WO2020209213A1 - 基板処理装置および基板洗浄方法 - Google Patents

基板処理装置および基板洗浄方法 Download PDF

Info

Publication number
WO2020209213A1
WO2020209213A1 PCT/JP2020/015460 JP2020015460W WO2020209213A1 WO 2020209213 A1 WO2020209213 A1 WO 2020209213A1 JP 2020015460 W JP2020015460 W JP 2020015460W WO 2020209213 A1 WO2020209213 A1 WO 2020209213A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
substrate
cleaning liquid
cleaning member
skin layer
Prior art date
Application number
PCT/JP2020/015460
Other languages
English (en)
French (fr)
Inventor
知淳 石橋
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to KR1020207037615A priority Critical patent/KR20210147853A/ko
Priority to US17/049,001 priority patent/US20210242015A1/en
Priority to CN202080003844.5A priority patent/CN113614885A/zh
Publication of WO2020209213A1 publication Critical patent/WO2020209213A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/02087Cleaning of wafer edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67046Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly scrubbing means, e.g. brushes
    • B08B1/10
    • B08B1/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/003Cleaning involving contact with foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02096Cleaning only mechanical cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Definitions

  • Patent Document 1 discloses a cleaning member having a skin layer on a contact surface with a substrate and a cleaning member not having a skin layer. However, it is unclear from Patent Document 1 how to properly use these to effectively clean the substrate.
  • the first cleaning member that cleans the substrate on the contact surface provided with the skin layer and the contact surface not provided with the skin layer after cleaning by the first cleaning member.
  • a substrate processing apparatus including a second cleaning member for cleaning the substrate is provided.
  • the cleaning liquid supply unit includes a supply line communicating with the inside of the second cleaning member, a bubble-containing cleaning liquid generating unit connected to the supply line to generate a cleaning liquid containing bubbles, and the bubble-containing cleaning liquid in the supply line. It may have a filter provided between the generation unit and the second cleaning member.
  • a cleaning liquid containing bubbles having a diameter of less than 100 nm is supplied to the inside of the second cleaning member, and the second cleaning member is used while reaching the substrate from the surface of the second cleaning member. It is desirable to perform cleaning.
  • the substrate cleaning method includes a step of supplying a cleaning liquid containing bubbles having a diameter of less than 100 nm to the inside of the second cleaning member and discharging the cleaning liquid from the surface of the second cleaning member before using the second cleaning member for the first time. Is desirable.
  • a cleaning liquid containing bubbles having a diameter of less than 100 nm is supplied to the inside of the second cleaning member before cleaning of one substrate and starting cleaning of another substrate, and the surface of the second cleaning member is cleaned. It is desirable to have a step of discharging from.
  • Substrate cleaning power is improved.
  • the schematic top view of the substrate processing apparatus which concerns on one Embodiment.
  • the perspective view which shows the schematic structure of the substrate cleaning apparatus 4a.
  • the process chart which shows an example of the processing operation in a substrate processing apparatus.
  • the figure which shows the schematic structure of the cleaning liquid supply unit 30 which supplies the cleaning liquid into the inside of the cleaning member 12b.
  • FIG. 1 is a schematic top view of the substrate processing apparatus according to the embodiment.
  • This substrate processing device is used in the manufacturing process of semiconductor wafers with a diameter of 300 mm or 450 mm, flat panels, image sensors such as CMOS (Complementary Metal Oxide Semiconductor) and CCD (Charge Coupled Device), and magnetic films in MRAM (Magnetoresistive Random Access Memory).
  • image sensors such as CMOS (Complementary Metal Oxide Semiconductor) and CCD (Charge Coupled Device), and magnetic films in MRAM (Magnetoresistive Random Access Memory).
  • the shape of the substrate is not limited to a circular shape, and may be a rectangular shape (square shape) or a polygonal shape.
  • the substrate processing apparatus includes a substantially rectangular housing 1, a load port 2 on which a substrate cassette for stocking a large number of substrates is placed, and one or more (four in the embodiment shown in FIG. 1) substrate polishing apparatus 3. , A plurality of (two in the embodiment shown in FIG. 1) substrate cleaning devices 4a and 4b, a substrate drying device 5, transfer mechanisms 6a to 6d, and a control unit 7 are provided.
  • the load port 2 is arranged adjacent to the housing 1.
  • An open cassette, a SMIF (Standard Mechanical Interface) pod, or a FOUP (Front Opening Unified Pod) can be mounted on the load port 2.
  • the SMIF pod and FOUP are airtight containers that can maintain an environment independent of the external space by storing the substrate cassette inside and covering it with a partition wall.
  • Substrate polishing device 3 for polishing the substrate, substrate cleaning device 4a for cleaning the substrate after polishing, substrate cleaning device 4b for further cleaning the substrate cleaned by the substrate cleaning device 4a, substrate drying device 5 for drying the substrate after cleaning.
  • substrate polishing device 3 is arranged along the longitudinal direction of the substrate processing device, and the substrate cleaning devices 4a and 4b and the substrate drying device 5 are also arranged along the longitudinal direction of the substrate processing device.
  • the substrate cleaning devices 4a and 4b and the substrate drying device 5 are substantially rectangular housings (not shown), which are openable and closable by a shutter mechanism, and are subject to processing from the opening and closing parts provided in the housing parts.
  • the substrate may be configured to be taken in and out.
  • the substrate cleaning devices 4a and 4b and the substrate drying device 5 may be integrated, and the substrate cleaning process and the substrate drying process may be continuously performed in one unit.
  • the transport mechanism 6a is arranged in the area surrounded by the load port 2, the substrate polishing device 3 and the substrate drying device 5 located on the load port 2 side. Further, the transfer mechanism 6b is arranged in parallel with the substrate polishing device 3, the substrate cleaning devices 4a and 4b, and the substrate drying device 5. The transport mechanism 6a receives the substrate before polishing from the load port 2 and delivers it to the transport mechanism 6b, or receives the dried substrate taken out from the substrate drying device 5 from the transport mechanism 6b.
  • a transfer mechanism 6c that transfers the substrate between the substrate cleaning devices 4a and 4b is arranged.
  • a transport mechanism 6d for transferring the substrate between the substrate cleaning device 4b and the substrate drying device 5 is arranged.
  • control unit 7 that controls the movement of each device of the substrate processing device is arranged inside the housing 1.
  • the mode in which the control unit 7 is arranged inside the housing 1 will be described, but the present invention is not limited to this, and the control unit 7 may be arranged outside the housing 1.
  • the control unit 7 operates the spindle 11 that holds and rotates the substrate, the ejection start and end timings of the nozzle that injects the cleaning liquid toward the substrate, or the nozzle up and down, as in the embodiment described later. It can also be configured to control motion and swivel motion in the horizontal plane of the vertical plane.
  • the control unit 7 may have a memory for storing a predetermined program, a CPU (Central Processing Unit) that executes the program of the memory, and a control module realized by the CPU executing the program. .. Further, the control unit 7 is configured to be able to communicate with a higher-level controller (not shown) that controls the board processing device and other related devices in an integrated manner, and can exchange data with the database of the higher-level controller.
  • the storage medium constituting the memory stores various programs such as various setting data and processing programs.
  • a known memory such as a computer-readable ROM or RAM, or a disk-shaped storage medium such as a hard disk, CD-ROM, DVD-ROM, or flexible disk can be used.
  • the substrate processing apparatus includes two types of substrate cleaning devices 4a and 4b. First, the substrate cleaning device 4a will be described.
  • FIG. 2 is a perspective view showing a schematic configuration of the substrate cleaning device 4a.
  • the substrate cleaning device 4a is movable in the horizontal direction, and has a plurality of (four in FIG. 2) spindles 11 (board holding rotation mechanism) that support the peripheral edge of the substrate S and rotate the substrate S horizontally, and the substrate.
  • a cleaning member 12a for cleaning the upper surface of the substrate S and a roll-type cleaning member 13a for cleaning the lower surface of the substrate S are provided.
  • the spindle 11 supports the peripheral edge of the substrate S and rotates in a horizontal plane. More specifically, the peripheral edge of the substrate S is positioned in the gripping groove formed on the outer peripheral side surface of the top 11a provided on the spindle 11 and pressed inward to rotate (rotate) at least one top 11a. As a result, the substrate S rotates.
  • the "top” is paraphrased as a “grasping portion” for gripping the substrate.
  • spindle can be paraphrased as "roller”.
  • the cleaning members 12a and 13a are sponge-like or cotton-like porous members.
  • the material is typically PVA (Polyvinyl Alcohol), and may be a Teflon material, a polyurethane material, PP (Polypropylene), or the like.
  • the cleaning members 12a and 13a have a cylindrical shape extending in a long shape.
  • the cleaning members 12a and 13a are rotatably supported by a roll holder (not shown), and can be moved up and down with respect to the front surface and the back surface of the substrate S, respectively.
  • the cleaning members 12a and 13a are rotated by a drive mechanism (rotational drive means) (not shown) as shown by arrows F1 and F2, respectively.
  • the structures of the cleaning members 12a and 13a will be described later with reference to FIGS. 3A and 3B.
  • the lengths of the cleaning members 12a and 13a are set to be slightly longer than the diameter of the substrate S.
  • the central axes (rotational axes) O1 and O2 of the cleaning members 12a and 13a are substantially orthogonal to the central axis (that is, the center of rotation) OS of the substrate S (parallel to the surface of the substrate S), and the cleaning members 12a and 13a are of the substrate S. Arranged to extend over the entire length of the diameter. As a result, the entire front and back surfaces of the substrate S are cleaned at the same time.
  • the cleaning members 12a and 13a are parallel to each other with the substrate S in between, but may be non-parallel.
  • the two cleaning liquid supply nozzles 14 and 15 are arranged above the substrate S that is supported and rotated by the spindle 11, and supplies the cleaning liquid to the surface of the substrate S.
  • the cleaning liquid supply nozzle 14 supplies a rinse liquid (for example, ultrapure water) to the surface of the substrate S, and the cleaning liquid supply nozzle 15 supplies a chemical liquid to the surface of the substrate S.
