WO2020208710A1 - Steel material - Google Patents

Steel material Download PDF

Info

Publication number
WO2020208710A1
WO2020208710A1 PCT/JP2019/015468 JP2019015468W WO2020208710A1 WO 2020208710 A1 WO2020208710 A1 WO 2020208710A1 JP 2019015468 W JP2019015468 W JP 2019015468W WO 2020208710 A1 WO2020208710 A1 WO 2020208710A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
particles
steel
steel material
Prior art date
Application number
PCT/JP2019/015468
Other languages
French (fr)
Japanese (ja)
Inventor
信幸 吉村
元一 重里
祥晃 新宅
真吾 中村
学 星野
竜一 本間
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2019/015468 priority Critical patent/WO2020208710A1/en
Priority to JP2021513064A priority patent/JP7205618B2/en
Publication of WO2020208710A1 publication Critical patent/WO2020208710A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a steel material having excellent toughness in the heat-affected zone (HAZ).
  • High-strength steel plates with a yield strength of about 300 to 700 MPa are used for various welded steel structures such as construction, bridges, shipbuilding, line pipes, construction machinery, marine structures, and tanks. These structures are required to have good HAZ toughness under a wide range of welding conditions from small heat input welding with a welding heat input of about 5 kJ / mm to ultra-large heat input welding with a welding heat input of more than 130 kJ / mm. Be done.
  • the heating temperature during welding becomes higher as it approaches the melting line, and austenite ( ⁇ ) becomes significantly coarser especially in the region heated to 1400 ° C. or higher near the melting line, and the HAZ structure after cooling becomes coarser. And the toughness deteriorates. This tendency becomes more remarkable as the welding heat input increases.
  • the conventional HAZ toughness improvement technology is roughly classified based on two basic technologies. One of them is a technology to prevent the coarsening of austenite by utilizing the pinning effect of particles in steel. Fine particles that contribute to the miniaturization of HAZ crystal grains are called pinning particles. The other is a technique for refining the effective grain size by utilizing the intragranular ferrite transformation of austenite.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-204118
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-3896
  • Patent Document 4 JP-A-2000-80437 (Patent Document 5), JP-A-2000-80436 (Patent Document 6), JP-A-11-236645 (Patent Document 4).
  • Document 7 describes a steel material capable of suppressing ⁇ -grain growth during welding and improving HAZ toughness by dispersing oxide particles containing fine Ti and Mg in steel. There is.
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2001-342537
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2001-226739
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2001-288509
  • Described is a steel material in which oxide particles containing the above are dispersed in steel and these particles are used as ferrite transformation nuclei to suppress coarsening of the HAZ structure and improve toughness.
  • Patent Document 11 fine TiN particles are dispersed in steel and welded by the pinning effect of the TiN particles.
  • a steel material capable of suppressing the growth of ⁇ grains at the time and improving the HAZ toughness is described.
  • Patent Document 13 Japanese Patent Application Laid-Open No. 2015-7264 (Patent Document 13) and Japanese Patent Application Laid-Open No. 2012-52224 (Patent Document 14), fine AlMn-based oxide particles are dispersed in steel during welding. Steel materials capable of suppressing ⁇ -grain growth and improving HAZ toughness are described.
  • Patent Document 15 Japanese Patent Application Laid-Open No. 2015-98642 (Patent Document 16), and International Publication No. 2014/199488 (Patent Document 17) include TiN particles, MnS particles, and Described is a steel material in which these composite particles and Ti oxide particles are dispersed in steel and these particles are used as ferrite transformation nuclei to suppress coarsening of the HAZ structure and improve toughness.
  • Patent Document 18 describes a steel material containing Bi as an optional component by utilizing the miniaturization of an oxide containing Mg in order to enhance HAZ toughness.
  • Patent Document 19 describes a steel material containing Mg and Ag, or further containing Bi, in order to suppress the growth of ⁇ grains.
  • Patent Document 20 describes a steel material containing Bi in order to refine the solidified structure.
  • An object of the present invention is to provide a steel material having good HAZ toughness even after welding.
  • X element elements such as Pb, Bi, Se or Te (hereinafter, these may be referred to as X element) are contained in the steel, and the manufacturing conditions in the steelmaking process are optimized. It was found that the HAZ toughness of the steel material is improved.
  • the gist of the present invention is as follows.
  • the steel material according to one aspect of the present invention has C: 0.01 to 0.20%, Si: 1.00% or less, Mn: 0.1 to 2.5%, Mg: 0 in mass%. .0005 to 0.0100%, Al: 0.015 to 0.500%, P: 0.020% or less, S: 0.020% or less, N: 0.0100% or less, O: less than 0.0030% , X element Pb, Bi, Se, Te, one or more total: 0.0001 to 0.0100%, Cu: 0 to 2.0%, Ni: 0 to 2.0%, Cr : 0 to 2.0%, Mo: 0 to 1.0%, Nb: 0 to 0.10%, W: 0 to 2.0%, V: 0 to 0.20%, B: 0 to 0.
  • the steel material according to (1) above has Cu: 0.02 to 2.0%, Ni: 0.02 to 2.0%, Cr: 0.02 to 2.0%, in mass%. Mo: 0.02 to 1.0%, Nb: 0.01 to 0.10%, W: 0.01 to 2.0%, V: 0.01 to 0.20%, B: 0.0003 to 0.010%, Ti: 0.005 to 0.100%, Zr: 0.01 to 0.10%, Ta: 0.01 to 0.10%, Ag: 0.01 to 0.10%, Hf : 0.01 to 0.10% of 1 type or 2 or more types may be contained.
  • the steel material according to (1) or (2) above contains one or both of Ca: 0.0001 to 0.0100% and REM: 0.001 to 0.010% in mass%. May be good.
  • the steel material according to any one of (1) to (3) above contains one or both of Sn: 0.01 to 0.50% and Sb: 0.01 to 0.50% in mass%. It may be contained.
  • the steel material according to any one of (1) to (4) above has 1.00 to 1.00 ⁇ 10 4 particles / mm 2 particles having a diameter equivalent to a circle of 0.5 to 5.0 ⁇ m.
  • the number ratio of the particles containing the X element of 1% or more in atomic% to the total of Ca, Mg, Mn, S, and the X element is 30% or more. May be good.
  • the steel material according to the present embodiment is a steel material manufactured by a manufacturing method including deoxidation with Al and Mg.
  • the present inventors conducted a detailed investigation and study on the relationship between the structure of HAZ and toughness. As a result, it was found that it is effective to remarkably refine (fine grain) the austenite particles of HAZ in order to improve the HAZ toughness. It is effective to utilize the pinning effect of the particles in steel for the miniaturization of austenite particles.
  • the effect of improving the toughness by miniaturizing the austenite grains of HAZ by utilizing the pinning effect has been limited.
  • the present inventors have added one or more "X elements" selected from the group consisting of Pb, Bi, Se or Te to the steel to obtain the X element and HAZ toughness.
  • X elements selected from the group consisting of Pb, Bi, Se or Te
  • HAZ toughness can be further improved by optimizing the manufacturing conditions in the steelmaking process and controlling the solid solution amount of the X element within a predetermined range.
  • particles of a predetermined size are generated in the steel so as to have a number density in a predetermined range, and among these particles, Ca, Mg, Mn, S, and the total of the X elements are added.
  • the HAZ toughness can be further improved by setting the number ratio of particles containing 1% or more of X element in atomic% to 30% or more.
  • the present inventors used steel materials having various chemical components to obtain "solid solution amount of element X (X sol )" and "ca, among particles having a circle equivalent diameter of 0.5 to 5.0 ⁇ m.
  • a study was conducted to clarify the relationship between "the ratio of the number of particles containing 1% or more of X element in atomic% to the total of Mg, Mn, S, and X elements” and the toughness of HAZ.
  • the solid solution amount of element X was determined by inductively coupled plasma mass spectrometry (sometimes referred to as ICP mass spectrometry) and electrolytic extraction residue method. Further, the equivalent circle diameter of the particles, the number density, and the number ratio of the particles containing the X element were determined by an electron microscope as described later.
  • the toughness of HAZ was evaluated by performing a regenerative heat cycle test in which a sample collected from a steel material was given a thermal history (corresponding to a welding heat input of 450 kJ / cm) to reproduce welding. Specifically, after the reproducible heat cycle test, the Charpy absorbed energy was measured at ⁇ 20 ° C. with the number of tests set to 3 in accordance with JIS Z 2242: 2005, and the HAZ toughness was evaluated at the lowest value. As a result, as shown in FIG. 1, it was found that the HAZ toughness was improved when X sol was in the range of 0.0001 to 0.0050% (1 to 50 ppm). Further, as shown in FIG.
  • the total of Ca, Mg, Mn, S, and X elements is added.
  • the HAZ toughness was further improved when the number ratio of the particles containing 1 atomic% or more of the X element was 30% or more.
  • the steel material according to the present embodiment has C: 0.01 to 0.20%, Si: 1.00% or less, Mn: 0.1 to 2.5%, Mg: 0.0005 to 0% in mass%. Contains 0100%, Al: 0.015 to 0.500%, P: 0.020% or less, S: 0.020% or less, N: 0.0100% or less, O: less than 0.0030%, and further.
  • Pb 0.0100% or less, Bi: 0.0100% or less, Se: 0.0100% or less, Te: 0.0100% or less, 1 type or 2 or more types of X elements in total from 0.0001 to 0.0100%, Cu: 0 to 2.0%, Ni: 0 to 2.0%, Cr: 0 to 2.0%, Mo: 0 to 1.0%, Nb: 0 to 0.10%, W: 0 to 2.0%, V: 0 to 0.20%, B: 0 to 0.010%, Ti: 0 to 0.100%, Zr: 0 to 0.10%, Ta: 0 to 0 .10%, Ag: 0 to 0.10%, Hf: 0 to 0.10%, Ca: 0 to 0.0100%, REM: 0 to 0.010%, Sn: 0 to 0.50%, Sb : Contains 0 to 0.50%, and the balance consists of Fe and impurities.
  • mass% is expressed as%. Further, in the following description, when the upper limit value and the lower limit value of the element content are connected by "-" and displayed in a range, the range including the upper limit value and the lower limit value is meant unless otherwise specified. Therefore, when expressed as 0.01 to 0.20% in mass%, the range means a range of 0.01 mass% or more and 0.20 mass% or less.
  • C 0.01 to 0.20%
  • C is an element that increases the strength of the base metal. If the C content is less than 0.01%, the effect of improving the strength of the base metal is small, so 0.01% or more is set as the lower limit.
  • the lower limit of the more preferable C content is 0.06% or more.
  • the upper limit of the C content is set to 0.20% or less.
  • the upper limit of the C content is preferably 0.15% or less, more preferably 0.13% or less, even more preferably 0.10% or less, still more preferably 0.08% or less. ..
  • Si 1.00% or less Si is an element that functions as an antacid and contributes to an increase in strength, but if it is contained in excess, MA, which is a hard embrittled structure, is formed in the microstructure of HAZ. It will be easier to do. Since this MA deteriorates the toughness of HAZ, it is desirable to limit the Si content, but if it is 1.00% or less, Si may be intentionally contained.
  • the Si content is preferably 0.50% or less, more preferably 0.30% or less. Since it is desirable that the Si content is low in order to improve the HAZ toughness, it is not necessary to particularly limit the lower limit value, and the lower limit value is 0%. However, reducing the Si content to less than 0.03% may accompany an increase in cost, in which case it is desirable to set the lower limit to 0.03% or more.
  • Mn 0.1-2.5% Mn needs to be contained in an amount of 0.1% or more as an effective component for ensuring the strength and toughness of the base material.
  • the Mn content is more preferably 0.3% or more, further preferably 0.4% or more, and even more preferably 0.5% or more.
  • the inclusion of a large amount of Mn leads to segregation and formation of a hard phase, which lowers HAZ toughness.
  • the upper limit was set to 2.5% or less within an acceptable range.
  • a more preferable upper limit of the Mn content is 2.3% or less, more preferably 2.0% or less.
  • P 0.020% or less
  • P is an element that causes intergranular embrittlement and is harmful to toughness. Therefore, it is desirable that the P content is low. If P of more than 0.020% is contained, the HAZ toughness is lowered even if the austenite grains of HAZ are refined, so the P content is limited to 0.020% or less. It is preferably 0.010% or less, more preferably 0.008% or less. It is not necessary to limit the lower limit of the P content in particular, but since it is not technically easy to set the P content to 0%, the lower limit may be set to more than 0%. The P content may be 0.001% or more.
  • S 0.020% or less
  • S is an element that forms pinning particles containing Mg and contributes to the improvement of HAZ toughness. If S of more than 0.020% is contained, the stability of the pinning particles at a high temperature is lowered, and the effect of improving the HAZ toughness may not be sufficiently obtained. Therefore, the upper limit of the S content is set to 0.020% or less.
  • the upper limit of the preferable S content is 0.015% or less. In order to improve HAZ toughness, the upper limit of the S content may be 0.010% or less and 0.008% or less. It is not necessary to particularly limit the lower limit of the S content, but since it is not technically easy to set the S content to 0%, the lower limit may be set to more than 0%.
  • the S content is preferably 0.0020% or more. In order to generate a larger amount of particles, the S content may be 0.0025% or more, or 0.0030% or more.
  • Mg 0.0005-0.0100% Mg is an important element that forms pinning particles and contributes to the improvement of HAZ toughness. If the Mg content is less than 0.0005%, a sufficient number of pinning particles may not be obtained, so the lower limit is set to 0.0005% or more. In order to generate a larger amount of particles, the Mg content is preferably 0.0007% or more, more preferably 0.0008% or more, and even more preferably 0.0010% or more. On the other hand, even if the Mg content exceeds 0.0100%, the effect of improving HAZ toughness is saturated and the economic efficiency is impaired. Therefore, the upper limit of the Mg content is set to 0.0100% or less. The upper limit of the Mg content may be 0.0080% or less or 0.0050% or less.
  • Al 0.015 to 0.500%
  • Al is an element that functions as an antacid and reduces the amount of dissolved oxygen in molten steel.
  • the lower limit of the Al content is 0.015% or more in order to promote the formation of pinning particles.
  • the Al content is preferably 0.020% or more, more preferably 0.030% or more. However, if Al is excessively contained, the HAZ toughness deteriorates, so the Al content is set to 0.5500% or less.
  • the upper limit of the preferable Al content is 0.300% or less. In order to improve HAZ toughness, the upper limit of Al content may be 0.170% or less, 0.10% or less, or 0.080% or less.
  • N 0.0100% or less
  • N is an element that forms a nitride, and when the N content is large, coarse nitrides such as AlN and TiN are likely to be produced. These coarse particles serve as a starting point for brittle fracture and may lead to a decrease in HAZ toughness. Therefore, the upper limit of the N content is set to 0.0100% or less.
  • the upper limit of the N content is preferably 0.0007% or less, more preferably 0.0050% or less. It is desirable that the N content is small, but reducing the N content to less than 0.0020% may accompany an increase in cost, and therefore the lower limit may be 0.0020% or more.
  • the N content may be 0.0030% or more.
  • O Less than 0.0030% O is an element that forms an oxide, and if the content is large, a coarse oxide is likely to be formed. The coarse oxide becomes the starting point of fracture and lowers the HAZ toughness, so the O content is set to less than 0.0030%.
  • the upper limit of the preferable O content is 0.0028% or less, more preferably 0.0025% or less, and even more preferably 0.0023% or less.
  • reducing the O content to less than 0.0001% leads to an increase in cost, and in order to generate fine particles described later, it is preferable to contain O content of 0.0001% or more.
  • the O content may be 0.0005% or more, or 0.0010% or more in order to generate finer particles.
  • a total of 0.0001 to 0.0100% of X elements of Pb, Bi, Se, and Te contains one or more of the X elements Pb, Bi, Se, and Te as essential components, and as will be described later, from the total X total of the contents of these X elements, Pb in a state of forming the inclusions obtained by electrolytic extraction residue method, Bi, Se, X sol obtained by subtracting the X insol is the sum of the content of Te is, in mass%, 0.0001 to 0.0050 %.
  • the amount of element X that dissolves in steel can be measured by the electrolytic extraction residue method.
  • the content of X element (total content of Pb, Bi, Se, and Te: X total ) needs to be 0.0001% or more.
  • the total content of the X element is preferably 0.0005% or more, more preferably 0.0010% or more, still more preferably 0.0020% or more.
  • the steel material according to the present embodiment at the position of 1/4 of the thickness from the surface, the particles of 0.5 ⁇ 5.0 .mu.m equivalent circle diameter of 1.00 (1.00 ⁇ 10 0) ⁇ 1.
  • the ratio is preferably 30% or more.
  • the content of X element (content of one or more of Pb, Bi, Se, and Te: X total) ) Must be 0.0001% or more.
  • the content of the X element is preferably 0.0005% or more, more preferably 0.0010% or more, still more preferably 0.0020% or more.
  • the effect of the X element is not always clear, but it is possible that the formation of particles containing the X element contributes to the improvement of the pinning effect of the fine particles in the steel. On the other hand, if these X elements are excessively contained, the HAZ toughness is lowered.
  • the upper limit of the content of each of the X elements is 0.0100% or less, and the upper limit of the total content of the X elements is 0.0100% or less.
  • the total content of the X element is more preferably 0.0080% or less, further preferably 0.0050% or less, and most preferably 0.0030% or less.
  • the balance of the chemical components of the steel material according to this embodiment is iron (Fe) and impurities.
  • Impurities are components that are mixed in by raw materials such as ores and scraps and other factors when steel materials are industrially manufactured, and are allowed as long as they do not adversely affect the steel materials according to the present embodiment. To do. However, among impurities, it is necessary to limit the upper limit values for P, S, O and N as described above.
  • the steel material according to the present embodiment basically contains the above-mentioned chemical components, but in order to improve the mechanical properties and HAZ toughness of the steel material (base material), it may be replaced with a part of Fe as necessary. Further, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 2.0% or less, Mo: 1.0% or less, Nb: 0.10% or less, W: 2.0% or less, V: 0.20% or less, B: 0.010% or less, Ti: 0.100% or less, Zr: 0.10% or less, Ta: 0.10% or less, Ag: 0.10% or less, Hf: It may contain 1 type or 2 or more types of 0.10% or less. However, since the content of these elements is not essential, the lower limit is 0%.
  • Cu 0-2.0%
  • Cu is an element effective for increasing the strength of the base material, and Cu may be contained. However, if Cu is contained in excess of 2.0%, HAZ toughness may decrease. Therefore, the Cu content is limited to 2.0% or less.
  • the Cu content is preferably 1.0% or less, more preferably 0.8% or less, and even more preferably 0.5% or less.
  • Cu may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%.
  • the Cu content is preferably 0.02% or more. More preferably, the Cu content is 0.1% or more.
  • Ni 0-2.0%
  • Ni is an element effective for improving toughness and strength, and Ni may be contained. However, even if Ni is contained in excess of 2.0%, the effect is saturated. Therefore, the Ni content is limited to 2.0% or less from the viewpoint of economy.
  • the Ni content is preferably 1.5% or less, more preferably 1.0% or less, and even more preferably 0.7% or less.
  • Ni may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%.
  • the Ni content is preferably 0.02% or more. More preferably, the Ni content is 0.1% or more.
  • Cr 0-2.0% Cr is an element that increases the strength of the base metal by improving hardenability and strengthening precipitation, and Cr may be contained. However, if Cr is contained in excess of 2.0%, MA is likely to be generated in HAZ, and HAZ toughness is lowered. Therefore, the Cr content is limited to 2.0% or less.
  • the Cr content is preferably 1.0% or less, more preferably 0.5% or less.
  • Cr may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%.
  • the Cr content is preferably 0.02% or more. More preferably, the Cr content is 0.1% or more.
  • Mo 0-1.0% Mo is an element that improves hardenability and increases the strength of the base material, and Mo may be contained. However, if Mo is contained in excess of 1.0%, a hard structure may be formed in the HAZ and the HAZ toughness may decrease. Therefore, the Mo content is limited to 1.0% or less.
  • the Mo content is preferably 0.5% or less, more preferably 0.3% or less.
  • Mo may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof does not need to be particularly limited and may be 0%.
  • the Mo content is preferably 0.02% or more in order to improve the strength of the base material. More preferably, the Mo content is 0.1% or more.
  • Nb 0 to 0.10%
  • Nb is an element that improves hardenability, and also contributes to the miniaturization of the structure by suppressing the formation of precipitates and recrystallization.
  • Nb may be contained in order to increase the strength of the base material and improve the toughness and productivity of the base material. However, if Nb is contained in excess of 0.10%, a hard structure or inclusions may be formed in HAZ, and HAZ toughness may decrease. Therefore, the Nb content is limited to 0.10% or less.
  • the Nb content is preferably 0.05% or less, more preferably 0.04% or less.
  • Nb may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%.
  • the Nb content is preferably 0.01% or more in order to improve the strength and toughness of the base metal and to make it economical.
  • W 0-2.0% W is an element that contributes to the improvement of hardenability and the strengthening of precipitation.
  • W may be contained in order to increase the strength of the base metal and improve the toughness. However, if W is contained in excess of 2.0%, a hard structure may be formed in HAZ and the HAZ toughness may decrease. Therefore, the W content is limited to 2.0% or less.
  • the W content is preferably 1.0% or less, more preferably 0.5% or less.
  • W may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%.
  • the W content is preferably 0.01% or more in order to improve the strength and toughness of the base metal.
  • V 0 to 0.20% Since V is an element that improves hardenability and is an element that forms carbides and nitrides and is effective in increasing the strength of the base metal, V may be contained. However, if V is contained in excess of 0.20%, the precipitation of carbonitride in HAZ becomes remarkable, and HAZ toughness may decrease. Therefore, the V content is limited to 0.20% or less. The V content is preferably 0.10% or less. V may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. In order to improve the strength of the base material, the V content is preferably 0.01% or more.
  • B 0 to 0.010%
  • B is an element that remarkably enhances hardenability and improves the strength and toughness of the base material and HAZ, and B may be contained. However, if B is contained in excess of 0.010%, HAZ toughness and weldability may deteriorate. Therefore, the B content is limited to 0.010% or less.
  • the preferred B content is 0.007% or less, more preferably 0.005% or less.
  • the lower limit of the B content may be 0%, but the B content is preferably 0.0003% or more in order to obtain the effect of increasing the strength.
  • the B content is more preferably 0.0005% or more, and even more preferably 0.0010% or more.
  • Ti 0 to 0.100%
  • Ti is an element that forms TiN and contributes to the refinement of crystal grains. Ti may be included to improve strength and toughness. However, if Ti is contained in excess of 0.100%, TiC may be excessively generated and HAZ toughness may decrease. Therefore, the Ti content is limited to 0.100% or less.
  • the Ti content is preferably 0.050% or less, more preferably 0.030% or less.
  • Ti may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%.
  • the Ti content is preferably 0.005% or more, more preferably 0.010% or more.
  • Zr 0 to 0.10% Since Zr is an element that forms carbides and nitrides and is effective for increasing the strength of the base material and refining the structure, Zr may be contained. However, if Zr is contained in excess of 0.10%, coarse nitrides may be formed and the toughness may decrease. Therefore, the Zr content is limited to 0.10% or less. The Zr content is preferably 0.05% or less. The lower limit of the Zr content does not have to be particularly limited and may be 0%, but the Zr content is preferably 0.01% or more in order to improve the strength of the base metal.
  • Ta 0 to 0.10%
  • Ta is an element effective for ensuring the strength and toughness of the base material, and Ta may be contained. However, if Ta is contained in excess of 0.10%, HAZ toughness may decrease. Therefore, the Ta content is limited to 0.10% or less. The Ta content is preferably 0.05% or less. Ta may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. The lower limit of the Ta content may be 0.01% or more.
  • Ag 0 to 0.10% Ag is an element effective for increasing the strength of the base material and making the structure finer, and may contain Ag. However, if Ag is contained in excess of 0.10%, HAZ toughness may decrease. Therefore, the Ag content is limited to 0.10% or less. The Ag content is preferably 0.05% or less. Ag may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof does not need to be particularly limited and may be 0%. The lower limit of Ag content may be 0.01% or more.
  • Hf 0 to 0.10% Hf is an element that contributes to the formation of pinning particles, and Hf may be contained. However, if Hf is contained in excess of 0.10%, coarse nitrides may be formed in HAZ and the HAZ toughness may decrease. Therefore, the Hf content is limited to 0.10% or less.
  • the Hf content is preferably 0.05% or less.
  • the lower limit of the Hf content need not be particularly limited and may be 0%.
  • the lower limit of the Hf content may be 0.01% or more.
  • Ca: 0.0100% or less and REM: 0.010% or less are further replaced with a part of Fe as necessary.
  • One or both may be contained.
  • Ca 0 to 0.0100%
  • Ca is an element that forms oxides and sulfides, and may be contained in order to control the morphology of inclusions.
  • the Ca content is preferably 0.0001% or more.
  • the Ca content may be 0.0001% or more from that viewpoint as well.
  • the Ca content is preferably 0.0060% or less, more preferably 0.0050% or less, even more preferably 0.0040% or less, still more preferably 0.0030% or less.
  • REM 0 to 0.010% REM is an element that forms oxides and sulfides, and REM may be contained in order to control the morphology of inclusions. However, if the REM content is high, coarse oxides are likely to be formed and the HAZ toughness may decrease. Therefore, the REM content is limited to 0.010% or less.
  • the REM content is preferably 0.005% or less, more preferably 0.004% or less. In order to generate pinning particles, it is preferable to limit the REM content to 0.0005% or less.
  • the lower limit of the REM content need not be particularly limited and may be 0%.
  • the REM content may be 0.001% or more.
  • REM is a general term for a total of 17 elements including lanthanoid elements such as La and Ce and Sc and Y. That is, the REM content is the total content of these elements. When adding these elements, the effect does not change even if a misch metal containing these elements is used.
  • the steel material according to the present embodiment further replaces a part of Fe with one or both of Sn: 0.50% or less and Sb: 0.50% or less, if necessary. May be contained.
  • Sn and Sb may be contained from the viewpoint of corrosion resistance and the like, but if they are contained in excess, HAZ toughness may be impaired. Therefore, the contents of Sn and Sb are 0.50% or less, more preferably 0.20% or less, and even more preferably 0.10% or less.
  • the lower limit of these elements does not need to be particularly limited and may be 0%.
  • the contents of Sn and Sb may be 0.01% or more, respectively.
  • the chemical composition of the steel material according to the present embodiment preferably has a carbon equivalent Ceq represented by the following formula in the range of 0.25 to 0.50.
  • Ceq is 0.30 or more
  • the steel material has more excellent HAZ toughness.
  • Ceq is 0.45 or less
  • the formation of MA is suppressed and the HAZ toughness is improved, which is more preferable. It is more preferable that Ceq is 0.40 or less.
  • Ceq C + Mn / 6 + (Cr + Mo + V) / 5+ (Cu + Ni) / 15 [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] in the formula are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%), and if it is not contained, 0 is substituted.
  • the steel material according to the present embodiment contains one or more of the X elements (Pb, Bi, Se, Te).
  • This element X exists in steel in a solid solution state or in a state where particles (inclusion particles) are formed with other elements.
  • the content X sol of the element X in solid solution state when the content of X insol the X element in a state of forming the inclusions, and the content of the sum of these was X total , X sol obtained by subtracting the X insol from X total is, by mass%, 0.0001 to 0.0050%.
  • X sol is 0.0001 to 0.0050%, coarsening of austenite grains due to the heat effect of welding is suppressed, and HAZ toughness of the steel material is improved.
  • X sol is set to 0.0001% or more.
  • X sol is preferably 0.0002% or more, more preferably 0.0003% or more.
  • X sol is set to 0.0050% or less.
  • the X sol is preferably 0.0040% or less, more preferably 0.0030% or less. As the content of Ca, Al, O and S increases, X sol may decrease.
  • X total , X insol , and X sol may be obtained by the following methods, respectively.
  • X total the content of each X element may be determined by inductively coupled plasma mass spectrometry, and the total content of these elements may be X total .
  • X insol can be determined by the electrolytic extraction residue method. Specifically, a sample collected from the steel material according to the present embodiment is electrolyzed and dissolved in a non-aqueous solvent. Then, the residue in the solution is recovered by a filter having a pore size of 0.2 ⁇ m, and the total content of each X element contained in the residue is determined by inductively coupled plasma mass spectrometry.
  • 4% methyl salicylate-1% salicylic acid-1% tetramethylammonium chloride-methanol was adopted as the electrolytic solution so that pinning particles containing element X were included in the residue after electrolysis. Then, electrolytic extraction is performed at an electrolytic potential of ⁇ 100 mV.
  • X sol can be determined by subtracting the X insol from X total obtained by the aforementioned method. Therefore, the X element contained in the particles significantly finer than the pore size of the filter used in the electrolytic extraction residue method may be contained in X sol , but it is a small amount and does not affect the HAZ toughness. You don't have to.
  • the steel material according to the present embodiment has a position of 1/4 of the thickness from the surface of the steel material (when the steel material is a steel plate, a position of 1/4 depth of the plate thickness in the plate thickness direction from the surface, and the steel material has a circular cross section.
  • particles having a diameter equivalent to a circle of 0.5 to 5.0 ⁇ m are 1.00 to 1.00 ⁇ 10 4 particles / mm 2 at a position (1/4 of the diameter from the surface toward the center).
  • the number ratio of particles containing X element of 1% or more in atomic% to the total of Ca, Mg, Mn, S, and the X element is 30% or more. It is preferable to have.
  • the equivalent circle diameter is 0.5 to 5.0 ⁇ m and the ratio of the number of particles containing 1 atomic% or more of X element to the total of Ca, Mg, Mn, S, and X elements increases. Although it is unknown at this point, the effect of improving HAZ toughness is enhanced.
  • particles having a circle-equivalent diameter of 0.5 to 5.0 ⁇ m are targeted, but particles having a circle-equivalent diameter of less than 0.5 ⁇ m and more than 5.0 ⁇ m may be present. If the number density of particles having a circle-equivalent diameter of 0.5 to 5.0 ⁇ m is 1.00 particles / mm 2 or more, the effect of suppressing the grain growth of austenite becomes remarkable.
  • particles having a concentration of element X of 1 atomic% or more are defined as particles containing element X.
  • the number ratio of particles containing 1% or more of X element in atomic% with respect to the total of Ca, Mg, Mn, S, and X elements is preferably 30% or more, more preferably 40% or more. It is preferable, and more preferably 50% or more. Further, if the concentration of the X element is 1 atomic% or more, it can be reliably detected by an analytical instrument, so that particles containing an X element of 1 atomic% or more can be measured.
  • the circle-equivalent diameter, the number density, and the number ratio of the particles containing 1 atomic% or more of the X element in the steel material according to the present embodiment are determined by elemental analysis and image analysis using an electron microscope. Specifically, among the particles observable with a field emission scanning electron microscope (FE-SEM), the number ratio of particles containing the X element (Pb, Bi, Se, Te) is measured. .. Whether or not the particles contain 1 atomic% or more of X elements may be determined by an energy dispersive X-ray element analyzer (Energy Dispersive X-ray Spectrometry, EDS). At that time, the elements to be analyzed are Mn, Mg, Ca, S, and X elements.
  • EDS energy dispersive X-ray element analyzer
  • the number density of particles contained in the steel material For the number density of particles contained in the steel material, a sample is taken from the steel material, the cross section in the thickness direction is mirror-polished, and the position of 1/4 of the thickness is observed from the surface of the steel material with an FE-SEM with EDS. Can be measured. It is obtained by measuring the number of particles having a diameter equivalent to a circle and having a size of 0.5 to 5.0 ⁇ m for an area of at least 25,000 ⁇ m 2 or more and converting it into a number density per unit area. For particles having a circle-equivalent diameter of less than 0.5 ⁇ m, the number of particles is insufficiently measured by FE-SEM observation, so particles having a diameter of 0.5 ⁇ m or more are measured.
  • the number of particles is large, for example, the number of particles may be 1000 or more, so it is a difficult task to identify all the particles one by one. Therefore, it is sufficient to identify whether or not at least 20 or more particles contain 1 atomic% or more of X element under the following conditions, and determine the abundance ratio thereof.
  • elements other than element X may be detected.
  • the concentration of element X in the particles is determined by quantifying the average of the entire particles by surface analysis of EDS.
  • the electron beam diameter used for this quantification is 0.01 to 1.0 ⁇ m, and the magnification of SEM observation is 1000 to 10000 times.
  • the number of particles may be measured by preparing a sample from a steel material obtained by heating a steel material to 1400 ° C. and holding it for about 3 seconds to quench it. This is because, for example, when cementite or alloy nitride is produced, it is difficult to measure the number of particles having a circle-equivalent diameter of 0.5 to 5.0 ⁇ m to be observed. By heating to a high temperature to dissolve the precipitates other than the observation target and then quenching them, or by applying a thermal cycle in which ferrite is generated during quenching, it is possible to prepare materials with less cementite and carbonitrides. it can. Since the particles containing Mg are stable even when heated to a high temperature and their morphology hardly changes during cooling, the measurement result of the number of particles hardly changes even if such a heat cycle is applied.
  • a method for manufacturing a steel material according to the present embodiment When controlling the state of existence of element X in steel, it is effective to control the melting process. Specifically, as a method for melting steel, for example, with the molten steel temperature set to 1650 ° C. or lower and the O concentration of the molten steel controlled to 0.0100% or less, a deoxidizing element such as Al is added, and then Mg is added. And element X are added. The addition of element X is performed at the same time as the addition of Mg or before and after the addition of Mg, and no other steps are included between them.
  • particles having a diameter equivalent to a circle of 0.5 to 5.0 ⁇ m are present at a number density of 1.00 to 1.00 ⁇ 10 4 particles / mm 2.
  • the molten steel temperature is 1650.
  • a deoxidizing element such as Al is added, and Mg is added at the same time as the addition of the X element, or Mg is added after the X element is added.
  • deoxidizing elements such as Al are added, and by adding the X element and Mg in an appropriate order, particles containing Mg can be found in the molten steel. It is formed and finely dispersed in the cast steel. Since these fine particles are stable at high temperatures, coarsening of ⁇ particles heated by welding can be suppressed.
  • a deoxidizing element such as Al
  • inclusions such as acid sulfide take in the X element and coagulate and float, so that the X element is also discharged. Will be done. Therefore, it can be inferred that by controlling the O concentration of the molten steel before adding a deoxidizing element such as Al to 0.0100% or less, the emission of the X element can be suppressed and it can be effectively utilized.
  • a deoxidizing element such as Al is added in a state where the O concentration of the molten steel is controlled to 0.0100% or less and the S concentration of the molten steel is controlled to 0.0200% or less.
  • Mg and X element are added. More preferably, for example, in a state where the O concentration of the molten steel is controlled to 0.0100% or less and the S concentration of the molten steel is controlled to 0.0200% or less, a deoxidizing element such as Al is added, and then the X element is added. , Mg is added. In this way, by adding the deoxidizing element, the X element, and Mg while controlling the O concentration and the S concentration of the molten steel, the formation of coarse inclusions and the emission of the X element can be suppressed.
  • Ca or REM may be added as an element that promotes deoxidation.
  • S can be used for the formation of pinning particles.
  • Ca and REM are not intentionally added, they may be mixed into the molten steel from refractories used in molten steel pots, fluxes and slags added for the purpose of desulfurization, and alloy raw materials.
  • the amount of Ca and REM contained in refractories, flux, slag, alloy raw materials and the like may be controlled.
  • the form and shape of Ca and REM in the molten steel may be controlled so as to be a stable oxide or the like that is difficult to be mixed in the molten steel.
  • the mechanism by which the HAZ toughness is improved by the X element is not clear, but it is possible to make the X element uniformly present in the steel by ensuring the amount of the X element (X sol ) present in the steel in the solid solution state. Presumed to be important. Further, it is considered that a synergistic effect is exhibited by securing X sol and forming particles containing Mg in the steel, and an excellent pinning effect can be obtained.
  • the heating, rolling, and heat treatment conditions after casting are appropriately set according to the target mechanical properties of the steel material, for example, controlled rolling / controlled cooling, direct quenching / tempering after rolling, quenching / tempering after cooling once after rolling, and the like. You can select it.
  • Example 1 The slab obtained by melting and casting steel was hot-rolled to obtain a steel plate having a thickness of 25 mm.
  • Mg and element X were added at the same time with the molten steel temperature set to 1650 ° C. or lower and the molten steel O concentration set to 0.0100% or lower. Further, the content of other elements was adjusted to a predetermined range, and casting was performed by continuous casting to obtain a slab.
  • a sample was taken from the obtained steel sheet, and the components of the steel sheet were analyzed using a fluorescent X-ray analysis method, a combustion-infrared absorption method, an inert gas melting method, an ICP mass spectrometry method, and the like.
  • the content of element X (Pb, Bi, Se, Te) contained in the steel sheet was determined by ICP mass spectrometry.
  • the analysis results of the steel sheet components are shown in Tables 1 to 4.
  • Ceq C + Mn / 6 + (Cr + Mo + V) / 5+ (Cu + Ni) / 15 [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] in the formula are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%), and if it is not contained, 0 is substituted.
  • the resulting sample was taken from the steel plate, the X insol determined by electrowinning residue method to determine the X sol by subtracting the X insol from X total measured by ICP mass spectrometry.
  • a regenerative thermal cycle test was conducted in which small pieces were given a thermal history to reproduce welding. Specifically, the reproduction heat cycle test was carried out under the condition that the temperature was maintained at 1400 ° C. for 23 s and the temperature from 800 ° C. to 500 ° C. was cooled at 300 s (corresponding to welding heat input 450 kJ / cm).
  • V-notch test piece was prepared from the sample after the reproduction thermal cycle test with the position of 1/4 of the thickness from the surface of the steel plate as the center of the thickness of the test piece, and the Charpy test was performed in accordance with JIS Z 2242: 2005. Was done.
  • the Charpy test was carried out at a test temperature of ⁇ 20 ° C. with a number of tests of 3, and was evaluated by the lowest value of the measured Charpy absorption energy (vE- 20 ). When the minimum value of the Charpy absorption energy of the three test pieces was 100 J or more, it was judged that the HAZ toughness was excellent.
  • Tables 5 and 6 The results are shown in Tables 5 and 6.
  • the steel materials (No. 1 to 25) having a steel component and X sol (%) within the range of the present invention have high Charpy absorption energy at ⁇ 20 ° C. after the regenerative heat cycle test. I understand.
  • the steel materials (No. 101 to 110) having a steel component or X sol (%) outside the range of the present invention have a Charpy absorption energy at ⁇ 20 ° C. after the regenerative heat cycle test. It can be seen that it is lower than that of the invention example.
  • No. No. 106 does not contain Mg and is No. Since 107 has a low Al content, the Charpy absorption energy is reduced. No. Since 108 had a large O content, the Charpy absorption energy decreased. No. In 109, X sol (%) became 0%, and the Charpy absorption energy decreased. No. In 110, the Charpy absorbed energy decreased because X sol (%) exceeded the upper limit.
  • Example 2 The slab obtained by melting and casting steel was hot-rolled to obtain a steel plate having a thickness of 25 mm.
  • Al, X element, and Mg were added in the order shown in Table 9 in a state where the molten steel temperature was 1650 ° C. or lower and the molten steel O concentration was 0.0100% or less. Further, the content of other elements was adjusted to a predetermined range, and casting was performed by continuous casting to obtain a slab.
  • Samples are taken from the obtained steel plate and used by fluorescent X-ray analysis, combustion-infrared absorption, inert gas melting, inductively coupled plasma mass spectrometry (ICP mass spectrometry), etc.
  • the composition of the steel plate was analyzed.
  • the content of element X (Pb, Bi, Se, Te) contained in the steel sheet was determined by ICP mass spectrometry.
  • the analysis results of the steel sheet components are shown in Tables 7 to 8.
  • Ceq C + Mn / 6 + (Cr + Mo + V) / 5+ (Cu + Ni) / 15 [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] in the formula are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%), and if it is not contained, 0 is substituted.
  • a sample was taken from the obtained steel sheet, heated and held at 1400 ° C. for 3 seconds, rapidly cooled, mirror-polished, and observed with an FE-SEM equipped with EDS.
  • the number of particles having a circle-equivalent diameter of 0.5 to 5.0 ⁇ m was measured for an area of 25,000 ⁇ m 2 or more, and converted into the number per unit area.
  • 20 or more particles are mapped for the entire particles by EDS, and the concentration of the X element is determined.
  • the number ratio of particles containing 1 atomic% or more of X element to the total of Mg, Mn, S and X elements was determined. The number density of these particles and the number ratio of particles containing the X element were evaluated according to the criteria shown below. The results are shown in Table 9.
  • (Particle number density standard) OK The number density of particles having a circle equivalent diameter of 0.5 to 5.0 ⁇ m is 1.00 to 1.00 ⁇ 10 4 particles / mm 2 at a position 1/4 of the plate thickness from the surface of the steel material.
  • NG The number density of particles having a circle-equivalent diameter of 0.5 to 5.0 ⁇ m is less than 1.00 particles / mm 2 .
  • OK The number ratio of particles containing 1 atomic% or more of X element is 30% or more.
  • NG The number ratio of particles containing 1 atomic% or more of X element is less than 30%.
  • a regenerative thermal cycle test was conducted in which small pieces were given a thermal history to reproduce welding. Specifically, the reproducible heat cycle test was carried out under the condition of holding at 1400 ° C. for 23 s and cooling from 800 ° C. to 500 ° C. at 300 s (corresponding to welding heat input 450 kJ / cm). Then, from the sample after the reproduction thermal cycle test, a V-notch test piece was prepared with the position of 1/4 of the plate thickness from the surface of the steel plate as the center of the thickness of the test piece, and Charpy was prepared in accordance with JIS Z 2242: 2005. The test was conducted. The Charpy test was carried out at a test temperature of ⁇ 20 ° C. with a number of tests of 3, and was evaluated by the lowest value of the measured Charpy absorption energy (vE- 20 ).
  • the number density of particles having a circle equivalent diameter of 0.5 to 5.0 ⁇ m is 1.00 to 1.00 ⁇ 10 4 particles / mm at a position 1/4 of the plate thickness from the surface of the steel material.
  • Steel materials (No. 201 to 225) having a number of 2 and having a number ratio of particles containing 1 atomic% or more of X element among the particles of 30% or more absorb Charpy at ⁇ 20 ° C. after the reproducible thermal cycle test. It can be seen that the energy is 150 J or more and the HAZ toughness is further excellent.
  • the steel material of the present invention is suitable for various welded steel structures such as construction, bridges, shipbuilding, line pipes, construction machinery, marine structures, tanks, etc., which require a high tension with a yield strength of about 300 to 700 MPa. Can be used for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

