solid polymer electrolytes prepared in Example 3, Comparative Example 2, and Comparative Example 3.
  • the all-solid polymer electrolyte (Comparative Example 2) containing a linear EO plasticizer (PEGDME) showed similar ionic conductivity to the all-solid-state polymer electrolyte (Comparative Example 3) containing a linear EO-PO plasticizer at a temperature of 25°C or higher. At temperatures below °C, the ionic conductivity rapidly decreases.
  • PEGDME linear EO plasticizer
  • the all-solid polymer electrolyte containing a linear EO plasticizer exhibits crystallinity at 25° C. or lower, as shown in FIG. 1, and thus the ionic conductivity rapidly decreases by inhibiting the mobility of lithium ions.
  • the all-solid polymer electrolyte (Comparative Example 3) containing a linear EO-PO plasticizer for the all-solid polymer electrolyte maintains an amorphous state with no crystallinity, so a rapid decrease in ionic conductivity due to a decrease in temperature is not seen and is a stable value. Appears.
  • the all-solid polymer electrolyte containing a multi-branched EO-PO plasticizer also maintains an amorphous state without crystallinity in the same way as the all-solid polymer electrolyte containing a linear EO-PO plasticizer. It does not show a sudden decrease in ionic conductivity.
  • the all-solid polymer electrolyte containing a multi-branched EO-PO plasticizer shows higher ionic conductivity regardless of temperature change than the all-solid polymer electrolyte containing a linear EO-PO plasticizer. From these results, an all-solid polymer electrolyte containing a multi-branched EO-PO plasticizer is superior in ionic conductivity than an all-solid polymer electrolyte containing a linear EO-PO plasticizer.
  • the charging/discharging rate used in this experimental example is expressed in units of "C", and 1 C means a current capable of charging or discharging the discharge capacity of the battery in 1 hour. That is, in the case of a battery having a discharge capacity of 10 Ah, it is 1 C when charging/discharging with a current of 10 A.
  • the all-solid polymer electrolyte containing a linear EO plasticizer showed crystallization of EO at 10°C, as confirmed in Experimental Example 1, and as confirmed in Experimental Example 2, the ionic conductivity was greatly reduced, and the measured ionic conductivity was 1.2 x It is as low as 10 -5 S/cm. As such, since the ion conductivity is very low, a lithium polymer secondary battery using an all-solid polymer electrolyte containing a linear EO plasticizer hardly exhibits a discharge capacity.
  • FIG. 11 shows a comparison of rate-limiting characteristics at 25°C and 45°C of a lithium polymer secondary battery including an all-solid polymer electrolyte prepared in Example 3.
  • a lithium polymer secondary battery prepared from an all-solid polymer electrolyte (Comparative Example 3) containing a linear EO-PO plasticizer has a low discharge capacity of 15 mAh/g at 25°C and 0.2°C.
  • a lithium polymer secondary battery prepared from an all-solid polymer electrolyte (Example 3) containing a multi-branched EO-PO plasticizer has a discharge capacity of 142 mAh/g at 25°C and 0.2°C.
  • the lithium polymer secondary battery prepared from the all-solid polymer electrolyte (Comparative Example 3) containing a linear EO-PO plasticizer exhibited a high capacity of 143 mAh/g at 0.2 C at 45° C., but 18 mAh/g at a rate of 0.5 C. It showed a very low dose of g.
  • the lithium polymer secondary battery prepared from an all-solid polymer electrolyte (Example 3) containing a multi-branched EO-PO plasticizer exhibited a high capacity of 155 mAh/g at 0.2 C at 45° C., and 145 at a rate of 0.5 C. It showed a very high capacity of mAh/g.
  • One aspect of the present invention provides a multi-branched EO-PO plasticizer for an all-solid polymer electrolyte represented by the following formula (1).
  • x represents the average number of moles added of propylene oxide and is 0.01 to 10;
  • y represents the average added mole number of ethylene oxide and is 0.1 to 15.
  • the x may have a different value for each repeating unit, specifically, x may be 0.1 to 5, 0.3 to 3, and 0.4 to 1.
  • the y may have a different value for each repeating unit, and specifically, y may be 0.5 to 10, 1 to 7, and 1.5 to 5.
  • the multi-branched EO-PO plasticizer for an all-solid polymer electrolyte represented by Formula 1 according to the present invention inhibits ion migration by inducing a rigid structure at room temperature due to high crystallinity, which is a problem in the conventional linear EO structure plasticizer. This solves the problem of lowering the ionic conductivity, thereby suppressing the crystallinity of the conventional linear EO structure plasticizer and improving the ionic conductivity.
  • the plasticizer exhibits an effect of greatly suppressing the crystallinity exhibited by a conventional plasticizer having an EO structure, thereby improving lithium ion conduction properties and, in particular, increasing ionic conductivity at low temperatures.
  • the plasticizer even if PO is introduced in the same manner, the flexibility, ionic conductivity, and rate-limiting properties of the polymer electrolyte exhibit superior effects than the plasticizer of the linear EO-PO structure, which is not a linear structure, as it has a multibranched structure. It is the effect that appears.
  • y represents the average added mole number of ethylene oxide and is 0.1 to 15.
  • the x may have a different value for each repeating unit, specifically, x may be 0.1 to 5, 0.3 to 3, and 0.4 to 1.
  • y may have a different value for each repeating unit, and specifically, y may be from 0.5 to 10, from 1 to 7, and from 1.5 to 5.
  • n represents the average number of moles added of propylene oxide and is 0.01 to 10;
  • n represents the average added mole number of ethylene oxide and is 0.1 to 15.
  • m may have a different value for each repeating unit, specifically, x may be 0.1 to 5, 0.3 to 3, and 0.4 to 1.
  • n may have a different value for each repeating unit, and specifically, y may be 0.5 to 10, 1 to 7, and 1.5 to 5.
  • the plasticizer may be used alone or in combination with a non-aqueous polar solvent, and it serves to improve ionic conductivity by improving lithium salt dissociation and lithium ion conductivity. do.
  • alkylene carbonate alkyltetrahydrofuran, dioxiran, lactone and acetonitrile may be used alone or in combination.
  • Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxirane, 4,4-dimethyl-1,3-dioxirane, ⁇ -butyrolactone, acetonitrile, and the like can be used.
  • the plasticizer may be contained in the range of 1.0-90.0% by weight, preferably 30.0-80.0% by weight, and more preferably 45.0-75.0% by weight in the total polymer electrolyte composition.
  • the amount of plasticizer contained in the all-solid polymer electrolyte is directly proportional to the ionic conductivity of the all-solid polymer electrolyte, but if the content is less than 1.0% by weight, the effect of improving the ionic conductivity is weak, and it may exceed 90.0% by weight. In this case, there is a problem that it is difficult to apply to battery manufacturing because it cannot be made into a thin film due to a decrease in mechanical properties. Therefore, when maintaining the above content range, it is possible to manufacture a thin film having a thickness of 100 ⁇ m or less.
  • the multi-branched EO-PO crosslinking agent for the all-solid polymer electrolyte represented by Chemical Formula 2 semi-IPN in which a plasticizer is entangled in a rigid network structure generated by polymerization reaction. (Interpenetrating Polymer Network) structure can be formed.
  • the semi-IPN structure by the crosslinking agent provides mechanical properties to the polymer electrolyte, and the plasticizer imparts ion conduction properties.
  • the multi-branched EO-PO crosslinking agent for the all-solid polymer electrolyte will be contained in an amount of 1.0-90.0% by weight, preferably 5.0-80.0% by weight, and more preferably 8.0-60% by weight in the total all-solid polymer electrolyte composition.
  • the content is less than 1.0% by weight, the amount is too small to obtain an effect as a crosslinking agent, and there is a problem in that mechanical properties are deteriorated, and when it exceeds 90.0% by weight, there is a problem that the ionic conductivity is decreased.
  • the lithium salt is not particularly limited as it is commonly used in the production of all-solid polymer electrolytes in the art.
  • a lithium salt generally used from the prior art specifically, LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiPF 6 , LiAsF 6 and LiN(SO 2 CF 3 ) 2, etc. may be used.
