WO2020209209A1 - Radical photocuring oxygen inhibition reducer, radical photopolymerizable composition containing radical photocuring oxygen inhibition reducer, coating containing radical photocuring oxygen inhibition reducer, and method for curing same - Google Patents

Radical photocuring oxygen inhibition reducer, radical photopolymerizable composition containing radical photocuring oxygen inhibition reducer, coating containing radical photocuring oxygen inhibition reducer, and method for curing same Download PDF

Info

Publication number
WO2020209209A1
WO2020209209A1 PCT/JP2020/015440 JP2020015440W WO2020209209A1 WO 2020209209 A1 WO2020209209 A1 WO 2020209209A1 JP 2020015440 W JP2020015440 W JP 2020015440W WO 2020209209 A1 WO2020209209 A1 WO 2020209209A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
anthracene
photoradical
group
curing
Prior art date
Application number
PCT/JP2020/015440
Other languages
French (fr)
Japanese (ja)
Inventor
緒方裕子
山田暁彦
檜森俊一
Original Assignee
川崎化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎化成工業株式会社 filed Critical 川崎化成工業株式会社
Publication of WO2020209209A1 publication Critical patent/WO2020209209A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to a photoradical polymerizable composition containing a photoradical curing oxygen inhibition reducing agent, a photoradical curing oxygen inhibition reducing agent, a coating film containing a photoradical curing oxygen inhibition reducing agent, and a curing method thereof, particularly on a surface surface.
  • the present invention relates to a coating film containing a photoradical polymerizable composition that is cured in contact with the atmosphere and a curing method thereof.
  • Polymerizable compositions are used in various industrial fields, and among them, photoradical polymerizable compositions are excellent in terms of fast curing rate, durability of chemical bonds formed, economic efficiency, etc. It has a wide range and is used in various applications such as coating materials, adhesives, sealing materials, adhesives, paints, inks, resists, dental materials, lenses, and molding materials.
  • a photoradical polymerizable composition is mainly composed of a radically polymerizable compound and a photoradical polymerization initiator.
  • the photoradical polymerization initiator is decomposed to generate radical seeds, and the radical polymerizable compounds react in a chain reaction with the radical seeds to carry out polymerization curing.
  • the curing reaction is started by irradiating light in contact with air, the radical species generated by the photoradical polymerization initiator react with oxygen and are inactivated by the irradiation of light.
  • This phenomenon is that oxygen is a triple-term biradical in the basal state, has high reactivity with radicals, and easily reacts with radical species generated from the initiator to form peroxy radicals, and this pel Since the oxy radical is inferior in reactivity with the monomer, the progress of the polymerization reaction is hindered.
  • the problem of this oxygen inhibition is not only that the oxygen dissolved in the polymerizable composition has an effect, but also that when the polymerization reaction is carried out in the atmosphere, oxygen is dissolved from the surface of the coating film in contact with the air. It diffuses and causes radical polymerization inhibition.
  • Non-Patent Document 1 The diffusion rate of oxygen into the coating film depends on the viscosity of the polymerizable composition, the film thickness of the coating film, and the like. Oxygen inhibition cannot be overcome if the rate of diffusion of oxygen into the coating is faster than the rate of initiation of the polymerization reaction. Therefore, radical polymerization inhibition becomes extremely remarkable when polymerizing in a thin film state in which the oxygen diffusion rate into the coating film is higher than when polymerizing in bulk or in a thick film, and in particular, the surface of the coating film. There is a problem that serious curing failure occurs in the vicinity. For example, in coating and UV ink applications, this problem of oxygen inhibition is serious.
  • one method is to isolate the photoradical polymerizable composition from the atmosphere.
  • a method of covering with an inert gas such as nitrogen or coating the surface of the composition with wax or a film can be considered (Patent Document 1).
  • an inert gas such as nitrogen or coating the surface of the composition with wax or a film
  • Patent Document 1 there are cases where there is a problem that the radically polymerizable monomer evaporates when the inert gas is passed, the equipment for filling the inert gas is expensive, and the safety problem is practically impossible. There are many.
  • Patent Document 2 a method of covering the coating film of the photoradical polymerizable composition with a film through which irradiation light passes to prevent oxygen inhibition (film cover method) is also adopted (Patent Document 2), but this is a film.
  • film cover method a method of covering the coating film of the photoradical polymerizable composition with a film through which irradiation light passes to prevent oxygen inhibition.
  • Patent Document 3 an example in which a cyclic amine is added to the photoradical polymerizable composition for the purpose of reducing curing inhibition due to oxygen
  • Patent Document 4 an example in which a nitrogen atom-containing compound is used as a monomer
  • Patent Document 5 an example of adding thiols or amines as an additive
  • problems such as coloring of the cured film, odor problems, and safety problems, and the applicable cases are limited.
  • Patent Document 6 a photoradical-cured oxygen inhibition reducing agent capable of reducing radical polymerization inhibition by oxygen, which comprises an anthracene compound in which an acyloxy group or an alkoxycarbonyloxy group is substituted at the 9-position of the anthracene ring.
  • a curing method using a photoradical curing oxygen inhibition reducing agent is that it can be cured in the form of a film or in the form of a lump, and the photocuring determination method is a touch test (photocuring method I) or PhotoDSC (photocuring method). It was found that the influence of oxygen can be reduced in the curing and polymerization rate by using II).
  • the effect was found under the condition that the start rate of the radical polymerization reaction is relatively smaller than the diffusion rate of oxygen into the coating film, and in the photocuring method II, the induction period by oxygen
  • the polymerization rate was examined in consideration of the above, and the reaction efficiency of radical polymerization in the entire coating film was not examined.
  • the problem of the coating film surface in contact with the atmosphere, the degree of cross-linking related to the physical properties of the thin film, and the physical properties of the coating film were not examined.
  • the photoradical curing oxygen inhibition reducing agent migrates to the surface or the like, causing problems such as powder blowing and coloring.
  • the present invention provides a photoradical polymerizable coating film in which the problem of oxygen inhibition when curing the photoradical polymerizable coating film is reduced, and is in contact with the atmosphere.
  • it is a method that can be cured without any problem
  • an object of the present invention is to provide a photoradical polymerizable coating film in which the problem of migration in the cured product is reduced.
  • the present invention comprises a photoradical polymerizable composition containing a radically polymerizable compound and a photoradical polymerization initiator, and In a method of irradiating an energy ray to cure a photoradical polymerizable coating film in which one of the coating films is in contact with the atmosphere, a predetermined amount of a photoradical curing oxygen inhibition reducing agent is contained to bring the coating film into contact with the atmosphere.
  • a photoradical curing oxygen inhibition reducing agent is contained to bring the coating film into contact with the atmosphere.
  • the photoradical curing oxygen inhibition reducing agent of the present invention has migration resistance during curing of the coating film or during storage of the cured product, and has no problems such as powder blowing and coloring, and the cured coating film without the problems. It was found that the present invention can be provided, and the present invention has been completed.
  • the first invention is a photoradical curing oxygen inhibition reducing agent capable of reducing radical polymerization inhibition by oxygen, which comprises a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the following general formula (1).
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, and a part of carbon atoms may be substituted. It may be replaced by an oxygen atom (except when forming a peroxide).
  • X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.
  • the second invention resides in a photoradical polymerizable composition
  • a photoradical polymerizable composition comprising at least a radically polymerizable compound, a photoradical polymerization initiator and the photoradical curing oxygen inhibition reducing agent according to the first invention.
  • the photoradical polymerization initiator is an ⁇ -hydroxyacetophenone-based photoradical polymerization initiator, a benzylmethyl ketal-based photoradical polymerization initiator, an ⁇ -aminoalkylphenone-based photoradical polymerization initiator, and an acylphosphine oxide-based photo.
  • the photoradical polymerizable composition according to the second invention which is characterized by being a radical polymerization initiator, an onium salt-based photoradical polymerization initiator or a triazine-based photoradical polymerization initiator.
  • the content of the photoradical polymerization initiator is 2.0% by mass or more and 10% by mass or less with respect to the total mass of the photoradical polymerizable composition, and the content of the photoradical curing oxygen inhibition reducing agent is contained.
  • the fifth invention is a coating film comprising the photoradical polymerizable composition according to any one of the second to fourth inventions, wherein one surface of the coating film is in contact with the atmosphere. It exists in the photoradical polymerizable coating film.
  • the sixth invention is a coating film formed by applying the photoradical polymerizable composition according to any one of the second to fourth inventions in the form of a base film, and one surface of the coating film is an atmosphere. It exists in a photoradical polymerizable coating film, which is characterized by being in contact with.
  • the seventh invention is characterized by irradiating the coating film with energy rays in a state where the surface of the photoradical polymerizable coating film according to the fifth or sixth invention is in contact with the atmosphere. It depends on the method of curing the coating film.
  • the eighth invention exists in the method for curing a photoradical polymerizable coating film according to the seventh invention, wherein the energy ray to be irradiated is an energy ray containing light in a wavelength range of 360 nm to 410 nm. ..
  • the ninth invention is the photoradical polymerizable coating according to the eighth invention, wherein the light in the wavelength range of 360 nm to 410 nm is LED light or semiconductor laser light of 365 nm, 385 nm, 395 nm, 405 nm. It depends on the method of curing the film.
  • Tenth invention is characterized in that the irradiation intensity of the LED light or semiconductor laser beam is less than 10 mW / cm 2 or more 2000 mW / cm 2, curing method of radical photopolymerizable coating film according to a ninth invention Exists in.
  • the irradiation energy of the LED light or semiconductor laser beam and less than 50 mJ / cm 2 or more 10000 mJ / cm 2, radical photopolymerizable according to the invention of the ninth or tenth It depends on the method of curing the coating film.
  • a photoradical polymerizable coating film comprising a photoradical polymerizable composition containing the photoradical curing oxygen inhibition reducing agent of the present invention
  • energy rays can be applied to the coating film while one of the coating films is in contact with the atmosphere. Even in the case of curing by irradiating with, the polymerization inhibition by oxygen is reduced, and the photoradical polymerizable coating film can be cured at a sufficient curing rate. Further, it is possible to provide a cured coating film having no problem of powder blowing or coloring.
  • Photo-DSC curve charts heat generation profile charts in Comparative Examples 12, 15 and 16, and Examples 10 and 13-15. Numbers are indicated by arrows at the peak positions of each curve. No. 1 is Comparative Example 16, No. 2 is Example 10, No. 3 is Example 14, No. 4 is Example 13, No. 5 is Example 15, No. 6 is Comparative Example 15, and No. 7 is heat generation in Comparative Example 12. The profile curve is shown.
  • the photoradical curing oxygen inhibition reducing agent used in the present invention is the following 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, and a part of carbon atoms may be substituted. It may be replaced by an oxygen atom (except when forming a peroxide).
  • X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.
  • examples of the alkylene group having 1 to 20 carbon atoms represented by A include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group and a nonylene group.
  • Examples thereof include a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, an octadecylene group, a nonadesilene group, an icosilene group, and the alkylene group may be branched by an alkyl group. ..
  • the alkyl group having 1 to 8 carbon atoms represented by X or Y includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group and an i-butyl group.
  • examples of the halogen atom include fluorine atom, chlorine atom, bromine atom or iodine. Atomic can be mentioned.
  • examples of the alkyl group having 1 to 20 carbon atoms represented by R include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group and t.
  • n-pentyl group i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n -Dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecil group, n-icosyl group and the like.
  • Examples of those in which the group is substituted with a hydroxy group include 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group.
  • cycloalkyl group examples include a cyclohexyl group, a cyclopentyl group, a 4-n-dodecylcyclohexyl group, a norbornyl group, an adamantyl group, a decahydronaphthyl group, a cyclohexylmethyl group and the like.
  • 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention include 9,10-bis (methoxycarbonylmethyleneoxy) anthracene. 9,10-bis (ethoxycarbonylmethyleneoxy) anthracene, 9,10-bis (n-propoxycarbonylmethyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 9,10-bis (tert-) Butoxycarbonylmethyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene, 9,10-bis (methoxycarbonylpropyleneoxy) anthracene , 9,10-bis (ethoxycarbonylpropyleneoxy) anthracene, 9,10-bis (isopropoxycarbony
  • 9,10-bis (methoxycarbonylpentyleneoxy) anthracene 9,10-bis (ethoxycarbonylpentyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylpentyleneoxy) anthracene, 9,10- Bis (tert-butoxycarbonylpentyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylpentyleneoxy) anthracene, 9,10-bis (methoxycarbonylhexyleneoxy) anthracene, 9,10-bis (ethoxycarbonyl) Hexyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylhexyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylhexyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylhexyleneoxy) ) Anthracene, 9,10-bis (methoxycarbonylpenty
  • alkyl groups in which X and / or Y are alkyl groups include, for example, 2-ethyl-9,10-bis (methoxycarbonylmethyleneoxy) anthracene and 2-ethyl-9,10-bis (ethoxycarbonylmethyleneoxy).
  • Anthracene 2-ethyl-9,10-bis (n-propoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (tert) -Butoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene, 2-ethyl -9,10-bis (methoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 2 -Ethyl-9,10-bis (tert-but
  • 2-amyl-9,10-bis (methoxycarbonylmethyleneoxy) anthracene
  • 2-amyl-9,10-bis (ethoxycarbonylmethyleneoxy) anthracene
  • 2-amyl-9,10-bis (n-).
  • halogen atoms in which X and / or Y are halogen atoms include, for example, 2-chloro-9,10-bis (methoxycarbonylmethyleneoxy) anthracene and 2-chloro-9,10-bis (ethoxycarbonylmethyleneoxy).
  • Anthracene 2-chloro-9,10-bis (n-propoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (tert) -Butoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (methoxycarbonylpropyleneoxy) anthracene, 2-chloro-9, 10-Bis (ethoxycarbonylpropyleneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 2-chloro-9,10-bis (tert-butoxycarbonylpropyleneoxy) anthracene, 2- Chloro-9,10-bis (n-butoxycarbonylpropyleneoxy) anthracene
  • 9,10-bis (methoxycarbonylmethyleneoxy) anthracene, 9,10-bis (ethoxycarbonylmethyleneoxy) anthracene, and 9,10-bis (n-propoxycarbonyl) are considered to be easy to manufacture.
  • R in the general formula (1) is an alkyl group having 1 to 20 carbon atoms containing no oxygen atom.
  • a in the general formula (1) is preferably a methylene group having 1 carbon atom.
  • an alkyl group having 3 or more carbon atoms is preferable, and 9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene (1-3), 9,10-bis ( Particularly preferred are n-pentyloxycarbonylmethyleneoxy) anthracene (1-11) and 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene (1-12).
  • the 9,10-bis (alkoxycarbonylmethoxy) anthracene compound can be obtained, for example, by reacting the 9,10-dihydroxyanthracene compound with an ester compound such as a bromoacetic acid ester in the presence of a basic compound.
  • the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention is the 9,10-dihydroxyanthracene compound represented by the general formula (2) as follows. It can be obtained by reacting with the corresponding ester compound represented by the general formula (3) in the presence or absence of the basic compound according to the reaction formula-1.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, and a part of carbon atoms may be substituted. It may be replaced by an oxygen atom (except when forming a peroxide).
  • X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.
  • Z represents a chlorine atom, a bromine atom or an iodine atom.
  • the 9,10-dihydroxyanthracene compound represented by the general formula (2) used as a raw material is obtained by reducing the corresponding 9,10-anthraquinone compound.
  • 9,10-dihydroxyanthracene compound used as a raw material in the reaction include 9,10-dihydroxyanthracene, 2-methyl-9,10-dihydroxyanthracene, and 2-ethyl-9,10-dihydroxyanthracene. , 2-t-pentyl-9,10-dihydroxyanthracene, 2,6-dimethyl-9,10-dihydroxyanthracene, 2-chloro-9,10-dihydroxyanthracene, 2-bromo-9,10-dihydroxyanthracene, etc. Can be mentioned.
  • the hydroxyl group may be used in a form protected by a known protecting group.
  • 9,10-dihydroxyanthracene as an industrial method, 1,4,4a, 9a-tetrahydroanthraquinone, which is a Diels-Alder reaction product of 1,4-naphthoquinone and 1,3-butadiene, or By reducing 9,10-anthraquinone with an alkali metal salt of 1,4-dihydro-9,10-dihydroxyanthracene, which is the isomer thereof, 9,10-dihydroxyanthracene can be obtained more easily.
  • 1,4,4a, 9a-tetrahydroanthraquinone obtained by the reaction of 1,4-naphthoquinone and 1,3-butadiene is placed in an aqueous medium in the presence of an alkaline compound such as an alkali metal hydroxide.
  • an alkaline compound such as an alkali metal hydroxide.
  • An aqueous solution of an alkali metal salt of 9,10-dihydroxyanthracene can be obtained by reacting with, 10-anthraquinone.
  • 9,10-dihydroxyanthracene Precipitation of 9,10-dihydroxyanthracene can be obtained by acidifying an aqueous solution of an alkali metal salt of 9,10-dihydroxyanthracene obtained in the reaction in the absence of oxygen. By purifying this precipitate, 9,10-dihydroxyanthracene can be obtained.
  • a 9,10-dihydroxyanthracene compound having a substituent can be obtained in the same manner.
  • ester compound represented by the general formula (3) as a raw material in Reaction Formula-1 include methyl chloroacetate, ethyl chloroacetate, n-propyl chloroacetate, isopropyl chloroacetate, and n-butyl chloroacetate (n-butyl chloroacetate).
  • tert-butyl chloroacetate pentyl chloroacetate, hexyl chloroacetate, heptyl chloroacetate, octyl chloroacetate, 2-ethylhexyl chloroacetate, nonyl chloroacetate, dodecyl chloroacetate, nonadecil chloroacetate, icosyl chloroacetate, chloro Cyclohexyl acetate, cyclohexylmethylchloroacetic acid, methyl 2-chloropropionate, methyl 3-chloropropionate, methyl 2-chloropropionate, methyl 3-chloropropionate, ethyl 2-chloropropionate, ethyl 3-chloropropionate, N-propyl 2-chloropropionate, n-propyl 3-chloropropionate, isopropyl 2-chloropropionate, isopropyl 3-chloropropionate, n-butyl chlor
  • a chloro compound and a bromo compound are preferable in terms of reactivity, and a compound having the following structural formula is particularly preferable.
  • the amount of the ester compound represented by the general formula (3) in Reaction Scheme-1 is preferably 2.0 mol times or more and less than 10.0 mol times with respect to the 9,10-dihydroxyanthracene compound. Preferably, it is 2.2 mol times or more and less than 5.0 mol times. If it is less than 2.0 mol times, the reaction will not be completed, and if it is 10.0 mol times or more, a side reaction will occur and the yield and purity will decrease, which is not preferable.
  • ester compound represented by the general formula (3) a commercially available product may be purchased, or a compound synthesized with the corresponding carboxylic acid and alcohol may be used.
  • the ester compound represented by the general formula (3) when the ester compound represented by the general formula (3) is synthesized with the corresponding carboxylic acid and alcohol, the ester compound is synthesized in advance in the system, and the general formula (2) is used therein. By adding the 9,10-dihydroxyanthracene compound represented by)), the reaction can be carried out efficiently.
  • Examples of the basic compound used in Reaction Formula-1 include sodium hydroxide, potassium hydroxide, sodium hydride, potassium hydride, lithium hexamethyldisilazide, lithium diisopropylamide, triethylamine, tributylamine, and trihexylamine.
  • Examples thereof include dimethylamine, diethylamine, dipropylamine, dibutylamine, cyclohexylamine, dimethylaniline, pyridine, 4,4-dimethylaminopyridine, piperidine, ⁇ -picolin, rutidin and the like.
  • the amount of the basic compound added is preferably 2.0 mol times or more and less than 10.0 mol times, more preferably 2.2 mol times or more, 5.0 times or more with respect to the 9,10-dihydroxyanthracene compound. It is less than a molar number. If it is less than 2.0 mol times, the reaction will not be completed, and if it is 10.0 mol times or more, a side reaction will occur and the yield and purity will decrease, which is not preferable.
  • the reaction is carried out in a solvent or without a solvent.
  • the solvent used is not particularly limited as long as it does not react with the ester compound to be used.
  • aromatic solvents such as toluene, xylene and ethylbenzene, ether solvents such as tetrahydrofuran and 1,4-dioxane, acetone, methyl ethyl ketone, etc.
  • Ketone solvents such as methylisobutylketone, amide solvents such as dimethylacetamide and dimethylformamide
  • carbon halide solvents such as methylene chloride, ethylene dichloride and chlorobenzene
  • alcohol solvents such as methanol, ethanol and 1-propanol are used. ..
  • phase transfer catalyst examples include tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, trioctylmethylammonium bromide, trioctylethylammonium bromide, trioctylpropylammonium bromide, and trioctylbutylammonium bromide.
  • Benzyldimethyloctadecylammonium bromide tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrafbutylammonium chloride, trioctylmethylammonium chloride, trioctylethylammonium chloride, trioctylpropylammonium chloride, trioctylbutylammonium chloride , Benzyldimethyloctadecylammonium chloride and the like.
  • the amount of the phase transfer catalyst added is preferably 0.01 mol times or more and less than 1.0 mol times, more preferably 0.05 mol times or more and 0.5, with respect to the 9,10-dihydroxyanthracene compound. It is less than a molar number. If it is less than 0.01 mol times, the reaction rate is slow, and if it is 1.0 mol times or more, the purity of the product is lowered, which is not preferable.
  • the reaction temperature of the reaction is usually 0 ° C. or higher and 200 ° C. or lower, preferably 10 ° C. or higher and 100 ° C. or lower. If it is less than 0 ° C., the reaction time will be too long, and if it is heated above 100 ° C., impurities will increase and the purity of the target compound will decrease, both of which are not preferable.
  • the reaction time in the reaction varies depending on the reaction temperature, but is usually about 1 to 20 hours. More preferably, it is 2 to 10 hours.
  • unreacted raw materials / solvent and catalyst are removed by a method such as washing, distillation under reduced pressure, filtration, etc., individually or in combination, if necessary.
  • a method such as washing, distillation under reduced pressure, filtration, etc., individually or in combination, if necessary.
  • the product is a solid, crystals will precipitate during the reaction, so solid-liquid separation will be performed by filtration, and if necessary, recrystallized from a poor solvent such as alcohol or hexane.
  • it can be dried up as it is to obtain crystals.
  • the product is a liquid, it can be dried up as it is, and if necessary, purified by distillation or the like to obtain a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group.
  • the photoradical polymerizable composition of the present invention is a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having at least a radical polymerizable compound, a photoradical polymerization initiator and an ester group represented by the following general formula (1). It is a photoradical polymerizable composition containing a photoradical curing oxygen inhibition reducing agent comprising.
  • A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group.
  • R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl The group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, or a part of a carbon atom may be replaced by an oxygen atom (provided that the peroxide is replaced by an oxygen atom. (Except when it is formed).
  • X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.
  • the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention reduces oxygen inhibition in radical polymerization as a photoradical curing oxygen inhibition reducing agent and has a polymerization rate. Since it has an effect of suppressing the decrease in the amount of radicals and has an ester group in its structure, it has a high affinity with the photoradical polymerizable composition and its cured product, and the photoradical polymerizable composition and its cured product. It is characterized by an extremely low degree of migration or blooming.
  • the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention acts as a photoradical curing oxygen inhibition reducing agent.
  • a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) is excited by light irradiation, and the excited species is converted to oxygen (triplet oxygen in the basal state). It is considered that triplet oxygen is converted to singlet oxygen by the occurrence of energy transfer. Since the reaction of singlet oxygen with radical species is not active, it is considered that the inhibition of radical hardening by oxygen is reduced as a result.
  • ester group in the 9,10-bis (alkoxycarbonylalkyleneoxy) anthran compound having an ester group represented by the general formula (1) of the present invention is bonded to the anthracene ring via the alkylene group A. Therefore, there is a feature that the absorption wavelength of ultraviolet rays is on the longer wavelength side as compared with the compound not mediated by A. Therefore, since it is excited in a longer wavelength region than a compound that does not mediate A, it can be effectively used in photoradical polymerization in a long wavelength region.
  • A is a methylene group having 1 carbon atom, and A is 2 carbon atoms.
  • the compound in which A is a methylene group is methylene. It is thought that the activity is particularly increased by changing the reactivity to oxygen under the influence of the electron attracting group adjacent to the group.
  • Photoradical polymerization initiator examples include an onium salt-based photoradical polymerization initiator, a benzylmethyl ketal-based photoradical polymerization initiator, an ⁇ -hydroxyacetophenone-based photoradical polymerization initiator, and an oxime ester-based photoradical polymerization initiator.
  • ⁇ -Aminoalkylphenone-based photoradical polymerization initiator, acylphosphine oxide-based photoradical polymerization initiator, biimidazole-based photoradical polymerization initiator, triazine-based photoradical polymerization initiator and the like can be used.
  • an iodonium salt or a sulfonium salt is usually used.
  • the iodonium salt include 4-isobutylphenyl-4'-methylphenyliodonium hexafluorophosphate, bis (dodecylphenyl) iodonium hexamethoxyantimonate, 4-isopropylphenyl-4'-methylphenyliodonium tetrakispentamethoxyphenylborate, 4 -Isopropylphenyl-4'-methylphenyliodonium tetrakispentafluorophenylborate, etc., for example, Irgacure 250 manufactured by BASF (Irgacure is a registered trademark of BASF), Rhodia, etc.
  • Rhodsil 2074 (Rhodia is a registered trademark of Rhodia), IK-1 manufactured by San Appro, etc. can be used.
  • the sulfonium salts include S, S, S', S'-tetraphenyl-S, S'-(4,4'-thiodiphenyl) disulfonium bishexamethoxyphosphate, diphenyl-4-phenylthiophenylsulfonium hexa.
  • Examples thereof include methoxyphosphate, triphenylsulfonium hexamethoxyphosphate, etc., for example, CPI-100P, CPI101P, CPI-200K manufactured by Daicel Co., Ltd., Irgacure 270 manufactured by BASF, UVI6992 manufactured by Dow Chemical Co., Ltd., and the like. Can be used.
  • These photoradical polymerization initiators may be used alone or in combination of two or more.
  • the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention is a benzylmethyl ketal-based photoradical polymerization initiator and an ⁇ -hydroxyacetophenone-based photoradical. It has an excellent effect on radical polymerization initiators that do not absorb at long wavelengths, such as polymerization initiators and biimidazole-based photoradical polymerization initiators. Further, even in a polymerization reaction using a photoradical polymerization initiator such as an acylphosphine oxide type having absorption in a long wavelength region, it has an effect of increasing the polymerization rate or an effect of improving the physical properties of the obtained polymer. ing.
  • the acylphosphine oxide-based photoradical polymerization initiator is susceptible to oxygen inhibition, and the effect of the photoradical curing inhibition reducing agent of the present invention becomes remarkable.
  • Examples of the benzylmethyl ketal-based photoradical polymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name "Irgacure 651” manufactured by BASF) and the like.
  • 2-Hydroxy-2-methyl-1-phenylpropan-1-one (trade name "DaroCure 1173” manufactured by BASF)
  • 1-hydroxycyclohexylphenyl as an ⁇ -hydroxyacetophenone radical polymerization initiator Ketone (trade name "Irgacure 184" manufactured by BASF)
  • 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one Product name "Irgacure 2959” manufactured by BASF)
  • 2-Hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) -benzyl] phenyl ⁇ -2-methyl-1 -On (trade name "Irga
  • 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name "Irgacure 651” manufactured by BASF), which is a benzylmethyl ketal-based photoradical polymerization initiator, ⁇ -hydroxy.
  • 2-Hydroxy-2-methyl-1-phenylpropan-1-one (trade name "DaroCure 1173” manufactured by BAS), an alkylphenone-based radical polymerization initiator, 1-hydroxycyclohexylphenylketone (manufactured by BAS)
  • the product name "Irgacure 184" manufactured by BASF Co., Ltd.) is preferable.
  • biimidazole-based photoradical polymerization initiator examples include 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer and 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer. , 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4, Examples thereof include 2,4,5-triarylimidazole dimers such as 5-diphenylimidazole dimer and the like.
  • 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one (trade name "Irgacure 907" B.A.S. -FF)
  • 2-Benzyl-2- (dimethylamino) -4'-morpholinobtyrophenone (trade name "Irgacure 369" manufactured by BAS)
  • 2-dimethylamino-2- (4) -Methylbenzyl) -1- (4-morpholino-4-yl-phenyl) butane-1-one (trade name "Irgacure 379" manufactured by BASF) and the like can be mentioned.
  • Acylphosphine oxide-based photoradical polymerization initiators include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (trade name "Irgacure TPO” manufactured by BASF), bis (2,4,6-trimethyl). Benzoyl) phenylphosphine oxide (trade name "Irgacure 819" manufactured by BASF) and the like can be mentioned.
  • Oxime ester-based photoradical polymerization initiators include 1,2-octanedione, 1- [4- (phenylthio) phenyl]-, 2- ( occasionally-benzoyloxime) (trade name "Irgacure OXE01" BAS. (F), Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (petit-acetyloxime) (trade name "Irgacure OXE02" B.
  • Onium salt-based photoradical polymerization initiator benzylmethyl ketal-based photoradical polymerization initiator, ⁇ -hydroxyalkylphenone-based photoradical polymerization initiator, oxime ester-based photoradical polymerization initiator, ⁇ -, which can be used in the present invention.
  • Aminoacetophenone-based photoradical polymerization initiator, acylphosphine oxide-based photoradical polymerization initiator, biimidazole-based photoradical polymerization initiator, and triazine-based photoradical polymerization initiator can be used alone, but they can be used independently, depending on the application. Therefore, a plurality of types can be used together.
  • the amount of the photoradical curing oxygen inhibition reducing agent containing the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention for the photoradical polymerization initiator is determined. Although not particularly limited, it is usually in the range of 5% by weight or more and 100% by weight or less, preferably 10% by weight or more and 50% by weight or less with respect to the photoradical polymerization initiator. If the amount of the photoradical curing oxygen inhibition reducing agent used is less than 5% by weight, it takes too much time to photopolymerize the photopolymerizable compound, while even if it is used in excess of 100% by weight, the effect commensurate with the addition is effective. I can't get it.
  • the photoradical-cured oxygen inhibition reducing agent containing a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention is directly added to the photopolymerizable compound.
  • a photoradical polymerization initiator composition by blending it with a photoradical polymerization initiator in advance, and then add it to the photopolymerizable compound.
