WO2020207117A1 - 检测方法、驱动方法、显示装置和补偿查找表的构建方法 - Google Patents

检测方法、驱动方法、显示装置和补偿查找表的构建方法 Download PDF

Info

Publication number
WO2020207117A1
WO2020207117A1 PCT/CN2020/075617 CN2020075617W WO2020207117A1 WO 2020207117 A1 WO2020207117 A1 WO 2020207117A1 CN 2020075617 W CN2020075617 W CN 2020075617W WO 2020207117 A1 WO2020207117 A1 WO 2020207117A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
driving transistor
sensing
pixel circuit
threshold voltage
Prior art date
Application number
PCT/CN2020/075617
Other languages
English (en)
French (fr)
Other versions
WO2020207117A9 (zh
Inventor
陈燚
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020207117A1 publication Critical patent/WO2020207117A1/zh
Publication of WO2020207117A9 publication Critical patent/WO2020207117A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • the embodiments of the present disclosure relate to a detection method of a pixel circuit, a driving method of a display panel, a display device, and a method for constructing a temperature compensation look-up table.
  • Organic Light Emitting Diode (OLED) display devices have the characteristics of wide viewing angle, high contrast, fast response, high brightness, and high luminous efficiency. Moreover, compared with inorganic light-emitting display devices, organic light-emitting diode display devices have advantages such as higher light-emitting brightness and lower driving voltage. Due to the above-mentioned characteristics and advantages, organic light-emitting diode (OLED) display devices have gradually received widespread attention and can be applied to devices with display functions such as mobile phones, displays, notebook computers, digital cameras, and instrumentation.
  • At least one embodiment of the present disclosure provides a detection method of a pixel circuit, the pixel circuit includes a driving transistor, and the method includes: applying a first data voltage to a gate of the driving transistor, and applying a first data voltage to the gate of the driving transistor; For a first time period after the data voltage and before the driving transistor is turned off, a first sensing voltage is acquired at the first pole of the driving transistor, wherein the first data voltage is equal to the detection data voltage and the driving transistor The sum of the first reference threshold voltage; the current threshold voltage of the driving transistor is obtained based on the detection data voltage, the first sensing voltage, and a temperature compensation look-up table.
  • the temperature compensation look-up table includes a plurality of threshold voltages of the driving transistor at a plurality of temperatures, and a plurality of sensing voltages acquired at the plurality of temperatures based on the first duration and the detection data voltage.
  • At least one embodiment of the present disclosure also provides a method for driving a display panel, the display panel including a pixel circuit, and the driving method includes: executing the pixel circuit provided by any of the embodiments of the present disclosure on the pixel circuit.
  • the detection method is used to obtain at least the current threshold voltage of the driving transistor of the pixel circuit.
  • At least one embodiment of the present disclosure also provides a display device including a pixel circuit and a controller, and the pixel circuit includes a driving transistor.
  • the controller is configured to perform the following detection method: apply a first data voltage to the gate of the driving transistor, and before the driving transistor is turned off for a first period of time after the first data voltage is applied, The first pole of the driving transistor obtains a first sensing voltage.
  • the first data voltage is equal to the sum of the detection data voltage and the first reference threshold voltage of the driving transistor; based on the detection data voltage,
  • the first sensing voltage and temperature compensation look-up table acquires the current threshold voltage of the driving transistor, wherein the temperature compensation look-up table includes a plurality of threshold voltages of the driving transistor at a plurality of temperatures and based on the detection
  • the data voltage is a plurality of sensing voltages obtained at the plurality of temperatures.
  • At least one embodiment of the present disclosure also provides a method for constructing a temperature compensation look-up table.
  • the temperature compensation look-up table is used for pixel circuit compensation and includes a plurality of data entries corresponding to a plurality of temperatures.
  • the pixel circuit includes a driver Transistor, using any one of the plurality of temperatures as a set temperature, and the construction method includes: keeping the pixel circuit at the set temperature; obtaining the driving transistor of the pixel circuit at the set temperature Threshold voltage; apply a test data voltage to the gate of the drive transistor, and obtain the setting at the first pole of the drive transistor for the first time period after the test data voltage is applied and before the drive transistor is turned off The sensing voltage at temperature.
  • the test data voltage is equal to the sum of the detected data voltage and the threshold voltage at the set temperature, and the data entry for the set temperature includes the threshold voltage at the set temperature And the sensing voltage at the set temperature.
  • Fig. 1A is a schematic diagram of a pixel circuit
  • FIG. 1B is a schematic diagram of another pixel circuit
  • FIG. 1C is a schematic diagram of another pixel circuit
  • Figure 1D is a graph showing the change of sensing voltage over time
  • FIG. 2 is an exemplary flowchart of a detection method of a pixel circuit provided by at least one embodiment of the present disclosure
  • 3A is a schematic diagram of a pixel circuit provided by at least one embodiment of the present disclosure.
  • FIG. 3B is an equivalent circuit of the pixel circuit shown in FIG. 3A;
  • 3C is a schematic diagram of another pixel circuit provided by at least one embodiment of the present disclosure.
  • FIGS. 3A to 3C are partial circuit of the pixel circuit shown in FIGS. 3A to 3C;
  • FIG. 4B is a graph showing changes in the voltage of the gate of the driving transistor and the voltage of the first electrode of the driving transistor over time according to at least one embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a straight line obtained by fitting a sensing voltage and a threshold voltage at multiple temperatures in at least one embodiment of the present disclosure
  • FIG. 6 is another schematic diagram of a straight line obtained by fitting the sensing voltage and the threshold voltage at multiple temperatures in at least one embodiment of the present disclosure
  • FIG. 7 is an exemplary flowchart of a driving method of a display panel provided by at least one embodiment of the present disclosure
  • FIG. 8 is an exemplary block diagram of a display panel provided by at least one embodiment of the present disclosure.
  • FIG. 9 is an exemplary structure diagram of the display panel shown in FIG. 8;
  • FIG. 10 is an exemplary block diagram of a display device provided by at least one embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a display device provided by at least one embodiment of the present disclosure.
  • OLED organic light emitting diode
  • the pixel circuit in an organic light emitting diode (OLED) display panel generally adopts a matrix driving mode. According to whether switching components are introduced in each pixel unit, OLED display panels can be divided into an active matrix (Active Matrix) driving type and a passive matrix (Passive Matrix) driving type.
  • AMOLED (that is, active matrix driven OLED) display panel integrates thin film transistors and storage capacitors in the pixel circuit of each pixel. By controlling the thin film transistors and storage capacitors, the current flowing through the OLED can be controlled to make the OLED Glow as needed.
  • the basic pixel circuit used in the AMOLED display panel is usually a 2T1C pixel circuit, that is, a pixel circuit that uses two thin-film transistors (TFT) and a storage capacitor Cst to drive the OLED to emit light.
  • TFT thin-film transistors
  • FIGs 1A and 1B show schematic diagrams of two types of 2T1C pixel circuits.
  • a 2T1C pixel circuit includes a switching transistor T0, a driving transistor N0, and a storage capacitor Cst.
  • the gate of the switching transistor T0 is connected to a scan line (not shown in the figure) to receive the scan signal Scan1; for example, the source of the switching transistor T0 is connected to a data line (not shown in the figure) to receive the data signal Vdata
  • the drain of the switching transistor T0 is connected to the gate of the driving transistor N0; the source of the driving transistor N0 is connected to the first voltage terminal to receive the first voltage Vdd, and the drain of the driving transistor N0 is connected to the positive terminal of the OLED; storage One end of the capacitor Cst is connected to the drain of the switching transistor T0 and the gate of the driving transistor N0, and the other end is connected to the source of the driving transistor N0 and the first voltage terminal; the negative terminal of the OLED is connected to the second voltage terminal to receive the second voltage.
  • the 2T1C pixel circuit uses two TFTs and a storage capacitor Cst to control the gray scale of the pixel unit including the pixel circuit.
  • the data signal Vdata (provided by the data driving circuit) sent via the data line will charge the storage capacitor Cst via the switching transistor T0, so that the data signal Vdata can be stored in In the storage capacitor Cst, and the data signal Vdata stored in the storage capacitor Cst can control the degree of conduction of the driving transistor N0, thereby controlling the intensity of the current flowing through the driving transistor N0 (for driving the OLED to emit light).
  • the intensity of determines the gray scale of the pixel unit including the pixel circuit.
  • the switching transistor T0 is an N-type transistor and the driving transistor N0 is a P-type transistor.
  • another 2T1C pixel circuit also includes a switching transistor T0, a driving transistor N0, and a storage capacitor Cst, but the connection mode is slightly changed, and the driving transistor N0 is an N-type transistor.
  • the changes of the pixel circuit of FIG. 1B relative to FIG. 1A include: the positive terminal of the OLED is connected to the first voltage terminal to receive the first voltage Vdd (high voltage), and the negative terminal is connected to the drain of the driving transistor N0.
  • the source of N0 is connected to the second voltage terminal to receive the second voltage Vss (low voltage, such as ground voltage).
  • the working mode of the 2T1C pixel circuit shown in FIG. 1B is basically the same as that of the pixel circuit shown in FIG. 1A, and will not be repeated here.
  • the switching transistor T0 is not limited to an N-type transistor, but may also be a P-type transistor, which will not be repeated here.
  • An OLED display panel usually includes a plurality of pixel units arranged in an array, and each pixel unit may include the aforementioned pixel circuit, for example.
  • the inventor of the present disclosure has noticed in research that, in the OLED display panel, the threshold voltage of the driving transistor in each pixel circuit may be different due to the manufacturing process; the inventor of the present disclosure also noted in the research that due to, for example, temperature changes As a result, the threshold voltage of the driving transistor may drift, and the amount of drift of the threshold voltage of the driving transistor varies with changes in the data signal received by the driving transistor.
  • the current intensities flowing through the driving transistors of the multiple pixel circuits may be different from each other, and the intensities of light emitted by the multiple pixel circuits of the multiple pixel circuits may be different from each other.
  • the gray levels of multiple pixel units may be different from each other, thereby reducing the brightness uniformity and/or display quality of the OLED display panel.
  • different pixel units receive different data signals (for example, data voltages), emit light of different intensities, and therefore have different temperature changes and different threshold voltage drifts, thereby making The display quality of the OLED display panel is further deteriorated.
  • the threshold voltage needs to be compensated (for example, real-time compensation) to ensure the display effect of the OLED display panel.
  • Vdata For example, after applying the data signal (for example, data voltage) Vdata to the gate of the driving transistor N0 via the switching transistor T0 and applying the set voltage (that is, reset signal) Vref to the source of the driving transistor N0, here, Vdata> Vref+Vth, Vth represents the threshold voltage of the driving transistor, so the data signal Vdata can turn on the driving transistor N0.
  • the voltage of the source or drain of the driving transistor N0 electrically connected to one end of the storage capacitor Cst May change accordingly.
  • FIG. 1C shows a pixel circuit (that is, a 3T1C circuit) that can detect the threshold voltage of a driving transistor, and the driving transistor N0 is an N-type transistor.
  • the sensing transistor S0 can be introduced on the basis of the 2T1C circuit, that is, the first end of the sensing transistor S0 can be connected to the source of the driving transistor N0, and the sensing The second end of the transistor S0 is connected to a detection circuit (not shown in FIG. 1C) via a sensing line (not shown in FIG. 1C).
  • the detection circuit is discharged through the sensing transistor S0 or the capacitance or parasitic capacitance set on the sensing line through the sensing transistor S0 is charged, so that the source voltage Vs of the driving transistor N0 changes .
  • the source voltage Vs of the driving transistor N0 is equal to the difference between the gate voltage Vg of the driving transistor N0 and the threshold voltage Vth of the driving transistor, the driving transistor N0 will be turned off and the source voltage Vs of the driving transistor N0 will not change.
  • the turned-off source voltage (that is, the source voltage Vb after the driving transistor N0 is turned off) can be obtained from the source of the driving transistor N0 through the turned-on sensing transistor S0.
  • the data signal (data voltage) to be displayed of the pixel circuit can be compensated based on the threshold voltage of the driving transistor in each pixel circuit, and the compensated data signal can be used to drive the pixel circuit.
  • the inventor of the present disclosure has also noticed in research that the above threshold detection requires a long time and usually needs to be performed during the shutdown process after the display panel ends normal display. Therefore, it cannot be performed during the startup period (for example, during the display process). Between adjacent display periods) realize the detection of the threshold voltage of the driving transistor N0, that is, the threshold voltage cannot be monitored and compensated in real time during the display process, thereby reducing the compensation effect of the display panel and the brightness uniformity of the display panel. / Or display effect. An example description will be given below in conjunction with FIG. 1D.
  • FIG. 1D shows a graph of the source voltage obtained from the source of the driving transistor N0 via the turned-on sensing transistor SO over time.
  • the switching transistor T0 is kept on, and therefore, the gate voltage Vg of the driving transistor N0 is kept as the data signal (data voltage) Vdata.
  • the inventor of the present disclosure noted that after the data signal Vdata is applied, in the process of discharging the detection circuit through the sensing line or charging the capacitance or parasitic capacitance set on the sensing line, the storage capacitor Cst, etc., is charged with time Increases, the charging speed will correspondingly decrease (that is, the speed at which the sensing voltage increases will decrease) (see Figure 1D), because the charging current will increase with the source voltage (that is, the source voltage Vs of the driving transistor N0 ) Increases and decreases.
  • the output current Ids when the driving transistor N0 is in a saturated state can be obtained by the following calculation formula:
  • Ids K(Vg-Vs-Vth) 2
  • K 1/2 ⁇ W/L ⁇ C ⁇
  • W is the width of the channel of the driving transistor N0
  • L is the length of the channel of the driving transistor N0
  • W/L is the width of the channel of the driving transistor N0 Length ratio (that is, the ratio of width to length)
  • is the electron mobility
  • C is the capacitance per unit area.
  • the inventor of the present disclosure has noticed in the research that the accuracy of the current sensing method of the mobility of the driving transistor needs to be improved.
  • the mobility of the driving transistor can be sensed by the following method.
  • the charging voltage that is, the sensing voltage acquired at the source of the driving transistor after a predetermined period of time between charging the sensing line determines (for example, calculating) the magnitude of the mobility of the driving transistor.