  • the board cleaning device 4a operates as follows. By positioning the peripheral edge of the substrate S in the fitting groove formed on the outer peripheral side of the top 11a provided on the upper part of the spindle 11 and pressing it inward to rotate (rotate) the top 11a, the substrate S is horizontal. Rotate to. In this example, two of the four pieces 11a give a rotational force to the substrate S, and the other two pieces 11a act as bearings that receive the rotation of the substrate S. Note that all the frames 11a may be connected to the drive mechanism to apply a rotational force to the substrate S.
  • the cleaning member 12a is rotated by a vertical drive mechanism (not shown). It is lowered to bring it into contact with the front surface of the rotating substrate S, and while rotating the cleaning member 13a, it is raised by a vertical drive mechanism (not shown) to come into contact with the back surface of the rotating substrate S.
  • each of the cleaning members 12a and 13a may move the cleaning members 12a and 13a up and down in a direction perpendicular to the surface of the substrate S, or may move up and down diagonally with respect to the surface of the substrate S. It may be made to operate, the pivot operation may be performed starting from a certain point, or the operation may be performed by combining these operations.
  • FIG. 3A is a side view of the cleaning member 12a in the longitudinal direction.
  • the cleaning member 12a has a cylindrical roll main body 21a and a plurality of nodule portions 22a protruding outward from the outer peripheral surface thereof in a cylindrical shape.
  • the cleaning member 12a included in the substrate cleaning apparatus 4a is provided with a skin layer at least on the tip of the nodule portion 22a, in other words, on the surface that comes into contact with the substrate S during cleaning.
  • the other surface may or may not be provided with a skin layer.
  • FIG. 3A shows that the black part is the skin layer.
  • the spotted portion indicates that the skin layer may or may not be provided.
  • the cleaning member 13a has the same structure as the cleaning member 12a.
  • the cleaning members 12a and 13a are manufactured by molding a resin such as PVA, a surface layer portion in contact with the mold at the time of molding and a lower layer portion inside the surface layer portion are formed.
  • the surface layer is a skin layer.
  • the skin layer covers the surface in a state of being uniformly covered with a thickness of about 1 to 10 ⁇ m, and may be in a state of partially having holes of several ⁇ m to several tens of ⁇ m. Therefore, the skin layer is a structurally hard layer as compared to the surface of the sponge structure.
  • the lower layer portion has a sponge structure having a large pore diameter of 10 ⁇ m to several hundred ⁇ m, and is a soft layer.
  • the inventors When the inventors compared the particle removal performance with and without the skin layer, they were effective for relatively large particles and highly sticky particles with the skin layer, and relatively small particles without the skin layer. It was found experimentally that it is effective in removing particles. That is, it is effective to give a larger physical force to the hard skin layer for large particles and sticky particles, and it is effective to give a repeated physical force to small particles due to the innumerable fine irregularities of the sponge structure in the lower layer. It is considered to be the target. Therefore, in order to remove small particles under or between large particles, it is more efficient to remove the large particles first.
  • the cleaning members 12a and 13a of the substrate cleaning apparatus 4a are provided with a hard skin layer on the nodule portion 22a which is the contact surface with the substrate S. Therefore, the cleaning members 12a and 13a can efficiently remove relatively large particles adhering to the substrate S and particles adhering to the substrate S.
  • the cleaning members 12a and 13a have a skin layer formed on at least a part of the contact surface with the substrate S.
  • the shape of the nodule portion 22a is illustrated in FIGS. 3B and 3C, and the thick line portion is the skin layer.
  • the nodule portion 22a may have a cylindrical shape with a flat tip surface, and the tip surface and a part of the side surface (tip surface side) may be a skin layer.
  • the nodule portion 22a has a substantially cylindrical shape in which a groove is formed on the tip surface, and the tip surface, the surface of the groove, and a part of the side surface (tip surface side) are skin layers. There may be.
  • the cleaning effect is improved by the edge of the groove.
  • the substrate cleaning device 4b Comparing the substrate cleaning device 4a and the substrate cleaning device 4b, the cleaning members 12b and 13b included in the substrate cleaning device 4b are different from the cleaning members 12a and 13a included in the substrate cleaning device 4a, and the other components have the same configuration. There is. Therefore, only the cleaning members 12b and 13b will be described.
  • FIG. 4 is a side view of the cleaning member 12b in the longitudinal direction.
  • the cleaning member 12b has a cylindrical roll main body 21b and a plurality of nodule portions 22b protruding outward from the outer peripheral surface in a cylindrical shape.
  • the cleaning member 12b included in the substrate cleaning apparatus 4b has no skin layer provided (removed) on at least the tip of the nodule portion 22b, in other words, the surface in contact with the substrate S during cleaning, and the lower layer portion is exposed. are doing.
  • the other surface may or may not be provided with a skin layer.
  • FIG. 4 it is shown that the white portion is not provided by the skin layer.
  • the spotted portion indicates that the skin layer may or may not be provided.
  • the cleaning member 13b has the same structure as the cleaning member 12b.
  • the cleaning members 12b and 13b of the substrate cleaning apparatus 4b are not provided with a hard skin layer on the contact surface with the substrate S. Therefore, the cleaning members 12b and 13b can efficiently remove relatively small particles adhering to the substrate S by rubbing the substrate S with the minute contact sides and corners forming the mesh.
  • the inventor of the present application found the difference in cleaning characteristics depending on the presence or absence of the skin layer as described above, and used these properly as follows.
  • FIG. 5 is a process diagram showing an example of processing operation in the substrate processing apparatus.
  • the substrate S put into the substrate processing apparatus of FIG. 1 is carried into the substrate polishing apparatus 3 by the transport mechanisms 6a and 6b and polished (step S1). Polishing debris (particles) of various sizes are attached to the surface of the substrate S after polishing. Further, various large and small slurry complexes in which the slurry used in the substrate polishing apparatus 3 and the chemical solution are mixed and aggregated are adhered to the substrate S.
  • the polished substrate S is carried into the substrate cleaning device 4a by the transport mechanism 6b of FIG. Then, the substrate S is cleaned by the cleaning members 12a and 13a of the substrate cleaning device 4a (step S2 in FIG. 5). Since a skin layer is formed on the contact surfaces of the cleaning members 12a and 13a with the substrate S, large particles adhering to the substrate S are mainly removed. On the other hand, small particles adhering to the substrate S may remain without being removed.
  • the substrate S cleaned by the substrate cleaning device 4b is not subsequently cleaned by the substrate cleaning device 4a.
  • the substrate S cleaned by the substrate cleaning device 4b is carried into the substrate drying device 5 by the transport mechanism 6d of FIG. 1 and dried (step S4). After that, the substrate S is carried out from the substrate processing apparatus.
  • the substrate S is first cleaned with the cleaning members 12a and 13a having the skin layer on the contact surface with the substrate S, thereby removing mainly large particles and particles adhering to the substrate S. (Rough cleaning). After that, the substrate S is cleaned with the cleaning members 12b and 12b having no skin layer on the contact surface with the substrate S to mainly remove small particles (finish cleaning). Since such two-step cleaning is performed, both large particles and small particles can be efficiently removed.
  • the substrate processing apparatus includes two substrate cleaning devices 4a and 4b, the former is a cleaning member 12a and 13a having a skin layer formed on a contact surface with the substrate S, and the latter is a substrate S. It is assumed that the cleaning members 12b and 13b have no skin layer formed on the contact surface.
  • one substrate cleaning device may have a cleaning member having a skin layer on the contact surface and a cleaning member having no skin layer on the contact surface with the substrate S. In this case as well, cleaning may be performed first with a cleaning member having a skin layer, and then cleaning with a cleaning member having no skin layer.
  • nano bubbles having a diameter of about 100 nm or less, hereinafter referred to as “nano bubbles”. This is because by interposing nanobubbles between the cleaning member and the particles to be removed, the nanobubbles function as an air slurry and the cleaning power is improved. Further, by adsorbing the nanobubbles on the removed particles, it is possible to prevent the particles from reattaching to the substrate or adhering to the cleaning member. This is shown in the following experiment.
  • FIG. 6A shows the cleaning solutions A to C used in the experiment.
  • the cleaning solution A pure water and a chemical solution in which almost no gas was dissolved were prepared.
  • the cleaning solution B pure water and a chemical solution having a concentration of dissolved gas (nitrogen) of 12 ppm (less than saturation) similar to that of the cleaning solution supplied at the semiconductor factory were prepared.
  • the cleaning liquid B has bubbles having a diameter of 50 to 100 nm about 2.2 times as large as those of the cleaning liquid A.
  • As the cleaning solution C pure water and a chemical solution having a dissolved gas (nitrogen) concentration of 30 ppm (supersaturation) were prepared.
  • the cleaning liquid C has bubbles having a diameter of 50 to 100 nm about 74.5 times as large as those of the cleaning liquid A.
  • FIG. 6B shows the results of a cleaning experiment using pure water and chemicals of cleaning solutions A to C, and the vertical axis is the relative amount of remaining particles.
  • the residual amount of particles is reduced to about 50% by using the cleaning liquid C as compared with the case of using the cleaning liquids A and B.
  • the residual amount of particles is reduced to about 60% by using the cleaning solution B, and to about 20% by using the cleaning solution C, as compared with the case of using the cleaning solution A.
  • the surface of the substrate S may be cleaned while supplying the cleaning liquid containing nanobubbles from the cleaning liquid supply nozzle 14 and / or the cleaning liquid supply nozzle 15 to the surface of the substrate S.
  • the second embodiment described next is to clean the substrate while supplying a cleaning liquid containing nanobubbles from the inside of the cleaning member.
  • small particles can be efficiently removed by the cleaning members 12b and 13b in which the skin layer is not formed on the contact surface with the substrate S. Therefore, also in the present embodiment, in step S3 of FIG. 5, it is mainly assumed that the cleaning liquid containing nanobubbles is used when cleaning the cleaning members 12b and 13b.
  • FIG. 7 is a diagram showing a schematic configuration of a cleaning liquid supply unit 30 that supplies a cleaning liquid to the inside of the cleaning member 12b.