  • the lithium salt may be contained in an amount of 1.0-50.0% by weight, preferably 10.0-35.0% by weight, more preferably 15.0-30.0% by weight, in the total polymer electrolyte composition, but according to an appropriate mixing ratio, the amount You can also adjust If the content is less than 1.0% by weight, the concentration of lithium ions is too low to be suitable as an electrolyte, and if it exceeds 50.0% by weight, there is a problem of solubility of the lithium salt and a problem of decrease in ionic conductivity.
  • the curable initiator may be any initiator generally used in the art, such as a photocurable type and a thermosetting type.
  • the photocurable initiator is ethylbenzoin ether, isopropylbenzoin ether, ⁇ -methylbenzoin ethyl ether, benzoin phenyl ether, ⁇ -acyloxime ester, ⁇ , ⁇ -diethoxy acetophenone, 1,1-dichloroaceto Phenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one [Darocur 1173 from Ciba Geigy], 1-hydroxycyclohexyl phenyl ketone [Ciba Geigy Geigy)'s Irgacure 184, Darocure 1116, Igacure 907], anthraquinone, 2-ethyl anthraquinone, 2-chloroanthraquinone, thioxanthone, isopropyl thioxanthone, chloro thioxanthone, benzo Phenone, p-chlorobenzophen
  • thermosetting initiator is benzoyl peroxide, di-tert-butyl peroxide, di-tert-amyl peroxide, a-cumyl peroxyneodecanoate, a-cumyl peroxyneopeptanoate, t-amyl Peroxyneodecanoate, di-(2-ethylhexy) peroxy-dicarbonate, t-amyl peroxypivalate, t-butyl peroxypivalate, 2,5-dimethyl-2,5 bis(2 -Ethyl-hexanoylperoxy) hexane, dibenzoyl peroxide, t-amyl peroxy-2-ethylhexanoate, t-butyl peroxy-2-ethylhexanoate, 1,1-di-(t- Amylperoxy) cyclohexane, 1,1-di-(t-butylperoxy) 3,
  • the curable initiator is contained in the range of 0.1-5.0% by weight in the total solid polymer electrolyte composition, and if the content is less than 0.1% by weight, there is a problem that the effect of the initiator cannot be obtained, and it may exceed 5.0% by weight. In this case, there is a problem that the unreacted initiator after curing deteriorates the performance of the battery.
  • the curable initiator may be appropriately adjusted according to the mixing ratio of other components simultaneously used in the all-solid polymer electrolyte composition.
  • the present invention provides an all-solid polymer electrolyte comprising the all-solid polymer electrolyte composition.
  • the all-solid polymer electrolyte may be obtained by curing the all-solid polymer electrolyte composition by applying heat or light.
  • the all-solid polymer electrolyte may form a semi-IPN (Interpenetrating Polymer Network) type 3D network structure.
  • the plasticizer and lithium salt according to the present invention are put in a container in an appropriate ratio and stirred with a stirrer to prepare a solution, and then the multi-branched EO-PO crosslinking agent for an all-solid polymer electrolyte according to the present invention is mixed and added to the solution. Thereafter, when the initiator for curing is added and stirred, a mixed solution for preparing an all-solid polymer electrolyte is prepared.
  • the mixed solution is coated on a support such as a glass plate, polyethylene-based vinyl, commercial Mylar film, or battery electrode with an appropriate thickness to induce a curing reaction under irradiation or heating conditions such as electron beams, ultraviolet rays, and gamma rays.
  • Another manufacturing method for obtaining an electrolyte having a certain thickness is to apply a composition mixture on the support, fix spacers for adjusting thickness at both ends of the support, and cover another support thereon, and then the above curing irradiator.
  • an all-solid polymer electrolyte is prepared by curing reaction using a heat source.
  • Another aspect of the present invention provides a lithium polymer secondary battery comprising the all-solid polymer electrolyte composition.
  • Lithium polymer secondary batteries consist of a positive electrode, an electrolyte, and a negative electrode.
  • Lithium metal oxides such as LiFePO 4 , LiCoO 2 , and LiNiO 2 are widely used as the positive electrode, and carbon-based such as graphite or coke such as MCMB and MPCF as the negative electrode Or lithium metal as a material.
  • a method of manufacturing a lithium polymer secondary battery can be manufactured by any method commonly used in the field to which the present invention belongs in addition to the above-described method.
  • Another aspect of the present invention provides a fuel cell including the all-solid polymer electrolyte composition.
  • the all-solid-state polymer electrolyte obtained by curing the all-solid-state polymer electrolyte composition according to the present invention suppresses crystallization (see FIG. 3 of Experimental Example 1) and improves ionic conductivity, especially at low temperatures (25° C. or less). Since the ion conductivity is excellent (see Fig. 4 of Experimental Example 2), the discharge capacity of the lithium polymer secondary battery using the above electrolyte is increased (see Figs. 9 and 10 of Experimental Example 3), and the rate-limiting characteristics are excellent (experimental 11) of Example 4, it can be usefully used as an all-solid polymer electrolyte such as a lithium polymer secondary battery, a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물에 관한 것으로, 본 발명에 따른 전고상 고분자 전해질용 다분지 EO-PO 가소제 및 가교제를 포함하는 semi-IPN(Interpenetrating Polymer Network) 타입의 전고상 고분자 전해질 조성물은 낮은(상온) 온도에서도 가소제의 EO기의 결정화를 저하시킴으로써 이온전도도가 크게 향상될 뿐만 아니라, 전기화학적 안정성 및 전지 특성이 우수하므로, 리튬 폴리머 이차전지, 연료전지 등의 전기화학소자용 전고상 고분자 전해질로 유용하게 사용할 수 있다.

Description

전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물
본 발명은 전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제, 이를 포함하는 전고상 고분자 전해질 조성물 및 상기 전고상 고분자 전해질 조성물을 포함하는 리튬 폴리머 이차전지 및 연료전지에 관한 것이다.
현재 리튬 이차전지는 일상생활에서 늘 사용하는 스마트폰, 노트북과 같은 IT소자용 전원뿐 아니라 전기자동차와 같은 수송용 전원, ESS(energy storage system)와 같은 대규모 전력저장용 전원으로까지 그 사용범위를 확장하고 있다. 리튬 이차전지는 전기를 화학에너지로 저장하였다가 필요할 때 전기로 변환하여 쓸 수 있는 전기화학소자로서 양극, 음극, 분리막, 전해질과 같은 4대 핵심요소로 구성되어 있다.
스마트폰 배터리의 폭발 및 노트북 배터리 발화 등과 같은 안전문제를 최소화하기 위해서는 누액이 발생할 수 있고 가연성이 높아 발화 및 폭발가능성이 있는 액체 전해질을 대체하여 안전성이 크게 향상된 고체 전해질을 사용하고자 많은 연구가 진행되고 있다. 세라믹계 고체 전해질은 깨지기 쉽고 배터리 제조공정에 적용하는데 어려운 점이 많으며 또한 전극과의 높은 계면저항으로 인하여 상용화에 많은 어려움을 겪고 있다.
한편 고분자 고체 전해질은 액체 전해질에 비하여 안전성이 우수하며 다양한 화학구조 디자인이 가능하고 전해질을 박막으로 제조할 수 있으며 배터리 제조공정에 적용하기가 비교적 용이하다는 장점을 지니고 있다. 따라서 고용량, 안정성, 소형화로의 소비자 요구가 늘어가는 노트북 컴퓨터, 디지털 캠코더, 휴대용 게임기, 디지털 카메라, 휴대폰 등 전자기기의 전지는 기존의 리튬 이온전지에서 리튬 폴리머 전지로 급격히 대체될 것으로 보이고 이와 더불어 리튬 폴리머 전지는 하이브리드 전기 자동차 등의 고용량 리튬 이차전지 등에 응용이 기대되어 차세대 전지로 각광을 받고 있다.
