WO2020186539A1 - 产品性能测试方法及系统 - Google Patents

产品性能测试方法及系统 Download PDF

Info

Publication number
WO2020186539A1
WO2020186539A1 PCT/CN2019/079509 CN2019079509W WO2020186539A1 WO 2020186539 A1 WO2020186539 A1 WO 2020186539A1 CN 2019079509 W CN2019079509 W CN 2019079509W WO 2020186539 A1 WO2020186539 A1 WO 2020186539A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
heat
test
product performance
temperature
Prior art date
Application number
PCT/CN2019/079509
Other languages
English (en)
French (fr)
Inventor
杨宗辉
黄丛林
王洁
Original Assignee
中认英泰检测技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中认英泰检测技术有限公司 filed Critical 中认英泰检测技术有限公司
Priority to US17/274,787 priority Critical patent/US11175251B2/en
Publication of WO2020186539A1 publication Critical patent/WO2020186539A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing

Definitions

  • the invention particularly relates to a product performance testing method and system, belonging to the technical field of performance testing.
  • the test workload is large and the selected test points are limited and cannot be widely representative. Therefore, there are defects such as high test cost and unscientific test methods. Similarly, the existing methods for testing thermal insulation devices, thermal insulation materials, etc. also have similar defects.
  • the main purpose of the present invention is to provide a product performance testing method and system.
  • the embodiment of the present invention provides a product performance testing method, which includes at least the specific heat capacity C, the heat transfer coefficient K, the energy efficiency ratio E of the heat storage material of the test sample, the mass m of the heat storage material contained in the sample, and the performance of the sample is detected. Level.
  • the product performance test method includes: at least the specific heat capacity C of the heat storage material of the test sample, the heat transfer coefficient K of the sample, and the energy efficiency ratio E of the refrigeration system of the test sample at the constant temperature stage, and the mass of the heat storage material contained in the sample m , Test the mass m of the heat storage material contained in the sample during the temperature change stage, so as to detect the performance level of the sample.
  • the product performance test method includes: the energy efficiency ratio E of the refrigeration system of the test sample in the heat load test stage, and the mass m of the heat storage material contained in the sample, so as to detect the performance level of the sample.
  • the heat leakage of the sample Q tKS ⁇ T, where t is the heat exchange time inside and outside the sample cavity, K is the heat transfer coefficient of the sample, S is the heat exchange area of the sample, and ⁇ T is the sample cavity The temperature difference between inside and outside environment.
  • P1 is the power value of the resistive element in the sample
  • P2 is the input power value of the sample
  • P3 is the heat leakage power value of the sample.
  • the heat storage amount of the sample Q Cm ⁇ T'
  • C is the specific heat capacity of the heat storage material in the sample
  • m is the total mass of the heat storage material in the sample
  • ⁇ T' is the initial temperature of the heat storage material in the cavity difference.
  • the heat leakage of the sample Q tKS ⁇ T, where t is the heat exchange time inside and outside the sample cavity, K is the heat transfer coefficient of the sample, S is the heat exchange area of the sample, and ⁇ T is the sample cavity.
  • P1 is the power value of the resistive element in the sample
  • P2 is the input power value of the sample
  • P3 is the heat leakage power value of the sample.
  • sample is environmental test equipment.
  • the embodiment of the present invention also provides a product performance testing system, including a temperature control module, a temperature monitoring module, and a control module.
  • the control module is connected to the temperature control module and the temperature monitoring module; the product performance test system also includes Instructions, the instructions for use record the product performance test methods.
  • the test method of the present invention can realize the accurate test of the sample performance, greatly reduce the test workload, and make the test method more scientific and reasonable. Therefore, it is used in the test field of environmental test equipment and thermal insulation equipment. It has a wide range of application prospects.
  • the embodiment of the present invention provides a product performance testing method, which includes at least the specific heat capacity C, the heat transfer coefficient K, the energy efficiency ratio E of the heat storage material of the test sample, the mass m of the heat storage material contained in the sample, and the performance of the sample is detected. Level.
  • the product performance test method includes: at least the specific heat capacity C of the heat storage material of the test sample, the heat transfer coefficient K of the sample, and the energy efficiency ratio E of the refrigeration system of the test sample at the constant temperature stage, and the mass of the heat storage material contained in the sample m , Test the mass m of the heat storage material contained in the sample during the temperature change stage, so as to detect the performance level of the sample.