This steel material contains, in terms of mass, 0.01-0.20% C, at most 1.00% Si, 0.1-2.5% Mn, 0.0005-0.0100% Mg, 0.015-0.500% Al, at most 0.020% P, at most 0.020% S, at most 0.0100% N, less than 0.0030% O, and a total of 0.0001-0.0100% of an X element, which is one or more of Pb, Bi, Se and Te, and optionally contains one or more of Cu, Ni, Cr, Mo, Nb, W, V, B, Ti, Zr, Ta, Ag, Hf, Ca, REM, Sn and Sb, with the remainder being Fe and impurities. The Xsol value obtained by subtracting the Xinsol value, which is the total content of the Pb, Bi, Se and Te in the form of inclusions as determined by an electrolytic extraction residue technique, from the Xtotal value, which is the total content of the Pb, Bi, Se and Te, is 0.0001-0.0050 mass%.

Description

鋼材Steel
 本発明は溶接熱影響部(Heat Affected Zone:HAZ)靭性に優れる鋼材に関する。 The present invention relates to a steel material having excellent toughness in the heat-affected zone (HAZ).
 降伏強度が300~700MPa程度の高張力鋼板は、建築、橋梁、造船、ラインパイプ、建設機械、海洋構造物、タンクなどの各種の溶接鋼構造物に用いられる。これらの構造物は、溶接入熱量が5kJ/mm程度の小入熱溶接から、溶接入熱量が130kJ/mmを超える超大入熱溶接までの広範な溶接条件において良好なHAZ靭性を有することが求められる。 High-strength steel plates with a yield strength of about 300 to 700 MPa are used for various welded steel structures such as construction, bridges, shipbuilding, line pipes, construction machinery, marine structures, and tanks. These structures are required to have good HAZ toughness under a wide range of welding conditions from small heat input welding with a welding heat input of about 5 kJ / mm to ultra-large heat input welding with a welding heat input of more than 130 kJ / mm. Be done.
 HAZにおいては溶融線に近づくほど溶接時の加熱温度が高くなり、特に溶融線近傍の1400℃以上に加熱される領域ではオーステナイト(γ)が著しく粗大化してしまい、冷却後のHAZ組織が粗大化して靭性が劣化する。この傾向は溶接入熱量が大きくなるほど顕著である。 In HAZ, the heating temperature during welding becomes higher as it approaches the melting line, and austenite (γ) becomes significantly coarser especially in the region heated to 1400 ° C. or higher near the melting line, and the HAZ structure after cooling becomes coarser. And the toughness deteriorates. This tendency becomes more remarkable as the welding heat input increases.
 従来のHAZの靭性向上に関する技術は、大きく分類すると主に二つの基本技術に基づいている。その一つは鋼中の粒子によるピン止め効果を利用してオーステナイトの粗大化を防止する技術である。HAZの結晶粒の微細化に寄与する微細な粒子をピンニング粒子という。他の一つはオーステナイトの粒内フェライト変態を利用して有効結晶粒径を微細化する技術である。 The conventional HAZ toughness improvement technology is roughly classified based on two basic technologies. One of them is a technology to prevent the coarsening of austenite by utilizing the pinning effect of particles in steel. Fine particles that contribute to the miniaturization of HAZ crystal grains are called pinning particles. The other is a technique for refining the effective grain size by utilizing the intragranular ferrite transformation of austenite.
 国際公開第2014/091604号(特許文献1)、特開2013-204118号公報(特許文献2)、特開2002-3986号公報(特許文献3)には、微細なMg及びMnを含む硫化物粒子を鋼中に分散させ、硫化物粒子のピン止め効果により溶接時のγ粒成長を抑制して、HAZ靭性を向上させることが可能な鋼材が記載されている。 International Publication No. 2014/091604 (Patent Document 1), Japanese Patent Application Laid-Open No. 2013-204118 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2002-3896 (Patent Document 3) describe sulfides containing fine Mg and Mn. A steel material capable of dispersing particles in steel, suppressing γ-grain growth during welding by the pinning effect of sulfide particles, and improving HAZ toughness is described.
 また、国際公開第2001/027342号(特許文献4)、特開2000-80437号公報(特許文献5)、特開2000-80436号公報(特許文献6)、特開平11-236645号公報(特許文献7)には、微細なTi及びMgを含む酸化物粒子を鋼中に分散させることにより、溶接時のγ粒成長を抑制して、HAZ靭性を向上させることが可能な鋼材が記載されている。 In addition, International Publication No. 2001/027342 (Patent Document 4), JP-A-2000-80437 (Patent Document 5), JP-A-2000-80436 (Patent Document 6), JP-A-11-236645 (Patent Document 4). Document 7) describes a steel material capable of suppressing γ-grain growth during welding and improving HAZ toughness by dispersing oxide particles containing fine Ti and Mg in steel. There is.
 更に、特開2001-342537号公報(特許文献8)、特開2001-226739号公報(特許文献9)、特開2001-288509号公報(特許文献10)には、微細なTi、Ca及びAlを含む酸化物粒子を鋼中に分散させ、これらの粒子をフェライト変態核として利用することにより、HAZ組織の粗大化を抑制して靭性を向上させた鋼材が記載されている。 Further, Japanese Patent Application Laid-Open No. 2001-342537 (Patent Document 8), Japanese Patent Application Laid-Open No. 2001-226739 (Patent Document 9), and Japanese Patent Application Laid-Open No. 2001-288509 (Patent Document 10) describe fine Ti, Ca, and Al. Described is a steel material in which oxide particles containing the above are dispersed in steel and these particles are used as ferrite transformation nuclei to suppress coarsening of the HAZ structure and improve toughness.
 更にまた、国際公開第2011/148754号(特許文献11)、特開2009-174059号公報(特許文献12)には、微細なTiN粒子を鋼中に分散させ、TiN粒子のピン止め効果により溶接時のγ粒成長を抑制して、HAZ靭性を向上させることが可能な鋼材が記載されている。 Furthermore, according to International Publication No. 2011/148754 (Patent Document 11) and JP-A-2009-174059 (Patent Document 12), fine TiN particles are dispersed in steel and welded by the pinning effect of the TiN particles. A steel material capable of suppressing the growth of γ grains at the time and improving the HAZ toughness is described.
 また、特開2015-7264号公報(特許文献13)、特開2012-52224号公報(特許文献14)には、微細なAlMn系の酸化物粒子を鋼中に分散させることにより、溶接時のγ粒成長を抑制して、HAZ靭性を向上させることが可能な鋼材が記載されている。 Further, in Japanese Patent Application Laid-Open No. 2015-7264 (Patent Document 13) and Japanese Patent Application Laid-Open No. 2012-52224 (Patent Document 14), fine AlMn-based oxide particles are dispersed in steel during welding. Steel materials capable of suppressing γ-grain growth and improving HAZ toughness are described.
 更にまた、国際公開第2015/075771号(特許文献15)、特開2015-98642号公報(特許文献16)、国際公開第2014/199488号(特許文献17)には、TiN粒子、MnS粒子及びこれらの複合粒子やTi酸化物粒子を鋼中に分散させ、これらの粒子をフェライト変態核として利用することにより、HAZ組織の粗大化を抑制して靭性を向上させた鋼材が記載されている。 Furthermore, International Publication No. 2015/075771 (Patent Document 15), Japanese Patent Application Laid-Open No. 2015-98642 (Patent Document 16), and International Publication No. 2014/199488 (Patent Document 17) include TiN particles, MnS particles, and Described is a steel material in which these composite particles and Ti oxide particles are dispersed in steel and these particles are used as ferrite transformation nuclei to suppress coarsening of the HAZ structure and improve toughness.
 特開2001-89825号公報(特許文献18)にはHAZ靭性を高めるためにMgを含む酸化物の微細化を利用し、Biを任意成分として含む鋼材が記載されている。特開2007-100203号公報(特許文献19)には、γ粒成長を抑制するために、Mg及びAgを含有し、又は、更にBiを含有する鋼材が記載されている。特開2011-218370号公報(特許文献20)には、凝固組織を微細化するためにBiを含有する鋼材が記載されている。 Japanese Unexamined Patent Publication No. 2001-89925 (Patent Document 18) describes a steel material containing Bi as an optional component by utilizing the miniaturization of an oxide containing Mg in order to enhance HAZ toughness. Japanese Unexamined Patent Publication No. 2007-100203 (Patent Document 19) describes a steel material containing Mg and Ag, or further containing Bi, in order to suppress the growth of γ grains. Japanese Unexamined Patent Publication No. 2011-218370 (Patent Document 20) describes a steel material containing Bi in order to refine the solidified structure.
国際公開第2014/091604号International Publication No. 2014/091604 日本国特開2013-204118号公報Japanese Patent Application Laid-Open No. 2013-204118 日本国特開2002-3986号公報Japanese Patent Application Laid-Open No. 2002-3896 国際公開第2001/027342号International Publication No. 2001/027342 日本国特開2000-80437号公報Japanese Patent Application Laid-Open No. 2000-80437 日本国特開2000-80436号公報Japanese Patent Application Laid-Open No. 2000-80436 日本国特開平11-236645号公報Japanese Patent Application Laid-Open No. 11-236645 日本国特開2001-342537号公報Japanese Patent Application Laid-Open No. 2001-342537 日本国特開2001-226739号公報Japanese Patent Application Laid-Open No. 2001-226739 日本国特開2001-288509号公報Japanese Patent Application Laid-Open No. 2001-288509 国際公開第2011/148754号International Publication No. 2011/148754 日本国特開2009-174059号公報Japanese Patent Application Laid-Open No. 2009-174059 日本国特開2015-7264号公報Japanese Patent Application Laid-Open No. 2015-7264 日本国特開2012-52224号公報Japanese Patent Application Laid-Open No. 2012-52224 国際公開第2015/075771号International Publication No. 2015/075771 日本国特開2015-98642号公報Japanese Patent Application Laid-Open No. 2015-98642 国際公開第2014/199488号International Publication No. 2014/199488 日本国特開2001-89825号公報Japanese Patent Application Laid-Open No. 2001-89925 日本国特開2007-100203号公報Japanese Patent Application Laid-Open No. 2007-100203 日本国特開2011-218370号公報Japanese Patent Application Laid-Open No. 2011-218370
 これらの技術によって製造された鋼材であっても、HAZ組織の微細化効果は得られる。しかしながら、より厳しい溶接条件下で溶接が行われた場合であっても優れたHAZ靭性が得られる鋼材が求められている。
 本発明の課題は、溶接後においても良好なHAZ靭性を有する鋼材を提供することである。
Even steel materials produced by these techniques can obtain the effect of miniaturizing the HAZ structure. However, there is a demand for a steel material that can obtain excellent HAZ toughness even when welding is performed under more severe welding conditions.
An object of the present invention is to provide a steel material having good HAZ toughness even after welding.
 本発明者らが鋭意検討したところ、Pb、Bi、Se又はTeといった元素(以下、これらをX元素と称する場合がある)を鋼中に含有させるとともに、製鋼工程における製造条件を最適化することで、鋼材のHAZ靭性が向上することを見出した。本発明の要旨は以下の通りである。 As a result of diligent studies by the present inventors, elements such as Pb, Bi, Se or Te (hereinafter, these may be referred to as X element) are contained in the steel, and the manufacturing conditions in the steelmaking process are optimized. It was found that the HAZ toughness of the steel material is improved. The gist of the present invention is as follows.
(1)本発明の一態様に係る鋼材は、質量%で、C:0.01~0.20%、Si:1.00%以下、Mn:0.1~2.5%、Mg:0.0005~0.0100%、Al:0.015~0.500%、P:0.020%以下、S:0.020%以下、N:0.0100%以下、O:0.0030%未満、X元素であるPb、Bi、Se、Teの1種又は2種以上の合計:0.0001~0.0100%、Cu:0~2.0%、Ni:0~2.0%、Cr:0~2.0%、Mo:0~1.0%、Nb:0~0.10%、W:0~2.0%、V:0~0.20%、B:0~0.010%、Ti:0~0.100%、Zr:0~0.10%、Ta:0~0.10%、Ag:0~0.10%、Hf:0~0.10%、Ca:0~0.0100%、REM:0~0.010%、Sn:0~0.50%、Sb:0~0.50%、を含有し、残部がFe及び不純物からなり、前記Pb、Bi、Se、Teの含有量の合計Xtotalから、電解抽出残渣法によって求められる介在物を形成した状態の前記Pb、Bi、Se、Teの含有量の合計であるXinsolを減じて得られるXsolが、質量%で、0.0001~0.0050%である。
(2)上記(1)に記載の鋼材は、質量%で、Cu:0.02~2.0%、Ni:0.02~2.0%、Cr:0.02~2.0%、Mo:0.02~1.0%、Nb:0.01~0.10%、W:0.01~2.0%、V:0.01~0.20%、B:0.0003~0.010%、Ti:0.005~0.100%、Zr:0.01~0.10%、Ta:0.01~0.10%、Ag:0.01~0.10%、Hf:0.01~0.10%の1種又は2種以上を含有してもよい。
(3)上記(1)または(2)に記載の鋼材は、質量%で、Ca:0.0001~0.0100%、REM:0.001~0.010%の一方又は両方を含有してもよい。
(4)上記(1)~(3)のいずれかに記載の鋼材は、質量%で、Sn:0.01~0.50%、Sb:0.01~0.50%の一方又は両方を含有してもよい。
(5)上記(1)~(4)のいずれかに記載の鋼材は、円相当径で0.5~5.0μmの粒子が1.00~1.00×10個/mmの個数密度で存在し、前記粒子のうち、Ca,Mg,Mn,S,前記X元素の合計に対して原子%で1%以上の前記X元素を含む粒子の個数割合が、30%以上であってもよい。
(1) The steel material according to one aspect of the present invention has C: 0.01 to 0.20%, Si: 1.00% or less, Mn: 0.1 to 2.5%, Mg: 0 in mass%. .0005 to 0.0100%, Al: 0.015 to 0.500%, P: 0.020% or less, S: 0.020% or less, N: 0.0100% or less, O: less than 0.0030% , X element Pb, Bi, Se, Te, one or more total: 0.0001 to 0.0100%, Cu: 0 to 2.0%, Ni: 0 to 2.0%, Cr : 0 to 2.0%, Mo: 0 to 1.0%, Nb: 0 to 0.10%, W: 0 to 2.0%, V: 0 to 0.20%, B: 0 to 0. 010%, Ti: 0 to 0.100%, Zr: 0 to 0.10%, Ta: 0 to 0.10%, Ag: 0 to 0.10%, Hf: 0 to 0.10%, Ca: It contains 0 to 0.0100%, REM: 0 to 0.010%, Sn: 0 to 0.50%, Sb: 0 to 0.50%, and the balance is composed of Fe and impurities, and the Pb and Bi , Se, from the total X total content of Te, obtained by subtracting the Pb of state of forming inclusions obtained by electrolytic extraction residue method, Bi, Se, and X insol is the sum of the content of Te X The sol is 0.0001 to 0.0050% in mass%.
(2) The steel material according to (1) above has Cu: 0.02 to 2.0%, Ni: 0.02 to 2.0%, Cr: 0.02 to 2.0%, in mass%. Mo: 0.02 to 1.0%, Nb: 0.01 to 0.10%, W: 0.01 to 2.0%, V: 0.01 to 0.20%, B: 0.0003 to 0.010%, Ti: 0.005 to 0.100%, Zr: 0.01 to 0.10%, Ta: 0.01 to 0.10%, Ag: 0.01 to 0.10%, Hf : 0.01 to 0.10% of 1 type or 2 or more types may be contained.
(3) The steel material according to (1) or (2) above contains one or both of Ca: 0.0001 to 0.0100% and REM: 0.001 to 0.010% in mass%. May be good.
(4) The steel material according to any one of (1) to (3) above contains one or both of Sn: 0.01 to 0.50% and Sb: 0.01 to 0.50% in mass%. It may be contained.
(5) The steel material according to any one of (1) to (4) above has 1.00 to 1.00 × 10 4 particles / mm 2 particles having a diameter equivalent to a circle of 0.5 to 5.0 μm. Among the particles, the number ratio of the particles containing the X element of 1% or more in atomic% to the total of Ca, Mg, Mn, S, and the X element is 30% or more. May be good.
 本発明の鋼材によれば、溶接後においても良好なHAZ靭性が得られる。 According to the steel material of the present invention, good HAZ toughness can be obtained even after welding.
X元素の固溶量Xsolと再現熱サイクル試験後の靭性との関係を示す図である。It is a figure which shows the relationship between the solid solution amount X sol of the X element, and the toughness after a reproduction thermal cycle test. 表面から厚さの1/4の位置における、円相当径が0.5~5.0μmであり、Ca,Mg,Mn,S,X元素の合計に対して1原子%以上のX元素を含む粒子の個数割合と、再現熱サイクル試験後の靭性との関係を示す図である。The equivalent circle diameter at a position 1/4 of the thickness from the surface is 0.5 to 5.0 μm, and contains 1 atomic% or more of X element with respect to the total of Ca, Mg, Mn, S, and X elements. It is a figure which shows the relationship between the number ratio of particles, and toughness after a reproduction thermal cycle test.
 本実施形態に係る鋼材は、Al、Mgによる脱酸を含む製造方法により製造される鋼材であることを前提とする。本発明者らは、HAZの組織と靭性との関係に関する詳細な調査・研究を実施した。その結果、HAZ靭性の向上にはHAZのオーステナイト粒を著しく微細化(細粒化)することが効果的であることを見出した。オーステナイト粒の微細化には鋼中粒子によるピン止め効果を利用することが有効である。しかし、溶接入熱量や部材として使用される温度によっては、ピン止め効果を利用する、HAZのオーステナイト粒の微細化による靭性の向上の効果は限られたものであった。 It is assumed that the steel material according to the present embodiment is a steel material manufactured by a manufacturing method including deoxidation with Al and Mg. The present inventors conducted a detailed investigation and study on the relationship between the structure of HAZ and toughness. As a result, it was found that it is effective to remarkably refine (fine grain) the austenite particles of HAZ in order to improve the HAZ toughness. It is effective to utilize the pinning effect of the particles in steel for the miniaturization of austenite particles. However, depending on the amount of heat input to welding and the temperature used as the member, the effect of improving the toughness by miniaturizing the austenite grains of HAZ by utilizing the pinning effect has been limited.
 本発明者らは、上記の事情に鑑み、Pb、Bi、Se又はTeからなる群から選択される1種又は2種以上の「X元素」を鋼中に含有させ、X元素とHAZ靭性との関係について検討を行った。その結果、製鋼工程等における製造条件を最適化し、X元素の固溶量を所定の範囲に制御することによって、HAZ靭性の更なる向上が可能になることを新規に知見した。
 また、その上で、鋼中に所定の大きさの粒子を所定の範囲の個数密度となるように生成させ、かつ、これら粒子の内、Ca,Mg,Mn,S,前記X元素の合計に対して原子%で1%以上のX元素を含む粒子の個数割合を30%以上とすることで、HAZ靭性のより一層の向上が可能になることを新規に知見した。
In view of the above circumstances, the present inventors have added one or more "X elements" selected from the group consisting of Pb, Bi, Se or Te to the steel to obtain the X element and HAZ toughness. We examined the relationship between. As a result, it was newly found that the HAZ toughness can be further improved by optimizing the manufacturing conditions in the steelmaking process and controlling the solid solution amount of the X element within a predetermined range.
Further, on that, particles of a predetermined size are generated in the steel so as to have a number density in a predetermined range, and among these particles, Ca, Mg, Mn, S, and the total of the X elements are added. On the other hand, it was newly found that the HAZ toughness can be further improved by setting the number ratio of particles containing 1% or more of X element in atomic% to 30% or more.
 本発明者らは、種々の化学成分を有する鋼材を用いて、「X元素の固溶量(Xsol)」及び「円相当径が0.5~5.0μmである粒子のうち、Ca,Mg,Mn,S,X元素の合計に対して原子%で1%以上のX元素を含む粒子の個数割合」と、HAZの靭性との関係を明確にするために検討を行った。X元素の固溶量は、誘導結合プラズマ質量分析法(Inductively Coupled Plasma Mass Spectrometry、ICP質量分析法ということがある。)及び電解抽出残渣法によって求めた。また、粒子の円相当径、個数密度、X元素を含む粒子の個数割合は、後述するように、電子顕微鏡によって求めた。
 HAZの靭性は、鋼材から採取した試料に、溶接を再現する熱履歴(溶接入熱450kJ/cmに相当)を与える再現熱サイクル試験を行って評価した。具体的には、再現熱サイクル試験後、JIS Z 2242:2005に準拠して、試験数を3として-20℃でシャルピー吸収エネルギーを測定し、最低値でHAZ靭性を評価した。その結果、図1に示すように、Xsolが、0.0001~0.0050%(1~50ppm)の範囲内であると、HAZ靭性が向上することがわかった。
 また、図2に示すように、表面から厚さの1/4の位置における円相当径が0.5~5.0μmである粒子のうち、Ca,Mg,Mn,S,X元素の合計に対して1原子%以上のX元素を含む粒子の個数割合が30%以上であると、HAZ靭性がより向上することがわかった。
The present inventors used steel materials having various chemical components to obtain "solid solution amount of element X (X sol )" and "ca, among particles having a circle equivalent diameter of 0.5 to 5.0 μm. A study was conducted to clarify the relationship between "the ratio of the number of particles containing 1% or more of X element in atomic% to the total of Mg, Mn, S, and X elements" and the toughness of HAZ. The solid solution amount of element X was determined by inductively coupled plasma mass spectrometry (sometimes referred to as ICP mass spectrometry) and electrolytic extraction residue method. Further, the equivalent circle diameter of the particles, the number density, and the number ratio of the particles containing the X element were determined by an electron microscope as described later.