  • the photoradical polymerization initiator composition of the present invention contains at least a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) and inhibits photoradical curing oxygen. It is a composition containing a reducing agent and a photoradical polymerization initiator.
  • a photopolymerizable composition can be prepared by blending the photoradical polymerization initiator composition and a photopolymerizable compound.
  • the photoradical curing oxygen inhibition reducing agent and the photoradical polymerization initiator containing the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group of the present invention are separately photoradical polymerizable compounds or photocationic polymerizable. It may be added to the compound to form a photoradical polymerization initiator composition in the photoradical polymerizable compound or the photocationic polymerizable compound as a result. Further, it may be a hybrid composition containing both a photoradical polymerizable compound and a photocationically polymerizable compound.
  • an organic compound having a double bond such as styrene, vinyl acetate, acrylic acid, methacrylic acid, acrylonitrile, methacrylic nitrile, acrylamide, acrylic acid ester, and methacrylic acid ester can be used. ..
  • acrylic acid ester and methacrylic acid ester (hereinafter, both are collectively referred to as (meth) acrylic acid ester) are preferable from the viewpoint of film forming ability and the like.
  • Examples of the (meth) acrylate ester include methyl acrylate, butyl acrylate, cyclohexyl acrylate, -2-ethylhexyl acrylate, -2-hydroxyethyl acrylate, isobornyl acrylate, methyl methacrylate, butyl methacrylate, and methacrylic acid.
  • Examples of the photocationically polymerizable compound include epoxy compounds, oxetane compounds, vinyl ethers and the like.
  • Common examples of epoxy compounds include alicyclic epoxy compounds, epoxy-modified silicones, and aromatic glycidyl ethers.
  • Examples of the alicyclic epoxy compound include 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel Co., Ltd., trade name: celoxide 2021P, celoxide is a registered trademark of Daicel Co., Ltd.), (3,3).
  • oxetane compound examples include 3-ethyl-3-hydroxymethyloxetane (oxetane alcohol) (manufactured by Toa Synthetic Co., Ltd., trade name: OXT-101), 2-ethylhexyl oxetane (manufactured by Toa Synthetic Co., Ltd., trade name: OXT-212), Xylylenebis oxetane (manufactured by Toa Synthetic Co., Ltd., trade name: OXT-121), 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane (manufactured by Toa Synthetic Co., Ltd., trade name: OXT) -221) and the like.
  • vinyl ether examples include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether and the like.
  • photocationically polymerizable compounds may be one kind or a mixture of two or more kinds.
  • photopolymerizable compound only the photoradical polymerizable compound may be used, or both the photoradical polymerizable compound and the photocationic polymerizable compound may be mixed and used.
  • the photoradical curing oxygen inhibition reducing agent of the present invention can act as a photoradical curing oxygen inhibition reducing agent in both photoradical polymerization and photocationic polymerization, light can be obtained by selecting an appropriate photoradical polymerization initiator.
  • a photopolymerizable composition containing both a radically polymerizable compound and a photocationically polymerizable compound can also be effectively polymerized.
  • the mixing ratio of the photocationic polymerizable compound and the photoradical polymerizable compound is not particularly limited, and is appropriately selected depending on the physical properties of the coating film or molded product obtained by photopolymerizing and curing the composition.
  • the weight ratio of the photocationic polymerizable compound to the photoradical polymerizable compound is determined in the range of 1:99 to 99: 1, preferably 20:80 to 80:20.
  • One type of each of the photocationic polymerizable compound and the photoradical polymerizable compound may be used, or two or more types of each may be used in combination. Even when two or more of these photopolymerizable compounds are used, the mixing ratio of the photocationic polymerizable compound and the photoradical polymerizable compound is considered as the ratio of the total amount of each photopolymerizable compound.
  • the photoradical polymerization initiator used in the photopolymerizable composition of the present invention the above-mentioned photoradical initiator or photocation initiator can be used.
  • a photoradical polymerizable compound is used as the photopolymerizable compound
  • a photoradical polymerization initiator is used.
  • a photoradical polymerizable compound and a photocationic polymerizable compound are used in combination as the photopolymerizable compound
  • the photoradical polymerization initiator or the photocationic polymerization initiator may be used alone as the photoradical polymerization initiator. Both may be mixed and used.
  • photocationic polymerization initiators generate cation-initiating active species and radical-initiating active species by light irradiation, and when such an initiator is used, the photocationic polymerizable compound and photoradical alone are used. It is also possible to initiate photopolymerization of both polymerizable compounds.
  • the photopolymerizable composition of the present invention may contain a binder polymer such as an acrylic resin, a styrene resin and an epoxy resin. Further, an alkali-soluble resin may be contained.
  • the photoradical polymerizable composition of the present invention may contain a solvent. It may also contain pigments and / or dyes. When a pigment is contained, the dispersant thereof may be contained.
  • an inorganic pigment or an organic pigment can be used.
  • carbon black CI Pigment Black 7
  • organic pigments include azo pigments such as insoluble azo pigments, condensed azo pigments, azolakes and chelate azo pigments, phthalocyanine pigments, perylene and perinone pigments, anthraquinone pigments, quinacridone pigments, dioxane pigments, thioindigo pigments, isoindolinone pigments and quinophthalone pigments.
  • Polycyclic pigments for example, basic dye type chelate, acidic dye type chelate, etc.
  • dyeing rake basic dye type rake, acidic dye type rake
  • nitro pigment nitroso pigment
  • aniline black daylight Fluorescent pigments
  • the dye is not particularly limited, and acid dyes, direct dyes, reactive dyes, and basic dyes can be used.
  • One type of dye may be used alone, or two or more types may be used in combination.
  • the dispersant for dispersing the pigment is not particularly limited, and examples thereof include a pigment dispersion liquid such as a polymer dispersant.
  • a pigment dispersion liquid such as a polymer dispersant.
  • Specific examples thereof include polyoxyalkylene polyalkylene polyamines, vinyl polymers and copolymers, acrylic polymers and copolymers, polyesters, polyamides, polyimides, polyurethanes, amino polymers, silicon-containing polymers, sulfur-containing polymers, fluorine-containing polymers, and epoxies.
  • resins containing one or more of the main components include resins containing one or more of the main components.
  • the photoradical polymerizable coating film of the present invention may contain additives other than pigments, dyes and dispersants.
  • additives are not particularly limited, but are, for example, known surfactants, surface modifiers, penetration enhancers, moisturizers, fixing agents, fungicides, preservatives, antioxidants, ultraviolet absorbers, etc. Examples include chelating agents, pH regulators, and thickeners.
  • the amount of the photoradical polymerization initiator composition used is in the range of 0.005% by weight or more and 10% by weight or less, preferably 0.025% by weight, based on the photopolymerizable composition. % Or more and 5% by weight or less. If it is less than 0.005% by weight, it takes time to photopolymerize the photopolymerizable composition, while if it is added in excess of 10% by weight, the hardness of the photocured product obtained by photopolymerization decreases. It is not preferable because it deteriorates the physical properties of the cured product.
  • the photoradical polymerizable coating film of the present invention contains at least a radically polymerizable compound, a photoradical polymerization initiator, and a photoradical curing oxygen inhibition reducing agent.
  • the content of the photoradical polymerization initiator in the photoradical polymerizable coating film is 2.0% by mass or more and 10% by mass or less with respect to the total mass of the photoradical polymerizable composition, and is 9,10-bis (alkoxy).
  • the content of the carbonylalkyleneoxy) anthracene compound is 0.20% by mass or more and 5.0% by mass or less with respect to the total mass of the photoradical polymerizable composition.
  • the content of the photoradical polymerization initiator is less than 2.0% by mass, the polymerization of the coating film does not proceed sufficiently, and even if an amount exceeding 10% by mass is added, the solubility is poor and a sufficient effect cannot be exhibited. ..
  • the film thickness of the photoradical polymerizable coating film of the present invention is not particularly limited, but is usually preferably 1000 ⁇ m or less. Further, it is preferably a thin film state in which the influence of oxygen inhibition on the surface of the coating film affects the cured state of the entire coating film, that is, less than 10 ⁇ m. Even if it is 10 ⁇ m or more, the effect of reducing oxygen inhibition during curing of the composition is observed, but it is preferably less than 10 ⁇ m in the sense that the effect of the present invention becomes remarkably remarkable. Further, it is more preferably 4 ⁇ m or less.
  • one of the coating films of the present invention is in contact with the atmosphere.
  • the state of being in contact with the atmosphere means that the surface of the coating film is not covered with wax or a film, the atmosphere is not replaced with an inert gas, and the inert gas is not allowed to flow on the surface of the coating film.
  • the other surface of the coating film is used in contact with a transparent or opaque substrate.
  • film, paper, aluminum foil, metal, wood, plastic base material and the like are mainly used, but are not particularly limited.
  • Materials used for the film as a base material include polyvinyl chloride (vinyl chloride), polyethylene terephthalate (PET), polycarbonate (PC), polystyrene (PS), polyurethane (PU), polyethylene (PE), polypropylene (PP) and the like.
  • Films or sheets such as ethylene vinyl acetate copolymers, ethylene vinyl alcohol copolymers, ethylene methacrylic acid copolymers, nylons, polylactic acids, and polycarbonates, cellophane, aluminum foil, or composite materials thereof can also be mentioned. It is also useful to laminate various films on high-quality paper, coated paper, art paper, imitation paper, thin paper, thick paper, and various synthetic papers.
  • a plastic film such as PE or PP is preferable.
  • the method for applying the photoradical polymerizable composition of the present invention to the base film is not particularly limited, and for example, a bar coater, a roll coater, a gravure coater, a flexo coater, an air doctor coater, a blade coater, an air knife coater, and a squeeze.
  • a coater, an impregnation coater, a transfer roll coater, a kiss coater, a curtain coater, a cast coater, a spray coater, a die coater, an offset printing machine, a screen printing machine and the like can be appropriately adopted. It is also possible to use an inkjet machine to eject and apply droplets onto the substrate.
  • the photoradical polymerizable composition of the present invention can be cured at a sufficient speed even in contact with the atmosphere, it can be cured at the same time as coating, and the cured film can be formed without complicated equipment and steps. Can be formed. It is also possible to perform heat treatment or the like after curing.
  • This photoradical polymerizable coating film can be cured at a sufficient rate even in the presence of oxygen, and the surface of the formed coating film becomes a coating film with reduced oxygen inhibition, and the cured coating film is colored. It has the feature of being few.
  • the photoradical polymerizable coating film is polymerized and cured by irradiating an energy ray containing light having a wavelength in the wavelength range of 360 nm to 410 nm from a surface in contact with the atmosphere.
  • the photoradical polymerization initiator is excited by light in the wavelength range and can generate an initiator radical species.
  • the irradiation sources used are an ultraviolet LED having 405 nm light as the central wavelength, an ultraviolet LED having 395 nm light as the central wavelength, an ultraviolet LED having 385 nm light as the central wavelength, an ultraviolet LED having 365 nm light as the central wavelength, and 405 nm light.
  • a semiconductor laser having a central wavelength of 1, is preferable, but any lamp having an emission spectrum between 360 nm and 410 nm can be used, and electrodeless lamps such as D-valve and V-valve manufactured by Fusion Co., Ltd. Xenon lamps, black lights, ultra-high pressure mercury lamps, metal halide lamps, gallium-doped lamps and the like can also be used.
  • an ultraviolet LED having 405 nm light as the central wavelength an ultraviolet LED having 395 nm light as the central wavelength, an ultraviolet LED having 385 nm light as the central wavelength, an ultraviolet LED having 365 nm light as the central wavelength, and 405 nm light as the central wavelength.
  • the semiconductor laser is preferable.
  • the irradiation intensity of the LED light or semiconductor laser beam 10 mW / cm 2 or more, preferably less than 2000 mW / cm 2. If it is less than 10 mW / cm 2 , a sufficient curing rate cannot be obtained, which is not preferable. On the other hand, there is no problem in irradiating with an intensity of 2000 mW / cm 2 or more, but it is wasteful in terms of energy, and the coating film of the present invention has a practical curing rate of less than 2000 mW / cm 2 and a good coating film surface. Hardness can be obtained.
  • the irradiation energy of the LED light or semiconductor laser beam 50 mJ / cm 2 or more and less than 10000 mJ / cm 2.
  • the coating film of the present invention has a practical curing rate of less than 10000 mJ / cm 2 and a good coating film surface. Hardness can be obtained.
  • Photo-curing judgment method As a method for determining photocuring, FT-IR (photocurable I), Photo-DSC (photocurable II), and Photo-Rheometer (photocurable III) were used.
  • the FT-IR measurement conditions are as follows.
  • FT-IR Fourier Transform Infrared Spectrophotometer
  • UV irradiator Hamamatsu Photonics LIGHTNINGCURE (high pressure mercury-xenon lamp) 365 nm bandpass filter
  • Irradiation intensity 100 mW / cm 2
  • Irradiation time 96 seconds
  • Integrated light intensity 9600 mJ / cm 2
  • UV irradiator Hamamatsu Photonics LIGHTNINGCURE LC-LIB3 L11921 (385 nm) Irradiation intensity: 200 mW / cm 2 Irradiation time: 48 seconds Integrated light intensity: 9600 mJ / cm 2
  • UV irradiator Altec 395nm LED lighting box (LLBK1) Irradiation intensity: 160mW / cm 2 Irradiation time: 60 seconds Integrated light intensity: 9600 mJ / cm 2
  • UV irradiator Altec 405nm LED lighting box (LLBK1) Irradiation intensity: 30 mW / cm 2 Irradiation time: 300 seconds Integrated light intensity: 9000 mJ / cm 2
  • UV irradiator Altec 405nm LED lighting box (LLBK1) Irradiation intensity: 30 mW / cm 2 Irradiation time: 300 seconds Integrated light intensity: 9000 mJ / cm 2
  • UV irradiator UV-LED (405 nm) belt conveyor type irradiator manufactured by Matsuo Sangyo Co., Ltd. Irradiation intensity: 1.67 W / cm 2 Conveyor speed: 0.581m / min Integrated light intensity: 4.57 J / cm 2
  • the light intensity under each of the conditions (1), (2), (3), (4) and (6) was measured with an ultraviolet integrated light meter C9536-02 and H9958-02 manufactured by Hamamatsu Photonics Co., Ltd.
  • the amount of light in (5) was measured with an ultraviolet illuminance meter UNIMETER UIT-01 and UVD-405PD manufactured by Ushio.
  • Photocurable II Photo-DSC
  • the total calorific value for 5 minutes from the start of light irradiation per 1.00 mg of the sample was determined.
  • the measurement conditions for Photo-DSC are as follows.
  • Photo-DSC device HITACHI differential thermal analyzer X-DSC700
  • UV irradiator HAYASHI LA-410UV 405nm bandpass filter
  • Irradiation intensity 50mW / cm 2
  • Irradiation time 300 seconds
  • Measurement atmosphere 100 ml / min in air stream or 100 ml / min in nitrogen stream
  • Sample volume 1 mg
  • Sample thickness about 300 ⁇ m
  • the sample thickness in the photocurable II was measured with a High-Accuracy Digital Micrometer manufactured by Mitutoyo Co., Ltd. using the sample after light irradiation.
  • Photocurable III Photo-Rheometer
  • the storage elastic modulus at 140 seconds after light irradiation was determined.
  • the measurement conditions for Photo-Rheometer are as follows.
  • Photo-Rheometer device Modular Compact Rheometer MCR102 manufactured by Antonio Par.
  • UV irradiator Hamamatsu Photonics LIGHTNINGCURE (high pressure mercury-xenon lamp) 405nm bandpass filter
  • Irradiation intensity 50mW / cm 2
  • Irradiation time 300 seconds
  • IR Infrared
  • NMR Nuclear Magnetic Resonance Device
  • GPC Number average molecular weight
  • the mixture was neutralized with an aqueous sodium hydrogen carbonate solution to remove the aqueous layer.
  • a 50% aqueous solution of tetrabutylammonium bromide as a catalyst was added, and while maintaining the temperature of the reaction system at 20 to 30 ° C., the disodium salt of 9,10-dihydroxyanthracene was 18.
  • 100 g (90 mmol as anthraquinone) of a 7 wt% aqueous solution was added dropwise over 1 hour. After completion of the dropping, the mixture was further stirred for 1 hour, heated to 55 to 60 ° C., and stirred for 1 hour.
  • the mixture was neutralized with an aqueous sodium hydrogen carbonate solution to remove the aqueous layer.
  • a 50% aqueous solution of tetrabutylammonium bromide as a catalyst was added, and while maintaining the temperature of the reaction system at 35 to 40 ° C., the disodium salt of 9,10-dihydroxyanthracene was 18.
  • 100 g (90 mmol as anthraquinone) of a 7 wt% aqueous solution was added dropwise over 1 hour. After completion of the dropping, the mixture was further stirred for 1 hour, heated to 55 to 60 ° C., and stirred for 1 hour.
  • Photocurable I 1-Hydroxycyclohexylphenylketone as a photoradical polymerization initiator (trade name "Irgacure 184" manufactured by BAS) with respect to 100 parts of silicone diacrylate Ebecryl350 (manufactured by Daicel Ornex) as a radically polymerizable compound.
  • the coating film of the photoradical polymerizable composition was subjected to a photocurability determination by the method of photocurability I / photocurability condition (1). 1409 cm -1 was used as the evaluation wave number. The curing rate was 41%. The results are shown in Table 1.
  • Example 2 As a photoradical polymerization initiator, 2,2-dimethoxy-1,2-diphenylethane-1-one (commodity) instead of 1-hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BASF) 5 parts of the name “Irgacure 651” manufactured by BASF Co., Ltd.), and 4 parts of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in Example 1 of raw material synthesis as a radical curing oxygen inhibition reducing agent.
  • the photocuring determination was performed in the same manner as in Example 1 except that the method of photocuring determination I / photocuring condition (2) was applied. 1409 cm -1 was used as the evaluation wave number. The cure rate was 24%.
  • Table 1 The results are shown in Table 1.
  • Example 3 As a photoradical polymerization initiator, 2-methyl-1- [4-methylthiophenyl] -2-morpholinopropane- instead of 1-hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BASF). The same method as in Example 1 except that 6 parts of 1-on (trade name "Irgacure 907" manufactured by BASF) was added to obtain the method of photocuring determination I / photocuring condition (3). The photocuring judgment was made with. 1409 cm -1 was used as the evaluation wave number. The curing rate was 35%. The results are shown in Table 1.
  • Example 4 As a photoradical polymerization initiator, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO”) is used instead of 1-hydroxycyclohexylphenyl ketone (trade name "Irgacure 184" manufactured by BAS). 4 parts (manufactured by BASF) was added, and the photocuring determination was performed in the same manner as in Example 1 except that the method of photocuring determination I / photocuring condition (4) was used. 1409 cm -1 was used as the evaluation wave number. The curing rate was 46%. The results are shown in Table 1.
  • Example 6 8 parts of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO" manufactured by BASF) as a photoradical polymerization initiator, raw material synthesis Example 1 as a radical curing oxygen inhibition reducing agent
  • the photocuring determination was performed in the same manner as in Example 5 except that the method of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in the above method was used, and the method of photocuring I / photocuring condition (5) was used. It was. 1635 cm -1 was used as the evaluation wave number. The curing rate was 35%.
  • Table 1 The results are shown in Table 1.
  • Example 7 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO” manufactured by BASF), 1-hydroxycyclohexylphenylketone (trade name “Irgacure 184”) as a photoradical polymerization initiator
  • the photocuring determination was carried out in the same manner as in Example 5 except that 4 parts were used (manufactured by BASF Co., Ltd.). 1635 cm -1 was used as the evaluation wave number. The curing rate was 43%. The results are shown in Table 1.
  • Example 8 As a photoradical initiator, 6 parts of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO" manufactured by BASF) was added, and photocurable I / photocuring conditions (6). ) was used, and the photocuring determination was performed in the same manner as in Example 7. 810 cm -1 was used as the evaluation wave number. The curing rate was 39%. The results are shown in Table 1.
  • Comparative Example 9 The photocuring determination was performed in the same manner as in Comparative Example 1 except that the measurement atmosphere was set to nitrogen. 1409 cm -1 was used as the evaluation wave number. The curing rate was 58%. The results are shown in Table 1.
  • the degree of this oxygen inhibition varies depending on the type of initiator radical species generated when the photoradical polymerization initiator is photocleaved
  • the acylphosphine oxide-based initiator known as an initiator susceptible to oxygen inhibition
  • an ⁇ -hydroxyalkylphenone-based initiator known as an initiator that is relatively less susceptible to oxygen inhibition, in contact with air. It can be seen that the curing rate is significantly reduced as compared with that under the nitrogen seal due to oxygen inhibition.
  • ECM-A which is a photoradical curing oxygen inhibition reducing agent of the present invention, was added to bring the product into contact with air. It can be seen that the curing rate is improved from 33% to 41% and from 28% to 46% in the state. ECM-A was also added to Irgacure 651, a benzyl dimethyl ketal-based initiator, and Irgacure 907, an ⁇ -aminoalkylphenone-based initiator, as can be seen by comparing Example 2 with Comparative Example 2 and Example 3 with Comparative Example 3. It can be seen that the curing rate is similarly improved by doing so.
  • Examples 1 to 4 and Comparative Examples 1 to 4 are examples in which a bifunctional acrylic acid ester compound is used as the radically polymerizable compound, but in general, the number of functional groups of the acrylic acid ester compound affects the curing rate and the degree of oxygen inhibition. Since the bifunctional acrylic acid ester compound has a low polymerization rate, the effect of suppressing flow and oxygen diffusion at the initial stage of polymerization is reduced. This affects the degree of achievement of the curing rate after a certain period of time, and the degree of achievement of the curing rate of the bifunctional acrylic acid ester compound is lower than that of the polyfunctional acrylic acid ester compound. Therefore, it can be said that ECM-A, which is a photoradical-cured oxygen inhibition reducing agent of the present invention, can reduce oxygen inhibition of a type of acrylic acid ester compound that is susceptible to oxygen inhibition.
  • Example 5 the curing rate is lowered due to oxygen inhibition by the atmosphere even in the polymerization of the polyfunctional acrylic acid ester compound, but the photoradical curing oxygen inhibition reducing agent of the present invention. It can be seen that by adding ECM-A, oxygen inhibition is reduced and the curing rate is improved.
  • the reached value of the curing rate of the polyfunctional acrylic acid ester compound also represents the cross-linking rate of the acrylic acid ester compound.
  • ECM-A which is a radically cured oxygen inhibition reducing agent, has an oxygen inhibition reducing effect when each initiator is used alone, but as can be seen by comparing Example 7 and Comparative Example 7, the initiation Even when a plurality of types of agents are combined, the curing rate is significantly increased by adding ECM-A, and the effect of reducing oxygen inhibition is observed. Further, as is clear from comparing Example 8 and Comparative Example 8, the ECM-A, which is the photoradical curing oxygen inhibition reducing agent of the present invention, uses a high-power light source actually used for coating and UV ink applications. The curing rate can be improved even under short-time irradiation conditions.
  • Photocurable II 1-Hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BAS) as a photoradical polymerization initiator for 100 parts of trimethylolpropantriacrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a radically polymerizable compound. ) 5 parts, 0.2 parts of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in Example 1 of raw material synthesis as a photoradical curing oxygen inhibition reducing agent is added and stirred to dissolve, and the photoradical polymerizable composition is obtained. A liquid product was obtained.
  • the photo-radical polymerizable composition was measured by Photo-DSC in an air stream to determine the total calorific value.
  • the total calorific value for 5 minutes from the start of light irradiation was 161 mJ / mg. The results are shown in Table 2.
  • Example 10 As a photoradical polymerization initiator, 2,2-dimethoxy-1,2-diphenylethane-1-one (commodity) instead of 1-hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BASF) Photo-DSC measurement was performed in the same manner as in Example 9 except that 5 parts of the name "Irgacure 651" manufactured by BASF Co., Ltd. was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 360 mJ / mg. The results are shown in Table 2.
  • Example 11 2-Dimethylamino-1- (4-morpholinophenyl) -2-benzyl- instead of 1-hydroxycyclohexylphenyl ketone (trade name "Irgacure 184" manufactured by BASF) as a photoradical polymerization initiator Photo-DSC measurement was carried out in the same manner as in Example 9 except that 5 parts of 1-butaon (trade name "Irgacure 369" manufactured by BASF) was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 497 mJ / mg. The results are shown in Table 2.
  • Example 12 4-Isobutylphenyl-4'-methylphenyliodonium hexafluorophosphate (trade name) instead of 1-hydroxycyclohexylphenyl ketone (trade name "Irgacure 184" manufactured by BASF) as a photoradical polymerization initiator Same as Example 9 except that 4 parts of "Irgacure 250" manufactured by BASF Co., Ltd.) and 0.5 part of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent were added. Photo-DSC measurement was performed by the method described in the above, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 364 mJ / mg. The results are shown in Table 2.
  • Example 13 Raw material synthesis instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent 9,10-bis (cyclohexyloxycarbonylmethoxy) anthracene (cHCM-A) synthesized in the same manner as in Example 3. Photo-DSC measurement was carried out in the same manner as in Example 10 except that 0.2 part was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 364 mJ / mg. The results are shown in Table 2.
  • Example 14 Raw material synthesis instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent 9,10-bis (n-pentyloxycarbonylmethoxy) anthracene (ACM-) synthesized in the same manner as in Example 2. Photo-DSC measurement was carried out in the same manner as in Example 10 except that 0.2 part of A) was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 334 mJ / mg. The results are shown in Table 2.
  • Example 15 Raw material synthesis instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent 9,10-bis (ethoxycarbonylbutyleneoxy) anthracene (ECB-A) synthesized in the same manner as in Example 4. Photo-DSC measurement was carried out in the same manner as in Example 10 except that 0.2 part was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 328 mJ / mg. The results are shown in Table 2.
  • Examples 1 to 8 and Comparative Examples 1 to 10 are examples in which a photocuring experiment was carried out under the condition of photocurability I. The conditions were such that the surface of the coating film was susceptible to oxygen inhibition. On the other hand, Examples 9 to 15 and Comparative Examples 11 to 16 were subjected to a photocuring experiment under the condition of photocurability II, and the sample thickness was about 300 ⁇ m, which was a test with a thick film.
  • FIG. 1 shows the heat generation profiles of Comparative Examples 12 and 16, and Examples 10 and 13 to 15.
  • the broken line is a comparative example and the solid line is an example, and numbers are indicated by arrows at the peak positions of each curve.
  • Number 1 is Comparative Example 16 (under nitrogen) and Number 2 is Example 10 (under air).
  • + ECM-A) is Comparative Example 16 (under nitrogen) and Number 2 is Example 10 (under air).
  • No. 3 is Example 14 (under air + ACM-A)
  • No. 4 is Example 13 (under air + cHCM-A)
  • No. 5 is Example 15 (under air + ECB-A)
  • No. 6 is Comparative Example 15 (under air + DBA) and No. 7 show the heat generation profile curves in Comparative Example 12 (under air).
  • 15 is an example 15 in an air stream to which A is added. Comparing ECM-A, ACM-A, cHCM-A and ECB-A, when ECB-A was added, the effect as a photoradical curing oxygen inhibition reducing agent was confirmed, and from the viewpoint of polymerization rate, in a nitrogen stream. Although it approaches Comparative Example 16, the peak value of the heat flow does not reach it.
  • ECM-A which is the photoradical curing oxygen inhibition reducing agent of the present invention, uses an iodonium salt-based photoinitiator known as a photocationic polymerization initiator. Even when used, oxygen inhibition can be reduced and radical polymerization can proceed.
  • Photocurable III 2- (4-Methoxyphenyl) -4 as a photoradical polymerization initiator for 100 parts of 1,6-hexanediol diacrylate (trade name "Viscort # 230" manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a radically polymerizable compound.
  • the ECM-A photoradical-curing oxygen inhibition reducing agent of the present invention reflects the liquid-to-solid phase transition process that accompanies the progress of the photopolymerization reaction.
  • the effect of reducing oxygen inhibition is also recognized in the index of storage elastic modulus.
  • the peeled polyethylene film is dried after washing the surface composition with acetone, and the UV spectrum of the polyethylene film is measured to examine the increase in absorption intensity due to the radical curing oxygen inhibition reducing agent to improve the migration resistance. It was measured.
  • An ultraviolet-visible spectrophotometer manufactured by Shimadzu Corporation, model: UV2600 was used for the measurement.
  • the obtained absorbance was converted into the absorbance value of 9,10-dibutoxyanthracene.
  • the absorbance of the compound of the present invention and 9,10-dibutoxyanthracene at 260 nm was measured with an ultraviolet / visible spectrophotometer, the molar extinction coefficient of each was calculated from the absorbance value and the molar concentration, and the ratio was calculated.
  • the absorbance value and the molar concentration were measured with an ultraviolet / visible spectrophotometer.
  • a low-density polyethylene film (thickness: 30 microns) was covered on the obtained coating material to prepare one that was stored in a dark place for one day and one that was stored for seven days, and after each storage, the covered polyethylene film was applied. After peeling, washing the polyethylene film with acetone and drying, the UV spectrum of the polyethylene film was measured and the absorbance at 260 nm was measured, but the absorption due to 9,10-bis (ethoxycarbonylmethoxy) anthracene was one day. It was 0.014 after storage and 0.015 after storage for 7 days.
  • Example 1 The test was carried out in the same manner as in Example 1 of the migration resistance evaluation except that 9,10-dibutoxyanthracene, which is a known photoradical sensitizer, was used instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene.
  • 9,10-dibutoxyanthracene which is a known photoradical sensitizer
  • 9,10-bis (ethoxycarbonylmethoxy) anthracene As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance of the obtained 9,10-dibutoxyanthracene was 1.661 after storage for one day and 1.741 after seven days.
  • Table 4 summarizes the results of migration resistance evaluation Examples 1 to 4 and migration resistance evaluation Comparative Example 1.
  • the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) is a photoradical polymerizable composition containing the compound, and a photoradical having a remarkable effect of oxygen inhibition. Even when a polymerization initiator is used, it is an industrially very useful photoradical curing oxygen inhibition reducing agent that reduces oxygen inhibition on the surface of the coating film and can be cured without problems even in the presence of oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a coating composition in which oxygen inhibition at the surface of a coating can be reduced for a photoradical composition that uses a radical photopolymerization initiator which is prominently affected by oxygen inhibition, and said coating composition being curable without any problems, even in the presence of oxygen. [Solution] A radical photopolymerizable composition characterized by containing at least a radical polymerizable compound, a radical photopolymerization initiator, and a 9,10-bis(alkoxycarbonylalkyleneoxy)anthracene compound comprising an ester group represented by general formula (1). (In general formula (1), A represents a C1–C20 alkylene group optionally branched by an alkyl group. R represents a C1–C20 alkyl group that is optionally branched by an alkyl group, is optionally a cycloalkyl group, or is optionally substituted with a hydroxy group, and in which some of the carbon atoms are optionally substituted with oxygen atoms.)

