WO2020207440A1 - 一种活塞制动装置 - Google Patents

一种活塞制动装置 Download PDF

Info

Publication number
WO2020207440A1
WO2020207440A1 PCT/CN2020/083980 CN2020083980W WO2020207440A1 WO 2020207440 A1 WO2020207440 A1 WO 2020207440A1 CN 2020083980 W CN2020083980 W CN 2020083980W WO 2020207440 A1 WO2020207440 A1 WO 2020207440A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
pressure regulating
chamber
pipe
bypass
Prior art date
Application number
PCT/CN2020/083980
Other languages
English (en)
French (fr)
Inventor
甘泉龙
Original Assignee
甘泉龙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甘泉龙 filed Critical 甘泉龙
Publication of WO2020207440A1 publication Critical patent/WO2020207440A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders

Definitions

  • the invention relates to the field of braking, in particular to a piston braking device.
  • Braking system also known as brake, refers to the action of stopping or reducing the speed of locomotives, vehicles and other transportation tools or machinery in operation.
  • the general principle of braking is to fix a wheel or disc on the high-speed shaft of the machine, install a brake shoe, belt or disc suitable for it on the machine base, and make it generate a braking torque under the action of external force.
  • the brake device is also a mechanical brake device that can slow down the vehicle speed, also known as a reducer. Simply put: the brake pedal of the car is under the steering wheel. If you step on the brake pedal, the brake lever will be compressed and transferred to the brake drum to block the brake wheel, so that the car will slow down or stop. The manual brake of the car is next to the gear and connected to the brake lever.
  • Bicycle brakes are also common, which rely on rod-shaped brakes fixed on the frame or disc-mounted brakes to decelerate. Therefore, the existing vehicle brake system, whether it is a disc brake or a drum brake, makes two objects come into close contact with each other, and uses a relatively fixed brake disc or brake block to contact the working parts during high-speed rotation. Through the action of friction, the kinetic energy is converted into internal energy for consumption, so as to achieve the braking effect. Since the advent of motor vehicles, this braking principle has been deeply rooted in people’s consciousness. Although this friction braking method has the problem of easy wear and failure, the existing technology has always been bound by this way of thinking. The long-term research direction has been aimed at how to reduce the wear of friction parts caused by high-speed friction.
  • the purpose of the present invention is to provide a piston braking device to solve the problem that the braking method in the prior art converts kinetic energy into internal energy through friction, which cannot completely eliminate the problem of braking failure caused by brake wear and avoid the braking process.
  • a piston braking device includes a transmission shaft between a starting part and a working part, a cavity filled with liquid, and a transmission assembly connected to the transmission shaft; when the transmission shaft rotates, the transmission assembly drives the The volume of the cavity is periodically changed, and further includes a pressure regulating component for controlling the internal pressure of the cavity.
  • the cavity is a cylinder liner
  • the transmission assembly includes a piston connected to a transmission shaft.
  • a piston rod connected to the piston passes through a closed cylinder liner.
  • the pressure regulating assembly includes a pressure regulating tube and a pressure regulating valve one.
  • the piston divides the inside of the cylinder liner into a chamber one and a chamber two.
  • the chamber one and the two chambers are connected through a pressure regulating tube.
  • a pressure regulating valve 1 is arranged on the pressure tube; the first chamber, the second chamber, and the pressure regulating tube are filled with liquid.
  • the present invention proposes a piston braking device, the braking part is no longer just a traditional direct action
  • the starting part is the engine and the working part is the tire; for other mechanical structures, the starting The component can be any power output device, and the working component can be any action implementing device.
  • the invention constitutes a new transmission mechanism through the piston connected with the transmission shaft, and the transmission shaft drives the piston to make linear reciprocating motion in the cylinder liner.
  • the transmission shaft drives the piston to move through the piston rod, and the piston cylinder moves through the sealed cylinder liner. Therefore, for those skilled in the art, any suitable sealing method can be selected according to the prior art to seal the cylinder liner.
  • the space inside the cylinder liner is divided by the piston into chamber one and chamber two. With the continuous movement of the piston, the volume of chamber one and chamber two continue to change. When the volume of chamber one increases, it is inevitable The volume of the second chamber decreases; conversely, when the volume of the first chamber decreases, the volume of the second chamber must increase.
  • the cylinder liner is airtight as a whole, and the chamber 1, chamber 2, and the regulator tube are filled with liquid, as the piston reciprocates, the liquid will inevitably continue to enter the chamber 2 from the chamber 1 through the regulator tube, and then from the chamber Two enter the chamber through the pressure regulating tube one.
  • the pressure regulating valve Normally, when braking is not required, keep the pressure regulating valve fully open. At this time, the liquid can flow through the pressure regulating tube smoothly and back and forth between the first and second chambers.
  • braking properly close the pressure regulating valve 1 so that the flow area at the pressure regulating valve 1 becomes smaller. At this time, the piston reduces the volume in the first and second chambers during a reciprocating movement.
