WO2020207228A1 - 一种基于反馈控制的电动汽车电池冷板测试系统 - Google Patents

一种基于反馈控制的电动汽车电池冷板测试系统 Download PDF

Info

Publication number
WO2020207228A1
WO2020207228A1 PCT/CN2020/080380 CN2020080380W WO2020207228A1 WO 2020207228 A1 WO2020207228 A1 WO 2020207228A1 CN 2020080380 W CN2020080380 W CN 2020080380W WO 2020207228 A1 WO2020207228 A1 WO 2020207228A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coolant
thermocouple
battery
cold plate
Prior art date
Application number
PCT/CN2020/080380
Other languages
English (en)
French (fr)
Inventor
黄钰期
张鹏飞
牛昊一
陆奕骥
黄瑞
俞小莉
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020207228A1 publication Critical patent/WO2020207228A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the invention relates to the technical field of batteries for new energy vehicles, in particular to a cold plate test system for electric vehicle batteries based on feedback control.
  • the power battery provides power and energy output for the car movement.
  • the power battery is also the only energy supply source for auxiliary systems such as the vehicle control system, air conditioning system, and thermal management system.
  • New energy vehicle battery packs need to have a high energy density to meet the requirements of vehicle power output.
  • power batteries have very strict requirements on the working environment temperature.
  • the purpose of the present invention is to provide a battery cold plate test system for electric vehicles based on feedback control in view of the shortcomings of the prior art.
  • a feedback control-based electric vehicle battery cold plate test system which includes: a constant temperature coolant tank, a first coolant flow control valve, a second coolant flow control Flow valve, third coolant flow control valve, centrifugal rotary water pump, first flow meter, second flow meter, stabilized water tank, first pressure gauge, second pressure gauge, cooling capacity test device, temperature program controller, data Acquisition unit and host computer system, etc.;
  • the constant temperature cooling liquid water tank is equipped with cooling liquid, the top of the constant temperature cooling liquid water tank has a liquid outlet and a return collection port, and the bottom has a drain port.
  • the temperature of the cooling liquid is set in the constant temperature cooling liquid water tank. It flows into the test system from the liquid outlet, and flows back to the constant temperature coolant tank through the return collection port, and discharges and exchanges the coolant in the constant temperature coolant tank through the drain; the constant temperature coolant tank can keep the coolant inside Set the temperature to ensure that the circulating coolant in the entire system remains at a fixed temperature;
  • the liquid outlet of the constant temperature cooling liquid tank is connected to the first cooling liquid flow control valve, the centrifugal rotary water pump, the first flow meter, the second cooling liquid flow control valve, and the liquid inlet of the stabilized water tank in sequence through a pipeline;
  • the centrifugal rotary water pump pumps the cooling liquid from the outlet of the constant temperature cooling liquid water tank, and roughly adjusts the flow of the cooling liquid through the first cooling liquid flow control valve and the second cooling liquid flow control valve. Read the current flow rate of the coolant, and control the flow rate within the target test range.
  • the coolant after the first flow control flows into the stabilized water tank. In the stabilized water tank, the periodic fluctuation pressure generated by the centrifugal rotating water pump is balanced and stabilized.
  • the pressurized water tank is a completely sealed structure, and the coolant after pressure balance flows out of the pressurized water tank;
  • the liquid outlet of the stabilized water tank is connected to the third coolant flow control valve, the first pressure gauge, the second flow meter, and the liquid inlet of the cooling capacity test device in sequence through a pipeline, and passes through the third coolant flow control The valve fine-tunes the coolant flow rate.
  • the second flow meter reads the current coolant flow rate and accurately controls the flow rate at the target flow rate. After the second flow rate control, the coolant flows into the cooling capacity through the liquid inlet Test device, the inlet pressure of the cooling capacity test device is read by a pressure gauge;
  • the cooling capacity test device is used to test the cooling capacity of the battery cold plate of an electric vehicle, and is formed by connecting a simulated battery heat source, a battery cold plate, and a temperature collection module from bottom to top;
  • the analog battery heat source includes a heating element, a temperature-controlling thermocouple, and a temperature-controlling thermocouple analog-to-digital conversion unit;
  • the heating element is a rectangular plate structure with a temperature-controlling thermocouple installed in the middle of one end surface, and the end surface is Two terminals are installed on both sides of the couple, and the two terminals are connected to the temperature program controller through the positive and negative terminals respectively.
  • the temperature control thermocouple is connected to the temperature program controller through the temperature control thermocouple analog-to-digital conversion unit; the analog battery heat source
  • the temperature data is transmitted from the temperature-controlled thermocouple through the temperature-controlled thermocouple analog-to-digital conversion unit to the temperature programmer, and the temperature programmer controls the heating element to reach the preset heating power or preset temperature, so as to realize the purpose of simulating actual battery heating conditions;
  • the temperature collection module includes a thermally conductive sheet, a number of temperature-collecting thermocouples, and a temperature-collecting thermocouple analog-to-digital conversion unit.
  • the temperature-collecting thermocouples are arranged in an array on the upper surface of the heat-conducting sheet.
  • the data collection unit is connected to the data collection unit through the temperature-collecting thermocouple analog-digital conversion unit; the data collection unit is connected to the host computer system; the temperature collected by the temperature-collecting thermocouple passes through the temperature-collecting thermocouple analog-digital conversion unit through data collection The unit transmits back to the host computer system for data collection and processing;
  • the two opposite end faces of the battery cold plate are provided with a liquid inlet and a liquid outlet, and the dimensions of the liquid inlet and the liquid outlet of the cooling capacity test device are the same, which can be connected by a flexible connector or glued. Connection; the cooling liquid flows into the battery cold plate from the liquid inlet, and flows out of the battery cold plate from the liquid outlet; the liquid outlet of the cooling capacity test device is connected to the second pressure gauge and the return collection port of the constant temperature cooling liquid water tank through the pipeline. After the cooling liquid passes through the cooling capacity test device, it flows back into the constant temperature cooling liquid water tank through the return collection port of the constant temperature cooling liquid water tank, and the outlet pressure of the cooling capacity test device is read by the second pressure gauge.
  • centrifugal rotary water pump can realize different liquid volume extraction and different cooling liquid flow rate adjustments by adjusting the speed of its rotation speed.
  • first cooling liquid flow control valve the second cooling liquid flow control valve, and the third cooling liquid flow control valve can realize different cooling liquid flow control by adjusting their valve openings, which can be controlled by electronic valves. Or mechanical valve composition, but not limited to these two valve adjustment methods.
  • first pressure gauge and the second pressure gauge can measure the flow resistance of the cooling liquid in the system when it flows through the battery cold plate, which can be realized by a micro pressure gauge or a small range water pressure gauge, but not limited to these two.
  • kind of pressure gauge type can be realized by a micro pressure gauge or a small range water pressure gauge, but not limited to these two.