  • the cleaning liquid supply unit 30 includes a cleaning liquid supply source 31, a gas dissolving unit 32, a filter 33, and a supply line 34.
  • the cleaning liquid supply source 31 is connected to the supply line 34 and supplies the degassed cleaning liquid to the supply line 34.
  • the cleaning solution may be pure water or a chemical solution.
  • the gas dissolving unit 32 dissolves the gas in the cleaning liquid flowing through the supply line 34.
  • the gas dissolving unit 32 dissolves the gas in the cleaning liquid by pressurizing the gas against the cleaning liquid through the membrane.
  • gas In order to contain a large amount of effective nanobubbles, it is desirable to include gas in the cleaning liquid until it is supersaturated.
  • the amount of gas to be dissolved can be adjusted according to the pressure and the flow rate of the cleaning liquid.
  • the gas may be nitrogen gas, carbon dioxide gas, hydrogen gas, or the like, but nitrogen gas is particularly effective for generating small bubbles.
  • the gas dissolving unit 32 dissolves the gas so that large bubbles do not occur in the cleaning liquid. This is because, as will be described later, if the cleaning liquid supplied to the substrate S contains large bubbles, the effect of improving the cleaning power by the nanobubbles may be reduced. However, it is difficult to prevent bubbles from occurring at all, and if the supply line 34 is bent, bubbles may occur at the bent portion. Therefore, it is desirable to provide the filter 33.
  • the filter 33 is provided on the supply line 34 on the downstream side of the gas melting section 32, preferably as close as possible to the cleaning member 12b.
  • the filter 33 has a network structure and removes large bubbles generated in the cleaning liquid. By providing the filter 33, the cleaning liquid containing no bubbles having a predetermined size or larger is supplied to the cleaning members 12b and 13b.
  • the supply line 34 is composed of one or a plurality of pipes, and the cleaning member 12b is attached to the tip (opposite side of the cleaning liquid supply source 31).
  • the center of the cleaning member 12b is a cavity, and the supply line 34 is fitted in the cavity and communicates with the cavity.
  • a plurality of holes are formed in the vicinity of the tip of the supply line 34 so that the cleaning liquid in the supply line 34 can flow out to the inside of the cleaning member 12b.
  • the core material is inserted into the cavity of the cleaning member 12b, the inside of the core material is also hollow, and the supply line 34 is connected to the core material.
  • the core material has holes that communicate with the inner cavity and the outer surface.
  • the core material also has a role of maintaining the shape of the cleaning member 12b.
  • the supply line 34 may be branched to supply the cleaning liquid to both the cleaning members 12b and 13b.
  • a cleaning liquid supply unit 30 may be provided for each of the cleaning members 12b and 13b.
  • the cleaning liquid is supplied from the cleaning liquid supply source 31 and the supply line 34 is filled with the cleaning liquid.
  • the gas is dissolved and there are no large bubbles.
  • Such a cleaning liquid is discharged into the cleaning member 12b from the hole at the tip of the supply line 34.
  • the supply line 34 is filled with a cleaning liquid
  • the inside of the cleaning member 12b is porous such as a sponge. Therefore, the pressure applied to the cleaning liquid is reduced by flowing out from the supply line 34, and the dissolved gas becomes small bubbles. The cleaning liquid containing such small bubbles reaches the substrate S.
  • FIG. 8A and 8B are diagrams schematically showing how the cleaning liquid reaches the substrate S from the cleaning member 12b.
  • the skin layer is not provided not only on the tip surface of the nodule portion 22b but also on the side surface of the nodule portion 22b and the surface of the roll body 21b.
  • the cleaning liquid is mainly discharged from the tip surface of the nodule portion 22b, but the cleaning liquid is also discharged from the side surface of the nodule portion 22b and the surface of the roll body 21b.
  • FIG. 8B there is no skin layer on the tip surface of the nodule portion 22b, but a skin layer is provided on the side surface of the nodule portion 22b and the surface of the roll body 21b.
  • the cleaning liquid is relatively difficult to permeate the skin layer on the side surface of the nodule portion 22b and the surface of the roll body 21b, and preferentially penetrates the tip surface of the nodule portion 22b (that is, the contact surface with the substrate S) of the substrate S. Supplied to the surface. Therefore, in the present embodiment, as shown in FIG. 8B, it is desirable that the skin layer is not provided only on the tip surface of the nodule portion 22b.
  • the diameter of the bubbles contained in the cleaning liquid is less than 100 nm, and it is desirable that bubbles having a larger size are not contained in the cleaning liquid. This is because if there are large bubbles, the small bubbles are prevented from coming into contact with the substrate S, and the effect of improving the detergency by the nanobubbles may be reduced.
  • the amount of gas dissolved in the gas dissolving unit 32 may be adjusted, or the mesh size of the filter 33 may be appropriately adjusted so that the cleaning liquid reaching the substrate S does not contain bubbles of 100 nm or more.
  • the cleaning liquid from the cleaning liquid supply unit 30 can be used as an inner rinse at the time of starting up when the cleaning members 12b and 13b are used for the first time.
  • the cleaning members 12b and 13b are made of a resin such as PVA, the reaction may be insufficient and the raw material may remain when the raw materials are reacted to produce a resin. Therefore, it is necessary to remove the remaining raw materials when the cleaning members 12b and 13b are started up.
  • the cleaning liquid containing nanobubbles from the cleaning liquid supply unit 30 to the inside of the cleaning members 12b and 13b, the remaining raw materials can be efficiently removed from the cleaning members 12b and 13 in a short time.
  • the cleaning members 12b and 13b may be started up by attaching new cleaning members 12b and 13b to the substrate cleaning apparatus and cleaning the dummy substrate in the same manner as a normal substrate (while supplying as an inner rinse). ..
  • new cleaning members 12b and 13b may be pressed against a plate material such as quartz without using a dummy substrate.
  • the cleaning members 12b and 13b may be started up by supplying the cleaning liquid from the cleaning liquid supply unit 30 to the inside of the cleaning members 12b and 13b without pressing the cleaning members 12b and 13b against the object.
  • the cleaning liquid from the cleaning liquid supply unit 30 can be used as an inner rinse for self-cleaning of the cleaning members 12b and 13b.
  • the cleaning liquid containing nanobubbles is supplied from the cleaning liquid supply unit 30 to the inside of the cleaning members 12b and 13b and discharged from the surface, so that the particles that have entered the inside of the cleaning members 12b and 13b can be efficiently removed.
  • the cleaning liquid supplied to the inside of the cleaning members 12b and 13b is discharged to the outside from the nodule portion 22b, the nodule portion 22b in contact with the substrate S can also be cleaned.
  • the self-cleaning of the cleaning members 12b and 13b may be performed by pressing the cleaning members 12b and 13b against a plate material such as quartz while supplying the cleaning members 12b and 13b as an inner rinse, and the cleaning liquid supply unit does not press the cleaning members 12b and 13b against the object. This may be done by supplying the cleaning liquid from No. 30 to the inside of the cleaning members 12b and 13b.
  • the plate material may be contaminated, but this method can also perform cleaning of the plate material itself, which is extremely effective. is there.
  • FIG. 9 is a diagram showing a schematic configuration of a cleaning liquid supply unit 30', which is a modification of FIG. 7. Unlike the cleaning liquid supply unit 30 of FIG. 7, the cleaning liquid supply unit 30'of FIG. 9 has a bubble-containing cleaning liquid generating unit 35.
  • the bubble-containing cleaning liquid generation unit 35 generates a cleaning liquid containing bubbles and supplies it to the supply line 34. Even with such a configuration, the substrate S can be cleaned with a cleaning liquid containing nanobubbles.
  • the cleaning liquid in which the gas is dissolved is supplied to the cleaning members 12b and 13b, and the substrate S is cleaned using the cleaning liquid containing nanobubbles. Therefore, the cleaning power is improved. Further, by using the cleaning liquid as an inner rinse on the cleaning members 12b and 13b, it is possible to shorten the start-up time and clean the cleaning members 12b and 13b.
  • cleaning liquid supply unit 30 may be provided only on one of the cleaning members 12b and 13b, or may be provided on the cleaning member 12a and / or the cleaning member 13a.
  • the cleaning method described above can also be applied to various substrate cleaning devices. Hereinafter, some modifications of the substrate cleaning apparatus will be described (the description common to FIG. 2 will be omitted as appropriate).
  • FIG. 10 is a perspective view showing a schematic configuration of another substrate cleaning device 4A.
  • the substrate cleaning device 4A includes a spindle 11, a cleaning mechanism 42, and one or more nozzles 43.
  • the cleaning mechanism 42 includes a cleaning member 61, a rotating shaft 62, a swing arm 63, a swing shaft 64, and the like.
  • the cleaning member 61 is, for example, a pencil-type cleaning tool made of PVA, the lower surface thereof is a cleaning surface, and the upper surface is fixed to the lower end of the rotating shaft 62.
  • a skin layer is formed on the contact surface of the cleaning member 61 with the substrate.
  • the substrate cleaning device 4A of FIG. 10 is used as a substitute for the substrate cleaning device 4b, a skin layer is not formed on the contact surface of the cleaning member 61 with the substrate.
  • the rotating shaft 62 extends perpendicularly (that is, vertically) to the surface of the substrate S, and the rotation of the rotating shaft 62 causes the cleaning member 61 to rotate in a horizontal plane.
  • the swing arm 63 extends in the horizontal direction, the upper end of the rotating shaft 62 is connected to one end side, and the swing shaft 64 is connected to the other end side.
  • a motor (not shown) is attached to the swing shaft 64.
  • the swing shaft 64 extends perpendicularly (that is, vertically) to the surface of the substrate S and can be raised and lowered.
  • the swing shaft 64 is lowered, the lower surface of the cleaning member 61 comes into contact with the surface of the substrate S, and when the swing shaft 64 is raised, the lower surface of the cleaning member 61 is separated from the surface of the substrate S. Further, the swing arm 63 is swung in the horizontal plane by the rotation of the swing shaft 64.
  • the cleaning member 61 may be moved linearly instead of being moved in an arc shape around the swing shaft 64. Further, although not shown, as described in the second embodiment, a cleaning liquid in which gas is dissolved may be supplied inside the cleaning member 61.
  • the present invention can also be applied to a form in which the substrate is in a vertical or diagonal posture. Moreover, the substrate does not have to be rotated.
  • the present invention can also be applied to buff cleaning that performs contact cleaning with stronger physical force such as a hard pad or a soft pad.