  • the degree of volume compression of one chamber remains unchanged, and the liquid in the chamber suffers more resistance when it is discharged.
  • the fluid must be sprayed out to the other chamber through the pressure regulating valve at a faster speed. From the perspective of energy conversion, in this process, in addition to the unavoidable friction of the piston, the rest of the energy is consumed by converting the kinetic energy of the transmission shaft into the kinetic energy of the fluid. Because the speed of the vehicle is extremely high when the vehicle is running, it is consumed in a short time. A large amount of fluid with high kinetic energy can be discharged through the pressure regulating valve for energy consumption, and the reciprocating frequency of the piston can be reduced, thereby realizing the gradual reduction of the rotation speed of the transmission shaft and achieving the braking effect.
  • the present invention does not require additional drive components for the brake system, not only Significantly simplify the structure, reduce braking costs, and can also reduce energy consumption during braking. It also includes a bypass pipe connected to the pressure regulating pipe, the bypass pipe is connected to the liquid regulating tank, and a bypass valve is arranged on the bypass pipe.
  • a bypass pipe connected to the pressure regulating pipe, the bypass pipe is connected to the liquid regulating tank, and a bypass valve is arranged on the bypass pipe.
  • the side of the piston facing away from the piston rod is fixedly connected with a constant fluid rod that extends to the outside of the cylinder liner, the constant fluid rod and the piston rod have the same outer diameter, and the axis of the constant fluid rod is coaxial with the axis of the piston rod.
  • the piston rod must only pass through one of the first and second chambers.
  • the constant fluid rod and the piston rod have the same outer diameter, which can be understood as the constant fluid rod and the piston rod have the same cross-sectional area in the direction perpendicular to the axis.
  • Seal rings are fixed on both sides of the piston rod and the constant liquid rod passing through the cylinder sleeve. Ensure that the penetrating position of the piston rod and the constant liquid rod will not damage the sealing performance of the cylinder liner.
  • the bypass pipe is connected to the bottom of the liquid adjusting tank, and the height of the bottom of the liquid adjusting tank is higher than the maximum height inside the cylinder liner.
  • It also includes a second pressure regulating valve arranged on the pressure regulating pipe, and the second pressure regulating valve and the first pressure regulating valve are respectively located on both sides of the connecting point of the pressure regulating pipe and the bypass pipe. Since the conventional piston rods pass through one side of the piston cylinder, in the solution without a constant fluid rod, the displacement and suction between the two chambers within one stroke of the piston due to the influence of the volume of the piston rod The difference of the amount enters the bypass pipe to avoid the risk of cylinder explosion.
  • the piston rod of the piston and the transmission shaft form a crank connecting rod mechanism
  • the crank of the crank connecting rod mechanism is located on the transmission shaft
  • the connecting rod of the crank connecting rod mechanism is a piston rod. That is, the rotation of the transmission shaft drives the crank to rotate synchronously, and then the piston is pushed through the piston rod to perform linear reciprocating motion.
  • the crank connecting rod is common knowledge in the art. The solution is to convert the crank motion of the transmission shaft into the linear motion of the piston. This structure is commonly used on the crankshaft of the engine, which can be realized by those skilled in the art.
  • the bypass container further includes a bypass container.
  • Both the first chamber and the second chamber communicate with the top and bottom of the bypass container through valves, and the pressure regulating tube communicates with the top of the bypass container through the bypass tube.
  • One-way valve one and one-way valve two are provided.
  • the one-way valve one conducts from chamber two to the bypass pipe, and the one-way valve two conducts from chamber one to the bypass pipe.
  • Valves are installed on the connecting pipelines between the container and the first chamber, the second chamber and the pressure regulating pipe. In addition to achieving the aforementioned normal braking function, this solution can also collect liquid in the bypass container when braking is not required, and the entire circulation pipeline is circulated by air, which can greatly reduce resistance and improve The working efficiency and stability of the invention.
  • the present invention has the following advantages and beneficial effects:
  • the piston brake device of the present invention abandons the way that the automobile industry uses disc brakes, drum brakes, etc. to perform mutual friction and convert kinetic energy into the internal energy of mutually frictional parts to achieve braking and braking.
  • the kinetic energy is converted into the kinetic energy of the continuous high-speed injection of the liquid to reduce the rotation speed of the transmission shaft.
  • the piston brake device of the present invention significantly improves braking safety and stability compared to the way in the prior art that once the brake friction parts are worn, it is very easy to cause brake slippage and failure.
  • the piston brake device of the present invention does not need to provide additional power, and only needs to control the switch size of the pressure regulating valve 1, which can realize energy conversion through the change of the flow area, and provide different sizes of braking force for the transmission shaft.