The toughness of HAZ was evaluated by performing a regenerative heat cycle test in which a sample collected from a steel material was given a thermal history (corresponding to a welding heat input of 450 kJ / cm) to reproduce welding. Specifically, after the reproducible heat cycle test, the Charpy absorbed energy was measured at −20 ° C. with the number of tests set to 3 in accordance with JIS Z 2242: 2005, and the HAZ toughness was evaluated at the lowest value. As a result, as shown in FIG. 1, it was found that the HAZ toughness was improved when X sol was in the range of 0.0001 to 0.0050% (1 to 50 ppm).
Further, as shown in FIG. 2, among the particles having a circle equivalent diameter of 0.5 to 5.0 μm at a position 1/4 of the thickness from the surface, the total of Ca, Mg, Mn, S, and X elements is added. On the other hand, it was found that the HAZ toughness was further improved when the number ratio of the particles containing 1 atomic% or more of the X element was 30% or more.
 以下、本実施形態に係る鋼材を詳細に説明する。 Hereinafter, the steel material according to this embodiment will be described in detail.
 まず、本実施形態に係る鋼材の化学成分について説明する。
 本実施形態に係る鋼材は、質量%で、C:0.01~0.20%、Si:1.00%以下、Mn:0.1~2.5%、Mg:0.0005~0.0100%、Al:0.015~0.500%、P:0.020%以下、S:0.020%以下、N:0.0100%以下、O:0.0030%未満を含有し、更に、Pb:0.0100%以下、Bi:0.0100%以下、Se:0.0100%以下、Te:0.0100%以下の1種又は2種以上のX元素を合計で、0.0001~0.0100%、Cu:0~2.0%、Ni:0~2.0%、Cr:0~2.0%、Mo:0~1.0%、Nb:0~0.10%、W:0~2.0%、V:0~0.20%、B:0~0.010%、Ti:0~0.100%、Zr:0~0.10%、Ta:0~0.10%、Ag:0~0.10%、Hf:0~0.10%、Ca:0~0.0100%、REM:0~0.010%、Sn:0~0.50%、Sb:0~0.50%を含有し、残部がFe及び不純物からなる。
First, the chemical composition of the steel material according to the present embodiment will be described.
The steel material according to the present embodiment has C: 0.01 to 0.20%, Si: 1.00% or less, Mn: 0.1 to 2.5%, Mg: 0.0005 to 0% in mass%. Contains 0100%, Al: 0.015 to 0.500%, P: 0.020% or less, S: 0.020% or less, N: 0.0100% or less, O: less than 0.0030%, and further. , Pb: 0.0100% or less, Bi: 0.0100% or less, Se: 0.0100% or less, Te: 0.0100% or less, 1 type or 2 or more types of X elements in total from 0.0001 to 0.0100%, Cu: 0 to 2.0%, Ni: 0 to 2.0%, Cr: 0 to 2.0%, Mo: 0 to 1.0%, Nb: 0 to 0.10%, W: 0 to 2.0%, V: 0 to 0.20%, B: 0 to 0.010%, Ti: 0 to 0.100%, Zr: 0 to 0.10%, Ta: 0 to 0 .10%, Ag: 0 to 0.10%, Hf: 0 to 0.10%, Ca: 0 to 0.0100%, REM: 0 to 0.010%, Sn: 0 to 0.50%, Sb : Contains 0 to 0.50%, and the balance consists of Fe and impurities.
 以下の化学成分の説明では、質量%を%と表記する。また、以下の説明において元素含有量の上限値と下限値を「~」で結んで範囲表示する場合、特に注釈しない限り、上限値と下限値を含む範囲を意味する。したがって、質量%で0.01~0.20%と表記した場合、その範囲は0.01質量%以上、0.20質量%以下の範囲を意味する。 In the following explanation of chemical components, mass% is expressed as%. Further, in the following description, when the upper limit value and the lower limit value of the element content are connected by "-" and displayed in a range, the range including the upper limit value and the lower limit value is meant unless otherwise specified. Therefore, when expressed as 0.01 to 0.20% in mass%, the range means a range of 0.01 mass% or more and 0.20 mass% or less.
C:0.01~0.20%
 Cは、母材の強度を上昇させる元素である。C含有量が0.01%未満では母材強度の向上効果が小さいので0.01%以上を下限とする。より好ましいC含有量の下限は0.06%以上である。一方、C含有量が0.20%を超えると、脆性破壊の起点となるセメンタイトやマルテンサイトとオーステナイトとの混成物(Martensite-Austenite Constituent:MAという。)が増加するので、HAZ靭性が低下する。したがって、C含有量の上限を0.20%以下とする。特に、大入熱溶接のHAZ靭性や低温靭性に対しては、比較的少量の小さなセメンタイトやMAでも脆性破壊の起点となりやすくHAZ靭性を低下させる場合がある。そのため、C含有量の上限値については厳格に規制することが好ましい。C含有量の上限は、好ましくは0.15%以下であり、より好ましくは0.13%以下であり、より一層好ましくは0.10%以下であり、更に好ましくは0.08%以下である。
C: 0.01 to 0.20%
C is an element that increases the strength of the base metal. If the C content is less than 0.01%, the effect of improving the strength of the base metal is small, so 0.01% or more is set as the lower limit. The lower limit of the more preferable C content is 0.06% or more. On the other hand, when the C content exceeds 0.20%, the amount of cementite or a mixture of martensite and austenite (referred to as Martinite-Austenite Constituent: MA), which is the starting point of brittle fracture, increases, so that HAZ toughness decreases. .. Therefore, the upper limit of the C content is set to 0.20% or less. In particular, with respect to the HAZ toughness and low temperature toughness of high heat input welding, even a relatively small amount of small cementite or MA is likely to be the starting point of brittle fracture and may reduce the HAZ toughness. Therefore, it is preferable to strictly regulate the upper limit of the C content. The upper limit of the C content is preferably 0.15% or less, more preferably 0.13% or less, even more preferably 0.10% or less, still more preferably 0.08% or less. ..
Si:1.00%以下
 Siは、脱酸剤として機能し、強度の上昇にも寄与する元素であるが、過剰に含有させるとHAZのミクロ組織中に硬質な脆化組織であるMAが生成しやすくなる。このMAは、HAZの靭性を劣化させるため、Siの含有量を制限することが望ましいが、1.00%以下であれば、Siを意図的に含有させてもよい。Si含有量は、好ましくは0.50%以下、より好ましくは0.30%以下とする。HAZ靭性の向上のためにはSi含有量は少ないほうが望ましいので、下限値を特に制限する必要はなく、その下限値は0%である。ただし、0.03%未満へのSi含有量の低減はコスト上昇を伴う場合があり、その場合には0.03%以上を下限とすることが望ましい。
Si: 1.00% or less Si is an element that functions as an antacid and contributes to an increase in strength, but if it is contained in excess, MA, which is a hard embrittled structure, is formed in the microstructure of HAZ. It will be easier to do. Since this MA deteriorates the toughness of HAZ, it is desirable to limit the Si content, but if it is 1.00% or less, Si may be intentionally contained. The Si content is preferably 0.50% or less, more preferably 0.30% or less. Since it is desirable that the Si content is low in order to improve the HAZ toughness, it is not necessary to particularly limit the lower limit value, and the lower limit value is 0%. However, reducing the Si content to less than 0.03% may accompany an increase in cost, in which case it is desirable to set the lower limit to 0.03% or more.
Mn:0.1~2.5%
 Mnは、母材の強度、靭性の確保に有効な成分として0.1%以上を含有させることが必要である。強度確保のため、より好ましいMn含有量は0.3%以上、更に好ましくは0.4%以上、より一層好ましくは0.5%以上である。多量のMnの含有は偏析や硬質相の生成に繋がり、HAZ靭性を低下させる。これらを許容できる範囲で上限を2.5%以下とした。Mn含有量のより好ましい上限は2.3%以下、更に好ましくは2.0%以下である。
Mn: 0.1-2.5%
Mn needs to be contained in an amount of 0.1% or more as an effective component for ensuring the strength and toughness of the base material. In order to secure the strength, the Mn content is more preferably 0.3% or more, further preferably 0.4% or more, and even more preferably 0.5% or more. The inclusion of a large amount of Mn leads to segregation and formation of a hard phase, which lowers HAZ toughness. The upper limit was set to 2.5% or less within an acceptable range. A more preferable upper limit of the Mn content is 2.3% or less, more preferably 2.0% or less.
P:0.020%以下
 Pは、粒界脆化をもたらし、靭性に有害な元素である。そのため、P含有量は少ないほうが望ましい。0.020%超のPを含有すると、HAZのオーステナイト粒を微細化してもHAZ靭性が低下するのでP含有量を0.020%以下に制限する。好ましくは、0.010%以下、更に好ましくは、0.008%以下である。P含有量の下限値を特に制限する必要はないが、P含有量を0%にするのは、技術的に容易ではないので、その下限を0%超としてもよい。P含有量は0.001%以上であってもよい。
P: 0.020% or less P is an element that causes intergranular embrittlement and is harmful to toughness. Therefore, it is desirable that the P content is low. If P of more than 0.020% is contained, the HAZ toughness is lowered even if the austenite grains of HAZ are refined, so the P content is limited to 0.020% or less. It is preferably 0.010% or less, more preferably 0.008% or less. It is not necessary to limit the lower limit of the P content in particular, but since it is not technically easy to set the P content to 0%, the lower limit may be set to more than 0%. The P content may be 0.001% or more.
S:0.020%以下
 Sは、Mgを含むピンニング粒子を形成し、HAZ靭性の改善に寄与する元素である。0.020%超のSを含有すると、ピンニング粒子の高温での安定性が低下し、HAZ靭性の向上の効果が十分に得られなくなる可能性がある。したがって、S含有量の上限を0.020%以下とする。好ましいS含有量の上限は0.015%以下である。HAZ靭性向上のため、S含有量の上限を0.010%以下、0.008%以下としてもよい。S含有量の下限値を特に制限する必要はないが、S含有量を0%にするのは、技術的に容易ではないので、その下限を0%超としてもよい。一方、ピンニングに寄与する粒子の量を増加させるために、S含有量は0.0020%以上が好ましい。より多量の粒子を生成させるため、S含有量を0.0025%以上、又は、0.0030%以上としてもよい。
S: 0.020% or less S is an element that forms pinning particles containing Mg and contributes to the improvement of HAZ toughness. If S of more than 0.020% is contained, the stability of the pinning particles at a high temperature is lowered, and the effect of improving the HAZ toughness may not be sufficiently obtained. Therefore, the upper limit of the S content is set to 0.020% or less. The upper limit of the preferable S content is 0.015% or less. In order to improve HAZ toughness, the upper limit of the S content may be 0.010% or less and 0.008% or less. It is not necessary to particularly limit the lower limit of the S content, but since it is not technically easy to set the S content to 0%, the lower limit may be set to more than 0%. On the other hand, in order to increase the amount of particles that contribute to pinning, the S content is preferably 0.0020% or more. In order to generate a larger amount of particles, the S content may be 0.0025% or more, or 0.0030% or more.
Mg:0.0005~0.0100%
 Mgは、ピンニング粒子を形成し、HAZ靭性の改善に寄与する重要な元素である。Mg含有量が0.0005%未満では、十分な数のピンニング粒子が得られない可能性があるため、下限を0.0005%以上とする。より多量の粒子を生成させるために、好ましくはMg含有量を0.0007%以上、より好ましくは0.0008%以上、より一層好ましくは0.0010%以上とする。一方、Mg含有量が0.0100%を超えても、HAZ靭性を向上させる効果は飽和し、経済性を損なう。そのためMg含有量の上限を0.0100%以下とする。Mg含有量の上限は0.0080%以下又は0.0050%以下としてもよい。
Mg: 0.0005-0.0100%
Mg is an important element that forms pinning particles and contributes to the improvement of HAZ toughness. If the Mg content is less than 0.0005%, a sufficient number of pinning particles may not be obtained, so the lower limit is set to 0.0005% or more. In order to generate a larger amount of particles, the Mg content is preferably 0.0007% or more, more preferably 0.0008% or more, and even more preferably 0.0010% or more. On the other hand, even if the Mg content exceeds 0.0100%, the effect of improving HAZ toughness is saturated and the economic efficiency is impaired. Therefore, the upper limit of the Mg content is set to 0.0100% or less. The upper limit of the Mg content may be 0.0080% or less or 0.0050% or less.
Al:0.015~0.500%
 Alは、脱酸剤として機能し、溶鋼の溶存酸素量を減少させる元素である。Al含有量の下限は、ピンニング粒子の生成を促進させるために0.015%以上とする。Al含有量は、好ましくは0.020%以上、より好ましくは0.030%以上である。ただし、Alを過剰に含有させると、HAZ靭性が劣化するので、Al含有量を0.500%以下とする。好ましいAl含有量の上限は0.300%以下である。HAZ靭性を改善するため、Al含有量の上限を、0.170%以下、0.100%以下、又は、0.080%以下としてもよい。
Al: 0.015 to 0.500%
Al is an element that functions as an antacid and reduces the amount of dissolved oxygen in molten steel. The lower limit of the Al content is 0.015% or more in order to promote the formation of pinning particles. The Al content is preferably 0.020% or more, more preferably 0.030% or more. However, if Al is excessively contained, the HAZ toughness deteriorates, so the Al content is set to 0.5500% or less. The upper limit of the preferable Al content is 0.300% or less. In order to improve HAZ toughness, the upper limit of Al content may be 0.170% or less, 0.10% or less, or 0.080% or less.
N:0.0100%以下
 Nは、窒化物を形成する元素であり、N含有量が多いと粗大なAlNやTiNなどの窒化物を生成しやすくなる。これらの粗大な粒子は、脆性破壊の発生起点となり、HAZ靭性の低下を招く場合がある。そのためN含有量の上限を0.0100%以下とする。N含有量の好ましい上限は0.0070%以下であり、より好ましくは0.0050%以下である。N含有量は少ないほうが望ましいが、0.0020%未満へのN含有量の低減はコスト上昇を伴う場合があるので、0.0020%以上を下限としてもよい。N含有量は0.0030%以上であってもよい。
N: 0.0100% or less N is an element that forms a nitride, and when the N content is large, coarse nitrides such as AlN and TiN are likely to be produced. These coarse particles serve as a starting point for brittle fracture and may lead to a decrease in HAZ toughness. Therefore, the upper limit of the N content is set to 0.0100% or less. The upper limit of the N content is preferably 0.0007% or less, more preferably 0.0050% or less. It is desirable that the N content is small, but reducing the N content to less than 0.0020% may accompany an increase in cost, and therefore the lower limit may be 0.0020% or more. The N content may be 0.0030% or more.
O:0.0030%未満
 Oは、酸化物を形成する元素であり、含有量が多いと粗大な酸化物が生成しやすくなる。粗大な酸化物は破壊の発生起点となり、HAZ靭性を低下させるので、O含有量を0.0030%未満とする。好ましいO含有量の上限は0.0028%以下であり、より好ましくは0.0025%以下、より一層好ましくは0.0023%以下である。一方、0.0001%未満へのO含有量の低減はコスト上昇につながるほか、後述する微細な粒子を生成させるためには、Oを0.0001%以上を含有することが好ましい。微細な粒子をより生成させるために、O含有量を0.0005%以上、又は、0.0010%以上としてもよい。
O: Less than 0.0030% O is an element that forms an oxide, and if the content is large, a coarse oxide is likely to be formed. The coarse oxide becomes the starting point of fracture and lowers the HAZ toughness, so the O content is set to less than 0.0030%. The upper limit of the preferable O content is 0.0028% or less, more preferably 0.0025% or less, and even more preferably 0.0023% or less. On the other hand, reducing the O content to less than 0.0001% leads to an increase in cost, and in order to generate fine particles described later, it is preferable to contain O content of 0.0001% or more. The O content may be 0.0005% or more, or 0.0010% or more in order to generate finer particles.
 Pb、Bi、Se、TeのX元素を合計で0.0001~0.0100%
 本実施形態に係る鋼材は、X元素であるPb、Bi、Se、Teの1種または2種以上を必須成分として含み、後述するように、これらのX元素の含有量の合計Xtotalから、電解抽出残渣法によって求められる介在物を形成した状態のPb、Bi、Se、Teの含有量の合計であるXinsolを減じて得られるXsolが、質量%で、0.0001~0.0050%である。鋼中に固溶するX元素の量は、電解抽出残渣法によって測定することができる。このように、所定量のX元素が固溶していると、理由は不明であるが、HAZにおけるオーステナイト粒の粒成長を抑制し、HAZ靭性を向上させることができる。
 本実施形態に係る鋼材では、Xsolを確保するために、X元素の含有量(Pb、Bi、Se、Teの合計の含有量:Xtotal)を0.0001%以上とする必要がある。好ましくはX元素の合計含有量を0.0005%以上、より好ましくは0.0010%以上、更に好ましくは0.0020%以上とする。
 また、本実施形態に係る鋼材は、表面から厚さの1/4の位置において、円相当径で0.5~5.0μmの粒子が1.00(1.00×10)~1.00×10個/mmの個数密度で存在し、前記粒子のうち、Ca,Mg,Mn,S,前記X元素の合計に対して原子%で1%以上のX元素を含む粒子の個数割合が30%以上であることが好ましい。このような原子%で1%以上のX元素を含む粒子を増加させると、HAZにおけるオーステナイト粒の粒成長が抑制され、HAZ靭性がより向上する。原子%で1%以上のX元素を含む粒子の個数割合を増加させるためにも、X元素の含有量(Pb、Bi、Se、Teの1種又は2種以上の合計の含有量:Xtotal)を0.0001%以上とする必要がある。好ましくはX元素の含有量を0.0005%以上、より好ましくは0.0010%以上、更に好ましくは0.0020%以上とする。X元素の効果は必ずしも明確ではないが、X元素を含む粒子の生成が、鋼中の微細な粒子によるピンニング効果の向上に寄与している可能性がある。
 一方、これらのX元素を過剰に含有させると、HAZ靭性が低下する。したがって、X元素のそれぞれの含有量の上限を0.0100%以下とし、また、X元素の合計含有量の上限を0.0100%以下とする。X元素の合計含有量は、0.0080%以下がより好ましく、0.0050%以下が更に好ましく、0.0030%以下が最も好ましい。
A total of 0.0001 to 0.0100% of X elements of Pb, Bi, Se, and Te
The steel material according to the present embodiment contains one or more of the X elements Pb, Bi, Se, and Te as essential components, and as will be described later, from the total X total of the contents of these X elements, Pb in a state of forming the inclusions obtained by electrolytic extraction residue method, Bi, Se, X sol obtained by subtracting the X insol is the sum of the content of Te is, in mass%, 0.0001 to 0.0050 %. The amount of element X that dissolves in steel can be measured by the electrolytic extraction residue method. As described above, when a predetermined amount of X element is dissolved in solid solution, the grain growth of austenite grains in HAZ can be suppressed and the HAZ toughness can be improved, although the reason is unknown.
In the steel material according to the present embodiment, in order to secure X sol , the content of X element (total content of Pb, Bi, Se, and Te: X total ) needs to be 0.0001% or more. The total content of the X element is preferably 0.0005% or more, more preferably 0.0010% or more, still more preferably 0.0020% or more.
Further, the steel material according to the present embodiment, at the position of 1/4 of the thickness from the surface, the particles of 0.5 ~ 5.0 .mu.m equivalent circle diameter of 1.00 (1.00 × 10 0) ~ 1. The number of particles existing at a number density of 00 × 10 4 / mm 2 and containing 1% or more of the X element in atomic% with respect to the total of Ca, Mg, Mn, S and the X element among the particles. The ratio is preferably 30% or more. When the number of particles containing 1% or more of X element in atomic% is increased, the grain growth of austenite particles in HAZ is suppressed, and the HAZ toughness is further improved. In order to increase the number ratio of particles containing 1% or more of X element in atomic%, the content of X element (content of one or more of Pb, Bi, Se, and Te: X total) ) Must be 0.0001% or more. The content of the X element is preferably 0.0005% or more, more preferably 0.0010% or more, still more preferably 0.0020% or more. The effect of the X element is not always clear, but it is possible that the formation of particles containing the X element contributes to the improvement of the pinning effect of the fine particles in the steel.
On the other hand, if these X elements are excessively contained, the HAZ toughness is lowered. Therefore, the upper limit of the content of each of the X elements is 0.0100% or less, and the upper limit of the total content of the X elements is 0.0100% or less. The total content of the X element is more preferably 0.0080% or less, further preferably 0.0050% or less, and most preferably 0.0030% or less.
 本実施形態に係る鋼材の化学成分の残部は、鉄(Fe)及び不純物である。不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分であって、本実施形態に係る鋼材に悪影響を与えない範囲で許容されるものを意味する。ただし、不純物のうち、P、S、O及びNについては上述のように上限値を制限する必要がある。 The balance of the chemical components of the steel material according to this embodiment is iron (Fe) and impurities. Impurities are components that are mixed in by raw materials such as ores and scraps and other factors when steel materials are industrially manufactured, and are allowed as long as they do not adversely affect the steel materials according to the present embodiment. To do. However, among impurities, it is necessary to limit the upper limit values for P, S, O and N as described above.