Description

光ラジカル硬化酸素阻害低減剤、光ラジカル硬化酸素阻害低減剤を含有する光ラジカル重合性組成物及び光ラジカル硬化酸素阻害低減剤を含有する塗膜並びにその硬化方法Photoradical polymerizable composition containing a photoradical curing oxygen inhibition reducing agent, a photoradical curing oxygen inhibition reducing agent, a coating film containing a photoradical curing oxygen inhibition reducing agent, and a curing method thereof.
本発明は、光ラジカル硬化酸素阻害低減剤、光ラジカル硬化酸素阻害低減剤を含有する光ラジカル重合性組成物及び光ラジカル硬化酸素阻害低減剤を含有する塗膜並びにその硬化方法に関し、特に表面が大気に接触した状態で硬化させる光ラジカル重合性組成物を含有する塗膜及びその硬化方法に関する。 The present invention relates to a photoradical polymerizable composition containing a photoradical curing oxygen inhibition reducing agent, a photoradical curing oxygen inhibition reducing agent, a coating film containing a photoradical curing oxygen inhibition reducing agent, and a curing method thereof, particularly on a surface surface. The present invention relates to a coating film containing a photoradical polymerizable composition that is cured in contact with the atmosphere and a curing method thereof.
重合性組成物は様々な産業分野で利用されており、中でも光ラジカル重合性組成物は、その硬化速度の速さ、形成される化学結合の耐久性、経済性などの点で優れており適用範囲が広く、コーティング材、接着剤、封止材、粘着剤、塗料、インク、レジスト、歯科材料、レンズ、成型材料等の各種用途で用いられている。 Polymerizable compositions are used in various industrial fields, and among them, photoradical polymerizable compositions are excellent in terms of fast curing rate, durability of chemical bonds formed, economic efficiency, etc. It has a wide range and is used in various applications such as coating materials, adhesives, sealing materials, adhesives, paints, inks, resists, dental materials, lenses, and molding materials.
しかしながら、光ラジカル重合性組成物の重合硬化は、酸素によって硬化阻害を受けることが知られている。一般に光ラジカル重合性組成物は主としてラジカル重合性化合物と光ラジカル重合開始剤とによって構成されている。この組成物に光を照射すると、光ラジカル重合開始剤が分解しラジカル種を発生し、このラジカル種によってラジカル重合性化合物が連鎖的に反応して、重合硬化する。この時、空気と接触した状態で光を照射して硬化反応を開始すると、光の照射により光ラジカル重合開始剤より生じたラジカル種が酸素と反応して失活してしまうことが知られている。この現象は、酸素が基底状態では三重項状態のバイラジカルであり、ラジカルとの反応性が高く、開始剤より発生したラジカル種と容易に反応してぺルオキシラジカルを形成し、このぺルオキシラジカルがモノマーとの反応性に劣るため、重合反応の進行が阻害されることとなる。この酸素阻害の問題は、重合性組成物中に溶存している酸素が影響を及ぼすというだけではなく、大気中で重合反応を行った時には、空気と接触している塗膜表面より酸素が溶存拡散して、ラジカル重合阻害をひきおこす。酸素の塗膜中への拡散速度は重合性組成物の粘度や塗膜の膜厚などに依存する(非特許文献1)。酸素の塗膜中への拡散速度が重合反応の開始速度よりも速い場合、酸素阻害は克服できない。そのため、バルクで重合する場合や厚膜で重合する場合に比較して、塗膜中への酸素拡散速度が大きい薄膜状態で重合する場合は、ラジカル重合阻害が極めて顕著となり、特に、塗膜表面近傍では深刻な硬化不良が起こるという問題が生じる。例えば、コーティングやUVインク用途ではこの酸素阻害の問題が深刻である。また、厚膜の場合は、ランベルト・ベールの法則に従い照射光が当たる塗膜表面からの深度が増すにつれ到達する光量が少なくなるため、ラジカル種の発生量が小さくなり、深部で酸素の拡散速度に対抗する重合の開始速度が得られなくなる。そのため大気と接触している塗膜表面での硬化が十分に進行しないという問題に加え、深部硬化性が悪化するという問題が生じている。 However, it is known that the polymerization curing of the photoradical polymerizable composition is inhibited by oxygen. Generally, a photoradical polymerizable composition is mainly composed of a radically polymerizable compound and a photoradical polymerization initiator. When this composition is irradiated with light, the photoradical polymerization initiator is decomposed to generate radical seeds, and the radical polymerizable compounds react in a chain reaction with the radical seeds to carry out polymerization curing. At this time, it is known that when the curing reaction is started by irradiating light in contact with air, the radical species generated by the photoradical polymerization initiator react with oxygen and are inactivated by the irradiation of light. There is. This phenomenon is that oxygen is a triple-term biradical in the basal state, has high reactivity with radicals, and easily reacts with radical species generated from the initiator to form peroxy radicals, and this pel Since the oxy radical is inferior in reactivity with the monomer, the progress of the polymerization reaction is hindered. The problem of this oxygen inhibition is not only that the oxygen dissolved in the polymerizable composition has an effect, but also that when the polymerization reaction is carried out in the atmosphere, oxygen is dissolved from the surface of the coating film in contact with the air. It diffuses and causes radical polymerization inhibition. The diffusion rate of oxygen into the coating film depends on the viscosity of the polymerizable composition, the film thickness of the coating film, and the like (Non-Patent Document 1). Oxygen inhibition cannot be overcome if the rate of diffusion of oxygen into the coating is faster than the rate of initiation of the polymerization reaction. Therefore, radical polymerization inhibition becomes extremely remarkable when polymerizing in a thin film state in which the oxygen diffusion rate into the coating film is higher than when polymerizing in bulk or in a thick film, and in particular, the surface of the coating film. There is a problem that serious curing failure occurs in the vicinity. For example, in coating and UV ink applications, this problem of oxygen inhibition is serious. In the case of a thick film, the amount of light that reaches increases as the depth from the surface of the coating film exposed to the irradiation light increases according to Lambert-Beer's law, so the amount of radical species generated decreases and the diffusion rate of oxygen in the deep part. It becomes impossible to obtain the initiation rate of polymerization to counteract the above. Therefore, in addition to the problem that the curing on the surface of the coating film in contact with the atmosphere does not proceed sufficiently, there is a problem that the deep curability deteriorates.
そのため、この大気中の酸素によるラジカル種の失活を防ぐために、光ラジカル重合性組成物を大気から隔離することが一つの方法となる。例えば、窒素などの不活性ガスで覆うなり、ワックスやフィルムで組成物表面を被覆するなりの方法も考えられる(特許文献1)。しかし、不活性ガスを流すとラジカル重合性モノマーが蒸発するという問題があったり、不活性ガスを充満させる装置等に費用が掛かったり、安全性の問題など現実的に不可能であるというケースも多い。また、光ラジカル重合性組成物の塗膜の上を照射光が通過するフィルムで覆い、酸素阻害を防止知る方法(フィルムカバー法)も採用される(特許文献2)が、これは、フィルムのランニングコスト上の問題があり、実験室レベルでは可能であったとしても、産業用途では常にフィルムをカバー剤として使えるわけではない。また、インク用途では用いることができない。 Therefore, in order to prevent the deactivation of radical species due to oxygen in the atmosphere, one method is to isolate the photoradical polymerizable composition from the atmosphere. For example, a method of covering with an inert gas such as nitrogen or coating the surface of the composition with wax or a film can be considered (Patent Document 1). However, there are cases where there is a problem that the radically polymerizable monomer evaporates when the inert gas is passed, the equipment for filling the inert gas is expensive, and the safety problem is practically impossible. There are many. Further, a method of covering the coating film of the photoradical polymerizable composition with a film through which irradiation light passes to prevent oxygen inhibition (film cover method) is also adopted (Patent Document 2), but this is a film. There is a problem with running costs, and even if it is possible at the laboratory level, film cannot always be used as a covering agent in industrial applications. Moreover, it cannot be used for ink applications.
また、現実的な方法として、光ラジカル重合性組成物に酸素による硬化阻害を低減する目的で、環状アミンを添加する例(特許文献3)、窒素原子含有化合物をモノマーとして使用する例(特許文献4)、添加剤としてチオール類やアミン類を添加する例(特許文献5)などが知られている。しかし、硬化膜の着色の問題、においの問題や安全性の問題などがあり、適用できるケースは限られている。 Further, as a practical method, an example in which a cyclic amine is added to the photoradical polymerizable composition for the purpose of reducing curing inhibition due to oxygen (Patent Document 3), and an example in which a nitrogen atom-containing compound is used as a monomer (Patent Document). 4), an example of adding thiols or amines as an additive (Patent Document 5) is known. However, there are problems such as coloring of the cured film, odor problems, and safety problems, and the applicable cases are limited.
更に、この酸素阻害を緩和するために、光ラジカル重合開始剤を多量に添加し、高出力の光源により、単位時間当たりのラジカル発生量を多くすることで、酸素による阻害の影響を相対的に小さくする方法がとられている。しかし、硬化膜の所定の物性が得られなかったり、コスト的に高価となったり、硬化物の着色を引き起こしたりなどの問題がある。 Furthermore, in order to alleviate this oxygen inhibition, a large amount of photoradical polymerization initiator is added, and the amount of radicals generated per unit time is increased by a high-power light source, so that the influence of oxygen inhibition is relatively affected. The method of making it smaller is taken. However, there are problems that the predetermined physical properties of the cured film cannot be obtained, the cost is high, and the cured product is colored.
すなわち、一方が大気に接触した状態で形成された塗膜を、例えばLED光や半導体レーザ光での塗膜を硬化させる場合において、酸素阻害による塗膜の硬化速度の低下や塗膜物性の低下を防止する手段として、着色やにおいの問題がない有効な手段がないという問題がある。 That is, when a coating film formed in a state where one of them is in contact with the atmosphere is cured by, for example, LED light or a semiconductor laser light, the curing rate of the coating film or the physical properties of the coating film is lowered due to oxygen inhibition. As a means for preventing this, there is a problem that there is no effective means without problems of coloring and odor.
本出願人は、既に、特許文献6において、アントラセン環の9位にアシルオキシ基又はアルコキシカルボニルオキシ基が置換したアントラセン化合物からなる、酸素によるラジカル重合阻害を低減できる光ラジカル硬化酸素阻害低減剤及び当該光ラジカル硬化酸素阻害低減剤を用いた硬化方法を提案している。該出願特許の硬化方法は、フィルム状で行うことも出来るし、塊状に硬化させることも可能であるとしており、光硬化判定方法は、指触試験(光硬化方法I)又はPhotoDSC(光硬化方法II)を用い、その硬化及び重合速度において酸素の影響を低減できることを見出したものである。 The applicant has already described in Patent Document 6 a photoradical-cured oxygen inhibition reducing agent capable of reducing radical polymerization inhibition by oxygen, which comprises an anthracene compound in which an acyloxy group or an alkoxycarbonyloxy group is substituted at the 9-position of the anthracene ring. We are proposing a curing method using a photoradical curing oxygen inhibition reducing agent. The curing method of the patented application is that it can be cured in the form of a film or in the form of a lump, and the photocuring determination method is a touch test (photocuring method I) or PhotoDSC (photocuring method). It was found that the influence of oxygen can be reduced in the curing and polymerization rate by using II).
しかし、該出願特許においては、ラジカル重合反応の開始速度が酸素の塗膜中への拡散速度よりも比較的小さくなる条件で見出された効果であり、また光硬化方法IIでは酸素による誘導期間を加味した重合速度についての検討であり、塗膜全体におけるラジカル重合の反応効率については検討されていなかった。加えて、大気と接触した塗膜表面の問題や薄膜の物性に絡む架橋度、塗膜物性に関しては検討していなかった。更にまた、塗膜の硬化時あるいは硬化物の保存中において、光ラジカル硬化酸素阻害低減剤が表面等にマイグレーションし、粉吹きや着色等の問題が生じていた。 However, in the patent application, the effect was found under the condition that the start rate of the radical polymerization reaction is relatively smaller than the diffusion rate of oxygen into the coating film, and in the photocuring method II, the induction period by oxygen The polymerization rate was examined in consideration of the above, and the reaction efficiency of radical polymerization in the entire coating film was not examined. In addition, the problem of the coating film surface in contact with the atmosphere, the degree of cross-linking related to the physical properties of the thin film, and the physical properties of the coating film were not examined. Furthermore, during the curing of the coating film or during the storage of the cured product, the photoradical curing oxygen inhibition reducing agent migrates to the surface or the like, causing problems such as powder blowing and coloring.
特開2006-190927号公報Japanese Unexamined Patent Publication No. 2006-190927 特開平8-209083号公報Japanese Patent Application Laid-Open No. 8-209083 特開2009-96991号公報JP-A-2009-96991 特開2008-138028号公報Japanese Unexamined Patent Publication No. 2008-138028 特開2009-132864号公報JP-A-2009-132864 特開2018-002817号公報JP-A-2018-002817
本発明は上記のような従来技術の問題点に鑑みて、光ラジカル重合性塗膜を硬化するときの酸素阻害という問題が軽減された光ラジカル重合性塗膜を提供し、大気と接触した状態でも問題なく硬化できる方法であり、更に該硬化物におけるマイグレーションの問題が軽減された光ラジカル重合性塗膜を提供することを目的とするものである。 In view of the above-mentioned problems of the prior art, the present invention provides a photoradical polymerizable coating film in which the problem of oxygen inhibition when curing the photoradical polymerizable coating film is reduced, and is in contact with the atmosphere. However, it is a method that can be cured without any problem, and an object of the present invention is to provide a photoradical polymerizable coating film in which the problem of migration in the cured product is reduced.
本発明者らは、かかる状況に鑑み、これらの欠点を排除した技術を提供すべく鋭意検討した結果、ラジカル重合性化合物及び光ラジカル重合開始剤を含有する光ラジカル重合性組成物からなり、かつその塗膜の一方が大気と接触している光ラジカル重合性塗膜にエネルギー線を照射して硬化する方法において、光ラジカル硬化酸素阻害低減剤を所定量含有させることにより、大気と接触した状態でも酸素による重合阻害が軽減され、光ラジカル重合性塗膜を硬化できることを見出し、本発明を完成するに至ったものである。更に、本発明の光ラジカル硬化酸素阻害低減剤は塗膜の硬化時あるいは硬化物の保存中において、耐マイグレーション性を有し、粉吹きや着色等の問題がなく、該問題のない硬化塗膜を提供することができることを見出し、本発明を完成するに至ったものである。 In view of this situation, the present inventors have diligently studied to provide a technique that eliminates these drawbacks, and as a result, the present invention comprises a photoradical polymerizable composition containing a radically polymerizable compound and a photoradical polymerization initiator, and In a method of irradiating an energy ray to cure a photoradical polymerizable coating film in which one of the coating films is in contact with the atmosphere, a predetermined amount of a photoradical curing oxygen inhibition reducing agent is contained to bring the coating film into contact with the atmosphere. However, it has been found that the polymerization inhibition due to oxygen is reduced and the photoradical polymerizable coating film can be cured, and the present invention has been completed. Further, the photoradical curing oxygen inhibition reducing agent of the present invention has migration resistance during curing of the coating film or during storage of the cured product, and has no problems such as powder blowing and coloring, and the cured coating film without the problems. It was found that the present invention can be provided, and the present invention has been completed.
第一の発明は下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物からなる、酸素によるラジカル重合阻害を低減できる光ラジカル硬化酸素阻害低減剤に存する。 The first invention is a photoradical curing oxygen inhibition reducing agent capable of reducing radical polymerization inhibition by oxygen, which comprises a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the following general formula (1). Exists in.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、シクロアルキル基でもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。 In the general formula (1), A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group. R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, and a part of carbon atoms may be substituted. It may be replaced by an oxygen atom (except when forming a peroxide). X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.
第二の発明は、少なくともラジカル重合性化合物、光ラジカル重合開始剤及び第一の発明に記載の光ラジカル硬化酸素阻害低減剤を含有することを特徴とする、光ラジカル重合性組成物に存する。 The second invention resides in a photoradical polymerizable composition comprising at least a radically polymerizable compound, a photoradical polymerization initiator and the photoradical curing oxygen inhibition reducing agent according to the first invention.
第三の発明は、光ラジカル重合開始剤がα-ヒドロキシアセトフェノン系光ラジカル重合開始剤、ベンジルメチルケタール系光ラジカル重合開始剤、α-アミノアルキルフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、オニウム塩系光ラジカル重合開始剤又はトリアジン系光ラジカル重合開始剤であることを特徴とする、第二の発明に記載の光ラジカル重合性組成物に存する。 In the third invention, the photoradical polymerization initiator is an α-hydroxyacetophenone-based photoradical polymerization initiator, a benzylmethyl ketal-based photoradical polymerization initiator, an α-aminoalkylphenone-based photoradical polymerization initiator, and an acylphosphine oxide-based photo. The photoradical polymerizable composition according to the second invention, which is characterized by being a radical polymerization initiator, an onium salt-based photoradical polymerization initiator or a triazine-based photoradical polymerization initiator.
第四の発明は、光ラジカル重合開始剤の含有量が、光ラジカル重合性組成物の総質量に対して2.0質量%以上10質量%以下であり、光ラジカル硬化酸素阻害低減剤の含有量が、光ラジカル重合性組成物の総質量に対して0.20質量%以上5.0質量%以下であることを特徴とする、第二又は第三の発明に記載の光ラジカル重合性組成物に存する。 In the fourth invention, the content of the photoradical polymerization initiator is 2.0% by mass or more and 10% by mass or less with respect to the total mass of the photoradical polymerizable composition, and the content of the photoradical curing oxygen inhibition reducing agent is contained. The photoradical polymerizable composition according to the second or third invention, wherein the amount is 0.20% by mass or more and 5.0% by mass or less with respect to the total mass of the photoradical polymerizable composition. It exists in things.
第五の発明は、第二乃至第四の発明のいずれかひとつに記載の光ラジカル重合性組成物よりなる塗膜であって、塗膜の一方の表面は大気に接触していることを特徴とする、光ラジカル重合性塗膜に存する。 The fifth invention is a coating film comprising the photoradical polymerizable composition according to any one of the second to fourth inventions, wherein one surface of the coating film is in contact with the atmosphere. It exists in the photoradical polymerizable coating film.
第六の発明は、第二乃至第四の発明のいずれかひとつに記載の光ラジカル重合性組成物を基材フィルム状に塗布してなる塗膜であって、塗膜の一方の表面は大気に接触していることを特徴とする、光ラジカル重合性塗膜に存する。 The sixth invention is a coating film formed by applying the photoradical polymerizable composition according to any one of the second to fourth inventions in the form of a base film, and one surface of the coating film is an atmosphere. It exists in a photoradical polymerizable coating film, which is characterized by being in contact with.
第七の発明は、第五又は第六の発明に記載の光ラジカル重合性塗膜の表面が大気に接触した状態で該塗膜にエネルギー線を照射することを特徴とする、光ラジカル重合性塗膜の硬化方法に存する。 The seventh invention is characterized by irradiating the coating film with energy rays in a state where the surface of the photoradical polymerizable coating film according to the fifth or sixth invention is in contact with the atmosphere. It depends on the method of curing the coating film.
第八の発明は、照射するエネルギー線が、360nm~410nmの波長範囲の光を含むエネルギー線であることを特徴とする、第七の発明に記載の光ラジカル重合性塗膜の硬化方法に存する。 The eighth invention exists in the method for curing a photoradical polymerizable coating film according to the seventh invention, wherein the energy ray to be irradiated is an energy ray containing light in a wavelength range of 360 nm to 410 nm. ..
第九の発明は、360nm~410nmの波長範囲の光が、365nm、385nm、395nm、405nmのLED光又は半導体レーザ光であることを特徴とする、第八の発明に記載の光ラジカル重合性塗膜の硬化方法に存する。 The ninth invention is the photoradical polymerizable coating according to the eighth invention, wherein the light in the wavelength range of 360 nm to 410 nm is LED light or semiconductor laser light of 365 nm, 385 nm, 395 nm, 405 nm. It depends on the method of curing the film.
第十の発明は、LED光又は半導体レーザ光の照射強度が10mW/cm以上2000mW/cm未満であることを特徴とする、第九の発明に記載の光ラジカル重合性塗膜の硬化方法に存する。 Tenth invention is characterized in that the irradiation intensity of the LED light or semiconductor laser beam is less than 10 mW / cm 2 or more 2000 mW / cm 2, curing method of radical photopolymerizable coating film according to a ninth invention Exists in.
第十一の発明は、LED光又は半導体レーザ光の照射エネルギーが、50mJ/cm以上10000mJ/cm未満であることを特徴とする、第九又は第十の発明に記載の光ラジカル重合性塗膜の硬化方法に存する。 Eleventh invention, the irradiation energy of the LED light or semiconductor laser beam, and less than 50 mJ / cm 2 or more 10000 mJ / cm 2, radical photopolymerizable according to the invention of the ninth or tenth It depends on the method of curing the coating film.
本発明の光ラジカル硬化酸素阻害低減剤を含有する光ラジカル重合性組成物からなる光ラジカル重合性塗膜を用いれば、塗膜の一方が大気と接触している状態で該塗膜にエネルギー線を照射して硬化する場合でも、酸素による重合阻害が低減し、光ラジカル重合性塗膜を十分な硬化速度で硬化することができる。更に、粉吹きや着色の問題のない硬化塗膜を提供することができる。 If a photoradical polymerizable coating film comprising a photoradical polymerizable composition containing the photoradical curing oxygen inhibition reducing agent of the present invention is used, energy rays can be applied to the coating film while one of the coating films is in contact with the atmosphere. Even in the case of curing by irradiating with, the polymerization inhibition by oxygen is reduced, and the photoradical polymerizable coating film can be cured at a sufficient curing rate. Further, it is possible to provide a cured coating film having no problem of powder blowing or coloring.
本発明の目的、特徴及び利点は、以下の詳細な説明によって、より明白となる。 The objects, features and advantages of the present invention will be made clear by the following detailed description.
Photo-DSC曲線のチャート:比較例12、15及び比較例16並びに実施例10及び実施例13から15における発熱プロファイルチャート。各曲線のピーク位置に矢印で番号を記載。番号1は比較例16、番号2は実施例10、番号3は実施例14、番号4は実施例13、番号5は実施例15、番号6は比較例15、番号7は比較例12における発熱プロファイル曲線を示している。Photo-DSC curve charts: heat generation profile charts in Comparative Examples 12, 15 and 16, and Examples 10 and 13-15. Numbers are indicated by arrows at the peak positions of each curve. No. 1 is Comparative Example 16, No. 2 is Example 10, No. 3 is Example 14, No. 4 is Example 13, No. 5 is Example 15, No. 6 is Comparative Example 15, and No. 7 is heat generation in Comparative Example 12. The profile curve is shown.
(光ラジカル硬化酸素阻害低減剤)
まず初めに、本発明に用いる光ラジカル硬化酸素阻害低減剤について説明する。本発明に用いる光ラジカル硬化酸素阻害低減剤は、下記9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物である。
(Photoradical hardening oxygen inhibition reducing agent)
First, the photoradical curable oxygen inhibition reducing agent used in the present invention will be described. The photoradical curing oxygen inhibition reducing agent used in the present invention is the following 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、シクロアルキル基でもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。 In the general formula (1), A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group. R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, and a part of carbon atoms may be substituted. It may be replaced by an oxygen atom (except when forming a peroxide). X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.
一般式(1)において、Aで表される炭素数1から20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基、イコシレン基等が挙げられ、該アルキレン基はアルキル基によって分岐していてもよい。 In the general formula (1), examples of the alkylene group having 1 to 20 carbon atoms represented by A include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group and a nonylene group. Examples thereof include a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group, a pentadecylene group, a hexadecylene group, a heptadecylene group, an octadecylene group, a nonadesilene group, an icosilene group, and the alkylene group may be branched by an alkyl group. ..
一般式(1)において、X又はYで表される炭素数1から8のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基又は2-エチルヘキシル基等が挙げられ、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられる。 In the general formula (1), the alkyl group having 1 to 8 carbon atoms represented by X or Y includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group and an i-butyl group. , N-Pentyl group, i-Pentyl group, n-Hexyl group, n-Heptyl group, n-octyl group, 2-ethylhexyl group and the like, and examples of the halogen atom include fluorine atom, chlorine atom, bromine atom or iodine. Atomic can be mentioned.
一般式(1)において、Rで表される炭素数1から20のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基又はn-イコシル基等が挙げられ、該アルキル基がヒドロキシ基で置換されていているものとしては、2-ヒドロキシエチル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基、5-ヒドロキシペンチル基、6-ヒドロキシヘキシル基、7-ヒドロキシヘプチル基、8-ヒドロキシオクチル基、6-ヒドロキシ-2-エチルヘキシル基、9-ヒドロキシノニル基、10-ヒドロキシデシル基、11-ヒドロキシウンデシル基、12-ヒドロキシドデシル基、2-ヒドロキシ-3-メトキシプロピル基、2-ヒドロキシ-3-エトキシプロピル基、2-ヒドロキシ-3-プロポキシプロピル基、2-ヒドロキシ-3-ブトキシプロピル基、2-ヒドロキシ-3-ペンチルオキシプロピル基、2-ヒドロキシ-3-ヘキシルオキシプロピル基、2-ヒドロキシ-3-オクチルオキシプロピル基、2-ヒドロキシ-3-(2-エチルヘキシルオキシ)プロピル基、2,3-ジヒドロキシプロピル基、2-ヒドロキシ-3-アリルオキシプロピル基、2-ヒドロキシ-3-メタリルオキシプロピル基等が挙げられる。シクロアルキル基としては、シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基、ノルボルニル基、アダマンチル基、デカヒドロナフチル基、シクロヘキシルメチル基等が挙げられる。 In the general formula (1), examples of the alkyl group having 1 to 20 carbon atoms represented by R include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group and t. -Butyl group, n-pentyl group, i-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n -Dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecil group, n-icosyl group and the like. Examples of those in which the group is substituted with a hydroxy group include 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group. 5-Hydroxypentyl group, 6-hydroxyhexyl group, 7-hydroxyheptyl group, 8-hydroxyoctyl group, 6-hydroxy-2-ethylhexyl group, 9-hydroxynonyl group, 10-hydroxydecyl group, 11-hydroxyundecyl group. Group, 12-hydroxydodecyl group, 2-hydroxy-3-methoxypropyl group, 2-hydroxy-3-ethoxypropyl group, 2-hydroxy-3-propoxypropyl group, 2-hydroxy-3-butoxypropyl group, 2- Hydroxy-3-pentyloxypropyl group, 2-hydroxy-3-hexyloxypropyl group, 2-hydroxy-3-octyloxypropyl group, 2-hydroxy-3- (2-ethylhexyloxy) propyl group, 2,3- Examples thereof include a dihydroxypropyl group, a 2-hydroxy-3-allyloxypropyl group, and a 2-hydroxy-3-metharyloxypropyl group. Examples of the cycloalkyl group include a cyclohexyl group, a cyclopentyl group, a 4-n-dodecylcyclohexyl group, a norbornyl group, an adamantyl group, a decahydronaphthyl group, a cyclohexylmethyl group and the like.
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の具体例としては、例えば、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(シクロヘキシルメチルオキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(ノルボルニルオキシカルボニルメチレンオキシ)アントラセン等が挙げられる。 Specific examples of the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention include 9,10-bis (methoxycarbonylmethyleneoxy) anthracene. 9,10-bis (ethoxycarbonylmethyleneoxy) anthracene, 9,10-bis (n-propoxycarbonylmethyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 9,10-bis (tert-) Butoxycarbonylmethyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene, 9,10-bis (methoxycarbonylpropyleneoxy) anthracene , 9,10-bis (ethoxycarbonylpropyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylpropyleneoxy) anthracene, 9,10-bis (n) -Butoxycarbonylpropyleneoxy) anthracene, 9,10-bis (methoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (ethoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (ethoxycarbonylethylmethyleneoxy) anthracene, 9,10-Bis (isopropoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylmethylmethyleneoxy) anthracene, 9,10 -Bis (methoxycarbonylbutyleneoxy) anthracene, 9,10-bis (ethoxycarbonylbutyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylbutyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylbutyleneoxy) Anthracene, 9,10-bis (n-butoxycarbonylbutyleneoxy) anthracene, 9,10-bis (2-hydroxyethoxycarbonylmethyleneoxy) anthracene, 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene, 9,10 -Bis (cyclohexylmethyloxycarbonylmethyleneoxy) anthracene, 9, Examples thereof include 10-bis (norbornyloxycarbonylmethyleneoxy) anthracene.
更に、例えば9,10-ビス(メトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルペンチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘキシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘプチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルオクチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルノニレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルウンデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルドデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルトリデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルテトラデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルペンタデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルヘプタデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルオクタデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルノナデシレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルイコシレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルイコシレンオキシ)アントラセン等が挙げられる。 Further, for example, 9,10-bis (methoxycarbonylpentyleneoxy) anthracene, 9,10-bis (ethoxycarbonylpentyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylpentyleneoxy) anthracene, 9,10- Bis (tert-butoxycarbonylpentyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylpentyleneoxy) anthracene, 9,10-bis (methoxycarbonylhexyleneoxy) anthracene, 9,10-bis (ethoxycarbonyl) Hexyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylhexyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylhexyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylhexyleneoxy) ) Anthracene, 9,10-bis (methoxycarbonylheptyleneoxy) anthracene, 9,10-bis (ethoxycarbonylheptyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylheptyleneoxy) anthracene, 9 , 10-bis (tert-butoxycarbonylheptyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylheptyleneoxy) anthracene, 9,10-bis (methoxycarbonyloctyleneoxy) anthracene, 9,10 -Bis (ethoxycarbonyloctyleneoxy) anthracene, 9,10-bis (isopropoxycarbonyloctyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonyloctyleneoxy) anthracene, 9,10-bis (n-) Butoxycarbonyloctyleneoxy) anthracene, 9,10-bis (methoxycarbonylnonyleneoxy) anthracene, 9,10-bis (ethoxycarbonylnonyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylnonyleneoxy) anthracene , 9,10-bis (tert-butoxycarbonylnonyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylnonyleneoxy) anthracene, 9,10-bis (methoxycarbonyldecyleneoxy) anthracene, 9,10 -Bis (ethoxycarbonyldecyleneoxy) anthracene, 9,10-bis (isopropoxycarbonyldecyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonyldecile) Noxy) anthracene, 9,10-bis (n-butoxycarbonyldecyleneoxy) anthracene, 9,10-bis (methoxycarbonylundesyleneoxy) anthracene, 9,10-bis (ethoxycarbonylundesyleneoxy) anthracene, 9,10- Bis (isopropoxycarbonylundesyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylundesyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylundesyleneoxy) anthracene, 9,10-bis (methoxycarbonyldodede) Silenoxy) anthracene, 9,10-bis (ethoxycarbonyldodecyleneoxy) anthracene, 9,10-bis (isopropoxycarbonyldodecyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonyldodecyleneoxy) ) Anthracene, 9,10-bis (n-butoxycarbonyldodecyleneoxy) anthracene, 9,10-bis (methoxycarbonyltridecyleneoxy) anthracene, 9,10-bis (ethoxycarbonyltridecyleneoxy) anthracene, 9, 10-bis (isopropoxycarbonyltridecyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonyltridecyleneoxy) anthracene, 9,10-bis (n-butoxycarbonyltridecyleneoxy) anthracene, 9,10-bis (Methoxycarbonyltetradecyleneoxy) anthracene, 9,10-bis (ethoxycarbonyltetradecyleneoxy) anthracene, 9,10-bis (isopropoxycarbonyltetradecyleneoxy) anthracene, 9,10-bis (tert-butoxy) Carbonyltetradecyleneoxy) anthracene, 9,10-bis (n-butoxycarbonyltetradecyleneoxy) anthracene, 9,10-bis (methoxycarbonylpentadecyleneoxy) anthracene, 9,10-bis (ethoxycarbonylpentade) Silenoxy) anthracene, 9,10-bis (isopropoxycarbonylpentadecyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylpentadesileneoxy) anthracene, 9,10-bis (n-butoxycarbonylpentade) Silenoxy) anthracene, 9,10-bis (methoxycarbonylhexadecyleneoxy) anthracene, 9,10-bis (ethoxycal) Bonylhexadecyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylhexadecileneoxy) anthracene, 9,10-bis (tert-butoxycarbonylhexadecyleneoxy) anthracene, 9,10-bis (n-butoxy) Carbonylhexadecyleneoxy) anthracene, 9,10-bis (methoxycarbonylheptadecyleneoxy) anthracene, 9,10-bis (ethoxycarbonylheptadecyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylheptadecylene) Oxy) anthracene, 9,10-bis (tert-butoxycarbonylheptadecyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylheptadecyleneoxy) anthracene, 9,10-bis (methoxycarbonyloctadecyleneoxy) ) Anthracene, 9,10-bis (ethoxycarbonyloctadecyleneoxy) anthracene, 9,10-bis (isopropoxycarbonyloctadecileneoxy) anthracene, 9,10-bis (tert-butoxycarbonyloctadecileneoxy) anthracene , 9,10-bis (n-butoxycarbonyloctadecileneoxy) anthracene, 9,10-bis (methoxycarbonylnonadecileneoxy) anthracene, 9,10-bis (ethoxycarbonylnonadecileneoxy) anthracene, 9, 10-bis (isopropoxycarbonylnonadecileneoxy) anthracene, 9,10-bis (tert-butoxycarbonylnonadecileneoxy) anthracene, 9,10-bis (n-butoxycarbonylnonadecileneoxy) anthracene, 9, 10-bis (methoxycarbonyl icosileneoxy) anthracene, 9,10-bis (ethoxycarbonyl icosileneoxy) anthracene, 9,10-bis (isopropoxycarbonyl icosileneoxy) anthracene, 9,10-bis (tert-butoxy) Examples thereof include carbonyl icosileneoxy) anthracene and 9,10-bis (n-butoxycarbonyl icosileneoxy) anthracene.
また、X及び/又はYがアルキル基の具体例としては、例えば、2-エチル-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルオクチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルイコシレンオキシ)アントラセン、2-エチル-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(シクロヘキシルメチルオキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(ノルボルニルオキシカルボニルメチレンオキシ)アントラセン等が挙げられる。 Specific examples of alkyl groups in which X and / or Y are alkyl groups include, for example, 2-ethyl-9,10-bis (methoxycarbonylmethyleneoxy) anthracene and 2-ethyl-9,10-bis (ethoxycarbonylmethyleneoxy). Anthracene, 2-ethyl-9,10-bis (n-propoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (tert) -Butoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene, 2-ethyl -9,10-bis (methoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 2 -Ethyl-9,10-bis (tert-butoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (methoxycarbonylmethyl) Methyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonylmethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonylethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (Isopropoxycarbonylmethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (tert-butoxycarbonylmethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonylmethylmethyleneoxy) anthracene, 2-Ethyl-9,10-bis (methoxycarbonylbutyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonylbutyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylbutyleneoxy) Anthracene, 2-ethyl-9,10-bis (tert-butoxycarbonylbutyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonylbutyleneoxy) anthracene, 2-ethyl-9,10-bis ( Methoxycarbonyl octi Renoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonyloctyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonyloctyleneoxy) anthracene, 2-ethyl-9,10-bis (Tert-Butoxycarbonyloctyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonyloctyleneoxy) anthracene, 2-ethyl-9,10-bis (methoxycarbonylhexadecyleneoxy) anthracene, 2-Ethyl-9,10-bis (ethoxycarbonylhexadecyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylhexadecyleneoxy) anthracene, 2-ethyl-9,10-bis (tert) -Butoxycarbonylhexadecyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonylhexadecyleneoxy) anthracene, 2-ethyl-9,10-bis (methoxycarbonylicosileneoxy) anthracene, 2 -Ethyl-9,10-bis (ethoxycarbonyl icosileneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonyl icosileneoxy) anthracene, 2-ethyl-9,10-bis (tert-butoxycarbonyl) Icosyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonyl icosileneoxy) anthracene, 2-ethyl-9,10-bis (2-hydroxyethoxycarbonylmethyleneoxy) anthracene, 2-ethyl- 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (cyclohexylmethyloxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (norbornyloxycarbonylmethyleneoxy) ) Anthracen and the like.