  • first flow meter and the second flow meter can measure the coolant flow rate in the system, and can be implemented by an electromagnetic flow meter or a mechanical flow meter, but is not limited to these two types of flow meters.
  • the cooling capacity test device is a sealed and heat-insulated structure to isolate the convective heat exchange between the battery cold plate and the outside air.
  • a preset temperature rise trend that simulates the working conditions of the physical battery can be realized.
  • the heating element of the simulated battery heat source has the function of self-heating by applying direct current or alternating current, which can be realized by a ceramic heating sheet or a mica heating sheet, but is not limited to these two materials.
  • thermocouple that simulates the battery heat source can be realized by a K-type thermocouple or a J-type thermocouple, but is not limited to these two thermocouples.
  • the temperature collection thermocouple of the temperature collection module can be realized by a K-type thermocouple or a J-type thermocouple, but is not limited to these two types of thermocouples; the thermal conductive sheet is provided with a number of mounting holes to install the temperature collection thermocouple Occasionally, the thermal conductive sheet can be realized by iron or stainless steel heating sheet, but it is not limited to these two materials.
  • the simulated battery heat source, the battery cold plate, and the temperature collection module are assembled by thermally conductive glue from bottom to top.
  • the present invention can simulate the temperature operating conditions of real battery cells and monitor the temperature, pressure and flow data of the battery cold plate under different flow rates and record the analysis data
  • the test system is a cyclic working system
  • the invention has very important significance for improving the reliability of experimental research in the thermal management of the new energy vehicle battery, and effectively preventing experimental safety accidents caused by physical battery problems in time.
  • Figure 1 is a schematic diagram of the overall structure of the battery cold plate test system for electric vehicles of the present invention
  • FIG. 2 is a schematic diagram of the structure of the battery cold plate cooling capacity test device in FIG. 1;
  • Figure 3 is a diagram showing the comparison between the two sets of actual temperature of the simulated battery heat source based on feedback control and the preset target temperature of the physical battery;
  • FIG. 4 is a flow chart of the thermocouple data acquisition unit and the host computer system processing thermocouple temperature data
  • Figure 5 is a diagram showing the relationship between single-point cooling temperature and time for a battery cold plate of a model A electric vehicle under different coolant flow rates
  • Figure 6 is a diagram showing the relationship between single point cooling temperature and time for a battery cold plate of a model B electric vehicle under different coolant flow rates.
  • the present invention provides a feedback control-based electric vehicle battery cold plate test system, which includes: a constant temperature coolant water tank 1, a first coolant flow control valve 6, and a second coolant flow control Valve 9, third coolant flow control valve 11, centrifugal rotary water pump 7, first flow meter 8, second flow meter 13, stabilized water tank 10, first pressure gauge 12, second pressure gauge 17, cooling capacity test Device 15, temperature program controller 18, data acquisition unit 19 and host computer system 20, etc.
  • the constant temperature cooling liquid water tank 1 is equipped with cooling liquid, the top of the constant temperature cooling liquid water tank 1 has a liquid outlet 3 and a return collection port 2, and the bottom has a drain port 4; set the experimental system in the constant temperature cooling liquid water tank 1 The temperature of the circulating coolant. The coolant flows into the test system from the outlet 3, and flows back to the constant temperature coolant tank 1 through the return collection port 2. After a period of time, the coolant in the constant temperature coolant tank 1 can be discharged through the drain 4 Change the fluid.
  • the constant temperature coolant water tank 1 needs to have temperature control capabilities, and different volumes and different temperature control ranges are selected according to different needs. Its function is to ensure that the coolant in the entire circulating working system maintains the same temperature and cools the battery cold plate. The ability test process will not be affected by the temperature change of the coolant, so being able to achieve better coolant temperature control is the main purpose of the constant temperature coolant tank.
  • the outlet 3 of the constant temperature cooling liquid tank 1 is connected to the first cooling liquid flow control valve 6, the centrifugal rotary water pump 7, the first flow meter 8, the second cooling liquid flow control valve 9, and the voltage stabilizing valve in sequence through a pipeline.
  • the liquid inlet of the water tank 10; the centrifugal rotary water pump 7 pumps the cooling liquid from the outlet 3 of the thermostatic cooling liquid water tank 1, and passes through the first cooling liquid flow control valve 6 and the second cooling liquid flow control valve 9
  • the coolant flow is roughly adjusted, and the current coolant flow rate is read by the first flow meter 8, and the flow is controlled within the target test range.
  • the coolant after the first flow control flows into the stabilized water tank 10, and the stabilized water tank 10 In this process, the periodic fluctuation pressure generated by the centrifugal rotary water pump 7 is balanced.
  • the stabilized water tank 10 is a completely sealed structure, and the coolant after pressure balance flows out of the stabilized water tank 10.
  • the centrifugal rotary water pump 7 can be realized by a centrifugal rotary water pump, which realizes different liquid volume extraction and different cooling liquid flow rate adjustments by adjusting the speed of its rotation speed.
  • a centrifugal rotary water pump which realizes different liquid volume extraction and different cooling liquid flow rate adjustments by adjusting the speed of its rotation speed.
  • water pumps with different heads and different powers need to be selected , So that the cooling liquid in the constant temperature cooling liquid tank can be pumped out for circulating work.
  • the first coolant flow control valve 6, the second coolant flow control valve 9, and the third coolant flow control valve 11 can realize different coolant flow control by adjusting their valve openings, and can be controlled by electronic valves. Or mechanical valve composition, but not limited to these two valve adjustment methods.
  • the main purpose of the first coolant flow control valve 6 and the second coolant flow control valve 9 is to roughly adjust the coolant flow in the circulating system so that the coolant flow in the system can be kept within the target flow range
  • the main purpose of the third coolant flow control valve 11 is to fine-tune the coolant flow in the circulating system so that the coolant flow in the system can reach an accurate target value when it enters the cooling capacity testing device.
  • the pressure-stabilized water tank 10 can balance the periodic fluctuating water pressure caused by the rotation of the motor of the centrifugal rotary water pump.
  • the main purpose is to ensure that the inlet and outlet pressure indications of the cooling capacity test device are stable, which is convenient for observation and recording.
  • the pressure-stabilized water tank 10 is a completely sealed structure.
  • the liquid outlet of the stabilized water tank 10 is connected to the third cooling liquid flow control valve 11, the first pressure gauge 12, the second flow meter 13, and the liquid inlet 14 of the cooling capacity test device 15 through the pipeline, and passes through the first The three-coolant flow control valve 11 fine-tunes the flow of the coolant.
  • the second flow meter 13 reads the current flow rate of the coolant to accurately control the flow rate at the target flow rate. Cooling after the second flow control The liquid flows into the cooling capacity testing device 15 through the liquid inlet 14, and the inlet pressure of the cooling capacity testing device 15 is read by the pressure gauge 12.