  • the threshold voltage of the driving transistor changes, but in calculating the mobility of the driving transistor, it is assumed that the threshold voltage of the driving transistor remains unchanged, therefore, it will result in the calculation There is a deviation in the mobility of the driving transistor (compared to the true value of the driving transistor).
  • At least one embodiment of the present disclosure provides a method for detecting a pixel circuit, a method for driving a display panel, a display device, and a method for constructing a temperature compensation look-up table.
  • the pixel circuit includes a driving transistor, and the detection method of the pixel circuit includes: applying a first data voltage to the gate of the driving transistor, and at the first electrode of the driving transistor for a first period of time after the first data voltage is applied and before the driving transistor is turned off.
  • the temperature compensation look-up table includes multiple threshold voltages of the driving transistor at multiple temperatures and multiple sensing voltages acquired at multiple temperatures based on the first duration and the detection data voltage.
  • the "first duration" used is the same, and the size of the first duration can be based on the size of the driving transistor in the display circuit.
  • Design parameters such as on-resistance, the length of one frame of scan driving period (including display period and blanking time) are set.
  • the first sensing voltage may be acquired at the first pole of the driving transistor before the driving transistor is turned off, and the current threshold voltage of the driving transistor may be acquired based on the detected data voltage, the first sensing voltage, and the temperature compensation look-up table , which can reduce the time required for threshold voltage detection. Since the time required for threshold voltage detection is relatively short, the detection of the threshold characteristics of the pixel circuit can be achieved during the boot period, thereby improving the compensation effect of the threshold voltage of the pixel circuit and the brightness uniformity and/or the display panel including the pixel circuit. Or display effect.
  • the detection method of the pixel circuit provided by the embodiments of the present disclosure is described in a non-limiting way below through a few examples. As described below, the different features in these specific examples can be combined with each other without conflicting each other to obtain New examples, these new examples also belong to the scope of protection of the present disclosure.
  • FIG. 2 shows a detection method of a pixel circuit provided by at least one embodiment of the present disclosure, and the detection method of the pixel circuit can be used to detect the threshold voltage of the driving transistor of the pixel circuit.
  • Fig. 3A is a schematic diagram of a pixel circuit provided by at least one embodiment of the present disclosure
  • Fig. 3B is an equivalent circuit of the pixel circuit shown in Fig. 3A
  • Fig. 3C is another pixel circuit provided by at least one embodiment of the present disclosure Schematic of the circuit.
  • At least one embodiment of the present disclosure provides a method for detecting a pixel circuit that can be applied to the pixel circuit shown in FIG. 3A, the pixel circuit shown in FIG. 3B, the pixel circuit shown in FIG. 3C, or other applicable pixel circuits.
  • the following will exemplify the detection method of the pixel circuit provided by the embodiment of the present disclosure in conjunction with the pixel circuit shown in FIGS. 3A to 3C, but the embodiment of the present disclosure is not limited thereto.
  • the pixel circuit includes a driving transistor T3 (including a gate, a first electrode, and a second electrode).
  • the first electrode (such as the source) of the driving transistor T3 is electrically connected to the light emitting element EL and the sensing line SENL.
  • the sensing voltage can be obtained through the sensing line SENL; for example, the voltage of the first electrode of the driving transistor T3 can also be set to the setting voltage Vref through the sensing line SENL.
  • the pixel circuit can apply a data voltage to the gate of the driving transistor T3.
  • the pixel circuit further includes a first transistor T1 and a storage capacitor Cst.
  • the first transistor T1 is used as an input write switch.
  • the gate of the first transistor T1 is used as a control terminal G1 to connect to the scan line GaL1 (not shown in the figure) to receive the scan signal.
  • the first pole of the first transistor T1 is connected to the first transistor.
  • the second electrode of T1 is respectively connected to the data line and the gate of the driving transistor T3 to respectively receive the data voltage (for example, the first data voltage Vdata1) and apply the received data voltage to the gate of the driving transistor T3; storage capacitor Cst
  • the first terminal and the second terminal of T3 are respectively connected to the gate of the driving transistor T3 and the first terminal of the driving transistor T3, thereby storing the data voltage applied to the gate of the driving transistor T3 and the first terminal of the storage capacitor Cst.
  • the pixel circuit further includes a second transistor T2.
  • the second transistor T2 is used as a sensing switch.
  • the first pole of the second transistor T2 is connected to the first pole of the driving transistor T3;
  • the second pole of the second transistor T2 is connected to the sensing line SENL for the The capacitance associated with SENL is charged to form a sensing voltage, so that the sensing voltage can be detected through the sensing line SENL;
  • the gate of the second transistor T2 serves as the control terminal G2 and the sensing scan line GaL2 (not shown in the figure) Out) connect to receive the sensing control signal.
  • the pixel circuit is also connected to the first power terminal VDD and the second power terminal VSS.
  • the first power supply terminal VDD and the second power supply terminal VSS are constant voltage sources.
  • the pixel circuit shown in FIG. 3A may be equivalent to the pixel circuit shown in FIG. 3B.
  • the parasitic capacitance Cvc can be charged by the current from the driving transistor T3, so that the voltage on the corresponding sensing line SENL changes.
  • the embodiments of the present disclosure are not limited to this.
  • the parasitic capacitance Cvc on the sensing line SENL as shown in FIG.
  • the control terminal G1 and the control terminal G2 are connected to different sensing lines SENL, so that the first transistor T1 and the second transistor T2 can be in the on state at different times.
  • the driving transistor T3 is an N-type transistor
  • the first power terminal VDD is a high voltage terminal
  • the second power terminal VSS is a low voltage terminal, that is, the voltage output by the first power terminal VDD is greater than
  • the second power terminal VSS is, for example, grounded.
  • the first electrode of the driving transistor T3 is connected to the light emitting element EL; in addition, the first transistor T1 and the second transistor T2 are also N-type transistors.
  • the data voltage Vdata provided by the data line DL may be applied to the gate of the driving transistor T3 by turning on the first transistor T1 (for example, applying an active level to the control terminal G1 of the first transistor T1).
  • the setting voltage Vref can be applied to the first electrode of the driving transistor T3 through the turned-on second transistor T2 (for example, applying an effective level to the control terminal G2 of the second transistor T2).
  • the setting voltage Vref can be set by the power supply. Terminal Vc (not shown in the figure) is provided.
  • the voltage value of the data voltage Vdata is greater than the voltage value of the setting voltage Vref, so that the driving transistor T3 is turned on, and the voltage value of the setting voltage Vref is equal to zero, for example.
  • FIG. 4A shows a partial circuit of the pixel circuit shown in FIGS. 3A to 3C
  • FIG. 4B shows the voltage Vg and the driving voltage Vg of the gate of the driving transistor T3 when the current flowing through the driving transistor T3 is a constant current.
  • the voltage Vs of the first electrode of the transistor T3 changes with time.
  • the current flowing through the driving transistor T3 can be made a constant current by the following method.
  • the pixel circuit can apply the data voltage Vdata to the gate of the driving transistor T3, and apply the setting voltage Vref to the first electrode (for example, the source) of the driving transistor T3.
  • the voltage value of the data voltage Vdata is greater than that of the setting voltage Vref.
  • the voltage value of the drive transistor T3 is turned on, and the voltage value of the set voltage Vref is, for example, equal to zero; then, the gate of the drive transistor T3 can be reduced by turning off the first transistor T1 (for example, applying an invalid level to the first transistor T1) Float.
  • the amount of charge stored in the storage capacitor Cst cannot be suddenly released or charged (that is, the amount of charge stored in the storage capacitor Cst remains unchanged); correspondingly, according to the principle of conservation of capacitor charge ,
  • Vdata the data voltage
  • Vth the current threshold voltage of the driving transistor T3
  • Ids K(GL) 2 , that is, flowing through the driving transistor
  • the current Ids of T3 is a constant value.
  • the sensing line SENL can be obtained through the sensing line SENL Voltage.
  • the second transistor T2 can be turned off; by turning off the second transistor T2, the sensing voltage can be prevented from continuing to rise during the reading phase, and thus the sensing voltage can be read Allow sufficient time to improve the accuracy of the sensed voltage read.
  • the sensing line SENL can be electrically connected to the analog-to-digital converter ADC, so that the analog signal of the sensing voltage acquired via the sensing line SEN can be converted into a digital signal for Follow-up processing.
  • the charging time ⁇ t that is, the length of time between the first transistor T1 is turned off to the second transistor T2 is turned off
  • the capacitance C related to the sensing line SENL satisfy The following expression:
  • the sensing voltage Vs obtained through the sensing line SENL satisfies the following expression:
  • the sensing voltage Vs obtained through the sensing line SENL increases linearly with time (before the second transistor T2 is turned off), and the gate of the driving transistor T3
  • the voltage Vg also linearly increases with time due to floating.
  • the effective level refers to the level used to turn on the corresponding switching element
  • the invalid level refers to the level used to turn off the corresponding switching element
  • the detection method of the pixel circuit includes the following steps S10 to S20.
  • step S10 and step S20 may be executed sequentially.
  • Step S10 Apply the first data voltage Vdata1 to the gate of the driving transistor T3, and obtain the first sensing at the first electrode of the driving transistor T3 for the first time period after the first data voltage Vdata1 is applied and before the driving transistor T3 is turned off. Voltage Vsen1.
  • Step S20 Obtain the current threshold voltage Vth of the driving transistor T3 based on the detected data voltage GL, the first sensing voltage Vsen1 and the temperature compensation look-up table.
  • the first data voltage Vdata1 is equal to the sum of the detection data voltage GL and the first reference threshold voltage Vthb1 of the driving transistor T3.
  • the detected data voltage GL is the data voltage to be displayed and corresponds to the gray value of the pixel circuit to be displayed.
  • the detection data voltage GL may be preset by the user before detecting the pixel circuit; for another example, the detection data voltage GL may also be stored in advance (for example, stored in the memory of the display panel or display device including the pixel circuit) ), and provided to the pixel circuit when the pixel circuit is detected.
  • the first reference threshold voltage Vthb1 is the threshold voltage of the driving transistor T3 at the first temperature t1, and the first reference threshold voltage Vthb1 can be obtained by a temperature compensation look-up table.
  • step S10 after applying the first data voltage Vdata1 to the gate of the driving transistor T3 and before the first electrode of the driving transistor T3 acquires the first sensing voltage Vsen1 (that is, in the parasitic capacitance and/or sense During the charging process of the measuring capacitor), the current flowing through the driving transistor T3 is a constant current.
  • the first sensing voltage Vsen1 can be obtained through the following steps S101 to S103.
  • step S101, step S102, and step S103 may be executed sequentially.
  • Step S101 Apply the first data voltage Vdata to the gate of the driving transistor T3, and apply the setting voltage Vref to the first electrode (for example, the source) of the driving transistor T3.
  • the voltage value of the data voltage Vdata is greater than
  • the voltage value of the set voltage Vref is set so that the driving transistor T3 is turned on, and the voltage value of the set voltage Vref is equal to zero, for example.
  • Step S102 After applying the first data voltage Vdata and the setting voltage Vref to the gate and the first electrode of the driving transistor T3, respectively, the first transistor T1 is turned off (for example, an inactive level is applied to the first transistor T1), so that the driving The gate of the transistor T3 floats and causes a constant current Ids to flow through the driving transistor T3 and charge the capacitance C associated with the sensing line SENL.
  • Step S103 After charging the capacitor C related to the sensing line SENL for the first time period (that is, the charging time ⁇ t of the capacitor C is the first time period), read the first electrode of the driving transistor T3 through the second transistor T2 The first sensing voltage Vsen1.
  • the second transistor T2 can be turned off to prevent the sensing voltage read from the first pole of the driving transistor T3 from continuing to rise during the reading phase, so as to improve the accuracy of the first sensing voltage Vsen1 read. degree.
  • a temperature compensation look-up table is used for pixel circuit compensation and includes multiple data entries corresponding to multiple temperatures.
  • the temperature compensation lookup table can be as shown in Table 1 below.
  • the multiple temperatures include a first temperature t1, a second temperature t2, and a third temperature t3, and the multiple sensing voltages include a first temperature t1, a second temperature t2, and a third temperature t3, respectively.
  • a reference sensing voltage Vsenb1, a second reference sensing voltage Vsenb2, and a third reference sensing voltage Vsenb3, the plurality of threshold voltages include first reference thresholds corresponding to the first temperature t1, the second temperature t2, and the third temperature t3, respectively The voltage Vthb1, the second reference threshold voltage Vthb2, and the third reference threshold voltage Vthb3.
  • the first reference threshold voltage Vthb1, the second reference threshold voltage Vthb2, and the third reference threshold voltage Vthb3 are the threshold voltage of the driving transistor T3 at the first temperature t1, the threshold voltage at the second temperature t2, and the threshold voltage at the third temperature t2, respectively.
  • a plurality of sensing voltages are used when the threshold voltage of the driving transistor T3 is correctly compensated (also That is, the gate of the driving transistor T3 is applied with the compensated data voltage Vdc), and the sensing voltage at the corresponding temperature is obtained from the first electrode of the driving transistor T3.
  • the gate of the driving transistor T3 can be floated by turning off the first transistor T1, so that a constant current flows through the current of the driving transistor T3 and charges the capacitance C associated with the sensing line SENL.
  • the data voltages applied to the gate of the driving transistor T3 are GL+Vthb1, GL+Vthb2, and GL+Vthb3, respectively. Therefore, the first reference sensing The voltage Vsenb1, the second reference sensing voltage Vsenb2, and the third reference sensing voltage Vsenb3 are all sensing voltages obtained from the first pole of the driving transistor T3 when the threshold voltage of the driving transistor T3 is correctly compensated.
  • the first reference sensing voltage Vsenb1, the second reference sensing voltage Vsenb2, and the third reference sensing voltage Vsenb3 are all acquired at the first time period after the gate of the driving transistor T3 is applied with the compensated data voltage, that is, in the same After the gate of the driving transistor T3 is applied with the compensated data voltage, the same first duration is acquired.