  • the power in the process of movement comes from the kinetic energy of the drive shaft itself. Therefore, compared with the prior art that requires additional driving of the brake discs to move and continuously apply pressure to them, the present invention does not require additional drive components for the brake system, not only Significantly simplify the structure, reduce braking costs, and can also reduce energy consumption during braking.
  • Fig. 1 is a schematic diagram of the structure of specific embodiment 1 of the present invention.
  • Embodiment 2 is a schematic diagram of the structure of Embodiment 2 of the present invention.
  • Fig. 3 is a schematic diagram of Embodiment 3 of the present invention.
  • a piston brake device as shown in Figure 1 includes a transmission shaft between the starting part and the working part, and is characterized in that it also includes a cavity filled with liquid and a transmission assembly connected to the transmission shaft; When the transmission shaft rotates, the transmission component drives the volume of the cavity to periodically change, and further includes a pressure regulating component for controlling the internal pressure of the cavity.
  • the cavity is a cylinder sleeve 4, and the transmission assembly includes a piston 3 connected with a transmission shaft.
  • a piston rod 2 connected with the piston 3 passes through a closed cylinder sleeve 4.
  • the pressure regulating assembly includes a pressure regulating tube 7, a pressure regulating valve 8, and the piston 3 divides the interior of the cylinder liner 4 into a chamber one 5 and a chamber two 6, the chamber one 5. It communicates with the second chamber 6 through a pressure regulating tube 7, and the pressure regulating tube 7 is provided with a pressure regulating valve 8; the chamber 1 5, the second chamber 6, and the pressure regulating tube 7 are filled with liquid; It includes a bypass pipe 11 connected to the pressure regulating pipe 7, the bypass pipe 11 is connected to the liquid regulating tank 12, and a bypass valve 13 is provided on the bypass pipe 11.
  • the side of the piston 3 facing away from the piston rod 2 is fixedly connected to a constant fluid rod 9 extending to the outside of the cylinder liner 4.
  • the constant fluid rod 9 and the piston rod 2 have the same outer diameter, and the axis of the constant fluid rod 9 is the same as the piston rod The axis of 2 is coaxial.
  • the two sides of the piston rod 2 and the constant liquid rod 9 passing through the cylinder sleeve 4 are fixed with a sealing ring 10.
  • the bypass pipe 11 is connected to the bottom of the fluid adjustment tank 12, and the height of the bottom of the fluid adjustment tank 12 is higher than that of the cylinder liner 4.
  • the maximum height of the interior also includes a second pressure regulating valve 14 arranged on the pressure regulating pipe 7, the second pressure regulating valve 14 and the first pressure regulating valve 8 are respectively located on both sides of the connecting point of the pressure regulating pipe 7 and the bypass pipe 11.
  • the piston rod 2 of the piston 3 and the transmission shaft form a crank connecting rod mechanism, the crank of the crank connecting rod mechanism is located on the transmission shaft, and the connecting rod of the crank connecting rod mechanism is the piston rod 2.
  • a bypass container 15 On the basis of any of the above-mentioned embodiments, it also includes a bypass container 15.
  • the chamber one 5 and the chamber two 6 are both connected to the top and bottom of the bypass container 15 through valves, and the pressure regulating tube 7 is connected to the bypass container 15 through the bypass tube 11.
  • the top of the bypass container 15 is connected.
  • the pressure regulating pipe 7 is provided with a one-way valve 16 and a one-way valve 17 which are conducted from the chamber two 6 to the bypass pipe 11, so The one-way valve 17 conducts from the cavity one 5 to the bypass pipe 11, and valves are provided on the connecting pipelines between the bypass container 15 and the cavity one 5, the cavity two 6, and the pressure regulating pipe 7.
  • the pressure regulating valve 8 is arranged on the connecting pipeline between the pressure regulating pipe 7 and the bypass container 15, and the one-way valve three 19 and the one-way valve four 20 as shown in the figure are arranged to further improve the work stability.
  • the pressure regulating valve 8 is moved to the bypass pipe 11. At this time, there is already a valve capable of adjusting the flow rate on the bypass pipe 11, so there is no need to separately provide a bypass valve.
  • the connecting pipeline between the bypass container 15 and the chamber one 5 and the connecting pipeline between the bypass container 15 and the chamber two 6 communicate with each other.
  • the working principle of this embodiment when braking is not required is: closing valve 18, opening valve 21, and pressure regulating valve 8. At this time, the liquid is in the bypass container 15: during the downward movement of the piston, the air flows from the chamber 1. 5 is pressed out through one-way valve two 17, pressure regulating valve one, and into the bypass container 15. Since valve one 18 is closed, the air above the bypass container 15 returns through valve two 21 and one-way valve three 19 The air circulation is completed in the second chamber 6. In the same way as the piston moves up, it can be completely circulated in the device through air, resulting in minimal energy loss.
  • the working principle of this embodiment when braking is required is as follows: close valve two 21, open valve one 18, adjust pressure regulating valve one 8, and then use the liquid in the bypass container 15 to circulate in the device to adjust the pressure regulating valve One 8 can achieve the stopping effect of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