  • the first flow meter 8 and the second flow meter 13 are realized by electromagnetic flow meters.
  • the main purpose is to measure the real-time flow of the coolant in the test system. During the working process of the centrifugal rotary water pump and the coolant flow control valve, the coolant The flow rate will change, and timely monitoring and recording of the flow rate is the main task of the flowmeter.
  • the cooling capacity test device 15 is used to test the cooling capacity of the battery cold plate of the electric vehicle. As shown in FIG. 2, the simulated battery heat source 21, the battery cold plate 29, and the temperature collection module 30 pass through the thermal conductive adhesive from bottom to top. Pretend to be.
  • the analog battery heat source 21 includes a heating element 24, a temperature-controlling thermocouple 25, and a temperature-controlling thermocouple analog-to-digital conversion unit 26;
  • the heating element 24 is a rectangular plate structure, which can be realized by a stainless steel heating sheet, with one end in the middle Install the temperature control thermocouple 25.
  • the temperature control thermocouple 25 is arranged on the heating element 24 in a perforated manner. Terminals are installed on both sides of the temperature control thermocouple 25. The two terminals are connected through the positive terminal 22 and the negative terminal respectively.
  • thermocouple 25 is connected to the temperature program controller 18 through the temperature control thermocouple analog-to-digital conversion unit 26; the temperature of the simulated battery heat source 21
  • the data is transmitted from the temperature-controlled thermocouple 25 through the temperature-controlled thermocouple analog-to-digital conversion unit 26 back to the temperature programmer 18, and the temperature programmer 18 controls the heating element 24 to reach the preset heating power or preset temperature, so as to simulate actual battery heating conditions purpose.
  • the temperature collection module 30 includes a thermally conductive sheet 31, a plurality of temperature-collecting thermocouples 32, and a temperature-collecting thermocouple analog-to-digital conversion unit 33.
  • the thermal-conducting piece 31 can be realized by a ceramic heating piece, and the temperature-collecting thermocouple 32 Arranged in an array on the upper surface of the thermal conductive sheet 31, the temperature collection thermocouple 32 is connected to the data collection unit 19 through the temperature collection thermocouple analog-to-digital conversion unit 33; the data collection unit 19 is connected to the upper computer system 20;
  • the temperature collected by the temperature-collecting thermocouple 32 passes through the temperature-collecting thermocouple analog-to-digital conversion unit 33, and is transmitted back to the upper computer system 20 through the data collection unit 19 for data collection and processing.
  • the temperature control thermocouple analog-to-digital conversion unit 26 and the temperature-collecting thermocouple analog-to-digital conversion unit 33 can be implemented by a temperature data acquisition card.
  • the two opposite end faces of the battery cold plate 29 correspond to the liquid inlet 14 and the liquid outlet 16 of the cooling capacity test device 15 respectively; the cooling liquid flows into the battery cold plate 29 from the liquid inlet 14 and flows out of the battery from the liquid outlet 16 Cold plate 29; the liquid outlet 16 of the cooling capacity test device 15 is connected to the second pressure gauge 17 and the return collection port 2 of the constant temperature cooling liquid tank 1 through the pipeline; the cooling liquid passes through the cooling capacity test device 15, and then passes through the constant temperature The return collection port 2 of the cooling liquid water tank 1 flows back into the constant temperature cooling liquid water tank 1, and the outlet pressure of the cooling capacity testing device 15 is read by the second pressure gauge 17.
  • the first pressure gauge 12 and the second pressure gauge 17 can be realized by a micro pressure gauge or a small range water pressure gauge, but are not limited to these two pressure gauge types.
  • the main purpose is to measure the cooling capacity of the cooling liquid in the system.
  • the pressure gauge should be installed at the same level as the inlet and outlet.
  • the cooling capacity test device 15 is a sealed and heat-insulated structure to isolate the convective heat exchange between the battery cold plate and the outside air.
  • the cooling capacity test device 15 can realize a preset temperature rise trend that simulates the working conditions of a physical battery.
  • the heating element 24 of the simulated battery heat source 21 has the function of self-heating by applying direct current or alternating current, and can be realized by a ceramic heating sheet or a mica heating sheet, but is not limited to these two materials.
  • the temperature control thermocouple 25 of the simulated battery heat source 21 can be realized by a K-type thermocouple or a J-type thermocouple, but is not limited to these two types of thermocouples.
  • the temperature collection thermocouple 32 of the temperature collection module 30 can be realized by a K-type thermocouple or a J-type thermocouple, but is not limited to these two types of thermocouples; the heat conducting sheet 31 is provided with a number of mounting holes for installation of the temperature collection
  • the galvanic couple 32 and the thermal conductive sheet 31 can be realized by iron or stainless steel heating sheet, but not limited to these two materials.
  • the temperature programmable controller 18 is implemented by a PID temperature controller and a power controller, and adopts the principle of feedback control.
  • the main purpose is to control the temperature of the heating element of the simulated battery heat source to make it conform to the preset actual working conditions of the physical battery.
  • the temperature change achieves the purpose of simulating the physical heating of the battery.
  • the relationship between the two sets of actual temperatures of the simulated battery heat source based on feedback control and the preset target temperature of the physical battery is shown in Figure 3.
  • the main purpose of the data acquisition unit 19 and the host computer system 20 is to convert the temperature analog signal collected by the thermocouple into a digital signal for real-time display and storage in the computer.
  • the working process is as follows: as shown in Figure 4, the application software comes with acquisition Function, complete the creation of the collection task and set the sampling clock, and then use the read function to read the data, use the FOR loop, complete one hundred data processing on the temperature data read by the data acquisition unit every second, and complete the temperature data collection. Then through the operations of entering and exiting the queue, the data element and the called compensation coefficient, that is, the calibration coefficient of the thermocouple, are multiplied and added to obtain the final temperature collection value.
  • a simulated battery heat source based on the principle of feedback control is used, which can simulate the heating of the physical battery during operation. Based on this, the battery cold plate is tested for cooling performance, which saves experimental costs and improves experimental safety;
  • the test system adopts automatic circulation mechanism and automatic data recording function.
  • the experimenter only needs to set the experimental working conditions in advance, which improves the automatic process of experimental operation;
  • the test system is not limited to the use of a certain battery cold plate for testing. All types of qualified battery cold plates can be tested in this test system for cooling performance, which improves the applicability and convenience.
  • the present invention provides a feedback control-based electric vehicle battery cold plate test system, which uses simulated battery heat sources to study the cooling scheme of electric vehicle battery cold plates, which has great application value and can greatly reduce experimental economic costs. , To ensure the safety of battery experiments, has important economic value and engineering significance.