更に、例えば、2-アミル-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-アミル-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、2-アミル-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(シクロヘキシルメチルオキシカルボニルメチレンオキシ)アントラセン、2-アミル-9,10-ビス(ノルボルニルオキシカルボニルメチレンオキシ)アントラセン等が挙げられる。 Further, for example, 2-amyl-9,10-bis (methoxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (ethoxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (n-). Propoxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (tert-butoxycarbonylmethyleneoxy) anthracene, 2-amyl-9, 10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (methoxycarbonylpropyleneoxy) anthracene, 2-Amil-9,10-bis (ethoxycarbonylpropyleneoxy) anthracene, 2-amyl-9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 2-amyl-9,10-bis (tert-butoxycarbonylpropylene) Oxy) anthracene, 2-amyl-9,10-bis (n-butoxycarbonylpropyleneoxy) anthracene, 2-amyl-9,10-bis (methoxycarbonylmethylmethyleneoxy) anthracene, 2-amyl-9,10-bis (Ethoxycarbonylmethylmethyleneoxy) anthracene, 2-amyl-9,10-bis (ethoxycarbonylethylmethyleneoxy) anthracene, 2-amyl-9,10-bis (isopropoxycarbonylmethylmethyleneoxy) anthracene, 2-amyl- 9,10-bis (tert-butoxycarbonylmethylmethyleneoxy) anthracene, 2-amyl-9,10-bis (n-butoxycarbonylmethylmethyleneoxy) anthracene, 2-amyl-9,10-bis (methoxycarbonylbutyleneoxy) ) Anthracene, 2-amyl-9,10-bis (ethoxycarbonylbutyleneoxy) anthracene, 2-amyl-9,10-bis (isopropoxycarbonylbutyleneoxy) anthracene, 2-amyl-9,10-bis (tert-) Butoxycarbonylbutyleneoxy) anthracene, 2-amyl-9,10-bis (n-butoxycarbonylbutyleneoxy) anthracene, 2-amyl-9,10-bis (2-hydroxyethoxycarbonylmethyleneoxy) anthracene, 2-a Mill-9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (cyclohexylmethyloxycarbonylmethyleneoxy) anthracene, 2-amyl-9,10-bis (norbornyloxycarbonyl) Methyleneoxy) anthracene and the like.
また、X及び/又はYがハロゲン原子の具体例としては、例えば、2-クロロ-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルオクチレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルヘキサデシレンオキシ)アントラセン、2-クロロ-9,10-ビス(メトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(エトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(イソプロポキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(tert-ブトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(n-ブトキシカルボニルイコシレンオキシ)アントラセン、2-クロロ-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(シクロヘキシルメチルオキシカルボニルメチレンオキシ)アントラセン、2-クロロ-9,10-ビス(ノルボルニルオキシカルボニルメチレンオキシ)アントラセン等が挙げられる。 Specific examples of halogen atoms in which X and / or Y are halogen atoms include, for example, 2-chloro-9,10-bis (methoxycarbonylmethyleneoxy) anthracene and 2-chloro-9,10-bis (ethoxycarbonylmethyleneoxy). Anthracene, 2-chloro-9,10-bis (n-propoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (tert) -Butoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (methoxycarbonylpropyleneoxy) anthracene, 2-chloro-9, 10-Bis (ethoxycarbonylpropyleneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 2-chloro-9,10-bis (tert-butoxycarbonylpropyleneoxy) anthracene, 2- Chloro-9,10-bis (n-butoxycarbonylpropyleneoxy) anthracene, 2-chloro-9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (methoxycarbonylmethyl) Methyleneoxy) anthracene, 2-chloro-9,10-bis (ethoxycarbonylmethylmethyleneoxy) anthracene, 2-chloro-9,10-bis (ethoxycarbonylethylmethyleneoxy) anthracene, 2-chloro-9,10-bis (Isopropoxycarbonylmethylmethyleneoxy) anthracene, 2-chloro-9,10-bis (tert-butoxycarbonylmethylmethyleneoxy) anthracene, 2-chloro-9,10-bis (n-butoxycarbonylmethylmethyleneoxy) anthracene, 2-Chloro-9,10-bis (methoxycarbonylbutyleneoxy) anthracene, 2-chloro-9,10-bis (ethoxycarbonylbutyleneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonylbutyleneoxy) Anthracene, 2-chloro-9,10-bis (tert-butoxycarbonylbutyleneoxy) anthracene, 2-chloro-9,10-bis (n-butoxycarbonylbutyleneoxy) anthracene, 2-chloro-9,10-bis ( Methylcarbonylok Tyreneoxy) anthracene, 2-chloro-9,10-bis (ethoxycarbonyloctyleneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonyloctyleneoxy) anthracene, 2-chloro-9,10-bis (Tert-Butoxycarbonyloctyleneoxy) anthracene, 2-chloro-9,10-bis (n-butoxycarbonyloctyleneoxy) anthracene, 2-chloro-9,10-bis (methoxycarbonylhexadecyleneoxy) anthracene, 2-Chloro-9,10-bis (ethoxycarbonylhexadecyleneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonylhexadecyleneoxy) anthracene, 2-chloro-9,10-bis (tert) -Butoxycarbonylhexadecyleneoxy) anthracene, 2-chloro-9,10-bis (n-butoxycarbonylhexadecyleneoxy) anthracene, 2-chloro-9,10-bis (methoxycarbonylicosileneoxy) anthracene, 2 -Chloro-9,10-bis (ethoxycarbonyl icosileneoxy) anthracene, 2-chloro-9,10-bis (isopropoxycarbonyl icosileneoxy) anthracene, 2-chloro-9,10-bis (tert-butoxycarbonyl) Icosyleneoxy) anthracene, 2-chloro-9,10-bis (n-butoxycarbonyl icosileneoxy) anthracene, 2-chloro-9,10-bis (2-hydroxyethoxycarbonylmethyleneoxy) anthracene, 2-chloro- 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (cyclohexylmethyloxycarbonylmethyleneoxy) anthracene, 2-chloro-9,10-bis (norbornyloxycarbonylmethyleneoxy) ) Anthracen and the like.
上記挙げた具体例の中でも、製造しやすさから、9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、9,10-ビス(メトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(イソプロポキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(tert-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(n-ブトキシカルボニルブチレンオキシ)アントラセン、9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルプロピレンオキシ)アントラセン、2-エチル-9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(エトキシカルボニルエチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(イソプロポキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(tert-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(n-ブトキシカルボニルメチルメチレンオキシ)アントラセン、2-エチル-9,10-ビス(2-ヒドロキシエトキシカルボニルメチレンオキシ)アントラセンが好ましく、下記構造式に挙げた9,10-ビス(メトキシカルボニルメチレンオキシ)アントラセン(1-1)、9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン(1-2)、9,10-ビス(n-プロポキシカルボニルメチレンオキシ)アントラセン(1-10)、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン(1-3)、9,10-ビス(tert-ブトキシカルボニルメチレンオキシ)アントラセン(1-4)、9,10-ビス(n-ブトキシカルボニルメチレンオキシ)アントラセン(1-5)、9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン(1-11)、9,10-ビス(メトキシカルボニルメチルメチレンオキシ)アントラセン(1-6)、9,10-ビス(エトキシカルボニルプロピレンオキシ)アントラセン(1-7)、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン(1-8)、2-エチル-9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン(1-9)、9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン(1-12)が特に好ましい。 Among the specific examples mentioned above, 9,10-bis (methoxycarbonylmethyleneoxy) anthracene, 9,10-bis (ethoxycarbonylmethyleneoxy) anthracene, and 9,10-bis (n-propoxycarbonyl) are considered to be easy to manufacture. Methyleneoxy) anthracene, 9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylmethyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylmethyleneoxy) anthracene, 9 , 10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene, 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene, 9,10-bis (methoxycarbonylpropyleneoxy) anthracene, 9,10-bis (ethoxycarbonyl) Protinoxy) anthracene, 9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylpropyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylpropyleneoxy) anthracene, 9 , 10-bis (methoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (ethoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (ethoxycarbonylethylmethyleneoxy) anthracene, 9,10-bis (isopropoxycarbonyl) Methylmethyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (n-butoxycarbonylmethylmethyleneoxy) anthracene, 9,10-bis (methoxycarbonylbutyleneoxy) anthracene , 9,10-bis (ethoxycarbonylbutyreneoxy) anthracene, 9,10-bis (isopropoxycarbonylbutyleneoxy) anthracene, 9,10-bis (tert-butoxycarbonylbutyleneoxy) anthracene, 9,10-bis (n) -Butoxycarbonylbutyleneoxy) anthracene, 9,10-bis (2-hydroxyethoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (methoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (Ethoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (n-pro) Poxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (tert-butoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9, 10-Bis (n-butoxycarbonylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (methoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonylpropyleneoxy) anthracene, 2-ethyl -9,10-bis (isopropoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (tert-butoxycarbonylpropyleneoxy) anthracene, 2-ethyl-9,10-bis (n-butoxycarbonylpropyleneoxy) ) Anthracene, 2-ethyl-9,10-bis (methoxycarbonylmethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxycarbonylmethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (ethoxy) Carbonylethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (isopropoxycarbonylmethylmethyleneoxy) anthracene, 2-ethyl-9,10-bis (tert-butoxycarbonylmethylmethyleneoxy) anthracene, 2-ethyl- 9,10-bis (n-butoxycarbonylmethylmethyleneoxy) anthracene and 2-ethyl-9,10-bis (2-hydroxyethoxycarbonylmethyleneoxy) anthracene are preferable, and 9,10-bis (2-hydroxyethoxycarbonylmethyleneoxy) anthracene listed in the following structural formula is preferable. Methoxycarbonylmethyleneoxy) anthracene (1-1), 9,10-bis (ethoxycarbonylmethyleneoxy) anthracene (1-2), 9,10-bis (n-propoxycarbonylmethyleneoxy) anthracene (1-10), 9,10-Bis (isopropoxycarbonylmethyleneoxy) anthracene (1-3), 9,10-bis (tert-butoxycarbonylmethyleneoxy) anthracene (1-4), 9,10-bis (n-butoxycarbonylmethylene) Oxy) anthracene (1-5), 9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene (1-11), 9,10-bis (methoxycarbonylmethylmethyleneoxy) anthracene (1-6), 9 , 10-bis (ethoxycal Bonylpropyleneoxy) anthracene (1-7), 9,10-bis (ethoxycarbonylbutyleneoxy) anthracene (1-8), 2-ethyl-9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene (1-9) ), 9,10-Bis (cyclohexyloxycarbonylmethyleneoxy) anthracene (1-12) is particularly preferred.
製造しやすさ、原料の入手しやすさ、取り扱いしやすさを総合的に判断すると、一般式(1)におけるRが酸素原子を含まない炭素数1から20のアルキル基であることが好ましい。また、一般式(1)におけるAは炭素数1のメチレン基であることが好ましい。マイグレーション性、疎水性など種々の物性から勘案して、炭素数が3以上のアルキル基が好ましく、9,10-ビス(イソプロポキシカルボニルメチレンオキシ)アントラセン(1-3)、9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン(1-11)、9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン(1-12)が特に好ましい。 Comprehensively judging the ease of production, the availability of raw materials, and the ease of handling, it is preferable that R in the general formula (1) is an alkyl group having 1 to 20 carbon atoms containing no oxygen atom. Further, A in the general formula (1) is preferably a methylene group having 1 carbon atom. Considering various physical properties such as migration and hydrophobicity, an alkyl group having 3 or more carbon atoms is preferable, and 9,10-bis (isopropoxycarbonylmethyleneoxy) anthracene (1-3), 9,10-bis ( Particularly preferred are n-pentyloxycarbonylmethyleneoxy) anthracene (1-11) and 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene (1-12).
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
(一般式(1)で表されるアントセラン化合物の製造法)
上記9,10-ビス(アルコキシカルボニルメトキシ)アントラセン化合物は、例えば、9,10-ジヒドロキシアントラセン化合物を、塩基性化合物存在下ブロモ酢酸エステルなどのエステル化合物と反応させることにより得ることができる。
(Method for producing an antoceran compound represented by the general formula (1))
The 9,10-bis (alkoxycarbonylmethoxy) anthracene compound can be obtained, for example, by reacting the 9,10-dihydroxyanthracene compound with an ester compound such as a bromoacetic acid ester in the presence of a basic compound.
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、一般式(2)で表される9,10-ジヒドロキシアントラセン化合物を下記の反応式-1に従い、塩基性化合物存在下、あるいは非存在下で対応する一般式(3)で表されるエステル化合物と反応させることにより得ることができる。 The 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention is the 9,10-dihydroxyanthracene compound represented by the general formula (2) as follows. It can be obtained by reacting with the corresponding ester compound represented by the general formula (3) in the presence or absence of the basic compound according to the reaction formula-1.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
反応式-1において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、シクロアルキル基でもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。Zは塩素原子、臭素原子又はヨウ素原子を表す。 In Reaction Scheme-1, A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group. R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, and a part of carbon atoms may be substituted. It may be replaced by an oxygen atom (except when forming a peroxide). X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom. Z represents a chlorine atom, a bromine atom or an iodine atom.
反応式-1において、原料として用いられる一般式(2)で表される9,10-ジヒドロキシアントラセン化合物は、対応する9,10-アントラキノン化合物を還元して得られる。 In the reaction formula-1, the 9,10-dihydroxyanthracene compound represented by the general formula (2) used as a raw material is obtained by reducing the corresponding 9,10-anthraquinone compound.
当該反応において、原料となる9,10-ジヒドロキシアントラセン化合物の具体的な例としては、9,10-ジヒドロキシアントラセン、2-メチル-9,10-ジヒドロキシアントラセン、2-エチル-9,10-ジヒドロキシアントラセン、2-t-ペンチル-9,10-ジヒドロキシアントラセン、2,6-ジメチル-9,10-ジヒドロキシアントラセン、2-クロロ-9,10-ジヒドロキシアントラセン、2-ブロモ-9,10-ジヒドロキシアントラセン等が挙げられる。 Specific examples of the 9,10-dihydroxyanthracene compound used as a raw material in the reaction include 9,10-dihydroxyanthracene, 2-methyl-9,10-dihydroxyanthracene, and 2-ethyl-9,10-dihydroxyanthracene. , 2-t-pentyl-9,10-dihydroxyanthracene, 2,6-dimethyl-9,10-dihydroxyanthracene, 2-chloro-9,10-dihydroxyanthracene, 2-bromo-9,10-dihydroxyanthracene, etc. Can be mentioned.
当該9,10-ジヒドロキシアントラセン化合物は、酸素に対して不安定なため、ヒドロキシル基を公知の保護基によって保護された形で用いてもよい。 Since the 9,10-dihydroxyanthracene compound is unstable to oxygen, the hydroxyl group may be used in a form protected by a known protecting group.
また、9,10-ジヒドロキシアントラセンの場合は、工業的な方法として、1,4-ナフトキノンと1,3-ブタジエンとのディールス・アルダー反応生成物である1,4,4a,9a-テトラヒドロアントラキノン又はその異性体である1,4-ジヒドロ-9,10-ジヒドロキシアントラセンのアルカリ金属塩を用いて9,10-アントラキノンを還元することにより、より簡便に9,10-ジヒドロキシアントラセンを得ることができる。すなわち、1,4-ナフトキノンと1,3-ブタジエンとの反応により得られる1,4,4a,9a-テトラヒドロアントラキノンを、水性媒体中、アルカリ金属水酸化物のようなアルカリ性化合物の存在下に9,10-アントラキノンと反応させることにより9,10-ジヒドロキシアントラセンのアルカリ金属塩の水溶液を得ることができる。 In the case of 9,10-dihydroxyanthracene, as an industrial method, 1,4,4a, 9a-tetrahydroanthraquinone, which is a Diels-Alder reaction product of 1,4-naphthoquinone and 1,3-butadiene, or By reducing 9,10-anthraquinone with an alkali metal salt of 1,4-dihydro-9,10-dihydroxyanthracene, which is the isomer thereof, 9,10-dihydroxyanthracene can be obtained more easily. That is, 1,4,4a, 9a-tetrahydroanthraquinone obtained by the reaction of 1,4-naphthoquinone and 1,3-butadiene is placed in an aqueous medium in the presence of an alkaline compound such as an alkali metal hydroxide. An aqueous solution of an alkali metal salt of 9,10-dihydroxyanthracene can be obtained by reacting with, 10-anthraquinone.
当該反応で得られた9,10-ジヒドロキシアントラセンのアルカリ金属塩の水溶液を酸素不存在下に酸性化することにより、9,10-ジヒドロキシアントラセンの沈殿を得ることができる。この沈殿を精製することにより、9,10-ジヒドロキシアントラセンを得ることができる。置換基を有する9,10-ジヒドロキシアントラセン化合物も同様にして得ることができる。 Precipitation of 9,10-dihydroxyanthracene can be obtained by acidifying an aqueous solution of an alkali metal salt of 9,10-dihydroxyanthracene obtained in the reaction in the absence of oxygen. By purifying this precipitate, 9,10-dihydroxyanthracene can be obtained. A 9,10-dihydroxyanthracene compound having a substituent can be obtained in the same manner.
反応式-1において、原料となる一般式(3)で表されるエステル化合物の具体例としては、クロロ酢酸メチル、クロロ酢酸エチル、クロロ酢酸n-プロピル、クロロ酢酸イソプロピル、クロロ酢酸n-ブチル(3-5)、クロロ酢酸tert-ブチル、クロロ酢酸ペンチル、クロロ酢酸ヘキシル、クロロ酢酸ヘプチル、クロロ酢酸オクチル、クロロ酢酸2-エチルヘキシル、クロロ酢酸ノニル、クロロ酢酸ドデシル、クロロ酢酸ノナデシル、クロロ酢酸イコシル、クロロ酢酸シクロヘキシル、クロロ酢酸シクロヘキシルメチル、2-クロロプロピオン酸メチル、3-クロロプロピオン酸メチル、2-クロロプロピオン酸メチル、3-クロロプロピオン酸メチル、2-クロロプロピオン酸エチル、3-クロロプロピオン酸エチル、2-クロロプロピオン酸n-プロピル、3-クロロプロピオン酸n-プロピル、2-クロロプロピオン酸イソプロピル、3-クロロプロピオン酸イソプロピル、2-クロロプロピオン酸n-ブチル、3-クロロプロピオン酸n-ブチル、2-クロロプロピオン酸tert-ブチル、3-クロロプロピオン酸tert-ブチル、2-クロロプロピオン酸ペンチル、3-クロロプロピオン酸ペンチル、2-クロロプロピオン酸ヘキシル、3-クロロプロピオン酸ヘキシル、2-クロロプロピオン酸ヘプチル、3-クロロプロピオン酸ヘプチル、2-クロロプロピオン酸オクチル、3-クロロプロピオン酸オクチル、2-クロロプロピオン酸2-エチルヘキシル、3-クロロプロピオン酸2-エチルヘキシル、2-クロロプロピオン酸ノニル、3-クロロプロピオン酸ノニル、2-クロロプロピオン酸ドデシル、3-クロロプロピオン酸ドデシル、2-クロロプロピオン酸ノナデシル、3-クロロプロピオン酸ノナデシル、2-クロロプロピオン酸イコシル、3-クロロプロピオン酸イコシル、2-クロロ酪酸メチル、3-クロロ酪酸メチル、4-クロロ酪酸メチル、2-クロロ酪酸エチル、3-クロロ酪酸エチル、4-クロロ酪酸エチル、2-クロロ酪酸n-プロピル、3-クロロ酪酸n-プロピル、4-クロロ酪酸n-プロピル、2-クロロ酪酸イソプロピル、3-クロロ酪酸イソプロピル、4-クロロ酪酸イソプロピル、2-クロロ酪酸n-ブチル、3-クロロ酪酸n-ブチル、4-クロロ酪酸n-ブチル、2-クロロ酪酸tert-ブチル、3-クロロ酪酸tert-ブチル、4-クロロ酪酸tert-ブチル、2-クロロ酪酸ペンチル、3-クロロ酪酸ペンチル、4-クロロ酪酸ペンチル、2-クロロ酪酸ヘキシル、3-クロロ酪酸ヘキシル、4-クロロ酪酸ヘキシル、2-クロロ酪酸ヘプチル、3-クロロ酪酸ヘプチル、4-クロロ酪酸ヘプチル、2-クロロ酪酸オクチル、3-クロロ酪酸オクチル、4-クロロ酪酸オクチル、2-クロロ酪酸2-エチルヘキシル、3-クロロ酪酸2-エチルヘキシル、4-クロロ酪酸2-エチルヘキシル、2-クロロ酪酸ノニル、3-クロロ酪酸ノニル、4-クロロ酪酸ノニル、2-クロロ酪酸ドデシル、3-クロロ酪酸ドデシル、4-クロロ酪酸ドデシル、2-クロロ酪酸ノナデシル、3-クロロ酪酸ノナデシル、4-クロロ酪酸ノナデシル、2-クロロ酪酸イコシル、3-クロロ酪酸イコシル、4-クロロ酪酸イコシル、2-クロロ吉草酸メチル、3-クロロ吉草酸メチル、4-クロロ吉草酸メチル、5-クロロ吉草酸メチル、2-クロロ吉草酸エチル、3-クロロ吉草酸エチル、4-クロロ吉草酸エチル、5-クロロ吉草酸エチル、2-クロロ吉草酸n-プロピル、3-クロロ吉草酸n-プロピル、4-クロロ吉草酸n-プロピル、5-クロロ吉草酸n-プロピル、2-クロロ吉草酸イソプロピル、3-クロロ吉草酸イソプロピル、4-クロロ吉草酸イソプロピル、5-クロロ吉草酸イソプロピル、2-クロロ吉草酸n-ブチル、3-クロロ吉草酸n-ブチル、4-クロロ吉草酸n-ブチル、5-クロロ吉草酸n-ブチル、2-クロロ吉草酸tert-ブチル、3-クロロ吉草酸tert-ブチル、4-クロロ吉草酸tert-ブチル、5-クロロ吉草酸tert-ブチル、2-クロロ吉草酸ペンチル、3-クロロ吉草酸ペンチル、4-クロロ吉草酸ペンチル、5-クロロ吉草酸ペンチル、2-クロロ吉草酸ヘキシル、3-クロロ吉草酸ヘキシル、4-クロロ吉草酸ヘキシル、5-クロロ吉草酸ヘキシル、2-クロロ吉草酸ヘプチル、3-クロロ吉草酸ヘプチル、4-クロロ吉草酸ヘプチル、5-クロロ吉草酸ヘプチル、2-クロロ吉草酸オクチル、3-クロロ吉草酸オクチル、4-クロロ吉草酸オクチル、5-クロロ吉草酸オクチル、2-クロロ吉草酸2-エチルヘキシル、3-クロロ吉草酸2-エチルヘキシル、4-クロロ吉草酸2-エチルヘキシル、5-クロロ吉草酸2-エチルヘキシル、2-クロロ吉草酸ノニル、3-クロロ吉草ノニル酸、4-クロロ吉草酸ノニル、5-クロロ吉草酸ノニル、2-クロロ吉草酸ドデシル、3-クロロ吉草酸ドデシル、4-クロロ吉草酸ドデシル、5-クロロ吉草酸ドデシル、2-クロロ吉草酸ノナデシル、3-クロロ吉草酸ノナデシル、4-クロロ吉草酸ノナデシル、5-クロロ吉草酸ノナデシル、2-クロロ吉草酸イコシル、3-クロロ吉草酸イコシル、4-クロロ吉草酸イコシル、5-クロロ吉草酸イコシル等が挙げられる。 Specific examples of the ester compound represented by the general formula (3) as a raw material in Reaction Formula-1 include methyl chloroacetate, ethyl chloroacetate, n-propyl chloroacetate, isopropyl chloroacetate, and n-butyl chloroacetate (n-butyl chloroacetate). 3-5), tert-butyl chloroacetate, pentyl chloroacetate, hexyl chloroacetate, heptyl chloroacetate, octyl chloroacetate, 2-ethylhexyl chloroacetate, nonyl chloroacetate, dodecyl chloroacetate, nonadecil chloroacetate, icosyl chloroacetate, chloro Cyclohexyl acetate, cyclohexylmethylchloroacetic acid, methyl 2-chloropropionate, methyl 3-chloropropionate, methyl 2-chloropropionate, methyl 3-chloropropionate, ethyl 2-chloropropionate, ethyl 3-chloropropionate, N-propyl 2-chloropropionate, n-propyl 3-chloropropionate, isopropyl 2-chloropropionate, isopropyl 3-chloropropionate, n-butyl 2-chloropropionate, n-butyl 3-chloropropionate, Tert-butyl 2-chloropropionate, tert-butyl 3-chloropropionate, pentyl 2-chloropropionate, pentyl 3-chloropropionate, hexyl 2-chloropropionate, hexyl 3-chloropropionate, 2-chloropropion Heptyl acid, heptyl 3-chloropropionate, octyl 2-chloropropionate, octyl 3-chloropropionate, 2-ethylhexyl 2-chloropropionate, 2-ethylhexyl 3-chloropropionate, nonyl 2-chloropropionate, 3 -Nonyl chloropropionate, dodecyl 2-chloropropionate, dodecyl 3-chloropropionate, nonadesyl 2-chloropropionate, nonadesyl 3-chloropropionate, icosyl 2-chloropropionate, icosyl 3-chloropropionate, 2- Methyl chlorobutyrate, methyl 3-chlorobutyrate, methyl 4-chlorobutyrate, ethyl 2-chlorobutyrate, ethyl 3-chlorobutyrate, ethyl 4-chlorobutyrate, n-propyl 2-chlorobutyrate, n-propyl 3-chlorobutyrate, N-propyl 4-chlorobutyrate, isopropyl 2-chlorobutyrate, isopropyl 3-chlorobutyrate, isopropyl 4-chlorobutyrate, n-butyl 2-chlorobutyrate, n-butyl 3-chlorobutyrate, n-butyl 4-chlorobutyrate, Tert-butyl 2-chlorobutyrate, tert-butyl 3-chlorobutyrate, 4-chlorobutyric acid tert-butyl, pentyl 2-chlorobutyrate, pentyl 3-chlorobutyrate, pentyl 4-chlorobutyrate, hexyl 2-chlorobutyrate, hexyl 3-chlorobutyrate, hexyl 4-chlorobutyrate, heptyl 2-chlorobutyrate, 3-chlorobutyric acid Heptyl, heptyl 4-chlorobutyrate, octyl 2-chlorobutyrate, octyl 3-chlorobutyrate, octyl 4-chlorobutyrate, 2-ethylhexyl 2-chlorobutyrate, 2-ethylhexyl 3-chlorobutyrate, 2-ethylhexyl 4-chlorobutyrate, Nonyl 2-chlorobutyrate, nonyl 3-chlorobutyrate, nonyl 4-chlorobutyrate, dodecyl 2-chlorobutyrate, dodecyl 3-chlorobutyrate, dodecyl 4-chlorobutyrate, nonadecil 2-chlorobutyrate, nonadecil 3-chlorobutyrate, 4- Nonadesyl chlorobutyrate, icosyl 2-chlorobutyrate, icosyl 3-chlorobutyrate, icosyl 4-chlorobutyrate, methyl 2-chlorovalerate, methyl 3-chlorovalerate, methyl 4-chlorovalerate, methyl 5-chlorovalerate, Ethyl 2-chlorovalerate, ethyl 3-chlorovalerate, ethyl 4-chlorovalerate, ethyl 5-chlorovalerate, n-propyl 2-chlorovalerate, n-propyl 3-chlorovalerate, 4-chlorovaleric N-propyl valerate, n-propyl 5-chlorovalerate, isopropyl 2-chlorovalerate, isopropyl 3-chlorovalerate, isopropyl 4-chlorovalerate, isopropyl 5-chlorovalerate, n-butyl 2-chlorovalerate , 3-Chlorovalerate n-butyl, 4-chlorovalerate n-butyl, 5-chlorovalerate n-butyl, 2-chlorovalerate tert-butyl, 3-chlorovalerate tert-butyl, 4-chlorovaleric Tert-butyl herate, tert-butyl 5-chlorovalerate, pentyl 2-chlorovalerate, pentyl 3-chlorovalerate, pentyl 4-chlorovalerate, pentyl 5-chlorovalerate, hexyl 2-chlorovalerate, 3 -Hexyl chlorovalerate, hexyl 4-chlorovalerate, hexyl 5-chlorovalerate, heptyl 2-chlorovalerate, heptyl 3-chlorovalerate, heptyl 4-chlorovalerate, 5-chlorovalerate heptyl, 2- Octyl chlorovalerate, octyl 3-chlorovalerate, octyl 4-chlorovalerate, octyl 5-chlorovalerate, 2-ethylhexyl 2-chlorovalerate, 2-ethylhexyl 3-chlorovalerate, 2-chlorovaleric acid 2 -Ethylhexyl, 5-chlorovaleric acid 2-ethylhexyl, 2-chlorovalerate nonyl, 3-chlorovaleric acid, 4-chlorovaleric acid Nonyl, 5-chlorovalerate nonyl, 2-chlorovalerate dodecyl, 3-chlorovalerate dodecyl, 4-chlorovalerate dodecyl, 5-chlorovalerate dodecyl, 2-chlorovalerate nonadecil, 3-chlorovalerate nonadecil , 4-Chlorovalerate nonadesyl, 5-chlorovalerate nonadesyl, 2-chlorovalerate icosyl, 3-chlorovalerate icosyl, 4-chlorovalerate icosyl, 5-chlorovalerate icosyl and the like.
更に、ブロモ酢酸メチル(3-1)、ブロモ酢酸エチル(3-4)、ブロモ酢酸n-プロピル(3-9)、ブロモ酢酸イソプロピル(3-2)、ブロモ酢酸n-ブチル、ブロモ酢酸tert-ブチル(3-3)、ブロモ酢酸ペンチル、ブロモ酢酸ヘキシル、ブロモ酢酸ヘプチル、ブロモ酢酸オクチル、ブロモ酢酸2-エチルヘキシル、ブロモ酢酸ノニル、ブロモ酢酸ドデシル、ブロモ酢酸ノナデシル、ブロモ酢酸イコシル、ブロモ酢酸シクロヘキシル、ブロモ酢酸シクロヘキシルメチル、2-ブロモプロピオン酸メチル(3-6)、3-ブロモプロピオン酸メチル、2-ブロモプロピオン酸エチル、3-ブロモプロピオン酸エチル、2-ブロモプロピオン酸n-プロピル、3-ブロモプロピオン酸n-プロピル、2-ブロモプロピオン酸イソプロピル、3-ブロモプロピオン酸イソプロピル、2-ブロモプロピオン酸n-ブチル、3-ブロモプロピオン酸n-ブチル、2-ブロモプロピオン酸tert-ブチル、3-ブロモプロピオン酸tert-ブチル、2-ブロモプロピオン酸ペンチル、3-ブロモプロピオン酸ペンチル、2-ブロモプロピオン酸ヘキシル、3-ブロモプロピオン酸ヘキシル、2-ブロモプロピオン酸ヘプチル、3-ブロモプロピオン酸ヘプチル、2-ブロモプロピオン酸オクチル、3-ブロモプロピオン酸オクチル、2-ブロモプロピオン酸2-エチルヘキシル、3-ブロモプロピオン酸2-エチルヘキシル、2-ブロモプロピオン酸ノニル、3-ブロモプロピオン酸ノニル、2-ブロモプロピオン酸ドデシル、3-ブロモプロピオン酸ドデシル、2-ブロモプロピオン酸ノナデシル、3-ブロモプロピオン酸ノナデシル、2-ブロモプロピオン酸イコシル、3-ブロモプロピオン酸イコシル、2-ブロモ酪酸メチル、3-ブロモ酪酸メチル、4-ブロモ酪酸メチル、2-ブロモ酪酸エチル、3-ブロモ酪酸エチル、4-ブロモ酪酸エチル(3-7)、2-ブロモ酪酸n-プロピル、3-ブロモ酪酸n-プロピル、4-ブロモ酪酸n-プロピル、2-ブロモ酪酸イソプロピル、3-ブロモ酪酸イソプロピル、4-ブロモ酪酸イソプロピル、2-ブロモ酪酸n-ブチル、3-ブロモ酪酸n-ブチル、4-ブロモ酪酸n-ブチル、2-ブロモ酪酸tert-ブチル、3-ブロモ酪酸tert-ブチル、4-ブロモ酪酸tert-ブチル、2-ブロモ酪酸ペンチル、3-ブロモ酪酸ペンチル、4-ブロモ酪酸ペンチル、2-ブロモ酪酸ヘキシル、3-ブロモ酪酸ヘキシル、4-ブロモ酪酸ヘキシル、2-ブロモ酪酸ヘプチル、3-ブロモ酪酸ヘプチル、4-ブロモ酪酸ヘプチル、2-ブロモ酪酸オクチル、3-ブロモ酪酸オクチル、4-ブロモ酪酸オクチル、2-ブロモ酪酸2-エチルヘキシル、3-ブロモ酪酸2-エチルヘキシル、4-ブロモ酪酸2-エチルヘキシル、2-ブロモ酪酸ノニル、3-ブロモ酪酸ノニル、4-ブロモ酪酸ノニル、2-ブロモ酪酸ドデシル、3-ブロモ酪酸ドデシル、4-ブロモ酪酸ドデシル、2-ブロモ酪酸ノナデシル、3-ブロモ酪酸ノナデシル、4-ブロモ酪酸ノナデシル、2-ブロモ酪酸イコシル、3-ブロモ酪酸イコシル、4-ブロモ酪酸イコシル、2-ブロモ吉草酸メチル、3-ブロモ吉草酸メチル、4-ブロモ吉草酸メチル、5-ブロモ吉草酸メチル、2-ブロモ吉草酸エチル、3-ブロモ吉草酸エチル、4-ブロモ吉草酸エチル(3-8)、5-ブロモ吉草酸エチル、2-ブロモ吉草酸n-プロピル、3-ブロモ吉草酸n-プロピル、4-ブロモ吉草酸n-プロピル、5-ブロモ吉草酸n-プロピル、2-ブロモ吉草酸イソプロピル、3-ブロモ吉草酸イソプロピル、4-ブロモ吉草酸イソプロピル、5-ブロモ吉草酸イソプロピル、2-ブロモ吉草酸n-ブチル、3-ブロモ吉草酸n-ブチル、4-ブロモ吉草酸n-ブチル、5-ブロモ吉草酸n-ブチル、2-ブロモ吉草酸tert-ブチル、3-ブロモ吉草酸tert-ブチル、4-ブロモ吉草酸tert-ブチル、5-ブロモ吉草酸tert-ブチル、2-ブロモ吉草酸ペンチル、3-ブロモ吉草酸ペンチル、4-ブロモ吉草酸ペンチル、5-ブロモ吉草酸ペンチル、2-ブロモ吉草酸ヘキシル、3-ブロモ吉草酸ヘキシル、4-ブロモ吉草酸ヘキシル、5-ブロモ吉草酸ヘキシル、2-ブロモ吉草酸ヘプチル、3-ブロモ吉草酸ヘプチル、4-ブロモ吉草酸ヘプチル、5-ブロモ吉草酸ヘプチル、2-ブロモ吉草酸オクチル、3-ブロモ吉草酸オクチル、4-ブロモ吉草酸オクチル、5-ブロモ吉草酸オクチル、2-ブロモ吉草酸2-エチルヘキシル、3-ブロモ吉草酸2-エチルヘキシル、4-ブロモ吉草酸2-エチルヘキシル、5-ブロモ吉草酸2-エチルヘキシル、2-ブロモ吉草酸ノニル、3-ブロモ吉草ノニル酸、4-ブロモ吉草酸ノニル、5-ブロモ吉草酸ノニル、2-ブロモ吉草酸ドデシル、3-ブロモ吉草酸ドデシル、4-ブロモ吉草酸ドデシル、5-ブロモ吉草酸ドデシル、2-ブロモ吉草酸ノナデシル、3-ブロモ吉草酸ノナデシル、4-ブロモ吉草酸ノナデシル、5-ブロモ吉草酸ノナデシル、2-ブロモ吉草酸イコシル、3-ブロモ吉草酸イコシル、4-ブロモ吉草酸イコシル、5-ブロモ吉草酸イコシル、ブロモ酢酸-2-ヒドロキシエチル(3-10)、2-ブロモプロピオン酸-2-ヒドロキシエチル、3-ブロモ酪酸-2-ヒドロキシエチル、4-ブロモ吉草酸-2-ヒドロキシエチル等が挙げられる。 Furthermore, methyl bromoacetate (3-1), ethyl bromoacetate (3-4), n-propyl bromoacetate (3-9), isopropyl bromoacetate (3-2), n-butyl bromoacetate, tert-bromoacetate. Butyl (3-3), pentyl bromoacetate, hexyl bromoacetate, heptyl bromoacetate, octyl bromoacetate, nonyl bromoacetate, dodecyl bromoacetate, nonadesyl bromoacetate, icosyl bromoacetate, cyclohexyl bromoacetate, bromo Cyclohexylmethyl acetate, methyl 2-bromopropionate (3-6), methyl 3-bromopropionate, ethyl 2-bromopropionate, ethyl 3-bromopropionate, n-propyl 2-bromopropionate, 3-bromopropion N-propyl acid, isopropyl 2-bromopropionate, isopropyl 3-bromopropionate, n-butyl 2-bromopropionate, n-butyl 3-bromopropionate, tert-butyl 2-bromopropionate, 3-bromopropion Tert-butyl acid, pentyl 2-bromopropionate, pentyl 3-bromopropionate, hexyl 2-bromopropionate, hexyl 3-bromopropionate, heptyl 2-bromopropionate, heptyl 3-bromopropionate, 2-bromo Octyl propionate, octyl 3-bromopropionate, 2-ethylhexyl 2-bromopropionate, 2-ethylhexyl 3-bromopropionate, nonyl 2-bromopropionate, nonyl 3-bromopropionate, dodecyl 2-bromopropionate, Dodecyl 3-bromopropionate, nonadesyl 2-bromopropionate, nonadesyl 3-bromopropionate, icosyl 2-bromopropionate, icosyl 3-bromopropionate, methyl 2-bromobutyrate, methyl 3-bromobutyrate, 4-bromo Methyl butyrate, ethyl 2-bromobutyrate, ethyl 3-bromobutyrate, ethyl 4-bromobutyrate (3-7), n-propyl 2-bromobutyrate, n-propyl 3-bromobutyrate, n-propyl 4-bromobutyrate, Isopropyl 2-bromobutyrate, isopropyl 3-bromobutyrate, isopropyl 4-bromobutyrate, n-butyl 2-bromobutyrate, n-butyl 3-bromobutyrate, n-butyl 4-bromobutyrate, tert-butyl 2-bromobutyrate, Tert-Butyl 3-bromobutyrate, tert-butyl 4-bromobutyrate, pentyl 2-bromobutyrate, pentyl 3-bromobutyrate, 4-bromodairy Pentyl acid, hexyl 2-bromobutyrate, hexyl 3-bromobutyrate, hexyl 4-bromobutyrate, heptyl 2-bromobutyrate, heptyl 3-bromobutyrate, heptyl 4-bromobutyrate, octyl 2-bromobutyrate, octyl 3-bromobutyrate , 4-Bromobutyrate octyl, 2-bromobutyrate 2-ethylhexyl, 3-bromobutyrate 2-ethylhexyl, 4-bromobutyrate 2-ethylhexyl, 2-bromobutyrate nonyl, 3-bromobutyrate nonyl, 4-bromobutyrate nonyl, 2 -Dodecyl bromobutyrate, dodecyl 3-bromobutyrate, dodecyl 4-bromobutyrate, nonadecil 2-bromobutyrate, nonadesyl 3-bromobutyrate, nonadecil 4-bromobutyrate, icosyl 2-bromobutyrate, icosyl 3-bromobutyrate, 4-bromo Icosyl butyrate, methyl 2-bromovalerate, methyl 3-bromovalerate, methyl 4-bromovalerate, methyl 5-bromovalerate, ethyl 2-bromovalerate, ethyl 3-bromovalerate, 4-bromovaleric acid Ethyl (3-8), ethyl 5-bromovalerate, n-propyl 2-bromovalerate, n-propyl 3-bromovalerate, n-propyl 4-bromovalerate, n-propyl 5-bromovalerate, Isopropyl 2-bromovalerate, isopropyl 3-bromovalerate, isopropyl 4-bromovalerate, isopropyl 5-bromovalerate, n-butyl 2-bromovalerate, n-butyl 3-bromovalerate, 4-bromovalerate N-Butyl plantate, n-butyl 5-bromovalerate, tert-butyl 2-bromovalerate, tert-butyl 3-bromovalerate, tert-butyl 4-bromovalerate, tert-butyl 5-bromovalerate, 2-Bromovalerate pentyl, 3-bromovalerate pentyl, 4-bromovalerate pentyl, 5-bromovalerate pentyl, 2-bromovalerate hexyl, 3-bromovalerate hexyl, 4-bromovalerate hexyl, 5 -Hexyl bromovalerate, heptyl 2-bromovalerate, heptyl 3-bromovalerate, heptyl 4-bromovalerate, heptyl 5-bromovalerate, octyl 2-bromovalerate, octyl 3-bromovalerate, 4- Octyl bromovalerate, octyl 5-bromovalerate, 2-ethylhexyl 2-bromovalerate, 2-ethylhexyl 3-bromovalerate, 2-ethylhexyl 4-bromovalerate, 2-ethylhexyl 5-bromovalerate, 2- Nonyl bromovalerate, 3-bromovaleric acid, nonyl 4-bromovalerate, nonyl 5-bromovalerate, dodecyl 2-bromovalerate, 3-bromo Dodecyl valerate, dodecyl 4-bromovalerate, dodecyl 5-bromovalerate, nonadecil 2-bromovalerate, nonadecil 3-bromovalerate, nonadecil 4-bromovalerate, nonadecil 5-bromovalerate, 2-bromovalerate Icosyl herbate, Icosyl 3-bromovalerate, Icosyl 4-bromovalerate, Icosyl 5-bromovalerate, -2-hydroxyethyl bromoacetate (3-10), -2-hydroxyethyl 2-bromopropionate, 3- Examples thereof include -2-hydroxyethyl bromobutyric acid and -2-hydroxyethyl 4-bromovaleric acid.
そして更に、ヨード酢酸メチル、ヨード酢酸エチル、ヨード酢酸n-プロピル、ヨード酢酸イソプロピル、ヨード酢酸n-ブチル、ヨード酢酸tert-ブチル、ヨード酢酸ペンチル、ヨード酢酸ヘキシル、ヨード酢酸ヘプチル、ヨード酢酸オクチル、ヨード酢酸2-エチルヘキシル、ヨード酢酸ノニル、ヨード酢酸ドデシル、ヨード酢酸ノナデシル、ヨード酢酸イコシル、2-ヨードプロピオン酸メチル、3-ヨードプロピオン酸メチル、2-ヨードプロピオン酸エチル、3-ヨードプロピオン酸エチル、2-ヨードプロピオン酸n-プロピル、3-ヨードプロピオン酸n-プロピル、2-ヨードプロピオン酸イソプロピル、3-ヨードプロピオン酸イソプロピル、2-ヨードプロピオン酸n-ブチル、3-ヨードプロピオン酸n-ブチル、2-ヨードプロピオン酸tert-ブチル、3-ヨードプロピオン酸tert-ブチル、2-ヨードプロピオン酸ペンチル、3-ヨードプロピオン酸ペンチル、2-ヨードプロピオン酸ヘキシル、3-ヨードプロピオン酸ヘキシル、2-ヨードプロピオン酸ヘプチル、3-ヨードプロピオン酸ヘプチル、2-ヨードプロピオン酸オクチル、3-ヨードプロピオン酸オクチル、2-ヨードプロピオン酸2-エチルヘキシル、3-ヨードプロピオン酸2-エチルヘキシル、2-ヨードプロピオン酸ノニル、3-ヨードプロピオン酸ノニル、2-ヨードプロピオン酸ドデシル、3-ヨードプロピオン酸ドデシル、2-ヨードプロピオン酸ノナデシル、3-ヨードプロピオン酸ノナデシル、2-ヨードプロピオン酸イコシル、3-ヨードプロピオン酸イコシル、2-ヨード酪酸メチル、3-ヨード酪酸メチル、4-ヨード酪酸メチル、2-ヨード酪酸エチル、3-ヨード酪酸エチル、4-ヨード酪酸エチル、2-ヨード酪酸n-プロピル、3-ヨード酪酸n-プロピル、4-ヨード酪酸n-プロピル、2-ヨード酪酸イソプロピル、3-ヨード酪酸イソプロピル、4-ヨード酪酸イソプロピル、2-ヨード酪酸n-ブチル、3-ヨード酪酸n-ブチル、4-ヨード酪酸n-ブチル、2-ヨード酪酸tert-ブチル、3-ヨード酪酸tert-ブチル、4-ヨード酪酸tert-ブチル、2-ヨード酪酸ペンチル、3-ヨード酪酸ペンチル、4-ヨード酪酸ペンチル、2-ヨード酪酸ヘキシル、3-ヨード酪酸ヘキシル、4-ヨード酪酸ヘキシル、2-ヨード酪酸ヘプチル、3-ヨード酪酸ヘプチル、4-ヨード酪酸ヘプチル、2-ヨード酪酸オクチル、3-ヨード酪酸オクチル、4-ヨード酪酸オクチル、2-ヨード酪酸2-エチルヘキシル、3-ヨード酪酸2-エチルヘキシル、4-ヨード酪酸2-エチルヘキシル、2-ヨード酪酸ノニル、3-ヨード酪酸ノニル、4-ヨード酪酸ノニル、2-ヨード酪酸ドデシル、3-ヨード酪酸ドデシル、4-ヨード酪酸ドデシル、2-ヨード酪酸ノナデシル、3-ヨード酪酸ノナデシル、4-ヨード酪酸ノナデシル、2-ヨード酪酸イコシル、3-ヨード酪酸イコシル、4-ヨード酪酸イコシル、2-ヨード吉草酸メチル、3-ヨード吉草酸メチル、4-ヨード吉草酸メチル、5-ヨード吉草酸メチル、2-ヨード吉草酸エチル、3-ヨード吉草酸エチル、4-ヨード吉草酸エチル、5-ヨード吉草酸エチル、2-ヨード吉草酸n-プロピル、3-ヨード吉草酸n-プロピル、4-ヨード吉草酸n-プロピル、5-ヨード吉草酸n-プロピル、2-ヨード吉草酸イソプロピル、3-ヨード吉草酸イソプロピル、4-ヨード吉草酸イソプロピル、5-ヨード吉草酸イソプロピル、2-ヨード吉草酸n-ブチル、3-ヨード吉草酸n-ブチル、4-ヨード吉草酸n-ブチル、5-ヨード吉草酸n-ブチル、2-ヨード吉草酸tert-ブチル、3-ヨード吉草酸tert-ブチル、4-ヨード吉草酸tert-ブチル、5-ヨード吉草酸tert-ブチル、2-ヨード吉草酸ペンチル、3-ヨード吉草酸ペンチル、4-ヨード吉草酸ペンチル、5-ヨード吉草酸ペンチル、2-ヨード吉草酸ヘキシル、3-ヨード吉草酸ヘキシル、4-ヨード吉草酸ヘキシル、5-ヨード吉草酸ヘキシル、2-ヨード吉草酸ヘプチル、3-ヨード吉草酸ヘプチル、4-ヨード吉草酸ヘプチル、5-ヨード吉草酸ヘプチル、2-ヨード吉草酸オクチル、3-ヨード吉草酸オクチル、4-ヨード吉草酸オクチル、5-ヨード吉草酸オクチル、2-ヨード吉草酸2-エチルヘキシル、3-ヨード吉草酸2-エチルヘキシル、4-ヨード吉草酸2-エチルヘキシル、5-ヨード吉草酸2-エチルヘキシル、2-ヨード吉草酸ノニル、3-ヨード吉草ノニル酸、4-ヨード吉草酸ノニル、5-ヨード吉草酸ノニル、2-ヨード吉草酸ドデシル、3-ヨード吉草酸ドデシル、4-ヨード吉草酸ドデシル、5-ヨード吉草酸ドデシル、2-ヨード吉草酸ノナデシル、3-ヨード吉草酸ノナデシル、4-ヨード吉草酸ノナデシル、5-ヨード吉草酸ノナデシル、2-ヨード吉草酸イコシル、3-ヨード吉草酸イコシル、4-ヨード吉草酸イコシル、5-ヨード吉草酸イコシル等が挙げられる。 Furthermore, methyl iodoacetate, ethyl iodoacetate, n-propyl iodoacetate, isopropyl iodoacetate, n-butyl iodoacetate, tert-butyl iodoacetate, pentyl iodoacetate, hexyl iodoacetate, heptyl iodoacetate, octyl iodoacetate, iodine 2-Ethylhexyl acetate, nonyl iodoacetate, dodecyl iodoacetate, nonadesyl iodoacetate, icosyl iodoacetate, methyl 2-iodopropionate, methyl 3-iodopropionate, ethyl 2-iodopropionate, ethyl 3-iodopropionate, 2 -N-propyl iodopropionate, n-propyl 3-iodopropionate, isopropyl 2-iodopropionate, isopropyl 3-iodopropionate, n-butyl 2-iodopropionate, n-butyl 3-iodopropionate, 2 -Tert-butyl iodopropionate, tert-butyl 3-iodopropionate, pentyl 2-iodopropionate, pentyl 3-iodopropionate, hexyl 2-iodopropionate, hexyl 3-iodopropionate, 2-iodopropionic acid Heptyl, heptyl 3-iodopropionate, octyl 2-iodopropionate, octyl 3-iodopropionate, 2-ethylhexyl 2-iodopropionate, 2-ethylhexyl 3-iodopropionate, nonyl 2-iodopropionate, 3- Nonyl iodopropionate, dodecyl 2-iodopropionate, dodecyl 3-iodopropionate, nonadecil 2-iodopropionate, nonadecil 3-iodopropionate, icosyl 2-iodopropionate, icosyl 3-iodopropionate, 2-iodo Methyl butyrate, 3-iodobutyrate, 4-iodobutyrate, 2-iodobutyrate, 3-iodobutyrate, 4-iodobutyrate, 2-iodobutyrate n-propyl, 3-iodobutyrate n-propyl, 4 -N-propyl iodobutate, isopropyl 2-iodobutyrate, isopropyl 3-iodobutyrate, isopropyl 4-iodobutyrate, n-butyl 2-iodobutyrate, n-butyl 3-iodobutyrate, n-butyl 4-iodobutyrate, 2 -Iodobutyrate tert-butyl, 3-iodobutyrate tert-butyl, 4-iodobutyrate tert-butyl, 2-iodobutyrate pentyl, 3-iodobutyrate pentyl, 4-iodobutyrate pentyl, 2-iodobutyrate hexyl, 3-iodo Hexyl butyrate, 4-iodobutyrate hexyl, 2-iodobutyrate heptyl, 3-iodobutyric acid Heptyl, 4-iodobutyrate heptyl, 2-iodobutyrate octyl, 3-iodobutyrate octyl, 4-iodobutyrate octyl, 2-iodobutyrate 2-ethylhexyl, 3-iodobutyrate 2-ethylhexyl, 4-iodobutyrate 2-ethylhexyl, 2-Idobutyrate nonyl, 3-iodobutyrate nonyl, 4-iodobutyrate nonyl, 2-iodobutyrate dodecyl, 3-iodobutyrate dodecyl, 4-iodobutyrate dodecyl, 2-iodobutyrate nonadecil, 3-iodobutyrate nonadecil, 4- Nonadesyl iodobutyrate, icosyl 2-iodobutyrate, icosyl 3-iodobutyrate, icosyl 4-iodobutyrate, methyl 2-iodovalerate, methyl 3-iodovalerate, methyl 4-iodovalerate, 5-methyliodovalerate, 2-Idovalerate ethyl, 3-iodovalerate ethyl, 4-iodovalerate ethyl, 5-iodovalerate ethyl, 2-iodovalerate n-propyl, 3-iodovalerate n-propyl, 4-iodovalerate N-propyl valerate, n-propyl 5-iodovalerate, isopropyl 2-iodovalerate, isopropyl 3-iodovalerate, isopropyl 4-iodovalerate, isopropyl 5-iodovalerate, n-butyl 2-iodovalerate , 3-iodovalerate n-butyl, 4-iodovalerate n-butyl, 5-iodovalerate n-butyl, 2-iodovalerate tert-butyl, 3-iodovalerate tert-butyl, 4-iodovalerate Tert-butyl herate, tert-butyl 5-iodovalerate, pentyl 2-iodovalerate, 3-iodovalerate pentyl, 4-iodovalerate pentyl, 5-iodovalerate pentyl, 2-iodovalerate hexyl, 3 -Hexyl iodovalerate, 4-hexyl iodovalerate, 5-hexyl iodovalerate, 2-heptyl valerate, 3-heptyl valerate, 4-heptyl valerate, 5-heptyl valerate, 2- Octyl iodovalerate, octyl 3-iodovalerate, octyl 4-iodovalerate, octyl 5-iodovalerate, 2-ethylhexyl 2-iodovalerate, 2-ethylhexyl 3-iodovalerate, 2-iodovalerate 2 -Ethylhexyl, 5-iodovalerate 2-ethylhexyl, 2-iodovalerate nonyl, 3-iodovalerate, 4-iodovalerate nonyl, 5-iodovalerate nonyl, 2-iodovalerate dodecyl, 3- Dodecyl iodovalerate, 4-dodecyl iodovalerate, 5-dodecyl iodovalerate, 2-nonadecil iodovalerate, 3-nonadecil iodovalerate, 4-yo Examples thereof include do-valerate nonadesyl, 5-iodovalerate nonadesyl, 2-iodovalerate icosyl, 3-iodovalerate icosyl, 4-iodovalerate icosyl, 5-iodovalerate icosyl and the like.
上記挙げた具体例の中でも、クロロ化合物とブロモ化合物が反応性の点で好ましく、特に、下記構造式の化合物等が好ましい。 Among the specific examples mentioned above, a chloro compound and a bromo compound are preferable in terms of reactivity, and a compound having the following structural formula is particularly preferable.
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000006
 