폴리에틸렌옥사이드(Poly(ethylene oxide), PEO)계 고체 고분자 전해질(solid polymer electrolyte, SPE)의 이온전도도가 보고된 이후로(D.E. Fenton, J.M. Parker, P.V. Wright, Polymer, 14 (1973) 589.), PEO계 고체 고분자 전해질을 고에너지 용도의 리튬 이차전지에 적용하려는 많은 연구가 진행되었다. 그러나 아직까지 상업용 제품으로 사용되고 있지는 않다. 그 이유로는 PEO계 고분자의 높은 결정화도로 인하여 상온에서 강직한 구조가 유도되어 이온의 이동을 억제하기 때문에 이온전도도가 크게 낮기 때문이다. 전해질의 다른 예로서 폴리에틸렌옥사이드-폴리스티렌 블록 공중합체 전해질이 알려져 있다. 이러한 전해질은 기계적 물성이 만족할만한 수준에 이르지 못하여 개선의 여지가 많다.
PEO계 고분자 전해질의 이온전도도를 향상시키기 위한 효율적인 방법으로서 다분지 가교제, 이온전도성 가소제, 리튬염, 라디칼개시제를 혼합한 프리커서를 열 혹은 빛으로 중합시켜 고체 고분자 전해질을 제조하는 것이 알려져 있다. 이 제조방법을 통하여 다분지 가교제의 중합반응으로 생성된 단단한 그물망 구조 내에 가소제가 얽혀 존재하는 semi IPN(Interpenetrating Polymer Network)구조를 형성하게 된다. 이때 가교제에 의한 그물망 구조는 고분자 전해질에 기계적 물성을 제공하고 가소제는 이온전도 특성을 부여한다. 그러나 이온 전도 특성을 부여하는 가소제로서 EO계 선형 고분자를 사용하는 경우 저온에서 결정화가 일어나 저온에서의 이온전도특성이 급격하게 감소하는 경향을 보인다.
본 발명의 목적은 이온전도도가 우수한 전고상 고분자 전해질용 다분지 EO-PO 가소제를 제공하는 것이다.
본 발명의 다른 목적은 상기 전고상 고분자 전해질용 다분지 EO-PO 가소제를 포함하는 semi-IPN(Interpenetrating Polymer Network) 타입의 전고상 고분자 전해질 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 포함하는 전고상 고분자 전해질을 제공하는 것이다.
본 발명의 다른 목적은 상기 조성물을 포함하는 리튬 폴리머 이차전지를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 포함하는 연료전지를 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 하기 화학식 1로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가소제를 제공한다.
[화학식 1]
Figure PCTKR2020003385-appb-I000001
상기 화학식 1에서,
x는 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
y는 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다.
또한, 본 발명은,
하기 화학식 1로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가소제 1.0-90.0 중량%;
하기 화학식 2로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가교제 1.0-90.0 중량%;
리튬염 1.0-50.0 중량%; 및
경화형 개시제 0.1-5.0 중량%;를 포함하는 것을 특징으로 하는 전고상 고분자 전해질 조성물을 제공한다.
[화학식 1]
Figure PCTKR2020003385-appb-I000002
상기 화학식 1에서,
x는 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
y는 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다.
[화학식 2]
Figure PCTKR2020003385-appb-I000003
상기 화학식 2에서,
m은 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
n은 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다.
나아가, 본 발명은 상기 조성물을 포함하는 전고상 고분자 전해질을 제공한다.
또한, 본 발명은 상기 조성물을 포함하는 리튬 폴리머 이차전지를 제공한다.
나아가, 본 발명은 상기 조성물을 포함하는 연료전지를 제공한다.
본 발명에 따른 전고상 고분자 전해질용 다분지 EO-PO 가소제 및 가교제를 포함하는 semi-IPN(Interpenetrating Polymer Network) 타입의 전고상 고분자 전해질 조성물은 낮은 온도(상온)에서도 가소제의 EO기의 결정화를 저하시킴으로써 이온전도도가 크게 향상될 뿐만 아니라, 전기화학적 안정성 및 전지 특성이 우수하므로, 리튬 폴리머 이차전지. 연료전지 등의 전기화학소자용 전고상 고분자 전해질로 유용하게 사용할 수 있다.
도 1은 본 발명의 비교예 2에서 제조한 전고상 고분자 전해질의 온도변화에 따른 결정성을 DSC(Differntial Scanning Calorimetry) 데이터로 평가한 그래프이다.
도 2는 본 발명의 비교예 3에서 제조한 전고상 고분자 전해질의 온도변화에 따른 결정성을 DSC 데이터로 평가한 그래프이다.
도 3은 본 발명의 실시예 3에서 제조한 전고상 고분자 전해질의 온도변화에 따른 결정성을 DSC 데이터로 평가한 그래프이다.
도 4는 실시예 3, 비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질의 온도에 따른 이온전도도의 변화를 나타내는 그래프이다.
도 5는 비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 저온에서의 율속특성을 나타내는 그래프이다.
도 6은 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃에서의 율속특성을 나타내는 그래프이다.
도 7은 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 45℃에서의 율속특성을 나타내는 그래프이다.
도 8은 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃와 45℃에서의 율속특성을 비교하여 나타낸 그래프이다.
도 9는 실시예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃에서의 율속특성을 나타내는 그래프이다.
도 10은 실시예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 45℃에서의 율속특성을 나타내는 그래프이다.
도 11은 실시예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃와 45℃에서의 율속특성을 비교하여 나타낸 그래프이다.
이하, 본 발명을 하기의 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예 및 실험예는 본 발명을 일 측면에서 구체적으로 예시하는 것일 뿐, 본 발명이 이에 제한되는 것은 아니다.
< 실시예 1> 전고상 고분자 전해질용 다분지 EO-PO 가소제의 제조
[전고상 고분자 전해질용 다분지 EO-PO 가소제의 화학구조]
Figure PCTKR2020003385-appb-I000004
상기 화학식에서,
0.47은 프로필렌옥사이드의 평균부가몰수이고; 및
2.4는 에틸렌옥사이드의 평균부가몰수이다.
[중간체 화합물(A)]
Figure PCTKR2020003385-appb-I000005
상기 화학식에서,
0.47은 프로필렌옥사이드의 평균부가몰수이고; 및
2.4는 에틸렌옥사이드의 평균부가몰수이다.
온도계, 교반기, 질소 도입관을 가진 고압반응기에 트리메틸올프로판 (134 g, 1 mol), 수산화칼륨 (1.0g, 17.8 mmol)을 넣고, 교반하면서 반응기 내부를 질소로 치환하였다. 반응기 온도를 140℃로 하고, 내부압력을 2~4 kg/cm2 를 유지하면서 에틸렌옥사이드 (317 g, 7.2 mol), 프로필렌옥사이드 (82 g, 1.4 mol)을 2시간 동안 연속 주입하고, 추가로 3시간 숙성하여 상기 중간체 화합물(A)를 얻었다. 온도계, 교반기, 질소도입관을 구비한 1L 4구 유리플라스크에 상기 중간체 화합물(A) (500 g, 0.94 mol)과 수산화나트륨 (135 g, 1.35 mol)을 넣고 내부온도 80℃에서 진공펌프로 1시간 탈수를 실시했다. 이후 질소로 치환한 후, 내부온도 50℃ 에서 황산디메틸 (426 g, 3.38 mol)을 적하하고 5시간 동안 반응을 시켰다. 황산으로 pH 5~7로 중화하고, 화합물 내 함유되어있는 수분을 제거하기 위해 100℃에서 진공펌프를 이용하여 2시간 동안 감압 탈수를 진행하였다. 또한 수분제거 후 생성된 염을 제거하기 위해 규조토로 여과를 실시하여, 액상의 전고상 고분자 전해질용 다분지 EO-PO 가소제(분자량 574 g/mol) (496 g, 0.86 mol) 을 얻었다. 말단 수산기 분석을 위하여 ASTM D4274(Acetylation)로 분석했을때, 상기 중간체 화합물(A)는 수산기가 316, 상기 전고상 고분자 전해질용 다분지 EO-PO 가소제의 수산기가는 1.8로 확인되었다.
< 실시예 2> 전고상 고분자 전해질용 다분지 EO-PO 가교제의 제조
[전고상 고분자 전해질용 다분지 EO-PO 가교제의 화학구조]
Figure PCTKR2020003385-appb-I000006
상기 화학식에서,
0.47은 프로필렌옥사이드의 평균부가몰수이고; 및
2.4는 에틸렌옥사이드의 평균부가몰수이다.