 本実施形態に係る鋼材は、上記の化学成分を含むことを基本とするが、鋼材(母材)の機械特性やHAZ靭性を向上させるために、必要に応じて、Feの一部に代えて更に、Cu:2.0%以下、Ni:2.0%以下、Cr:2.0%以下、Mo:1.0%以下、Nb:0.10%以下、W:2.0%以下、V:0.20%以下、B:0.010%以下、Ti:0.100%以下、Zr:0.10%以下、Ta:0.10%以下、Ag:0.10%以下、Hf:0.10%以下の1種又は2種以上を含有させてもよい。ただし、これらの元素の含有は必須ではないので、その下限は0%である。 The steel material according to the present embodiment basically contains the above-mentioned chemical components, but in order to improve the mechanical properties and HAZ toughness of the steel material (base material), it may be replaced with a part of Fe as necessary. Further, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 2.0% or less, Mo: 1.0% or less, Nb: 0.10% or less, W: 2.0% or less, V: 0.20% or less, B: 0.010% or less, Ti: 0.100% or less, Zr: 0.10% or less, Ta: 0.10% or less, Ag: 0.10% or less, Hf: It may contain 1 type or 2 or more types of 0.10% or less. However, since the content of these elements is not essential, the lower limit is 0%.
Cu:0~2.0%
 Cuは、母材の強度の上昇に有効な元素であり、Cuを含有させてもよい。しかしながら、2.0%を超えてCuを含有させるとHAZ靭性が低下することがある。そのため、Cu含有量を2.0%以下に制限する。好ましくは、Cu含有量を1.0%以下、より好ましくは、0.8%以下、より一層好ましくは0.5%以下とする。Cuは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度を向上させるためには、Cu含有量は0.02%以上が好ましい。より好ましくはCu含有量を0.1%以上とする。
Cu: 0-2.0%
Cu is an element effective for increasing the strength of the base material, and Cu may be contained. However, if Cu is contained in excess of 2.0%, HAZ toughness may decrease. Therefore, the Cu content is limited to 2.0% or less. The Cu content is preferably 1.0% or less, more preferably 0.8% or less, and even more preferably 0.5% or less. Cu may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. In order to improve the strength of the base material, the Cu content is preferably 0.02% or more. More preferably, the Cu content is 0.1% or more.
Ni:0~2.0%
 Niは、靭性及び強度の改善に有効な元素であり、Niを含有させてもよい。ただし、2.0%を超えてNiを含有させても効果が飽和する。そのため、経済性の観点からNi含有量を2.0%以下に制限する。好ましくはNi含有量を1.5%以下、より好ましくは1.0%以下、より一層好ましくは、0.7%以下とする。Niは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度を向上させるためには、Ni含有量は0.02%以上が好ましい。より好ましくはNi含有量を0.1%以上とする。
Ni: 0-2.0%
Ni is an element effective for improving toughness and strength, and Ni may be contained. However, even if Ni is contained in excess of 2.0%, the effect is saturated. Therefore, the Ni content is limited to 2.0% or less from the viewpoint of economy. The Ni content is preferably 1.5% or less, more preferably 1.0% or less, and even more preferably 0.7% or less. Ni may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. In order to improve the strength of the base metal, the Ni content is preferably 0.02% or more. More preferably, the Ni content is 0.1% or more.
Cr:0~2.0%
 Crは、焼入れ性の向上や析出強化によって母材の強度を上昇させる元素であり、Crを含有させてもよい。ただし、2.0%を超えてCrを含有させると、HAZにMAが生成しやすくなり、HAZ靭性が低下する。したがって、Cr含有量を2.0%以下に制限する。好ましくはCr含有量を1.0%以下、より好ましくは0.5%以下とする。Crは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度を向上させるためには、Cr含有量は0.02%以上が好ましい。より好ましくはCr含有量を0.1%以上とする。
Cr: 0-2.0%
Cr is an element that increases the strength of the base metal by improving hardenability and strengthening precipitation, and Cr may be contained. However, if Cr is contained in excess of 2.0%, MA is likely to be generated in HAZ, and HAZ toughness is lowered. Therefore, the Cr content is limited to 2.0% or less. The Cr content is preferably 1.0% or less, more preferably 0.5% or less. Cr may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. In order to improve the strength of the base metal, the Cr content is preferably 0.02% or more. More preferably, the Cr content is 0.1% or more.
Mo:0~1.0%
 Moは、焼入れ性を向上させて、母材の強度を上昇させる元素であり、Moを含有させてもよい。ただし、1.0%を超えてMoを含有させると、HAZに硬質組織が生成し、HAZ靭性が低下することがある。そのため、Mo含有量を1.0%以下に制限する。好ましくはMo含有量を0.5%以下、より好ましくは0.3%以下とする。Moは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度の向上のためにはMo含有量は0.02%以上が好ましい。より好ましくはMo含有量を0.1%以上とする。
Mo: 0-1.0%
Mo is an element that improves hardenability and increases the strength of the base material, and Mo may be contained. However, if Mo is contained in excess of 1.0%, a hard structure may be formed in the HAZ and the HAZ toughness may decrease. Therefore, the Mo content is limited to 1.0% or less. The Mo content is preferably 0.5% or less, more preferably 0.3% or less. Mo may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof does not need to be particularly limited and may be 0%. The Mo content is preferably 0.02% or more in order to improve the strength of the base material. More preferably, the Mo content is 0.1% or more.
Nb:0~0.10%
 Nbは、焼入れ性を向上させる元素であり、また、析出物の生成や再結晶の抑制によって組織の微細化にも寄与する。母材の強度を上昇させるとともに、母材の靭性や生産性等を改善するためにNbを含有させてもよい。しかし、0.10%を超えてNbを含有させるとHAZに硬質組織や介在物が生成し、HAZ靭性が低下することがある。そのため、Nb含有量を0.10%以下に制限する。好ましくはNb含有量を0.05%以下、より好ましくは0.04%以下とする。Nbは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値は特に制限する必要がなく、0%であってもよい。母材の強度及び靭性の向上や経済性のためにはNb含有量は0.01%以上が好ましい。
Nb: 0 to 0.10%
Nb is an element that improves hardenability, and also contributes to the miniaturization of the structure by suppressing the formation of precipitates and recrystallization. Nb may be contained in order to increase the strength of the base material and improve the toughness and productivity of the base material. However, if Nb is contained in excess of 0.10%, a hard structure or inclusions may be formed in HAZ, and HAZ toughness may decrease. Therefore, the Nb content is limited to 0.10% or less. The Nb content is preferably 0.05% or less, more preferably 0.04% or less. Nb may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. The Nb content is preferably 0.01% or more in order to improve the strength and toughness of the base metal and to make it economical.
W:0~2.0%
 Wは、焼入れ性の向上や析出強化に寄与する元素である。母材の強度を上昇させ、靭性を向上させるために、Wを含有させてもよい。しかし、2.0%を超えてWを含有させるとHAZに硬質組織が生成し、HAZ靭性が低下することがある。そのため、W含有量を2.0%以下に制限する。好ましくはW含有量を1.0%以下、より好ましくは0.5%以下とする。Wは、溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値は特に制限する必要がなく、0%であってもよい。母材の強度及び靭性の向上のためにはW含有量は0.01%以上が好ましい。
W: 0-2.0%
W is an element that contributes to the improvement of hardenability and the strengthening of precipitation. W may be contained in order to increase the strength of the base metal and improve the toughness. However, if W is contained in excess of 2.0%, a hard structure may be formed in HAZ and the HAZ toughness may decrease. Therefore, the W content is limited to 2.0% or less. The W content is preferably 1.0% or less, more preferably 0.5% or less. W may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. The W content is preferably 0.01% or more in order to improve the strength and toughness of the base metal.
V:0~0.20%
 Vは、焼入れ性を向上させる元素であり、また、炭化物や窒化物を形成し、母材の強度の上昇に有効な元素であるため、Vを含有させてもよい。しかし、0.20%を超えてVを含有させるとHAZにおける炭窒化物の析出が顕著になり、HAZ靭性が低下することがある。そのため、V含有量を0.20%以下に制限する。好ましくはV含有量を0.10%以下とする。Vは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。母材の強度を向上させるためにはV含有量は0.01%以上が好ましい。
V: 0 to 0.20%
Since V is an element that improves hardenability and is an element that forms carbides and nitrides and is effective in increasing the strength of the base metal, V may be contained. However, if V is contained in excess of 0.20%, the precipitation of carbonitride in HAZ becomes remarkable, and HAZ toughness may decrease. Therefore, the V content is limited to 0.20% or less. The V content is preferably 0.10% or less. V may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. In order to improve the strength of the base material, the V content is preferably 0.01% or more.
B:0~0.010%
 Bは、焼き入れ性を顕著に高めて母材やHAZの強度、靭性を向上させる元素であり、Bを含有させてもよい。しかし、0.010%を超えてBを含有させるとHAZ靭性や溶接性が劣化することがある。そのため、B含有量を0.010%以下に制限する。好ましいB含有量は0.007%以下であり、より好ましくは0.005%以下である。B含有量の下限値は0%であってもよいが、強度の上昇の効果を得るために、B含有量は0.0003%以上が好ましい。より好ましくはB含有量を0.0005%以上、より一層好ましくは0.0010%以上とする。
B: 0 to 0.010%
B is an element that remarkably enhances hardenability and improves the strength and toughness of the base material and HAZ, and B may be contained. However, if B is contained in excess of 0.010%, HAZ toughness and weldability may deteriorate. Therefore, the B content is limited to 0.010% or less. The preferred B content is 0.007% or less, more preferably 0.005% or less. The lower limit of the B content may be 0%, but the B content is preferably 0.0003% or more in order to obtain the effect of increasing the strength. The B content is more preferably 0.0005% or more, and even more preferably 0.0010% or more.
Ti:0~0.100%
 Tiは、TiNを形成し、結晶粒の微細化に寄与する元素である。強度及び靭性を向上させるためにTiを含有させてもよい。しかし、0.100%を超えてTiを含有させると、TiCが過剰に生成してHAZ靭性が低下することがある。そのため、Ti含有量を0.100%以下に制限する。好ましくはTi含有量を0.050%以下、より好ましく0.030%以下とする。Tiは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。好ましくはTi含有量を0.005%以上、より好ましくは0.010%以上とする。
Ti: 0 to 0.100%
Ti is an element that forms TiN and contributes to the refinement of crystal grains. Ti may be included to improve strength and toughness. However, if Ti is contained in excess of 0.100%, TiC may be excessively generated and HAZ toughness may decrease. Therefore, the Ti content is limited to 0.100% or less. The Ti content is preferably 0.050% or less, more preferably 0.030% or less. Ti may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. The Ti content is preferably 0.005% or more, more preferably 0.010% or more.
Zr:0~0.10%
 Zrは、炭化物や窒化物を形成し、母材の強度の上昇や組織の微細化に有効な元素であるため、Zrを含有させてもよい。しかし、0.10%を超えてZrを含有させると粗大な窒化物が形成され、靭性が低下することがある。そのため、Zr含有量を0.10%以下に制限する。好ましくはZr含有量を0.05%以下とする。Zr含有量の下限値を特に制限する必要はなく、0%であってもよいが、母材の強度を向上させるためにはZr含有量は0.01%以上が好ましい。
Zr: 0 to 0.10%
Since Zr is an element that forms carbides and nitrides and is effective for increasing the strength of the base material and refining the structure, Zr may be contained. However, if Zr is contained in excess of 0.10%, coarse nitrides may be formed and the toughness may decrease. Therefore, the Zr content is limited to 0.10% or less. The Zr content is preferably 0.05% or less. The lower limit of the Zr content does not have to be particularly limited and may be 0%, but the Zr content is preferably 0.01% or more in order to improve the strength of the base metal.
Ta:0~0.10%
 Taは、母材の強度と靭性とを確保するために有効な元素であり、Taを含有させてもよい。しかし、0.10%を超えてTaを含有させるとHAZ靭性が低下することがある。そのため、Ta含有量を0.10%以下に制限する。好ましくはTa含有量を0.05%以下とする。Taは溶鋼製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。Ta含有量の下限は0.01%以上であってもよい。
Ta: 0 to 0.10%
Ta is an element effective for ensuring the strength and toughness of the base material, and Ta may be contained. However, if Ta is contained in excess of 0.10%, HAZ toughness may decrease. Therefore, the Ta content is limited to 0.10% or less. The Ta content is preferably 0.05% or less. Ta may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof need not be particularly limited and may be 0%. The lower limit of the Ta content may be 0.01% or more.
Ag:0~0.10%
 Agは、母材の強度の上昇及び組織の微細化に有効な元素であり、Agを含有させてもよい。しかし、0.10%を超えてAgを含有させるとHAZ靭性が低下することがある。そのため、Ag含有量を0.10%以下に制限する。好ましくはAg含有量を0.05%以下とする。Agは溶鋼の製造時にスクラップ等から不純物として混入する場合があるが、その下限値を特に制限する必要はなく、0%であってもよい。Ag含有量の下限は0.01%以上であってもよい。
Ag: 0 to 0.10%
Ag is an element effective for increasing the strength of the base material and making the structure finer, and may contain Ag. However, if Ag is contained in excess of 0.10%, HAZ toughness may decrease. Therefore, the Ag content is limited to 0.10% or less. The Ag content is preferably 0.05% or less. Ag may be mixed as an impurity from scrap or the like during the production of molten steel, but the lower limit thereof does not need to be particularly limited and may be 0%. The lower limit of Ag content may be 0.01% or more.
Hf:0~0.10%
 Hfは、ピンニング粒子の生成に寄与する元素であり、Hfを含有させてもよい。しかし、0.10%を超えてHfを含有させるとHAZに粗大な窒化物が形成され、HAZ靭性が低下することがある。そのため、Hf含有量を0.10%以下に制限する。好ましくはHf含有量を0.05%以下とする。Hf含有量の下限値を特に制限する必要はなく、0%であってもよい。Hf含有量の下限は0.01%以上であってもよい。
Hf: 0 to 0.10%
Hf is an element that contributes to the formation of pinning particles, and Hf may be contained. However, if Hf is contained in excess of 0.10%, coarse nitrides may be formed in HAZ and the HAZ toughness may decrease. Therefore, the Hf content is limited to 0.10% or less. The Hf content is preferably 0.05% or less. The lower limit of the Hf content need not be particularly limited and may be 0%. The lower limit of the Hf content may be 0.01% or more.
 また、本実施形態に係る鋼材は、介在物の形態を制御するために、必要に応じて、Feの一部に代えて更に、Ca:0.0100%以下、REM:0.010%以下の一方又は両方を含有させてもよい。 Further, in the steel material according to the present embodiment, in order to control the form of inclusions, Ca: 0.0100% or less and REM: 0.010% or less are further replaced with a part of Fe as necessary. One or both may be contained.
Ca:0~0.0100%
 Caは、酸化物や硫化物を形成する元素であり、介在物の形態を制御するために含有させてもよい。この場合、Ca含有量を0.0001%以上とすることが好ましい。また、0.0001%未満へのCa含有量の低減はコスト上昇を伴う場合があるので、その観点からもCa含有量を0.0001%以上としてもよい。しかし、0.0100%を超えてCaを含有させると粗大な酸化物を生成しやすくなるため、Ca含有量を0.0100%以下に制限する。好ましくはCa含有量を0.0060%以下、より好ましくは0.0050%以下、より一層好ましくは0.0040%以下、更に好ましくは0.0030%以下とする。ピンニング粒子の生成を促進させるためには、Ca含有量を0.0015%以下に制限することが好ましい。Ca含有量の下限値を特に制限する必要はなく、0%であってもよい。
Ca: 0 to 0.0100%
Ca is an element that forms oxides and sulfides, and may be contained in order to control the morphology of inclusions. In this case, the Ca content is preferably 0.0001% or more. Further, since reducing the Ca content to less than 0.0001% may accompany an increase in cost, the Ca content may be 0.0001% or more from that viewpoint as well. However, if Ca is contained in excess of 0.0100%, coarse oxides are likely to be produced, so the Ca content is limited to 0.0100% or less. The Ca content is preferably 0.0060% or less, more preferably 0.0050% or less, even more preferably 0.0040% or less, still more preferably 0.0030% or less. In order to promote the formation of pinning particles, it is preferable to limit the Ca content to 0.0015% or less. It is not necessary to particularly limit the lower limit of the Ca content, and it may be 0%.
REM:0~0.010%
 REMは、酸化物や硫化物を形成する元素であり、介在物の形態を制御するためにREMを含有させてもよい。しかし、REM含有量が多いと粗大な酸化物が生成しやすくなり、HAZ靭性が低下する場合があるので、REM含有量を0.010%以下に制限する。好ましくはREM含有量を0.005%以下、より好ましくは0.004%以下とする。ピンニング粒子を生成させるためには、REM含有量を0.0005%以下に制限することが好ましい。REM含有量の下限値を特に制限する必要はなく、0%であってもよい。REM含有量は0.001%以上であってもよい。本実施形態において、REMとは、La、Ceなどのランタノイド系の元素と、Sc、Yとの合計17元素の総称を指す。すなわち、REM含有量はこれらの元素の合計含有量である。これらの元素の添加にあたっては、これらの元素が混在したミッシュメタルを用いても、何らその効果は変わるものではない。
REM: 0 to 0.010%
REM is an element that forms oxides and sulfides, and REM may be contained in order to control the morphology of inclusions. However, if the REM content is high, coarse oxides are likely to be formed and the HAZ toughness may decrease. Therefore, the REM content is limited to 0.010% or less. The REM content is preferably 0.005% or less, more preferably 0.004% or less. In order to generate pinning particles, it is preferable to limit the REM content to 0.0005% or less. The lower limit of the REM content need not be particularly limited and may be 0%. The REM content may be 0.001% or more. In the present embodiment, REM is a general term for a total of 17 elements including lanthanoid elements such as La and Ce and Sc and Y. That is, the REM content is the total content of these elements. When adding these elements, the effect does not change even if a misch metal containing these elements is used.
 また、本実施形態に係る鋼材は、耐食性を向上させるために、必要に応じて、Feの一部に代えて更に、Sn:0.50%以下、Sb:0.50%以下の一方又は両方を含有させてもよい。 Further, in order to improve the corrosion resistance, the steel material according to the present embodiment further replaces a part of Fe with one or both of Sn: 0.50% or less and Sb: 0.50% or less, if necessary. May be contained.
Sn:0~0.50%、Sb:0~0.50%
 SnやSbは、耐食性の観点などから含有させてもよいが、過剰に含有させるとHAZ靭性を損なう場合がある。そのため、Sn及びSbの含有量は、それぞれ0.50%以下とし、0.20%以下であることがより好ましく、0.10%以下であることがより一層好ましい。これらの元素の下限値を特に制限する必要はなく、0%であってもよい。Sn及びSbの含有量は、それぞれ0.01%以上であってもよい。
Sn: 0 to 0.50%, Sb: 0 to 0.50%
Sn and Sb may be contained from the viewpoint of corrosion resistance and the like, but if they are contained in excess, HAZ toughness may be impaired. Therefore, the contents of Sn and Sb are 0.50% or less, more preferably 0.20% or less, and even more preferably 0.10% or less. The lower limit of these elements does not need to be particularly limited and may be 0%. The contents of Sn and Sb may be 0.01% or more, respectively.
 本実施形態に係る鋼材の化学成分は、HAZ靭性の観点から、下記式で表される炭素当量Ceqが0.25~0.50の範囲であることが好ましい。Ceqが0.30以上であると、よりHAZ靭性に優れた鋼材となる。また、Ceqが0.45以下であると、MAの生成が抑制され、HAZ靭性が向上するので、より好ましい。Ceqは0.40以下であることが更に好ましい。 From the viewpoint of HAZ toughness, the chemical composition of the steel material according to the present embodiment preferably has a carbon equivalent Ceq represented by the following formula in the range of 0.25 to 0.50. When Ceq is 0.30 or more, the steel material has more excellent HAZ toughness. Further, when Ceq is 0.45 or less, the formation of MA is suppressed and the HAZ toughness is improved, which is more preferable. It is more preferable that Ceq is 0.40 or less.
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
 式中の[C]、[Mn]、[Cr]、[Mo]、[V]、[Cu]、[Ni]は、それぞれ、C、Mn、Cr、Mo、V、Cu、Niの含有量(質量%)であり、含有しない場合は0を代入する。