反応式-1において一般式(3)で表されるエステル化合物の使用量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは2.0モル倍以上、10.0モル倍未満、より好ましくは、2.2モル倍以上、5.0モル倍未満である。2.0モル倍未満であると、反応が完結せず、また、10.0モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。 The amount of the ester compound represented by the general formula (3) in Reaction Scheme-1 is preferably 2.0 mol times or more and less than 10.0 mol times with respect to the 9,10-dihydroxyanthracene compound. Preferably, it is 2.2 mol times or more and less than 5.0 mol times. If it is less than 2.0 mol times, the reaction will not be completed, and if it is 10.0 mol times or more, a side reaction will occur and the yield and purity will decrease, which is not preferable.
反応式-1において、一般式(3)で表されるエステル化合物は市販品を購入してもよく、対応するカルボン酸とアルコールで合成したものを使用してもよい。 In the reaction formula-1, as the ester compound represented by the general formula (3), a commercially available product may be purchased, or a compound synthesized with the corresponding carboxylic acid and alcohol may be used.
反応式-1において、一般式(3)で表されるエステル化合物として対応するカルボン酸とアルコールで合成したものを使用する場合は、系内であらかじめエステル化合物を合成し、そこに一般式(2)で表される9,10-ジヒドロキシアントラセン化合物を投入することで、効率よく反応を行うことができる。 In the reaction formula-1, when the ester compound represented by the general formula (3) is synthesized with the corresponding carboxylic acid and alcohol, the ester compound is synthesized in advance in the system, and the general formula (2) is used therein. By adding the 9,10-dihydroxyanthracene compound represented by)), the reaction can be carried out efficiently.
反応式-1において使用される塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化カリウム、リチウムヘキサメチルジシラジド、リチウムジイソプロピルアミド、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、シクロヘキシルアミン、ジメチルアニリン、ピリジン、4,4-ジメチルアミノピリジン、ピペリジン、γ-ピコリン、ルチジン等が挙げられる。 Examples of the basic compound used in Reaction Formula-1 include sodium hydroxide, potassium hydroxide, sodium hydride, potassium hydride, lithium hexamethyldisilazide, lithium diisopropylamide, triethylamine, tributylamine, and trihexylamine. Examples thereof include dimethylamine, diethylamine, dipropylamine, dibutylamine, cyclohexylamine, dimethylaniline, pyridine, 4,4-dimethylaminopyridine, piperidine, γ-picolin, rutidin and the like.
塩基性化合物の添加量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは2.0モル倍以上、10.0モル倍未満、より好ましくは、2.2モル倍以上、5.0モル倍未満である。2.0モル倍未満であると、反応が完結せず、また、10.0モル倍以上だと副反応が起こり収率及び純度が低下するので好ましくない。 The amount of the basic compound added is preferably 2.0 mol times or more and less than 10.0 mol times, more preferably 2.2 mol times or more, 5.0 times or more with respect to the 9,10-dihydroxyanthracene compound. It is less than a molar number. If it is less than 2.0 mol times, the reaction will not be completed, and if it is 10.0 mol times or more, a side reaction will occur and the yield and purity will decrease, which is not preferable.
当該反応は溶媒中もしくは無溶媒で行う。用いられる溶媒としては使用するエステル化合物と反応しなければ特に種類を選ばず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族溶媒、テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド系溶媒、塩化メチレン、二塩化エチレン、クロロベンゼン等のハロゲン化炭素系溶媒、メタノール、エタノール、1-プロパノール等のアルコール溶媒が用いられる。 The reaction is carried out in a solvent or without a solvent. The solvent used is not particularly limited as long as it does not react with the ester compound to be used. For example, aromatic solvents such as toluene, xylene and ethylbenzene, ether solvents such as tetrahydrofuran and 1,4-dioxane, acetone, methyl ethyl ketone, etc. Ketone solvents such as methylisobutylketone, amide solvents such as dimethylacetamide and dimethylformamide, carbon halide solvents such as methylene chloride, ethylene dichloride and chlorobenzene, and alcohol solvents such as methanol, ethanol and 1-propanol are used. ..
無機塩基の水溶液中に9,10-ジヒドロキシアントラセン化合物を溶解させ、エステルと反応させる場合は、相間移動触媒の使用が有効である。相間移動触媒としては、例えば、テトラメチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラプロピルアンモニウムブロマイド、テトラブチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド、トリオクチルエチルアンモニウムブロマイド、トリオクチルプロピルアンモニウムブロマイド、トリオクチルブチルアンモニウムブロマイド、ベンジルジメチルオクタデシルアンモニウムブロマイド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラプロピルアンモニウムクロライド、テトラフブチルアンモニウムクロライド、トリオクチルメチルアンモニウムクロライド、トリオクチルエチルアンモニウムクロライド、トリオクチルプロピルアンモニウムクロライド、トリオクチルブチルアンモニウムクロライド、ベンジルジメチルオクタデシルアンモニウムクロライド等が挙げられる。 When the 9,10-dihydroxyanthracene compound is dissolved in an aqueous solution of an inorganic base and reacted with an ester, the use of a phase transfer catalyst is effective. Examples of the phase transfer catalyst include tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, trioctylmethylammonium bromide, trioctylethylammonium bromide, trioctylpropylammonium bromide, and trioctylbutylammonium bromide. , Benzyldimethyloctadecylammonium bromide, tetramethylammonium chloride, tetraethylammonium chloride, tetrapropylammonium chloride, tetrafbutylammonium chloride, trioctylmethylammonium chloride, trioctylethylammonium chloride, trioctylpropylammonium chloride, trioctylbutylammonium chloride , Benzyldimethyloctadecylammonium chloride and the like.
相間移動触媒の添加量としては、9,10-ジヒドロキシアントラセン化合物に対して、好ましくは 0.01モル倍以上、1.0モル倍未満、より好ましくは、0.05モル倍以上、0.5モル倍未満である。0.01モル倍未満であると、反応速度が遅く、また、1.0モル倍以上だと生成物の純度が低下するので好ましくない。 The amount of the phase transfer catalyst added is preferably 0.01 mol times or more and less than 1.0 mol times, more preferably 0.05 mol times or more and 0.5, with respect to the 9,10-dihydroxyanthracene compound. It is less than a molar number. If it is less than 0.01 mol times, the reaction rate is slow, and if it is 1.0 mol times or more, the purity of the product is lowered, which is not preferable.
当該反応の反応温度は、通常0℃以上、200℃以下、好ましくは10℃以上、100℃以下である。0℃未満だと、反応時間がかかりすぎ、100℃を超えて加熱すると、不純物が多くなり目的化合物の純度が低下し、共に好ましくない。 The reaction temperature of the reaction is usually 0 ° C. or higher and 200 ° C. or lower, preferably 10 ° C. or higher and 100 ° C. or lower. If it is less than 0 ° C., the reaction time will be too long, and if it is heated above 100 ° C., impurities will increase and the purity of the target compound will decrease, both of which are not preferable.
当該反応における反応時間は、反応温度によって異なるが、通常1時間から20時間程度である。より好ましくは2時間から10時間である。 The reaction time in the reaction varies depending on the reaction temperature, but is usually about 1 to 20 hours. More preferably, it is 2 to 10 hours.
反応終了後、必要に応じて未反応原料・溶媒及び触媒を洗浄・減圧留去・濾過等の操作を単独あるいは複数組み合わせる方法で除去する。生成物が固体の場合は反応途中に結晶が析出するので、濾過によって固液分離を行い、必要に応じてアルコールやヘキサン等の貧溶媒から再結晶させる。あるいはそのままドライアップして結晶を得ることができる。生成物が液体の場合は、そのままドライアップし、必要に応じて蒸留等の精製を行ってエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を得ることができる。 After completion of the reaction, unreacted raw materials / solvent and catalyst are removed by a method such as washing, distillation under reduced pressure, filtration, etc., individually or in combination, if necessary. If the product is a solid, crystals will precipitate during the reaction, so solid-liquid separation will be performed by filtration, and if necessary, recrystallized from a poor solvent such as alcohol or hexane. Alternatively, it can be dried up as it is to obtain crystals. When the product is a liquid, it can be dried up as it is, and if necessary, purified by distillation or the like to obtain a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group.
(光ラジカル重合性組成物)
本発明の光ラジカル重合性組成物は、少なくともラジカル重合性化合物、光ラジカル重合開始剤及び下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物からなる光ラジカル硬化酸素阻害低減剤を含有する光ラジカル重合性組成物である。
(Photoradical Polymerizable Composition)
The photoradical polymerizable composition of the present invention is a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having at least a radical polymerizable compound, a photoradical polymerization initiator and an ester group represented by the following general formula (1). It is a photoradical polymerizable composition containing a photoradical curing oxygen inhibition reducing agent comprising.
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
(一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、シクロアルキル基でもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。) (In the general formula (1), A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group. R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl The group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, or a part of a carbon atom may be replaced by an oxygen atom (provided that the peroxide is replaced by an oxygen atom. (Except when it is formed). X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.)
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、光ラジカル硬化酸素阻害低減剤としてラジカル重合における酸素阻害を低減し、重合速度の低下を抑える効果を有するとともに、その構造の中にエステル基を有しているため、光ラジカル重合性組成物やその硬化物との親和性が高く、光ラジカル重合性組成物やその硬化物中においてマイグレーションあるいはブルーミングの程度がきわめて低いという特徴を有する。 The 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention reduces oxygen inhibition in radical polymerization as a photoradical curing oxygen inhibition reducing agent and has a polymerization rate. Since it has an effect of suppressing the decrease in the amount of radicals and has an ester group in its structure, it has a high affinity with the photoradical polymerizable composition and its cured product, and the photoradical polymerizable composition and its cured product. It is characterized by an extremely low degree of migration or blooming.
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物が光ラジカル硬化酸素阻害低減剤として作用する帰庫は明確には判明していないが、一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物が光照射により励起され、その励起種から酸素(基底状態では三重項酸素)へのエネルギー移動が生じることで、三重項酸素を一重項酸素に変換させていると考えられる。一重項酸素は、ラジカル種との反応が活性ではないので、その結果、酸素によるラジカル硬化阻害が低減されると考えられる。 It is not clear how the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention acts as a photoradical curing oxygen inhibition reducing agent. However, a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) is excited by light irradiation, and the excited species is converted to oxygen (triplet oxygen in the basal state). It is considered that triplet oxygen is converted to singlet oxygen by the occurrence of energy transfer. Since the reaction of singlet oxygen with radical species is not active, it is considered that the inhibition of radical hardening by oxygen is reduced as a result.
また、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラン化合物におけるエステル基は、アルキレン基であるAを介してアントラセン環に結合しているため、Aを介さない化合物に比べ、紫外線の吸収波長がより長波長側にあるという特徴がある。そのため、Aを介さない化合物よりも長波長域で励起されるため、長波長域での光ラジカル重合においても有効に用いることができる。 Further, the ester group in the 9,10-bis (alkoxycarbonylalkyleneoxy) anthran compound having an ester group represented by the general formula (1) of the present invention is bonded to the anthracene ring via the alkylene group A. Therefore, there is a feature that the absorption wavelength of ultraviolet rays is on the longer wavelength side as compared with the compound not mediated by A. Therefore, since it is excited in a longer wavelength region than a compound that does not mediate A, it can be effectively used in photoradical polymerization in a long wavelength region.
更に、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物におけるAが炭素数1のメチレン基である化合物は、Aが炭素数2以上の9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物に比べ、ラジカル重合において、その酸素阻害低減効果が高いという特徴がある。この理由は明確にはわかっていないが、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物においてAがメチレン基の化合物は、メチレン基に隣り合う電子求引基の影響を受けて酸素に対する反応性が変化することで、特に、その活性が高くなると思われる。 Further, in the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention, A is a methylene group having 1 carbon atom, and A is 2 carbon atoms. Compared with the above 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound, it is characterized in that it has a higher effect of reducing oxygen inhibition in radical polymerization. The reason for this is not clearly understood, but in the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention, the compound in which A is a methylene group is methylene. It is thought that the activity is particularly increased by changing the reactivity to oxygen under the influence of the electron attracting group adjacent to the group.
(光ラジカル重合開始剤)
本発明で用いる光ラジカル重合開始剤としては、オニウム塩系光ラジカル重合開始剤、ベンジルメチルケタール系光ラジカル重合開始剤、α-ヒドロキシアセトフェノン系光ラジカル重合開始剤、オキシムエステル系光ラジカル重合開始剤、α-アミノアルキルフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、ビイミダゾール系光ラジカル重合開始剤、トリアジン系光ラジカル重合開始剤等を用いることができる。
(Photoradical polymerization initiator)
Examples of the photoradical polymerization initiator used in the present invention include an onium salt-based photoradical polymerization initiator, a benzylmethyl ketal-based photoradical polymerization initiator, an α-hydroxyacetophenone-based photoradical polymerization initiator, and an oxime ester-based photoradical polymerization initiator. , Α-Aminoalkylphenone-based photoradical polymerization initiator, acylphosphine oxide-based photoradical polymerization initiator, biimidazole-based photoradical polymerization initiator, triazine-based photoradical polymerization initiator and the like can be used.
オニウム塩系光ラジカル重合開始剤としては通常ヨードニウム塩またはスルホニウム塩が用いられる。ヨードニウム塩としては、4-イソブチルフェニル-4’-メチルフェニルヨードニウムヘキサフルオロフォスフェート、ビス(ドデシルフェニル)ヨードニウムヘキサメトキシアンチモネート、4-イソプロピルフェニル-4’-メチルフェニルヨードニウムテトラキスペンタメトキシフェニルボレート、4-イソプロピルフェニル-4’-メチルフェニルヨードニウムテトラキスペンタフルオロフェニルボレート等が挙げられ、例えばビー・エー・エス・エフ社製イルガキュア250(イルガキュアはビー・エー・エス・エフ社の登録商標)、ローディア社製ロードシル2074(ロードシルはローディア社の登録商標)、サンアプロ社製のIK-1等を用いることができる。一方、スルホニウム塩としてはS,S,S’,S’-テトラフェニル-S,S’-(4、4’-チオジフェニル)ジスルホニウムビスヘキサメトキシフォスフェート、ジフェニル-4-フェニルチオフェニルスルホニウムヘキサメトキシフォスフェート、トリフェニルスルホニウムヘキサメトキシフォスフェート等が挙げられ、例えばダイセル社製CPI-100P、CPI101P、CPI-200K、ビー・エー・エス・エフ社製イルガキュア270、ダウ・ケミカル社製UVI6992等を用いることができる。これらの光ラジカル重合開始剤は単独で用いても2種以上併用しても構わない。 As the onium salt-based photoradical polymerization initiator, an iodonium salt or a sulfonium salt is usually used. Examples of the iodonium salt include 4-isobutylphenyl-4'-methylphenyliodonium hexafluorophosphate, bis (dodecylphenyl) iodonium hexamethoxyantimonate, 4-isopropylphenyl-4'-methylphenyliodonium tetrakispentamethoxyphenylborate, 4 -Isopropylphenyl-4'-methylphenyliodonium tetrakispentafluorophenylborate, etc., for example, Irgacure 250 manufactured by BASF (Irgacure is a registered trademark of BASF), Rhodia, etc. Rhodsil 2074 (Rhodia is a registered trademark of Rhodia), IK-1 manufactured by San Appro, etc. can be used. On the other hand, the sulfonium salts include S, S, S', S'-tetraphenyl-S, S'-(4,4'-thiodiphenyl) disulfonium bishexamethoxyphosphate, diphenyl-4-phenylthiophenylsulfonium hexa. Examples thereof include methoxyphosphate, triphenylsulfonium hexamethoxyphosphate, etc., for example, CPI-100P, CPI101P, CPI-200K manufactured by Daicel Co., Ltd., Irgacure 270 manufactured by BASF, UVI6992 manufactured by Dow Chemical Co., Ltd., and the like. Can be used. These photoradical polymerization initiators may be used alone or in combination of two or more.
また、本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、ベンジルメチルケタール系光ラジカル重合開始剤、α-ヒドロキシアセトフェノン系光ラジカル重合開始剤、ビイミダゾール系光ラジカル重合開始剤等の長波長に吸収を持たないラジカル重合開始剤に対して優れた効果を有している。更に、長波長域に吸収を持つアシルホスフィンオキサイド系等の光ラジカル重合開始剤を用いた重合反応においても、その重合速度を増加する効果、あるいは得られる重合物の物性を改善する効果を有している。アシルホスフィンオキサイド系光ラジカル重合開始剤は、酸素阻害の影響を受けやすく、本発明の光ラジカル硬化阻害低減剤の効果が顕著となる。 Further, the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention is a benzylmethyl ketal-based photoradical polymerization initiator and an α-hydroxyacetophenone-based photoradical. It has an excellent effect on radical polymerization initiators that do not absorb at long wavelengths, such as polymerization initiators and biimidazole-based photoradical polymerization initiators. Further, even in a polymerization reaction using a photoradical polymerization initiator such as an acylphosphine oxide type having absorption in a long wavelength region, it has an effect of increasing the polymerization rate or an effect of improving the physical properties of the obtained polymer. ing. The acylphosphine oxide-based photoradical polymerization initiator is susceptible to oxygen inhibition, and the effect of the photoradical curing inhibition reducing agent of the present invention becomes remarkable.
ベンジルメチルケタール系光ラジカル重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」ビー・エー・エス・エフ社製)等が挙げられ、α-ヒドロキシアセトフェノン系ラジカル重合開始剤としては2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名「ダロキュア1173」ビー・エー・エス・エフ社製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(商品名「イルガキュア2959」ビー・エー・エス・エフ社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]フェニル}-2-メチル-1-オン(商品名「イルガキュア127」ビー・エー・エス・エフ社製)が挙げられる。 Examples of the benzylmethyl ketal-based photoradical polymerization initiator include 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name "Irgacure 651" manufactured by BASF) and the like. 2-Hydroxy-2-methyl-1-phenylpropan-1-one (trade name "DaroCure 1173" manufactured by BASF), 1-hydroxycyclohexylphenyl as an α-hydroxyacetophenone radical polymerization initiator Ketone (trade name "Irgacure 184" manufactured by BASF), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one ( Product name "Irgacure 2959" manufactured by BASF), 2-Hydroxy-1- {4- [4- (2-hydroxy-2-methylpropionyl) -benzyl] phenyl} -2-methyl-1 -On (trade name "Irgacure 127" manufactured by BASF) can be mentioned.
特に、ベンジルメチルケタール系光ラジカル重合開始剤である2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」ビー・エー・エス・エフ社製)、α-ヒドロキシアルキルフェノン系ラジカル重合開始剤である2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(商品名「ダロキュア1173」ビー・エー・エス・エフ社製)、1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)が好ましい。 In particular, 2,2-dimethoxy-1,2-diphenylethane-1-one (trade name "Irgacure 651" manufactured by BASF), which is a benzylmethyl ketal-based photoradical polymerization initiator, α-hydroxy. 2-Hydroxy-2-methyl-1-phenylpropan-1-one (trade name "DaroCure 1173" manufactured by BAS), an alkylphenone-based radical polymerization initiator, 1-hydroxycyclohexylphenylketone (manufactured by BAS) The product name "Irgacure 184" manufactured by BASF Co., Ltd.) is preferable.
また、アセトフェノン系光ラジカル重合開始剤であるアセトフェノン、2-ヒドロキシ-2-フェニルアセトフェノン、2-エトキシ-2-フェニルアセトフェノン、2-メトキシ-2-フェニルアセトフェノン、2-イソプロポキシ-2-フェニルアセトフェノン、2-イソブトキシ-2-フェニルアセトフェノン、ベンジル系光ラジカル重合開始剤であるベンジル、4,4’-ジメトキシベンジル、アントラキノン系光ラジカル重合開始剤である2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-フェノキシアントラキノン、2-(フェニルチオ)アントラキノン、2-(ヒドロキシエチルチオ)アントラキノン等も用いることができる。 In addition, acetophenone, 2-hydroxy-2-phenylacetophenone, 2-ethoxy-2-phenylacetophenone, 2-methoxy-2-phenylacetophenone, 2-isopropoxy-2-phenylacetophenone, which are acetophenone-based photoradical polymerization initiators, 2-isobutoxy-2-phenylacetophenone, benzyl-based photoradical polymerization initiator benzyl, 4,4'-dimethoxybenzyl, anthraquinone-based photoradical polymerization initiator 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2 -Phenoxyanthraquinone, 2- (phenylthio) anthraquinone, 2- (hydroxyethylthio) anthraquinone and the like can also be used.
ビイミダゾール系光ラジカル重合開始剤としては、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体等が挙げられる。 Examples of the biimidazole-based photoradical polymerization initiator include 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer and 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer. , 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4, Examples thereof include 2,4,5-triarylimidazole dimers such as 5-diphenylimidazole dimer and the like.
α-アミノアルキルフェノン系光ラジカル重合開始剤としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(商品名「イルガキュア907」ビー・エー・エス・エフ社製)、2-ベンジル-2-(ジメチルアミノ)-4’-モルフォリノブチロフェノン(商品名「イルガキュア369」ビー・エー・エス・エフ社製)、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-4-イル-フェニル)ブタンー1-オン(商品名「イルガキュア379」ビー・エー・エス・エフ社製)等が挙げられる。 As an α-aminoalkylphenone-based photoradical polymerization initiator, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one (trade name "Irgacure 907" B.A.S. -FF), 2-Benzyl-2- (dimethylamino) -4'-morpholinobtyrophenone (trade name "Irgacure 369" manufactured by BAS), 2-dimethylamino-2- (4) -Methylbenzyl) -1- (4-morpholino-4-yl-phenyl) butane-1-one (trade name "Irgacure 379" manufactured by BASF) and the like can be mentioned.
アシルホスフィンオキサイド系光ラジカル重合開始剤としては2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド(商品名「イルガキュアTPO」ビー・エー・エス・エフ社製)、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド(商品名「イルガキュア819」ビー・エー・エス・エフ社製)等が挙げられる。 Acylphosphine oxide-based photoradical polymerization initiators include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (trade name "Irgacure TPO" manufactured by BASF), bis (2,4,6-trimethyl). Benzoyl) phenylphosphine oxide (trade name "Irgacure 819" manufactured by BASF) and the like can be mentioned.
オキシムエステル系光ラジカル重合開始剤としては1,2-オクタンジオン、1-[4-(フェニルチオ)フェニル]-、2-(о-ベンゾイルオキシム)(商品名「イルガキュアOXE01」ビー・エー・エス・エフ社製)、エタノン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-、1-(о-アセチルオキシム)(商品名「イルガキュアOXE02」ビー・エー・エス・エフ社製)、[8-[[(アセチルオキシ)イミノ][2-(2,2,3,3-テトラフルオロプロポキシ)フェニル]メチル]-11-(2-エチルヘキシル)-11H-ベンゾ[a]カルバゾール-5-イル]-,(2,4,6-トリメチルフェニル)(商品名「イルガキュアOXE03」ビー・エー・エス・エフ社製)等が挙げられる。 Oxime ester-based photoradical polymerization initiators include 1,2-octanedione, 1- [4- (phenylthio) phenyl]-, 2- (о-benzoyloxime) (trade name "Irgacure OXE01" BAS. (F), Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (о-acetyloxime) (trade name "Irgacure OXE02" B. ASF), [8-[[(Acetyloxy) imino] [2- (2,2,3,3-tetrafluoropropoxy) phenyl] methyl] -11- (2-ethylhexyl) -11H -Benzo [a] carbazole-5-yl]-, (2,4,6-trimethylphenyl) (trade name "Irgacure OXE03" manufactured by BASF) and the like can be mentioned.
トリアジン系光ラジカル重合開始剤としては2-(3,4-メチレンジオキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等が挙げられる。 2- (3,4-Methylenedioxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxyphenyl) -4 as triazine-based photoradical polymerization initiators , 6-Bis (trichloromethyl) -1,3,5-triazine and the like.
本発明で用いることができる、オニウム塩系光ラジカル重合開始剤、ベンジルメチルケタール系光ラジカル重合開始剤、α-ヒドロキシアルキルフェノン系光ラジカル重合開始剤、オキシムエステル系光ラジカル重合開始剤、α-アミノアセトフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、ビイミダゾール系光ラジカル重合開始剤、トリアジン系光ラジカル重合開始剤は、それぞれ単独で用いることもできるが、用途等に合わせて、複数種類を合わせて用いることもできる。 Onium salt-based photoradical polymerization initiator, benzylmethyl ketal-based photoradical polymerization initiator, α-hydroxyalkylphenone-based photoradical polymerization initiator, oxime ester-based photoradical polymerization initiator, α-, which can be used in the present invention. Aminoacetophenone-based photoradical polymerization initiator, acylphosphine oxide-based photoradical polymerization initiator, biimidazole-based photoradical polymerization initiator, and triazine-based photoradical polymerization initiator can be used alone, but they can be used independently, depending on the application. Therefore, a plurality of types can be used together.
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光ラジカル硬化酸素阻害低減剤の光ラジカル重合開始剤に対する使用量は、特に限定されないが、光ラジカル重合開始剤に対して通常5重量%以上、100重量%以下の範囲、好ましくは10重量%以上、50重量%以下の範囲である。光ラジカル硬化酸素阻害低減剤の使用量が5重量%未満では光重合性化合物を光重合させるのに時間がかかりすぎてしまい、一方、100重量%を超えて使用しても添加に見合う効果は得られない。 The amount of the photoradical curing oxygen inhibition reducing agent containing the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention for the photoradical polymerization initiator is determined. Although not particularly limited, it is usually in the range of 5% by weight or more and 100% by weight or less, preferably 10% by weight or more and 50% by weight or less with respect to the photoradical polymerization initiator. If the amount of the photoradical curing oxygen inhibition reducing agent used is less than 5% by weight, it takes too much time to photopolymerize the photopolymerizable compound, while even if it is used in excess of 100% by weight, the effect commensurate with the addition is effective. I can't get it.
(光ラジカル重合開始剤組成物)
本発明の一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光ラジカル硬化酸素阻害低減剤は、直接、光重合性化合物に添加することもできるが、あらかじめ光ラジカル重合開始剤と配合することにより光ラジカル重合開始剤組成物を調製した後、光重合性化合物に添加することもできる。すなわち、本発明の光ラジカル重合開始剤組成物は、少なくとも、一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光ラジカル硬化酸素阻害低減剤と光ラジカル重合開始剤を含有する組成物である。
(Photoradical Polymerization Initiator Composition)
The photoradical-cured oxygen inhibition reducing agent containing a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) of the present invention is directly added to the photopolymerizable compound. However, it is also possible to prepare a photoradical polymerization initiator composition by blending it with a photoradical polymerization initiator in advance, and then add it to the photopolymerizable compound. That is, the photoradical polymerization initiator composition of the present invention contains at least a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) and inhibits photoradical curing oxygen. It is a composition containing a reducing agent and a photoradical polymerization initiator.
(光重合性化合物)
さらに該光ラジカル重合開始剤組成物と光重合性化合物を配合することにより、光重合性組成物を調製することもできる。本発明のエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する光ラジカル硬化酸素阻害低減剤と光ラジカル重合開始剤は、別々に光ラジカル重合性化合物又は光カチオン重合性化合物に添加され、光ラジカル重合性化合物又は光カチオン重合性化合物中で、結果として光ラジカル重合開始剤組成物を形成してもよい。更に、光ラジカル重合性化合物と光カチオン重合性化合物の両方を含むハイブリッド組成物としてもよい。
(Photopolymerizable compound)
Further, a photopolymerizable composition can be prepared by blending the photoradical polymerization initiator composition and a photopolymerizable compound. The photoradical curing oxygen inhibition reducing agent and the photoradical polymerization initiator containing the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group of the present invention are separately photoradical polymerizable compounds or photocationic polymerizable. It may be added to the compound to form a photoradical polymerization initiator composition in the photoradical polymerizable compound or the photocationic polymerizable compound as a result. Further, it may be a hybrid composition containing both a photoradical polymerizable compound and a photocationically polymerizable compound.
光ラジカル重合性化合物としては、例えば、スチレン、酢酸ビニル、アクリル酸、メタクリル酸、アクリロニトリル、メタクリロニトリル、アクリルアミド、アクリル酸エステル、メタクリル酸エステル等の二重結合を有する有機化合物を用いることができる。これらのラジカル重合性化合物のうち、フィルム形成能等の面から、アクリル酸エステルやメタクリル酸エステル(以下、両者をあわせて(メタ)アクリル酸エステルという)が好ましい。(メタ)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸-2-エチルヘキシル、アクリル酸-2-ヒドロキシエチル、アクリル酸イソボルニル、メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、テトラエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、トリシクロ[5,2,1,02,6]デカンジメタノールジアクリレート、イソボニルメタクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリブタジエンアクリレート、ポリオールアクリレート、ポリエーテルアクリレート、シリコーン樹脂アクリレート、イミドアクリレート等が挙げられる。これらの光ラジカル重合性化合物は、一種でも二種以上の混合物であっても良い。 As the photoradical polymerizable compound, for example, an organic compound having a double bond such as styrene, vinyl acetate, acrylic acid, methacrylic acid, acrylonitrile, methacrylic nitrile, acrylamide, acrylic acid ester, and methacrylic acid ester can be used. .. Among these radically polymerizable compounds, acrylic acid ester and methacrylic acid ester (hereinafter, both are collectively referred to as (meth) acrylic acid ester) are preferable from the viewpoint of film forming ability and the like. Examples of the (meth) acrylate ester include methyl acrylate, butyl acrylate, cyclohexyl acrylate, -2-ethylhexyl acrylate, -2-hydroxyethyl acrylate, isobornyl acrylate, methyl methacrylate, butyl methacrylate, and methacrylic acid. Cyclohexyl, tetraethylene glycol diacrylate, trimethylolpropan triacrylate, pentaerythritol triacrylate, tricyclo [5,2,1,02,6] decandimethanol diacrylate, isobonyl methacrylate, epoxy acrylate, urethane acrylate, polyester acrylate, Examples thereof include polybutadiene acrylate, polyol acrylate, polyether acrylate, silicone resin acrylate, and imide acrylate. These photoradical polymerizable compounds may be one kind or a mixture of two or more kinds.
光カチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、ビニルエーテル等が挙げられる。エポキシ化合物として一般的なものは、脂環式エポキシ化合物、エポキシ変性シリコーン、芳香族のグリシジルエーテル等が挙げられる。脂環式エポキシ化合物としては、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル社製、商品名:セロキサイド2021P、セロキサイドはダイセル社の登録商標)、(3,3’,4,4’-ジエポキシ)ビシクロヘキシル(ダイセル社製、商品名:セロキサイド8010)、ビス(3,4-エポキシシクロヘキシル)アジペート等が挙げられる。エポキシ変性シリコーンとしては、東芝GEシリコーン製UV-9300等が挙げられる。芳香族グリシジル化合物としては、2,2’-ビス(4-グリシジルオキシフェニル)プロパン等が挙げられる。オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン(オキセタンアルコール)(東亜合成社製、商品名:OXT-101)、2-エチルヘキシルオキセタン(東亜合成社製、商品名:OXT-212)、キシリレンビスオキセタン(東亜合成社製、商品名:OXT-121)、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(東亜合成社製、商品名:OXT-221)等が挙げられる。ビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル、2-エチルヘキシルビニルエーテル等が挙げられる。これらの光カチオン重合性化合物は、一種でも二種以上の混合物であっても良い。 Examples of the photocationically polymerizable compound include epoxy compounds, oxetane compounds, vinyl ethers and the like. Common examples of epoxy compounds include alicyclic epoxy compounds, epoxy-modified silicones, and aromatic glycidyl ethers. Examples of the alicyclic epoxy compound include 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel Co., Ltd., trade name: celoxide 2021P, celoxide is a registered trademark of Daicel Co., Ltd.), (3,3). ', 4,4'-diepoxy) bicyclohexyl (manufactured by Daicel Co., Ltd., trade name: celoxide 8010), bis (3,4-epoxycyclohexyl) adipate and the like can be mentioned. Examples of the epoxy-modified silicone include UV-9300 manufactured by Toshiba GE Silicone. Examples of the aromatic glycidyl compound include 2,2'-bis (4-glycidyloxyphenyl) propane. Examples of the oxetane compound include 3-ethyl-3-hydroxymethyloxetane (oxetane alcohol) (manufactured by Toa Synthetic Co., Ltd., trade name: OXT-101), 2-ethylhexyl oxetane (manufactured by Toa Synthetic Co., Ltd., trade name: OXT-212), Xylylenebis oxetane (manufactured by Toa Synthetic Co., Ltd., trade name: OXT-121), 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane (manufactured by Toa Synthetic Co., Ltd., trade name: OXT) -221) and the like. Examples of the vinyl ether include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether and the like. These photocationically polymerizable compounds may be one kind or a mixture of two or more kinds.
光重合性化合物として光ラジカル重合性化合物のみを用いても良いし、光ラジカル重合性化合物と光カチオン重合性化合物両者を混合して用いても良い。 As the photopolymerizable compound, only the photoradical polymerizable compound may be used, or both the photoradical polymerizable compound and the photocationic polymerizable compound may be mixed and used.
本発明の光ラジカル硬化酸素阻害低減剤は、光ラジカル重合及び光カチオン重合の両方において光ラジカル硬化酸素阻害低減剤として作用することができるため、適当な光ラジカル重合開始剤を選ぶことにより、光ラジカル重合性化合物と光カチオン重合性化合物の両方を含有する光重合性組成物も効果的に重合させることができる。 Since the photoradical curing oxygen inhibition reducing agent of the present invention can act as a photoradical curing oxygen inhibition reducing agent in both photoradical polymerization and photocationic polymerization, light can be obtained by selecting an appropriate photoradical polymerization initiator. A photopolymerizable composition containing both a radically polymerizable compound and a photocationically polymerizable compound can also be effectively polymerized.
光カチオン重合性化合物と光ラジカル重合性化合物の混合比について特に限定はなく、該組成物を光重合、硬化して得られる塗膜や成型物の物性に応じ適宜選択される。通常は光カチオン重合性化合物と光ラジカル重合性化合物の重量比が1対99~99対1、好ましくは20対80~80対20の範囲でその組成比を決定する。 The mixing ratio of the photocationic polymerizable compound and the photoradical polymerizable compound is not particularly limited, and is appropriately selected depending on the physical properties of the coating film or molded product obtained by photopolymerizing and curing the composition. Usually, the weight ratio of the photocationic polymerizable compound to the photoradical polymerizable compound is determined in the range of 1:99 to 99: 1, preferably 20:80 to 80:20.
光カチオン重合性化合物、光ラジカル重合性化合物はそれぞれ1種類ずつ用いても良いし、それぞれ2種以上を組み合わせて用いても良い。これらの光重合性化合物を2種以上用いる場合においても、上記の光カチオン重合性化合物と光ラジカル重合性化合物の混合比はそれぞれの光重合性化合物の合計量の比として考える。 One type of each of the photocationic polymerizable compound and the photoradical polymerizable compound may be used, or two or more types of each may be used in combination. Even when two or more of these photopolymerizable compounds are used, the mixing ratio of the photocationic polymerizable compound and the photoradical polymerizable compound is considered as the ratio of the total amount of each photopolymerizable compound.
本発明の光重合性組成物に用いる光ラジカル重合開始剤は上述の光ラジカル開始剤もしくは光カチオン開始剤を用いることができる。通常、光重合性化合物として光ラジカル重合性化合物を用いる場合は光ラジカル重合開始剤を用いる。さらに、光重合性化合物として光ラジカル重合性化合物と光カチオン重合性化合物を併用するような場合は光ラジカル重合開始剤として光ラジカル重合開始剤、もしくは光カチオン重合開始剤単独で用いても良いし両者を混合して用いてもかまわない。 As the photoradical polymerization initiator used in the photopolymerizable composition of the present invention, the above-mentioned photoradical initiator or photocation initiator can be used. Usually, when a photoradical polymerizable compound is used as the photopolymerizable compound, a photoradical polymerization initiator is used. Further, when a photoradical polymerizable compound and a photocationic polymerizable compound are used in combination as the photopolymerizable compound, the photoradical polymerization initiator or the photocationic polymerization initiator may be used alone as the photoradical polymerization initiator. Both may be mixed and used.
特に、光カチオン重合開始剤の中には光照射によりカチオン開始活性種とラジカル開始活性種を発生するものもあり、このような開始剤を用いる場合はそれのみで光カチオン重合性化合物及び光ラジカル重合性化合物の両方の光重合を開始することも可能である。 In particular, some photocationic polymerization initiators generate cation-initiating active species and radical-initiating active species by light irradiation, and when such an initiator is used, the photocationic polymerizable compound and photoradical alone are used. It is also possible to initiate photopolymerization of both polymerizable compounds.
更に、本発明の光重合性組成物には、アクリル樹脂、スチレン樹脂、エポキシ樹脂などのバインダーポリマーが含まれていてもよい。また、アルカリ可溶性樹脂が含まれていてもよい。 Further, the photopolymerizable composition of the present invention may contain a binder polymer such as an acrylic resin, a styrene resin and an epoxy resin. Further, an alkali-soluble resin may be contained.
本発明の光ラジカル重合性組成物には、溶剤を含有してもよい。また、顔料及び/又は染料を含んでいてもよい。また、顔料を含む場合はその分散剤を含んでもよい。 The photoradical polymerizable composition of the present invention may contain a solvent. It may also contain pigments and / or dyes. When a pigment is contained, the dispersant thereof may be contained.
顔料としては、無機顔料及び有機顔料のいずれも使用することができる。無機顔料としては、ファーネスブラック、ランプブラック、アセチレンブラック、チャネルブラック等のカーボンブラック(C.I.ピグメントブラック7)類、酸化鉄、酸化チタンを使用することができる。 有機顔料としては、不溶性アゾ顔料、縮合アゾ顔料、アゾレーキ、キレートアゾ顔料等のアゾ顔料、フタロシアニン顔料、ペリレン及びペリノン顔料、アントラキノン顔料、キナクリドン顔料、ジオキサン顔料、チオインジゴ顔料、イソインドリノン顔料、キノフタロン顔料等の多環式顔料、染料キレート(例えば、塩基性染料型キレート、酸性染料型キレート等)、染色レーキ(塩基性染料型レーキ、酸性染料型レーキ)、ニトロ顔料、ニトロソ顔料、アニリンブラック、昼光蛍光顔料が挙げられる。これらの顔料は1種単独で用いてもよく、2種以上を併用してもよい。 As the pigment, either an inorganic pigment or an organic pigment can be used. As the inorganic pigment, carbon black (CI Pigment Black 7) such as furnace black, lamp black, acetylene black, and channel black, iron oxide, and titanium oxide can be used. Examples of organic pigments include azo pigments such as insoluble azo pigments, condensed azo pigments, azolakes and chelate azo pigments, phthalocyanine pigments, perylene and perinone pigments, anthraquinone pigments, quinacridone pigments, dioxane pigments, thioindigo pigments, isoindolinone pigments and quinophthalone pigments. Polycyclic pigments, dye chelate (for example, basic dye type chelate, acidic dye type chelate, etc.), dyeing rake (basic dye type rake, acidic dye type rake), nitro pigment, nitroso pigment, aniline black, daylight Fluorescent pigments can be mentioned. These pigments may be used alone or in combination of two or more.