  • multiple sensing voltages for example, the first reference sensing voltage Vsenb1, the second reference sensing voltage Vsenb2, and the third reference sensing voltage Vsenb3 and multiple threshold voltages may be obtained in advance before detecting the pixel circuit. (For example, obtained through testing) and stored in the temperature compensation look-up table, so that at least part of the data entries of the temperature compensation look-up table can be directly called (read) in step S20, and at least part of the data entries read can be used In obtaining the current threshold voltage Vth of the driving transistor T3.
  • the detection data voltage GL can be known in advance, and the temperature compensation look-up table can be constructed in advance. Therefore, based on the detection data voltage GL, the first sensing voltage Vsen1, and Obtaining the current threshold voltage Vth of the driving transistor T3 by the temperature compensation look-up table can reduce the time required for threshold voltage detection. Due to the short time required for threshold voltage detection, the detection of the threshold characteristics of the pixel circuit can be achieved during the boot period, thereby improving the compensation effect of the threshold voltage of the pixel circuit and improving the brightness uniformity of the display panel including the pixel circuit Sex and/or display effect.
  • the temperature compensation lookup table shown in Table 1 and other temperature compensation lookup tables provided by the embodiments of the present disclosure are not limited to include three data entries. According to actual application requirements, the temperature compensation lookup table may also include two data items. Entries, four data entries, ten data entries, one hundred data entries, or other applicable number of data entries. For example, when the temperature compensation look-up table includes many data entries (for example, it includes at least one hundred data entries), the current threshold voltage Vth of the driving transistor T3 obtained by the detection method of the pixel circuit described above will be more accurate.
  • the temperature compensation look-up table can be constructed based on the test result of the pixel circuit.
  • the method for constructing the temperature compensation look-up table can be referred to the subsequent embodiments, which will not be repeated here.
  • the inventor of the present application found through analyzing the test results of the pixel circuit that the sensing voltage and the threshold voltage at the above multiple temperatures can be approximately fitted to a straight line, and the straight line obtained by the fitting is shown in FIG. 5.
  • Figure 5 also shows the sensing voltage and the threshold voltage when the temperature is t0.
  • the sensing voltage and threshold voltage at multiple temperatures can be fitted by least square fitting or other applicable linear fitting methods.
  • the least squares fitting or other applicable linear fitting methods can refer to related linear fitting theories and algorithms, which will not be repeated here.
  • a straight line obtained based on linear fitting can obtain data entries at other temperatures, thereby reducing the test workload of constructing a temperature compensation lookup table. For example, based on a straight line obtained by linear fitting, data items corresponding to the fourth temperature between the first temperature and the second temperature and data items corresponding to the fifth temperature between the second temperature and the third temperature can be obtained. .
  • the sensing voltage and the threshold voltage at multiple temperatures can be fitted and a straight line can be obtained.
  • the sensing voltage and the threshold voltage at multiple temperatures can be fitted to obtain a straight line, which will not be repeated here.
  • the embodiments of the present disclosure are not limited thereto.
  • the part of the data points drawn based on multiple data entries corresponding to multiple temperatures can be evenly distributed on both sides of the fitted straight line and be close to the fitted straight line.
  • the temperature compensation look-up table includes a plurality of threshold voltages of the driving transistor T3 at a plurality of temperatures and a plurality of threshold voltages obtained by the driving transistor T3 obtained at a plurality of temperatures based on the first duration ⁇ t and the detection data voltage GL. Sense voltage.
  • step S20 obtaining the current threshold voltage Vth of the driving transistor T3 based on the detected data voltage GL, the first sensing voltage Vsen1, and the temperature compensation look-up table includes the following steps S210 and S220.
  • step S210 and step S220 may be executed sequentially.
  • Step S210 Obtain the target sensing voltage Vsenx of the driving transistor T3 based on the detected data voltage GL, the first sensing voltage Vsen1 and the temperature compensation look-up table.
  • Step S220 Obtain the current threshold voltage Vth of the driving transistor T3 based on the target sensing voltage Vsenx and the temperature compensation look-up table.
  • step S210 acquiring the target sensing voltage Vsenx of the driving transistor T3 based on the detected data voltage GL, the first sensing voltage Vsen1, and the temperature compensation look-up table includes: based on the variation coefficient ⁇ , the first reference sensing voltage Vsenb1, and detecting The data voltage GL and the first sensing voltage Vsen1 obtain the target sensing voltage Vsenx.
  • fitting can be performed according to the first reference sensing voltage Vsenb1, the second reference sensing voltage Vsenb2, the first reference threshold voltage Vthb1, and the second reference threshold voltage Vthb2 to obtain the variation coefficient ⁇ .
  • the variation coefficient ⁇ is obtained using the following expression (1).
  • the variation coefficient ⁇ can be obtained after the temperature compensation look-up table is constructed, before the detection method of the pixel circuit is executed, or during the execution of the detection method of the pixel circuit, and will not be repeated here.
  • the first reference sensing voltage Vsenb1 and the second reference sensing voltage Vsenb2 may be selected so that the first sensing voltage Vsen1 is located at the first Between the reference sensing voltage Vsenb1 and the second reference sensing voltage Vsenb2, the fitting effect can be improved, and thus the compensation effect of the pixel circuit and the display uniformity of the display panel and the display device including the pixel circuit can be improved.
  • acquiring the target sensing voltage Vsenx based on the variation coefficient ⁇ , the first reference sensing voltage Vsenb1, the detection data voltage GL, and the first sensing voltage Vsen1 includes obtaining the target sensing voltage Vsenx according to the first reference sensing voltage Vsenb1, the second reference sensing voltage Vsenb2,
  • the first reference threshold voltage Vthb1 and the second reference threshold voltage Vthb2 are linearly fitted to obtain the coefficient of variation ⁇ .
  • the target sensing voltage Vsenx is obtained using the following expression (2).
  • the target sensing voltage Vsenx and the first sensing voltage Vsen1 satisfy the following expression (4).
  • Vthx is the current threshold voltage Vth of the driving transistor T3 at the current temperature Tx
  • ⁇ _x is the current mobility of the driving transistor T3 at the current temperature Tx
  • Ids1 is the application of the first data voltage Vdata1 to the gate of the driving transistor T3 Later and before acquiring the first sensing voltage Vsen1, the current flowing through the driving transistor T3
  • Idsx is the current flowing after the second data voltage Vdata_x is applied to the gate of the driving transistor T3 and before the target sensing voltage Vsenx is acquired
  • the current of the drive transistor T3 (the hypothetical current used for formula derivation)
  • the second data voltage Vdata_x is equal to the sum of the detected data voltage GL and the current threshold voltage Vth of the drive transistor T3
  • ⁇ Vth is the threshold offset and is equal to the first The difference between the reference sensing voltage Vsenb1 and the current threshold voltage Vthx of the driving transistor T3 at the current temperature Tx.
  • the sensing voltage and the threshold voltage at multiple temperatures can be approximately fitted to a straight line, as shown in FIG. 6, the first reference sensing voltage Vsenb1, the second reference sensing voltage Vsenb2, and the first reference threshold voltage Vthb1 ,
  • the second reference threshold voltage Vthb2, the target sensing voltage Vsenx, and the current threshold voltage Vthx of the driving transistor T3 at the current temperature Tx satisfy the following expression (6).
  • Vsenb1 ⁇ GL-Vsenx ⁇ GL 2 ⁇ Vsenb1 ⁇ Vsenx-2 ⁇ (Vsenx) 2 .
  • step S220 obtaining the current threshold voltage Vth of the driving transistor T3 based on the target sensing voltage Vsenx and the temperature compensation look-up table includes the following steps S221 and S222.
  • step S221 and step S222 may be executed sequentially.
  • Step S221 When the plurality of sensing voltages include the target sensing voltage Vsenx, the threshold voltage corresponding to the target sensing voltage Vsenx in the temperature compensation look-up table is used as the current threshold voltage Vth of the driving transistor T3.
  • Step S222 In the case that the plurality of sensing voltages do not include the target sensing voltage Vsenx, obtain the driving transistor T3 based on the variation coefficient ⁇ , the first reference sensing voltage Vsenb1, the first reference threshold voltage Vthb1, and the target sensing voltage Vsenx.
  • the current threshold voltage Vth In the case that the plurality of sensing voltages do not include the target sensing voltage Vsenx, obtain the driving transistor T3 based on the variation coefficient ⁇ , the first reference sensing voltage Vsenb1, the first reference threshold voltage Vthb1, and the target sensing voltage Vsenx.
  • the current threshold voltage Vth In the case that the plurality of sensing voltages do not include the target sensing voltage Vsenx, obtain the driving transistor T3 based on the variation coefficient ⁇ , the first reference sensing voltage Vsenb1, the first reference threshold voltage Vthb1, and the target sensing voltage Vsenx.
  • step S221 in the case where the plurality of sensing voltages include the target sensing voltage Vsenx, first, the data entry where the target sensing voltage Vsenx is located can be found, and then the data entry where the target sensing voltage Vsenx is located
  • the reference threshold voltage that is, the threshold voltage corresponding to the target sensing voltage Vsenx in the temperature compensation lookup table
  • the current threshold voltage Vth is used as the current threshold voltage Vth of the driving transistor T3, thereby obtaining the driving transistor T3 based on the target sensing voltage Vsenx and the temperature compensation lookup table The current threshold voltage Vth.
  • the following takes the target sensing voltage Vsenx equal to the third reference sensing voltage Vsenb3 as an example for specific description.
  • the target sensing voltage Vsenx is equal to the third reference sensing voltage Vsenb3, firstly, the data entry where the third reference sensing voltage Vsenb3 is located can be found; then, the data entry where the third reference sensing voltage Vsenb3 is located
  • the third reference threshold voltage Vthb3 serves as the current threshold voltage Vth of the driving transistor T3, thereby obtaining the current threshold voltage Vth of the driving transistor T3 based on the target sensing voltage Vsenx and the temperature compensation look-up table.
  • step S222 in a case where the plurality of sensing voltages do not include the target sensing voltage Vsenx, the current threshold voltage Vth of the driving transistor T3 is obtained using the following expression (3):
  • Vth ⁇ (Vsenx-Vsenb1)+Vthb1, (3).
  • temperature compensation look-up table is not limited to be implemented as the temperature compensation look-up table shown in Table 1, and can also be implemented as the temperature compensation look-up table shown in Table 2 or Table 3 according to actual application requirements.
  • the temperature compensation look-up table may also include multiple mobilities of the driving transistor T3 at multiple temperatures.
  • the plurality of mobility of the driving transistor T3 at a plurality of temperatures includes a first mobility ⁇ 1 corresponding to the first temperature t1, a second mobility ⁇ 2 corresponding to the second temperature t2, and a third mobility ⁇ 2 corresponding to the third temperature t3.
  • the mobility of the driving transistor T3 is positively correlated with the temperature of the driving transistor T3.
  • the detection method of the pixel circuit further includes the following step S30.
  • Step S30 Obtain the current mobility of the driving transistor T3 based on the target sensing voltage Vsenx and the temperature compensation look-up table.
  • the driving transistor T3 may be compensated based on the acquired mobility, so that the gate of the driving transistor T3 receives the same detection data voltage GL and the threshold voltage of the driving transistor T3
  • the current flowing through the driving transistor T3 is a constant value (substantially a constant value, or the amount of change can be ignored), which can further improve the display panel and display using the detection method of the pixel circuit
  • the brightness uniformity and/or display effect of the device can be compensated based on the acquired mobility, so that the gate of the driving transistor T3 receives the same detection data voltage GL and the threshold voltage of the driving transistor T3
  • the mobility can be obtained quickly, thereby not only reducing the detection time of the pixel circuit, but also The problem of mobility deviation caused by the change of the threshold voltage in the process of sensing the mobility is avoided, thereby further improving the display effect of the display panel and the display device.
  • the mobility corresponding to the target sensing voltage Vsenx in the temperature compensation look-up table may be used as the current mobility of the driving transistor T3.
  • the multiple sensing voltages include the target sensing voltage Vsenx
  • the data entry where the target sensing voltage Vsenx is located can be found, and then the mobility (that is, the mobility in the data entry where the target sensing voltage Vsenx is located)
  • the mobility corresponding to the target sensing voltage Vsenx in the temperature compensation look-up table is used as the current mobility of the driving transistor T3, so that the current mobility of the driving transistor T3 can be obtained based on the target sensing voltage Vsenx and the temperature compensation look-up table.
  • the mobility corresponding to the sensing voltage closest to the target sensing voltage Vsenx in the temperature compensation look-up table may be used as the current mobility of the driving transistor T3 .
  • the average value of the mobility of the two sensing voltages that are next to the target sensing voltage Vsenx in the temperature compensation look-up table can be used as the driving transistor The current mobility of T3.
  • step S30 may be executed after step S20 is executed.
  • step S30 may also be performed simultaneously with step S20 (for example, step S220).
  • the current threshold voltage Vth of the driving transistor T3 may be obtained while obtaining the current threshold voltage Vth of the driving transistor T3 based on the target sensing voltage Vsenx and the temperature compensation look-up table. The current mobility can further reduce the time required for pixel circuit detection.
  • the temperature compensation look-up table may also be as shown in Table 3 below, that is, the temperature compensation look-up table further includes multiple compensation coefficients for driving the crystal at multiple temperatures.
  • the multiple compensation coefficients of the driving crystal at multiple temperatures include: a first compensation coefficient Kc1 corresponding to the first temperature t1, a second compensation coefficient Kc2 corresponding to the second temperature t2, and a third compensation coefficient corresponding to the third temperature t3 Compensation coefficient Kc3.
  • multiple compensation coefficients are used to compensate the mobility of the driving transistor T3 in the display.
  • the current threshold voltage Vth of the driving transistor T3 can be obtained based on the detected data voltage GL, the first sensing voltage Vsen1 and the temperature compensation look-up table, This can reduce the time required for threshold voltage detection. Due to the short time required for threshold voltage detection, the detection of the threshold characteristics of the pixel circuit can be achieved during the boot period, thereby improving the compensation effect of the threshold voltage of the pixel circuit and improving the brightness uniformity of the display panel including the pixel circuit Sex and/or display effect.
  • the transistors used in the foregoing embodiments and other embodiments of the present disclosure may be thin film transistors or field effect transistors or other switching devices with the same characteristics.
  • the source and drain of the transistor used here may be symmetrical in structure, so the source and drain may be indistinguishable in physical structure.