一种活塞制动装置,包括位于发动部件至工作部件之间的传动转轴,还包括内部充填液体的腔体(4)、与传动转轴相连的传动组件(2、3);传动转轴转动时,传动组件(2、3)驱动腔体(4)的容积进行周期性变化,还包括用于控制腔体(4)内部压力的调压组件(7、8)。通过活塞制动装置的设置,以解决现有技术中的制动方式都是通过摩擦将动能转换为内能,无法彻底根治刹车磨损导致打滑失效的问题,实现避免制动过程中摩擦受损导致的制动失效的目的。

Description

一种活塞制动装置 技术领域
本发明涉及制动领域,具体涉及一种活塞制动装置。
背景技术
制动系统,又称刹车,是指使运行中的机车、车辆及其他运输工具或机械等停止或减低速度的动作。制动的一般原理是在机器的高速轴上固定一个轮或盘,在机座上安装与之相适应的闸瓦、带或盘,在外力作用下使之产生制动力矩。刹车装置也就是可以减慢车速的机械制动装置,又名减速器。简单来说:汽车刹车踏板在方向盘下面,踩住刹车踏板,则使刹车杠杆联动受压并传至到刹车鼓上的刹车片卡住刹车轮盘,使汽车减速或停止运行。汽车手动刹车是在排挡旁,连于刹车杠。常见的还有自行车刹车,它是靠固定在车架上的杆状制动器或者盘装抱刹制动器等来进行减速的。因此,现有的车辆刹车系统,无论是盘刹还是鼓刹,都是使两个物体相互靠拢接触,利用一个相对固定不动的刹车盘或刹车块去与高速转动过程中的工作部件接触,通过摩擦力的作用,将动能转换成内能进行消耗,以此实现制动刹车效果。自机动车问世以来,这种制动原理已根深蒂固的存在于人们的意识中,虽然这种摩擦制动方式存在易磨损失效的问题,然而现有技术中却始终被这种思维方式所束缚,长期以来的研究方向都是针对如何降低高速摩擦对摩擦件的磨损,为此,经过汽车工业上百年的发展,现有技术也的确从材料本身、涂层组分、甚至结构纹路等角度对刹车的耐磨性取得了非常大的突破。但是,这些突破始终受限于需要依靠相互摩擦将动能转换为内能的技术原理,属于治标不治本的技术方案,刹车打滑或失效在如今依然是导致交通事故的主因之一。
为了解决现有技术中制动方式都是通过摩擦将动能转换为内能,无法彻底根治刹车磨损导致打滑失效的问题,本申请的申请人提出了名为“一种活塞制动系统及其制动方法”的中国专利申请(申请号2018116123476),该申请能够实现打破现有技术的桎梏、杜绝摩擦受损导致的制动失效的目的。然而申请人在后期研究中发现该申请中所公开的技术方案不够优化,其结构还有较大的简化空间。
发明内容
本发明的目的在于提供一种活塞制动装置,以解决现有技术中的制动方式都是通过摩擦将动能转换为内能,无法彻底根治刹车磨损导致打滑失效的问题,实现避免制动过程中摩擦受损导致的制动失效的目的。
本发明通过下述技术方案实现:
一种活塞制动装置,包括位于发动部件至工作部件之间的传动转轴,还包括内部充填液 体的腔体、与所述传动转轴相连的传动组件;所述传动转轴转动时,传动组件驱动所述腔体的容积进行周期性变化,还包括用于控制所述腔体内部压力的调压组件。
所述腔体为缸套,所述传动组件包括与传动转轴相连的活塞,与所述活塞相连的活塞杆穿过密闭的缸套,传动转轴转动时通过活塞杆带动活塞在缸套内运动;所述调压组件包括调压管、调压阀一,活塞将缸套内部分为腔室一、腔室二,所述腔室一与腔室二之间通过调压管连通,所述调压管上设置调压阀一;所述腔室一、腔室二、调压管内充填满液体。
针对现有技术中制动方式都是通过摩擦将动能转换为内能,无法彻底根治刹车磨损导致打滑失效的问题,本发明提出一种活塞制动装置,制动部位不再只是传统的直接作用于轮胎等工作部件,而是在发动部件至工作部件之间的任意传动转轴上均可:对于机动车而言,发动部件即是发动机,工作部件即是轮胎;对于其他机械结构而言,发动部件可以是任意的动力输出装置,工作部件可以是任意的动作实施装置。本发明通过与传动转轴相连的活塞,构成一组新的传动机构,由传动转轴驱动活塞在缸套内做直线往复运动。传动转轴通过活塞杆带动活塞运动,活塞缸活动穿过密闭的缸套,因此对于本领域技术人员而言,根据现有技术选取任意适配的密封方式对缸套进行密封即可。缸套内部的空间被活塞分隔为腔室一、腔室二两部分,随着活塞的不断运动,腔室一、腔室二的容积不断进行变化,当腔室一容积增大时,必然的腔室二容积减小;反之当腔室一容积减小时,必然的腔室二容积增大。由于缸套整体密闭,且腔室一、腔室二、调压管内充填满液体,因此随着活塞的往复运动,液体必然不断从腔室一经过调压管进入腔室二,又从腔室二经过调压管进入腔室一。平时在不需要制动时,保持调压阀一全开,此时液体能够顺利无阻的经过调压管在腔室一、腔室二之间进行来回流动。