  • the product performance test method includes: the energy efficiency ratio E of the refrigeration system of the test sample in the heat load test stage, and the mass m of the heat storage material contained in the sample, so as to detect the performance level of the sample.
  • the leakage heat of the sample Q tKS ⁇ T, where t is the heat exchange time inside and outside the sample cavity, K is the heat transfer coefficient of the sample, S is the heat exchange area of the sample, and ⁇ T is the inside and outside of the sample cavity.
  • P1 is the power value of the resistive element in the sample
  • P2 is the input power value of the sample
  • P3 is the heat leakage power value of the sample.
  • the heat storage amount of the sample Q Cm ⁇ T'
  • C is the specific heat capacity of the heat storage material in the sample
  • m is the total mass of the heat storage material in the sample
  • ⁇ T' is the initial temperature of the heat storage material in the cavity difference.
  • the amount of heat leakage of the sample Q tKS ⁇ T, where t is the heat exchange time inside and outside the sample cavity, K is the heat transfer coefficient of the sample, S is the heat exchange area of the sample, and ⁇ T is the inside and outside of the sample cavity.
  • the environmental temperature difference; and changes over time, the heat leakage of the sample changes dynamically during the temperature change stage.
  • P1 is the power value of the resistive element in the sample
  • P2 is the input power value of the sample
  • P3 is the heat leakage power value of the sample.
  • sample is environmental test equipment.
  • the embodiment of the present invention also provides a product performance testing system, including a temperature control module, a temperature monitoring module, and a control module.
  • the control module is connected to the temperature control module and the temperature monitoring module; the product performance test system also includes Instructions, the instructions for use record the product performance test methods.
  • the stages that affect the energy consumption of the environmental test equipment mainly include: constant temperature stage, variable temperature stage and heat load test stage (relative to some that only have heating function but not The refrigeration function environmental test equipment heat load test is not applicable), the following analysis from these three stages.
  • t is the time of heat exchange inside and outside the cavity of the environmental test equipment (the temperature control box is taken as an example below, can be referred to as the box), the unit is s, and K is the heat transfer coefficient of the environmental test equipment, the unit is (W/m 2 ⁇ K), S is the heat exchange area S of the environmental test equipment, the unit is (m 2 ), ⁇ T is the environmental temperature difference between the inside and outside of the environmental test equipment cavity (may be referred to as the temperature difference), the unit is (K).
  • E (P1+P3)/P2, where E is the energy efficiency of the thermal load capacity of the environmental test equipment. The better the cooling performance, the higher the energy efficiency.
  • P1 is the power value of the resistive element, the unit is watts (W);
  • P2 is the input power value of the test box, the unit is watts (W);
  • P3 is the heat leakage power value of the test box, the unit is watts (W);
  • P 3 KS ⁇ T, ⁇ T is the temperature difference between the inside and outside of the environmental test equipment cavity, K is the heat transfer coefficient of the sample, and S is the heat exchange area of the environmental test equipment.
  • the heat load capacity can reflect the load capacity of the environmental test equipment, and the heat load capacity energy efficiency reflects the conversion efficiency of the environmental test equipment. This is similar to the energy efficiency of the air conditioner, and the main factor that affects it is the optimization of the refrigeration system.
  • the main factors affecting the energy consumption of environmental test equipment are: heat transfer coefficient K, box inner surface area S, temperature difference ⁇ T, refrigeration system energy efficiency ratio E, material specific heat capacity C, and heat storage material mass m in the box. Because the shape design of the product is determined by the functional requirements of the product, in order to ensure the fairness of comparison, the area S is not used as a factor to determine whether the box is energy-saving or not.
  • the present invention mainly provides to compare the heat transfer coefficient K, The specific heat capacity of the material C, the mass of the heat storage material in the box m, and the energy efficiency ratio E of the refrigeration system.
  • the method provided by the present invention tests the four key factors of the heat storage material specific heat capacity C, heat transfer coefficient K, refrigeration system energy efficiency ratio E, and the heat storage material quality m (gradually reduced in importance) of the product, thereby improving the environmental test equipment performance Quantitative analysis of consumption.
  • Another aspect of the embodiments of the present invention also provides a product performance test system, including a temperature control module, a temperature monitoring module, and a control module.
  • the control module is connected to the temperature control module and the temperature monitoring module; the product performance test