  • one pole is directly described as the first pole and the other pole is the second pole.
  • the first pole and the second pole of some transistors can be interchanged as needed.
  • the first electrode of the transistor of the embodiment of the present disclosure may be a source electrode, and the second electrode may be a drain electrode; or, the first electrode of the transistor may be a drain electrode and the second electrode may be a source electrode.
  • the detection method of the pixel circuit provided by at least one embodiment of the present disclosure can not only be applied to the 3T1C pixel circuit shown in FIG. 3B and the 3T2C pixel circuit shown in FIG. 3C, but also can be applied to 4T1C pixel circuits and 4T1C pixel circuits. In the pixel circuit and the pixel circuit with other applicable structures, it will not be repeated here.
  • the detection method of the pixel circuit provided by the embodiment of the present disclosure can reduce the time required for the threshold detection of the pixel circuit, so that the detection of the threshold characteristic of the pixel circuit can be realized during the startup period, thereby improving the threshold compensation effect and The brightness uniformity and/or display effect of the display panel including the pixel circuit.
  • At least one embodiment of the present disclosure provides a method for constructing a temperature compensation look-up table.
  • the temperature compensation look-up table is used for pixel circuit compensation and includes a plurality of data entries corresponding to a plurality of temperatures.
  • the pixel circuit includes a driving transistor. Any one of these temperatures is used as the set temperature, and the construction method includes the following steps S401 to S403.
  • Step S401 Keep the pixel circuit at the set temperature.
  • Step S402 Obtain the threshold voltage of the driving transistor T3 of the pixel circuit at a set temperature
  • Step S403 Apply a test data voltage to the gate of the driving transistor T3, and obtain a sensing voltage at the set temperature at the first electrode of the driving transistor for the first time period after the test data voltage is applied and before the driving transistor is turned off.
  • the set temperature may be the first temperature t1, the second temperature t2, the third temperature t3, or other temperatures in the temperature compensation lookup table.
  • the data items for setting the temperature include the threshold voltage at the setting temperature and the sensing voltage at the setting temperature.
  • the temperature compensation look-up table obtained by applying the above construction method may be the temperature shown in Table 1. Compensation lookup table.
  • step S401 first, the pixel circuit (for example, a display panel including the pixel circuit) can be placed in a thermostat (for example, a thermostat); second, the working temperature of the thermostat can be adjusted, for example, through Adjust the working temperature of the thermostat device so that the working temperature of the thermostat device is equal to the set temperature.
  • a thermostat for example, a thermostat
  • a predetermined period of time for example, 5 minutes, 30 minutes or other applicable time
  • step S402 can be performed after step S401 is performed to improve the temperature stability of the driving transistor T3 and the accuracy of the data entries in the temperature compensation look-up table.
  • step S402 the method for obtaining the threshold voltage of the driving transistor T3 of the pixel circuit at the set temperature can be selected according to actual application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the display panel including the pixel circuit can be made to be in the black screen stage (that is, after the power-on of the display panel and before the normal display of the display panel), the driving described in FIGS. 1C and 1D can be used.
  • the threshold detection method of the transistor T3 obtains the threshold voltage of the driving transistor T3 of the pixel circuit at the set temperature (for example, the first reference threshold voltage Vthb1 at the first temperature t1, the second reference threshold voltage Vthb2 at the second temperature t2, and The third reference threshold voltage Vthb3 at the third temperature t3) will not be repeated here.
  • the test data voltage is equal to the sum of the detected data voltage GL and the threshold voltage at the set temperature.
  • the current flowing through the driving transistor T3 is a constant current.
  • the method of making the current of the driving transistor T3 a constant current can be referred to the example shown in FIG. 4B, which will not be repeated here.
  • a display panel including the pixel circuit may include a plurality of display periods, each display period is used to display a frame of image, and the length of each display period is equal to the first pixel point of the frame of image until the frame of image is displayed
  • the time required for the last pixel point; a blanking time (or blanking time) can be set between adjacent display periods.
  • step S403 may be performed in the blank time.
  • step S403 may also be executed in the black screen stage at startup.
  • step S402 and step S403 can be set according to actual application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • step S403 may be executed after step S402 is executed.
  • the temperature entry at the set temperature may be obtained based on the set temperature recorded in step 1, the threshold voltage at the set temperature acquired in step 2, and the sense voltage at the set temperature acquired in step 3.
  • the operating temperature of the thermostat can be adjusted to obtain another temperature (for example, the second temperature t2) using the above steps S401-S403. ) Under the data entry.
  • the data items for setting the temperature include the threshold voltage at the setting temperature, the sensing voltage at the setting temperature, and the mobility at the setting temperature; in this case, the construction method includes the above steps S401-step S403 and the following Steps S404 and S405; and the temperature compensation look-up table obtained by applying the above construction method may be the temperature compensation look-up table shown in Table 2.
  • Step S404 Apply the compensated data voltage to the gate of the driving transistor T3, and obtain the current flowing through the driving transistor T3.
  • Step S405 Obtain the mobility of the driving transistor T3 at the set temperature based on the current flowing through the driving transistor T3 and the detected data voltage GL.
  • the compensated data voltage Vdc is equal to the sum of the detected data voltage GL and the threshold voltage of the driving transistor T3 at the set temperature.
  • step S404 may be performed during the display period of the display panel including the pixel circuit.
  • the current Ids flowing through the driving transistor T3 can be obtained by obtaining the brightness of light emitted by the light-emitting element EL driven by the above-mentioned pixel circuit.
  • step S404 may be performed after performing step S401 to step S403, and step S405 may be performed after performing step S404.
  • the data items for setting temperature include the threshold voltage at the setting temperature, the sensing voltage at the setting temperature, the mobility at the setting temperature, and the compensation coefficient at the setting temperature; in this case, the construction method includes the above Step S401-Step S404 and the following step S406; and the temperature compensation look-up table obtained by applying the above construction method may be the temperature compensation look-up table shown in Table 3.
  • Step S406 Obtain the mobility compensation coefficient of the driving transistor T3 at the set temperature based on the mobility of the driving transistor T3 at the set temperature.
  • the mobility compensation coefficient of the drive transistor T3 at the set temperature is inversely proportional to the mobility of the drive transistor T3 at the set temperature.
  • the product of the mobility compensation coefficient of the drive transistor T3 at the set temperature and the mobility of the drive transistor T3 at the set temperature is a constant value.
  • the product of the mobility compensation coefficient Kc1 of the driving transistor T3 at the first temperature t1 and the mobility ⁇ 1 of the driving transistor T3 at the first temperature t1 is equal to the mobility compensation coefficient Kc2 of the driving transistor T3 at the second temperature t2 and The product of the mobility ⁇ 2 of the driving transistor T3 at the second temperature t2.
  • the method for constructing temperature compensation look-up tables can be applied to each pixel circuit on the display panel to obtain the temperature compensation look-up table for each pixel circuit, which can be based on the The temperature compensation look-up table compensates each pixel circuit on the display panel (for example, line-by-line compensation).
  • At least one embodiment of the present disclosure further provides a method for driving a display panel.
  • the display panel includes a pixel circuit.
  • the driving method includes: executing the pixel circuit detection method provided in any embodiment of the present disclosure on the pixel circuit for use in At least the current threshold voltage of the driving transistor of the pixel circuit is obtained.
  • a display panel includes a plurality of pixel units, and each pixel unit may include a pixel circuit.
  • the pixel units included in the display panel may be arranged in an array, for example, and the pixel circuits may be arranged in an array, for example.
  • the pixel circuit included in the display panel may be the pixel circuit shown in FIG. 3A, the pixel circuit shown in FIG. 3B, the pixel circuit shown in FIG. 3C, or other applicable pixel circuits.
  • FIG. 7 is an exemplary flowchart of a driving method of a display panel provided by at least one embodiment of the present disclosure.
  • the driving method of the display panel provided by at least one embodiment of the present disclosure includes the following step S510.
  • Step S510 Perform the detection method of the pixel circuit provided in any embodiment of the present disclosure on the pixel circuit to obtain the current threshold voltage of the driving transistor of the pixel circuit.
  • the detection method of the pixel circuit can refer to the embodiment shown in FIG. 2, which will not be repeated here.
  • the driving method of the display panel provided by at least one embodiment of the present disclosure further includes step S520.
  • Step S520 Compensate the data signal to be displayed of the pixel circuit at least according to the obtained current threshold voltage, and use the compensated data signal to drive the pixel circuit.
  • the time required for threshold voltage detection can be reduced, and therefore the threshold value of the pixel circuit can be realized during the booting period.
  • the detection of the characteristics therefore improves the compensation effect of the threshold voltage of the pixel circuit and the brightness uniformity and/or display effect of the display panel including the pixel circuit.
  • the temperature compensation look-up table also includes multiple mobilities of the drive transistor at multiple temperatures; in the case where the temperature compensation look-up table also includes multiple mobilities of the drive transistor at multiple temperatures, the pixel circuit
  • obtaining the current mobility of the driving transistor based on the target sensing voltage and the temperature compensation look-up table, and at least compensating the data signal to be displayed of the pixel circuit according to the obtained current threshold voltage includes: The current threshold voltage and the current mobility of the pixel circuit compensate the data signal to be displayed.
  • the data signal of the pixel circuit to be displayed can be performed according to the obtained current threshold voltage. Compensation, and then the obtained current mobility can be used to compensate the data signal of the pixel circuit to be displayed.
  • the current threshold voltage and current mobility of the driving transistor T3 can be quickly obtained. This can not only reduce the detection time of the pixel circuit, but also avoid the problem of mobility deviation caused by the threshold voltage change in the process of sensing the mobility, thereby further improving the display effect of the display panel and the display device.
  • the driving method of the display panel will be exemplarily described below in combination with two examples (compensating only the current threshold voltage of the driving transistor).
  • the current threshold voltages of the driving transistors of the pixel circuits can be detected row by row, and then, after the current threshold voltages of the driving transistors of all the pixel circuits of the display panel are obtained, the data signals to be displayed of the pixel circuits ( For example, the data voltage to be displayed is compensated, and the compensated data signal (for example, the compensated data voltage) is used to drive the pixel circuit; thus, the display panel can be driven to display a frame of image.
  • detecting the current threshold voltage of the driving transistor of the pixel circuit row by row includes the following steps: first, the pixel circuit detection method provided by any embodiment of the present disclosure can be executed on the pixel circuit located in the first row, and the pixel circuit located in the first row can be obtained. The current threshold voltage of the driving transistor of the pixel circuit in the second row; then, the detection method of the pixel circuit provided in any embodiment of the present disclosure can be performed on the pixel circuit in the second row, and the driving transistor of the pixel circuit in the second row can be obtained Next, pixel circuits located in other rows of the display panel can be detected row by row until the current threshold voltages of the driving transistors of all pixel circuits of the display panel are obtained.
  • the compensated data voltage is equal to the sum of the data voltage to be displayed and the current threshold voltage of the driving transistor.
  • using the compensated data signal (for example, the compensated data voltage) to drive the pixel circuit includes: applying the compensated data voltage to the gate of the driving transistor, so that the pixel circuit can be controlled at least according to the current threshold voltage obtained.
  • the data signal to be displayed is compensated, and the compensated data signal is used to drive the pixel circuit.
  • the data signal to be displayed for each pixel circuit in the row can be compensated, and the compensated The data signal drives each pixel circuit located in the row.
  • the method for driving a display panel provided by at least one embodiment of the present disclosure can reduce the time required for pixel circuit detection, so that the pixel circuit of the display panel can be driven during the startup period (for example, between adjacent display periods).
  • the detection of the threshold voltage of the transistor and/or the detection of the mobility can thereby realize real-time compensation, thereby improving the compensation effect of the display panel applying the driving method, as well as the brightness uniformity and/or display effect of the display panel.
  • At least one embodiment of the present disclosure further provides a display panel including a pixel circuit and a controller, the pixel circuit includes a driving transistor; the controller is configured to perform the following detection method: applying a first detection method to the gate of the driving transistor The data voltage obtains the first sensing voltage at the first pole of the driving transistor for the first time period after the first data voltage is applied and before the driving transistor is turned off.
  • the first data voltage is equal to the detection data voltage and the driving The sum of the first reference threshold voltage of the transistor; the current threshold voltage of the driving transistor is obtained based on the detected data voltage, the first sensing voltage, and the temperature compensation look-up table.
  • the temperature compensation look-up table includes the driving transistor at multiple temperatures Multiple threshold voltages and multiple sensing voltages acquired at multiple temperatures based on the detected data voltage.
  • FIG. 8 is an exemplary block diagram of a display panel provided by at least one embodiment of the present disclosure.
  • the display panel 10 includes a pixel circuit and a controller 120.
  • the pixel circuit may be the pixel circuit shown in FIG. 3A, the pixel circuit shown in FIG. 3B, the pixel circuit shown in FIG. 3C, or other applicable pixel circuits.
  • the display panel provided by at least one embodiment of the present disclosure will be described in detail.
  • the implementation of the present disclosure Examples are not limited to this.
  • FIG. 9 shows an exemplary structure diagram of the display panel shown in FIG. 8.
  • the display panel includes a pixel circuit, an analog-to-digital converter ADC, a sensing line, and a controller 120.
  • the display panel has a display area and a peripheral area set around the display area; the display area of the display panel includes multiple
  • Each pixel unit may include a pixel circuit.
  • the pixel units included in the display panel may be arranged in an array, for example, and the pixel circuits may be arranged in an array accordingly; the peripheral area of the display panel located outside the display area is arranged Controller 120.
  • the pixel circuit includes a driving transistor including a gate and a first pole, and the sensing line is electrically connected to the first pole of the driving transistor.
  • the controller 120 is configured to execute a detection method of a pixel circuit provided by any embodiment of the present disclosure.
  • a detection method of a pixel circuit provided by any embodiment of the present disclosure.
  • FIG. 2 For example, for the specific implementation of the detection method in at least one embodiment of the present disclosure, reference may be made to the embodiment shown in FIG. 2, which will not be repeated here.
  • the display panel may further include a data driving circuit 130, a detection circuit 140, and a scan driving circuit (not shown) that are also provided in the peripheral area.