온도계, 교반기, 환류관을 구비한 4구 반응기에 실시예 1에서 제조한 중간체 화합물(A) (400 g, 0.75 mol), 아크릴산 (180 g, 2.50 mol), 그리고 용제로 톨루엔 (360 g, 3.91 mol)을 투입하여 상온에서 교반하고 촉매로 메탄설폰산 (10 g, 0.10 mol), 하이드로퀴논 (0.7 g, 6.36 mmol)을 투입하고 산소조건에서 반응기의 온도를 120℃로 하면서 12시간 동안 에스테르 반응을 진행하였다. 반응 후 정제 및 합성물내 함유되어 있는 수분 및 톨루엔을 제거하기 위해 50 mmHg , 70℃, 8시간 동안 감압증류 공정을 진행하고, 수분제거 후 생성된 염을 제거하기 위해 여과를 실시하여, 액상의 전고상 고분자 전해질용 다분지 EO-PO 가교제(분자량 692 g/mol) (493 g, 0.71 mol)을 얻었다. 말단 수산기 분석을 위하여 ASTM D4274(Acetylation)로 분석했을때, 상기 전고상 고분자 전해질용 다분지 EO-PO 가교제의 수산기가는 5.3으로 확인되었다.
<실시예 3> 다분지 EO-PO 가소제를 사용한 전고상 고분자 전해질의 제조
가소제: 실시예 1에서 제조한 전고상 고분자 전해질용 다분지 EO-PO 가소제 (0.8 g, 1.394 mmol);
리튬염: LiN(SO2CF3)2 (0.206 g, 0.718 mmol);
가교제: 실시예 2에서 제조한 전고상 고분자 전해질용 다분지 EO-PO 가교제(0.8 g, 1.156 mmol); 및
개시제: t-부틸 퍼옥시피발레이트 (가교제 총 중량 대비 2 중량%).
상기 가소제와 리튬염을 균일한 혼합물이 될 때까지 상온에서 교반하였다. 상기 혼합물에 상기 가교제와 개시제를 넣고 교반하여 전구체 용액을 제조하였다. 상기 전구체 용액을 기재 위에 코팅하고 열을 가하여 경화시켜 전고상 고분자 전해질을 필름형태로 제조하였다.
< 비교예 1> 전고상 고분자 전해질용 선형 EO-PO 가소제의 제조
[전고상 고분자 전해질용 선형 EO-PO 가소제의 화학구조]
Figure PCTKR2020003385-appb-I000007
상기 화학식에서,
6.3은 프로필렌옥사이드의 평균부가몰수이고; 및
14.5는 에틸렌옥사이드의 평균부가몰수이다.
[중간체 화합물(B)]
Figure PCTKR2020003385-appb-I000008
상기 화학식에서,
6.3은 프로필렌옥사이드의 평균부가몰수이고; 및
14.5는 에틸렌옥사이드의 평균부가몰수이다.
온도계, 교반기, 질소 도입관을 가진 고압반응기에 메탄올 (32 g, 1 mol), 수산화칼륨 (1.0g, 17.8 mmol)을 넣고 교반하면서 반응기 내부를 질소로 치환하였다. 반응기 온도를 140℃로 하고, 내부압력을 2~4 kg/cm2 를 유지하면서 에틸렌옥사이드 (638 g, 14.5 mol), 프로필렌옥사이드 (365 g, 6.3 mol)을 5시간 동안 연속 주입하고, 추가로 3시간 숙성하여 상기 중간체 화합물(B)을 얻었다. 온도계, 교반기, 질소도입관을 구비한 1L 4구 유리플라스크에 상기 중간체 화합물(B) (517.5 g, 0.5 mol)와 수산화나트륨 (24 g, 0.24 mol)을 넣고 내부온도 80℃에서 진공펌프로 1시간 탈수를 실시했다. 이후 질소로 치환한 후, 내부온도 50℃에서 황산디메틸 (75.5 g, 0.6 mol)을 적하하고 5시간 동안 반응을 시켰다. 황산으로 pH 5~7로 중화하고, 화합물 내 함유되어있는 수분을 제거하기 위해 100℃에서 진공 펌프를 이용하여 2시간 동안 감압 탈수를 진행하였다. 수분제거 후 생성된 염을 제거하기 위해 규조토로 여과를 실시하여, 액상의 전고상 고분자 전해질용 선형 EO-PO 가소제(분자량 1050 g/mol) (495 g, 0.47 mol)을 얻었다. 말단 수산기 분석을 위하여 ASTM D4274(Acetylation)로 분석했을때, 상기 중간체 화합물(B)는 수산기가 54.2, 상기 전고상 고분자 전해질용 선형 EO-PO 가소제의 수산기가는 0.5로 확인되었다.
< 비교예 2> PEG 가소제를 사용한 전고상 고분자 전해질의 제조
가소제: 폴리(에틸렌글리콜)다이메틸에테르 (PEGDME, 중량평균분자량(Mw) 1000) (0.8 g, 0.8 mmol);
리튬염: LiN(SO2CF3)2 (0.282 g, 0.983 mmol);
가교제: 실시예 2에서 제조한 전고상 고분자 전해질용 다분지 EO-PO 가교제 (0.2 g, 0.289 mmol); 및
개시제: t-부틸 퍼옥시피발레이트 (가교제 총 중량 대비 2 중량%).
상기 가소제와 리튬염을 균일한 혼합물이 될 때까지 상온에서 교반하였다. 상기 혼합물에 상기 가교제와 개시제를 넣고 교반하여 전구체 용액을 제조하였다. 상기 전구체 용액을 기재 위에 코팅하고 열을 가하여 경화시켜 전고상 고분자 전해질을 필름형태로 제조하였다.
< 비교예 3> 선형 EO-PO 가소제를 사용한 전고상 고분자 전해질의 제조
가소제: 비교예 1에서 제조한 전고상 고분자 전해질용 선형 EO-PO 가소제 (0.8 g, 0.762 mmol);
리튬염: LiN(SO2CF3)2 (0.263 g, 0.918 mmol);
가교제: 실시예 2에서 제조한 전고상 고분자 전해질용 다분지 EO-PO 가교제 (0.2 g, 0.289 mmol); 및
개시제: t-부틸 퍼옥시피발레이트 (가교제 총 중량 대비 2 중량%).
상기 가소제와 리튬염을 균일한 혼합물이 될 때까지 상온에서 교반하였다. 상기 혼합물에 상기 가교제와 개시제를 넣고 교반하여 전구체 용액을 제조하였다. 상기 전구체 용액을 기재 위에 코팅하고 열을 가하여 경화시켜 전고상 고분자 전해질을 필름형태로 제조하였다.
< 실험예 1> 전고상 고분자 전해질의 온도변화에 따른 결정성 평가
실시예 3, 비교예 2 및 비교예 3에서 각각 제조한 전고상 고분자 전해질들의 온도변화에 따른 결정성을 DSC(Differential Scanning Calorimetry)로 평가하였다. -80℃에서 100℃의 온도범위에서, 10℃/min의 승온속도로 열량변화를 관찰하여 전고상 고분자 전해질 필름의 결정화 및 용융이 일어나는 온도를 측정하였다.
비교예 2에서 제조한 전고상 고분자 전해질의 DSC 데이터를 도 1에 나타내었고,
비교예 3에서 제조한 전고상 고분자 전해질의 DSC 데이터를 도 2에 나타내었고,
실시예 3에서 제조한 전고상 고분자 전해질의 DSC 데이터를 도 3에 나타내었다.
도 1은 본 발명의 비교예 2에서 제조한 전고상 고분자 전해질의 온도변화에 따른 결정성을 DSC(Differntial Scanning Calorimetry) 데이터로 평가한 그래프이다.
도 2는 본 발명의 비교예 3에서 제조한 전고상 고분자 전해질의 온도변화에 따른 결정성을 DSC 데이터로 평가한 그래프이다.