  • the system also includes an instruction manual, which records the product performance test method.
  • the temperature control module, the temperature monitoring module, and the control module can all adopt existing detection modules, and all can be obtained commercially, and the program codes designed in the numerical control program used therein can also be obtained commercially.
  • a performance test method of a type of environmental test equipment which includes:
  • the environmental test equipment to be tested namely, the temperature control box, also referred to as the test box or box below
  • the test box or box at a certain ambient temperature (for example, 25°C)
  • a resistive element inside the box
  • E1 the temperature control box
  • the test box under the specified test conditions (for example, 25°C) and preset for at least 2h to make the temperature inside and outside the test box consistent with the ambient temperature.
  • the resistive element inside the box and follow GB/T10592-2008 Section 6.3 .1
  • the temperature points are required to be arranged (Note: The temperature acquisition device must be able to record the time and temperature values during the entire heating process, and the sampling frequency shall not be less than once per second), and then install a fan through the test hole (fan blades are placed in the box) Inside the body, the motor part is placed outside the box, pay attention to the sealing and heat preservation of the test hole) Force convection of the air in the box, and finally close the door and then energize the resistive element to heat the box to a certain temperature (for example, 125°C) , And keep it for a period of time to allow the materials in the box to complete heat storage (when the ambient temperature in the box reaches 125°C for the first time, the recording time will be started.
  • the stability time can be judged by observing the change of the power value of the power meter in series with the resistive element. If the change is less than 5W within 1 minute, it is judged as the end of heat storage, record the constant temperature time t'), record the power consumption E2 of the resistive element in the whole process, the heating time t, the temperature T in the box, and the quality of the material inside the box m , Calculate the specific heat capacity C of the material according to the following formula.
  • the heating time t is divided into n components of ⁇ t tending to 0.
  • a high and low temperature test box with a cube cavity and a volume of 1m 3 is used as the test object.
  • the mass of the heat storage material inside the box is 80kg.
  • Table 1 shows the corresponding relationship between the time in the test box and the heat leakage and temperature within 10 minutes
  • the lowest temperature of the test chamber can reach -40°C, choose -25°C as the test temperature, and keep the test temperature stable, then gradually increase the power of the resistive element until it reaches the maximum power that can keep the temperature stable again, and record the resistance
  • the input power value P1 of the component is 800W
  • the input power P2 of the test chamber is 2400W.
  • the embodiment of the present invention provides a product performance test method, not a determination method, which can be used indirectly as a standard or basis for determining whether a product is qualified or not, or not as a standard or basis for determining whether a product is qualified; existing product performance
  • the test method generally uses the method of directly testing the energy consumption of the sample (such as power consumption) to test the performance of the sample, and the present invention mainly measures the four key factors (specific heat capacity C of heat storage material, heat transfer coefficient K, and energy efficiency ratio of refrigeration system).
  • the test of the quality of the heat storage material in the box (m) indirectly reflects the energy consumption level of the sample, and avoids artificially setting certain points (such as the constant temperature energy efficiency assessment point set in GB/T 33861-2017) to assess the product
  • certain points such as the constant temperature energy efficiency assessment point set in GB/T 33861-2017
  • the limitations brought by the performance, and the test method is simpler, more scientific and reasonable, and has a wide range of application prospects. Not only can it be applied to the environmental test chamber industry, but all products related to thermal insulation can be evaluated using the method of the present invention.
  • the test method provided by the present invention breaks conventional conventions, indirectly reflects the energy consumption level of the box through the test of four key factors, and provides an automatic adjustment resistive element (PID) for determining the key factors; wherein the present invention adopts
  • PID automatic adjustment resistive element
  • the self-adjusting resistive element is a component that can realize functions such as automatic heating and electric energy integration. Its component parts can be obtained commercially; the test method provided by the present invention is widely used and can not only be applied to the environmental test box industry, but also where it is involved Thermal insulation products can be evaluated by this method, which can not only determine the thermal insulation performance of the product, but also can be used to determine other properties of the product.