Abstract

一种基于反馈控制的电动汽车电池冷板测试系统,利用基于温度反馈控制的模拟电池热源和通过可控流量的冷却系统对电池冷板进行性能测试,包括:恒温冷却液水箱(1)、第一冷却液流量控流阀(6)、第二冷却液流量控流阀(9)、第三冷却液流量控流阀(11)、离心旋转水泵(7)、第一流量计(8)、第二流量计(13)、稳压水箱(10)、第一压力计(12)、第二压力计(17)、冷却能力测试装置(15)、温度程控器(18)、数据采集单元(19)和上位机系统(20),恒温冷却液水箱(1)中装有冷却液,恒温冷却液水箱(1)顶部具有出液口(3)和回流收集口(2),底部具有排水口(4);在恒温冷却液水箱(1)中设定实验系统中循环冷却液的温度,冷却液由出液口(3)流入测试系统,经由回流收集口(2)流回恒温冷却液水箱(1),一段时间后可以通过排水口(4)对恒温冷却液水箱(1)中的冷却液进行排放换液,通过第一流量计(8)、第二流量计(13)、第一压力计(12)、第二压力计(17)和热电偶数据采集系统实时记录冷板的相关参数。冷却液由离心旋转水泵(17)抽取送入稳压水箱(10),再由稳压水箱(10)输出到冷却能力测试装置(15)中,在测试装置中对不同流量下的电池冷板性能参数进行数据采集送入上位机系统(20)处理,冷却液流出冷板后收集回恒温水箱(1),形成循环测试系统;实现了利用基于反馈控制的模拟电池热源对电池冷板进行多重参数测试和数据采集的目的,增强了电池冷板测试系统的可靠性,可以大幅减少实验经济成本,确保电池实验的安全性,具有重要的经济价值和工程意义。