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5+ (Cu + Ni) / 15
[C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] in the formula are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%), and if it is not contained, 0 is substituted.
 次に、鋼中に存在するX元素について説明する。
 本実施形態に係る鋼材には、上述の通り、X元素(Pb、Bi、Se、Te)のうち、1種又は2種以上が含有される。このX元素は、鋼中において、固溶状態又は他の元素と粒子(介在物粒子)を形成した状態で存在する。本実施形態に係る鋼材では、固溶状態のX元素の含有量をXsol、介在物を形成した状態のX元素の含有量をXinsol、及びこれらを合計した含有量をXtotalとしたとき、XtotalからXinsolを減じて得られるXsolが、質量%で、0.0001~0.0050%である。Xsolが0.0001~0.0050%であると、溶接の熱影響によるオーステナイト粒の粗大化が抑制され、鋼材のHAZ靭性が向上する。
Next, the X element existing in the steel will be described.
As described above, the steel material according to the present embodiment contains one or more of the X elements (Pb, Bi, Se, Te). This element X exists in steel in a solid solution state or in a state where particles (inclusion particles) are formed with other elements. In the steel according to the present embodiment, the content X sol of the element X in solid solution state, when the content of X insol the X element in a state of forming the inclusions, and the content of the sum of these was X total , X sol obtained by subtracting the X insol from X total is, by mass%, 0.0001 to 0.0050%. When X sol is 0.0001 to 0.0050%, coarsening of austenite grains due to the heat effect of welding is suppressed, and HAZ toughness of the steel material is improved.
 Xsolが0.0001%未満であると、オーステナイト粒の粗大化の抑制効果が十分得られない。そのため、Xsolを0.0001%以上とする。Xsolは、好ましくは、0.0002%以上、より好ましくは、0.0003%以上である。
 一方、Xsolが0.0050%を超えると、原因は明確ではないがHAZ靭性が劣化する。そのため、Xsolを0.0050%以下とする。Xsolは、好ましくは、0.0040%以下、より好ましくは0.0030%以下とする。Ca、Al、O、Sの含有量が増加すると、Xsolが低下する場合がある。
 X元素の固溶により、オーステナイト粒の粗大化が抑制される原因は明らかではないが、その原因としては、ピンニング粒子の微細化効果やピンニング力の向上効果、X元素の偏析によるγ粒界易動度の低減効果、などが考えられる。
If X sol is less than 0.0001%, the effect of suppressing the coarsening of austenite grains cannot be sufficiently obtained. Therefore, X sol is set to 0.0001% or more. X sol is preferably 0.0002% or more, more preferably 0.0003% or more.
On the other hand, when X sol exceeds 0.0050%, HAZ toughness deteriorates, although the cause is not clear. Therefore, X sol is set to 0.0050% or less. The X sol is preferably 0.0040% or less, more preferably 0.0030% or less. As the content of Ca, Al, O and S increases, X sol may decrease.
The reason why the coarsening of austenite particles is suppressed by the solid solution of element X is not clear, but the causes are the effect of making pinning particles finer and the effect of improving pinning force, and the γ grain boundary easiness due to segregation of element X. The effect of reducing mobility can be considered.
 Xtotal、Xinsol、Xsolは、それぞれ、以下の方法で求めればよい。
 Xtotalは、誘導結合プラズマ質量分析法によって、各X元素の含有量を求め、これらの元素の合計含有量をXtotalとすればよい。
 Xinsolは、電解抽出残渣法によって求めることができる。具体的には、本実施形態に係る鋼材から採取した試料を、非水溶媒中で電解して溶解させる。その後、溶液中の残渣を孔径が0.2μmのフィルターで回収し、残渣に含まれる各X元素の含有量の合計を誘導結合プラズマ質量分析法で求める。電解抽出残渣法の実施にあたっては、X元素を含むピンニング粒子等が電解後の残渣に含まれるように、電解液として、4%サリチル酸メチル-1%サリチル酸-1%テトラメチルアンモニウムクロライド-メタノールを採用し、また電解電位を-100mVにて電解抽出を行う。
 Xsolは、上述の方法で得られたXtotalからXinsolを減じることによって求めることができる。したがって、電解抽出残渣法に用いるフィルターの孔径に比べて著しく微細な粒子に含有されるX元素がXsolに含まれる場合があるが、少量であり、HAZ靭性に影響を及ぼすことはなく、考慮しなくてよい。
X total , X insol , and X sol may be obtained by the following methods, respectively.
For X total , the content of each X element may be determined by inductively coupled plasma mass spectrometry, and the total content of these elements may be X total .
X insol can be determined by the electrolytic extraction residue method. Specifically, a sample collected from the steel material according to the present embodiment is electrolyzed and dissolved in a non-aqueous solvent. Then, the residue in the solution is recovered by a filter having a pore size of 0.2 μm, and the total content of each X element contained in the residue is determined by inductively coupled plasma mass spectrometry. In carrying out the electrolytic extraction residue method, 4% methyl salicylate-1% salicylic acid-1% tetramethylammonium chloride-methanol was adopted as the electrolytic solution so that pinning particles containing element X were included in the residue after electrolysis. Then, electrolytic extraction is performed at an electrolytic potential of −100 mV.
X sol can be determined by subtracting the X insol from X total obtained by the aforementioned method. Therefore, the X element contained in the particles significantly finer than the pore size of the filter used in the electrolytic extraction residue method may be contained in X sol , but it is a small amount and does not affect the HAZ toughness. You don't have to.
 本実施形態に係る鋼材には、鋼材の表面から厚さの1/4の位置(鋼材が鋼板の場合には表面から板厚方向に板厚の1/4深さの位置、鋼材が断面円形状を有する場合、表面から中心に向かって直径の1/4の位置)において、円相当径で0.5~5.0μmの粒子が1.00~1.00×10個/mmの個数密度で存在し、かつ、これらの粒子のうち、Ca,Mg,Mn,S,前記X元素の合計に対して原子%で1%以上のX元素を含む粒子の個数割合が30%以上であることが好ましい。円相当径が0.5~5.0μmであり、Ca,Mg,Mn,S,X元素の合計に対して1原子%以上のX元素を含む粒子の個数割合が増加すると、その理由は今のところ不明であるが、HAZ靭性を向上させる効果が高くなる。本実施形態では、円相当径が0.5~5.0μmの粒子を対象とするが、円相当径が0.5μm未満、5.0μm超の粒子が存在してもよい。円相当径が0.5~5.0μmの粒子の個数密度は、1.00個/mm以上であればオーステナイトの粒成長を抑制する効果が顕著となる。一方、円相当径が0.5~5.0μmの粒子の個数密度が1.00×10個/mmを超えるとHAZ靭性が低下する。本実施形態において、円相当径とは、測定された粒子の投影面積と等しい面積をもつ円の直径を指し、具体的には以下の式によって導出する。
円相当径=  √ {4×(当該粒子の面積)÷π}
The steel material according to the present embodiment has a position of 1/4 of the thickness from the surface of the steel material (when the steel material is a steel plate, a position of 1/4 depth of the plate thickness in the plate thickness direction from the surface, and the steel material has a circular cross section. When it has a shape, particles having a diameter equivalent to a circle of 0.5 to 5.0 μm are 1.00 to 1.00 × 10 4 particles / mm 2 at a position (1/4 of the diameter from the surface toward the center). Among these particles, the number ratio of particles containing X element of 1% or more in atomic% to the total of Ca, Mg, Mn, S, and the X element is 30% or more. It is preferable to have. The reason is now that the equivalent circle diameter is 0.5 to 5.0 μm and the ratio of the number of particles containing 1 atomic% or more of X element to the total of Ca, Mg, Mn, S, and X elements increases. Although it is unknown at this point, the effect of improving HAZ toughness is enhanced. In the present embodiment, particles having a circle-equivalent diameter of 0.5 to 5.0 μm are targeted, but particles having a circle-equivalent diameter of less than 0.5 μm and more than 5.0 μm may be present. If the number density of particles having a circle-equivalent diameter of 0.5 to 5.0 μm is 1.00 particles / mm 2 or more, the effect of suppressing the grain growth of austenite becomes remarkable. On the other hand, when the number density of particles having a circle-equivalent diameter of 0.5 to 5.0 μm exceeds 1.00 × 10 4 particles / mm 2 , the HAZ toughness decreases. In the present embodiment, the equivalent circle diameter refers to the diameter of a circle having an area equal to the projected area of the measured particles, and is specifically derived by the following equation.
Circle equivalent diameter = √ {4 × (area of the particle) ÷ π}
 円相当径が0.5~5.0μmで、1.00~1.00×10個/mmの個数密度で存在する粒子のうち、1原子%以上のX元素を含む粒子の個数割合が重要であり、その割合が大きいほど、HAZ靭性の向上効果が大きくなる。本実施形態では、X元素の濃度が1原子%以上の粒子を、X元素が含まれる粒子とする。これらの粒子のうち、Ca,Mg,Mn,S,X元素の合計に対して原子%で1%以上のX元素を含有する粒子の個数割合は、30%以上が好ましく、40%以上がより好ましく、50%以上が更に好ましい。また、X元素の濃度が1原子%以上であれば、分析機器で確実に検出可能であるため、1原子%以上のX元素を含む粒子を計測対象とすることができる。 Percentage of particles containing 1 atomic% or more of X element among the particles having a circle equivalent diameter of 0.5 to 5.0 μm and existing at a number density of 1.00 to 1.00 × 10 4 particles / mm 2. Is important, and the larger the ratio, the greater the effect of improving HAZ toughness. In the present embodiment, particles having a concentration of element X of 1 atomic% or more are defined as particles containing element X. Among these particles, the number ratio of particles containing 1% or more of X element in atomic% with respect to the total of Ca, Mg, Mn, S, and X elements is preferably 30% or more, more preferably 40% or more. It is preferable, and more preferably 50% or more. Further, if the concentration of the X element is 1 atomic% or more, it can be reliably detected by an analytical instrument, so that particles containing an X element of 1 atomic% or more can be measured.
 本実施形態に係る鋼材に含まれる粒子の円相当径、個数密度、X元素を1原子%以上含む粒子の個数割合は、電子顕微鏡を用いた元素分析及び画像解析により決定する。具体的には、電界放射型走査電子顕微鏡(Field Emission Scanning Electron Microscope、FE-SEM)で観察可能な粒子のうち、X元素(Pb、Bi、Se、Te)を含む粒子の個数割合を計測する。粒子に1原子%以上のX元素が含まれているかどうかは、エネルギー分散型X線元素分析装置(Energy Dispersive X-ray Spectrometry、EDS)によって判定すればよい。その際、分析対象とする元素としては、Mn、Mg、Ca、S、及びX元素とする。 The circle-equivalent diameter, the number density, and the number ratio of the particles containing 1 atomic% or more of the X element in the steel material according to the present embodiment are determined by elemental analysis and image analysis using an electron microscope. Specifically, among the particles observable with a field emission scanning electron microscope (FE-SEM), the number ratio of particles containing the X element (Pb, Bi, Se, Te) is measured. .. Whether or not the particles contain 1 atomic% or more of X elements may be determined by an energy dispersive X-ray element analyzer (Energy Dispersive X-ray Spectrometry, EDS). At that time, the elements to be analyzed are Mn, Mg, Ca, S, and X elements.
 鋼材に含まれる粒子の個数密度は、鋼材から試料を採取しての厚さ方向断面を鏡面研磨し、EDS付きのFE-SEMで鋼材の表面から厚さの1/4の位置を観察し、測定することができる。円相当径で、0.5~5.0μmの大きさの粒子の個数を、少なくとも25000μm以上の面積につき測定し、単位面積当たりの個数密度に換算することにより得る。円相当径が0.5μm未満の粒子は、FE-SEMによる観察では、個数の測定精度が不十分なため、0.5μm以上の粒子を計測する。一方、サイズの大きな粒子はピンニング効果が小さく、特に円相当径が5.0μm超の粒子は、オーステナイト粒の成長抑制への寄与が小さい。従って、円相当径が5.0μm以下の粒子個数に着目した。個数の測定は、例えば、2000倍の倍率にて、1視野を50μm×50μmとして、少なくとも10視野につき観察を行う。この時の0.5~5.0μmの粒子の個数が10視野(25000μm)で250個であれば、粒子個数は1mmあたり1.00×10個と換算できる。ただし、一視野で観測される個数が少なく、具体的には20個以下となる場合には、視野を最大20mm(5mm×4mm)まで拡大し、個数を確認する。 For the number density of particles contained in the steel material, a sample is taken from the steel material, the cross section in the thickness direction is mirror-polished, and the position of 1/4 of the thickness is observed from the surface of the steel material with an FE-SEM with EDS. Can be measured. It is obtained by measuring the number of particles having a diameter equivalent to a circle and having a size of 0.5 to 5.0 μm for an area of at least 25,000 μm 2 or more and converting it into a number density per unit area. For particles having a circle-equivalent diameter of less than 0.5 μm, the number of particles is insufficiently measured by FE-SEM observation, so particles having a diameter of 0.5 μm or more are measured. On the other hand, large particles have a small pinning effect, and particles having a circle-equivalent diameter of more than 5.0 μm have a small contribution to the growth inhibition of austenite particles. Therefore, we focused on the number of particles with a circle-equivalent diameter of 5.0 μm or less. The number is measured, for example, at a magnification of 2000 times, one field of view is 50 μm × 50 μm, and at least 10 fields of view are observed. If 250 at this time of 0.5 ~ 5.0 .mu.m number 10 field of view of the particle (25000μm 2), the number of particles can be converted with 1.00 × 10 4 per 1 mm 2. However, when the number observed in one field of view is small, specifically 20 or less, the field of view is expanded to a maximum of 20 mm 2 (5 mm × 4 mm), and the number is confirmed.
 次に、個数を測定した粒子のうち、Ca,Mg,Mn,S,X元素の合計に対して原子%で1%以上のX元素を含有する粒子がどれだけ存在したかを測定する。粒子の個数が多い場合には、例えば、粒子が1000個以上となる場合もあるため全粒子を逐一同定することは大変な作業となる。このため、少なくとも20個以上の粒子について下記の条件にて1原子%以上のX元素が含まれるかどうかを同定し、その存在割合を求めればよい。X元素の濃度が1原子%以上の粒子は、X元素以外の元素が検出されても構わない。粒子におけるX元素の濃度は、EDSの面分析にて粒子全体の平均を定量して求める。この定量時に使用する電子ビーム径は0.01~1.0μm、SEM観察の倍率は1000~10000倍とする。 Next, among the particles whose numbers have been measured, it is measured how many particles contain 1% or more of X element in atomic% with respect to the total of Ca, Mg, Mn, S, and X elements. When the number of particles is large, for example, the number of particles may be 1000 or more, so it is a difficult task to identify all the particles one by one. Therefore, it is sufficient to identify whether or not at least 20 or more particles contain 1 atomic% or more of X element under the following conditions, and determine the abundance ratio thereof. For particles having a concentration of element X of 1 atomic% or more, elements other than element X may be detected. The concentration of element X in the particles is determined by quantifying the average of the entire particles by surface analysis of EDS. The electron beam diameter used for this quantification is 0.01 to 1.0 μm, and the magnification of SEM observation is 1000 to 10000 times.
 粒子個数は、鋼材を1400℃に加熱し、3秒程度保持して急冷した鋼材から試料を作製して測定してもよい。これは、例えば、セメンタイトや合金の炭窒化物などが生成していると、観察対象である円相当径が0.5~5.0μmのサイズの粒子の個数を測定し難いためである。高温に加熱して観察対象以外の析出物を固溶させ、その後急冷するか、又は、急冷途中でフェライトが生成する熱サイクルを付与すれば、セメンタイトや炭窒化物が少ない資料を作製することができる。Mgを含む粒子は高温に加熱しても安定であり、冷却中に形態がほぼ変化しないため、このような熱サイクルを付与しても粒子個数の測定結果はほとんど変わらない。 The number of particles may be measured by preparing a sample from a steel material obtained by heating a steel material to 1400 ° C. and holding it for about 3 seconds to quench it. This is because, for example, when cementite or alloy nitride is produced, it is difficult to measure the number of particles having a circle-equivalent diameter of 0.5 to 5.0 μm to be observed. By heating to a high temperature to dissolve the precipitates other than the observation target and then quenching them, or by applying a thermal cycle in which ferrite is generated during quenching, it is possible to prepare materials with less cementite and carbonitrides. it can. Since the particles containing Mg are stable even when heated to a high temperature and their morphology hardly changes during cooling, the measurement result of the number of particles hardly changes even if such a heat cycle is applied.
 次に、本実施形態に係る鋼材の製造方法について説明する。
 X元素の鋼中での存在状態を制御する場合、溶製工程を制御することが有効である。具体的には、鋼の溶製方法として、例えば溶鋼温度を1650℃以下として、溶鋼のO濃度を0.0100%以下に制御した状態で、Al等の脱酸元素を添加し、更に、Mg及びX元素を添加する。X元素の添加は、Mg添加と同時か、又は、Mg添加の前後に行い、その間には他の工程を含まない。
 鋼材の表面から厚さの1/4の位置において、円相当径で0.5~5.0μmの粒子を1.00~1.00×10個/mmの個数密度で存在させ、かつ前記粒子のうち、Ca,Mg,Mn,S,X元素の合計に対して原子%で1%以上のX元素を含む粒子の個数割合を30%以上とする場合には、例えば溶鋼温度を1650℃以下として、溶鋼のO濃度を0.0100%に制御した状態で、Al等の脱酸元素を添加し、X元素の添加と同時にMgを添加するか、又は、X元素を添加した後にMgを添加し、その間には他の工程を含まないことが好ましい。
 溶鋼のO濃度を0.0100%以下に制御するには、Si、Mn、Al等による予備脱酸を行えばよい。Mg及びX元素を添加した後、その他の元素の含有量を所定の範囲に調整してもよい。鋳造は連続鋳造を採用することが好ましい。これにより、Xsolが0.0001~0.0050%である鋳片を得ることができる。
Next, a method for manufacturing a steel material according to the present embodiment will be described.
When controlling the state of existence of element X in steel, it is effective to control the melting process. Specifically, as a method for melting steel, for example, with the molten steel temperature set to 1650 ° C. or lower and the O concentration of the molten steel controlled to 0.0100% or less, a deoxidizing element such as Al is added, and then Mg is added. And element X are added. The addition of element X is performed at the same time as the addition of Mg or before and after the addition of Mg, and no other steps are included between them.
At a position 1/4 of the thickness from the surface of the steel material, particles having a diameter equivalent to a circle of 0.5 to 5.0 μm are present at a number density of 1.00 to 1.00 × 10 4 particles / mm 2. When the number ratio of particles containing 1% or more of X element in atomic% to the total of Ca, Mg, Mn, S, and X elements is 30% or more, for example, the molten steel temperature is 1650. With the O concentration of the molten steel controlled to 0.0100% at ° C or lower, a deoxidizing element such as Al is added, and Mg is added at the same time as the addition of the X element, or Mg is added after the X element is added. Is added, and no other steps are included in the meantime.
In order to control the O concentration of the molten steel to 0.0100% or less, preliminary deoxidation with Si, Mn, Al or the like may be performed. After adding Mg and X element, the content of other elements may be adjusted within a predetermined range. It is preferable to adopt continuous casting for casting. As a result, a slab having an X sol of 0.0001 to 0.0050% can be obtained.
 溶鋼のO濃度を0.0100%以下に制御した状態で、Al等の脱酸元素を添加し、更に、X元素とMgとを適切な順番で添加することでMgを含む粒子が溶鋼中で形成され、鋳造後の鋼中に微細に分散する。この微細な粒子は高温で安定であるため、溶接によって加熱されたγ粒の粗大化を抑止することができる。一方、溶鋼のO濃度が0.0100%超である状態でAl等の脱酸元素を添加した場合は、酸硫化物などの介在物がX元素を取り込んで凝集浮上するため、X元素も排出される。したがって、Al等の脱酸元素を添加する前の溶鋼のO濃度を0.0100%以下に制御しておくことで、X元素の排出を抑制し、効果的に活用できるものと推測できる。 With the O concentration of the molten steel controlled to 0.0100% or less, deoxidizing elements such as Al are added, and by adding the X element and Mg in an appropriate order, particles containing Mg can be found in the molten steel. It is formed and finely dispersed in the cast steel. Since these fine particles are stable at high temperatures, coarsening of γ particles heated by welding can be suppressed. On the other hand, when a deoxidizing element such as Al is added while the O concentration of the molten steel is more than 0.0100%, inclusions such as acid sulfide take in the X element and coagulate and float, so that the X element is also discharged. Will be done. Therefore, it can be inferred that by controlling the O concentration of the molten steel before adding a deoxidizing element such as Al to 0.0100% or less, the emission of the X element can be suppressed and it can be effectively utilized.