Abstract

スキン層が設けられた接触面で基板を洗浄する第1洗浄部材と、スキン層が設けられていない接触面で、前記第1洗浄部材によって洗浄された後の前記基板を洗浄する第2洗浄部材と、を備える基板処理装置が提供される。

Description

基板処理装置および基板洗浄方法
 本発明は、洗浄部材で基板を洗浄する基板処理装置および基板洗浄方法に関する。
 特許文献1には、基板との接触面にスキン層を有する洗浄部材と、有しない洗浄部材とが開示されている。しかし、これらをどのように使い分ければ効果的に基板洗浄を行えるのか、特許文献1からは不明である。
特開2018-56385号公報 国際公開第2016/67563号明細書 特開2017-191827号公報
 本発明はこのような問題点に鑑みてなされたものであり、本発明の課題は、より洗浄力が高い基板処理装置および基板洗浄方法を提供することである。
 本発明の一態様によれば、スキン層が設けられた接触面で基板を洗浄する第1洗浄部材と、スキン層が設けられていない接触面で、前記第1洗浄部材によって洗浄された後の前記基板を洗浄する第2洗浄部材と、を備える基板処理装置が提供される。
 気体が溶存した洗浄液を前記第2洗浄部材の内部に供給する洗浄液供給ユニットを備え、前記第2洗浄部材の内部に供給された洗浄液は、前記第2洗浄部材の表面から前記基板上に到達するようにしてもよい。
 前記洗浄液供給ユニットは、前記第2洗浄部材の内部に連通する供給ラインと、前記洗浄液に気体を溶解させる気体溶解部と、前記供給ラインにおいて、前記気体溶解部と前記第2洗浄部材との間に設けられたフィルタと、を有するようにしてもよい。
 前記洗浄液供給ユニットは、前記第2洗浄部材の内部に連通する供給ラインと、前記供給ラインに接続され、バブルを含む洗浄液を生成するバブル含有洗浄液生成部と、前記供給ラインにおいて、前記バブル含有洗浄液生成部と前記第2洗浄部材との間に設けられたフィルタと、を有するようにしてもよい。
 前記基板に到達する洗浄液は、バブルを含むのが望ましい。
 前記基板に到達する洗浄液は、直径が100nm未満のバブルを含むのが望ましい。
 前記基板に到達する洗浄液は、直径が100nm以上のバブルを含まないのが望ましい。
 本発明の別の態様によれば、第1洗浄部材におけるスキン層が設けられた接触面で基板を洗浄する第1洗浄工程と、その後、第2洗浄部材におけるスキン層が設けられていない接触面で前記基板を洗浄する第2洗浄工程と、を備える基板洗浄方法が提供される。
 前記第2洗浄工程では、前記第2洗浄部材の内部に直径が100nm未満のバブルを含む洗浄液を供給し、前記第2洗浄部材の表面から前記基板上に到達させつつ、前記第2洗浄部材による洗浄を行うのが望ましい。
 基板洗浄方法は、前記第2洗浄部材を初めて用いる前に、前記第2洗浄部材の内部に直径が100nm未満のバブルを含む洗浄液を供給し、前記第2洗浄部材の表面から排出させる工程を備えるのが望ましい。
 基板洗浄方法は、ある基板の洗浄を終え、別の基板の洗浄を始める前に、前記第2洗浄部材の内部に直径が100nm未満のバブルを含む洗浄液を供給し、前記第2洗浄部材の表面から排出させる工程を備えるのが望ましい。
 基板洗浄力が向上する。
一実施形態に係る基板処理装置の概略上面図。 基板洗浄装置4aの概略構成を示す斜視図。 洗浄部材12aの長手方向の側面図。 洗浄部材12a,13aの変形例。 洗浄部材12a,13aの別の変形例。 洗浄部材12bの長手方向の側面図。 基板処理装置における処理動作の一例を示す工程図。 実験に用いた洗浄液A~Cを説明する図。 洗浄液A~Cの純水および薬液を用いて洗浄実験を行った結果を示す図。 洗浄部材12bの内部に洗浄液を供給する洗浄液供給ユニット30の概略構成を示す図。 ナノバブルを含む洗浄液が基板S上に到達する様子を示す図。 ナノバブルを含む洗浄液が基板S上に到達する様子を示す図。 図7の変形例である洗浄液供給ユニット30’の概略構成を示す図。 別の基板洗浄装置4Aの概略構成を示す斜視図。
 以下、本発明に係る実施形態について、図面を参照しながら具体的に説明する。
(第1実施形態)
 図1は、一実施形態に係る基板処理装置の概略上面図である。本基板処理装置は、直径300mmあるいは450mmの半導体ウエハ、フラットパネル、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などのイメージセンサ、MRAM(Magnetoresistive Random Access Memory)における磁性膜の製造工程において、種々の基板を処理するものである。また、基板の形状は円形に限られず、矩形形状(角形状)や、多角形形状のものであってもよい。
 基板処理装置は、略矩形状のハウジング1と、多数の基板をストックする基板カセットが載置されるロードポート2と、1または複数(図1に示す態様では4つ)の基板研磨装置3と、複数(図1に示す態様では2つ)の基板洗浄装置4a,4bと、基板乾燥装置5と、搬送機構6a~6dと、制御部7とを備えている。
 ロードポート2は、ハウジング1に隣接して配置されている。ロードポート2には、オープンカセット、SMIF(Standard Mechanical Interface)ポッド、又はFOUP(Front Opening Unified Pod)を搭載することができる。SMIFポッド、FOUPは、内部に基板カセットを収納し、隔壁で覆うことにより、外部空間とは独立した環境を保つことができる密閉容器である。
 基板を研磨する基板研磨装置3、研磨後の基板を洗浄する基板洗浄装置4a、基板洗浄装置4aで洗浄された基板をさらに洗浄する基板洗浄装置4b、洗浄後の基板を乾燥させる基板乾燥装置5が、ハウジング1内に収容されている。基板研磨装置3は、基板処理装置の長手方向に沿って配列され、基板洗浄装置4a,4bおよび基板乾燥装置5も基板処理装置の長手方向に沿って配列されている。
 また、基板洗浄装置4a,4bおよび基板乾燥装置5は、それぞれ、図示しない略矩形状の筐体であって、シャッター機構により開閉自在とされ筐体部に設けられた開閉部から被処理対象の基板を出し入れするように構成されていてもよい。あるいは、変形実施例としては、基板洗浄装置4a,4bおよび基板乾燥装置5を一体化し、基板洗浄処理と基板乾燥処理とを連続的に1つのユニット内で行うようにしてもよい。
 ロードポート2、ロードポート2側に位置する基板研磨装置3および基板乾燥装置5に囲まれた領域には、搬送機構6aが配置されている。また、基板研磨装置3ならびに基板洗浄装置4a,4bおよび基板乾燥装置5と平行に、搬送機構6bが配置されている。搬送機構6aは、研磨前の基板をロードポート2から受け取って搬送機構6bに受け渡したり、基板乾燥装置5から取り出された乾燥後の基板を搬送機構6bから受け取ったりする。
 2つの基板洗浄装置4a,4b間に、これら基板洗浄装置4a,4b間で基板の受け渡しを行う搬送機構6cが配置される。基板洗浄装置4bと基板乾燥装置5との間に、これら基板洗浄装置4bと基板乾燥装置5間で基板の受け渡しを行う搬送機構6dが配置されている。
 さらに、ハウジング1の内部には、基板処理装置の各機器の動きを制御する制御部7が配置されている。本実施形態では、ハウジング1の内部に制御部7が配置されている態様を用いて説明するが、これに限られることはなく、ハウジング1の外部に制御部7が配置されてもよい。例えば、この制御部7により、後述する実施形態のように、基板の保持および回転を行うスピンドル11の動作や、基板に向かって洗浄液を噴射するノズルの吐出開始および終了タイミング、あるいは、ノズルの上下動および垂直面水平面内での旋回動を制御するように構成することもできる。なお、制御部7は、所定のプログラムを格納したメモリと、メモリのプログラムを実行するCPU(Central  Processing  Unit)と、CPUがプログラムを実行することで実現される制御モジュールとを有してもよい。また、制御部7は、基板処理装置およびその他の関連装置を統括制御する図示しない上位コントローラと通信可能に構成され、上位コントローラが有するデータベースとの間でデータのやり取りをすることができる。ここで、メモリを構成する記憶媒体は、各種の設定データや処理プログラム等の各種のプログラムを格納している。記憶媒体としては、コンピュータで読み取り可能なROMやRAMなどのメモリや、ハードディスク、CD-ROM、DVD-ROMやフレキシブルディスクなどのディスク状記憶媒体などの公知のものが使用され得る。