Abstract

一种产品性能测试方法及系统。所述产品性能测试方法包括:至少测试样品的蓄热材料比热容C、传热系数K、制冷系统能效比E、样品所含蓄热材料质量m,从而探知样品的性能水平。所述方法通过测试产品的材料比热容C、传热系数K、制冷系统能效比E、箱体内蓄热材料质量m四个关键因子,从影响产品性能的关键影响因子入手,使得本测试方法更科学更合理,避免因人为设定某几个点(例如GB/T 33861-2017中所设定的恒温能效考核点)考核产品性能所带来的局限性,且本测试方法操作简单,能够显著降低测试工作量和测试难度。

Description

产品性能测试方法及系统 技术领域
本发明特别涉及一种产品性能测试方法及系统,属于性能测试技术领域。
背景技术
环境试验设备对国民经济的发展发挥着重要作用。近年来,随着应用的日益广泛,技术的不断升级,环境试验设备制造商对产品的技术要求也越来越高,促使许多生产厂家纷纷向世界先进技术靠拢,但仍有大量企业占据产业链低端位置,导致产品的能耗差距较大,节能效果差异突出。
目前,对于环境试验设备进行产品性能测试的方法,测试工作量较大且选举的测试点存在局限性,不能具有广泛的代表性,因此存在测试成本高、测试方法不科学等缺陷。同样的,现有的对于保温装置、保温材料等进行测试的方法也存在类似的缺陷。
发明内容
针对现有技术的不足,本发明的主要目的在于提供一种产品性能测试方法及系统。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供了一种产品性能测试方法,其包括:至少测试样品的蓄热材料比热容C、传热系数K、制冷系统能效比E、样品所含蓄热材料质量m,从而探知样品的性能水平。
进一步的,所述的产品性能测试方法包括:至少测试样品的蓄热材料比热容C、样品的传热系数K,以及,测试样品在恒温阶段的制冷系统能效比E、样品所含蓄热材料质量m,测试样品在变温阶段样品所含蓄热材料质量m,从而探知样品的性能水平。
进一步的,所述的产品性能测试方法包括:测试样品在热载测试阶段的制冷系统能效比E、样品所含蓄热材料质量m,从而探知样品的性能水平。
进一步的,在所述的恒温阶段样品的漏热量Q=tKSΔT,其中t为样品腔体内外发生热交换时间,K为样品的传热系数,S为样品的换热面积,ΔT为样品腔体内外环境温差。
进一步的,在所述的恒温阶段,
Figure PCTCN2019079509-appb-000001
P1为样品中阻性元件的功率值,P2为样品的输入功率值,P3为样品的漏热功率值。
进一步的,在所述的变温阶段样品的蓄热量Q=CmΔT’,C为样品内蓄热材料的比热容,m为样品内蓄热材料的总质量,ΔT’为腔体内蓄热材料的初始温度差。
进一步的,在所述的变温阶段样品的漏热量Q=tKSΔT,其中t为样品腔体内外发生热交换时间,K为样品的传热系数,S为样品的换热面积,ΔT为样品腔体内外环境温差;且随时间的推移变化,变温阶段样品的漏热量动态变化。
进一步的,在所述的热载测试阶段,
Figure PCTCN2019079509-appb-000002
P1为样品中阻性元件的功率值,P2为样品的输入功率值,P3为样品的漏热功率值。
进一步的,所述的样品为环境试验设备。
本发明实施例还提供了一种产品性能测试系统,包括温度调控模块、温度监测模块及控制模块,所述控制模块与温度调控模块、温度监测模块连接;所述的产品性能测试系统还包括使用说明书,所述使用说明书记载有所述的产品性能测试方法。
与现有技术相比,利用本发明的测试方法,可以实现对样品性能的准确测试,大幅减少测试工作量的同时也使得测试方法更科学合理,因而在环境试验设备及保温设备等的测试领域具有广泛的应用前景。
具体实施方式
如前所述,鉴于现有产品性能测试方法所存在测试工作量大,从认识方法不科学等缺陷,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,其主要是通过测试样品的蓄热材料比热容C、传热系数K、制冷系统能效比E、样品内蓄热材料质量m等关键因子,进而对样品能耗定量分析,从而实现对样品性能的测试。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本发明实施例提供了一种产品性能测试方法,其包括:至少测试样品的蓄热材料比热容C、传热系数K、制冷系统能效比E、样品所含蓄热材料质量m,从而探知样品的性能水平。
进一步的,所述的产品性能测试方法包括:至少测试样品的蓄热材料比热容C、样品的传热系数K,以及,测试样品在恒温阶段的制冷系统能效比E、样品所含蓄热材料质量m,测试样品在变温阶段样品所含蓄热材料质量m,从而探知样品的性能水平。
进一步的,所述的产品性能测试方法包括:测试样品在热载测试阶段的制冷系统能效比E、样品所含蓄热材料质量m,从而探知样品的性能水平。