도 3은 본 발명의 실시예 3에서 제조한 전고상 고분자 전해질의 온도변화에 따른 결정성을 DSC 데이터로 평가한 그래프이다.
도 1에 나타난 바와 같이,
선형 EO 가소제 (PEGDME)를 포함하는 전고상 고분자 전해질 (비교예 2)의 경우는 -80℃에서 100℃의 온도범위에서 결정화 및 용융을 나타내는 피크가 관찰된다. 1차 승온 실험의 경우 -25℃에서 결정화, 19℃에서 용융 피크가 나타났으며, 2차 승온 실험의 경우 -29℃에서 결정화, 25℃에서 용융 피크가 나타났다. 한편 쿨링과정에서는 -29℃에서 결정화가 나타난다. 이러한 결정화 피크의 관찰결과로 볼 때, 선형 EO 가소제를 포함하는 전고상 고분자 전해질에서 결정화가 일어났다.
도 2에 나타난 바와 같이,
선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질(비교예 3)의 경우는 결정화 및 용융을 나타내는 피크가 없다. 이러한 결과로 볼 때, 선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질의 경우, 결정화가 크게 억제되어 무정형 상태를 유지한다.
도 3에 나타난 바와 같이,
다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질(실시예 3)의 경우도 결정화 및 용융을 나타내는 피크가 없다. 이러한 결과로 볼 때, 다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질의 경우도 결정화가 크게 억제되어 무정형 상태를 유지한다. 이와 같이 PO 구조의 도입 및 다분지 구조의 도입은 전고상 고분자 전해질의 결정화를 크게 억제하는 우수한 효과를 나타낸다.
<실험예 2> 전고상 고분자 전해질의 온도변화에 따른 이온전도도의 평가
결정화의 억제에 의한 이온전도도의 향상을 확인하기 위하여 하기와 같이 전고상 고분자 전해질의 이온전도도를 평가하였다. 구체적으로, 실시예 3, 비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질의 온도변화에 따른 이온전도도를 측정하였다.
상기 실시예 3, 비교예 2 및 비교예 3에서 제조한 전구체 용액을 각각 전도성 유리 기판에 주입한 후, 열경화하여 중합시키고, 충분히 식힌 뒤, 교류 임피던스 분석기로 측정하였다. 상기에서 얻은 측정치를 주파수 응답 분석기(제조사: Zahner Elekrik, 모델명: IM6)로 분석하여 복소 임피던스를 해석하는 방법으로 이온전도도를 평가하였다.
실시예 3, 비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질의 온도에 따른 이온전도도의 변화를 도 4에 나타내었다.
도 4는 실시예 3, 비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질의 온도에 따른 이온전도도의 변화를 나타내는 그래프이다.
도 4에 나타난 바와 같이,
선형 EO 가소제(PEGDME)를 포함하는 전고상 고분자 전해질(비교예 2)은 25℃ 이상의 온도에서는 선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질(비교예 3)과 유사한 이온전도도를 보인 반면, 25℃ 이하의 온도에서는 이온전도도가 급격히 감소한다.
선형 EO계 가소제를 포함하는 전고상 고분자 전해질은 도 1에서 확인한 바와 같이 25℃ 이하에서는 결정성을 나타내므로, 리튬이온의 이동성을 저해하여 이온전도도가 급격히 떨어진다.
이에 비하여 전고상 고분자 전해질용 선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질(비교예 3)은 결정성이 전혀 없는 무정형 상태를 유지하므로, 온도 저하에 따른 급격한 이온전도도의 감소는 보이지 않고 안정적인 값이 나타난다.
한편, 다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질(실시예 3)도 선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질과 동일하게 결정성이 전혀 없는 무정형 상태를 유지하므로 온도저하에 따른 급격한 이온전도도의 감소현상을 보이지 않는다.
특히, 다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질은 선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질보다 온도변화에 상관없이 높은 이온전도도를 보인다. 이러한 결과로 볼 때, 다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질이, 선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질보다 이온전도도에 있어서 더 우수하다.
<실험예 3> 전지 특성 평가 1
비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬이온 전지의 저온에서의 율속특성을 도 5에 나타내었으며 구체적으로 다음과 같은 실험을 하였다.
비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질을 전해질 및 분리막으로 사용하고 리튬 금속을 음극, LiFePO4를 양극으로 사용한 리튬이온 전지의 용량을 확인하기 위하여, 10℃에서 충방전시험기로 충방전 거동을 측정하였다. 사용된 양극활물질의 로딩함량은 1.4 mg/cm2 이었다. 이때, 충전 상한 전압은 4.2 V, 방전 하한 전압은 2.5 V로 하고, 충전/방전 속도는 0.2, 0.5, 1.0, 2.0 C로 진행하였다.
본 실험예에서 사용하는 충전/방전 속도는 "C"의 단위로 표시하는데, 1 C라 함은 전지의 방전용량을 1시간에 충전 또는 방전할 수 있는 전류를 의미한다. 즉, 10 Ah 방전용량을 갖는 전지의 경우 10 A 전류로 충전/방전할 경우 1 C라 한다.
도 5는 비교예 2 및 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 저온에서의 율속특성을 나타내는 그래프이다.
도 5에 나타난 바와 같이,
선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질(비교예 3)을 사용한 리튬 폴리머 이차전지의 경우 0.2 C의 충전/방전 속도에서 방전용량은 약 50 mAh/g 을 나타낸 반면, 선형 EO계 가소제를 포함하는 전고상 고분자 전해질(비교예 2)을 사용한 리튬 폴리머 이차전지의 경우는 방전용량을 거의 발현하지 못하였다.
선형 EO 가소제를 포함하는 전고상 고분자 전해질은 실험예 1에서 확인한 바와 같이, 10℃에서 EO의 결정화가 나타나고, 실험예 2에서 확인한 바와 같이, 이온전도도가 크게 감소하여, 측정된 이온전도도는 1.2 x 10-5 S/cm으로 낮다. 이와 같이 이온전도도가 매우 낮기 때문에 선형 EO 가소제를 포함하는 전고상 고분자 전해질을 사용한 리튬 폴리머 이차전지는 방전용량을 거의 발현하지 못한다.
반면, 선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질은 10℃에서 선형 EO계 가소제를 포함하는 전고상 고분자 전해질보다 높은 이온전도도를 보이기 때문에 리튬 폴리머 이차전지의 방전용량이 증가한다. 이와 같이 전지 성능에서도 EO 고분자 전해질보다 EO-PO 고분자 전해질이 우수하다.
<실험예 4> 전지 특성 평가 2
선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질과 다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질의 전지특성을 비교하는 실험을 실시하였다. 비교예 3 및 실시예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃와 45℃에서의 율속특성을 비교하기 위하여 다음과 같은 실험을 하였다.
구체적으로, 비교예 3 및 실시예 3에서 제조한 전고상 고분자 전해질을 전해질 및 분리막으로 사용하고 리튬 금속을 음극, LiFePO4를 양극으로 사용한 리튬이온 전지의 용량을 확인하기 위하여, 25℃와 45℃에서 충방전시험기로 충방전 거동을 측정하였다. 사용된 양극활물질의 로딩함량은 5.1 mg/cm2 이었다. 이때, 충전 상한 전압은 4.2 V, 방전 하한 전압은 2.5 V로 하고, 충전/방전 속도는 0.2, 0.5, 1.0, 2.0 C로 진행하였다.
도 6은 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃에서의 율속특성을 나타내었다.
도 7은 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 45℃에서의 율속특성을 나타내었다.
도 8은 비교예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃와 45℃에서의 율속특성을 비교하여 나타내었다.
도 9는 실시예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃에서의 율속특성을 나타내었다.
도 10은 실시예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 45℃에서의 율속특성을 나타내었다.
도 11은 실시예 3에서 제조한 전고상 고분자 전해질을 포함하는 리튬 폴리머 이차전지의 25℃와 45℃에서의 율속특성을 비교하여 나타내었다.
도 6에 나타난 바와 같이,
선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질(비교예 3)로부터 제조된 리튬 폴리머 이차전지는 25℃, 0.2 C에서 방전용량이 15 mAh/g 으로 낮다.