  • the controller 120 is also configured to control the data driving circuit 130 and the detection circuit 140.
  • the data driving circuit 130 is configured to provide the first data voltage and the compensated data voltage at different times according to actual application requirements.
  • the scan driving circuit is used to provide scan signals to the first transistor and the second transistor to control whether the first transistor and the second transistor are turned on.
  • the pixel circuit is also configured to receive the first data voltage and apply the first data voltage to the gate of the driving transistor.
  • the detection circuit 140 is configured to read the first sensing voltage from the sensing line SENL.
  • the detection circuit 140 may be a sampling circuit, the sampling circuit may provide a sampling signal SAMP, and may obtain the first sensing voltage from the first pole of the driving transistor T3 via the sensing switch transistor T2.
  • the pixel circuit further includes a second transistor T2, and the light emitting element EL may be, for example, an organic light emitting diode, but the embodiment of the present disclosure is not limited thereto.
  • the second electrode and the first electrode of the driving transistor may be configured to be respectively connected to the first power supply voltage terminal VDD and the first electrode of the light emitting element EL, and the second electrode of the light emitting element EL is connected to the second power supply voltage terminal VSS.
  • the first electrode of the second transistor T2 is connected to the first electrode of the driving transistor, and the second electrode of the second transistor T2 is electrically connected to the detection circuit 140.
  • the pixel circuit further includes a first transistor T1 and a storage capacitor Cst.
  • the first transistor T1 is configured to obtain a data signal (for example, a first data voltage) from the data driving circuit 130, write the data signal to the gate of the driving transistor, and store The capacitor Cst stores the data signal.
  • the pixel circuit may further include a data line DL, and the first electrode of the first transistor T1 is connected to the data line DL.
  • the controller 120 may also include a processor (not shown in the figure) and a memory (not shown in the figure).
  • the memory includes executable code and data required or generated to run the code.
  • the processor runs the executable code. To perform the detection method provided in any embodiment of the present disclosure.
  • the processor is, for example, a central processing unit (CPU) or another form of processing unit with data processing capabilities and/or instruction execution capabilities.
  • the processor can be implemented as a general-purpose processor, and also a single-chip microcomputer or micro-processing unit. Device, digital signal processor, dedicated image processing chip, or field programmable logic array, etc.
  • the memory may include, for example, volatile memory and/or nonvolatile memory, and may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • the memory can be implemented as one or more computer program products, and the computer program products can include various forms of computer-readable storage media, and one or more executables can be stored on the computer-readable storage medium.
  • the processor can run the program instructions to execute the detection method of the pixel circuit provided by any embodiment of the present disclosure, and thereby can obtain the current threshold voltage of the driving transistor of the pixel circuit included in the display panel, so as to realize the display panel Threshold compensation function.
  • the memory may also store various other application programs and various data, such as the target sensing voltage of each pixel circuit, and various data used and/or generated by the application program.
  • the display panel provided by at least one embodiment of the present disclosure can reduce the time required to detect the threshold voltage of the driving transistor, so that the threshold voltage of the driving transistor can be detected during the startup period (for example, between adjacent display periods). Therefore, real-time detection and real-time compensation can be performed during the startup of the display panel, thereby improving the compensation effect of the display panel and the brightness uniformity and/or display effect of the display panel.
  • At least one embodiment of the present disclosure also provides a display device including a pixel circuit and a controller, and the pixel circuit includes a driving transistor.
  • the controller is configured to perform the following detection method: apply a first data voltage to the gate of the driving transistor, and obtain the first data voltage at the first pole of the driving transistor for a first time period after the first data voltage is applied and before the driving transistor is turned off. Sensing voltage.
  • the first data voltage is equal to the sum of the detected data voltage and the first reference threshold voltage of the driving transistor; the current threshold of the driving transistor is obtained based on the detected data voltage, the first sensing voltage and the temperature compensation look-up table Voltage, where the temperature compensation look-up table includes multiple threshold voltages of the driving transistor at multiple temperatures and multiple sensing voltages acquired at multiple temperatures based on the detected data voltage.
  • FIG. 10 is an exemplary block diagram of a display device provided by at least one embodiment of the present disclosure.
  • the display device 20 includes a pixel circuit and a controller.
  • the specific settings of the pixel circuit and the controller can refer to the embodiment of the display panel shown in FIG. 8, which will not be repeated here.
  • FIG. 11 is a schematic block diagram of another display device provided by at least one embodiment of the present disclosure.
  • the display device 60 includes a display screen area 6000, a gate driver 6010, a timing controller 6020, and a data driver 6030.
  • the display screen area 6000 includes a plurality of pixel units P defined according to the intersection of a plurality of scan lines GL and a plurality of data lines DL, and at least one pixel unit P includes a pixel circuit provided in any embodiment of the present disclosure.
  • the gate driver 6010 includes a plurality of shift register units connected in cascade, and is used to drive a plurality of scan lines GL; the data driver 6030 is used to drive a plurality of data lines DL.
  • the timing controller 6020 is used to process the image data RGB input from the outside of the display device 60, and is used to provide the processed image data RGB to the data driver 6030.
  • the timing controller 6020 is also used to output a gate scan control signal GCS (Gate Control Signal) and a data control signal DCS (Data Control Signal) to the gate driver 6010 and the data driver 6030, respectively, to control the gate driver 6010 and the data driver respectively 6030.
  • GCS Gate Control Signal
  • DCS Data Control Signal
  • the data control signal DCS is also called the source control signal SCS (Source Control Signal).
  • the timing controller 6020 is configured to refer to the auxiliary clock signal ACLK provided by the data driver 6030 to receive the auxiliary data AData output by the data driver 6030, and to compensate the data signal to be displayed based on the auxiliary data AData (for example, through calculation and conversion And compensation algorithms), and then provide the compensated data signal to the data driver 6030.