进一步的,在所述的恒温阶段样品的漏热量Q=tKSΔT,其中t为样品腔体内外发生热交换时间,K为样品传热系数,S为样品的换热面积,ΔT为样品腔体内外环境温差。
进一步的,在所述的恒温阶段,
Figure PCTCN2019079509-appb-000003
P1为样品中阻性元件的功率值,P2为样品的输入功率值,P3为样品的漏热功率值。
进一步的,在所述的变温阶段样品的蓄热量Q=CmΔT’,C为样品内蓄热材料的比热容,m为样品内蓄热材料的总质量,ΔT’为腔体内蓄热材料的初始温度差。
进一步的,在所述的变温阶段样品的漏热量Q=tKSΔT,其中t为样品腔体内外发生热交换时间,K为样品传热系数,S为样品的换热面积,ΔT为样品腔体内外环境温差;且随时间的推移变化,变温阶段样品的漏热量动态变化。
进一步的,在所述的热载测试阶段,
Figure PCTCN2019079509-appb-000004
P1为样品中阻性元件的功率值,P2为样品的输入功率值,P3为样品的漏热功率值。
进一步的,所述的样品为环境试验设备。
本发明实施例还提供了一种产品性能测试系统,包括温度调控模块、温度监测模块及控制模块,所述控制模块与温度调控模块、温度监测模块连接;所述的产品性能测试系统还包括使用说明书,所述使用说明书记载有所述的产品性能测试方法。
如下将对本发明测试方法的原理进行详细论述,以环境试验设备为例,影响环境试验设备能耗的阶段主要包括:恒温阶段、变温阶段和热载测试阶段(相对某些只具有加热功能而没有制冷功能的环境试验设备热载测试不适用),下面从这三个阶段进行分析。
1、影响恒温阶段能效因素
1.1:设备的漏热
Q=tKS ΔT 式1),
其中,t为环境试验设备(如下以温控箱为例,可简称箱体)腔体内外发生热交换时间,单位为s,K为环境试验设备的传热系数,单位为(W/m 2·K),S为环境试验设备的换热面积S,单位为(m 2),△T为环境试验设备腔体内外环境温差(可简称为温差),单位为(K)。
通过公式1)可以得出环境试验设备的漏热量与环境试验设备的传热系数K、环境试验设备的表面积S以及换热温差△T三者有关。企业所能控制的因子有两个:一是采用导热系数低的材料作为保温材料;二是将箱子(内容积)设计成正方体。
1.2:热载能力能效(即制冷系统能效比)
E=(P1+P3)/P2,其中E为环境试验设备热载能力能效,制冷性能越好,则能效越高。P1为阻性元件的功率值,单位为瓦(W);P2为试验箱输入功率值,单位为瓦(W);P3为试验箱漏热功率值,单位为瓦(W);P 3=KSΔT,△T为环境试验设备腔体内外环境温差,K为样品的传热系数,S为环境试验设备的换热面积。
热载能力能够反应环境试验设备带载能力的大小,热载能力能效则是反应环境试验设备的转换效率,这个类似于空调的能效,影响其因素主要就是制冷系统的优化。
2、影响变温阶段能效因素
2.1:箱体内材料蓄热
Q=Cm ΔT’  式2),其中C为环境试验设备内蓄热材料的比热容,单位为J/(kg·℃);m为环境试验设备内所有蓄热材料的总质量,单位为kg;ΔT’为腔体内蓄热材料的初始温度差,单位为℃
通过公式2)可以看到跟蓄热材料比热容C和箱体内蓄热材料(箱体内所有参与蓄热的材料)总质量m以及腔体内蓄热材料的初始温度差△T三者有关,通过前期测试比对发现箱子消耗的电能来制取的冷热量绝大部分都被箱体内材料蓄热所消耗,留给箱子内环境温度变化的热量很少。
2.2:系统漏热
原理同上1.1,但是计算过程相对恒温要复杂些,因为在整个变温阶段过程中箱体内温度不断变化,根据漏热公式Q=tKS△T,随着时间的推移,漏热量Q一直处于动态变化的过程(存在两个变量)。
2.3:热载能力能效(即制冷系统能效比)
同上1.2
3:影响热载测试阶段能效因数
同上1.2
综上所述,影响环境试验设备能耗高低的主要因数有:传热系数K、箱子内表面积S、温差△T、制冷系统能效比E、材料比热容C和箱体内蓄热材料质量m几大因素,因产品的形状设计是由产品的功能要求决定的,为了保证比较的公平性,在这里面积S不作为判定箱子节能与否的因子,本发明主要提供比较不同箱子的传热系数K、材料比热容C、箱体内蓄热材料质量m和制冷系统能效比E。
本发明提供的方法通过测试产品的蓄热材料比热容C、传热系数K、制冷系统能效比E、箱体内蓄热材料质量m(重要程度逐渐降低)四个关键因子,进而对环境试验设备能耗定量分析。
本发明实施例的另一个方面还提供了一种产品性能测试系统,包括温度调控模块、温度监测模块及控制模块,所述控制模块与温度调控模块、温度监测模块连接;所述的产品性能测试系统还包括使用说明书,所述使用说明书记载有所述的产品性能测试方法。其中,温度调控模块、温度监测模块及控制模块均可以采用现有的检测模块,均可以通过市购获得,其中采用的数控程序中设计的程序代码等也可以通过市购获得。
以下结合一些更为具体的实施例对本发明的技术方案做进一步地解释说明。
在如下实施例,提供了一类环境试验设备地性能测试方法,其包括:
1、传热系数K的测定
首先将待测试环境试验设备(即温控箱箱体,如下亦简称试验箱或箱体)置于某一环境温度下(例如25℃),在箱体内部放入阻性元件,关好门和测试孔并将温度设置某一温度(例如125℃),维持这一温度稳定2h,记录其中后1h阻性元件的耗电量,用E1表示。其次测量出箱体内表面积,用S表示,进而得出试验设备的K值,
Figure PCTCN2019079509-appb-000005
2、箱体内蓄热材料比热容C的测定
首先将试验箱置于规定测试条件下(例如25℃)预置至少2h,使试验箱内外温度与环境温度一致,其次在箱体内部放入阻性元件,同时按照GB/T10592-2008第6.3.1要求布置温度点(注:温度采集装置必须能够记录整个升温过程中时间和温度数值,采样频率不能小于1秒钟1次),然后通过测试孔加装一台风机(扇叶置于箱体内部,电机部分置于箱体外部,注意测试孔的密封和保温)对箱体内空气进行强制对流,最后关好门再将阻性元件通电使箱体内升温到某一温度(比方125℃),并保持一段时间让箱体内材料完成蓄热(当箱体内环温第一次达到125℃时开始记录时间,通过观察与阻性元件串联功率计功率数值的变化来判断稳定时间,如果功率在1分钟内变化小于5W判定为蓄热结束,记录恒温时间t'),记录整个过程内阻性元件耗电量E2、升温时间t和箱体内温度T数值,以及箱体内部材料的质量m,根据下述公式计算出材料比热容C。
将升温时间t拆分成n个趋向于0的△t组成,在很小的一段时间内Q(t)变化很小,近似于不变,计算出箱子在第1秒时的漏热量:q 1=K·S(T 1-25)
第2秒时的漏热量:q 2=K·S(T 2-25)
第n秒时(即125℃环温对应的时间)的漏热量:q n=K·S(125-25)
升温阶段
Figure PCTCN2019079509-appb-000006
将温升采集仪采集到时间和温度带入公式中便可得到漏热量。
恒温阶段Q 恒漏=K·S·(125-25)·t'
箱体内空气吸收的热量Q 空蓄=100·c·V·ρ。
3、制冷系统性能E测定
在箱体内部放入阻性元件,关好门和测试孔,在-25℃和-55℃两个特征温度点中,选择试验箱能够达到的最低温度作为试验温度,保持温度稳定,随后逐渐增加阻性元件的功率,达到能够使试验箱再次保持温度稳定的最大功率,记录阻性元件的输入功率值,用P1表示,同时测试试验箱的输入功率,用P2表示,同时计算出漏热功率P3(P3=KSt,t为样品内外热交换时间,K为样品的传热系数,S为样品的换热面积),进而得出制冷系统的E值,E=(P1+P3)/P2。
实施例1
以一台内腔为正方体、体积为1m 3的高低温试验箱作为测试对象,箱体内部蓄热材料的质量为80kg,
1、试验箱传热系数K的测定
将试验箱内温度设置为125℃并保持2h,用功率计测得最后一小时的耗电量为700Wh,
Figure PCTCN2019079509-appb-000007
2、试验箱内蓄热材料比热容C的测定
将试验箱置于25℃环境下2h,使试验箱内外温度与环境温度一致,在箱体内部放入阻性元件,同时按照GB/T10592-2008第6.3.1要求布置温度采集点,然后通过加装风机(扇叶置于箱体内部,电机部分置于箱体外部)对箱体内空气进行强制对流,最后关好门再将阻性元件通电使箱体内升温到125℃,并保持一段时间以使箱体内蓄热材料完成蓄热(当箱体内环温第一次达到125℃时开始记录时间,通过观察与阻性元件串联功率计功率数值的变化来判断稳定时间,如果功率在1分钟内变化小于5W判定为蓄热结束,记录恒温时间为18分钟),记录整个过程内阻性元件耗电量1400Wh、升温时间(10分钟)和箱体内温度T、漏热量的对应关系,试验箱升温过程中时间和温度对应关系如表1所示;
表1为10分钟内试验箱内时间与漏热量和温度的对应关系表
Figure PCTCN2019079509-appb-000008
Figure PCTCN2019079509-appb-000009
其中省略了0:00:11-0:09:48时间段内的温度和动态漏热量,其中,第n秒时的漏热量:.q n=K·S(125-25)。
Figure PCTCN2019079509-appb-000010
注:将升温时间和对应的温度数据导入EXCEL表1,利用上式可算出升温过程中的漏热。
Q 恒漏=K·S·(125-25)·t'=18×60×100×6×1.17=758160J
Q 空蓄=100·c·V·ρ=100×1.004×1000×1.185×1=118974J
Q =3600E 2-Q 升漏-Q 恒漏-Q 空蓄=3600×1400-245486.59-758160-118974=3917379.41J
Figure PCTCN2019079509-appb-000011
3、制冷系统性能E测定