在需要制动时,适当关小调压阀一,使得调压阀一处的过流面积变小,此时活塞在一次往复运动的过程中,对腔室一、腔室二中容积减小的一个腔室的容积压缩程度不变,而该腔室内的液体排出时所遭受的阻力更大,流体必然以更快的速度经过调压阀一向另一个腔室喷出。从能量转换的角度来看,此过程中,除了活塞无法避免的摩擦外,其余能量是从传动转轴的动能转化成了流体的动能进行消耗,由于车辆行驶时的转速极高,因此在短时间内能够通过调压阀一喷出大量高动能的流体进行能量的消耗,实现对活塞往复频率的降低,以此实现对传动转轴转速的逐渐降低,达到制动效果。当需要完全驻车时,完全关闭调压阀一,腔室一、腔室二内的液体无法再来回通过调压管进行流动,容积减小的一个腔室内的液体无法再被活塞压缩时即可完全制动活塞,传动转轴即可完全刹止。本方案彻底摒弃了几十上百年来机动车行业通过盘刹鼓刹等进行相互摩擦、将动能转化成相互摩擦的零部件的内能来实现制动刹车的方式,而是通过将动能转化成液体不断高速喷射的动能,来实现对传动转轴转速的降低,仅有的摩擦也是活塞与缸套之间的摩擦,而活塞与缸套之间的摩擦属于非常 成熟的领域,如常见的活塞泵中就是这种高速往复的结构,能够长期稳定的工作,本领域技术人员完全能够实现;并且,由于活塞与缸套之间的摩擦不是本发明主要的耗能点,制动效果不是依靠该摩擦产生的,因此该部位无论磨损与否都不会影响本发明正常的对传动转轴的制动效果,相较于现有技术中一旦刹车摩擦部件磨损,则非常容易导致刹车打滑、失效的方式而言,显著提高了制动安全性和稳定性。此外,传统的刹车方式需要专门为盘刹或鼓刹提供动力,驱动其刹片贴靠在转动部件的表面,通过增大压力的方式来增大相互摩擦力,实现稳定制动,其制动过程需要依靠持续施加的压力来实现。而本发明中,需要制动刹车时,无需额外提供动力,仅需控制调压阀一的开关大小,即可通过过流面积变化来实现能量转换,为传动转轴提供不同大小的制动力,制动过程中的动力来自传动转轴自身的动能,因此相较于现有技术中需要额外驱动刹片移动并向其持续施加压力的方式,本发明无需再为制动系统配置额外的驱动组件,不仅显著简化结构、降低制动成本,还能够减少制动过程中的能源消耗。还包括连接在调压管上的旁通管,所述旁通管与调液罐相连,所述旁通管上设置旁通阀。高速喷射的液体必然导致内能增加,长期工作状态下会使得液体温度升高,在热胀冷缩作用下液体产生膨胀,导致缸套内部液压升高,温度过高时有爆缸风险。本方案通过旁通管的设置,使得液体受热膨胀的部分自动进入调液罐中。
所述活塞背离活塞杆的一侧固定连接伸出至缸套外部的恒液杆,所述恒液杆与活塞杆外径相等,且恒液杆的轴线与活塞杆的轴线同轴。本申请中活塞杆必然只穿出腔室一、腔室二中的一个腔室,以活塞杆从腔室一中穿出为例:受活塞杆体积的影响,当活塞压缩腔室二时,腔室二减小的容积必然大于腔室一增大的容积;同理当活塞压缩腔室一时,腔室一减小的容积必然小于腔室二增大的容积,这就导致活塞每进行一次往复,不利于长期稳定使用,而本方案通过恒液杆的设置能够克服这一缺陷。恒液杆与活塞杆外径相等,可理解为恒液杆与活塞杆在垂直于轴线方向上的截面面积处处相等。本方案中由于恒液杆的存在,能够确保活塞往复运动过程中,两个腔室的容积总量始终保持不变,一个腔室的容积增大量始终等于另一个腔室的容积减小量。本方案也可以使用其余等效结构进行代替,只需满足活塞往复运动过程中,两个腔室的容积总量始终保持不变,一个腔室的容积增大量始终等于另一个腔室的容积减小量即可。
所述活塞杆、恒液杆穿出缸套的两侧均固定密封圈。确保活塞杆、恒液杆的穿出位置不会破坏缸套的密闭性能。
所述旁通管连接在调液罐的底部,所述调液罐底部的高度高于缸套内部的最大高度。
还包括设置于调压管上的调压阀二,所述调压阀二、调压阀一分别位于调压管与旁通管相连处的两侧。由于常规的活塞杆都是从活塞缸的一侧穿出,因此在不设置恒液杆的方案中, 活塞一个行程内两个腔室之间由于活塞杆体积影响所产生的排液与吸液的差异量则进入旁通管中,避免爆缸风险。
所述活塞的活塞杆与所述传动转轴形成曲柄连杆机构,所述曲柄连杆机构的曲柄位于传动转轴上,所述曲柄连杆机构的连杆为活塞杆。即是传动转轴转动带动曲柄同步转动,进而通过活塞杆推动活塞进行直线往复运动。曲柄连杆为本领域公知常识,本方案即是将传动转轴的曲柄运动转化为活塞的直线运动,本结构常用于发动机曲轴上,本领域技术人员均可实现。