 本実施形態では、基板処理装置が2種類の基板洗浄装置4a,4bを備えている。まずは、基板洗浄装置4aについて説明する。
 図2は、基板洗浄装置4aの概略構成を示す斜視図である。基板洗浄装置4aは、水平方向に移動自在であり、基板Sの周縁部を支持して基板Sを水平回転させる複数本(図2では4本)のスピンドル11(基板保持回転機構)と、基板Sの上面を洗浄する洗浄部材12aと、基板Sの下面を洗浄するロール型の洗浄部材13aとを備えている。
 スピンドル11は基板Sの周縁部を支持して水平面内で回転させる。より具体的には、スピンドル11の上部に設けたコマ11aの外周側面に形成した把持溝内に基板Sの周縁部を位置させて内方に押し付け、少なくとも1つのコマ11aを回転(自転)させることにより基板Sが回転する。ここで、「コマ」は基板を把持するための「把持部」と言い換えられる。また、「スピンドル」は「ローラー」と言い換えられる。
 洗浄部材12a,13aはスポンジ状あるいは綿状態の多孔質部材である。その材質は、代表的にはPVA(Polyvinyl Alcohol)であり、テフロン材料、ポリウレタン材料、PP(Polypropylene)などであってもよい。洗浄部材12a,13aは長尺状に延びる円柱形状を有する。そして、洗浄部材12a,13aは図示しないロールホルダに回転自在に支承され、基板Sの表面および裏面に対してそれぞれ昇降自在である。洗浄部材12a,13aは、図示しない駆動機構(回転駆動手段)によって、それぞれ矢印F1,F2に示すように回転する。洗浄部材12a,13aの構造は図3Aおよび図3Bを用いて後述する。
 洗浄部材12a,13aの長さは、いずれも基板Sの直径より僅かに長く設定されている。洗浄部材12a,13aは、その中心軸(回転軸)O1,O2が、基板Sの中心軸(すなわち回転中心)OSとほぼ直交し(基板Sの表面と平行であり)、かつ、基板Sの直径の全長に亘って延びるように配置される。これによって、基板Sの表裏の全面が同時に洗浄される。なお、図2では、洗浄部材12a,13aは基板Sを挟んで平行であるが、非平行であってもよい。
 2つの洗浄液供給ノズル14,15は、スピンドル11で支持して回転させる基板Sの上方に配置され、基板Sの表面に洗浄液を供給する。洗浄液供給ノズル14は基板Sの表面にリンス液(例えば、超純水)を供給し、洗浄液供給ノズル15は基板Sの表面に薬液を供給する。
 基板洗浄装置4aは以下のように動作する。スピンドル11の上部に設けたコマ11aの外周側部に形成した嵌合溝内に基板Sの周縁部を位置させて内方に押し付けてコマ11aを回転(自転)させることにより、基板Sを水平に回転させる。この例では、4個のコマ11aのうち2個のコマ11aが基板Sに回転力を与え、他の2個のコマ11aは、基板Sの回転を受けるベアリングの働きをしている。なお、全てのコマ11aを駆動機構に連結して、基板Sに回転力を付与するようにしてもよい。
 このように基板Sを水平に回転させた状態で、洗浄液供給ノズル14,15から基板Sの表面にリンス液および薬液をそれぞれを供給しつつ、洗浄部材12aを回転させながら図示しない上下駆動機構によって下降させて回転中の基板Sの表面に接触させ、洗浄部材13aを回転させながら図示しない上下駆動機構によって上昇させて回転中の基板Sの裏面に接触させる。
 これによって、洗浄液(リンス液および薬液)の存在下で、基板Sの表面および裏面を洗浄部材12a,13aでそれぞれスクラブ洗浄する。なお、洗浄部材12a,13aの各々の上下駆動機構は、洗浄部材12a,13aを基板Sの表面に垂直な方向に上下動させてもよいし、基板Sの表面に対して斜め方向に上下動させてもよいし、ある点を起点としてピボット動作させてもよいし、それらの動作を組み合わせた動作をさせてもよい。
 図3Aは、洗浄部材12aの長手方向の側面図である。洗浄部材12aは、円筒状のロール本体21aと、その外周面から外側に円柱状に突出した複数のノジュール部22aとを有する。基板洗浄装置4aが有する洗浄部材12aは、少なくともノジュール部22aの先端、言い換えると、洗浄時に基板Sと接触する面にスキン層が設けられている。その他の表面は、スキン層が設けられていてもよいし、設けられていなくてもよい。
 なお、図3Aでは、黒塗りの部分がスキン層であることを示している。スポットを付した部分はスキン層が設けられてもよいし、設けられていなくてもよいことを示している。後述の図3Bおよび図3Cも同様である。洗浄部材13aも洗浄部材12aと同様の構造となっている。
 スキン層について補足する。PVAなどの樹脂を成型して洗浄部材12a,13aを製造する際、成型時に型と接している表層部と、その内部の下層部とが形成される。その表層部がスキン層である。スキン層は、厚さが1~10μm程度で一様に被覆された状態で面上を覆っており、部分的に数μm~数十μmの穴が開いている状態である場合もある。故に、スポンジ構造の表面と比較するとスキン層は構造的に硬い層である。一方、下層部は気孔径が10μm~数百μmと大きいスポンジ構造であり、柔らかい層である。
 発明者らは、スキン層の有無でパーティクル除去性能を比較したところ、スキン層ありの場合、比較的大きなパーティクルや粘着性の強いパーティクルに効果的であり、スキン層なしの場合、比較的小さなパーティクルの除去に効果的であることを実験により見出した。すなわち、大きなパーティクルや粘着性のパーティクルには、硬いスキン層により大きな物理力を与えることが効果的、小さいパーティクルには下層部におけるスポンジ構造の無数の細かい凹凸が繰り返しの物理力を与えることが効果的と考えられる。したがって、大きなパーティクルの下や大きなパーティクルの間にある小さいパーティクルを除去するには、まず大きなパーティクルを除去したほうが効率が良い。
 基板洗浄装置4aの洗浄部材12a,13aには、基板Sとの接触面であるノジュール部22aに硬いスキン層が設けられている。そのため、洗浄部材12a,13aは基板Sに付着した比較的大きなパーティクルや、基板Sに粘着したパーティクルを効率よく除去できる。
 なお、洗浄部材12a,13aには、基板Sとの接触面の少なくとも一部にスキン層が形成されていればよい。図3Bおよび図3Cにノジュール部22aの形状を例示しており、太線部分がスキン層である。図3Bに側面図を示すように、ノジュール部22aは先端面が平坦な円柱形状であり、先端面と側面の一部(先端面側)がスキン層であってもよい。あるいは、図3Cに側面図を示すように、ノジュール部22aは先端面に溝が形成された概略円柱形状であり、先端面、溝の表面および側面の一部(先端面側)がスキン層であってもよい。図3Cの態様によれば、溝のエッジによって洗浄効果が向上する。
 続いて、基板洗浄装置4bについて説明する。基板洗浄装置4aと基板洗浄装置4bとを比較すると、基板洗浄装置4bが有する洗浄部材12b,13bは、基板洗浄装置4aが有する洗浄部材12a,13aと異なっており、その他は同じ構成となっている。したがって、洗浄部材12b,13bについてのみ説明する。
 図4は、洗浄部材12bの長手方向の側面図である。洗浄部材12bは、円筒状のロール本体21bと、その外周面から外側に円柱状に突出した複数のノジュール部22bとを有する。基板洗浄装置4bが有する洗浄部材12bは、少なくともノジュール部22bの先端、言い換えると、洗浄時に基板Sと接触する面にはスキン層が設けられておらず(除去されている)、下層部が露出している。その他の表面は、スキン層が設けられていてもよいし、設けられていなくてもよい。なお、図4では、白抜きの部分はスキン層で設けられていないことを示している。スポットを付した部分はスキン層が設けられてもよいし、設けられていなくてもよいことを示している。洗浄部材13bも洗浄部材12bと同様の構造となっている。
 基板洗浄装置4bの洗浄部材12b,13bには、基板Sとの接触面に硬いスキン層が設けられていない。そのため、洗浄部材12b,13bは、網目を構成する微小接触辺や角で基板Sを擦るによって、基板Sに付着した比較的小さなパーティクルを効率よく除去できる。