染料としては、特に限定されることなく、酸性染料、直接染料、反応性染料、及び塩基性染料が使用可能である。染料は1種単独で用いてもよく、2種以上を併用してもよい。また、顔料と染料を併用してもよい。 The dye is not particularly limited, and acid dyes, direct dyes, reactive dyes, and basic dyes can be used. One type of dye may be used alone, or two or more types may be used in combination. Moreover, you may use a pigment and a dye together.
顔料を分散させる分散剤としては、特に限定されないが、例えば、高分子分散剤などの顔料分散液が挙げられる。その具体例として、ポリオキシアルキレンポリアルキレンポリアミン、ビニル系ポリマー及びコポリマー、アクリル系ポリマー及びコポリマー、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、アミノ系ポリマー、含珪素ポリマー、含硫黄ポリマー、含フッ素ポリマー、及びエポキシ樹脂のうち一種以上を主成分とするものが挙げられる。 The dispersant for dispersing the pigment is not particularly limited, and examples thereof include a pigment dispersion liquid such as a polymer dispersant. Specific examples thereof include polyoxyalkylene polyalkylene polyamines, vinyl polymers and copolymers, acrylic polymers and copolymers, polyesters, polyamides, polyimides, polyurethanes, amino polymers, silicon-containing polymers, sulfur-containing polymers, fluorine-containing polymers, and epoxies. Examples thereof include resins containing one or more of the main components.
更に、本発明の光ラジカル重合性塗膜には、顔料、染料、分散剤以外の添加剤を含んでもよい。このような添加剤としては、特に制限されないが、例えば公知の界面活性剤、表面改質剤、浸透促進剤、保湿剤、定着剤、防黴剤、防腐剤、酸化防止剤、紫外線吸収剤、キレート剤、pH調整剤、及び増粘剤が挙げられる。 Further, the photoradical polymerizable coating film of the present invention may contain additives other than pigments, dyes and dispersants. Such additives are not particularly limited, but are, for example, known surfactants, surface modifiers, penetration enhancers, moisturizers, fixing agents, fungicides, preservatives, antioxidants, ultraviolet absorbers, etc. Examples include chelating agents, pH regulators, and thickeners.
本発明の光重合性組成物において、光ラジカル重合開始剤組成物の使用量は、光重合性組成物に対して0.005重量%以上、10重量%以下の範囲、好ましくは0.025重量%以上、5重量%以下である。0.005重量%未満だと光重合性組成物を光重合させるのに時間がかかってしまい、一方、10重量%を超えて添加すると光重合させて得られる光硬化物の硬度が低下し、硬化物の物性を悪化させるため好ましくない。 In the photopolymerizable composition of the present invention, the amount of the photoradical polymerization initiator composition used is in the range of 0.005% by weight or more and 10% by weight or less, preferably 0.025% by weight, based on the photopolymerizable composition. % Or more and 5% by weight or less. If it is less than 0.005% by weight, it takes time to photopolymerize the photopolymerizable composition, while if it is added in excess of 10% by weight, the hardness of the photocured product obtained by photopolymerization decreases. It is not preferable because it deteriorates the physical properties of the cured product.
(光ラジカル重合性塗膜)
本発明の光ラジカル重合性塗膜は、少なくともラジカル重合性化合物と光ラジカル重合開始剤と光ラジカル硬化酸素阻害低減剤を含有する。光ラジカル重合性塗膜における光ラジカル重合開始剤の含有量は、光ラジカル重合性組成物の総質量に対して2.0質量%以上、10質量%以下であり、9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物の含有量が、光ラジカル重合性組成物の総質量に対して0.20質量%以上、5.0質量%以下である。光ラジカル重合開始剤の含有量が2.0質量%未満の場合は塗膜の重合が十分に進行せず、10質量%を超える量を添加しても溶解性が悪く十分な効果を発揮できない。
(Photoradical polymerizable coating film)
The photoradical polymerizable coating film of the present invention contains at least a radically polymerizable compound, a photoradical polymerization initiator, and a photoradical curing oxygen inhibition reducing agent. The content of the photoradical polymerization initiator in the photoradical polymerizable coating film is 2.0% by mass or more and 10% by mass or less with respect to the total mass of the photoradical polymerizable composition, and is 9,10-bis (alkoxy). The content of the carbonylalkyleneoxy) anthracene compound is 0.20% by mass or more and 5.0% by mass or less with respect to the total mass of the photoradical polymerizable composition. When the content of the photoradical polymerization initiator is less than 2.0% by mass, the polymerization of the coating film does not proceed sufficiently, and even if an amount exceeding 10% by mass is added, the solubility is poor and a sufficient effect cannot be exhibited. ..
(光ラジカル重合性塗膜形状)
本発明の光ラジカル重合性塗膜の膜厚は特に制限されないが、通常は1000μm以下であることが好ましい。更に、塗膜表面での酸素阻害の影響が塗膜全体の硬化状態に影響を及ぼすこととなる薄膜状態、すなわち10μm未満であることが好ましい。10μm以上であっても、該組成物の硬化時の酸素阻害低減効果が観測されるが、本発明の効果が際立って顕著となるという意味で10μm未満であることが好ましい。更には、4μm以下であることが更に好ましい。
(Photo-radical polymerizable coating film shape)
The film thickness of the photoradical polymerizable coating film of the present invention is not particularly limited, but is usually preferably 1000 μm or less. Further, it is preferably a thin film state in which the influence of oxygen inhibition on the surface of the coating film affects the cured state of the entire coating film, that is, less than 10 μm. Even if it is 10 μm or more, the effect of reducing oxygen inhibition during curing of the composition is observed, but it is preferably less than 10 μm in the sense that the effect of the present invention becomes remarkably remarkable. Further, it is more preferably 4 μm or less.
そして、本発明の塗膜の一方は大気に接触した状態である。大気に接触した状態とは塗膜表面をワックスやフィルムで覆うことなく、又不活性ガスで雰囲気を置換したり、不活性ガスを塗膜表面に流したりしていないという意味である。また、塗膜の他方の一面は、透明または不透明な基材と接触した状態で用いられる。 Then, one of the coating films of the present invention is in contact with the atmosphere. The state of being in contact with the atmosphere means that the surface of the coating film is not covered with wax or a film, the atmosphere is not replaced with an inert gas, and the inert gas is not allowed to flow on the surface of the coating film. The other surface of the coating film is used in contact with a transparent or opaque substrate.
用いられる基材としてはフィルム、紙、アルミ箔、金属、木質、プラスチック基材等が主に用いられるが特に限定されない。基材としてのフィルムに用いられる素材としてはポリ塩化ビニル(塩ビ)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリウレタン(PU)、ポリエチレン(PE)、ポリプロピレン(PP)等が用いられる。エチレン酢酸ビニル共重合体、エチレンビニルアルコール共重合体、エチレンメタクリル酸共重合体、ナイロン、ポリ乳酸、ポリカーボネート等のフィルム又はシート、セロファン、アルミニウムフォイル、もしくはこれらの複合材料も挙げることが出来る。上質紙、コート紙、アート紙、模造紙、薄紙、厚紙等の紙、各種合成紙等に各種フィルムをラミネートしたものでも有用である。特に、PEやPPなどのプラスチックフィルムが好ましい。 As the base material used, film, paper, aluminum foil, metal, wood, plastic base material and the like are mainly used, but are not particularly limited. Materials used for the film as a base material include polyvinyl chloride (vinyl chloride), polyethylene terephthalate (PET), polycarbonate (PC), polystyrene (PS), polyurethane (PU), polyethylene (PE), polypropylene (PP) and the like. Used. Films or sheets such as ethylene vinyl acetate copolymers, ethylene vinyl alcohol copolymers, ethylene methacrylic acid copolymers, nylons, polylactic acids, and polycarbonates, cellophane, aluminum foil, or composite materials thereof can also be mentioned. It is also useful to laminate various films on high-quality paper, coated paper, art paper, imitation paper, thin paper, thick paper, and various synthetic papers. In particular, a plastic film such as PE or PP is preferable.
基材フィルムに本発明の光ラジカル重合性組成物を塗布する方法としては、特に制限されないが、たとえば、バーコーター、ロールコーター、グラビアコーター、フレキソコーター、エアドクターコーター、ブレードコーター、エアナイフコーター、スクイズコーター、含浸コーター、トランスファロールコーター、キスコーター、カーテンコーター、キャストコーター、スプレイコーター、ダイコーター、オフセット印刷機、スクリーン印刷機等を適宜採用することができる。インクジェット機により、基材上に液滴として噴出塗布する方法もとることができる。本発明の光ラジカル重合性組成物は、大気との接触した状態でも十分な速度で硬化することができるため、塗布と同時に硬化させることができ、複雑な装置、工程を経ずに硬化膜を形成することができる。また、硬化後に加熱処理等をすることも可能である。 The method for applying the photoradical polymerizable composition of the present invention to the base film is not particularly limited, and for example, a bar coater, a roll coater, a gravure coater, a flexo coater, an air doctor coater, a blade coater, an air knife coater, and a squeeze. A coater, an impregnation coater, a transfer roll coater, a kiss coater, a curtain coater, a cast coater, a spray coater, a die coater, an offset printing machine, a screen printing machine and the like can be appropriately adopted. It is also possible to use an inkjet machine to eject and apply droplets onto the substrate. Since the photoradical polymerizable composition of the present invention can be cured at a sufficient speed even in contact with the atmosphere, it can be cured at the same time as coating, and the cured film can be formed without complicated equipment and steps. Can be formed. It is also possible to perform heat treatment or the like after curing.
この光ラジカル重合性塗膜は、酸素存在下でも十分な速度で硬化することができ、かつ生成した塗膜の表面は酸素阻害が低減された塗膜となり、また、その硬化塗膜は着色の少ないという特徴を有する。 This photoradical polymerizable coating film can be cured at a sufficient rate even in the presence of oxygen, and the surface of the formed coating film becomes a coating film with reduced oxygen inhibition, and the cured coating film is colored. It has the feature of being few.
(硬化方法)
当該光ラジカル重合性塗膜は、大気と接触している面から波長が360nmから410nmの波長範囲の光を含むエネルギー線を照射して重合、硬化させる。当該波長範囲の光により光ラジカル重合開始剤は励起され、開始ラジカル種を発生することができる。
(Curing method)
The photoradical polymerizable coating film is polymerized and cured by irradiating an energy ray containing light having a wavelength in the wavelength range of 360 nm to 410 nm from a surface in contact with the atmosphere. The photoradical polymerization initiator is excited by light in the wavelength range and can generate an initiator radical species.
(照射源)
用いる照射源としては405nmの光を中心波長とする紫外LED、395nmの光を中心波長とする紫外LED、385nm光を中心波長とする紫外LED、365nm光を中心波長とする紫外LED及び405nmの光を中心波長とする半導体レーザが好ましいが、波長が360nmから410nmの間に発光スペクトルを持つランプであれば使用可能であり、フュージョン社製のD-バルブ、V-バルブ等の無電極ランプや、キセノンランプ、ブラックライト、超高圧水銀ランプ、メタルハライドランプ及びガリウムドープドランプ等も使用可能である。特に、405nmの光を中心波長とする紫外LED、395nmの光を中心波長とする紫外LED、385nm光を中心波長とする紫外LED、365nm光を中心波長とする紫外LED、405nmの光を中心波長とする半導体レーザが好ましい。
(Irradiation source)
The irradiation sources used are an ultraviolet LED having 405 nm light as the central wavelength, an ultraviolet LED having 395 nm light as the central wavelength, an ultraviolet LED having 385 nm light as the central wavelength, an ultraviolet LED having 365 nm light as the central wavelength, and 405 nm light. A semiconductor laser having a central wavelength of 1, is preferable, but any lamp having an emission spectrum between 360 nm and 410 nm can be used, and electrodeless lamps such as D-valve and V-valve manufactured by Fusion Co., Ltd. Xenon lamps, black lights, ultra-high pressure mercury lamps, metal halide lamps, gallium-doped lamps and the like can also be used. In particular, an ultraviolet LED having 405 nm light as the central wavelength, an ultraviolet LED having 395 nm light as the central wavelength, an ultraviolet LED having 385 nm light as the central wavelength, an ultraviolet LED having 365 nm light as the central wavelength, and 405 nm light as the central wavelength. The semiconductor laser is preferable.
該LED光又は半導体レーザ光の照射強度は、10mW/cm以上、2000mW/cm未満であることが好ましい。10mW/cm未満では、十分な硬化速度が得られないため好ましくない。一方、2000mW/cm以上の強度で照射しても問題はないが、エネルギー的に無駄であり、本発明の塗膜では2000mW/cm未満で実用的な硬化速度で、良好な塗膜表面硬度を得ることができる。また、LED光又は半導体レーザ光の照射エネルギーは、50mJ/cm以上、10000mJ/cm未満であることが好ましい。50mJ/cm未満では、十分な硬化速度が得られないため好ましくない。一方、10000mJ/cm以上のエネルギーを照射しても問題はないが、エネルギー的に無駄であり、本発明の塗膜では10000mJ/cm未満で実用的な硬化速度で、良好な塗膜表面硬度を得ることができる。 The irradiation intensity of the LED light or semiconductor laser beam, 10 mW / cm 2 or more, preferably less than 2000 mW / cm 2. If it is less than 10 mW / cm 2 , a sufficient curing rate cannot be obtained, which is not preferable. On the other hand, there is no problem in irradiating with an intensity of 2000 mW / cm 2 or more, but it is wasteful in terms of energy, and the coating film of the present invention has a practical curing rate of less than 2000 mW / cm 2 and a good coating film surface. Hardness can be obtained. The irradiation energy of the LED light or semiconductor laser beam, 50 mJ / cm 2 or more and less than 10000 mJ / cm 2. If it is less than 50 mJ / cm 2 , a sufficient curing rate cannot be obtained, which is not preferable. On the other hand, there is no problem in irradiating energy of 10000 mJ / cm 2 or more, but it is wasteful in terms of energy, and the coating film of the present invention has a practical curing rate of less than 10000 mJ / cm 2 and a good coating film surface. Hardness can be obtained.
(光硬化判定方法)
光硬化の判定方法としては、FT-IR(光硬化性I)、Photo-DSC(光硬化性II)、Photo-Rheometer(光硬化性III)を用いた。
(Photo-curing judgment method)
As a method for determining photocuring, FT-IR (photocurable I), Photo-DSC (photocurable II), and Photo-Rheometer (photocurable III) were used.
光硬化性I(FT-IR)
FT-IR測定では、透過反射法で測定を行った。810cm-1、1409cm-1または1635cm-1付近における(メタ)アクリル酸エステルC=C結合の振動のピークの吸収強度をもとに硬化率を算出した。ラジカル重合性化合物である(メタ)アクリル酸エステルは重合反応とともに、C=C結合が消費されていくために、当該C=C結合の振動のピークの光を照射する前の吸収強度を硬化率0%として、当該吸収強度が0となるときを硬化率100%として算出した。なお、FT-IR測定条件は下記のとおりである。
Photocurable I (FT-IR)
In the FT-IR measurement, the measurement was performed by the transmission reflection method. The curing rate was calculated based on the absorption intensity of the vibration peak of the (meth) acrylic acid ester C = C bond near 810 cm -1 , 1409 cm -1 or 1635 cm -1 . Since the (meth) acrylic acid ester, which is a radically polymerizable compound, consumes C = C bonds with the polymerization reaction, the curing rate is the absorption intensity before irradiation with the light of the vibration peak of the C = C bonds. It was calculated as 0%, and when the absorption intensity became 0, the curing rate was 100%. The FT-IR measurement conditions are as follows.
フーリエ変換赤外分光光度計(FT-IR):Thermofisher FT-IR Nicolet iS50
測定雰囲気:
窒素下:試料チャンバー内を窒素置換
大気下:窒素置換なし
試料厚み:4μm
Fourier Transform Infrared Spectrophotometer (FT-IR): Thermo Fisher FT-IR Nicolet iS50
Measurement atmosphere:
Under nitrogen: Nitrogen substitution in the sample chamber Atmosphere: No nitrogen substitution Sample thickness: 4 μm
光硬化条件(1)
UV照射器:浜松ホトニクス社製LIGHTNINGCURE(高圧水銀-キセノンランプ)365nmバンドパスフィルター
照射強度:100mW/cm
照射時間:96秒間
積算光量:9600mJ/cm
Photo-curing conditions (1)
UV irradiator: Hamamatsu Photonics LIGHTNINGCURE (high pressure mercury-xenon lamp) 365 nm bandpass filter Irradiation intensity: 100 mW / cm 2
Irradiation time: 96 seconds Integrated light intensity: 9600 mJ / cm 2
光硬化条件(2)
UV照射器:浜松ホトニクス社製LIGHTNINGCURE LC-LIB3 L11921(385nm)
照射強度:200mW/cm
照射時間:48秒間
積算光量:9600mJ/cm
Photo-curing conditions (2)
UV irradiator: Hamamatsu Photonics LIGHTNINGCURE LC-LIB3 L11921 (385 nm)
Irradiation intensity: 200 mW / cm 2
Irradiation time: 48 seconds Integrated light intensity: 9600 mJ / cm 2
光硬化条件(3)
UV照射器:Altec社395nm LEDライティングボックス(LLBK1)
照射強度:160mW/cm
照射時間:60秒間
積算光量:9600mJ/cm
Photo-curing conditions (3)
UV irradiator: Altec 395nm LED lighting box (LLBK1)
Irradiation intensity: 160mW / cm 2
Irradiation time: 60 seconds Integrated light intensity: 9600 mJ / cm 2
光硬化条件(4)
UV照射器:Altec社405nm LEDライティングボックス(LLBK1)
照射強度:30mW/cm
照射時間:300秒間
積算光量:9000mJ/cm
Photo-curing conditions (4)
UV irradiator: Altec 405nm LED lighting box (LLBK1)
Irradiation intensity: 30 mW / cm 2
Irradiation time: 300 seconds Integrated light intensity: 9000 mJ / cm 2
光硬化条件(5)
UV照射器:Altec社405nm LEDライティングボックス(LLBK1)
照射強度:30mW/cm
照射時間:300秒間
積算光量:9000mJ/cm
Photo-curing conditions (5)
UV irradiator: Altec 405nm LED lighting box (LLBK1)
Irradiation intensity: 30 mW / cm 2
Irradiation time: 300 seconds Integrated light intensity: 9000 mJ / cm 2
光硬化条件(6)
UV照射器:松尾産業社製UV-LED(405nm)ベルトコンベア式照射機
照射強度:1.67W/cm
コンベア速度:0.581m/min
積算光量:4.57J/cm
Photo-curing conditions (6)
UV irradiator: UV-LED (405 nm) belt conveyor type irradiator manufactured by Matsuo Sangyo Co., Ltd. Irradiation intensity: 1.67 W / cm 2
Conveyor speed: 0.581m / min
Integrated light intensity: 4.57 J / cm 2
(1)、(2)、(3)、(4)および(6)の各条件の光量の測定は浜松ホトニクス社製紫外線積算光量計C9536-02およびH9958-02にて行った。(5)の光量の測定はウシオ社製紫外線照度計UNIMETER UIT-01およびUVD-405PDにて行った。 The light intensity under each of the conditions (1), (2), (3), (4) and (6) was measured with an ultraviolet integrated light meter C9536-02 and H9958-02 manufactured by Hamamatsu Photonics Co., Ltd. The amount of light in (5) was measured with an ultraviolet illuminance meter UNIMETER UIT-01 and UVD-405PD manufactured by Ushio.
光硬化性II(Photo-DSC)
Photo-DSC測定では、試料1.00mg当たりの光照射開始から5分間の総発熱量を求めた。なお、Photo-DSCの測定条件は下記の通りである。
Photo-DSC装置:HITACHI製示差熱分析装置 X-DSC700
UV照射器:HAYASHI LA-410UV 405nmバンドパスフィルター
照射強度:50mW/cm
照射時間:300秒間
測定雰囲気:空気気流中100ml/分又は窒素気流中100ml/分
サンプル量:1mg
試料厚み:300μm程度
Photocurable II (Photo-DSC)
In the Photo-DSC measurement, the total calorific value for 5 minutes from the start of light irradiation per 1.00 mg of the sample was determined. The measurement conditions for Photo-DSC are as follows.
Photo-DSC device: HITACHI differential thermal analyzer X-DSC700
UV irradiator: HAYASHI LA-410UV 405nm bandpass filter Irradiation intensity: 50mW / cm 2
Irradiation time: 300 seconds Measurement atmosphere: 100 ml / min in air stream or 100 ml / min in nitrogen stream Sample volume: 1 mg
Sample thickness: about 300 μm
光硬化性IIにおける試料厚みは光照射後の試料を用いミツトヨ社製High-Accuracy Digimatic Micrometerにて測定を行った。 The sample thickness in the photocurable II was measured with a High-Accuracy Digital Micrometer manufactured by Mitutoyo Co., Ltd. using the sample after light irradiation.
光硬化性III(Photo-Rheometer)
Photo-Rheometer測定では、光照射後140秒時点における貯蔵弾性率を求めた。なお、Photo-Rheometerの測定条件は下記の通りである。
Photo-Rheometer装置:Anton Paar社製Modular Compact Rheometer MCR102
UV照射器:浜松ホトニクス社製LIGHTNINGCURE(高圧水銀-キセノンランプ)405nmバンドパスフィルター
照射強度:50mW/cm
照射時間:300秒間
測定雰囲気:空気気流中100ml/分
試料厚み:10μm
Photocurable III (Photo-Rheometer)
In the Photo-Rheometer measurement, the storage elastic modulus at 140 seconds after light irradiation was determined. The measurement conditions for Photo-Rheometer are as follows.
Photo-Rheometer device: Modular Compact Rheometer MCR102 manufactured by Antonio Par.
UV irradiator: Hamamatsu Photonics LIGHTNINGCURE (high pressure mercury-xenon lamp) 405nm bandpass filter Irradiation intensity: 50mW / cm 2
Irradiation time: 300 seconds Measurement atmosphere: 100 ml / min in air flow Sample thickness: 10 μm
以下、本発明を実施例に基づいて詳細に説明するが、例示を目的として提示をしたものである。すなわち、以下の実施例は、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。よって、本発明は、その趣旨を超えない限り、以下の記載例に限定されるものではない。また、特記しない限り、すべての部および百分率は重量基準である。 Hereinafter, the present invention will be described in detail based on examples, but the present invention has been presented for the purpose of illustration. That is, the following examples are not intended to be exhaustive or to limit the invention as it is described. Therefore, the present invention is not limited to the following description examples as long as the gist is not exceeded. Unless otherwise noted, all parts and percentages are weight-based.
本発明の化合物の同定は下記の機器を用いて行った。
赤外線(IR)分光光度計:Thermo社製、型式is50 FT-IR
核磁気共鳴装置(NMR):日本電子社製、型式ECS-400
数平均分子量(GPC):日本分光社製、2000シリーズ
The compound of the present invention was identified using the following equipment.
Infrared (IR) spectrophotometer: manufactured by Thermo, model is50 FT-IR
Nuclear Magnetic Resonance Device (NMR): JEOL Ltd., Model ECS-400
Number average molecular weight (GPC): JASCO Corporation, 2000 series
(原料合成実施例1)9,10-ビス(エトキシカルボニルメチレンオキシ)アントラセン(ECM-A)(1-2)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、溶媒のメチルイソブチルケトンを15g、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.8g(1.2ミリモル)、ブロモ酢酸エチルを10.4g(62.5ミリモル)加えた。反応系の温度を20~25℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の17wt%水溶液29.1g(アントラキノンとして24ミリモル)を1時間以上かけて、滴下した。滴下終了後、さらに1時間撹拌した。その後、吸引濾過により、収量5.0g(粗収率55mol%)の薄黄色の結晶を得た。
(Ingredient Synthesis Example 1) A synthesis stirrer of 9,10-bis (ethoxycarbonylmethyleneoxy) anthracene (ECM-A) (1-2) and a 100 ml four-necked flask equipped with a thermometer under a nitrogen atmosphere. 15 g of methyl isobutyl ketone as a solvent, 0.8 g (1.2 mmol) of a 50% aqueous solution of tetrabutylammonium bromide as a catalyst, and 10.4 g (62.5 mmol) of ethyl bromoacetate were added. While maintaining the temperature of the reaction system at 20 to 25 ° C., 29.1 g (24 mmol as anthraquinone) of a 17 wt% aqueous solution of the disodium salt of 9,10-dihydroxyanthracene was added dropwise over 1 hour. After completion of the dropping, the mixture was further stirred for 1 hour. Then, by suction filtration, pale yellow crystals having a yield of 5.0 g (crude yield 55 mol%) were obtained.
(1)融点:93-94℃
(2)IR(cm-1):1754,1742,1382,1367,1241,1212,1168,1087,1034,1004,936,809,768,720,691,669,585.
(3)H-NMR(400MHz,CDCl):δ=1.370(t,J=14Hz,6H),4.376(k,J=21.6Hz,4H),4.777(s,4H),7.261-7.540(m,4H).
(1) Melting point: 93-94 ° C
(2) IR (cm -1 ): 174,1742,1382,1367,1241,1212,1168,1087,1034,1004,936,809,768,720,691,669,585.
(3) 1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.370 (t, J = 14 Hz, 6H), 4.376 (k, J = 21.6 Hz, 4H), 4.777 (s, 4H), 7.261-7.540 (m, 4H).
(原料合成実施例2)9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセン(ACM-A)(1-13)の合成
攪拌機、温度計付きの300mlの四つ口フラスコに、窒素雰囲気下で、ブロモ酢酸32.5g(234ミリモル)、n-ペンタノール41.1g(466ミリモル)、溶媒のо-キシレン75.7g、触媒の硫酸1.5g(16ミリモル)を加えた。反応系の温度を140~150℃に保ち、共沸する水を除去しながら2時間攪拌した。室温まで冷却後、炭酸水素ナトリウム水溶液で中和し、水層を除いた。そこに触媒のテトラブチルアンモニウムブロマイドの50%水溶液を2.8g(4.3ミリモル)を加え、反応系の温度を20~30℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の18.7wt%水溶液100g(アントラキノンとして90ミリモル)を1時間かけて滴下した。滴下終了後、さらに1時間撹拌し、55~60℃まで昇温して1時間攪拌した。室温まで冷却後、分液し水洗を2回実施し、吸引濾過によりアントラキノンを取り除き、濃縮を行った。濃縮液にメタノールを加えて晶析を行い、析出結晶を吸引濾過、乾燥することにより、収量26.6g(粗収率57mol%)の薄黄色の結晶を得た。
(Example 2 of Raw Material Synthesis) A synthesis stirrer of 9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene (ACM-A) (1-13), a 300 ml four-necked flask equipped with a thermometer, and a nitrogen atmosphere. Below, 32.5 g (234 mmol) of bromoacetic acid, 41.1 g (466 mmol) of n-pentanol, 75.7 g of solvent о-xylene and 1.5 g (16 mmol) of catalytic sulfuric acid were added. The temperature of the reaction system was maintained at 140 to 150 ° C., and the mixture was stirred for 2 hours while removing azeotropic water. After cooling to room temperature, the mixture was neutralized with an aqueous sodium hydrogen carbonate solution to remove the aqueous layer. To this, 2.8 g (4.3 mmol) of a 50% aqueous solution of tetrabutylammonium bromide as a catalyst was added, and while maintaining the temperature of the reaction system at 20 to 30 ° C., the disodium salt of 9,10-dihydroxyanthracene was 18. 100 g (90 mmol as anthraquinone) of a 7 wt% aqueous solution was added dropwise over 1 hour. After completion of the dropping, the mixture was further stirred for 1 hour, heated to 55 to 60 ° C., and stirred for 1 hour. After cooling to room temperature, the liquid was separated and washed with water twice, and anthraquinone was removed by suction filtration to concentrate. Methanol was added to the concentrated solution for crystallization, and the precipitated crystals were suction-filtered and dried to obtain pale yellow crystals with a yield of 26.6 g (crude yield 57 mol%).
(1)融点:109-111℃
(2)IR(cm-1):2693,2922,2855,1750,1470,1436,1381,1368,1356,1274,1200,1164,1052,1006,976,951,780,711,677,608,581,400.
(3)H-NMR(400MHz,CDCl):δ=0.921(t,J=12.8Hz,6H),1.363-1.396(m,8H),1.696-1.747(m,4H),4.306(t,J=13.2Hz,4H),4.780(s,4H),7.505-7.536(m,4H),8.356-8.387(m,4H).
(1) Melting point: 109-111 ° C
(2) IR (cm -1 ): 2693, 2922, 2855, 1750, 1470, 1436, 1381, 1368, 1356, 1274, 1200, 1164, 1052, 1006, 976, 951, 780, 711, 677, 608, 581,400.
(3) 1 1 H-NMR (400 MHz, CDCl 3 ): δ = 0.921 (t, J = 12.8 Hz, 6H), 1.363-1.396 (m, 8H), 1.696-1. 747 (m, 4H), 4.306 (t, J = 13.2Hz, 4H), 4.780 (s, 4H), 7.505-7.536 (m, 4H), 8.356-8. 387 (m, 4H).
(原料合成実施例3)9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセン(cHCM-A)(1-12)の合成
攪拌機、温度計付きの300mlの四つ口フラスコに、窒素雰囲気下で、ブロモ酢酸32.4g(234ミリモル)、シクロヘキサノール46.8g(467ミリモル)、溶媒のо-キシレン75.0g、触媒の硫酸1.5g(15ミリモル)を加えた。反応系の温度を140~150℃に保ち、共沸する水を除去しながら2時間攪拌した。室温まで冷却後、炭酸水素ナトリウム水溶液で中和し、水層を除いた。そこに触媒のテトラブチルアンモニウムブロマイドの50%水溶液を2.8g(4.4ミリモル)を加え、反応系の温度を35~40℃に保ちながら9,10-ジヒドロキシアントラセンのジナトリウム塩の18.7wt%水溶液100g(アントラキノンとして90ミリモル)を1時間かけて滴下した。滴下終了後、さらに1時間撹拌し、55~60℃まで昇温して1時間攪拌した。室温まで冷却後、吸引濾過によりアントラキノンを取り除き、分液し水洗を2回実施し、濃縮を行った。濃縮液にメタノールを加えて晶析を行い、析出結晶を吸引濾過、乾燥することにより、収量25.5g(粗収率54mol%)の薄黄色の結晶を得た。
(Example 3 of Raw Material Synthesis) A synthesis stirrer of 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene (cHCM-A) (1-12) and a 300 ml four-necked flask equipped with a thermometer under a nitrogen atmosphere. , 32.4 g (234 mmol) of bromoacetic acid, 46.8 g (467 mmol) of cyclohexanol, 75.0 g of solvent о-xylene, and 1.5 g (15 mmol) of catalytic sulfuric acid. The temperature of the reaction system was maintained at 140 to 150 ° C., and the mixture was stirred for 2 hours while removing azeotropic water. After cooling to room temperature, the mixture was neutralized with an aqueous sodium hydrogen carbonate solution to remove the aqueous layer. To this, 2.8 g (4.4 mmol) of a 50% aqueous solution of tetrabutylammonium bromide as a catalyst was added, and while maintaining the temperature of the reaction system at 35 to 40 ° C., the disodium salt of 9,10-dihydroxyanthracene was 18. 100 g (90 mmol as anthraquinone) of a 7 wt% aqueous solution was added dropwise over 1 hour. After completion of the dropping, the mixture was further stirred for 1 hour, heated to 55 to 60 ° C., and stirred for 1 hour. After cooling to room temperature, anthraquinone was removed by suction filtration, and the liquid was separated and washed with water twice to concentrate. Methanol was added to the concentrated solution for crystallization, and the precipitated crystals were suction-filtered and dried to obtain pale yellow crystals with a yield of 25.5 g (crude yield 54 mol%).
(1)融点:122-124℃
(2)IR(cm-1):2930,2857,1745,1677,1621,1453,1438,1399,1369,1360,1206,1168,1086,1035,1006,954,922,891,813,715,693,672,659,608,585,455.
(3)H-NMR(400MHz,CDCl):δ=1.239-1.596(m,12H),1.754-1.786(m,4H),1.939-1.961(m,4H),4.760(s,4H),4.985-5.050(m,2H),7.501-7.526(m,4H),8.372-8.398(m,4H).
(1) Melting point: 122-124 ° C
(2) IR (cm -1 ): 2930, 2857, 1745, 1677, 1621, 1453, 1438, 1399, 1369, 1360, 1206, 1168, 1086, 1035, 1006,954, 922,891,815,715 693,672,659,608,585,455.
(3) 1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.239-1.596 (m, 12H), 1.754-1.786 (m, 4H), 1.939-1.961 ( m, 4H), 4.760 (s, 4H), 4.985-5.050 (m, 2H), 7.501-7.526 (m, 4H), 8.372-8.398 (m, 4H) 4H).
(原料合成実施例4)9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン(ECB-A)(1-8)の合成
攪拌機、温度計付きの100mlの四つ口フラスコに、窒素雰囲気下で、触媒のテトラブチルアンモニウムブロマイドの50%水溶液を0.77g(1.19ミリモル)、5-ブロモ吉草酸エチルを12.9g(61.8ミリモル)、9,10-ジヒドロキシアントラセンを5.0g(23.8ミリモル)、炭酸カリウムを9.9g(71.4ミリモル)、溶媒のN,N-ジメチルホルムアミドを40g加えた。反応系の温度を20~30℃に保ちながら1時間撹拌した。その後、吸引濾過によりアントラキノンを取り除き、得られた濾液をトルエンに溶かし、分液操作により、2度水で洗浄した。エバポレーターで溶液を濃縮した。一晩放置し、メタノールを加え、溶解しなかったアントラキノンを吸引濾過により取り除いた。濾液を冷凍庫で冷却し結晶を析出させた。析出した結晶をさらに吸引濾過することにより、収量6.2g(粗収率55mol%)の橙色の結晶を得た。
(Example 4 of Raw Material Synthesis) A synthesis stirrer of 9,10-bis (ethoxycarbonylbutyleneoxy) anthracene (ECB-A) (1-8) and a 100 ml four-necked flask equipped with a thermometer under a nitrogen atmosphere. 0.77 g (1.19 mmol) of a 50% aqueous solution of tetrabutylammonium bromide as a catalyst, 12.9 g (61.8 mmol) of ethyl 5-bromovalerate, and 5.0 g (23) of 9,10-dihydroxyanthracene. 9.8 mmol), 9.9 g (71.4 mmol) of potassium carbonate, and 40 g of the solvent N, N-dimethylformamide were added. The reaction system was stirred for 1 hour while maintaining the temperature at 20 to 30 ° C. Then, anthraquinone was removed by suction filtration, the obtained filtrate was dissolved in toluene, and washed twice with water by a liquid separation operation. The solution was concentrated on an evaporator. After standing overnight, methanol was added and undissolved anthraquinone was removed by suction filtration. The filtrate was cooled in a freezer to precipitate crystals. The precipitated crystals were further suction-filtered to obtain orange crystals with a yield of 6.2 g (crude yield 55 mol%).
(1)融点:57-58℃
(2)IR(cm-1):1722,1403,1337,1284,1269,1229,1178,1167,1068,1021,934,763,675.
(3)H-NMR(400MHz,CDCl):δ=1.286(t,J=14.4Hz,6H),2.018-2.103(m,8H),2.496(t,J=13.6Hz,4H),4.151-4.205(m,8H),7.463-7.487(m,4H),8.243-8.268(m,4H).
(1) Melting point: 57-58 ° C
(2) IR (cm -1 ): 172,1403,1337,1284,1269,1229,1178,1167,1068,1021,934,763,675.
(3) 1 1 H-NMR (400 MHz, CDCl 3 ): δ = 1.286 (t, J = 14.4 Hz, 6H), 2.018-2.103 (m, 8H), 2.496 (t, J = 13.6Hz, 4H), 4.151-4.205 (m, 8H), 7.463-7.487 (m, 4H), 8.243-8.268 (m, 4H).
(実施例1) 光硬化性I
ラジカル重合性化合物としてシリコーンジアクリレートEbecryl350(ダイセル・オルネクス社製)100部に対し、光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)5部、ラジカル硬化酸素阻害低減剤として原料合成実施例1と同様にして合成した9,10-ビス(エトキシカルボニルメトキシ)アントラセン3部、界面活性剤・表面改質剤としてメガファックF-556(DIC社製)を数滴加え、撹拌し溶解させ、光ラジカル重合性組成物の液状物が得られた。当該光ラジカル重合性組成物を、アルミ板上にローラーバー(松尾産業社製Select-Roller L60 OSP-04)を用い、厚みが4μmになるように塗布し、窒素置換していない試料チャンバー内に設置した。該光ラジカル重合性組成物の塗膜に対し、光硬化性I/光硬化条件(1)の方法で光硬化判定を行った。評価波数として1409cm-1を用いた。硬化率は41%であった。結果を表1に記載した。
(Example 1) Photocurable I
1-Hydroxycyclohexylphenylketone as a photoradical polymerization initiator (trade name "Irgacure 184" manufactured by BAS) with respect to 100 parts of silicone diacrylate Ebecryl350 (manufactured by Daicel Ornex) as a radically polymerizable compound. 5 parts, raw material synthesis as a radical curing oxygen inhibition reducing agent 3 parts of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in Example 1, Megafuck F-556 (as a surfactant / surface modifier) A few drops (manufactured by DIC) were added, stirred and dissolved to obtain a liquid product of the photoradical polymerizable composition. The photoradical polymerizable composition was applied onto an aluminum plate using a roller bar (Select-Roller L60 OSP-04 manufactured by Matsuo Sangyo Co., Ltd.) so as to have a thickness of 4 μm, and placed in a sample chamber not substituted with nitrogen. installed. The coating film of the photoradical polymerizable composition was subjected to a photocurability determination by the method of photocurability I / photocurability condition (1). 1409 cm -1 was used as the evaluation wave number. The curing rate was 41%. The results are shown in Table 1.
(実施例2) 
光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)の代わりに2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」ビー・エー・エス・エフ社製)を5部、ラジカル硬化酸素阻害低減剤として原料合成実施例1と同様にして合成した9,10-ビス(エトキシカルボニルメトキシ)アントラセンを4部添加し、光硬化判定I/光硬化条件(2)の方法にした以外は実施例1と同様な方法で光硬化判定を行った。評価波数として1409cm-1を用いた。硬化率は24%であった。結果を表1に記載した。
(Example 2)
As a photoradical polymerization initiator, 2,2-dimethoxy-1,2-diphenylethane-1-one (commodity) instead of 1-hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BASF) 5 parts of the name "Irgacure 651" manufactured by BASF Co., Ltd.), and 4 parts of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in Example 1 of raw material synthesis as a radical curing oxygen inhibition reducing agent. The photocuring determination was performed in the same manner as in Example 1 except that the method of photocuring determination I / photocuring condition (2) was applied. 1409 cm -1 was used as the evaluation wave number. The cure rate was 24%. The results are shown in Table 1.
(実施例3)
光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)の代わりに2-メチル-1-[4-メチルチオフェニル]-2-モルホリノプロパン-1-オン(商品名「イルガキュア907」ビー・エー・エス・エフ社製)を6部添加し、光硬化判定I/光硬化条件(3)の方法にした以外は実施例1と同様の方法で光硬化判定を行った。評価波数として1409cm-1を用いた。硬化率は35%であった。結果を表1に記載した。
(Example 3)
As a photoradical polymerization initiator, 2-methyl-1- [4-methylthiophenyl] -2-morpholinopropane- instead of 1-hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BASF). The same method as in Example 1 except that 6 parts of 1-on (trade name "Irgacure 907" manufactured by BASF) was added to obtain the method of photocuring determination I / photocuring condition (3). The photocuring judgment was made with. 1409 cm -1 was used as the evaluation wave number. The curing rate was 35%. The results are shown in Table 1.
(実施例4)
光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)の代わりに2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド(商品名「イルガキュアTPO」ビー・エー・エス・エフ社製)を4部添加し、光硬化判定I/光硬化条件(4)の方法にした以外は実施例1と同様の方法で光硬化判定を行った。評価波数として1409cm-1を用いた。硬化率は46%であった。結果を表1に記載した。
(Example 4)
As a photoradical polymerization initiator, 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO") is used instead of 1-hydroxycyclohexylphenyl ketone (trade name "Irgacure 184" manufactured by BAS). 4 parts (manufactured by BASF) was added, and the photocuring determination was performed in the same manner as in Example 1 except that the method of photocuring determination I / photocuring condition (4) was used. 1409 cm -1 was used as the evaluation wave number. The curing rate was 46%. The results are shown in Table 1.
(実施例5)
ラジカル重合性化合物としてトリメチロールプロパントリアクリレート(東京化成工業社製)100部に対し、光ラジカル重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド(商品名「イルガキュアTPO」ビー・エー・エス・エフ社製)4部、ラジカル硬化酸素阻害低減剤として原料合成実施例1と同様にして合成した9,10-ビス(エトキシカルボニルメトキシ)アントラセン3部、界面活性剤・表面改質剤としてメガファックF-556(DIC社製)を数滴加え、撹拌し溶解させ、光ラジカル重合性組成物の液状物が得られた。当該光ラジカル重合性組成物を、アルミ板上にローラーバー(松尾産業社製Select-Roller L60 OSP-04)を用い、厚みが4μmになるように塗布し、窒素置換していない試料チャンバー内に設置した。該光ラジカル重合性組成物の塗膜に対し、光硬化性I/光硬化条件(4)の方法で光硬化判定を行った。評価波数として1635cm-1を用いた。硬化率は53%であった。結果を表1に記載した。
(Example 5)
2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO" BA) as a photoradical polymerization initiator for 100 parts of trimethylolpropane triacrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a radically polymerizable compound. (Manufactured by SF) 4 parts, raw material synthesis as a radical curing oxygen inhibition reducing agent 3 parts of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in Example 1, surfactant / surface modifier As a result, several drops of Megafuck F-556 (manufactured by DIC) were added, stirred and dissolved to obtain a liquid product of a photoradical polymerizable composition. The photoradical polymerizable composition was applied onto an aluminum plate using a roller bar (Select-Roller L60 OSP-04 manufactured by Matsuo Sangyo Co., Ltd.) so as to have a thickness of 4 μm, and placed in a sample chamber not substituted with nitrogen. installed. The coating film of the photoradical polymerizable composition was subjected to a photocurability determination by the method of photocurability I / photocurability condition (4). 1635 cm -1 was used as the evaluation wave number. The curing rate was 53%. The results are shown in Table 1.
(実施例6)
光ラジカル重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド(商品名「イルガキュアTPO」ビー・エー・エス・エフ社製)8部、ラジカル硬化酸素阻害低減剤として原料合成実施例1と同様にして合成した9,10-ビス(エトキシカルボニルメトキシ)アントラセン2部、光硬化性I/光硬化条件(5)の方法にした以外は実施例5と同様な方法で光硬化判定を行った。評価波数として1635cm-1を用いた。硬化率は35%であった。結果を表1に記載した。
(Example 6)