  • the data driver 6030 may generate auxiliary data AData based on the current threshold voltage and/or current mobility of the driving transistor acquired by the detection method of the pixel circuit.
  • the current threshold voltage and/or current mobility of the driving transistor can be obtained by electrical and/or optical detection methods, which will not be repeated here.
  • multiple scan lines GL are correspondingly connected to the pixel units P arranged in multiple rows (for example, correspondingly connected to the control terminal G1 of the pixel circuit in the pixel unit P).
  • the output terminals Output of the shift register units of each level in the gate driving circuit 6010 sequentially output signals to the multiple scanning lines GaL to scan the multiple rows of pixel units P in the display screen area 6000 line by line.
  • the data driver 6030 converts the digital image data RGB provided from the timing controller 6020 into data signals according to a plurality of data control signals DCS provided by the timing controller 6020.
  • the data driver 6030 provides data signals to a plurality of data lines DL.
  • the timing controller 6020 processes externally input image data RGB so that the processed image data matches the size and resolution of the display screen area 6000, and then the timing controller 6020 provides the processed image data to the data driver 6030.
  • the timing controller 6020 uses synchronization signals or timing control signals input from the outside of the display device 60 (for example, the dot clock DCLK, the data enable signal DE, the horizontal synchronization signal Hsync, and the vertical synchronization signal Vsync.
  • the horizontal synchronization signal Hsync And the vertical synchronization signal Vsync is represented by SYNC) to generate multiple gate scan control signals GCS and multiple data control signals DCS.
  • the gate driver 6010 and the data driver 6030 may be implemented as semiconductor chips.
  • the display device 60 further includes a first printed circuit board X-PCB (not shown in the figure), and the first printed circuit board X-PCB is used to connect the data driver 6030.
  • each display device 60 may include two first printed circuit boards X-PCB.
  • the timing controller 6020 may be connected to the first printed circuit board X-PCB via a flexible flat cable (FFC).
  • FFC flexible flat cable
  • the first printed circuit board X-PCB and the display screen area may be connected to each other through a plurality of Inter Integrated Circuit Bus (IC bus).
  • IC bus Inter Integrated Circuit Bus
  • the display device 60 further includes a second printed circuit board Y-PCB (not shown in the figure), and the second printed circuit board Y-PCB is used to connect the gate driving circuit 6010.
  • a gate on array can be used to replace the gate driving circuit 6010. In this case, the display device 60 does not need to be provided with a second printed circuit board Y-PCB.
  • the display device may further include a second controller (not shown in FIG. 11), and the second controller is configured to execute the pixel circuit detection method provided by any embodiment of the present disclosure or the detection method provided by any embodiment of the present disclosure.
  • the driving method of the display panel For example, for the specific implementation of the detection method of the pixel circuit provided by at least one embodiment of the present disclosure, refer to the embodiment shown in FIG. 2, and for the specific implementation of the method for driving the display panel provided by at least one embodiment of the present disclosure, refer to The embodiments shown in FIGS. 7-9 are not repeated here.
  • the function of the second controller may be implemented using the timing controller 6020.

Abstract

公开了一种像素电路的检测方法、显示面板的驱动方法、显示装置和温度补偿查找表的构建方法。像素电路包括驱动晶体管,像素电路检测方法包括:向驱动晶体管的栅极施加第一数据电压,在施加第一数据电压后的第一时长且在驱动晶体管截止之前,在驱动晶体管的第一极获取第一感测电压(S10),其中,第一数据电压等于检测数据电压与驱动晶体管的第一基准阈值电压之和;基于检测数据电压、第一感测电压以及温度补偿查找表获取驱动晶体管的当前阈值电压(S20)。温度补偿查找表包括驱动晶体管在多个温度下的多个阈值电压以及基于第一时长和检测数据电压在多个温度下获取的多个感测电压。该像素电路的检测方法、显示面板的驱动方法、显示装置和温度补偿查找表的构建方法可以减小阈值电压检测所需时间。

Description

检测方法、驱动方法、显示装置和补偿查找表的构建方法
对相关申请的交叉参考
本申请要求于2019年4月10日递交的中国专利申请第201910285024.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种像素电路的检测方法、显示面板的驱动方法、显示装置和温度补偿查找表的构建方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示器件具有视角宽、对比度高、响应速度快、亮度高、发光效率高等特点。并且,相比于无机发光显示器件,有机发光二极管显示器件具有更高的发光亮度、更低的驱动电压等优势。由于具有上述特点和优势,有机发光二极管(OLED)显示器件逐渐受到人们的广泛关注并且可以适用于手机、显示器、笔记本电脑、数码相机、仪器仪表等具有显示功能的装置。
发明内容
本公开的至少一个实施例提供了一种像素电路的检测方法,所述像素电路包括驱动晶体管,所述方法包括:向所述驱动晶体管的栅极施加第一数据电压,在施加所述第一数据电压后的第一时长且在所述驱动晶体管截止之前,在所述驱动晶体管的第一极获取第一感测电压,其中,所述第一数据电压等于检测数据电压与所述驱动晶体管的第一基准阈值电压之和;基于所述检测数据电压、所述第一感测电压以及温度补偿查找表获取所述驱动晶体管的当前阈值电压。所述温度补偿查找表包括所述驱动晶体管在多个温度下的多个阈值电压以及基于所述第一时长和所述检测数据电压在所述多个温度下获取的多个感测电压。
本公开的至少一个实施例还提供了一种显示面板的驱动方法,所述显示面板包括像素电路,所述驱动方法包括:对所述像素电路执行本公开的任一实施例提供的像素电路的检测方法,以用于至少获得所述像素电路的驱动晶体管的当前阈值电压。
本公开的至少一个实施例还提供了一种显示装置,其包括像素电路和控制器,所述像素电路包括驱动晶体管。所述控制器配置为执行如下的检测方法:向所述驱动晶体管的栅极施加第一数据电压,在施加所述第一数据电压后的第一时长且在所述驱动晶体管截止之前,在所述驱动晶体管的第一极获取第一感测电压,在该步骤中,所述第一数据电压等于检测数据电压与所述驱动晶体管的第一基准阈值电压之和;基于所述检测数据电压、所述第一感测电压以及温度补偿查找表获取所述驱动晶体管的当前阈值电压,其中,所述温度补偿查找表包括所述驱动晶体管在多个温度下的多个阈值电压以及基于所述检测数据电压在所述多个温度下获取的多个感测电压。
本公开的至少一个实施例还提供了一种温度补偿查找表的构建方法,所述温度补偿查找表用于像素电路补偿且包括对应于多个温度的多个数据条目,所述像素电路包括驱动晶体管,将所述多个温度中的任一温度作为设置温度,所述构建方法包括:使得所述像素电路保持在所述设置温度;获取所述像素电路的驱动晶体管在所述设置温度下的阈值电压;向所述驱动晶体管的栅极施加测试数据电压,在施加所述测试数据电压后的第一时长且在所述驱动晶体管截止之前,在所述驱动晶体管的第一极获取所述设置温度下的感测电压,在该步骤中,所述测试数据电压等于检测数据电压与所述设置温度下的阈值电压之和,且所述设置温度的数据条目包括所述设置温度下的阈值电压和所述设置温度下的感测电压。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A是一种像素电路的示意图;
图1B是另一种像素电路的示意图;
图1C是再一种像素电路的示意图;
图1D是一种感测电压随时间变化的曲线图;
图2是本公开至少一个实施例提供的像素电路的检测方法的示例性流程图;
图3A是本公开的至少一个实施例提供的一种像素电路的示意图;
图3B是图3A所示的像素电路的等效电路;
图3C是本公开的至少一个实施例提供的另一种像素电路的示意图;
图4A是图3A-图3C的所示的像素电路的局部电路;
图4B是本公开的至少一个实施例提供的驱动晶体管的栅极的电压和驱动晶体管的第一极的电压随时间的变化曲线图;
图5是对本公开的至少一个实施例中多个温度下的感测电压和阈值电压拟合获得的直线的一种示意图;
图6是对本公开的至少一个实施例中多个温度下的感测电压和阈值电压拟合获得的直线的另一种示意图;
图7是本公开至少一个实施例提供的显示面板的驱动方法的示例性流程图;
图8是本公开至少一个实施例提供的显示面板的示例性框图;
图9是图8所示的显示面板的示例性结构图;
图10是本公开至少一个实施例提供的显示装置的示例性框图;以及
图11是本公开至少一个实施例提供的显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词 前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
有机发光二极管(OLED)显示面板中的像素电路一般采用矩阵驱动方式。根据每个像素单元中是否引入开关元器件,OLED显示面板可分为有源矩阵(Active Matrix)驱动式和无源矩阵(Passive Matrix)驱动式。AMOLED(也即,有源矩阵驱动式OLED)显示面板在每一个像素的像素电路中都集成了薄膜晶体管和存储电容,通过控制薄膜晶体管和存储电容,可以控制流过OLED的电流,从而使OLED根据需要发光。
AMOLED显示面板中使用的基础像素电路通常为2T1C像素电路,即利用两个薄膜晶体管(Thin-film transistor,TFT)和一个存储电容Cst来驱动OLED发光的像素电路。图1A和图1B示出了两种2T1C像素电路的示意图。
如图1A所示,一种2T1C像素电路包括开关晶体管T0、驱动晶体管N0以及存储电容Cst。例如,该开关晶体管T0的栅极连接扫描线(图中未示出)以接收扫描信号Scan1;例如,该开关晶体管T0的源极连接到数据线(图中未示出)以接收数据信号Vdata;该开关晶体管T0的漏极连接到驱动晶体管N0的栅极;驱动晶体管N0的源极连接到第一电压端以接收第一电压Vdd,驱动晶体管N0的漏极连接到OLED的正极端;存储电容Cst的一端连接到开关晶体管T0的漏极以及驱动晶体管N0的栅极,另一端连接到驱动晶体管N0的源极以及第一电压端;OLED的负极端连接到第二电压端以接收第二电压Vss。例如,第一电压Vdd的电压值大于第二电压Vss的电压值。该2T1C像素电路使用两个TFT和存储电容Cst来控制包括该像素电路的像素单元的灰阶。当扫描信号Scan1(经由扫描线施加)开启开关晶体管T0时,经由数据线送入的数据信号Vdata(数据驱动电路提供)将经由开关晶体管T0对存储电容Cst充电,由此数据信号Vdata可存储在存储电容Cst中,且该存储在存储电容Cst中的数据信号Vdata可以控制驱动晶体管N0的导通程度,由此可以控制流过驱动晶体管N0的电流(用于驱动OLED发光)的强度,此电流的强度决定包括该像素电路的像素单元的灰阶。在图1A所示的2T1C像素电路中,开关晶体管T0为N型晶体管而驱动晶体管N0为P型晶体管。
如图1B所示,另一种2T1C像素电路也包括开关晶体管T0、驱动晶体管N0以及存储电容Cst,但是其连接方式略有改变,且驱动晶体管N0为N型晶体管。图1B的像素电路相对于图1A的变化之处包括:OLED的正极端连接到第一电压端以接收第一电压Vdd(高电压),而负极端连接到驱动晶体管N0的漏极,驱动晶体管N0的源极连接到第二电压端以接收第二电压Vss(低电压,例如接地电压)。存储电容Cst的一端连接到开关晶体管T0的漏极以及驱动晶体管N0的栅极,另一端连接到驱动晶体管N0的源极以及第二电压端。图1B所示的2T1C像素电路的工作方式基本上与图1A所示的像素电路基本相同,这里不再赘述。
此外,对于图1A和图1B所示的像素电路,开关晶体管T0不限于N型晶体管,也可以为P型晶体管,在此不再赘述。
OLED显示面板通常包括多个按阵列排布的像素单元,每个像素单元例如可以包括上述像素电路。本公开的发明人在研究中注意到,在OLED显示面板中,各个像素电路中的驱动晶体管的阈值电压由于制备工艺可能存在差异;本公开的发明人在研究中还注意到,由于例如温度变化的影响,驱动晶体管的阈值电压可能会产生漂移,且驱动晶体管的阈值电压的漂移量随驱动晶体管的接收的数据信号的变化而变化。例如,在OLED显示面板进行显示时,OLED消耗的部分能量产生热量,这可以使得OLED显示面板的温度上升,驱动晶体管N0的迁移率变大以及驱动晶体管N0的阈值电压降低;此种情况下,在OLED显示面板的多个像素电路接收相同的数据信号的情况下,流过多个像素电路的驱动晶体管的电流强度可能彼此不同,多个像素电路的多个像素电路发射的光线的强度可能彼此不同,多个像素单元的灰阶可能彼此不同,由此降低了OLED显示面板的亮度均匀性和/或显示质量。在OLED显示面板显示画面的情况下,不同的像素单元接收不同的数据信号(例如,数据电压),发射不同强度的光线,并因此具有不同的温度变化以及不同的阈值电压漂移量,由此使得OLED显示面板的显示质量进一步地劣化。综上,需要对阈值电压进行补偿(例如,实时补偿),以保证OLED显示面板的显示效果。