 本願発明者は以上述べたようなスキン層の有無による洗浄特性の違いを見出し、これらを次のように使い分けるようにした。
 図5は、基板処理装置における処理動作の一例を示す工程図である。まず、図1の基板処理装置に投入された基板Sは搬送機構6a,6bによって基板研磨装置3に搬入され、研磨される(ステップS1)。研磨後の基板Sの表面には、大小様々な研磨屑(パーティクル)が付着している。また、基板研磨装置3で用いられたスラリと薬液とが混ざって凝集した大小様々なスラリコンプレックスが基板S上に粘着している。
 研磨された基板Sは図1の搬送機構6bによって基板洗浄装置4aに搬入される。そして、基板洗浄装置4aの洗浄部材12a,13aによって基板Sが洗浄される(図5のステップS2)。洗浄部材12a,13aの基板Sとの接触面にはスキン層が形成されているため、基板Sに付着した大きなパーティクルが主に除去される。一方で、基板Sに付着した小さなパーティクルは除去されずに残存することもある。
 続いて、基板洗浄装置4aによって洗浄された基板Sは図1の搬送機構6cによって基板洗浄装置4bに搬入される。そして、基板洗浄装置4bの洗浄部材12b,13bによって基板Sが洗浄される(図5のステップS3)。洗浄部材12b,13bの基板Sとの接触面にはスキン層が形成されていないため、基板洗浄装置4aで除去しきれなかった小さなパーティクルも除去される。
 なお、基板洗浄装置4bで洗浄された基板Sを、その後に基板洗浄装置4aで洗浄しないのが望ましい。
 その後、基板洗浄装置4bによって洗浄された基板Sは図1の搬送機構6dによって基板乾燥装置5に搬入され、乾燥される(ステップS4)。その後、基板Sは基板処理装置から搬出される。
 このように、第1の実施形態では、まず基板Sとの接触面にスキン層を有する洗浄部材12a,13aで基板Sを洗浄することで、主に大きなパーティクルや基板Sに付着したパーティクルを除去する(粗洗浄)。その後、基板Sとの接触面にスキン層を有しない洗浄部材12b,12bで基板Sを洗浄することで、主に小さなパーティクルを除去する(仕上げ洗浄)。このような2段階洗浄を行うため、大きなパーティクルも小さなパーティクルも効率よく除去できる。
 なお、本実施形態では、基板処理装置が2つの基板洗浄装置4a,4bを備え、前者が基板Sとの接触面にスキン層が形成された洗浄部材12a,13aを、後者が基板Sとの接触面にスキン層が形成されていない洗浄部材12b,13bを有するものとした。しかし、1つの基板洗浄装置が、接触面にスキン層を有する洗浄部材と、基板Sとの接触面にスキン層を有しない洗浄部材とを有してもよい。この場合も、まずはスキン層を有する洗浄部材で洗浄を行い、その後にスキン層を有しない洗浄部材で洗浄を行うようにすればよい。
 (第2の実施形態)
 小さなパーティクルを除去するには、小さなバブル(概ね直径が100nm以下のバブル、以下「ナノバブル」という)を含む洗浄液で洗浄を行うのが有効である。洗浄部材と除去すべきパーティクルとの間にナノバブルを介在させることで、ナノバブルがエアスラリとして機能し、洗浄力が向上するためである。また、除去したパーティクルにナノバブルが吸着することで、パーティクルが基板に再付着したり洗浄部材に付着したりすることも抑えられる。このことを以下の実験で示す。
 図6Aに実験に用いた洗浄液A~Cを示す。洗浄液Aとして、ほとんど気体が溶存していない純水および薬液を準備した。洗浄液Bとして、溶存気体(窒素)の濃度が半導体工場で供給される洗浄液と同程度の12ppm(飽和未満)の純水および薬液を準備した。洗浄液Bには、直径が50~100nmのバブルが洗浄液Aの2.2倍程度存在する。洗浄液Cとして、溶存気体(窒素)の濃度が30ppm(過飽和)の純水および薬液を準備した。洗浄液Cには、直径が50~100nmのバブルが洗浄液Aの74.5倍程度存在する。
 図6Bに洗浄液A~Cの純水および薬液を用いて洗浄実験を行った結果を示しており、縦軸は残存するパーティクルの相対的な量である。純水の場合、洗浄液A,Bを用いた場合に比べ、洗浄液Cを用いることでパーティクルの残存量は5割程度まで減る。薬液の場合、洗浄液Aを用いた場合に比べ、洗浄液Bを用いることでパーティクルの残存量は6割程度まで減り、洗浄液Cを用いることで2割程度まで減る。
 このように、ナノバブルを多く含む洗浄液を用いることで、パーティクルを効率よく除去できる。前述の第1の実施形態において、洗浄液供給ノズル14および/または洗浄液供給ノズル15からナノバブルを含む洗浄液を基板Sの表面に供給しながら、基板Sの表面を洗浄するようにしてもよい。さらに、次に説明する第2の実施形態は、洗浄部材の内部からナノバブルを含む洗浄液を供給しながら基板洗浄を行うものである。以下、第1の実施形態との相違点を中心に説明する。なお、第1の実施形態で述べたように、基板Sとの接触面にスキン層が形成されていない洗浄部材12b,13bで小さなパーティクルを効率的に除去できる。そのため、本実施形態でも、図5のステップS3において、洗浄部材12b,13bでの洗浄時にナノバブルを含む洗浄液を利用することを主に想定している。
 図7は、洗浄部材12bの内部に洗浄液を供給する洗浄液供給ユニット30の概略構成を示す図である。洗浄液供給ユニット30は、洗浄液供給源31と、気体溶解部32と、フィルタ33と、供給ライン34とを有する。
 洗浄液供給源31は供給ライン34に接続され、脱気された洗浄液を供給ライン34に供給する。洗浄液は純水でもよいし薬液でもよい。
 気体溶解部32は供給ライン34を流れる洗浄液に気体を溶解させる。具体例として、気体溶解部32はメンブレンを介して洗浄液に対して気体を加圧することで、洗浄液に気体を溶解させる。有効なナノバブルを大量に含ませるようにするためには、過飽和状態まで洗浄液に気体を含ませるようにすることが望ましい。圧力や洗浄液の流速に応じて溶解させる気体の量を調整可能である。気体は窒素ガス、炭酸ガス、水素ガスなどであってよいが、小さなバブルを生じさせるには窒素ガスが特に有効である。
 なお、気体溶解部32は洗浄液中に大きなバブルが生じないよう、気体を溶解させるのが望ましい。後述するように、基板Sに供給される洗浄液に大きなバブルが含まれていると、ナノバブルによる洗浄力向上の効果が低下することがあるためである。しかし、バブルが全く生じないようにするのは困難であるし、供給ライン34が屈曲していると、屈曲した箇所でバブルが生じることもある。そこで、フィルタ33を設けるのが望ましい。
 フィルタ33は気体溶解部32より下流側において、望ましくは洗浄部材12bのできるだけ近傍において、供給ライン34に設けられる。フィルタ33は網目構造を有しており、洗浄液に生じた大きなバブルを除去する。フィルタ33を設けることで、所定の大きさ以上のバブルを含まない洗浄液が洗浄部材12b,13bに供給される。
 供給ライン34は1または複数の配管から構成され、先端(洗浄液供給源31の反対側)に洗浄部材12bが取り付けられる。具体的には、洗浄部材12bの中心は空洞になっており、その空洞に供給ライン34が嵌められて連通している。そして、供給ライン34の先端近傍には複数の孔が形成されており、供給ライン34内の洗浄液が洗浄部材12bの内部に流出できるようになっている。より正確には、洗浄部材12bの空洞には、芯材が挿入され、芯材の内部もまた空洞になっていて、供給ライン34は芯材に接続される。芯材には内部の空洞と外表面を連通する孔が形成されている。芯材は洗浄部材12bの形状を保つ役割も持つ。
 なお、図6では洗浄部材12bのみを描いているが、供給ライン34が分岐して洗浄部材12b,13bの両方に洗浄液を供給するようにしてもよい。あるいは、洗浄部材12b,13bのそれぞれに対して、洗浄液供給ユニット30を設けてもよい。
 以上のような洗浄液供給ユニット30において、洗浄液供給源31から洗浄液が供給されて供給ライン34には洗浄液が満たされている。特に、フィルタ33より下流側では、気体が溶存し、かつ、大きなバブルがない状態となっている。このような洗浄液が供給ライン34の先端の孔から洗浄部材12bの内部に放出される。供給ライン34には洗浄液が満たされているのに対し、洗浄部材12bの内部はスポンジなどの多孔質である。そのため、供給ライン34から流出することで洗浄液に加わる圧力が低下し、溶存していた気体が小さなバブルとなる。そのような小さなバブルを含む洗浄液が基板S上に到達する。