Description

一种基于反馈控制的电动汽车电池冷板测试系统 技术领域
本发明涉及新能源汽车电池技术领域,尤其涉及一种基于反馈控制的电动汽车电池冷板测试系统。
背景技术
随着我国在能源结构方面逐渐由传统能源向清洁能源过渡,新能源汽车产业的发展被寄予厚望。在新能源汽车的发展里程中,动力电池的技术发展至关重要。在新能源汽车整车系统中,一方面,动力电池为汽车运动提供动力能量输出,另一方面,动力电池也是整车控制系统、空调系统、热管理系统等辅助系统的唯一能量供应源,因此,新能源汽车电池组需要具有很高的能量密度来满足整车动力输出的要求。但是,动力电池对工作环境温度有非常严格的要求,温度过高或过低不仅可能导致自燃等安全性问题(新能源汽车对于电池系统安全性的要求包括其不能自燃或者引起燃烧,同时在发生车辆碰撞的时候,不会对驾乘人员造成人身伤害),还会直接影响电池性能及寿命,从而影响到续航里程,维护时间,销售区域等直接涉及到新能源汽车商业竞争力的因素。因此,设计高效、低能耗、工作稳定的热管理系统,对新能源汽车的发展和普及具有至关重要的意义。
电池作为新能源汽车的动力来源之一,重要性不言而喻。电池的技术发展对于新能源汽车的影响至关重要。在对电池开展研究的过程中,发现温度是直接影响电池工作性能、寿命、安全性的关键因素;电池对温度的敏感性也是制约电动汽车进一步发展的瓶颈。在这种发展背景下,电池冷板被视为冷却效率较高的电池热管理设备。近年来,围绕新能源汽车电池热管理的相关研究及测试液在大量开展。但是,大量的实验在应用实体电池进行电池冷板冷却性能测试时,不仅经济成本高昂,占地空间大,还具有潜在的不安全因素。因此,应用模拟电池热源对电动汽车电池的冷却方案进行研究,具有重大工程意义和应用价值。
大量研究结果表明,要了解并测试电池冷板的冷却性能,首先要解决的就是电池热源的问题。在前期的文献查阅过程中,发现在开展过的相关电池热管理的研究中,热源以搭建电池包、充放电仪等设备的实验方案为主。一种基于反馈控制的电动汽车电池冷板测试系统为现有的电池热管理领域的实验研究提 供了进一步发展的空间,是在模拟不同工况下的电池发热特性以及获取电池冷板性能参数的研究中可以应用的重要解决方案。本发明公开的一种基于反馈控制的电动汽车电池冷板测试系统,在电动汽车电池冷板性能测试、节约电池测试经济成本、提高新能源汽车电池实验安全性上都将发挥重要作用。
发明内容
本发明的目的是针对现有技术的不足,提供了一种基于反馈控制的电动汽车电池冷板测试系统。
本发明的目的是通过以下技术方案来实现的:一种基于反馈控制的电动汽车电池冷板测试系统,它包括:恒温冷却液水箱、第一冷却液流量控流阀、第二冷却液流量控流阀、第三冷却液流量控流阀、离心旋转水泵、第一流量计、第二流量计、稳压水箱、第一压力计、第二压力计、冷却能力测试装置、温度程控器、数据采集单元和上位机系统等;
所述恒温冷却液水箱中装有冷却液,所述恒温冷却液水箱顶部具有出液口和回流收集口,底部具有排水口,在恒温冷却液水箱中对冷却液的温度进行设定,冷却液由出液口流入测试系统,经由回流收集口流回恒温冷却液水箱,通过排水口对恒温冷却液水箱中的冷却液进行排放换液;所述恒温冷却液水箱可以使其内部的冷却液保持在设定温度,从而保证整个系统中的循环冷却液保持在固定温度;
所述恒温冷却液水箱的出液口通过管路依次连接第一冷却液流量控流阀、离心旋转水泵、第一流量计、第二冷却液流量控流阀、稳压水箱的进液口;所述离心旋转水泵将冷却液从恒温冷却液水箱的出液口抽出,通过第一冷却液流量控流阀和第二冷却液流量控流阀对冷却液进行流量粗调,由第一流量计读出当前的冷却液流量示数,将流量控制在目标测试范围内,首次控制流量后的冷却液流入稳压水箱,在稳压水箱中对由于离心旋转水泵产生的周期波动压力进行平衡,稳压水箱稳压水箱为完全密封结构,经过压力平衡后的冷却液流出稳压水箱;
所述稳压水箱的出液口通过管路依次连接第三冷却液流量控流阀、第一压力计、第二流量计、冷却能力测试装置的进液口,通过第三冷却液流量控流阀对冷却液流量进行流量细调,由第二流量计读出当前的冷却液流量示数,将流量精确控制在目标流量,经过第二次控制流量后的冷却液通过进液口流入冷却能力测试装置,冷却能力测试装置的进口压力由压力计读出;
所述冷却能力测试装置用于对电动汽车电池冷板的冷却能力进行测试,由模拟电池热源、电池冷板、温度采集模块从下至上依次连接而成;
所述模拟电池热源包括发热元件、控温热电偶和控温热电偶模数转换单元;所述发热元件为矩形板状结构,其一个端面的中间安装控温热电偶,该端面在控温热电偶的两侧安装接线柱,两个接线柱分别通过正极接线和负极接线连接温度程控器,所述控温热电偶通过控温热电偶模数转换单元连接温度程控器;所述模拟电池热源的温度数据由控温热电偶经过控温热电偶模数转换单元传回温度程控器,温度程控器控制发热元件达到预设加热功率或者预设温度,实现模拟实际电池发热工况的目的;
所述温度采集模块包括导热片、若干采温热电偶、采温热电偶模数转换单元,所述采温热电偶阵列式排布在导热片的上表面,所述采温热电偶通过采温热电偶模数转换单元连接数据采集单元;所述数据采集单元连接上位机系统;所述采温热电偶收集的温度经过采温热电偶模数转换单元,通过数据采集单元传回上位机系统进行数据采集和处理;
所述电池冷板的两个相对的端面设置进液口与出液口,且分别与冷却能力测试装置的进液口和出液口尺寸一致,可通过软性连接件软性连接或胶水粘性连接;冷却液由进液口流入电池冷板,由出液口流出电池冷板;所述冷却能力测试装置的出液口通过管路依次连接第二压力计、恒温冷却液水箱的回流收集口;冷却液通过冷却能力测试装置后,通过恒温冷却液水箱的回流收集口流回恒温冷却液水箱中,冷却能力测试装置的出口压力由第二压力计读出。
进一步地,所述离心旋转水泵,可以通过调节其转速的快慢从而实现不同的液量抽取和不同的冷却液流速调节。
进一步地,所述第一冷却液流量控流阀、第二冷却液流量控流阀、第三冷却液流量控流阀,可以通过调节其阀门开度实现不同的冷却液流量控制,可由电子阀门或者机械式阀门组成,但不限于这两种阀门调节方式。
进一步地,所述第一压力计和第二压力计,可以测量系统内冷却液流经电池冷板时的流动阻力,可以由微压计或者小量程水压表来实现,但不限于这两种压力计类型。
进一步地,所述第一流量计和第二流量计,可以测量系统内的冷却液流量,可以由电磁流量计或者机械式流量计来实现,但不限于这两种流量计类型。
进一步地,所述冷却能力测试装置为密封隔热结构,以此隔绝电池冷板与外界空气的对流换热,在冷却能力测试装置中可以实现预设的模拟实体电池工况的温升趋势。
进一步地,所述模拟电池热源的发热元件具有通直流电或交流电自发热的功能,可由陶瓷发热片或者云母发热片实现,但不限于这两种材料。
进一步地,所述模拟电池热源的控温热电偶可由K型热电偶或者J型热电偶实现,但不限于这两种热电偶。
进一步地,所述温度采集模块的采温热电偶可由K型热电偶或者J型热电偶实现,但不限于这两种热电偶;所述导热片上打有若干安装孔,安装采温热电偶,导热片可由铁或不锈钢发热片实现,但不限于这两种材料。
进一步地,所述模拟电池热源、电池冷板、温度采集模块从下至上依次通过导热胶贴装而成。
本发明提出的有益效果是:本发明能够模拟真实电池单体的温度工况并对不同流量下的电池冷板的温度、压力及流量数据进行监测并记录分析数据,而且测试系统为循环工作系统,可以实现长时间自动循环工况并记录数据的任务,提高了测试系统的适用性以及便利性。本发明对于提高新能源汽车电池热管理中的实验研究的可靠性,及时有效防止因实体电池问题引发的实验安全事故具有十分重要的意义。
附图说明
图1是本发明电动汽车电池冷板测试系统的整体结构示意图;
图2是图1中电池冷板冷却能力测试装置的结构示意图;
图3是基于反馈控制的模拟电池热源的两组实际温度和预设的实体电池目标温度工况对比的关系图;
图4是热电偶数据采集单元和上位机系统对热电偶温度数据进行处理的流程图;
图5是某A型号电动汽车电池冷板在不同冷却液流量下的单点冷却温度和时间的关系图;