优选的,还包括旁通容器,腔室一、腔室二均通过阀门与旁通容器的顶部、底部连通,调压管通过旁通管与旁通容器的顶部连通,所述调压管上设置单向阀一、单向阀二,所述单向阀一从腔室二至旁通管方向导通,所述单向阀二从腔室一至旁通管方向导通,所述旁通容器与腔室一、腔室二、调压管的连接管路上均设置阀门。本方案除了能够实现前述正常的制动功能外,还能够在不需要制动时,将液体聚集在旁通容器内部,而整个循环管路内由空气进行循环,能够极大的降低阻力,提高本发明工作效率和稳定性。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明一种活塞制动装置,摒弃了机动车行业通过盘刹鼓刹等进行相互摩擦、将动能转化成相互摩擦的零部件的内能来实现制动刹车的方式,而是通过将动能转化成液体不断高速喷射的动能,来实现对传动转轴转速的降低。
2、本发明一种活塞制动装置,相较于现有技术中一旦刹车摩擦部件磨损,则非常容易导致刹车打滑、失效的方式而言,显著提高了制动安全性和稳定性。
3、本发明一种活塞制动装置,无需额外提供动力,仅需控制调压阀一的开关大小,即可通过过流面积变化来实现能量转换,为传动转轴提供不同大小的制动力,制动过程中的动力来自传动转轴自身的动能,因此相较于现有技术中需要额外驱动刹片移动并向其持续施加压力的方式,本发明无需再为制动系统配置额外的驱动组件,不仅显著简化结构、降低制动成本,还能够减少制动过程中的能源消耗。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明具体实施例1的结构示意图;
图2为本发明具体实施例2的结构示意图;
图3为本发明具体实施例3的示意图。
附图中标记及对应的零部件名称:
2-活塞杆,3-活塞,4-缸套,5-腔室一,6-腔室二,7-调压管,8-调压阀一,9-恒液杆,10-密封圈,11-旁通管,12-调液罐,13-旁通阀,14-调压阀二,15-旁通容器,16-单向阀一,17-单向阀二,18-阀门一,19-单向阀三,20-单向阀四,21-阀门二。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
如图1所示的一种活塞制动装置,包括位于发动部件至工作部件之间的传动转轴,其特征在于,还包括内部充填液体的腔体、与所述传动转轴相连的传动组件;所述传动转轴转动时,传动组件驱动所述腔体的容积进行周期性变化,还包括用于控制所述腔体内部压力的调压组件。所述腔体为缸套4,所述传动组件包括与传动转轴相连的活塞3,与所述活塞3相连的活塞杆2穿过密闭的缸套4,传动转轴转动时通过活塞杆2带动活塞3在缸套4内运动;所述调压组件包括调压管7、调压阀一8,活塞3将缸套4内部分为腔室一5、腔室二6,所述腔室一5与腔室二6之间通过调压管7连通,所述调压管7上设置调压阀一8;所述腔室一5、腔室二6、调压管7内充填满液体;还包括连接在调压管7上的旁通管11,所述旁通管11与调液罐12相连,所述旁通管11上设置旁通阀13。所述活塞3背离活塞杆2的一侧固定连接伸出至缸套4外部的恒液杆9,所述恒液杆9与活塞杆2外径相等,且恒液杆9的轴线与活塞杆2的轴线同轴。所述活塞杆2、恒液杆9穿出缸套4的两侧均固定密封圈10。
在不需要制动时,保持调压阀一全开,此时液体能够顺利无阻的经过调压管在腔室一、腔室二之间进行来回流动。在需要制动时,关闭旁通阀13,适当关小调压阀一,使得调压阀一处的过流面积变小,此时活塞在一次往复运动的过程中,对腔室一、腔室二中容积减小的一个腔室的容积压缩程度不变,而该腔室内的液体排出时所遭受的阻力更大,流体必然以更快的速度经过调压阀一向另一个腔室喷出。从能量转换的角度来看,此过程中,除了活塞无法避免的摩擦外,其余能量是从传动转轴的动能转化成了流体的动能进行消耗,由于车辆行驶时的转速极高,因此在短时间内能够通过调压阀一喷出大量高动能的流体进行能量的消耗,实现对活塞往复频率的降低,以此实现对传动转轴转速的逐渐降低,达到制动效果。恒液杆的存在,能够确保活塞往复运动过程中,两个腔室的容积总量始终保持不变,一个腔室的容积增大量始终等于另一个腔室的容积减小量。
实施例2:
如图3所示的一种活塞制动装置,在实施例1的基础上,所述旁通管11连接在调液罐 12的底部,所述调液罐12底部的高度高于缸套4内部的最大高度。还包括设置于调压管7上的调压阀二14,所述调压阀二14、调压阀一8分别位于调压管7与旁通管11相连处的两侧。所述活塞3的活塞杆2与所述传动转轴形成曲柄连杆机构,所述曲柄连杆机构的曲柄位于传动转轴上,所述曲柄连杆机构的连杆为活塞杆2。
实施例3:
在上述任一实施例的基础上,还包括旁通容器15,腔室一5、腔室二6均通过阀门与旁通容器15的顶部、底部连通,调压管7通过旁通管11与旁通容器15的顶部连通,所述调压管7上设置单向阀一16、单向阀二17,所述单向阀一16从腔室二6至旁通管11方向导通,所述单向阀二17从腔室一5至旁通管11方向导通,所述旁通容器15与腔室一5、腔室二6、调压管7的连接管路上均设置阀门。优选的,本实施例将调压阀一8设置在调压管7与旁通容器15的连接管路上,并设置如图所示的单向阀三19、单向阀四20,进一步提高工作稳定性。其中,本实施例中将调压阀一8移至旁通管11上,此时旁通管11上已经有了能够调节流量的阀门,因此可以不再单独设置旁通阀。
优选的,如图3所示,旁通容器15和腔室一5之间的连接管路与旁通容器15和腔室二6之间的连接管路相互连通。
本实施例在不需要制动时的工作原理为:关闭阀门一18,打开阀门二21、调压阀一8,此时液体位于旁通容器15内:活塞下行过程中,空气从腔室一5被压出通过单向阀二17、调压阀一8,进入旁通容器15内,由于阀门一18关闭,旁通容器15内部上方的空气通过阀门二21、单向阀三19回到腔室二6中完成空气循环。活塞上行过程同理,即可实现完全通过空气在本装置中进行循环,使得能量损耗极小。
本实施例需要制动时的工作原理为:关闭阀门二21、打开阀门一18,调节调压阀一8,即可使用旁通容器15内的液体在本装置内进行循环,调节调压阀一8即可实现本申请的止动效果。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种活塞制动装置,包括位于发动部件至工作部件之间的传动转轴,其特征在于,还包括内部充填液体的腔体、与所述传动转轴相连的传动组件;所述传动转轴转动时,传动组件驱动所述腔体的容积进行周期性变化,还包括用于控制所述腔体内部压力的调压组件。
  2. 根据权利要求1所述的一种活塞制动装置,其特征在于,所述腔体为缸套(4),所述传动组件包括与传动转轴相连的活塞(3),与所述活塞(3)相连的活塞杆(2)穿过密闭的缸套(4),传动转轴转动时通过活塞杆(2)带动活塞(3)在缸套(4)内运动;所述调压组件包括调压管(7)、调压阀一(8),活塞(3)将缸套(4)内部分为腔室一(5)、腔室二(6),所述腔室一(5)与腔室二(6)之间通过调压管(7)连通,所述调压管(7)上设置调压阀一(8);所述腔室一(5)、腔室二(6)、调压管(7)内充填满液体;还包括连接在调压管(7)上的旁通管(11),所述旁通管(11)与调液罐(12)相连,所述旁通管(11)上设置旁通阀(13)。
  3. 根据权利要求2所述的一种活塞制动装置,其特征在于,所述活塞(3)背离活塞杆(2)的一侧固定连接伸出至缸套(4)外部的恒液杆(9),所述恒液杆(9)与活塞杆(2)外径相等,且恒液杆(9)的轴线与活塞杆(2)的轴线同轴。
  4. 根据权利要求3所述的一种活塞制动装置,其特征在于,所述活塞杆(2)、恒液杆(9)穿出缸套(4)的两侧均固定密封圈(10)。
  5. 根据权利要求2所述的一种活塞制动装置,其特征在于,所述旁通管(11)连接在调液罐(12)的底部,所述调液罐(12)底部的高度高于缸套(4)内部的最大高度。
  6. 根据权利要求2所述的一种活塞制动装置,其特征在于,还包括设置于调压管(7)上的调压阀二(14),所述调压阀二(14)、调压阀一(8)分别位于调压管(7)与旁通管(11)相连处的两侧。
  7. 根据权利要求2所述的一种活塞制动装置,其特征在于,所述活塞(3)的活塞杆(2)与所述传动转轴形成曲柄连杆机构,所述曲柄连杆机构的曲柄位于传动转轴上,所述曲柄连杆机构的连杆为活塞杆(2)。
  8. 根据权利要求2所述的一种活塞制动装置,其特征在于,还包括旁通容器(15),腔室一(5)、腔室二(6)均通过阀门与旁通容器(15)的顶部、底部连通,调压管(7)通过旁通管(11)与旁通容器(15)的顶部连通,所述调压管(7)上设置单向阀一(16)、单向阀二(17),所述单向阀一(16)从腔室二(6)至旁通管(11)方向导通,所述单向阀二(17)从腔室一(5)至旁通管(11)方向导通,所述旁通容器(15)与腔室一(5)、腔室二(6)、调压管(7)的连接管路上均设置阀门。
PCT/CN2020/083980 2019-04-11 2020-04-09 一种活塞制动装置 WO2020207440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920489681.0U CN210153116U (zh) 2019-04-11 2019-04-11 一种活塞制动装置
CN201920489681.0 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020207440A1 true WO2020207440A1 (zh) 2020-10-15