8 parts of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO" manufactured by BASF) as a photoradical polymerization initiator, raw material synthesis Example 1 as a radical curing oxygen inhibition reducing agent The photocuring determination was performed in the same manner as in Example 5 except that the method of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in the above method was used, and the method of photocuring I / photocuring condition (5) was used. It was. 1635 cm -1 was used as the evaluation wave number. The curing rate was 35%. The results are shown in Table 1.
(実施例7)
光ラジカル重合開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド(商品名「イルガキュアTPO」ビー・エー・エス・エフ社製)2部、1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)4部にした以外は実施例5と同様な方法で光硬化判定を行った。評価波数として1635cm-1を用いた。硬化率は43%であった。結果を表1に記載した。
(Example 7)
2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO" manufactured by BASF), 1-hydroxycyclohexylphenylketone (trade name "Irgacure 184") as a photoradical polymerization initiator The photocuring determination was carried out in the same manner as in Example 5 except that 4 parts were used (manufactured by BASF Co., Ltd.). 1635 cm -1 was used as the evaluation wave number. The curing rate was 43%. The results are shown in Table 1.
(実施例8)
光ラジカル開始剤として2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド(商品名「イルガキュアTPO」ビー・エー・エス・エフ社製)を6部添加し、光硬化性I/光硬化条件(6)の方法にした以外は実施例7と同様な方法で光硬化判定を行った。評価波数として810cm-1を用いた。硬化率は39%であった。結果を表1に記載した。
(Example 8)
As a photoradical initiator, 6 parts of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (trade name "Irgacure TPO" manufactured by BASF) was added, and photocurable I / photocuring conditions (6). ) Was used, and the photocuring determination was performed in the same manner as in Example 7. 810 cm -1 was used as the evaluation wave number. The curing rate was 39%. The results are shown in Table 1.
(比較例1~8)
ラジカル硬化酸素阻害低減剤を添加しない以外は実施例1~8と同様の方法で光硬化判定を行った。結果を表1に記載した。
(Comparative Examples 1 to 8)
The photocuring determination was carried out in the same manner as in Examples 1 to 8 except that the radical curing oxygen inhibition reducing agent was not added. The results are shown in Table 1.
(比較例9)
測定雰囲気を窒素下にすること以外は比較例1と同様な方法で光硬化判定を行った。評価波数として1409cm-1を用いた。硬化率は58%であった。結果を表1に記載した。
(Comparative Example 9)
The photocuring determination was performed in the same manner as in Comparative Example 1 except that the measurement atmosphere was set to nitrogen. 1409 cm -1 was used as the evaluation wave number. The curing rate was 58%. The results are shown in Table 1.
(比較例10)
測定雰囲気を窒素下にすること以外は比較例4と同様な方法で光硬化判定を行った。評価波数として1409cm-1を用いた。硬化率は62%であった。結果を表1に記載した。
(Comparative Example 10)
The photocuring determination was performed in the same manner as in Comparative Example 4 except that the measurement atmosphere was set to nitrogen. 1409 cm -1 was used as the evaluation wave number. The curing rate was 62%. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
まず、比較例1と比較例9及び比較例4と比較例10を比較することより明らかなように、空気に接触した状態と窒素雰囲気の状態で同一の光重合開始剤を用いて光ラジカル重合を行った場合、いずれの場合も、空気と接触した状態で硬化させると酸素阻害による硬化率の低下が観測される。この酸素阻害の程度は光ラジカル重合開始剤が光開裂した際に生じる開始ラジカル種の種類によって異なることが知られているものの、酸素阻害を受けやすい開始剤として知られるアシルフォスフィンオキシド系開始剤のTPO(比較例4と10)、比較的酸素阻害を受けにくい開始剤として知られるα-ヒドロキシアルキルフェノン系開始剤のイルガキュア184(比較例1と9)の何れにおいても空気と接触した状態では酸素阻害を受け窒素シール下と比較して著しく硬化速度が低下していることが分かる。一方、実施例1と比較例1、実施例4と比較例4を比較することから分かるように、本発明の光ラジカル硬化酸素阻害低減剤であるECM-Aを添加することで空気と接触した状態において、硬化率が33%から41%、28%から46%と向上していることが分かる。ベンジルジメチルケタール系開始剤のイルガキュア651やα-アミノアルキルフェノン系開始剤のイルガキュア907に関しても、実施例2と比較例2、実施例3と比較例3を比較するとわかるようにECM-Aを添加することで同様に硬化率が向上していることが分かる。 First, as is clear from comparing Comparative Example 1 and Comparative Example 9 and Comparative Example 4 and Comparative Example 10, photoradical polymerization using the same photopolymerization initiator in contact with air and in a nitrogen atmosphere. In any case, a decrease in the curing rate due to oxygen inhibition is observed when the curing is performed in contact with air. Although it is known that the degree of this oxygen inhibition varies depending on the type of initiator radical species generated when the photoradical polymerization initiator is photocleaved, the acylphosphine oxide-based initiator known as an initiator susceptible to oxygen inhibition In both TPO (Comparative Examples 4 and 10) and Irgacure 184 (Comparative Examples 1 and 9), an α-hydroxyalkylphenone-based initiator known as an initiator that is relatively less susceptible to oxygen inhibition, in contact with air. It can be seen that the curing rate is significantly reduced as compared with that under the nitrogen seal due to oxygen inhibition. On the other hand, as can be seen from comparing Example 1 with Comparative Example 1 and Example 4 with Comparative Example 4, ECM-A, which is a photoradical curing oxygen inhibition reducing agent of the present invention, was added to bring the product into contact with air. It can be seen that the curing rate is improved from 33% to 41% and from 28% to 46% in the state. ECM-A was also added to Irgacure 651, a benzyl dimethyl ketal-based initiator, and Irgacure 907, an α-aminoalkylphenone-based initiator, as can be seen by comparing Example 2 with Comparative Example 2 and Example 3 with Comparative Example 3. It can be seen that the curing rate is similarly improved by doing so.
実施例1~4と比較例1~4は、ラジカル重合性化合物として二官能アクリル酸エステル化合物を用いた例であるが、一般にアクリル酸エステル化合物の官能基数は硬化速度・酸素阻害の程度に影響を与えることが知られており、二官能のアクリル酸エステル化合物は重合速度が小さいため、重合初期における流動抑制・酸素拡散抑制効果が小さくなる。これは一定時間後の硬化率の到達度に影響を与え、二官能アクリル酸エステル化合物の硬化率の到達度は多官能アクリル酸エステル化合物と比較して低くなる。従って、本発明の光ラジカル硬化酸素阻害低減剤であるECM-Aは酸素阻害を受けやすい種類のアクリル酸エステル化合物の酸素阻害を低減することができるといえる。 Examples 1 to 4 and Comparative Examples 1 to 4 are examples in which a bifunctional acrylic acid ester compound is used as the radically polymerizable compound, but in general, the number of functional groups of the acrylic acid ester compound affects the curing rate and the degree of oxygen inhibition. Since the bifunctional acrylic acid ester compound has a low polymerization rate, the effect of suppressing flow and oxygen diffusion at the initial stage of polymerization is reduced. This affects the degree of achievement of the curing rate after a certain period of time, and the degree of achievement of the curing rate of the bifunctional acrylic acid ester compound is lower than that of the polyfunctional acrylic acid ester compound. Therefore, it can be said that ECM-A, which is a photoradical-cured oxygen inhibition reducing agent of the present invention, can reduce oxygen inhibition of a type of acrylic acid ester compound that is susceptible to oxygen inhibition.
また、実施例5と比較例5を比較して分かるように、多官能アクリル酸エステル化合物の重合においても大気による酸素阻害を受け硬化率が低下するが、本発明の光ラジカル硬化酸素阻害低減剤であるECM-Aを添加することにより酸素阻害が低減され硬化率が向上していることが分かる。なお、多官能のアクリル酸エステル化合物の重合においては、モノマー、オリゴマー、あるいはポリマー同士が重合反応による部分的な結合を繰り返し複雑な網目構造を形成しながら最終的な硬化物を形成する。従って多官能アクリル酸エステル化合物の硬化率の到達値は、アクリル酸エステル化合物の架橋率をも表していると言える。 Further, as can be seen by comparing Example 5 and Comparative Example 5, the curing rate is lowered due to oxygen inhibition by the atmosphere even in the polymerization of the polyfunctional acrylic acid ester compound, but the photoradical curing oxygen inhibition reducing agent of the present invention. It can be seen that by adding ECM-A, oxygen inhibition is reduced and the curing rate is improved. In the polymerization of a polyfunctional acrylic acid ester compound, a monomer, an oligomer, or a polymer repeats partial bonding by a polymerization reaction to form a complicated network structure to form a final cured product. Therefore, it can be said that the reached value of the curing rate of the polyfunctional acrylic acid ester compound also represents the cross-linking rate of the acrylic acid ester compound.
同様の酸素阻害低減効果は照度を30mW/cmに落とした実験でも確認される。すなわち、実施例6と比較例6を比較するとわかるように、イルガキュアTPO単独の光ラジカル重合性組成物では13%であった硬化率がECM-Aを添加することにより35%と大幅に向上していることが分かる。 A similar effect of reducing oxygen inhibition is confirmed in an experiment in which the illuminance is reduced to 30 mW / cm 2 . That is, as can be seen by comparing Example 6 and Comparative Example 6, the curing rate, which was 13% in the photoradical polymerizable composition of Irgacure TPO alone, was significantly improved to 35% by adding ECM-A. You can see that.
また、ラジカル硬化酸素阻害低減剤であるECM-Aは各々の開始剤を単独で用いた場合に酸素阻害低減効果が認められるが、実施例7と比較例7を比較してわかるように、開始剤を複数種類合わせた場合でもECM-Aを添加する事により硬化率の著しい増加が見られ、酸素阻害低減効果が認められる。更に、実施例8と比較例8を比べることにより明らかなように、本発明の光ラジカル硬化酸素阻害低減剤であるECM-AはコーティングやUVインク用途で実際に用いられる高出力光源を用いた短時間照射条件においても硬化速度を向上させることができる。 Further, ECM-A, which is a radically cured oxygen inhibition reducing agent, has an oxygen inhibition reducing effect when each initiator is used alone, but as can be seen by comparing Example 7 and Comparative Example 7, the initiation Even when a plurality of types of agents are combined, the curing rate is significantly increased by adding ECM-A, and the effect of reducing oxygen inhibition is observed. Further, as is clear from comparing Example 8 and Comparative Example 8, the ECM-A, which is the photoradical curing oxygen inhibition reducing agent of the present invention, uses a high-power light source actually used for coating and UV ink applications. The curing rate can be improved even under short-time irradiation conditions.
(実施例9)光硬化性II
ラジカル重合性化合物としてトリメチロールプロパントリアクリレート(東京化成工業社製)100部に対し、光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)5部、光ラジカル硬化酸素阻害低減剤として原料合成実施例1と同様にして合成した9,10-ビス(エトキシカルボニルメトキシ)アントラセン0.2部を加え撹拌し溶解させ、光ラジカル重合性組成物の液状物が得られた。当該光ラジカル重合性組成物について空気気流中でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は161mJ/mgであった。結果を表2に記載した。
(Example 9) Photocurable II
1-Hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BAS) as a photoradical polymerization initiator for 100 parts of trimethylolpropantriacrylate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a radically polymerizable compound. ) 5 parts, 0.2 parts of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized in the same manner as in Example 1 of raw material synthesis as a photoradical curing oxygen inhibition reducing agent is added and stirred to dissolve, and the photoradical polymerizable composition is obtained. A liquid product was obtained. The photo-radical polymerizable composition was measured by Photo-DSC in an air stream to determine the total calorific value. The total calorific value for 5 minutes from the start of light irradiation was 161 mJ / mg. The results are shown in Table 2.
(実施例10)
光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)の代わりに2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名「イルガキュア651」ビー・エー・エス・エフ社製)を5部添加した以外は実施例9と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は360mJ/mgであった。結果を表2に記載した。
(Example 10)
As a photoradical polymerization initiator, 2,2-dimethoxy-1,2-diphenylethane-1-one (commodity) instead of 1-hydroxycyclohexylphenylketone (trade name "Irgacure 184" manufactured by BASF) Photo-DSC measurement was performed in the same manner as in Example 9 except that 5 parts of the name "Irgacure 651" manufactured by BASF Co., Ltd. was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 360 mJ / mg. The results are shown in Table 2.
(実施例11)
光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)の代わりに2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジル-1-ブタオン(商品名「イルガキュア369」ビー・エー・エス・エフ社製)を5部添加した以外は実施例9と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は497mJ/mgであった。結果を表2に記載した。
(Example 11)
2-Dimethylamino-1- (4-morpholinophenyl) -2-benzyl- instead of 1-hydroxycyclohexylphenyl ketone (trade name "Irgacure 184" manufactured by BASF) as a photoradical polymerization initiator Photo-DSC measurement was carried out in the same manner as in Example 9 except that 5 parts of 1-butaon (trade name "Irgacure 369" manufactured by BASF) was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 497 mJ / mg. The results are shown in Table 2.
(実施例12)
光ラジカル重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」ビー・エー・エス・エフ社製)の代わりに4-イソブチルフェニル-4’-メチルフェニルヨードニウムヘキサフルオロフォスフェート(商品名「イルガキュア250」ビー・エー・エス・エフ社製)を4部、光ラジカル硬化酸素阻害低減剤として9,10-ビス(エトキシカルボニルメトキシ)アントラセン0.5部添加した以外は実施例9と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は364mJ/mgであった。結果を表2に記載した。
(Example 12)
4-Isobutylphenyl-4'-methylphenyliodonium hexafluorophosphate (trade name) instead of 1-hydroxycyclohexylphenyl ketone (trade name "Irgacure 184" manufactured by BASF) as a photoradical polymerization initiator Same as Example 9 except that 4 parts of "Irgacure 250" manufactured by BASF Co., Ltd.) and 0.5 part of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent were added. Photo-DSC measurement was performed by the method described in the above, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 364 mJ / mg. The results are shown in Table 2.
(実施例13)
光ラジカル硬化酸素阻害低減剤として9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに原料合成実施例3と同様にして合成した9,10-ビス(シクロヘキシルオキシカルボニルメトキシ)アントラセン(cHCM-A)を0.2部添加した以外は実施例10と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は364mJ/mgであった。結果を表2に記載した。
(Example 13)
Raw material synthesis instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent 9,10-bis (cyclohexyloxycarbonylmethoxy) anthracene (cHCM-A) synthesized in the same manner as in Example 3. Photo-DSC measurement was carried out in the same manner as in Example 10 except that 0.2 part was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 364 mJ / mg. The results are shown in Table 2.
(実施例14)
光ラジカル硬化酸素阻害低減剤として9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに原料合成実施例2と同様にして合成した9,10-ビス(n-ペンチルオキシカルボニルメトキシ)アントラセン(ACM-A)を0.2部添加した以外は実施例10と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は334mJ/mgであった。結果を表2に記載した。
(Example 14)
Raw material synthesis instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent 9,10-bis (n-pentyloxycarbonylmethoxy) anthracene (ACM-) synthesized in the same manner as in Example 2. Photo-DSC measurement was carried out in the same manner as in Example 10 except that 0.2 part of A) was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 334 mJ / mg. The results are shown in Table 2.
(実施例15)
光ラジカル硬化酸素阻害低減剤として9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに原料合成実施例4と同様にして合成した9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセン(ECB-A)を0.2部添加した以外は実施例10と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は328mJ/mgであった。結果を表2に記載した。
(Example 15)
Raw material synthesis instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene as a photoradical curing oxygen inhibition reducing agent 9,10-bis (ethoxycarbonylbutyleneoxy) anthracene (ECB-A) synthesized in the same manner as in Example 4. Photo-DSC measurement was carried out in the same manner as in Example 10 except that 0.2 part was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 328 mJ / mg. The results are shown in Table 2.
(比較例11~14)
光ラジカル硬化酸素阻害低減剤を添加しないこと以外は実施例8、9、10、11と同様な方法でPhoto-DSC測定を行い、光照射から5分間の総発熱量を求めた。結果を表2に記載した。
(Comparative Examples 11 to 14)
Photo-DSC measurement was carried out in the same manner as in Examples 8, 9, 10 and 11 except that the photoradical curing oxygen inhibition reducing agent was not added, and the total calorific value for 5 minutes after light irradiation was determined. The results are shown in Table 2.
(比較例15)
光ラジカル硬化酸素阻害低減剤として添加した9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに、類似の化学構造を有し光重合増感剤として一般に添加されている公知の9,10-ジブトキシアントラセン(DBA)を0.2部添加した以外は実施例10と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は258mJ/mgであった。結果を表2に記載した。
(Comparative Example 15)
A known 9,10-di that has a similar chemical structure and is generally added as a photopolymerization sensitizer instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene added as a photoradical curing oxygen inhibition reducing agent. Photo-DSC measurement was carried out in the same manner as in Example 10 except that 0.2 part of butoxyanthracene (DBA) was added, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 258 mJ / mg. The results are shown in Table 2.
(比較例16)
窒素気流中で測定を行うこと以外は比較例12と同様の方法でPhoto-DSC測定を行い、総発熱量を求めた。光照射開始から5分間の総発熱量は339mJ/mgであった。結果を表2に記載した。
(Comparative Example 16)
Photo-DSC measurement was performed in the same manner as in Comparative Example 12 except that the measurement was performed in a nitrogen stream, and the total calorific value was determined. The total calorific value for 5 minutes from the start of light irradiation was 339 mJ / mg. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
実施例1~8と比較例1~10は、光硬化性Iの条件で光硬化実験を行った例であるが、その際用いた塗膜試料の厚みは4μmと薄く、空気との接触による塗膜表面の酸素阻害を受けやすい条件であった。一方、実施例9~15と比較例11~16は、光硬化性IIの条件で光硬化実験を行ったものであり、その試料厚みは300μm程度と厚膜での試験である。 Examples 1 to 8 and Comparative Examples 1 to 10 are examples in which a photocuring experiment was carried out under the condition of photocurability I. The conditions were such that the surface of the coating film was susceptible to oxygen inhibition. On the other hand, Examples 9 to 15 and Comparative Examples 11 to 16 were subjected to a photocuring experiment under the condition of photocurability II, and the sample thickness was about 300 μm, which was a test with a thick film.
実施例9~15および比較例11~15を比較することによりわかるように、この厚膜条件でも同様に酸素阻害低減効果が認められる。すなわち、実施例9と比較例11、実施例10と比較例12、実施例11と比較例13、実施例12と比較例14を比較すると、いずれのばあいにおいても、本発明の光ラジカル硬化酸素阻害低減剤を添加する事により、総発熱量が著しく増加していることがわかる。このことから、この光硬化性試験IIの条件においても、各種の光ラジカル重合開始剤の酸素阻害による重合阻害を本発明の光ラジカル硬化酸素阻害低減剤が低減していることがわかる。 As can be seen by comparing Examples 9 to 15 and Comparative Examples 11 to 15, an oxygen inhibition reducing effect is similarly observed even under this thick film condition. That is, when Example 9 and Comparative Example 11, Example 10 and Comparative Example 12, Example 11 and Comparative Example 13, and Example 12 and Comparative Example 14 are compared, in any case, the photoradical curing of the present invention is performed. It can be seen that the total calorific value is significantly increased by adding the oxygen inhibition reducing agent. From this, it can be seen that even under the conditions of this photocurability test II, the photoradical curing oxygen inhibition reducing agent of the present invention reduces the polymerization inhibition due to oxygen inhibition of various photoradical polymerization initiators.
更に、比較例12及び比較例16並びに実施例10及び実施例13から15における発熱プロファイルを示したのが図1である。図1において、破線は比較例、実線は実施例であり、各曲線のピーク位置に矢印で番号を記載したが、番号1は比較例16(窒素下)、番号2は実施例10(空気下+ECM-A)、番号3は実施例14(空気下+ACM-A)、番号4は実施例13(空気下+cHCM-A)、番号5は実施例15(空気下+ECB-A)、番号6は比較例15(空気下+DBA)、番号7は比較例12(空気下)における発熱プロファイル曲線を示している。 Further, FIG. 1 shows the heat generation profiles of Comparative Examples 12 and 16, and Examples 10 and 13 to 15. In FIG. 1, the broken line is a comparative example and the solid line is an example, and numbers are indicated by arrows at the peak positions of each curve. Number 1 is Comparative Example 16 (under nitrogen) and Number 2 is Example 10 (under air). + ECM-A), No. 3 is Example 14 (under air + ACM-A), No. 4 is Example 13 (under air + cHCM-A), No. 5 is Example 15 (under air + ECB-A), No. 6 is Comparative Example 15 (under air + DBA) and No. 7 show the heat generation profile curves in Comparative Example 12 (under air).
比較例12と比較例16を比較することから明らかなように、空気気流中では酸素阻害の影響を顕著に受け、塗膜内部に存在する酸素が消費され尽くした後に酸素による捕捉を免れたラジカルで重合反応が開始することにより生じる誘導期間が0.2分程度確認される。また光照射からピークトップに至るまでに要する時間が窒素雰囲気下では0.07分程度であるものが0.37分程度と増大していることがわかる。すなわち、空気気流中では酸素阻害を受け重合速度が低下していると言える。また、重合反応に伴う熱流(heat flow)のピーク値が窒素雰囲気下では25000程度であるものが6000程度に減少していることがわかる。すなわち、空気雰囲気ではラジカル重合の重合速度だけではなくラジカル重合の反応効率も低下していると言える。そして、光ラジカル硬化酸素阻害低減剤を添加した実施例10及び実施例13から15並びに光ラジカル硬化酸素阻害低減剤を添加しない比較例12を比較することから分かるように、光ラジカル硬化酸素阻害低減剤を添加することによりラジカル重合の速度と反応効率の両方が向上していることがわかる。 As is clear from the comparison between Comparative Example 12 and Comparative Example 16, radicals that are significantly affected by oxygen inhibition in the air flow and escape from being captured by oxygen after the oxygen existing inside the coating film is exhausted. The induction period caused by the start of the polymerization reaction is confirmed to be about 0.2 minutes. It can also be seen that the time required from light irradiation to the peak top is increased from about 0.07 minutes to about 0.37 minutes in a nitrogen atmosphere. That is, it can be said that the polymerization rate is reduced due to oxygen inhibition in the air flow. Further, it can be seen that the peak value of the heat flow associated with the polymerization reaction is about 25,000 in a nitrogen atmosphere, but is reduced to about 6000. That is, it can be said that not only the polymerization rate of radical polymerization but also the reaction efficiency of radical polymerization is lowered in an air atmosphere. Then, as can be seen from comparing Examples 10 and 13 to 15 to which the photoradical curing oxygen inhibition reducing agent is added and Comparative Example 12 to which the photoradical curing oxygen inhibition reducing agent is not added, the photoradical curing oxygen inhibition reducing is reduced. It can be seen that the addition of the agent improves both the rate of radical polymerization and the reaction efficiency.
更に光ラジカル硬化酸素阻害低減剤として一般式(1)で表されるAがメチレンであるアントラセン化合物を添加した空気気流中での実施例10、13、14、Aがブチレンであるアントラセン化合物ECB-Aを添加した空気気流中での実施例15である。ECM-A、ACM-A、cHCM-AとECB-Aを比較すると、ECB-Aを添加した場合、光ラジカル硬化酸素阻害低減剤としての効果が確認され重合速度の観点では窒素気流中での比較例16に近づくが熱流のピーク値は及ばない。一方、酸素阻害低減剤として一般式(1)で表されるAがメチレンであるアントラセン化合物を添加した場合はラジカル重合の重合速度および反応効率がともに向上し、特にECM-Aを添加した場合には誘導期間は完全にはなくならないものの窒素気流中での発熱プロファイルに近づいている。また発熱量の面では窒素気流中と同等またはそれ以上の発熱量が得られていることが分かる。厚膜では深さ方向に対して発生するラジカル量が異なるため光重合が不均一に進行するが、一般式(1)で表されるAがメチレンであるアントラセン化合物を添加することによって、塗膜全体におけるラジカル重合の重合速度および反応効率が向上し、酸素阻害によって生じる表面および深部の硬化不良が改善されているといえる。 Further, Examples 10, 13, 14 in an air stream to which an anthracene compound in which A is methylene, which is represented by the general formula (1), is added as a photoradical curing oxygen inhibition reducing agent, ECB-, an anthracene compound in which A is butylene. 15 is an example 15 in an air stream to which A is added. Comparing ECM-A, ACM-A, cHCM-A and ECB-A, when ECB-A was added, the effect as a photoradical curing oxygen inhibition reducing agent was confirmed, and from the viewpoint of polymerization rate, in a nitrogen stream. Although it approaches Comparative Example 16, the peak value of the heat flow does not reach it. On the other hand, when an anthracene compound in which A represented by the general formula (1) is methylene is added as an oxygen inhibition reducing agent, both the polymerization rate and the reaction efficiency of radical polymerization are improved, and particularly when ECM-A is added. Is approaching the exothermic profile in a nitrogen stream, although the induction period is not completely eliminated. In terms of calorific value, it can be seen that calorific value equal to or greater than that in the nitrogen air flow is obtained. In a thick film, the amount of radicals generated differs in the depth direction, so photopolymerization proceeds non-uniformly. However, by adding an anthracene compound in which A is methylene represented by the general formula (1), a coating film is formed. It can be said that the polymerization rate and reaction efficiency of radical polymerization as a whole are improved, and the surface and deep curing defects caused by oxygen inhibition are improved.
さらに、実施例12と比較例14を比較することから明らかなように、本発明の光ラジカル硬化酸素阻害低減剤であるECM-Aは光カチオン重合開始剤として知られるヨードニウム塩系光開始剤を用いた場合にも酸素阻害を軽減しラジカル重合を進行させることができる。 Further, as is clear from comparing Example 12 and Comparative Example 14, ECM-A, which is the photoradical curing oxygen inhibition reducing agent of the present invention, uses an iodonium salt-based photoinitiator known as a photocationic polymerization initiator. Even when used, oxygen inhibition can be reduced and radical polymerization can proceed.
(実施例16)光硬化性III
ラジカル重合性化合物として1,6-ヘキサンジオールジアクリレート(商品名「ビスコート#230」大阪有機化学工業社製)100部に対し、光ラジカル重合開始剤として2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン(富士フィルム和光純薬社製)5部、ラジカル硬化酸素阻害低減剤として原料合成実施例1と同様にして合成した9,10-ビス(エトキシカルボニルメトキシ)アントラセン0.2部を加え撹拌し溶解させ、光ラジカル重合性組成物の液状物が得られた。当該光ラジカル重合性組成物についてPhoto-Rheometer測定を行い、貯蔵弾性率を求めた。光照射後140秒時点における貯蔵弾性率は2.45×10Paであった。結果を表3に記載した。
(Example 16) Photocurable III
2- (4-Methoxyphenyl) -4, as a photoradical polymerization initiator for 100 parts of 1,6-hexanediol diacrylate (trade name "Viscort # 230" manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a radically polymerizable compound. 6-bis (trichloromethyl) -1,3,5-triazine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 5 parts, 9,10-bis synthesized in the same manner as in Example 1 of raw material synthesis as a radical curing oxygen inhibition reducing agent 0.2 part of (ethoxycarbonylmethoxy) anthracene was added, and the mixture was stirred and dissolved to obtain a liquid product of a photoradical polymerizable composition. The photoradical polymerizable composition was subjected to Photo-Rheometer measurement to determine the storage elastic modulus. A storage modulus at 140 second time point after the light irradiation was 2.45 × 10 6 Pa. The results are shown in Table 3.
(比較例17)
ラジカル硬化酸素阻害低減剤を添加しないこと以外は実施例16と同様な方法でPhoto-Rheometer測定を行い、貯蔵弾性率を求めた。結果を表3に記載した。
(Comparative Example 17)
Photo-Rheometer measurement was carried out in the same manner as in Example 16 except that the radical curable oxygen inhibition reducing agent was not added, and the storage elastic modulus was determined. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例16と比較例17を比較することにより明らかなように、本発明の光ラジカル硬化酸素阻害低減剤であるECM-Aは光重合反応の進行に伴う液体から固体への相転移過程を反映する貯蔵弾性率という指標においても、酸素阻害低減効果が認められる。 As is clear from comparing Example 16 and Comparative Example 17, the ECM-A photoradical-curing oxygen inhibition reducing agent of the present invention reflects the liquid-to-solid phase transition process that accompanies the progress of the photopolymerization reaction. The effect of reducing oxygen inhibition is also recognized in the index of storage elastic modulus.
次に、耐マイグレーション性の評価結果について記載する。
(組成物の耐マイグレーション性の判定)
本発明の光重合性組成物に含まれるラジカル硬化酸素阻害低減剤がフィルム等に移行(マイグレーション)するかどうかを判定する方法としては、ラジカル硬化酸素阻害低減剤を含む光重合性組成物を薄いフィルム状物に塗布したものを作成し、その上にポリエチレンフィルムを被せて一定温度(26℃)で一定期間保管し、その後ポリエチレンフィルムを剥がし、ラジカル硬化酸素阻害低減剤がポリエチレンフィルムに移行しているかを調べ、耐マイグレーション性を判定した。剥がしたポリエチレンフィルムは、アセトンで表面の組成物を洗った後乾燥し、当該ポリエチレンフィルムのUVスペクトルを測定し、ラジカル硬化酸素阻害低減剤に起因する吸収強度の増大を調べることにより耐マイグレーション性を測定した。なお、当該測定には、紫外・可視分光光度計(島津製作所製、型式:UV2600)を用いた。比較例の化合物である9,10-ジブトキシアントラセンと量的な比較するために、得られた吸光度を9,10-ジブトキシアントラセンの吸光度の値に換算した。換算に当たっては、紫外・可視分光光度計により本発明の化合物及び9,10-ジブトキシアントラセンの260nmにおける吸光度を測定し、その吸光度の値とモル濃度からそれぞれのモル吸光係数を計算し、その比をもちいて換算した。
Next, the evaluation result of migration resistance will be described.
(Judgment of migration resistance of composition)
As a method for determining whether or not the radical curable oxygen inhibition reducing agent contained in the photopolymerizable composition of the present invention migrates to a film or the like, the photopolymerizable composition containing the radical curing oxygen inhibition reducing agent is thinned. A film-like material is prepared, which is then covered with a polyethylene film and stored at a constant temperature (26 ° C.) for a certain period of time, after which the polyethylene film is peeled off and the radical curing oxygen inhibition reducing agent is transferred to the polyethylene film. The migration resistance was judged. The peeled polyethylene film is dried after washing the surface composition with acetone, and the UV spectrum of the polyethylene film is measured to examine the increase in absorption intensity due to the radical curing oxygen inhibition reducing agent to improve the migration resistance. It was measured. An ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, model: UV2600) was used for the measurement. For quantitative comparison with the compound of the comparative example, 9,10-dibutoxyanthracene, the obtained absorbance was converted into the absorbance value of 9,10-dibutoxyanthracene. For conversion, the absorbance of the compound of the present invention and 9,10-dibutoxyanthracene at 260 nm was measured with an ultraviolet / visible spectrophotometer, the molar extinction coefficient of each was calculated from the absorbance value and the molar concentration, and the ratio was calculated. Was converted using.
(光ラジカル重合における9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物を含有する組成物の耐マイグレーション性の評価実施例)
(耐マイグレーション性評価実施例1)
光ラジカル重合性化合物として、トリメチロールプロパントリアクリレート100部、光ラジカル重合増感剤として、原料合成実施例1と同様の方法で合成した9,10-ビス(エトキシカルボニルメトキシ)アントラセン1部を混合し、調製した組成物をポリエステルフィルム上で膜厚が12ミクロンになるようにバーコーターを用いて塗布した。次いで、得られた塗布物上に低密度ポリエチレンフィルム(膜厚30ミクロン)を被せて、暗所で一日間保管したものと七日間保管したものを調製し、それぞれ保管後、被せたポリエチレンフィルムを剥がし、ポリエチレンフィルムをアセトンで洗い、乾燥した後、当該ポリエチレンフィルムのUVスペクトルを測定し、260nmの吸光度を測定したが、9,10-ビス(エトキシカルボニルメトキシ)アントラセンに起因する吸収は、一日保管後0.014、七日保管後0.015であった。
(Example of evaluation of migration resistance of a composition containing a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound in photoradical polymerization)
(Migration resistance evaluation Example 1)
As a photoradical polymerizable compound, 100 parts of trimethylolpropane triacrylate and as a photoradical polymerization sensitizer, 1 part of 9,10-bis (ethoxycarbonylmethoxy) anthracene synthesized by the same method as in Example 1 of raw material synthesis are mixed. Then, the prepared composition was applied on a polyester film using a bar coater so as to have a film thickness of 12 microns. Next, a low-density polyethylene film (thickness: 30 microns) was covered on the obtained coating material to prepare one that was stored in a dark place for one day and one that was stored for seven days, and after each storage, the covered polyethylene film was applied. After peeling, washing the polyethylene film with acetone and drying, the UV spectrum of the polyethylene film was measured and the absorbance at 260 nm was measured, but the absorption due to 9,10-bis (ethoxycarbonylmethoxy) anthracene was one day. It was 0.014 after storage and 0.015 after storage for 7 days.
(耐マイグレーション性評価実施例2)
9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに原料合成実施例4と同様の方法で合成した9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(エトキシカルボニルブチレンオキシ)アントラセンに起因する吸収は、一日保管後0.022、七日保管後0.021であった。
(Migration resistance evaluation Example 2)
Migration resistance evaluation example except that 9,10-bis (ethoxycarbonylbutyleneoxy) anthracene synthesized by the same method as in Raw Material Synthesis Example 4 was used instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene. It was prepared and tested in the same manner as in 1. The absorbance at 260 nm of the polyethylene film washed with acetone was measured, and the absorption due to 9,10-bis (ethoxycarbonylbutyleneoxy) anthracene was 0.022 after storage for one day and 0.021 after storage for seven days. ..
(耐マイグレーション性評価実施例3)
9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに原料合成実施例2と同様の方法で合成した9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(n-ペンチルオキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.051、七日保管後0.032であった。
(Migration resistance evaluation Example 3)
Migration resistance except that 9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene synthesized by the same method as in Example 2 of raw material synthesis was used instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene. Evaluation It was prepared and tested in the same manner as in Example 1. The absorbance at 260 nm of the polyethylene film washed with acetone was measured, and the absorption due to 9,10-bis (n-pentyloxycarbonylmethyleneoxy) anthracene was 0.051 after storage for 1 day and 0.032 after storage for 7 days. Met.
(耐マイグレーション性評価実施例4)
9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに原料合成実施例3と同様の方法で合成した9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様に調製して試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定したが、9,10-ビス(シクロヘキシルオキシカルボニルメチレンオキシ)アントラセンに起因する吸収は、一日保管後0.051、七日保管後0.035であった。
(Migration resistance evaluation Example 4)
Migration resistance evaluation was carried out except that 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene synthesized by the same method as in Example 3 of raw material synthesis was used instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene. It was prepared and tested in the same manner as in Example 1. The absorbance at 260 nm of the polyethylene film washed with acetone was measured, and the absorption due to 9,10-bis (cyclohexyloxycarbonylmethyleneoxy) anthracene was 0.051 after storage for one day and 0.035 after storage for seven days. It was.
(耐マイグレーション性評価比較例1)
9,10-ビス(エトキシカルボニルメトキシ)アントラセンの代わりに公知の光ラジカル増感剤である9,10-ジブトキシアントラセンを使用すること以外は耐マイグレーション性評価実施例1と同様にして試験した。アセトン洗いしたポリエチレンフィルムの260nmの吸光度を測定した結果、得られた9,10-ジブトキシアントラセンの吸光度は、一日保管後1.661、七日後1.741であった。
(Migration resistance evaluation comparative example 1)
The test was carried out in the same manner as in Example 1 of the migration resistance evaluation except that 9,10-dibutoxyanthracene, which is a known photoradical sensitizer, was used instead of 9,10-bis (ethoxycarbonylmethoxy) anthracene. As a result of measuring the absorbance at 260 nm of the polyethylene film washed with acetone, the absorbance of the obtained 9,10-dibutoxyanthracene was 1.661 after storage for one day and 1.741 after seven days.
耐マイグレーション性評価実施例1~4と耐マイグレーション性評価比較例1の結果を表4にまとめた。 Table 4 summarizes the results of migration resistance evaluation Examples 1 to 4 and migration resistance evaluation Comparative Example 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
耐マイグレーション性評価実施例1から4と耐マイグレーション性評価比較例1を比較することにより明らかなように、光ラジカル重合性組成物中において、公知の光重合増感剤であり、本発明のラジカル硬化酸素阻害低減剤と類似構造を持つ9,10-ジブトキシアントラセンは該光ラジカル重合性組成物の上に被せたフィルムにかなりの程度移行しているのに対して、本願のラジカル硬化酸素阻害低減剤である9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、いずれの場合もその移行程度は極めて低く、耐マイグレーション性に優れているといえる。 As is clear from comparing Migration Resistance Evaluation Examples 1 to 4 and Migration Resistance Evaluation Comparative Example 1, it is a known photopolymerization sensitizer in a photoradical polymerizable composition, and is a radical of the present invention. While 9,10-dibutoxyanthracene, which has a structure similar to that of a curable oxygen inhibition reducing agent, is transferred to a film overlaid on the photoradical polymerizable composition to a considerable extent, the radical curing oxygen inhibition of the present application is carried out. In any case, the 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound, which is a reducing agent, has an extremely low degree of migration and is excellent in migration resistance.
一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物は、該化合物を含有する光ラジカル重合性組成物が、酸素阻害の影響が顕著な光ラジカル重合開始剤を用いた場合においても、塗膜表面での酸素阻害を低減し、酸素存在下でも問題なく硬化できるという、産業上非常に有用な光ラジカル硬化酸素阻害低減剤である。