 図8Aおよび図8Bは、洗浄液が洗浄部材12bから基板S上に到達する様子を模式的に示す図である。
 図8Aは、ノジュール部22bの先端面のみならず、ノジュール部22bの側面やロール本体21bの表面にもスキン層が設けられていない。この場合、洗浄液は主としてノジュール部22bの先端面から洗浄液が吐出されるが、ノジュール部22bの側面やロール本体21bの表面からも洗浄液が吐出される。
 一方、図8Bは、ノジュール部22bの先端面にはスキン層がないが、ノジュール部22bの側面やロール本体21bの表面にはスキン層が設けられている。この場合、洗浄液は、ノジュール部22bの側面やロール本体21bの表面のスキン層を比較的透過しにくく、ノジュール部22bの先端面(すなわち、基板Sとの接触面)に優先的に基板Sの表面に供給される。したがって、本実施形態においては、図8Bに示すように、ノジュール部22bの先端面にのみスキン層がないようにするのが望ましい。
 基板Sに付着した小さなパーティクルを除去するためには、洗浄液に含まれるバブルの直径は100nm未満であるのが望ましく、それ以上の大きさのバブルが洗浄液に含まれないのが望ましい。大きなバブルがあると、小さなバブルが基板Sに接するのを阻害し、ナノバブルによる洗浄力向上の効果が低下しかねないためである。基板Sに到達する洗浄液に100nm以上のバブルが含まれないよう、気体溶解部32で溶解する気体の量を調整したり、フィルタ33の網目の大きさを適宜調整したりすればよい。
 このように、ナノバブルを含む洗浄液を基板S上に供給しつつ洗浄部材12b,13bで洗浄を行うことで、小さなパーティクルをより効果的に除去できる。さらに、洗浄液供給ユニット30からの洗浄液を設けることで、洗浄部材12b,13bのインナーリンスとして用いることもできる。
 例えば、洗浄部材12b,13bを初めて使用する際の立ち上げ時に、洗浄液供給ユニット30からの洗浄液をインナーリンスとして利用できる。洗浄部材12b,13bがPVAなどの樹脂製である場合、原材料を反応させて樹脂を生成する際に、反応が不十分で原材料が残ることがある。そのため、洗浄部材12b,13bの立ち上げ時には残った原材料を除去する必要がある。本実施形態では、洗浄液供給ユニット30からナノバブルを含む洗浄液を洗浄部材12b,13bの内部に供給することで、残った原材料を洗浄部材12b,13から効率よく短時間で除去できる。洗浄部材12b,13bの立ち上げは、新品の洗浄部材12b,13bを基板洗浄装置に取り付けて例えばダミー基板を通常の基板と同様に洗浄することにより行ってもよい(インナーリンスとして供給しながら)。あるいは、ダミー基板を用いずに、石英等の板材に新品の洗浄部材12b,13bを押し付けるようにしてもよい。あるいは、洗浄部材12b,13bを物体に押し付けることなく、洗浄液供給ユニット30からの洗浄液を洗浄部材12b,13bの内部に供給することによって、洗浄部材12b,13bを立ち上げるようにしてもよい。
 別の例として、洗浄部材12b,13bのセルフクリーニングに、洗浄液供給ユニット30からの洗浄液をインナーリンスとして利用できる。洗浄部材12b,13bで基板Sを洗浄する際に、基板Sから除去されたパーティクルが洗浄部材12b,13bの表面や内部に入り込むことがある。そのため、何枚かの基板洗浄を終え、別の基板洗浄を始める前に、入り込んだパーティクルを除去する工程(洗浄部材12b,13bのセルフクリーニング)が必要である。本実施形態では、洗浄液供給ユニット30からナノバブルを含む洗浄液を洗浄部材12b,13bの内部に供給し、表面から排出させることで、洗浄部材12b,13bの内部に入り込んだパーティクルを効率よく除去できる。特に、洗浄部材12b,13bの内部に供給した洗浄液がノジュール部22bから外部に排出されるため、基板Sと接触するノジュール部22bも洗浄できる。洗浄部材12b,13bのセルフクリーニングは、インナーリンスとして供給しながら石英等の板材に洗浄部材12b,13bを押し付けることにより行ってもよく、洗浄部材12b,13bを物体に押し付けることなく、洗浄液供給ユニット30からの洗浄液を洗浄部材12b,13bの内部に供給することによって行ってもよい。通常、汚染された洗浄部材12b,13bを板材等に押し付けてセルフクリーニングを行う場合は、板材が汚染されてしまうおそれがあるが、本方法では板材自体の洗浄も行うことができ、極めて有効である。
 図9は、図7の変形例である洗浄液供給ユニット30’の概略構成を示す図である。図7の洗浄液供給ユニット30と異なり、図9の洗浄液供給ユニット30’はバブル含有洗浄液生成部35を有する。バブル含有洗浄液生成部35はバブルを含有する洗浄液を生成し、供給ライン34に供給する。このような構成でも、ナノバブルを含む洗浄液で基板Sを洗浄できる。
 このように、第2の実施形態では、気体を溶存させた洗浄液を洗浄部材12b,13bに供給し、ナノバブルを含む洗浄液を用いて基板Sの洗浄を行う。そのため、洗浄力が向上する。また、洗浄液を洗浄部材12b,13bへのインナーリンスとして用いることで、立ち上げ時の時間短縮や、洗浄部材12b,13bの洗浄も可能となる。
 なお、このような洗浄液供給ユニット30を洗浄部材12b,13bの一方にのみ設けてもよいし、洗浄部材12aおよび/または洗浄部材13aに設けてもよい。
 以上説明した洗浄手法は、種々の基板洗浄装置にも適用可能である。以下、基板洗浄装置の変形例をいくつか説明する(図2と共通する説明は適宜省略する)。
 図10は、別の基板洗浄装置4Aの概略構成を示す斜視図である。この基板洗浄装置4Aは、スピンドル11と、洗浄機構42と、1または複数のノズル43とを備えている。
 洗浄機構42は、洗浄部材61、回転軸62、揺動アーム63および揺動軸64などから構成される。
 洗浄部材61は、例えばPVA製のペンシル型洗浄具であり、その下面が洗浄面であり、上面は回転軸62の下端に固定される。図10の基板洗浄装置4Aを図2に示す基板洗浄装置4aの代用とする場合、洗浄部材61の基板との接触面には、スキン層が形成されている。一方、図10の基板洗浄装置4Aを基板洗浄装置4bの代用とする場合、洗浄部材61の基板との接触面には、スキン層が形成されていない。
 回転軸62は基板Sの面に対して垂直(すなわち鉛直)に延びており、回転軸62の回転により洗浄部材61を水平面内で回転させる。
 揺動アーム63は水平方向に延びており、一端側に回転軸62の上端が接続され、他端側に揺動軸64が接続される。揺動軸64には、図示しないモータが取り付けられている。
 揺動軸64は基板Sの面に対して垂直(すなわち鉛直)に延びており、昇降可能である。揺動軸64が下降することで洗浄部材61の下面が基板Sの表面に接触し、揺動軸64が上昇することで洗浄部材61の下面が基板Sの表面から離間する。また、揺動軸64の回転により揺動アーム63を水平面内で揺動させる。
 なお、洗浄部材61を揺動軸64を中心に円弧状に移動させるのではなく、洗浄部材61を直線状に移動させてもよい。また、図示していないが、第2の実施形態で説明したように、洗浄部材61の内部に気体が溶存した洗浄液を供給してもよい。
 これまで、基板を水平姿勢で回転させながら洗浄する形態を記載したが、基板を鉛直あるいは斜めの姿勢にした形態においても本発明は適用できる。また、基板は回転させなくてもよい。
 その他、洗浄部材61として、ハードパッドやソフトパッドといったより物理力の強い接触洗浄を行うバフ洗浄にも本発明を適用可能である。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲とすべきである。
4a,4b 基板洗浄装置
11 スピンドル
12a,12b,13a,13b 洗浄部材
14,15 洗浄液供給ノズル
21a,21b ロール本体
22a,22b ノジュール部
30 洗浄液供給ユニット
31 洗浄液供給源
32 気体溶解部
33 フィルタ
34 供給ライン
35 バブル含有洗浄液生成部