 より好ましくは、鋼の溶製方法として、例えば、溶鋼のO濃度を0.0100%以下、溶鋼のS濃度を0.0200%以下に制御した状態で、Al等の脱酸元素を添加し、更に、Mg及びX元素を添加する。さらに好ましくは、例えば、溶鋼のO濃度を0.0100%以下、溶鋼のS濃度を0.0200%以下に制御した状態で、Al等の脱酸元素を添加した後に、X元素を添加した後、Mgを添加する。このように、溶鋼のO濃度及びS濃度を制御しながら脱酸元素、X元素、Mgを添加することにより、粗大な介在物の形成や、X元素の排出を抑制することができる。 More preferably, as a method for melting steel, for example, a deoxidizing element such as Al is added in a state where the O concentration of the molten steel is controlled to 0.0100% or less and the S concentration of the molten steel is controlled to 0.0200% or less. Further, Mg and X element are added. More preferably, for example, in a state where the O concentration of the molten steel is controlled to 0.0100% or less and the S concentration of the molten steel is controlled to 0.0200% or less, a deoxidizing element such as Al is added, and then the X element is added. , Mg is added. In this way, by adding the deoxidizing element, the X element, and Mg while controlling the O concentration and the S concentration of the molten steel, the formation of coarse inclusions and the emission of the X element can be suppressed.
 Al等による脱酸が不十分な場合は、脱酸を促進する元素としてCa、REMを添加してもよい。Mgを含む粒子の形成を促進するためには、Mgを添加する前の溶鋼中のCa量及びREM量を0.0005%以下に制限することが好ましい。硫化物を形成するCa、REMの含有量を制限することにより、Sをピンニング粒子の形成に利用することができる。Ca、REMは意図的に添加しない場合でも、溶鋼鍋に使用される耐火物や、脱硫などの目的で添加されるフラックスやスラグ、合金原料中などから溶鋼中に混入する場合がある。Ca、REMの含有量を0.0005%以下に抑制するには、耐火物、フラックス、スラグや合金原料中などに含まれるCa、REM量を管理すればよい。溶鋼中のCa、REMの形態、形状を、溶鋼中に混入し難い安定な酸化物等とするように管理してもよい。 If deoxidation with Al or the like is insufficient, Ca or REM may be added as an element that promotes deoxidation. In order to promote the formation of particles containing Mg, it is preferable to limit the amount of Ca and the amount of REM in the molten steel before adding Mg to 0.0005% or less. By limiting the contents of Ca and REM that form sulfides, S can be used for the formation of pinning particles. Even if Ca and REM are not intentionally added, they may be mixed into the molten steel from refractories used in molten steel pots, fluxes and slags added for the purpose of desulfurization, and alloy raw materials. In order to suppress the content of Ca and REM to 0.0005% or less, the amount of Ca and REM contained in refractories, flux, slag, alloy raw materials and the like may be controlled. The form and shape of Ca and REM in the molten steel may be controlled so as to be a stable oxide or the like that is difficult to be mixed in the molten steel.
 X元素によってHAZ靭性が向上する機構は定かではないが、固溶状態で鋼中に存在するX元素の量(Xsol)を確保することにより、X元素を鋼中に均一に存在させることが重要であると推定される。また、Xsolの確保とともにMgを含む粒子を鋼中に形成させることにより相乗効果が発現し、優れたピンニング効果が得られると考えられる。 The mechanism by which the HAZ toughness is improved by the X element is not clear, but it is possible to make the X element uniformly present in the steel by ensuring the amount of the X element (X sol ) present in the steel in the solid solution state. Presumed to be important. Further, it is considered that a synergistic effect is exhibited by securing X sol and forming particles containing Mg in the steel, and an excellent pinning effect can be obtained.
 上述のように、溶鋼のO濃度と、X元素、Al等の脱酸元素、Mgの添加順序とを規定することで、円相当径で0.5~5.0μmの粒子の個数密度が制御できる理由について説明する。単に鋼中にX元素を添加しただけでは、X元素を含む粒子はほとんど生成しない。その理由は定かではないが、X元素は溶鋼中での蒸気圧が高く、多量に添加しても溶鋼中に残存し難いためであると推定される。そのため、X元素を含む粒子の核となる脱酸生成物の制御を行うことで、X元素が介在物に捕捉されてHAZの靭性の向上に寄与する粒子が生成するものと推測される。 As described above, by defining the O concentration of molten steel and the order of addition of element X, deoxidizing elements such as Al, and Mg, the number density of particles with a diameter equivalent to a circle of 0.5 to 5.0 μm can be controlled. Explain why you can. Simply adding element X to steel does not produce particles containing element X. The reason is not clear, but it is presumed that element X has a high vapor pressure in the molten steel and is unlikely to remain in the molten steel even if a large amount is added. Therefore, it is presumed that by controlling the deoxidized product that is the core of the particles containing the X element, the X element is captured by the inclusions and particles that contribute to the improvement of the toughness of HAZ are generated.
 鋳造後の加熱、圧延、熱処理条件は、鋼材の目標とする機械的性質に応じて、例えば、制御圧延・制御冷却、圧延後直接焼入れ・焼き戻し、圧延後一旦冷却後焼入れ・焼戻し、など適宜選定すればよい。 The heating, rolling, and heat treatment conditions after casting are appropriately set according to the target mechanical properties of the steel material, for example, controlled rolling / controlled cooling, direct quenching / tempering after rolling, quenching / tempering after cooling once after rolling, and the like. You can select it.
 以下、本実施形態に係る鋼材について、実施例を挙げて具体的に説明する。ただし、下記実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、下記実施例に限定されるものではない。 Hereinafter, the steel material according to this embodiment will be specifically described with reference to examples. However, the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to the following examples.
(実施例1)
 鋼を溶製し、鋳造して得た鋳片を、熱間圧延し、板厚25mmの鋼板とした。
 溶製工程では、溶鋼温度を1650℃以下として、溶鋼O濃度を0.0100%以下とした状態で、Mg及びX元素を同時に添加した。更に、その他の元素の含有量を所定の範囲に調整し、連続鋳造により鋳造し、鋳片を得た。
(Example 1)
The slab obtained by melting and casting steel was hot-rolled to obtain a steel plate having a thickness of 25 mm.
In the melting step, Mg and element X were added at the same time with the molten steel temperature set to 1650 ° C. or lower and the molten steel O concentration set to 0.0100% or lower. Further, the content of other elements was adjusted to a predetermined range, and casting was performed by continuous casting to obtain a slab.
 得られた鋼板から試料を採取し、蛍光X線分析法、燃焼-赤外線吸収法、不活性ガス融解法、ICP質量分析法などを用いて鋼板の成分の分析を行った。鋼板に含まれるX元素(Pb、Bi、Se、Te)の含有量は、ICP質量分析法によって求めた。鋼板成分の分析結果を表1~表4に示す。 A sample was taken from the obtained steel sheet, and the components of the steel sheet were analyzed using a fluorescent X-ray analysis method, a combustion-infrared absorption method, an inert gas melting method, an ICP mass spectrometry method, and the like. The content of element X (Pb, Bi, Se, Te) contained in the steel sheet was determined by ICP mass spectrometry. The analysis results of the steel sheet components are shown in Tables 1 to 4.
 なお、表2及び表4に示す炭素当量Ceqは、下記式により求めた。
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
 式中の[C]、[Mn]、[Cr]、[Mo]、[V]、[Cu]、[Ni]は、それぞれ、C、Mn、Cr、Mo、V、Cu、Niの含有量(質量%)であり、含有しない場合は0を代入する。
The carbon equivalent Ceq shown in Tables 2 and 4 was calculated by the following formula.
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5+ (Cu + Ni) / 15
[C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] in the formula are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%), and if it is not contained, 0 is substituted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 得られた鋼板から試料を採取し、電解抽出残渣法によってXinsolを測定し、ICP質量分析法によって測定したXtotalからXinsolを減じてXsolを求めた。また、溶接を再現する熱履歴を小片に与える再現熱サイクル試験を行った。具体的には、再現熱サイクル試験は、1400℃で23s保持し、800℃から500℃までを300sで冷却する条件(溶接入熱450kJ/cmに相当)で行った。
 そして、再現熱サイクル試験後の試料から鋼板の表面から板厚の1/4厚の位置を試験片の厚みの中心としてVノッチ試験片を作製し、JIS Z 2242:2005に準拠してシャルピー試験を行った。シャルピー試験は、試験温度-20℃で試験数を3として行い、測定したシャルピー吸収エネルギー(vE-20)の最低値で評価した。3つの試験片のシャルピー吸収エネルギーの最低値が100J以上であればHAZ靭性に優れると判定した。その結果を表5及び表6に示す。
The resulting sample was taken from the steel plate, the X insol determined by electrowinning residue method to determine the X sol by subtracting the X insol from X total measured by ICP mass spectrometry. In addition, a regenerative thermal cycle test was conducted in which small pieces were given a thermal history to reproduce welding. Specifically, the reproduction heat cycle test was carried out under the condition that the temperature was maintained at 1400 ° C. for 23 s and the temperature from 800 ° C. to 500 ° C. was cooled at 300 s (corresponding to welding heat input 450 kJ / cm).
Then, a V-notch test piece was prepared from the sample after the reproduction thermal cycle test with the position of 1/4 of the thickness from the surface of the steel plate as the center of the thickness of the test piece, and the Charpy test was performed in accordance with JIS Z 2242: 2005. Was done. The Charpy test was carried out at a test temperature of −20 ° C. with a number of tests of 3, and was evaluated by the lowest value of the measured Charpy absorption energy (vE- 20 ). When the minimum value of the Charpy absorption energy of the three test pieces was 100 J or more, it was judged that the HAZ toughness was excellent. The results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5に示すように、鋼成分及びXsol(%)が本発明の範囲内である鋼材(No.1~25)は、再現熱サイクル試験後の-20℃におけるシャルピー吸収エネルギーが高いことが判る。一方、表6に示すように、鋼成分又はXsol(%)が本発明の範囲外である鋼材(No.101~110)は、再現熱サイクル試験後の-20℃におけるシャルピー吸収エネルギーが、発明例に比べて低いことが判る。 As shown in Table 5, the steel materials (No. 1 to 25) having a steel component and X sol (%) within the range of the present invention have high Charpy absorption energy at −20 ° C. after the regenerative heat cycle test. I understand. On the other hand, as shown in Table 6, the steel materials (No. 101 to 110) having a steel component or X sol (%) outside the range of the present invention have a Charpy absorption energy at −20 ° C. after the regenerative heat cycle test. It can be seen that it is lower than that of the invention example.
 No.101は、X元素が含有されず、Xsol(%)が0%となり、シャルピー吸収エネルギーが低下した。No.102~No.105は、それぞれ、Pb含有量、Bi含有量、Se含有量、Te含有量が多く、いずれもXsol(%)が上限を超えたため、シャルピー吸収エネルギーが低下した。 No. In 101, the X element was not contained, the X sol (%) became 0%, and the Charpy absorption energy decreased. No. 102-No. Each of 105 had a large Pb content, Bi content, Se content, and Te content, and X sol (%) exceeded the upper limit in each case, so that the Charpy absorption energy decreased.
 No.106はMgを含有しておらず、No.107はAl含有量が少ないため、シャルピー吸収エネルギーが低下した。No.108は、O含有量が多いため、シャルピー吸収エネルギーが低下した。No.109は、Xsol(%)が0%となり、シャルピー吸収エネルギーが低下した。No.110は、Xsol(%)が上限を超えたため、シャルピー吸収エネルギーが低下した。 No. No. 106 does not contain Mg and is No. Since 107 has a low Al content, the Charpy absorption energy is reduced. No. Since 108 had a large O content, the Charpy absorption energy decreased. No. In 109, X sol (%) became 0%, and the Charpy absorption energy decreased. No. In 110, the Charpy absorbed energy decreased because X sol (%) exceeded the upper limit.
(実施例2)
 鋼を溶製し、鋳造して得た鋳片を、熱間圧延し、板厚25mmの鋼板とした。
 溶製工程では、溶鋼温度を1650℃以下として、溶鋼O濃度を0.0100%以下とした状態で、Al、X元素、Mgを表9に示す順序で添加した。更に、その他の元素の含有量を所定の範囲に調整し、連続鋳造により鋳造し、鋳片を得た。
(Example 2)
The slab obtained by melting and casting steel was hot-rolled to obtain a steel plate having a thickness of 25 mm.
In the melting step, Al, X element, and Mg were added in the order shown in Table 9 in a state where the molten steel temperature was 1650 ° C. or lower and the molten steel O concentration was 0.0100% or less. Further, the content of other elements was adjusted to a predetermined range, and casting was performed by continuous casting to obtain a slab.
 得られた鋼板から試料を採取し、蛍光X線分析法、燃焼-赤外線吸収法、不活性ガス融解法、誘導結合プラズマ質量分析法(Inductively Coupled Plasma Mass Spectrometry、ICP質量分析法)などを用いて鋼板の成分の分析を行った。鋼板に含まれるX元素(Pb、Bi、Se、Te)の含有量は、ICP質量分析法によって求めた。鋼板成分の分析結果を表7~表8に示す。 Samples are taken from the obtained steel plate and used by fluorescent X-ray analysis, combustion-infrared absorption, inert gas melting, inductively coupled plasma mass spectrometry (ICP mass spectrometry), etc. The composition of the steel plate was analyzed. The content of element X (Pb, Bi, Se, Te) contained in the steel sheet was determined by ICP mass spectrometry. The analysis results of the steel sheet components are shown in Tables 7 to 8.
 表8に示す炭素当量Ceqは、下記式により求めた。
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
 式中の[C]、[Mn]、[Cr]、[Mo]、[V]、[Cu]、[Ni]は、それぞれ、C、Mn、Cr、Mo、V、Cu、Niの含有量(質量%)であり、含有しない場合は0を代入する。
The carbon equivalent Ceq shown in Table 8 was calculated by the following formula.
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5+ (Cu + Ni) / 15
[C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] in the formula are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%), and if it is not contained, 0 is substituted.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 得られた鋼板から試料を採取し、1400℃で3秒間加熱保持した後、急冷し、鏡面研磨してEDS付きのFE-SEMで観察した。25000μm以上の面積につき円相当径が0.5~5.0μmの大きさの粒子個数を測定し、単位面積当たりの個数に換算した。次に、個数を測定した円相当径が0.5~5.0μmの粒子のうち、20個以上の粒子について、EDSにてそれぞれ粒子全体についてマッピングし、X元素の濃度を求めて、Ca、Mg、Mn、S及びX元素の合計に対して1原子%以上のX元素を含む粒子の個数割合を求めた。これらの粒子の個数密度、X元素を含む粒子の個数割合を以下に示す基準により評価した。その結果を表9に示す。 A sample was taken from the obtained steel sheet, heated and held at 1400 ° C. for 3 seconds, rapidly cooled, mirror-polished, and observed with an FE-SEM equipped with EDS. The number of particles having a circle-equivalent diameter of 0.5 to 5.0 μm was measured for an area of 25,000 μm 2 or more, and converted into the number per unit area. Next, among the measured number of particles having a circle-equivalent diameter of 0.5 to 5.0 μm, 20 or more particles are mapped for the entire particles by EDS, and the concentration of the X element is determined. The number ratio of particles containing 1 atomic% or more of X element to the total of Mg, Mn, S and X elements was determined. The number density of these particles and the number ratio of particles containing the X element were evaluated according to the criteria shown below. The results are shown in Table 9.
(粒子の個数密度基準)
OK:鋼材の表面から板厚の1/4の位置において、円相当径が0.5~5.0μmの粒子の個数密度が1.00~1.00×10個/mmである。
NG:円相当径が0.5~5.0μmの粒子の個数密度が1.00個/mm未満である。
(Particle number density standard)
OK: The number density of particles having a circle equivalent diameter of 0.5 to 5.0 μm is 1.00 to 1.00 × 10 4 particles / mm 2 at a position 1/4 of the plate thickness from the surface of the steel material.
NG: The number density of particles having a circle-equivalent diameter of 0.5 to 5.0 μm is less than 1.00 particles / mm 2 .
(X元素を含む粒子の個数割合基準)
OK:1原子%以上のX元素を含む粒子の個数割合が30%以上である。
NG:1原子%以上のX元素を含む粒子の個数割合が30%未満である。
(Based on the number ratio of particles containing element X)
OK: The number ratio of particles containing 1 atomic% or more of X element is 30% or more.
NG: The number ratio of particles containing 1 atomic% or more of X element is less than 30%.
 また、溶接を再現する熱履歴を小片に与える再現熱サイクル試験を行った。具体的には、再現熱サイクル試験は、1400℃で23s保持し、800℃から500℃までを300sで冷却する条件(溶接入熱450kJ/cmに相当)で行った。
 そして、再現熱サイクル試験後の試料から、鋼板の表面から板厚の1/4厚の位置を試験片の厚みの中心としてVノッチ試験片を作製し、JIS Z 2242:2005に準拠してシャルピー試験を行った。シャルピー試験は、試験温度-20℃で試験数を3として行い、測定したシャルピー吸収エネルギー(vE-20)の最低値で評価した。
In addition, a regenerative thermal cycle test was conducted in which small pieces were given a thermal history to reproduce welding. Specifically, the reproducible heat cycle test was carried out under the condition of holding at 1400 ° C. for 23 s and cooling from 800 ° C. to 500 ° C. at 300 s (corresponding to welding heat input 450 kJ / cm).
Then, from the sample after the reproduction thermal cycle test, a V-notch test piece was prepared with the position of 1/4 of the plate thickness from the surface of the steel plate as the center of the thickness of the test piece, and Charpy was prepared in accordance with JIS Z 2242: 2005. The test was conducted. The Charpy test was carried out at a test temperature of −20 ° C. with a number of tests of 3, and was evaluated by the lowest value of the measured Charpy absorption energy (vE- 20 ).
Figure JPOXMLDOC01-appb-T000009
 表9示すように、鋼材の表面から板厚の1/4の位置において、円相当径が0.5~5.0μmの粒子の個数密度が1.00~1.00×10個/mmであり、かつその粒子のうち1原子%以上のX元素を含む粒子の個数割合が30%以上である鋼材(No.201~225)は、再現熱サイクル試験後の-20℃におけるシャルピー吸収エネルギーが150J以上であり、HAZ靭性がさらに優れることが判る。
Figure JPOXMLDOC01-appb-T000009
As shown in Table 9, the number density of particles having a circle equivalent diameter of 0.5 to 5.0 μm is 1.00 to 1.00 × 10 4 particles / mm at a position 1/4 of the plate thickness from the surface of the steel material. Steel materials (No. 201 to 225) having a number of 2 and having a number ratio of particles containing 1 atomic% or more of X element among the particles of 30% or more absorb Charpy at −20 ° C. after the reproducible thermal cycle test. It can be seen that the energy is 150 J or more and the HAZ toughness is further excellent.
 本発明によれば、溶接後に良好なHAZ靭性を有する鋼材を提供することができる。特に、本発明の鋼材は、降伏強度が300~700MPa程度の高張力が要求される、建築、橋梁、造船、ラインパイプ、建設機械、海洋構造物、タンクなどの各種の溶接鋼構造物に好適に用いることができる。 According to the present invention, it is possible to provide a steel material having good HAZ toughness after welding. In particular, the steel material of the present invention is suitable for various welded steel structures such as construction, bridges, shipbuilding, line pipes, construction machinery, marine structures, tanks, etc., which require a high tension with a yield strength of about 300 to 700 MPa. Can be used for.