 
The 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the general formula (1) is a photoradical polymerizable composition containing the compound, and a photoradical having a remarkable effect of oxygen inhibition. Even when a polymerization initiator is used, it is an industrially very useful photoradical curing oxygen inhibition reducing agent that reduces oxygen inhibition on the surface of the coating film and can be cured without problems even in the presence of oxygen.

Claims (11)

  1. 下記一般式(1)で表されるエステル基を有する9,10-ビス(アルコキシカルボニルアルキレンオキシ)アントラセン化合物からなる、酸素によるラジカル重合阻害を低減できる光ラジカル硬化酸素阻害低減剤。
    Figure JPOXMLDOC01-appb-C000001
     
    (一般式(1)において、Aは炭素数1から20のアルキレン基を表し、該アルキレン基はアルキル基によって分岐していてもよい。Rは炭素数1から20のアルキル基を表し、該アルキル基は、アルキル基によって分岐していてもよく、シクロアルキル基でもよく、ヒドロキシ基で置換されていてもよく、炭素原子の一部が酸素原子によって置き換わっていてもよい(但し、過酸化物を形成する場合は除く)。X、Yは同一であっても異なってもよく、水素原子、炭素数1から8のアルキル基又はハロゲン原子を表す。)
    A photoradical curing oxygen inhibition reducing agent capable of reducing radical polymerization inhibition by oxygen, which comprises a 9,10-bis (alkoxycarbonylalkyleneoxy) anthracene compound having an ester group represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the general formula (1), A represents an alkylene group having 1 to 20 carbon atoms, and the alkylene group may be branched by an alkyl group. R represents an alkyl group having 1 to 20 carbon atoms, and the alkyl The group may be branched by an alkyl group, may be a cycloalkyl group, may be substituted with a hydroxy group, or a part of a carbon atom may be replaced by an oxygen atom (provided that the peroxide is replaced by an oxygen atom. X and Y may be the same or different, and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or a halogen atom.)
  2. 少なくともラジカル重合性化合物、光ラジカル重合開始剤及び請求項1に記載の光ラジカル硬化酸素阻害低減剤を含有することを特徴とする、光ラジカル重合性組成物。 A photoradical polymerizable composition comprising at least a radically polymerizable compound, a photoradical polymerization initiator and the photoradical curing oxygen inhibition reducing agent according to claim 1.
  3. 光ラジカル重合開始剤がα-ヒドロキシアセトフェノン系光ラジカル重合開始剤、ベンジルメチルケタール系光ラジカル重合開始剤、α-アミノアルキルフェノン系光ラジカル重合開始剤、アシルホスフィンオキサイド系光ラジカル重合開始剤、オニウム塩系光ラジカル重合開始剤又はトリアジン系光ラジカル重合開始剤であることを特徴とする、請求項2に記載の光ラジカル重合性組成物。 Photoradical polymerization initiators are α-hydroxyacetophenone-based photoradical polymerization initiator, benzylmethyl ketal-based photoradical polymerization initiator, α-aminoalkylphenone-based photoradical polymerization initiator, acylphosphine oxide-based photoradical polymerization initiator, onium The photoradical polymerizable composition according to claim 2, wherein the photoradical polymerization initiator is a salt-based photoradical polymerization initiator or a triazine-based photoradical polymerization initiator.
  4. 光ラジカル重合開始剤の含有量が、光ラジカル重合性組成物の総質量に対して2.0質量%以上10質量%以下であり、光ラジカル硬化酸素阻害低減剤の含有量が、光ラジカル重合性組成物の総質量に対して0.20質量%以上5.0質量%以下であることを特徴とする、請求項2又は3に記載の光ラジカル重合性組成物。 The content of the photoradical polymerization initiator is 2.0% by mass or more and 10% by mass or less with respect to the total mass of the photoradical polymerizable composition, and the content of the photoradical curing oxygen inhibition reducing agent is photoradical polymerization. The photoradical polymerizable composition according to claim 2 or 3, characterized in that it is 0.20% by mass or more and 5.0% by mass or less with respect to the total mass of the sex composition.
  5. 請求項2乃至4のいずれか一項に記載の光ラジカル重合性組成物よりなる塗膜であって、塗膜の一方の表面は大気に接触していることを特徴とする、光ラジカル重合性塗膜。 A coating film comprising the photoradical polymerizable composition according to any one of claims 2 to 4, wherein one surface of the coating film is in contact with the atmosphere. Coating film.
  6. 請求項2乃至4のいずれか一項に記載の光ラジカル重合性組成物を基材フィルム上に塗布してなる塗膜であって、塗膜の一方の表面は大気に接触していることを特徴とする、光ラジカル重合性塗膜。 A coating film obtained by coating the photoradical polymerizable composition according to any one of claims 2 to 4 on a base film, and one surface of the coating film is in contact with the atmosphere. A characteristic photoradical polymerizable coating film.
  7. 請求項5又は6に記載の光ラジカル重合性塗膜の表面が大気に接触した状態で該塗膜にエネルギー線を照射することを特徴とする、光ラジカル重合性塗膜の硬化方法。 A method for curing a photoradical polymerizable coating film, which comprises irradiating the coating film with energy rays in a state where the surface of the photoradical polymerizable coating film according to claim 5 or 6 is in contact with the atmosphere.
  8. 照射するエネルギー線が、360nm~410nmの波長範囲の光を含むエネルギー線であることを特徴とする、請求項7に記載の光ラジカル重合性塗膜の硬化方法。 The method for curing a photoradical polymerizable coating film according to claim 7, wherein the energy ray to be irradiated is an energy ray containing light in a wavelength range of 360 nm to 410 nm.
  9. 360nm~410nmの波長範囲の光が、365nm、385nm、395nm、405nmのLED光又は半導体レーザ光であることを特徴とする、請求項8に記載の光ラジカル重合性塗膜の硬化方法。 The method for curing a photoradical polymerizable coating film according to claim 8, wherein the light in the wavelength range of 360 nm to 410 nm is LED light or semiconductor laser light of 365 nm, 385 nm, 395 nm, and 405 nm.
  10. LED光又は半導体レーザ光の照射強度が10mW/cm以上2000mW/cm未満であることを特徴とする、請求項9に記載の光ラジカル重合性塗膜の硬化方法。 Irradiation intensity of the LED light or semiconductor laser beam and less than 10 mW / cm 2 or more 2000 mW / cm 2, curing method of radical photopolymerizable coating of claim 9.
  11. LED光又は半導体レーザ光の照射エネルギーが、50mJ/cm以上10000mJ/cm未満であることを特徴とする、請求項9又は10に記載の光ラジカル重合性塗膜の硬化方法。
     
     

     
    Irradiation energy of LED light or semiconductor laser beam, and less than 50 mJ / cm 2 or more 10000 mJ / cm 2, curing method of radical photopolymerizable coating according to claim 9 or 10.



PCT/JP2020/015440 2019-04-11 2020-04-06 Radical photocuring oxygen inhibition reducer, radical photopolymerizable composition containing radical photocuring oxygen inhibition reducer, coating containing radical photocuring oxygen inhibition reducer, and method for curing same WO2020209209A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075963 2019-04-11
JP2019075963A JP7276652B2 (en) 2019-04-11 2019-04-11 Photoradical curing oxygen inhibition reducing agent, photoradical polymerizable composition containing photoradical curing oxygen inhibition reducing agent, coating film containing photoradical curing oxygen inhibition reducing agent and curing method thereof

Publications (1)

Publication Number Publication Date
WO2020209209A1 true WO2020209209A1 (en) 2020-10-15

Family

ID=72750552

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/016067 WO2020208833A1 (en) 2019-04-11 2019-04-13 Photo-radically curable oxygen-inhibition-reducing agent, photo-radically curable oxygen-inhibition-reducing agent-containing photo-radically polymerizable composition, photo-radically curable oxygen-inhibition-reducing agent-containing coating film, and method for curing same
PCT/JP2020/015440 WO2020209209A1 (en) 2019-04-11 2020-04-06 Radical photocuring oxygen inhibition reducer, radical photopolymerizable composition containing radical photocuring oxygen inhibition reducer, coating containing radical photocuring oxygen inhibition reducer, and method for curing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016067 WO2020208833A1 (en) 2019-04-11 2019-04-13 Photo-radically curable oxygen-inhibition-reducing agent, photo-radically curable oxygen-inhibition-reducing agent-containing photo-radically polymerizable composition, photo-radically curable oxygen-inhibition-reducing agent-containing coating film, and method for curing same

Country Status (3)

Country Link
JP (1) JP7276652B2 (en)
KR (1) KR20210154962A (en)
WO (2) WO2020208833A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177795A1 (en) * 2016-04-15 2017-10-19 常州强力电子新材料股份有限公司 Free radical-cation hybrid photocuring system and applications thereof
JP2018002817A (en) * 2016-06-30 2018-01-11 川崎化成工業株式会社 Photoradical polymerizable composition and method of curing the same
WO2019009157A1 (en) * 2017-07-04 2019-01-10 川崎化成工業株式会社 Radical polymerization control agent and radical polymerization control method
JP2019073501A (en) * 2017-10-13 2019-05-16 川崎化成工業株式会社 Photopolymerization sensitizer having migration resistance
WO2019159908A1 (en) * 2018-02-13 2019-08-22 川崎化成工業株式会社 Compound having polycyclic aromatic skeleton, and endoperoxide compound of same
JP2020066730A (en) * 2018-10-18 2020-04-30 川崎化成工業株式会社 Oxygen inhibition-reduced photo-radical polymerizable coated film and method for curing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209083A (en) 1995-02-02 1996-08-13 Sekisui Chem Co Ltd Acrylic tacky agent and acrylic tacky tape
JP4208856B2 (en) 2004-04-28 2009-01-14 キヤノン株式会社 Method for manufacturing liquid discharge head
JP5030562B2 (en) 2006-11-30 2012-09-19 富士フイルム株式会社 Ink jet ink composition and ink jet recording method
JP5594506B2 (en) 2007-08-09 2014-09-24 セイコーエプソン株式会社 Photocurable ink composition, ink cartridge, ink jet recording method and recorded matter
JP2009096991A (en) 2007-09-27 2009-05-07 Fujifilm Corp Curable composition, image forming material, and lithographic printing original plate
JP6032536B2 (en) * 2012-08-06 2016-11-30 川崎化成工業株式会社 9,10-bis (2-acyloxyalkoxy) anthracene compound, production method thereof and use thereof
JP6160805B2 (en) * 2012-11-20 2017-07-12 川崎化成工業株式会社 Radical polymerization sensitizer.
CN105037587B (en) * 2015-06-24 2017-03-22 常州强力先端电子材料有限公司 Sensitizer applicable to UV-LED photocuring system
JP6695567B2 (en) * 2016-04-23 2020-05-20 川崎化成工業株式会社 9,10-Bis {2- (substituted aminocarbonyloxy) alkoxy} anthracene compound, its production method and its use
JP2018002630A (en) * 2016-06-30 2018-01-11 川崎化成工業株式会社 Photopolymerization sensitizer
JP6859683B2 (en) * 2016-12-03 2021-04-14 川崎化成工業株式会社 (2-carboxy-mono-substituted or 1,2-di-substituted-ethyl) Anthracene compounds having a carbonyloxy group, their production methods and their uses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017177795A1 (en) * 2016-04-15 2017-10-19 常州强力电子新材料股份有限公司 Free radical-cation hybrid photocuring system and applications thereof
JP2018002817A (en) * 2016-06-30 2018-01-11 川崎化成工業株式会社 Photoradical polymerizable composition and method of curing the same
WO2019009157A1 (en) * 2017-07-04 2019-01-10 川崎化成工業株式会社 Radical polymerization control agent and radical polymerization control method
JP2019073501A (en) * 2017-10-13 2019-05-16 川崎化成工業株式会社 Photopolymerization sensitizer having migration resistance
WO2019159908A1 (en) * 2018-02-13 2019-08-22 川崎化成工業株式会社 Compound having polycyclic aromatic skeleton, and endoperoxide compound of same
JP2020066730A (en) * 2018-10-18 2020-04-30 川崎化成工業株式会社 Oxygen inhibition-reduced photo-radical polymerizable coated film and method for curing the same

Also Published As

Publication number Publication date
JP2020172599A (en) 2020-10-22
KR20210154962A (en) 2021-12-21
JP7276652B2 (en) 2023-05-18
WO2020208833A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
KR101567837B1 (en) Photoinitiators with fluorene structure and reactive liquid crystal compositions, and photoresist compositions comprising the same
JP6160805B2 (en) Radical polymerization sensitizer.
WO2014109303A1 (en) Anthracene compound and use thereof as photopolymerization sensitizer
JP6344640B2 (en) Radical polymerization sensitizer
JP7129006B2 (en) Photopolymerization sensitizer with migration resistance
CN111448280B (en) Photosensitizing agent and active energy ray-curable composition
JP6260851B2 (en) Radical polymerization sensitizer
WO2020209209A1 (en) Radical photocuring oxygen inhibition reducer, radical photopolymerizable composition containing radical photocuring oxygen inhibition reducer, coating containing radical photocuring oxygen inhibition reducer, and method for curing same
JP6064300B2 (en) Radical polymerization sensitizer
WO2020213442A1 (en) Photopolymerizable composition, coating film containing said photopolymerizable composition, and curing method therefor
CN113166036B (en) Photopolymerizing sensitizers with migration resistance
JP5842566B2 (en) 10- (2-Naphthyl) anthracene ether compound, process for its production and use thereof
JP6040772B2 (en) 9'-Acyloxy-10 '-[1,4-bis (acyloxy) -2-naphthyl] anthracene compound, production method thereof and use thereof
JP2014070203A (en) Radical polymerization sensitizers
JP6090707B2 (en) Radical polymerization sensitizer
JP7237282B2 (en) Photopolymerization sensitizer with migration resistance
JP7104366B2 (en) Reactive photopolymerization sensitizer
WO2020054116A1 (en) Photopolymerization sensitizer
WO2020054874A1 (en) Photopolymerization sensitizer
WO2021172341A1 (en) Photoradically polymerizable composition
JP2022007950A (en) Photoradically polymerizable composition
JP2014070059A (en) 9-(substituted carbonyloxy) anthracene compounds, production method thereof and applications thereof
JP2017109980A (en) 5,6,11,12-tetra (substituted oxy) dibenzo [b, h] biphenylene compound, production method, and use therefor
TW201829480A (en) Polymer modified with thiol compound, photo-curable composition including said polymer, and use therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787756

Country of ref document: EP

Kind code of ref document: A1