Claims (11)

  1.  スキン層が設けられた接触面で基板を洗浄する第1洗浄部材と、
     スキン層が設けられていない接触面で、前記第1洗浄部材によって洗浄された後の前記基板を洗浄する第2洗浄部材と、を備える基板処理装置。
  2.  気体が溶存した洗浄液を前記第2洗浄部材の内部に供給する洗浄液供給ユニットを備え、
     前記第2洗浄部材の内部に供給された洗浄液は、前記第2洗浄部材の表面から前記基板上に到達する、請求項1に記載の基板処理装置。
  3.  前記洗浄液供給ユニットは、
      前記第2洗浄部材の内部に連通する供給ラインと、
      前記洗浄液に気体を溶解させる気体溶解部と、
      前記供給ラインにおいて、前記気体溶解部と前記第2洗浄部材との間に設けられたフィルタと、を有する、請求項2に記載の基板処理装置。
  4.  前記洗浄液供給ユニットは、
      前記第2洗浄部材の内部に連通する供給ラインと、
      前記供給ラインに接続され、バブルを含む洗浄液を生成するバブル含有洗浄液生成部と、
      前記供給ラインにおいて、前記バブル含有洗浄液生成部と前記第2洗浄部材との間に設けられたフィルタと、を有する、請求項2に記載の基板処理装置。
  5.  前記基板に到達する洗浄液は、バブルを含む、請求項2乃至4のいずれかに記載の基板処理装置。
  6.  前記基板に到達する洗浄液は、直径が100nm未満のバブルを含む、請求項5に記載の基板処理装置。
  7.  前記基板に到達する洗浄液は、直径が100nm以上のバブルを含まない、請求項6に記載の基板処理装置。
  8.  第1洗浄部材におけるスキン層が設けられた接触面で基板を洗浄する第1洗浄工程と、
     その後、第2洗浄部材におけるスキン層が設けられていない接触面で前記基板を洗浄する第2洗浄工程と、を備える基板洗浄方法。
  9.  前記第2洗浄工程では、前記第2洗浄部材の内部に直径が100nm未満のバブルを含む洗浄液を供給し、前記第2洗浄部材の表面から前記基板上に到達させつつ、前記第2洗浄部材による洗浄を行う、請求項8に記載の基板洗浄方法。
  10.  前記第2洗浄部材を初めて用いる前に、前記第2洗浄部材の内部に直径が100nm未満のバブルを含む洗浄液を供給し、前記第2洗浄部材の表面から排出させる工程を備える、請求項8または9に記載の基板洗浄方法。
  11.  ある基板の洗浄を終え、別の基板の洗浄を始める前に、前記第2洗浄部材の内部に直径が100nm未満のバブルを含む洗浄液を供給し、前記第2洗浄部材の表面から排出させる工程を備える、請求項8乃至10のいずれかに記載の基板洗浄方法。
PCT/JP2020/015460 2019-04-09 2020-04-06 基板処理装置および基板洗浄方法 WO2020209213A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207037615A KR20210147853A (ko) 2019-04-09 2020-04-06 기판 처리 장치 및 기판 세정 방법
US17/049,001 US20210242015A1 (en) 2019-04-09 2020-04-06 Substrate processing apparatus and substrate cleaning method
CN202080003844.5A CN113614885A (zh) 2019-04-09 2020-04-06 基板处理装置及基板清洗方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019074012A JP7189827B2 (ja) 2019-04-09 2019-04-09 基板処理装置および基板洗浄方法
JP2019-074012 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020209213A1 true WO2020209213A1 (ja) 2020-10-15

Family

ID=72751568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015460 WO2020209213A1 (ja) 2019-04-09 2020-04-06 基板処理装置および基板洗浄方法

Country Status (6)

Country Link
US (1) US20210242015A1 (ja)
JP (1) JP7189827B2 (ja)
KR (1) KR20210147853A (ja)
CN (1) CN113614885A (ja)
TW (1) TW202044390A (ja)
WO (1) WO2020209213A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230321696A1 (en) 2022-04-07 2023-10-12 Ebara Corporation Substrate processing system and substrate processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218308A (ja) * 2010-04-12 2011-11-04 Asupu:Kk 気体溶解液生成装置及び生成方法
JP2016167514A (ja) * 2015-03-09 2016-09-15 株式会社荏原製作所 基板洗浄装置、基板洗浄方法、および基板処理装置
JP2017191827A (ja) * 2016-04-12 2017-10-19 株式会社荏原製作所 洗浄部材及び基板洗浄装置
JP2018056385A (ja) * 2016-09-29 2018-04-05 株式会社荏原製作所 基板洗浄装置および基板洗浄方法ならびに基板洗浄装置用のロールスポンジ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8555458B2 (en) * 2008-06-30 2013-10-15 Aion Co., Ltd Cleaning sponge roller
MY182464A (en) 2014-10-31 2021-01-25 Ebara Corp Substrate cleaning roll, substrate cleaning apparatus, and substrate cleaning method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218308A (ja) * 2010-04-12 2011-11-04 Asupu:Kk 気体溶解液生成装置及び生成方法
JP2016167514A (ja) * 2015-03-09 2016-09-15 株式会社荏原製作所 基板洗浄装置、基板洗浄方法、および基板処理装置
JP2017191827A (ja) * 2016-04-12 2017-10-19 株式会社荏原製作所 洗浄部材及び基板洗浄装置
JP2018056385A (ja) * 2016-09-29 2018-04-05 株式会社荏原製作所 基板洗浄装置および基板洗浄方法ならびに基板洗浄装置用のロールスポンジ

Also Published As

Publication number Publication date
TW202044390A (zh) 2020-12-01
JP2020174081A (ja) 2020-10-22
KR20210147853A (ko) 2021-12-07
US20210242015A1 (en) 2021-08-05
JP7189827B2 (ja) 2022-12-14
CN113614885A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6334026B2 (ja) スクラバー
US7908698B2 (en) Cleaning apparatus and cleaning method for wafer
JP2002043267A (ja) 基板洗浄装置、基板洗浄方法及び基板処理装置
TWI628710B (zh) 基板清洗機、基板清洗裝置、清洗完成基板之製造方法及基板處理裝置
JP6568975B2 (ja) テープカートリッジ、スクラバー、および基板処理装置
TW201625361A (zh) 基板液處理方法及基板液處理裝置與記錄有基板液處理程式之電腦可讀取的記憶媒體
WO2020209213A1 (ja) 基板処理装置および基板洗浄方法
JP2001070896A (ja) 基板洗浄装置
JP7290695B2 (ja) 超音波洗浄装置および洗浄具のクリーニング装置
JP2017108113A (ja) 基板処理装置および基板処理方法ならびに基板処理装置の制御プログラム
KR102622807B1 (ko) 세정 부재, 기판 세정 장치, 및 기판 처리 장치
JP2007044693A (ja) 洗浄装置
JP7166132B2 (ja) 基板洗浄部材および基板洗浄装置
JP2018056385A (ja) 基板洗浄装置および基板洗浄方法ならびに基板洗浄装置用のロールスポンジ
JP5173517B2 (ja) 基板処理装置および基板処理方法
JP2006222466A (ja) 基板洗浄装置および基板洗浄方法
JP7406943B2 (ja) 研磨装置、研磨方法、および基板処理装置
KR20210122141A (ko) 세정 부재의 세정 장치, 기판 세정 장치 및 세정 부재 어셈블리
TW202212004A (zh) 清洗構件安裝機構及基板清洗裝置
JP2009238938A (ja) 基板処理装置
WO2022270449A1 (ja) 洗浄部材処理装置、ブレークイン方法及び洗浄部材のクリーニング方法
TW201934212A (zh) 基板洗淨裝置、基板處理裝置、超音波洗淨液供給裝置及記錄媒介
JP7093390B2 (ja) 基板洗浄装置
TW202207336A (zh) 清洗構件之清洗裝置、基板清洗裝置及清洗構件組件
JP3426866B2 (ja) 半導体装置の製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787763

Country of ref document: EP

Kind code of ref document: A1