도 9에 나타난 바와 같이,
다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질(실시예 3)로부터 제조된 리튬 폴리머 이차전지는 25℃, 0.2 C에서 방전용량이 142 mAh/g 이다. 이러한 결과는 다분지 EO-PO 전고상 고분자 전해질이 선형 EO-PO 전고상 고분자 전해질보다 방전용량이 더 우수함을 의미한다.
도 7 및 도 8에 나타난 바와 같이,
선형 EO-PO 가소제를 포함하는 전고상 고분자 전해질(비교예 3)로부터 제조된 리튬 폴리머 이차전지는 45℃ 조건에서 0.2 C에서는 143 mAh/g 의 높은 용량을 발현하였으나 0.5 C의 율속에서는 18 mAh/g 의 매우 낮은 용량을 나타내었다.
도 10 및 도 11에 나타난 바와 같이,
다분지 EO-PO 가소제를 포함하는 전고상 고분자 전해질(실시예 3)로부터 제조된 리튬 폴리머 이차전지는 45℃ 조건에서 0.2 C에서 155 mAh/g 의 높은 용량을 발현하였고, 0.5 C의 율속에서도 145 mAh/g 의 매우 높은 용량을 나타내었다. 이러한 결과는 다분지 EO-PO 전고상 고분자 전해질이 선형 EO-PO 전고상 고분자 전해질보다 우수한 율속특성을 발현함을 의미한다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 측면은, 하기 화학식 1로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가소제를 제공한다.
[화학식 1]
Figure PCTKR2020003385-appb-I000009
상기 화학식 1에서,
x는 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
y는 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다.
이때, 상기 x는 각 반복단위별로 각각 상이한 값을 가질 수 있고, 구체적으로 상기 x는 0.1 내지 5일 수 있고, 0.3 내지 3일 수 있고, 0.4 내지 1일 수 있다.
상기 y는 각 반복단위별로 각각 상이한 값을 가질 수 있고, 구체적으로 상기 y는 0.5 내지 10일 수 있고, 1 내지 7일 수 있고, 1.5 내지 5일 수 있다.
본 발명에 따른 상기 화학식 1로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가소제는, 종래 선형 EO 구조의 가소제에서 나타나는 문제인, 높은 결정화도로 인하여 상온에서 강직한 구조가 유도되어 이온의 이동을 억제하고 그로 인해 이온전도도가 낮아지는 점을 해결하여, 종래 선형 EO 구조의 가소제가 나타내는 결정성을 억제하고 이온전도도를 향상시키는 효과를 나타낸다.
특히, 상기 가소제는 PO 구조를 도입함으로써, 종래 EO 구조의 가소제가 나타내는 결정성이 크게 억제되고, 이로 인하여, 리튬이온 전도특성을 향상되며 특히, 저온에서의 이온전도도가 증대되는 효과를 나타낸다.
또한 상기 가소제는, 동일하게 PO를 도입하더라도, 고분자 전해질의 유연성, 이온전도도 및 율속특성이 선형 EO-PO 구조의 가소제보다 우수한 효과를 나타내며, 이는, 선형 구조가 아닌, 다분지 구조를 가짐에 따라 나타는 효과이다.
본 발명의 다른 측면은,
하기 화학식 1로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가소제 1.0-90.0 중량%;
하기 화학식 2로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가교제 1.0-90.0 중량%;
리튬염 1.0-50.0 중량%; 및
경화형 개시제 0.1-5.0 중량%;를 포함하는 것을 특징으로 하는 전고상 고분자 전해질 조성물을 제공한다.
[화학식 1]
Figure PCTKR2020003385-appb-I000010
상기 화학식 1에서,
x는 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
y는 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다.
이때, 상기 x는 각 반복단위별로 각각 상이한 값을 가질 수 있고, 구체적으로 상기 x는 0.1 내지 5일 수 있고, 0.3 내지 3일 수 있고, 0.4 내지 1일 수 있다.
이때, 상기 y는 각 반복단위별로 각각 상이한 값을 가질 수 있고, 구체적으로 상기 y는 0.5 내지 10일 수 있고, 1 내지 7일 수 있고, 1.5 내지 5일 수 있다.
[화학식 2]
Figure PCTKR2020003385-appb-I000011
상기 화학식 2에서,
m은 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
n은 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다.
이때, 상기 m은 각 반복단위별로 각각 상이한 값을 가질 수 있고, 구체적으로 상기 x는 0.1 내지 5일 수 있고, 0.3 내지 3일 수 있고, 0.4 내지 1일 수 있다.
이때, 상기 n은 각 반복단위별로 각각 상이한 값을 가질 수 있고, 구체적으로 상기 y는 0.5 내지 10일 수 있고, 1 내지 7일 수 있고, 1.5 내지 5일 수 있다.
본 발명에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 가소제는 단독 또는 비수용액계 극성용매와 혼합하여 사용할 수 있는데, 리튬염 해리와 리튬이온 전도성을 양호하게 하여 이온전도도를 향상시키는데 도움을 주는 역할을 한다.
이 때, 상기 비수용액계 극성용매로는 알킬렌 카보네이트계, 알킬테트라하이드로퓨란계, 디옥시란계, 락톤계 및 아세토니트릴계 등을 단독으로 또는 혼합하여 사용할 수 있다. 구체적인 예로는, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 디메틸카보네이트, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 1,3-디옥시란, 4,4-디메틸-1,3-디옥시란, γ-부티로락톤, 아세토니트릴 등을 사용할 수 있다.
또한, 상기 가소제는 총 고분자 전해질 조성물 중에 1.0-90.0 중량%, 바람직하게는 30.0-80.0 중량%, 더욱 바람직하게는 45.0-75.0 중량% 범위로 함유될 수 있다. 통상적으로 전고상 고분자 전해질에 포함되는 가소제의 양은 전고상 고분자 전해질의 이온전도도와 정비례하지만, 상기 함유량이 1.0 중량% 미만일 경우에는 이온전도도 향상의 효과가 미약한 문제가 있고, 90.0 중량%를 초과할 경우에는 기계적 물성이 감소하여 박막으로 만들 수 없어서 전지 제조에 적용되기 어려운 문제가 있다. 따라서, 상기 함량 범위를 유지할 경우 두께가 100 ㎛ 이하의 얇은 필름의 제조가 가능하다.
본 발명에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 화학식 2로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가교제를 사용함에 따라, 중합반응으로 생성된 단단한 그물망 구조 내에 가소제가 얽혀 존재하는 semi IPN(Interpenetrating Polymer Network)구조를 형성할 수 있게 된다. 가교제에 의한 semi IPN 구조는 고분자 전해질에 기계적 물성을 제공하고 가소제는 이온전도 특성을 부여하게 된다.
이 때, 상기 전고상 고분자 전해질용 다분지 EO-PO 가교제는 총 전고상 고분자 전해질 조성물 중에 1.0-90.0 중량%, 바람직하게는 5.0-80.0 중량%, 더욱 바람직하게는 8.0-60 중량%로 함유될 수 있다. 상기 함유량이 1.0 중량% 미만일 경우에는 그 양이 너무 미미하여 가교제로서의 효과를 얻을 수 없을 뿐만 아니라 기계적 물성이 저하되는 문제가 있으며, 90.0 중량%를 초과할 경우에는 이온전도도가 감소하는 문제가 있다.
본 발명에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 리튬염은 당 분야에서 전고상 고분자 전해질 제조에 통상적으로 사용되는 것으로 특별히 한정하지는 않는다. 종래부터 일반적으로 사용된 리튬염으로는 구체적으로, LiClO4, LiCF3SO3, LiBF4, LiPF6, LiAsF6 및 LiN(SO2CF3)2 등이 사용될 수 있다.
이때, 상기 리튬염은 총 고분자 전해질 조성물 중에 1.0-50.0 중량%, 바람직하게는 10.0-35.0 중량%, 더욱 바람직하게는 15.0-30.0 중량%로 포함될 수 있으나, 필요에 따라 적절한 혼합비율에 의해 그 양을 조절할 수도 있다. 상기 함유량이 1.0 중량% 미만이면 리튬이온의 농도가 너무 낮아 전해질로서 적합하지 않으며, 50.0 중량%를 초과하는 경우에는 리튬염의 용해도 문제 및 이온전도도 감소 문제가 있다.