例如,在经由开关晶体管T0向驱动晶体管N0的栅极施加数据信号(例如,数据电压)Vdata之后并向驱动晶体管N0的源极施加设置电压(也即,复位信号)Vref,此处,Vdata>Vref+Vth,Vth表示驱动晶体管的阈值电压, 由此数据信号Vdata可以使得驱动晶体管N0导通,此种情况下,与存储电容Cst的一端电连接的驱动晶体管N0的源极或漏极的电压可能对应地改变。
例如,图1C示出了一种可以检测驱动晶体管的阈值电压的像素电路(也即,3T1C电路),驱动晶体管N0为N型晶体管。例如,如图1C所示,为了实现补偿功能,可以在2T1C电路的基础上引入感测晶体管S0,也即,可以将感测晶体管S0的第一端连接到驱动晶体管N0的源极,感测晶体管S0的第二端经由感测线(图1C中未示出)与检测电路(图1C中未示出)连接。由此,当驱动晶体管N0导通之后,经由感测晶体管S0对于检测电路放电或者对经由感测晶体管S0对感测线上设置的电容或寄生电容充电,使得驱动晶体管N0的源极电压Vs改变。当驱动晶体管N0的源极电压Vs等于驱动晶体管N0的栅极电压Vg与驱动晶体管的阈值电压Vth的差值时,驱动晶体管N0将会截止,驱动晶体管N0的源极电压Vs不再改变。此种情况下,可以在驱动晶体管N0截止后,经由导通的感测晶体管S0从驱动晶体管N0的源极获取截止后的源极电压(也即驱动晶体管N0截止后的源极电压Vb)。在获取截止源极电压Vb之后,可以获取驱动晶体管的阈值电压(也即,Vth=Vdata-Vb)。由此,可以基于每个像素电路中驱动晶体管的阈值电压对像素电路的待显示的数据信号(数据电压)进行补偿,并且使用补偿后的数据信号驱动像素电路,由此可以实现针对显示面板各个子像素的阈值电压的补偿功能。例如,补偿后的Vdata_C可以使用以下的表达式表示:Vdata_C=Vdata+Vth。
本公开的发明人在研究中还注意到,上述阈值检测所需的时间较长,并且通常需要在显示面板结束正常显示之后的关机过程中执行,因此,无法在开机期间(例如,显示过程中相邻的显示周期之间)实现驱动晶体管N0的阈值电压的检测,也即,无法在显示过程中实时监测和补偿阈值电压,由此降低了显示面板的补偿效果以及显示面板的亮度均匀度和/或显示效果。下面结合图1D进行示例性说明。
图1D示出了一种经由导通的感测晶体管S0从驱动晶体管N0的源极获取的源极电压随时间变化的曲线图。在检测的过程中,开关晶体管T0保持导通,因此,驱动晶体管N0的栅极电压Vg保持为数据信号(数据电压)Vdata。本公开的发明人注意到,在施加数据信号Vdata之后,经感测线对检测电路放电或者对感测线上设置的电容或寄生电容充电的过程中,随着对存储电容 Cst等的充电时间的增加,充电速度将对应地降低(也即,感测电压增加的速度降低)(参见图1D),这是因为充电电流将随着源极电压(也即,驱动晶体管N0的源极电压Vs)的增加而降低。具体地,驱动晶体管N0处于饱和状态下输出的电流Ids可如下计算公式得到:
Ids=K(Vg-Vs-Vth) 2
=K(Vdata-Vs-Vth) 2
=K((Vdata-Vth)-Vs) 2
这里,K=1/2×W/L×C×μ,W为驱动晶体管N0的沟道的宽度,L为驱动晶体管N0的沟道的长度,W/L为驱动晶体管N0的沟道的宽长比(即,宽度与长度的比值),μ为电子迁移率,C为单位面积的电容。
在驱动晶体管N0的源极的电压Vs增加至Vdata-Vth的过程中,随着Vs的增加,[(Vdata-Vth)-Vs]的值将不断降低;对应地,驱动晶体管N0输出的电流Ids以及充电速度也将随之不断降低,因此,从充电起始到驱动晶体管N0截止所需的时间Ts较长。
此外,本公开的发明人在研究中又注意到,当前的驱动晶体管的迁移率的感测方法的准确度有待提高。下面结合一个示例进行示例性说明。例如,可以通过以下的方法感测驱动晶体管的迁移率。首先,可以在驱动晶体管的栅极上施加数据电压,例如,数据电压Vdata=VGL+Vth,VGL为待显示的数据电压,假设驱动晶体管的阈值电压保持不变;然后,可以根据感测线上的充电电压(也即,在对感测线充电预定时间之间之后在驱动晶体管的源极获取的感测电压)确定(例如,计算)驱动晶体管的迁移率的大小。然而,如果在感测驱动晶体管的迁移率的过程中,驱动晶体管的阈值电压改变,但是在计算驱动晶体管的迁移率中却又假设驱动晶体管的阈值电压保持不变,因此,将导致计算获取的驱动晶体管的迁移率存在偏差(相比于驱动晶体管的真实值)。
本公开的至少一个实施例提供了一种像素电路的检测方法、显示面板的驱动方法、显示装置和温度补偿查找表的构建方法。像素电路包括驱动晶体管,像素电路的检测方法包括:向驱动晶体管的栅极施加第一数据电压,在施加第一数据电压后的第一时长且在驱动晶体管截止之前,在驱动晶体管的第一极获取第一感测电压,其中,第一数据电压等于检测数据电压与驱动晶体管的第一基准阈值电压之和;基于检测数据电压、第一感测电压以及温度 补偿查找表获取驱动晶体管的当前阈值电压。温度补偿查找表包括驱动晶体管在多个温度下的多个阈值电压以及基于第一时长和检测数据电压在多个温度下获取的多个感测电压。
在本公开的实施例的方法中,为了使得检测过程和以及所获得的数据具有一致性,所采用的“第一时长”是相同的,该第一时长的大小可以根据显示电路中驱动晶体管的设计参数(例如导通电阻)、一帧扫描驱动周期(包括显示周期和消隐时间)的长短等进行设定。
在一些示例中,可以在驱动晶体管截止之前,在驱动晶体管的第一极获取第一感测电压,并可以基于检测数据电压、第一感测电压以及温度补偿查找表获取驱动晶体管的当前阈值电压,由此可以减小阈值电压检测所需时间。由于阈值电压检测所需的时间较短,因此可以在开机期间实现像素电路的阈值特性的检测,进而提升了像素电路的阈值电压的补偿效果以及包括该像素电路的显示面板的亮度均匀性和/或显示效果。
下面通过几个示例对根据本公开实施例提供的像素电路的检测方法进行非限制性的说明,如下面所描述的,在不相互抵触的情况下这些具体示例中不同特征可以相互组合,从而得到新的示例,这些新的示例也都属于本公开保护的范围。
图2示出了本公开的至少一个实施例的提供的一种像素电路的检测方法,该像素电路的检测方法可用于检测像素电路的驱动晶体管的阈值电压。图3A是本公开的至少一个实施例提供的一种像素电路的示意图;图3B是图3A所示的像素电路的等效电路;图3C是本公开的至少一个实施例提供的再一种像素电路的示意图。
本公开的至少一个实施例的提供的一种像素电路的检测方法可以应用于图3A所示像素电路、图3B所示像素电路、图3C所示像素电路或其它适用的像素电路。
例如,下面将结合图3A-图3C示出的像素电路对本公开的实施例提供的像素电路的检测方法做示例性的说明,但本公开的实施例不限于此。
例如,如图3A所示,像素电路包括驱动晶体管T3(包括栅极、第一极和第二极)。该驱动晶体管T3的第一极(如源极)与发光元件EL和感测线SENL电连接。通过该感测线SENL可以获取感测电压;通过该感测线SENL例如还可以将驱动晶体管T3的第一极的电压设置为设置电压Vref。该像素电 路可以将数据电压施加在驱动晶体管T3的栅极。
例如,如图3A所示,像素电路还包括第一晶体管T1和存储电容Cst。第一晶体管T1作为输入写入开关,第一晶体管T1的栅极作为控制端G1与扫描线GaL1(图中未示出)连接以接收扫描信号,第一晶体管T1的第一极和第一晶体管T1的第二极分别与数据线和驱动晶体管T3的栅极连接,以分别接收数据电压(例如,第一数据电压Vdata1)以及将接收的数据电压施加至驱动晶体管T3的栅极;存储电容Cst的第一端和第二端分别与驱动晶体管T3的栅极和驱动晶体管T3的第一极连接,从而存储施加至驱动晶体管T3的栅极和存储电容Cst的第一端的数据电压。
例如,如图3A所示,像素电路还包括第二晶体管T2。第二晶体管T2作为感测开关,第二晶体管T2的第一极与驱动晶体管T3的第一极连接;第二晶体管T2的第二极与感测线SENL连接,以用于对于与感测线SENL相关的电容充电以形成感测电压,由此可以通过该感测线SENL实现对感测电压的检测;第二晶体管T2的栅极作为控制端G2与感测扫描线GaL2(图中未示出)连接以接收感测控制信号。例如,根据实际应用需求,像素电路还连接到第一电源端VDD和第二电源端VSS。例如,第一电源端VDD和第二电源端VSS为恒定的电压源。
例如,在感测线SENL上有寄生电容Cvc和寄生电阻Rvc的情况下,图3A所示的像素电路可以等效为图3B所示的像素电路。该寄生电容Cvc可以被来自驱动晶体管T3的电流充电,从而相应的感测线SENL上的电压发生改变。然而,本公开的实施例不限于此,除利用感测线SENL上的寄生电容Cvc之外,如图3C所示,也可以单独提供一端与感测线SENL连接而另一端例如与某一固定电压(例如接地)的感测电容Csc,以辅助实现本公开实施例的检测方法。例如,控制端G1和控制端G2连接至不同的感测线SENL,以使得第一晶体管T1和第二晶体管T2可以在不同的时间处于开启状态。
在上述图3A-图3C的示例中,驱动晶体管T3为N型晶体管,第一电源端VDD为高压端,第二电源端VSS为低压端,也即,且第一电源端VDD输出的电压大于第二电源端VSS输出的电压,第二电源端VSS例如接地。相应地,驱动晶体管T3第一极为源极,连接到发光元件EL;另外,第一晶体管T1和第二晶体管T2也是N型晶体管。
在操作中,例如,可以通过打开第一晶体管T1(例如,向第一晶体管T1 的控制端G1施加有效电平)可以将数据线DL提供的数据电压Vdata施加到驱动晶体管T3的栅极。并且,可以通过导通的第二晶体管T2(例如,向第二晶体管T2的控制端G2施加有效电平)向驱动晶体管T3的第一极施加设置电压Vref,例如该设置电压Vref可以由设置电源端Vc(图中未示出)提供。例如,数据电压Vdata的电压值大于设置电压Vref的电压值,以使得驱动晶体管T3导通,设置电压Vref的电压值例如等于零。
例如,在驱动晶体管T3导通时,流过驱动晶体管T3的电流为恒定的电流。图4A示出了图3A-图3C的所示的像素电路的局部电路,图4B示出了在流过驱动晶体管T3的电流为恒定的电流情况下驱动晶体管T3的栅极的电压Vg和驱动晶体管T3的第一极的电压Vs随时间的变化曲线。下面结合图4B对一种使得流过驱动晶体管T3的电流为恒定的电流的方法进行示例性说明。
例如,可以通过以下的方法使得流过驱动晶体管T3的电流为恒定的电流。首先,该像素电路可以将数据电压Vdata施加在驱动晶体管T3的栅极,并将设置电压Vref施加至驱动晶体管T3的第一极(例如源极),数据电压Vdata的电压值大于设置电压Vref的电压值,以使得驱动晶体管T3导通,设置电压Vref的电压值例如等于零;然后,可以通过关闭第一晶体管T1(例如,向第一晶体管T1施加无效电平)使得驱动晶体管T3的栅极的浮置。由于驱动晶体管T3的栅极的浮置,存储电容Cst中存储的电荷量无法通过释放或充电发生突变(也即,存储电容Cst存储的电荷量保持不变);对应的,根据电容电荷守恒原理,存储电容Cst两端的电压差也保持不变,也即,驱动晶体管T3的栅极和驱动晶体管T3的第一极之间的电压差Vgs保持为数据电压Vdata与设置电压Vref之间的差值(也即,Vgs=Vdata-Vref)。例如,在设置电压Vref等于零伏的情况下,Vdata-Vref=Vdata。此种情况下,Ids=K(Vgs-Vth) 2=K(Vdata-Vth) 2。例如,在数据电压Vdata等于检测数据电压GL与驱动晶体管T3的当前阈值电压Vth之和情况下(也即,Vdata=GL+Vth),Ids=K(GL) 2,也即,流过驱动晶体管T3的电流Ids为恒定值。
例如,在对与感测线SENL相关的电容C(寄生电容Cvc或感测电容Csc的电容值)充电预定时间Δt(也即,充电时间为Δt)之后,可以经由感测线SENL获取感测电压。例如,在通过感测线SENL获取感测电压时,可以将第二晶体管T2关闭;通过关闭第二晶体管T2,可以避免感测电压在读取阶段 继续上升,由此可以为读取感测电压预留充足的时间,进而可以提升读取的感测电压的准确度。例如,如图3B和图3C所示,感测线SENL可以与模数转换器ADC电连接,由此可以将经由感测线SEN获取的感测电压的模拟信号转换为数字信号,以用于后续处理。
例如,电流Ids为恒定值的情况下,充电时间Δt(也即,第一晶体管T1关闭至第二晶体管T2关闭之间的时间长度)、与感测线SENL相关的电容C、以及电流Ids满足下述的表达式:
ΔV=Ids×Δt/C。
进一步,经由感测线SENL获取的感测电压Vs满足下述的表达式:
Vs=Vth+ΔV=Vth+Ids×Δt/C。
此种情况下,如图4B所示,在电容充电过程中,经由感测线SENL获取的感测电压Vs随时间线性增加(在第二晶体管T2关闭之前),并且驱动晶体管T3的栅极的电压Vg因浮置也随时间线性增加。如图4A所示,Vg=Vdata+Vs,因此,Vg=Vdata+Vth+Ids×Δt/C。
需要说明的是,在本公开的至少一个实施例中,有效电平是指用于开启相应开关元件的电平,无效电平是指用于关闭相应开关元件的电平。
例如,本公开的至少一个实施例提供的像素电路的检测方法包括以下的步骤S10-步骤S20。例如,步骤S10和步骤S20可以被顺次执行。
步骤S10:向驱动晶体管T3的栅极施加第一数据电压Vdata1,在施加第一数据电压Vdata1后的第一时长且在驱动晶体管T3截止之前,在驱动晶体管T3的第一极获取第一感测电压Vsen1。
步骤S20:基于检测数据电压GL、第一感测电压Vsen1以及温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth。
在步骤S10中,第一数据电压Vdata1等于检测数据电压GL与驱动晶体管T3的第一基准阈值电压Vthb1之和。例如,检测数据电压GL为待显示的数据电压且对应于像素电路待显示的灰度值。例如,检测数据电压GL可以在检测像素电路之前由用户预先设定;又例如,例如,检测数据电压GL还可以被预先存储(例如,存储在包括该像素电路的显示面板或显示装置的存储器中),并在检测像素电路时提供给像素电路。例如,第一基准阈值电压Vthb1为驱动晶体管T3在第一温度t1下的阈值电压,且第一基准阈值电压Vthb1可由温度补偿查找表获取。
例如,在步骤S10中,在向驱动晶体管T3的栅极施加第一数据电压Vdata1之后且在驱动晶体管T3的第一极获取第一感测电压Vsen1之前(也即,在寄生电容和/或感测电容的充电过程中),流过驱动晶体管T3的电流为恒定的电流。
例如,可以通过以下的步骤S101-步骤S103获取第一感测电压Vsen1。例如,步骤S101、步骤S102和步骤S103可以被顺次执行。
步骤S101:将第一数据电压Vdata施加在驱动晶体管T3的栅极,并将设置电压Vref施加至驱动晶体管T3的第一极(例如源极),在该步骤中,数据电压Vdata的电压值大于设置电压Vref的电压值,以使得驱动晶体管T3导通,设置电压Vref的电压值例如等于零。
步骤S102:在向驱动晶体管T3的栅极和第一极分别施加第一数据电压Vdata和设置电压Vref之后,关闭第一晶体管T1(例如,向第一晶体管T1施加无效电平),以使得驱动晶体管T3的栅极的浮置,并使得恒定的电流Ids流过驱动晶体管T3并向与感测线SENL相关的电容C充电。
步骤S103:在对与感测线SENL相关的电容C充电第一时长之后(也即,电容C的充电时间Δt为第一时长),经由第二晶体管T2读取驱动晶体管T3的第一极的第一感测电压Vsen1。例如,在该步骤中,可以通过关闭第二晶体管T2,避免从驱动晶体管T3的第一极读取的感测电压在读取阶段继续上升,以提升读取的第一感测电压Vsen1的准确度。
例如,温度补偿查找表用于像素电路补偿且包括对应于多个温度的多个数据条目。例如,温度补偿查找表可以如下表1所示。
表1
温度t t1 t2 t3
阈值电压Vth Vthb1 Vthb2 Vthb3
感测电压Vsen Vsenb1 Vsenb2 Vsenb3
如表1所示,多个温度包括第一温度t1、第二温度t2和第三温度t3,多个感测电压包括分别对应于第一温度t1、第二温度t2和第三温度t3的第一基准感测电压Vsenb1、第二基准感测电压Vsenb2和第三基准感测电压Vsenb3,多个阈值电压包括分别对应于第一温度t1、第二温度t2和第三温度t3的第一基准阈值电压Vthb1、第二基准阈值电压Vthb2和第三基准阈值电压Vthb3。
例如,第一基准阈值电压Vthb1、第二基准阈值电压Vthb2和第三基准阈值电压Vthb3分别为驱动晶体管T3在第一温度t1下的阈值电压、在第二温度t2下的阈值电压以及在第三温度t3下的阈值电压。
例如,多个感测电压(例如,第一基准感测电压Vsenb1、第二基准感测电压Vsenb2和第三基准感测电压Vsenb3)为在驱动晶体管T3的阈值电压被正确补偿的情况下(也即,驱动晶体管T3的栅极被施加补偿后的数据电压Vdc),从驱动晶体管T3的第一极获取的对应温度下的感测电压。例如,在向驱动晶体管T3的栅极施加补偿后的数据电压Vdc之后且在从驱动晶体管T3的第一极获取的感测电压之前(也即,在寄生电容和/或感测电容的充电过程中),可以通过关闭第一晶体管T1使得驱动晶体管T3的栅极的浮置,以使得恒定的电流流过驱动晶体管T3的电流,并向与感测线SENL相关的电容C充电。
例如,对于第一温度t1、第二温度t2和第三温度t3,驱动晶体管T3的栅极被施加的数据电压分别为GL+Vthb1、GL+Vthb2和GL+Vthb3,因此,第一基准感测电压Vsenb1、第二基准感测电压Vsenb2和第三基准感测电压Vsenb3均为在驱动晶体管T3的阈值电压被正确补偿情况,从驱动晶体管T3的第一极获取的感测电压。例如,第一基准感测电压Vsenb1、第二基准感测电压Vsenb2和第三基准感测电压Vsenb3均在驱动晶体管T3的栅极被施加补偿后的数据电压后的第一时长获取,即在相同的驱动晶体管T3的栅极被施加补偿后的数据电压后相同的第一时长获取。