图6是某B型号电动汽车电池冷板在不同冷却液流量下的单点冷却温度和时间的关系图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
如图1所示,本发明提供的一种基于反馈控制的电动汽车电池冷板测试系统,它包括:恒温冷却液水箱1、第一冷却液流量控流阀6、第二冷却液流量控流阀9、第三冷却液流量控流阀11、离心旋转水泵7、第一流量计8、第二流量计13、稳压水箱10、第一压力计12、第二压力计17、冷却能力测试装置15、温度程控器18、数据采集单元19和上位机系统20等。
所述恒温冷却液水箱1中装有冷却液,所述恒温冷却液水箱1顶部具有出液口3和回流收集口2,底部具有排水口4;在恒温冷却液水箱1中设定实验系 统中循环冷却液的温度,冷却液由出液口3流入测试系统,经由回流收集口2流回恒温冷却液水箱1,一段时间后可以通过排水口4对恒温冷却液水箱1中的冷却液进行排放换液。
所述恒温冷却液水箱1需具备温度控制能力,根据不同的需要选用不同容积以及不同的温控范围,其作用是保证整个循环工作系统中的冷却液保持相同的温度,使电池冷板的冷却能力测试过程不会因为冷却液的温度变化受到影响,因此能够达到较好的冷却液温度控制能力是恒温冷却液水箱的主要目的。
所述恒温冷却液水箱1的出液口3通过管路依次连接第一冷却液流量控流阀6、离心旋转水泵7、第一流量计8、第二冷却液流量控流阀9、稳压水箱10的进液口;所述离心旋转水泵7将冷却液从恒温冷却液水箱1的出液口3抽出,通过第一冷却液流量控流阀6和第二冷却液流量控流阀9对冷却液进行流量粗调,由第一流量计8读出当前的冷却液流量示数,将流量控制在目标测试范围内,首次控制流量后的冷却液流入稳压水箱10,在稳压水箱10中对由于离心旋转水泵7产生的周期波动压力进行平衡,稳压水箱稳压水箱10为完全密封结构,经过压力平衡后的冷却液流出稳压水箱10。
所述离心旋转水泵7可以由离心旋转水泵实现,通过调节其转速的快慢从而实现不同的液量抽取和不同的冷却液流速调节,对于不同粘度的冷却液,需要选用不同扬程和不同功率的水泵,使得恒温冷却液水箱中的冷却液可以被抽出进行循环工作。
所述第一冷却液流量控流阀6、第二冷却液流量控流阀9、第三冷却液流量控流阀11,可以通过调节其阀门开度实现不同的冷却液流量控制,可由电子阀门或者机械式阀门组成,但不限于这两种阀门调节方式。第一冷却液流量控流阀6和第二冷却液流量控流阀9的主要目的是为了对循环系统中的冷却液流量进行粗调,使得系统中的冷却液流量可以保持在目标流量范围内,第三冷却液流量控流阀11的主要目的是为了对循环系统中的冷却液流量进行细调,使得系统中的冷却液流量可以在进入冷却能力测试装置时达到准确的目标值。
所述稳压水箱10可以对由于离心旋转水泵的电机转动导致的周期波动水压进行平衡,主要目的是保证冷却能力测试装置的进出口压力表示数稳定,便于观测和记录,此外,稳压水箱10为完全密封结构。
所述稳压水箱10的出液口通过管路依次连接第三冷却液流量控流阀11、第一压力计12、第二流量计13、冷却能力测试装置15的进液口14,通过第三冷却液流量控流阀11对冷却液流量进行流量细调,由第二流量计13读出当前的冷却液流量示数,将流量精确控制在目标流量,经过第二次控制流量后的冷却 液通过进液口14流入冷却能力测试装置15,冷却能力测试装置15的进口压力由压力计12读出。
所述第一流量计8和第二流量计13由电磁流量计实现,主要目的是为了测量测试系统内冷却液实时流量,在离心旋转水泵和冷却液流量控流阀的工作过程中,冷却液流量均会发生变化,对流量进行及时地监控和记录是流量计的主要任务。
所述冷却能力测试装置15用于对电动汽车电池冷板的冷却能力进行测试,如图2所示,由模拟电池热源21、电池冷板29、温度采集模块30从下至上依次通过导热胶贴装而成。
所述模拟电池热源21包括发热元件24、控温热电偶25和控温热电偶模数转换单元26;所述发热元件24为矩形板状结构,可以由不锈钢发热片实现,其一个端面的中间安装控温热电偶25,控温热电偶25利用打孔的方式布置在发热元件24上该端面在控温热电偶25的两侧安装接线柱,两个接线柱分别通过正极接线22和负极接线23连接温度程控器18,极接线22和负极接线23均为普通电线,所述控温热电偶25通过控温热电偶模数转换单元26连接温度程控器18;所述模拟电池热源21的温度数据由控温热电偶25经过控温热电偶模数转换单元26传回温度程控器18,温度程控器18控制发热元件24达到预设加热功率或者预设温度,实现模拟实际电池发热工况的目的。
所述温度采集模块30包括导热片31、若干采温热电偶32、采温热电偶模数转换单元33,所述导热片31可以由陶瓷发热片实现,所述采温热电偶32阵列式排布在导热片31的上表面,所述采温热电偶32通过采温热电偶模数转换单元33连接数据采集单元19;所述数据采集单元19连接上位机系统20;所述采温热电偶32收集的温度经过采温热电偶模数转换单元33,通过数据采集单元19传回上位机系统20进行数据采集和处理。所述控温热电偶模数转换单元26和采温热电偶模数转换单元33可以由温度数据采集卡实现。
所述电池冷板29的两个相对的端面分别对应冷却能力测试装置15的进液口14和出液口16;冷却液由进液口14流入电池冷板29,由出液口16流出电池冷板29;所述冷却能力测试装置15的出液口16通过管路依次连接第二压力计17、恒温冷却液水箱1的回流收集口2;冷却液通过冷却能力测试装置15后,通过恒温冷却液水箱1的回流收集口2流回恒温冷却液水箱1中,冷却能力测试装置15的出口压力由第二压力计17读出。
所述第一压力计12、第二压力计17可以由微压计或者小量程水压表来实现,但不限于这两种压力计类型,主要目的是为了测量系统内冷却液流经冷却能力 测试装置时的流动阻力,压力计在安装时应保持进液口和出液口处在同一水平位置。
所述冷却能力测试装置15为密封隔热结构,以此隔绝电池冷板与外界空气的对流换热,在冷却能力测试装置15中可以实现预设的模拟实体电池工况的温升趋势。
所述模拟电池热源21的发热元件24具有通直流电或交流电自发热的功能,可由陶瓷发热片或者云母发热片实现,但不限于这两种材料。所述模拟电池热源21的控温热电偶25可由K型热电偶或者J型热电偶实现,但不限于这两种热电偶。所述温度采集模块30的采温热电偶32可由K型热电偶或者J型热电偶实现,但不限于这两种热电偶;所述导热片31上打有若干安装孔,安装采温热电偶32,导热片31可由铁或不锈钢发热片实现,但不限于这两种材料。
所述温度程控器18由PID温控器和功率控制器共同实现,采用反馈控制原理,主要目的是为了控制模拟电池热源的发热元件的温度,使其符合预设的实体电池实际工况下的温度变化,达到模拟电池实体发热的目的,其中基于反馈控制的模拟电池热源的两组实际温度和预设的实体电池目标温度工况的关系如附图3。
所述数据采集单元19和上位机系统20的主要目的是将热电偶采集的温度模拟信号转化为数字信号实时显示并存储在计算机中,其工作过程如下:如附图4,应用软件自带采集功能,完成采集任务的创建以及设置采样时钟,再利用读取功能对数据进行读取,利用FOR循环,每秒钟对数据采集单元读取的温度数据完成一百次数据处理,完成温度数据的采集。再通过入队列、出队列的操作,将数据元素与调用的补偿系数即热电偶的标定系数进行乘法和加法运算后得到最终的温度采集值。应用本发明公开的基于反馈控制的电动汽车电池冷板测试系统对某A型号和某B型号电动汽车电池冷板进行冷却能力测试,最终得到某A型号和某B型号电动汽车电池冷板在不同冷却液流量下的单点冷却温度测试结果和时间的关系如附图5和附图6。
本发明实施提供的一种基于反馈控制的电池冷板测试系统具有如下优点:
1、采用了基于反馈控制原理的模拟电池热源,可以模拟实体电池在工作时的发热情况,基于此来对电池冷板进行冷却性能测试,节省了实验成本,提高了实验安全性;
2、测试系统采用自动循环机制和数据自动记录功能,实验人员只需提前设置好实验工况即可,提高了实验操作的自动化过程;
3、测试系统不局限于应用某一款电池冷板进行测试,各类型符合条件的电 池冷板均可在本测试系统完成冷却性能测试,提高了适用性以及便利性。