试验箱最低温度能够达到-40℃,选取-25℃作为试验温度,并保持试验温度稳定,随后逐渐增加阻性元件的功率,直至达到能够使试验箱再次保持温度稳定的最大功率,记录阻性元件的输入功率值P1为800W,同时测试试验箱的输入功率P2为2400W。
P3=1.17×6×50=351W
Figure PCTCN2019079509-appb-000012
本发明实施例提供了一种产品性能测试方法,而非判定方法,其可以间接作为判定产品合格与否的标准或依据,也可以不作为判定产品合格与否的标准或依据;现有产品性能测试方法一般采用直接测试样品能耗(例如耗电量)的方式对样品的性能进行测试,而本发明主要通过对四个关键因子(蓄热材料比热容C、传热系数K、制冷系统能效比E、箱体内蓄热材料质量m)的测试间接反映出样品的能耗水平,避免因人为设定某几个点(例如GB/T 33861-2017中所设定的恒温能效考核点)考核产品性能所带来的局限性,且本测试方法更加简单,更科学合理,具有广泛应用前景,不仅可以应用于环境试验箱行业,但凡涉及到保温类产品均可以使用本发明的方法进行评定。
本发明提供的测试方法打破常规惯例,通过对四个关键因子的测试间接的反映出箱子的能耗水平,并提供了用于测定关键因子的自动调节阻性元件(PID);其中本发明采用的自动调节阻性元件为能够实现自动加热,电能积分等功能的元件,其组成零部件可以通过市购获得;本发明提供的测试方法应用广泛,不单可以应用于环境试验箱行业,但凡涉及到保温类产品均可以使用此方法对产品进行评定,其不仅可以测定产品的保温性能,还可以用于测定产品的其他性能。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种产品性能测试方法,其特征在于包括:至少测试样品的蓄热材料比热容C、传热系数K、制冷系统能效比E、样品所含蓄热材料质量m,从而探知样品的性能水平。
  2. 根据权利要求1所述的产品性能测试方法,其特征在于包括:至少测试样品的蓄热材料比热容C、样品的传热系数K,以及,测试样品在恒温阶段的制冷系统能效比E、样品所含蓄热材料质量m,测试样品在变温阶段样品所含蓄热材料质量m,从而探知样品的性能水平。
  3. 根据权利要求2所述的产品性能测试方法,其特征在于包括:测试样品在热载测试阶段的制冷系统能效比E、样品所含蓄热材料质量m,从而探知样品的性能水平。
  4. 根据权利要求2或3所述的产品性能测试方法,其特征在于:在所述的恒温阶段样品的漏热量Q=tKSΔT,其中t为样品腔体内外发生热交换时间,K为样品的传热系数,S为样品的换热面积,ΔT为样品腔体内外环境温差。
  5. 根据权利要求2或3所述的产品性能测试方法,其特征在于:在所述的恒温阶段,
    Figure PCTCN2019079509-appb-100001
    P1为样品中阻性元件的功率值,P2为样品的输入功率值,P3为样品的漏热功率值。
  6. 根据权利要求2或3所述的产品性能测试方法,其特征在于:在所述的变温阶段样品的蓄热量Q=CmΔT’,C为样品内蓄热材料的比热容,m为样品内蓄热材料的总质量,ΔT’为腔体内蓄热材料的初始温度差。
  7. 根据权利要求6所述的产品性能测试方法,其特征在于:在所述的变温阶段样品的漏热量Q=tKSΔT,其中t为样品腔体内外发生热交换时间,K为样品的传热系数,S为样品的换热面积,ΔT为样品腔体内外环境温差;且随时间的推移变化,变温阶段样品的漏热量动态变化。
  8. 根据权利要求3所述的产品性能测试方法,其特征在于:在所述的热载测试阶段,
    Figure PCTCN2019079509-appb-100002
    P1为样品中阻性元件的功率值,P2为样品的输入功率值,P3为样品的漏热功率值。
  9. 根据权利要求1-3中任一项所述的产品性能测试方法,其特征在于:所述的样品为环境试验设备。
  10. 一种产品性能测试系统,包括温度调控模块、温度监测模块及控制模块,所述控制模块与温度调控模块、温度监测模块连接;其特征在于:所述的产品性能测试系统还包括使用说明书,所述使用说明书记载有权利要求1-9中任一项所述的产品性能测试。
PCT/CN2019/079509 2019-03-18 2019-03-25 产品性能测试方法及系统 WO2020186539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/274,787 US11175251B2 (en) 2019-03-18 2019-03-25 Product performance test method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910205610.8 2019-03-18
CN201910205610.8A CN109799258B (zh) 2019-03-18 2019-03-18 产品性能测试方法及系统