본 발명에 따른 전고상 고분자 전해질 조성물에 있어서, 상기 경화형 개시제는 당 분야에서 일반적으로 사용되는 광경화형, 열경화형 등의 모든 개시제가 사용될 수 있다.
상기 광경화형 개시제는 에틸벤조인 에테르, 이소프로필벤조인 에테르, α-메틸벤조인 에틸에테르, 벤조인페닐에테르, α-아실옥심 에스테르, α,α-디에톡시 아세토페논, 1,1-디클로로아세토페논, 2-하이드록시-2-메틸-1-페닐프로판-1-온[시바 가이기(Ciba Geigy)사의 다로큐어(Darocur) 1173], 1-하이드록시시클로헥실 페닐 케톤[시바 가이기(Ciba Geigy)사의 이가큐어(Irgacure) 184, 다로큐어 1116, 이가큐어 907], 안트라퀴논, 2-에틸 안트라퀴논, 2-클로로안트라퀴논, 티옥산톤, 이소프로필 티옥산톤, 클로로티옥산톤, 벤조페논, p-클로로벤조페논, 벤질 벤조에이트, 벤조일 벤조에이트 및 미클러 케톤 등이 사용될 수 있다.
또한, 상기 열경화형 개시제는 벤조일 퍼옥시드, 디-tert-부틸 퍼옥시드, 디-tert-아밀 퍼옥시드, a-큐밀 퍼옥시네오데카노에이트, a-큐밀 퍼옥시네오펩타노에이트, t-아밀 퍼옥시네오데카노에이트, 디-(2-에틸헥시) 퍼옥시-디카보네이트, t-아밀 퍼옥시피발레이트, t-부틸 퍼옥시피발레이트, 2,5-디메틸-2,5 비스(2-에틸-헥사노일퍼옥시) 헥산, 디벤조일 퍼옥시드, t-아밀 퍼옥시-2-에틸헥사노에이트, t-부틸 퍼옥시-2-에틸헥사노에이트, 1,1-디-(t-아밀퍼옥시) 시클로헥산, 1,1-디-(t-부틸퍼옥시) 3,3,5-트리메틸 시클로헥산, 1,1-디-(t-부틸퍼옥시) 시클로헥산, t-부틸 퍼옥시아세테이트, t-부틸 퍼옥시벤조에이트, t-아밀 퍼옥시벤조에이트, t-부틸 퍼옥시벤조에이트, 에틸 3,3-디-(t-아밀퍼옥시) 부티레이트, 에틸 3,3-디-(t-부틸퍼옥시) 부티레이트, 디큐밀 퍼옥시드 등의 퍼옥시드계 개시제 또는 1,1'-아조비스(시클로헥산카보니트릴), 2,2'-아조비스(2-메틸프로피온아미딘) 디히드로클로라이드, 4,4'-아조비스(4-시아노발레르산) 등의 화합물이 사용될 수 있다. 본 발명에서는, 열경화형 개시제를 사용하였으나, 이는 일실시예일 뿐, 이에 한정되는 것은 아니며, 경화 방법에 따라 개시제의 종류를 적절히 선택하여 사용할 수 있다.
이때, 상기 경화형 개시제는 총 전고상 고분자 전해질 조성물 중에 0.1-5.0 중량% 범위로 함유되는 바, 상기 함량이 0.1 중량% 미만일 경우에는 개시제의 효과를 얻을 수 없는 문제가 있고, 5.0 중량%를 초과할 경우에는 경화 후에 미반응한 개시제가 전지의 성능을 저하시키는 문제가 있다.
한편, 상기 경화형 개시제는 전고상 고분자 전해질 조성물에서 동시에 사용되는 다른 성분의 혼합비에 따라 적절히 조절될 수 있다.
또한, 본 발명은 상기 전고상 고분자 전해질 조성물을 포함하는 전고상 고분자 전해질을 제공한다.
상기 전고상 고분자 전해질은 전고상 고분자 전해질 조성물에 열 또는 광을 가하여 경화시켜 얻을 수 있다.
상기 전고상 고분자 전해질은 semi-IPN(Interpenetrating Polymer Network) 타입의 3차원 망상구조를 형성할 수 있다.
상기 전고상 고분자 전해질 조성물을 포함하는 전고상 고분자 전해질을 제조하는 일례의 과정을 보다 구체적으로 설명하면 다음과 같으며, 본 발명이 이에 한정되는 것은 아니다.
우선, 본 발명에 따른 가소제 및 리튬염을 적당한 비율로 용기에 넣고 교반기로 교반하여 용액을 제조한 후, 본 발명에 따른 전고상 고분자 전해질용 다분지 EO-PO 가교제를 혼합하여 상기 용액에 첨가한 후, 경화용 개시제를 첨가하고 교반하면 전고상 고분자 전해질 제조용 혼합액이 만들어진다. 상기 혼합액을 적절한 두께로 유리판, 폴리에틸렌계 비닐 또는 상업용 마일라(Mylar) 필름 또는 전지용 전극 등의 지지체 상에 코팅하여 전자선, 자외선, 감마선 등의 조사기 또는 가열조건에서 경화반응을 유도한다.
일정한 두께의 전해질을 얻기 위한 또 다른 제조 방법으로는, 상기 지지체 상에 조성물 혼합액을 도포하고, 지지체 양끝에 두께 조절용 스페이서(spacer)를 고정시킨 후 그 위에 다른 지지체를 덮은 후, 상기의 경화용 조사기 또는 열원을 이용하여 경화반응시켜 전고상 고분자 전해질을 제조한다.
본 발명의 다른 측면은, 상기 전고상 고분자 전해질 조성물을 포함하는 리튬 폴리머 이차전지를 제공한다.
본 발명에 따른 상기 전고상 고분자 전해질 조성물의 또 다른 적용예인 리튬 폴리머 이차전지의 전고상 고분자 전해질을 제조하는 일례의 과정을 보다 구체적으로 설명하면 다음과 같으며 본 발명이 이에 한정되는 것은 아니다.
리튬 폴리머 이차전지는 양극, 전해질 및 음극으로 이루어지는데, 양극으로는 LiFePO4, LiCoO2, LiNiO2 등의 리튬 금속 산화물이 많이 사용되며, 음극으로는 MCMB, MPCF 등의 흑연 또는 코크스 등과 같은 탄소 계열이나 리튬 금속 등을 재료로 사용하여 제조한다.
리튬 폴리머 이차전지의 제조방법은 상기 설명한 방법 이외에도 본 발명이 속하는 분야에서 통상적으로 사용되는 모든 방법으로 제조할 수 있다.
본 발명의 다른 측면은, 상기 전고상 고분자 전해질 조성물을 포함하는 연료전지를 제공한다.
상술한 바와 같이, 본 발명에 따른 전고상 고분자 전해질 조성물을 경화하여얻은 전고상 고분자 전해질은 결정화가 억제되어(실험예 1의 도 3 참조) 이온전도도가 향상되는데 특히 낮은 온도(25℃ 이하)에서도 이온전도도가 우수하고(실험예 2의 도 4 참조), 상기의 전해질을 사용한 리튬 폴리머 이차전지의 방전용량이 증가하며(실험예 3의 도 9 및 도 10 참조) 율속특성이 우수하기 때문에(실험예 4의 도 11), 리튬 폴리머 이차전지, 연료전지 등의 전고상 고분자 전해질로 유용하게 사용할 수 있다.

Claims (11)

  1. 하기 화학식 1로 표시되는 전고상 고분자 전해질용 다분지 EO(Ethylene oxide)-PO(Ethylene oxide) 가소제:
    [화학식 1]
    Figure PCTKR2020003385-appb-I000012
    (상기 화학식 1에서,
    x는 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
    y는 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다).
  2. 제1항에 있어서,
    상기 x는 0.1 내지 5이고; 및
    y는 0.5 내지 10인 것을 특징으로 하는 전고상 고분자 전해질용 다분지 EO-PO 가소제.