综上所述,本发明提供一种基于反馈控制的电动汽车电池冷板测试系统,应用模拟电池热源对电动汽车电池冷板的冷却方案进行研究,具有重大应用价值,同时可以大幅减少实验经济成本,确保电池实验的安全性,具有重要的经济价值和工程意义。
以上所述具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅对本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于反馈控制的电动汽车电池冷板测试系统,其特征在于,它包括:恒温冷却液水箱(1)、第一冷却液流量控流阀(6)、第二冷却液流量控流阀(9)、第三冷却液流量控流阀(11)、离心旋转水泵(7)、第一流量计(8)、第二流量计(13)、稳压水箱(10)、第一压力计(12)、第二压力计(17)、冷却能力测试装置(15)、温度程控器(18)、数据采集单元(19)和上位机系统(20)等;
    所述恒温冷却液水箱(1)中装有冷却液,所述恒温冷却液水箱(1)顶部具有出液口(3)和回流收集口(2),底部具有排水口(4),在恒温冷却液水箱(1)中对冷却液的温度进行设定,冷却液由出液口(3)流入测试系统,经由回流收集口(2)流回恒温冷却液水箱(1),通过排水口(4)对恒温冷却液水箱(1)中的冷却液进行排放换液;所述恒温冷却液水箱(1)可以使其内部的冷却液保持在设定温度,从而保证整个系统中的循环冷却液保持在固定温度;
    所述恒温冷却液水箱(1)的出液口(3)通过管路依次连接第一冷却液流量控流阀(6)、离心旋转水泵(7)、第一流量计(8)、第二冷却液流量控流阀(9)、稳压水箱(10)的进液口;所述离心旋转水泵(7)将冷却液从恒温冷却液水箱(1)的出液口(3)抽出,通过第一冷却液流量控流阀(6)和第二冷却液流量控流阀(9)对冷却液进行流量粗调,由第一流量计(8)读出当前的冷却液流量示数,将流量控制在目标测试范围内,首次控制流量后的冷却液流入稳压水箱(10),在稳压水箱(10)中对由于离心旋转水泵(7)产生的周期波动压力进行平衡,稳压水箱稳压水箱(10)为完全密封结构,经过压力平衡后的冷却液流出稳压水箱(10);
    所述稳压水箱(10)的出液口通过管路依次连接第三冷却液流量控流阀(11)、第一压力计(12)、第二流量计(13)、冷却能力测试装置(15)的进液口(14),通过第三冷却液流量控流阀(11)对冷却液流量进行流量细调,由第二流量计(13)读出当前的冷却液流量示数,将流量精确控制在目标流量,经过第二次控制流量后的冷却液通过进液口(14)流入冷却能力测试装置(15),冷却能力测试装置(15)的进口压力由压力计(12)读出;
    所述冷却能力测试装置(15)用于对电动汽车电池冷板的冷却能力进行测试,由模拟电池热源(21)、电池冷板(29)、温度采集模块(30)从下至上依次连接而成;
    所述模拟电池热源(21)包括发热元件(24)、控温热电偶(25)和控温热电偶模数转换单元(26);所述发热元件(24)为矩形板状结构,其一个端面的 中间安装控温热电偶(25),该端面在控温热电偶(25)的两侧安装接线柱,两个接线柱分别通过正极接线(22)和负极接线(23)连接温度程控器(18),所述控温热电偶(25)通过控温热电偶模数转换单元(26)连接温度程控器(18);所述模拟电池热源(21)的温度数据由控温热电偶(25)经过控温热电偶模数转换单元(26)传回温度程控器(18),温度程控器(18)控制发热元件(24)达到预设加热功率或者预设温度,实现模拟实际电池发热工况的目的;
    所述温度采集模块(30)包括导热片(31)、若干采温热电偶(32)、采温热电偶模数转换单元(33),所述采温热电偶(32)阵列式排布在导热片(31)的上表面,所述采温热电偶(32)通过采温热电偶模数转换单元(33)连接数据采集单元(19);所述数据采集单元(19)连接上位机系统(20);所述采温热电偶(32)收集的温度经过采温热电偶模数转换单元(33),通过数据采集单元(19)传回上位机系统(20)进行数据采集和处理;
    所述电池冷板(29)的两个相对的端面分别对应冷却能力测试装置(15)的进液口(14)和出液口(16);冷却液由进液口(14)流入电池冷板(29),由出液口(16)流出电池冷板(29);所述冷却能力测试装置(15)的出液口(16)通过管路依次连接第二压力计(17)、恒温冷却液水箱(1)的回流收集口(2);冷却液通过冷却能力测试装置(15)后,通过恒温冷却液水箱(1)的回流收集口(2)流回恒温冷却液水箱(1)中,冷却能力测试装置(15)的出口压力由第二压力计(17)读出。
  2. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述离心旋转水泵(7),可以通过调节其转速的快慢从而实现不同的液量抽取和不同的冷却液流速调节。
  3. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述第一冷却液流量控流阀(6)、第二冷却液流量控流阀(9)、第三冷却液流量控流阀(11),可以通过调节其阀门开度实现不同的冷却液流量控制,可由电子阀门或者机械式阀门组成,但不限于这两种阀门调节方式。
  4. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述第一压力计(12)和第二压力计(17),可以测量系统内冷却液流经电池冷板时的流动阻力,可以由微压计或者小量程水压表来实现,但不限于这两种压力计类型。
  5. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述第一流量计(8)和第二流量计(13),可以测量系统内的冷却液流量,可以由电磁流量计或者机械式流量计来实现,但不限于这两种流量计类 型。
  6. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述冷却能力测试装置(15)为密封隔热结构,以此隔绝电池冷板与外界空气的对流换热,在冷却能力测试装置(15)中可以实现预设的模拟实体电池工况的温升趋势。
  7. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述模拟电池热源(21)的发热元件(24)具有通直流电或交流电自发热的功能,可由陶瓷发热片或者云母发热片实现,但不限于这两种材料。
  8. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述模拟电池热源(21)的控温热电偶(25)可由K型热电偶或者J型热电偶实现,但不限于这两种热电偶。
  9. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述温度采集模块(30)的采温热电偶(32)可由K型热电偶或者J型热电偶实现,但不限于这两种热电偶;所述导热片(31)上打有若干安装孔,安装采温热电偶(32),导热片(31)可由铁或不锈钢发热片实现,但不限于这两种材料。
  10. 根据权利要求1所述基于反馈控制的电动汽车电池冷板测试系统,其特征在于,所述模拟电池热源(21)、电池冷板(29)、温度采集模块(30)从下至上依次通过导热胶贴装而成。
PCT/CN2020/080380 2019-04-11 2020-03-20 一种基于反馈控制的电动汽车电池冷板测试系统 WO2020207228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910289627.6A CN110160811B (zh) 2019-04-11 2019-04-11 一种基于反馈控制的电动汽车电池冷板测试系统
CN201910289627.6 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020207228A1 true WO2020207228A1 (zh) 2020-10-15