Claims (5)

  1. 質量%で、
     C:0.01~0.20%、
     Si:1.00%以下、
     Mn:0.1~2.5%、
     Mg:0.0005~0.0100%、
     Al:0.015~0.500%、
     P:0.020%以下、
     S:0.020%以下、
     N:0.0100%以下、
     O:0.0030%未満、
     X元素であるPb、Bi、Se、Teの合計:0.0001~0.0100%、
     Cu:0~2.0%、
     Ni:0~2.0%、
     Cr:0~2.0%、
     Mo:0~1.0%、
     Nb:0~0.10%、
     W:0~2.0%、
     V:0~0.20%、
     B:0~0.010%、
     Ti:0~0.100%、
     Zr:0~0.10%、
     Ta:0~0.10%、
     Ag:0~0.10%、
     Hf:0~0.10%、
     Ca:0~0.0100%、
     REM:0~0.010%、
     Sn:0~0.50%、
     Sb:0~0.50%、
    を含有し、残部がFe及び不純物からなり、
     前記Pb、Bi、Se、Teの含有量の合計Xtotalから、電解抽出残渣法によって求められる介在物を形成した状態の前記Pb、Bi、Se、Teの含有量の合計であるXinsolを減じて得られるXsolが、質量%で、0.0001~0.0050%である
    ことを特徴とする鋼材。
    By mass%
    C: 0.01 to 0.20%,
    Si: 1.00% or less,
    Mn: 0.1-2.5%,
    Mg: 0.0005-0.0100%,
    Al: 0.015 to 0.500%,
    P: 0.020% or less,
    S: 0.020% or less,
    N: 0.0100% or less,
    O: Less than 0.0030%,
    Total of X elements Pb, Bi, Se, and Te: 0.0001 to 0.0100%,
    Cu: 0-2.0%,
    Ni: 0-2.0%,
    Cr: 0-2.0%,
    Mo: 0-1.0%,
    Nb: 0 to 0.10%,
    W: 0-2.0%,
    V: 0 to 0.20%,
    B: 0 to 0.010%,
    Ti: 0 to 0.100%,
    Zr: 0 to 0.10%,
    Ta: 0 to 0.10%,
    Ag: 0 to 0.10%,
    Hf: 0 to 0.10%,
    Ca: 0-0.0100%,
    REM: 0-0.010%,
    Sn: 0 to 0.50%,
    Sb: 0 to 0.50%,
    Containing, the balance consists of Fe and impurities,
    From the total X total of the contents of Pb, Bi, Se, and Te, subtract X insol , which is the total content of Pb, Bi, Se, and Te in the state where the inclusions obtained by the electrolytic extraction residue method are formed. A steel material having a mass% of X sol of 0.0001 to 0.0050%.
  2.  質量%で、
     Cu:0.02~2.0%、
     Ni:0.02~2.0%、
     Cr:0.02~2.0%、
     Mo:0.02~1.0%、
     Nb:0.01~0.10%、
     W:0.01~2.0%、
     V:0.01~0.20%、
     B:0.0003~0.010%、
     Ti:0.005~0.100%、
     Zr:0.01~0.10%、
     Ta:0.01~0.10%、
     Ag:0.01~0.10%、
     Hf:0.01~0.10%、
    の1種又は2種以上を含有することを特徴とする請求項1に記載の鋼材。
    By mass%
    Cu: 0.02-2.0%,
    Ni: 0.02-2.0%,
    Cr: 0.02 to 2.0%,
    Mo: 0.02 to 1.0%,
    Nb: 0.01 to 0.10%,
    W: 0.01-2.0%,
    V: 0.01 to 0.20%,
    B: 0.0003 to 0.010%,
    Ti: 0.005 to 0.100%,
    Zr: 0.01-0.10%,
    Ta: 0.01-0.10%,
    Ag: 0.01-0.10%,
    Hf: 0.01 to 0.10%,
    The steel material according to claim 1, wherein the steel material contains one or more of the above.
  3.  質量%で、
     Ca:0.0001~0.0100%、
     REM:0.001~0.010%
    の一方又は両方を含有することを特徴とする請求項1又は2に記載の鋼材。
    By mass%
    Ca: 0.0001 to 0.0100%,
    REM: 0.001 to 0.010%
    The steel material according to claim 1 or 2, wherein the steel material contains one or both of them.
  4.  質量%で、
     Sn:0.01~0.50%、
     Sb:0.01~0.50%
    の一方又は両方を含有することを特徴とする請求項1~3の何れか1項に記載の鋼材。
    By mass%
    Sn: 0.01 to 0.50%,
    Sb: 0.01 to 0.50%
    The steel material according to any one of claims 1 to 3, wherein the steel material contains one or both of them.
  5.  前記O含有量が0.0001%以上、0.0030%未満であり、
     円相当径で0.5~5.0μmの粒子が1.00~1.00×10個/mmの個数密度で存在し、
     前記粒子のうち、前記Ca、前記Mg、前記Mn、前記S及び前記X元素の合計に対して原子%で1%以上の前記X元素を含む粒子の個数割合が、30%以上である
    ことを特徴とする請求項1~4の何れか1項に記載の鋼材。
    The O content is 0.0001% or more and less than 0.0030%.
    Particles with a diameter equivalent to a circle of 0.5 to 5.0 μm exist at a number density of 1.00 to 1.00 × 10 4 particles / mm 2 .
    Among the particles, the number ratio of the particles containing the X element in atomic% of 1% or more with respect to the total of the Ca, the Mg, the Mn, the S and the X element is 30% or more. The steel material according to any one of claims 1 to 4, which is characteristic.
PCT/JP2019/015468 2019-04-09 2019-04-09 Steel material WO2020208710A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/015468 WO2020208710A1 (en) 2019-04-09 2019-04-09 Steel material
JP2021513064A JP7205618B2 (en) 2019-04-09 2019-04-09 steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015468 WO2020208710A1 (en) 2019-04-09 2019-04-09 Steel material