  3. 하기 화학식 1로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가소제 1.0-90.0 중량%;
    하기 화학식 2로 표시되는 전고상 고분자 전해질용 다분지 EO-PO 가교제 1.0-90.0 중량%;
    리튬염 1.0-50.0 중량%; 및
    경화형 개시제 0.1-5.0 중량%;를 포함하는 것을 특징으로 하는 전고상 고분자 전해질 조성물:
    [화학식 1]
    Figure PCTKR2020003385-appb-I000013
    (상기 화학식 1에서,
    x는 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
    y는 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다); 및
    [화학식 2]
    Figure PCTKR2020003385-appb-I000014
    (상기 화학식 2에서,
    m은 프로필렌옥사이드의 평균부가몰수를 나타내는 것으로 0.01 내지 10이고; 및
    n은 에틸렌옥사이드의 평균부가몰수를 나타내는 것으로 0.1 내지 15이다).
  4. 제3항에 있어서,
    상기 리튬염은 LiClO4, LiCF3SO3, LiBF4, LiPF6, LiAsF6 및 LiN(SO2CF3)2으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 전고상 고분자 전해질 조성물.
  5. 제3항에 있어서,
    상기 경화형 개시제는 광경화형 개시제 및 열경화형 개시제로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 전고상 고분자 전해질 조성물.
  6. 제5항에 있어서,
    상기 광경화형 개시제는 에틸벤조인 에테르, 이소프로필벤조인 에테르, α-메틸벤조인 에틸에테르, 벤조인페닐에테르, α-아실옥심 에스테르, α,α-디에톡시 아세토페논, 1,1-디클로로아세토페논, 2-하이드록시-2-메틸-1-페닐프로판-1-온, 1-하이드록시사이클로헥실 페닐 케톤, 안트라퀴논, 2-에틸 안트라퀴논, 2-클로로안트라퀴논, 티옥산톤, 이소프로필 티옥산톤, 클로로티옥산톤, 벤조페논, p-클로로벤조페논, 벤질벤조에이트, 벤조일벤조에이트 및 미클러 케톤으로 이루어지는 군으로부터 선택되는 1종 이상이고;
    상기 열경화형 개시제는 벤조일 퍼옥시드, 디-tert-부틸 퍼옥시드, 디-tert-아밀 퍼옥시드, α-큐밀 퍼옥시네오데카노에이트, α-큐밀 퍼옥시네오펩타노에이트, t-아밀 퍼옥시네오데카노에이트, 디-(2-에틸헥시) 퍼옥시-디카보네이트, t-아밀 퍼옥시피발레이트, t-부틸 퍼옥시피발레이트, 2,5-디메틸-2,5 비스(2-에틸-헥사노일퍼옥시) 헥산, 디벤조일 퍼옥시드, t-아밀 퍼옥시-2-에틸헥사노에이트, t-부틸 퍼옥시-2-에틸헥사노에이트, 1,1-디-(t-아밀퍼옥시) 사이클로헥산, 1,1-디-(t-부틸퍼옥시) 3,3,5-트리메틸 사이클로헥산, 1,1-디-(t-부틸퍼옥시) 사이클로헥산, t-부틸 퍼옥시아세테이트, t-부틸 퍼옥시벤조에이트, t-아밀 퍼옥시벤조에이트, t-부틸 퍼옥시벤조에이트, 에틸 3,3-디-(t-아밀퍼옥시) 부티레이트, 에틸 3,3-디-(t-부틸퍼옥시) 부티레이트, 디큐밀 퍼옥시드, 1,1'-아조비스(사이클로헥산카보니트릴), 2,2'-아조비스(2-메틸프로피온아미딘) 디히드로클로라이드 및 4,4'-아조비스(4-시아노발레르산)으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 전고상 고분자 전해질 조성물.
  7. 제3항의 전고상 고분자 전해질 조성물을 포함하는 전고상 고분자 전해질.
  8. 제7항에 있어서,
    상기 전고상 고분자 전해질은 제3항의 전고상 고분자 전해질 조성물에 열 또는 광을 가하여 경화시켜 얻는 것을 특징으로 하는 전고상 고분자 전해질.
  9. 제7항에 있어서,
    상기 전고상 고분자 전해질은 semi-IPN(Interpenetrating Polymer Network) 타입의 3차원 망상구조를 형성하는 것을 특징으로 하는 전고상 고분자 전해질.
  10. 제3항의 전고상 고분자 전해질 조성물을 포함하는 리튬 폴리머 이차전지.
  11. 제3항의 고체 고분자 전해질 조성물을 포함하는 연료전지.
PCT/KR2020/003385 2019-04-12 2020-03-11 전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물 WO2020209511A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0043341 2019-04-12
KR1020190043341A KR102132733B1 (ko) 2019-04-12 2019-04-12 전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물

Publications (1)

Publication Number Publication Date
WO2020209511A1 true WO2020209511A1 (ko) 2020-10-15

Family

ID=71604013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003385 WO2020209511A1 (ko) 2019-04-12 2020-03-11 전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물

Country Status (2)

Country Link
KR (1) KR102132733B1 (ko)
WO (1) WO2020209511A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169653A (ja) * 1993-10-19 1995-07-04 Matsushita Electric Ind Co Ltd イオン伝導性高分子電解質および電解コンデンサ
JPH09147920A (ja) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR20060006905A (ko) * 2003-04-03 2006-01-20 바스프 악티엔게젤샤프트 폴리알콕실화 트리메틸올프로판 (메트)아크릴레이트의혼합물
JP2012212516A (ja) * 2011-03-30 2012-11-01 Nof Corp 多官能poe化合物を用いた電気デバイス用非水電解液
KR20130124794A (ko) * 2012-05-07 2013-11-15 한국화학연구원 다분지형 아크릴계 가교제 및 포스페이트계 가소제를 함유하는 semi―IPN 타입의 고체 고분자 전해질 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169653A (ja) * 1993-10-19 1995-07-04 Matsushita Electric Ind Co Ltd イオン伝導性高分子電解質および電解コンデンサ
JPH09147920A (ja) * 1995-11-28 1997-06-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR20060006905A (ko) * 2003-04-03 2006-01-20 바스프 악티엔게젤샤프트 폴리알콕실화 트리메틸올프로판 (메트)아크릴레이트의혼합물
JP2012212516A (ja) * 2011-03-30 2012-11-01 Nof Corp 多官能poe化合物を用いた電気デバイス用非水電解液
KR20130124794A (ko) * 2012-05-07 2013-11-15 한국화학연구원 다분지형 아크릴계 가교제 및 포스페이트계 가소제를 함유하는 semi―IPN 타입의 고체 고분자 전해질 조성물

Also Published As

Publication number Publication date
KR102132733B1 (ko) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2019151812A1 (ko) 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
WO2019107921A1 (ko) 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지
WO2020022620A1 (ko) 전극 보호층용 고분자 및 이를 적용한 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2021025521A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2020096343A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019108031A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2020036337A1 (ko) 리튬 이차 전지용 전해질
WO2019108032A1 (ko) 겔 폴리머 전해질 조성물 및 이를 포함하는 리튬 이차전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019135624A1 (ko) 겔 폴리머 전해질 조성물, 이에 의해 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2015170786A1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
WO2020060293A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2024080826A1 (ko) 공중합체 조성물을 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2020209511A1 (ko) 전고상 고분자 전해질용 다분지 에틸렌옥사이드-프로필렌옥사이드 가소제 및 이를 포함하는 전고상 고분자 전해질 조성물
WO2020055122A1 (ko) 리튬 이차전지용 열경화성 전해질 조성물, 이로부터 제조된 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2019108024A1 (ko) 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
WO2019143155A1 (ko) 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2020009505A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022169109A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2021025544A1 (ko) 겔 고분자 전해질용 고분자, 이를 포함하는 겔 고분자 전해질 및 리튬 이차전지
WO2019190128A1 (ko) 파우치형 이차전지의 제조 방법
WO2021025535A1 (ko) 고분자 전해질용 공중합체, 이를 포함하는 겔 폴리머 전해질 및 리튬 이차전지
WO2019093862A1 (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786999

Country of ref document: EP

Kind code of ref document: A1