Family

ID=67639265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080380 WO2020207228A1 (zh) 2019-04-11 2020-03-20 一种基于反馈控制的电动汽车电池冷板测试系统

Country Status (2)

Country Link
CN (1) CN110160811B (zh)
WO (1) WO2020207228A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160811B (zh) * 2019-04-11 2020-05-15 浙江大学 一种基于反馈控制的电动汽车电池冷板测试系统
KR102328681B1 (ko) * 2020-03-10 2021-11-18 엘티정밀(주) 배터리 냉각 장치의 검사 장치
CN112816224B (zh) * 2020-12-31 2023-03-24 东软睿驰汽车技术(沈阳)有限公司 液冷系统挤压耐受数值确定方法和装置
CN114965570A (zh) * 2022-07-30 2022-08-30 豫新汽车热管理科技有限公司 一种动力电池直冷直热板换热性能试验台架

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192747A (ja) * 1989-12-21 1991-08-22 Ando Electric Co Ltd Icテスタ用テストヘッドの冷却構造
EP1639253A1 (de) * 2003-06-20 2006-03-29 Robert Bosch GmbH Verfahren zur überwachung der abgasrückführung einer brennkraftmaschine
CN201226630Y (zh) * 2008-06-19 2009-04-22 江苏永昇空调有限公司 旋转系统的冷却装置
CN101650264A (zh) * 2008-08-13 2010-02-17 上海电气自动化设计研究所有限公司 用于汽车零部件疲劳测试的仿真测试系统及其控制方法
CN102374878A (zh) * 2011-07-26 2012-03-14 中国北方车辆研究所 一种冷板性能测试装置
CN206930765U (zh) * 2017-07-13 2018-01-26 浙江大学 电动汽车动力总成能量流测试系统
CN207232802U (zh) * 2017-09-29 2018-04-13 上海机动车检测认证技术研究中心有限公司 一种冷却液恒温控制测试系统
CN108254208A (zh) * 2018-01-12 2018-07-06 中国航空工业集团公司北京长城航空测控技术研究所 一种用于飞行器整机试验台的模拟器数据生成方法
CN110160811A (zh) * 2019-04-11 2019-08-23 浙江大学 一种基于反馈控制的电动汽车电池冷板测试系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03192747A (ja) * 1989-12-21 1991-08-22 Ando Electric Co Ltd Icテスタ用テストヘッドの冷却構造
EP1639253A1 (de) * 2003-06-20 2006-03-29 Robert Bosch GmbH Verfahren zur überwachung der abgasrückführung einer brennkraftmaschine
CN201226630Y (zh) * 2008-06-19 2009-04-22 江苏永昇空调有限公司 旋转系统的冷却装置
CN101650264A (zh) * 2008-08-13 2010-02-17 上海电气自动化设计研究所有限公司 用于汽车零部件疲劳测试的仿真测试系统及其控制方法
CN102374878A (zh) * 2011-07-26 2012-03-14 中国北方车辆研究所 一种冷板性能测试装置
CN206930765U (zh) * 2017-07-13 2018-01-26 浙江大学 电动汽车动力总成能量流测试系统
CN207232802U (zh) * 2017-09-29 2018-04-13 上海机动车检测认证技术研究中心有限公司 一种冷却液恒温控制测试系统
CN108254208A (zh) * 2018-01-12 2018-07-06 中国航空工业集团公司北京长城航空测控技术研究所 一种用于飞行器整机试验台的模拟器数据生成方法
CN110160811A (zh) * 2019-04-11 2019-08-23 浙江大学 一种基于反馈控制的电动汽车电池冷板测试系统

Also Published As

Publication number Publication date
CN110160811A (zh) 2019-08-23
CN110160811B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2020207228A1 (zh) 一种基于反馈控制的电动汽车电池冷板测试系统
CN102374878B (zh) 一种冷板性能测试装置
CN104198331B (zh) 一种等热流加热装置及其使用该装置的幂律流体在多孔介质中等热流加热的实验装置
CN109030557B (zh) 一种电动汽车动力电池温控板传热性能测试装置及方法
CN103730707A (zh) 电动汽车恒温电池箱及其热管理控制方法
CN101393148A (zh) 涂料散热性能的测试装置及其测试方法
CN202793994U (zh) 大功率柴油机冷却液多功能模拟使用评定装置
Lin et al. Experiment investigation of a two-stage thermoelectric cooler under current pulse operation
CN103207210A (zh) 一种湿蒸汽干度在线测量仪
CN101968509A (zh) 大功率变流器的电力电子器件能量损耗的测量方法
CN104391240B (zh) 电路板卡耐温性分析方法
CN203191337U (zh) 一种用于单射流孔传热系数测定的实验台
CN106771646A (zh) 功率器件损耗测试方法、系统和装置
WO2020186539A1 (zh) 产品性能测试方法及系统
CN117387978A (zh) 一种液冷板性能测试和数据处理方法
CN116735242A (zh) 一种机架式液冷服务器测试装置
CN206975459U (zh) 基于单片机温度控制系统的双组份金属相图实验装置
CN201188038Y (zh) 采暖散热器散热量检测系统
CN211527827U (zh) 一种发动机冷却系统试验装置
CN103091119B (zh) 一种液体空化加热设备输出热效率测试方法及装置
CN202548301U (zh) 一种电池充放电测试用恒温装置
CN207231807U (zh) 一种svg热管散热器特性的测试平台
CN210923561U (zh) 一种自动温控校准系统
CN107300478B (zh) 一种svg热管散热器动态特性的测试平台及其应用方法
CN216955654U (zh) 液冷板内部腐蚀性能验证设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788595

Country of ref document: EP

Kind code of ref document: A1