Publications (1)

Publication Number Publication Date
WO2020208710A1 true WO2020208710A1 (en) 2020-10-15

Family

ID=72751849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015468 WO2020208710A1 (en) 2019-04-09 2019-04-09 Steel material

Country Status (2)

Country Link
JP (1) JP7205618B2 (en)
WO (1) WO2020208710A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527319A (en) * 1975-07-08 1977-01-20 Nippon Steel Corp Steel for 50 kjoule/cm heavy heat input self-welding
JPS5547366A (en) * 1978-09-30 1980-04-03 Nippon Steel Corp Steel for weld construction having high fracture toughness weld zone
JP2011256428A (en) * 2010-06-09 2011-12-22 Sumitomo Metal Ind Ltd Steel material for welded structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527319A (en) * 1975-07-08 1977-01-20 Nippon Steel Corp Steel for 50 kjoule/cm heavy heat input self-welding
JPS5547366A (en) * 1978-09-30 1980-04-03 Nippon Steel Corp Steel for weld construction having high fracture toughness weld zone
JP2011256428A (en) * 2010-06-09 2011-12-22 Sumitomo Metal Ind Ltd Steel material for welded structure

Also Published As

Publication number Publication date
JP7205618B2 (en) 2023-01-17
JPWO2020208710A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP6926772B2 (en) Steel plate
DK2434027T3 (en) Steel materials for welding with high heat input
JP6828638B2 (en) Steel plate and steel plate manufacturing method
JP5820341B2 (en) Steel with excellent toughness in weld heat affected zone
JP6245417B1 (en) Steel
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP2019023323A (en) Steel plate and method for manufacturing steel plate
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP2011074447A (en) High strength steel excellent in toughness in high heat input weld heat-affected zone
JP2013204118A (en) High tensile strength steel for ultrahigh heat input welding having excellent heat-affected zone low temperature toughness
KR101488633B1 (en) Steel for welding
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
WO2007020683A1 (en) Thick steel plate excelling in toughness of large heat input welded joint
JP7205619B2 (en) steel
US20240131632A1 (en) Tig welded joint
JP3782645B2 (en) High strength steel for super large heat input welding
WO2020208710A1 (en) Steel material
JP5213517B2 (en) Steel with excellent weld heat affected zone toughness
JP2021004407A (en) Steel and method for producing the same
JP6447253B2 (en) High strength steel for welding
JP7127751B2 (en) Steel plate and its manufacturing method
JP5531514B2 (en) High heat input steel and welded joint
JP3782648B2 (en) High strength steel for super large heat input welding
JP2023148713A (en) Thick steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924223

Country of ref document: EP

Kind code of ref document: A1