Family

ID=69756869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083980 WO2020207440A1 (zh) 2019-04-11 2020-04-09 一种活塞制动装置

Country Status (2)

Country Link
CN (1) CN210153116U (zh)
WO (1) WO2020207440A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210153116U (zh) * 2019-04-11 2020-03-17 甘泉龙 一种活塞制动装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805377A (en) * 1955-06-22 1958-12-03 Bobst Fils Sa J Improvements in or relating to pneumatic brakes
FR2537679A1 (fr) * 1982-12-13 1984-06-15 Bouzelha Amar Systeme de freinage hydraulique sans garniture
DE202006010633U1 (de) * 2006-07-10 2006-11-16 Merlaku, Kastriot Brems-System für Fahrzeuge aller Art
JP2010261549A (ja) * 2009-05-11 2010-11-18 Sony Corp 制動装置、ステージ移動装置、ワーク処理装置及び制動方法
CN103148131A (zh) * 2013-01-23 2013-06-12 潘守静 截流式定速制动装置
CN105715618A (zh) * 2014-12-02 2016-06-29 郭美菁 液压油缸缓速装置
CN210153116U (zh) * 2019-04-11 2020-03-17 甘泉龙 一种活塞制动装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805377A (en) * 1955-06-22 1958-12-03 Bobst Fils Sa J Improvements in or relating to pneumatic brakes
FR2537679A1 (fr) * 1982-12-13 1984-06-15 Bouzelha Amar Systeme de freinage hydraulique sans garniture
DE202006010633U1 (de) * 2006-07-10 2006-11-16 Merlaku, Kastriot Brems-System für Fahrzeuge aller Art
JP2010261549A (ja) * 2009-05-11 2010-11-18 Sony Corp 制動装置、ステージ移動装置、ワーク処理装置及び制動方法
CN103148131A (zh) * 2013-01-23 2013-06-12 潘守静 截流式定速制动装置
CN105715618A (zh) * 2014-12-02 2016-06-29 郭美菁 液压油缸缓速装置
CN210153116U (zh) * 2019-04-11 2020-03-17 甘泉龙 一种活塞制动装置

Also Published As

Publication number Publication date
CN210153116U (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
WO2020207440A1 (zh) 一种活塞制动装置
CN206754242U (zh) 一种偏心轴式湿式多盘制动器
WO2011147190A1 (zh) 一种固链式发动机制动装置
CN101776067A (zh) 线性压缩机变容量调节的定余隙装置
CN105065518A (zh) 带手制动装置的单元制动缸
JP2022064318A (ja) ディスク側面とディスク外周面とのオフセット制動によるブレーキシステム
CN202140127U (zh) 发动机制动器的驱动机构
CN109630574A (zh) 逐级贴合鼓式刹车装置
CN202611787U (zh) 固链式专用摇臂制动装置
CN202574170U (zh) 汽车制动装置
CN102582759B (zh) 联动制动阀及其摩托车
CN103388504B (zh) 一种固链式专用摇臂制动装置
CN105715704B (zh) 液体阻尼式制动系统
CN204878469U (zh) 带手制动装置的单元制动缸
CN102493878B (zh) 一种用于汽车的排气制动阀及汽车
CN209725019U (zh) 一种具有双执行器配双活塞的电子驻车系统
CN204264170U (zh) 一种制动夹钳单元
CN206802145U (zh) 电动摩托车用的鼓刹分泵及鼓刹系统
CN209340386U (zh) 一种活塞制动系统
CN110500369A (zh) 往复运动式无密封环活塞液压制动装置
CN1737352A (zh) 排气门开启高度可变的发动机缓速器装置
CN1804419A (zh) 制动器、增压器、离合器
CN210106456U (zh) 一种环形活塞式制动系统
US2705480A (en) Two-stroke-engine
CN205780449U (zh) 液体阻尼式制动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787702

Country of ref document: EP

Kind code of ref document: A1