Publications (1)

Publication Number Publication Date
WO2020186539A1 true WO2020186539A1 (zh) 2020-09-24

Family

ID=66563514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079509 WO2020186539A1 (zh) 2019-03-18 2019-03-25 产品性能测试方法及系统

Country Status (3)

Country Link
US (1) US11175251B2 (zh)
CN (1) CN109799258B (zh)
WO (1) WO2020186539A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526275B (zh) * 2020-12-21 2022-05-13 中认英泰检测技术有限公司 用于质量安全监测的自适应电参数测试系统及方法
CN113125334A (zh) * 2021-04-25 2021-07-16 中认英泰检测技术有限公司 一种快速温变试验箱性能测试方法
CN114034731A (zh) * 2021-11-04 2022-02-11 西南科技大学 含能材料爆热、爆压的双功能测定装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622430A (en) * 1993-11-05 1997-04-22 Degussa Aktiengesellschaft Method of testing the heat insulation action of bodies especially of heat insulation bodies
US20070047614A1 (en) * 2005-08-24 2007-03-01 Yeh-Chiang Technology Corp. Measuring system and screening method for thermal conductive efficiencies of thermal conductive devices
CN101813651A (zh) * 2010-04-23 2010-08-25 中国建筑科学研究院 一种建筑材料蓄热性能的测试方法及测试仪
CN106405223A (zh) * 2016-08-19 2017-02-15 机械工业仪器仪表综合技术经济研究所 一种实验室设备能效测试方法及系统
CN108663403A (zh) * 2018-07-10 2018-10-16 中国信息通信研究院 一种柜体传热系数测试系统及方法
CN108760807A (zh) * 2018-08-06 2018-11-06 中国信息通信研究院 一种室外机柜传热系数测试系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039228A (en) * 1989-11-02 1991-08-13 The United States Of America As Represented By The Secretary Of The Navy Fixtureless environmental stress screening apparatus
RU2015483C1 (ru) * 1991-11-14 1994-06-30 Институт теплофизики Уральского отделения РАН Способ регулирования термического сопротивления тепловой трубы
US6460355B1 (en) * 1999-08-31 2002-10-08 Guy T. Trieskey Environmental test chamber fast cool down and heat up system
IN2013MU04122A (zh) * 2013-12-30 2015-08-07 Indian Oil Corp Ltd
CN105207205B (zh) * 2015-09-16 2018-01-26 国网天津市电力公司 一种融合需求侧响应的分布式能源系统能量优化调控方法
CN105931136A (zh) * 2016-04-25 2016-09-07 天津大学 一种融合需求侧虚拟储能系统的楼宇微网优化调度方法
CN106960272A (zh) * 2017-02-28 2017-07-18 天津大学 含虚拟储能的楼宇微网多时间尺度优化调度方法
EP3859235A1 (de) * 2020-01-31 2021-08-04 WEISS UMWELTTECHNIK GmbH Prüfkammer und verfahren zur steuerung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622430A (en) * 1993-11-05 1997-04-22 Degussa Aktiengesellschaft Method of testing the heat insulation action of bodies especially of heat insulation bodies
US20070047614A1 (en) * 2005-08-24 2007-03-01 Yeh-Chiang Technology Corp. Measuring system and screening method for thermal conductive efficiencies of thermal conductive devices
CN101813651A (zh) * 2010-04-23 2010-08-25 中国建筑科学研究院 一种建筑材料蓄热性能的测试方法及测试仪
CN106405223A (zh) * 2016-08-19 2017-02-15 机械工业仪器仪表综合技术经济研究所 一种实验室设备能效测试方法及系统
CN108663403A (zh) * 2018-07-10 2018-10-16 中国信息通信研究院 一种柜体传热系数测试系统及方法
CN108760807A (zh) * 2018-08-06 2018-11-06 中国信息通信研究院 一种室外机柜传热系数测试系统和方法

Also Published As

Publication number Publication date
US11175251B2 (en) 2021-11-16
US20210318257A1 (en) 2021-10-14
CN109799258A (zh) 2019-05-24
CN109799258B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2020186539A1 (zh) 产品性能测试方法及系统
CN101319969B (zh) 一种小型压缩式制冷器具制冷性能快速测试方法及装置
CN201464397U (zh) 建筑围护结构传热系数现场检测装置
CN101813651A (zh) 一种建筑材料蓄热性能的测试方法及测试仪
CN201697888U (zh) 一种单一材料围护结构热惰性指标的检测装置
Wang et al. Research on an electric energy‐saving grain drying system with internal circulation of the drying medium
CN202133634U (zh) 用于测试屋面隔热模块及材料性能的检测装置
CN112902393A (zh) 一种空调热平衡试验室节能控制方法及系统
CN109029792A (zh) 一种电气设备散热量测试系统及测试方法
CN202692261U (zh) 进气空调压力控制装置
CN113757908B (zh) 一种空调系统的热特性测量方法、系统、终端及存储介质
CN110779748B (zh) 多温区运输制冷机组性能测试试验装置及测试方法
CN103487460B (zh) 一种提高覆盖材料保温性能测试台测试精度的方法
CN201188038Y (zh) 采暖散热器散热量检测系统
CN207280512U (zh) 一种杜瓦组件绝热特性综合测量装置
CN112671336A (zh) 检测光伏组件工作温度异常的方法、装置和计算机设备
CN2534580Y (zh) 旁冷夹层定温量热仪
CN109324240A (zh) 制冷模式下空调器的耗电量的检测方法和装置
CN2186916Y (zh) 循环箱式发动机进气恒温装置
CN219266158U (zh) 一种新型墙体传热系数现场测量装置
CN110672660A (zh) 一种低能耗的建筑外窗节能性能快速检测装置
CN111707486B (zh) 一种快速检测建筑外窗遮阳系数的方法
CN202581645U (zh) 标定型房间量热计的基于解偶控制的加湿器
CN109522662B (zh) 一种计算屋顶式空调机混合空气温度的方法
CN115452883A (zh) 一种辐射制冷材料的通用表征方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919916

Country of ref document: EP

Kind code of ref document: A1