需要说明的是,多个感测电压(例如,第一基准感测电压Vsenb1、第二基准感测电压Vsenb2和第三基准感测电压Vsenb3)和多个阈值电压可以在检测像素电路之前预先获得(例如,通过测试获得)并存储在温度补偿查找表中,由此可在步骤S20中直接调用(读取)温度补偿查找表的至少部分数据条目,并将读取到的至少部分数据条目用于获取驱动晶体管T3的当前阈值电压Vth中。
例如,由于第一感测电压Vsen1可以在驱动晶体管T3截止之前获得,检测数据电压GL可预先得知,温度补偿查找表可以预先构建,因此,基于检测数据电压GL、第一感测电压Vsen1以及温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth可以减小阈值电压检测所需时间。由于阈值电压检测所需的时间较短,因此可以在开机期间实现像素电路的阈值特性的检测,进而 提升了像素电路的阈值电压的补偿效果,并提升了包括该像素电路的显示面板的亮度均匀性和/或显示效果。
需要说明的是,表1示出的温度补偿查找表以及本公开的实施例提供的其它温度补偿查找表不限于包括三个数据条目,根据实际应用需求,温度补偿查找表还可以包括两个数据条目、四个数据条目、十个数据条目、一百个数据条目或其它适用数目的数据条目。例如,在温度补偿查找表包括的数据条目较多的情况下(例如,包括至少一百个数据条目),使用上述像素电路的检测方法获取的驱动晶体管T3的当前阈值电压Vth将更为准确。
例如,温度补偿查找表可基于像素电路的测试结果构建。例如,温度补偿查找表的构建方法可参见后续实施例,在此不再赘述。例如,本申请的发明人通过对像素电路的测试结果分析发现,上述多个温度下的感测电压和阈值电压可以近似拟合为一条直线,拟合获得的直线如图5所示。图5还示出了在温度为t0时的感测电压和阈值电压。
例如,可以通过最小二乘拟合或其它适用的线性拟合方法对多个温度下的感测电压和阈值电压进行拟合。例如,最小二乘拟合或其它适用的线性拟合方法可参见相关的线性拟合理论和算法,在此不再赘述。
例如,基于线性拟合获得的直线可以获取其它温度下的数据条目,由此可以减小构建温度补偿查找表的测试工作量。例如,基于线性拟合获得的直线可以获取对应于第一温度和第二温度之间的第四温度下的数据条目以及对应于第二温度和第三温度之间的第五温度下的数据条目。
例如,可以在构建温度补偿查找表之后,执行像素电路的检测方法之前对多个温度下的感测电压和阈值电压进行拟合并获得直线。又例如,还可以在执行像素电路的检测方法的过程中对多个温度下的感测电压和阈值电压进行拟合并获得直线,在此不再赘述。
需要说明的是,尽管图5示出的基于对应于四个温度的数据条目绘出的数据点均分布在拟合得到的直线上,但本公开的实施例不限于此。例如,基于对应于多个温度的多个数据条目绘出的数据点的部分可以均匀分布在拟合得到的直线的两侧,且与拟合得到的直线较近。
例如,在步骤S20中,温度补偿查找表包括驱动晶体管T3在多个温度下的多个阈值电压以及基于第一时长Δt和检测数据电压GL获得的驱动晶体管T3在多个温度下获取的多个感测电压。
例如,在步骤S20中,基于检测数据电压GL、第一感测电压Vsen1以及温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth包括以下的步骤S210和步骤S220。例如,步骤S210和步骤S220可以被顺次执行。
步骤S210:基于检测数据电压GL、第一感测电压Vsen1以及温度补偿查找表获取驱动晶体管T3的目标感测电压Vsenx。
步骤S220:基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth。
例如,在步骤S210中,基于检测数据电压GL、第一感测电压Vsen1以及温度补偿查找表获取驱动晶体管T3的目标感测电压Vsenx包括:基于变化系数β、第一基准感测电压Vsenb1、检测数据电压GL以及第一感测电压Vsen1获取目标感测电压Vsenx。
例如,可以根据第一基准感测电压Vsenb1、第二基准感测电压Vsenb2、第一基准阈值电压Vthb1和第二基准阈值电压Vthb2进行拟合以获取变化系数β。例如,如图5所示,变化系数β采用以下的表达式(1)得到。
Figure PCTCN2020075617-appb-000001
如前所述,变化系数β可以在构建温度补偿查找表之后,执行像素电路的检测方法之前或者在执行像素电路的检测方法的过程中获取,在此不再赘述。
例如,在执行像素电路的检测方法的过程中获取变化系数β的情况下,可以在选择第一基准感测电压Vsenb1和第二基准感测电压Vsenb2时,使得第一感测电压Vsen1位于第一基准感测电压Vsenb1和第二基准感测电压Vsenb2之间,由此可以提升拟合效果,并因此可以提升像素电路的补偿效果以及包括该像素电路的显示面板和显示装置的显示均匀性。
例如,基于变化系数β、第一基准感测电压Vsenb1、检测数据电压GL以及第一感测电压Vsen1获取目标感测电压Vsenx包括根据第一基准感测电压Vsenb1、第二基准感测电压Vsenb2、第一基准阈值电压Vthb1和第二基准阈值电压Vthb2进行线性拟合以获取变化系数β。
例如,目标感测电压Vsenx采用以下表达式(2)得到。
Figure PCTCN2020075617-appb-000002
例如,下面结合以下的公式推导说明为什么可以采用上述的表达式(2) 得到目标感测电压Vsenx。
例如,在驱动晶体管T3的当前温度Tx下,目标感测电压Vsenx和第一感测电压Vsen1满足以下的表达式(4)。
Figure PCTCN2020075617-appb-000003
ΔVth=Vthb1-Vthx
此处,Vthx为驱动晶体管T3在当前温度Tx下的当前阈值电压Vth,μ_x为驱动晶体管T3在当前温度Tx下的当前迁移率;Ids1为在向驱动晶体管T3的栅极施加第一数据电压Vdata1后的且在获取第一感测电压Vsen1之前,流过驱动晶体管T3的电流;Idsx为在向驱动晶体管T3的栅极施加第二数据电压Vdata_x后且在获取目标感测电压Vsenx之前,流过驱动晶体管T3的电流(假想中的电流,用于公式推导),第二数据电压Vdata_x等于检测数据电压GL与驱动晶体管T3的当前阈值电压Vth之和;ΔVth为阈值偏移量,且等于第一基准感测电压Vsenb1与驱动晶体管T3在当前温度Tx下的当前阈值电压Vthx的差值。
进一步地,使用上述表达式(4)可以获得下述的表达式(5)。
Figure PCTCN2020075617-appb-000004
需要说明的是,由于阈值偏移量ΔVth本身的值较小,则它的平方(ΔVth) 2更进一步较小,因此可忽略不计。
由于多个温度下的感测电压和阈值电压可以近似拟合为一条直线,因此,如图6所示,第一基准感测电压Vsenb1、第二基准感测电压Vsenb2、第一基准阈值电压Vthb1、第二基准阈值电压Vthb2、目标感测电压Vsenx以及驱动晶体管T3在当前温度Tx下的当前阈值电压Vthx满足以下的表达式(6)。
Figure PCTCN2020075617-appb-000005
进一步地,使用上述表达式(6)可以获得下述的表达式(7)。
ΔVth=β(Vsenb1-Vsenx),         (7)
进一步地,结合上述表达式(5)和(7)可以获得下述的表达式(8)。
Figure PCTCN2020075617-appb-000006
进一步地,可顺次得到以下的表达式。
(Vsenb1-Vsenx)GL=2×β(Vsenb1-Vsenx)Vsenx
Vsenb1×GL-Vsenx×GL=2×β×Vsenb1×Vsenx-2×β×(Vsenx) 2
2×β×(Vsenx) 2-Vsenx(GL+2×β×Vsenb1)+Vsenb1×GL=0
基于一元二次方程的求解公式可以得到下述的表达式(9),并且为使得Vsenx具有物理意义,将下述表达式(9)中的“±”取“﹢”,并因此可以得到上述表达式(2)。
Figure PCTCN2020075617-appb-000007
因此,可以采用上述的表达式(2)得到目标感测电压Vsenx。
下面将具体说明如何基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth。
例如,在步骤S220中,基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth包括以下的步骤S221和步骤S222。例如,步骤S221和步骤S222可以被顺次执行。
步骤S221:在多个感测电压包括目标感测电压Vsenx的情况下,将温度补偿查找表中与目标感测电压Vsenx对应的阈值电压作为驱动晶体管T3的当前阈值电压Vth。
步骤S222:在多个感测电压不包括目标感测电压Vsenx的情况下,基于变化系数β、第一基准感测电压Vsenb1、第一基准阈值电压Vthb1和目标感测电压Vsenx获取驱动晶体管T3的当前阈值电压Vth。
例如,在步骤S221中,在多个感测电压包括目标感测电压Vsenx的情况下,首先,可以找到目标感测电压Vsenx所在的数据条目,然后将目标感测 电压Vsenx所在的数据条目中的基准阈值电压(也即,温度补偿查找表中与目标感测电压Vsenx对应的阈值电压)作为驱动晶体管T3的当前阈值电压Vth,由此基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth。
下面以目标感测电压Vsenx等于第三基准感测电压Vsenb3为例做具体说明。
在目标感测电压Vsenx等于第三基准感测电压Vsenb3的情况下,首先,可以找到第三基准感测电压Vsenb3所在的数据条目;然后,将第三基准感测电压Vsenb3所在的数据条目中的第三基准阈值电压Vthb3作为驱动晶体管T3的当前阈值电压Vth,由此基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth。
例如,在步骤S222中,在多个感测电压不包括目标感测电压Vsenx的情况下,驱动晶体管T3的当前阈值电压Vth采用以下表达式(3)获取:
Vth=β(Vsenx-Vsenb1)+Vthb1,     (3)。
需要说明的是,温度补偿查找表不限于实现为表1所示的温度补偿查找表,根据实际应用需求,还可以实现为表2或表3所示的温度补偿查找表。
在一个示例中,如表2所示,温度补偿查找表还可以包括在多个温度下的驱动晶体管T3的多个迁移率。多个温度下的驱动晶体管T3的多个迁移率包括对应于第一温度t1的第一迁移率μ1,对应于第二温度t2的第二迁移率μ2,以及对应于第三温度t3的第三迁移率μ3。例如,驱动晶体管T3的迁移率与驱动晶体管T3的温度正相关。
表2
温度T T1 T2 T3
阈值电压Vth Vthb1 Vthb2 Vthb3
感测电压Vsen Vsenb1 Vsenb2 Vsenb3
迁移率μ μ1 μ2 μ3
例如,在温度补偿查找表还包括在多个温度下的驱动晶体管T3的多个迁移率情况下,像素电路的检测方法还包括以下的步骤S30。
步骤S30:基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前迁移率。
例如,在获取驱动晶体管T3的当前迁移率之后,可以基于所获取的迁移率对驱动晶体管T3进行补偿,以使得在驱动晶体管T3的栅极接收相同的检测数据电压GL且驱动晶体管T3的阈值电压被正确补偿的情况下,流过驱动晶体管T3的电流为恒定值(实质上为恒定值,或者变化量可以忽略不计),由此可以进一步提升应用了该像素电路的检测方法的显示面板和显示装置的亮度均匀性和/或显示效果。
例如,在采用基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前迁移率的方法的情况下,可以快速的获取迁移率,由此不仅可以降低像素电路的检测时间,而且还可以避免在感测迁移率过程中阈值电压改变导致的迁移率存在偏差的问题,由此可以进一步提升显示面板和显示装置的显示效果。
例如,在多个感测电压包括目标感测电压Vsenx的情况下,可以将温度补偿查找表中与目标感测电压Vsenx对应的迁移率作为驱动晶体管T3的当前迁移率。
例如,在多个感测电压包括目标感测电压Vsenx的情况下,首先,可以找到目标感测电压Vsenx所在的数据条目,然后将目标感测电压Vsenx所在的数据条目中的迁移率(也即,温度补偿查找表中与目标感测电压Vsenx对应的迁移率)作为驱动晶体管T3的当前迁移率,由此可以基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前迁移率。
例如,在多个感测电压不包括目标感测电压Vsenx的情况下,可以将温度补偿查找表中与目标感测电压Vsenx最邻近的感测电压对应的迁移率作为驱动晶体管T3的当前迁移率。又例如,在多个感测电压不包括目标感测电压Vsenx的情况下,还可以将温度补偿查找表中与目标感测电压Vsenx紧邻的感测电压两个的迁移率的平均值作为驱动晶体管T3的当前迁移率。
需要说明的是,步骤S30可以在执行步骤S20之后执行。又例如,步骤S30还可以与步骤S20(例如,步骤S220)同时执行,例如,可以在基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth的同时获取驱动晶体管T3的当前迁移率,由此可以进一步降低像素电路检测所需的时间。
在另一个示例中,温度补偿查找表还可以如下表3所示,也即,温度补偿查找表还包括在多个温度下的驱动晶体的多个补偿系数。多个温度下的驱 动晶体的多个补偿系数包括:对应于第一温度t1的第一补偿系数Kc1,对应于第二温度t2的第二补偿系数Kc2,以及对应于第三温度t3的第三补偿系数Kc3。
表3
温度T T1 T2 T3
阈值电压Vth Vthb1 Vthb2 Vthb3
感测电压Vsen Vsenb1 Vsenb2 Vsenb3
迁移率μ μ1 μ2 μ3
补偿系数Kc Kc1 Kc2 Kc3
例如,多个补偿系数用于在显示中对驱动晶体管T3的迁移率进行补偿。例如,迁移率μ和补偿系数Kc的乘积等于恒定值const,例如,const=μ1×Kc1=μ2×Kc2==μ3×Kc3,由此可以直接使用补偿系数Kc对驱动晶体管T3的迁移率进行补偿,并因此可以降低补偿驱动晶体管T3涉及的运算量以及所需的时间,由此可以进一步提升应用了该像素电路的检测方法的显示面板和显示装置的亮度均匀性和/或显示效果。
在一些示例中,通过在驱动晶体管T3的第一极获取第一感测电压Vsen1,可基于检测数据电压GL、第一感测电压Vsen1以及温度补偿查找表获取驱动晶体管T3的当前阈值电压Vth,由此可以减小阈值电压检测所需时间。由于阈值电压检测所需的时间较短,因此可以在开机期间实现像素电路的阈值特性的检测,进而提升了像素电路的阈值电压的补偿效果,并提升了包括该像素电路的显示面板的亮度均匀性和/或显示效果。
需要说明的是,本公开的上述实施例和其它实施例中采用的晶体管可以为薄膜晶体管或场效应晶体管或其他特性相同的开关器件。这里采用的晶体管的源极、漏极在结构上可以是对称的,所以其源极、漏极在物理结构上可以是没有区别的。在本公开的实施例中,为了区分晶体管的除作为控制端的栅极之外的其它两个极,直接描述了其中一极为第一极,另一极为第二极,所以本公开实施例中全部或部分晶体管的第一极和第二极根据需要是可以互换的。例如,本公开实施例的晶体管的第一极可以为源极,第二极可以为漏极;或者,晶体管的第一极为漏极,第二极为源极。
需要说明的是,本公开的至少一个实施例提供的像素电路的检测方法不 仅可以应用于图3B所示的3T1C像素电路和图3C所示的3T2C像素电路,还可以应用于4T1C像素电路、4T1C像素电路以及具有其它适用结构的像素电路中,在此不再赘述。
在一些示例中,本公开的实施例提供的像素电路的检测方法可以降低像素电路的阈值检测所需时间,以使得可以在开机期间实现像素电路的阈值特性的检测,进而提升了阈值补偿效果和包括该像素电路的显示面板的亮度均匀性和/或显示效果。
本公开的至少一个实施例提供了一种温度补偿查找表的构建方法,该温度补偿查找表用于像素电路补偿且包括对应于多个温度的多个数据条目,像素电路包括驱动晶体管,将多个温度中的任一温度作为设置温度,构建方法包括以下的步骤S401-步骤S403。
步骤S401:使得像素电路保持在设置温度。
步骤S402:获取像素电路的驱动晶体管T3在设置温度下的阈值电压;
步骤S403:向驱动晶体管T3的栅极施加测试数据电压,在施加测试数据电压后的第一时长且在驱动晶体管截止之前,在驱动晶体管的第一极获取设置温度下的感测电压。
例如,设置温度可以为第一温度t1、第二温度t2、第三温度t3或者温度补偿查找表中的其它温度。
在一个示例中,设置温度的数据条目包括设置温度下的阈值电压和设置温度下的感测电压,此种情况下,应用上述构建方法获取的温度补偿查找表可以为如表1所示的温度补偿查找表。
例如,在步骤S401中,首先,可以将像素电路(例如,包括该像素电路的显示面板)放置在恒温设备(例如,恒温箱)中;其次,可以调节恒温设备的工作温度,例如,可以通过调节恒温设备的工作温度使得恒温设备的工作温度等于设置温度,又例如,还可以通过调节恒温设备的工作温度使得恒温设备的工作温度首先大于设置温度然后等于设置温度,以减小调节像素电路温度所需的时间,并因此可以减小构建温度补偿查找表所需的时间;然后,在预定时间段(例如,5分钟、30分钟或者其它适用的时间)内,使得像素电路处于恒温设备中,以使得像素电路可以保持在设置温度。
例如,步骤S402可以在执行步骤S401之后执行,以提升驱动晶体管T3的温度稳定性以及温度补偿查找表中数据条目的准确性。
例如,步骤S402中,获取像素电路的驱动晶体管T3在设置温度下的阈值电压的方法可以根据实际应用需求进行选择,本公开的实施例对此不做具体限定。
例如,可以使得包括该像素电路的显示面板处于开机黑画面阶段(也即,在显示面板的上电之后且在显示面板的正常显示之前的时间段),使用图1C和图1D所述的驱动晶体管T3的阈值检测方法获取像素电路的驱动晶体管T3在设置温度下的阈值电压(例如,第一温度t1下的第一基准阈值电压Vthb1,第二温度t2下的第二基准阈值电压Vthb2,以及第三温度t3下的第三基准阈值电压Vthb3),在此不再赘述。
例如,在步骤S403中,测试数据电压等于检测数据电压GL与设置温度下的阈值电压之和。例如,在步骤S403中,在向驱动晶体管T3的栅极施加测试数据电压之后且在驱动晶体管T3的第一极获取第一感测电压Vsen1之前(也即,在寄生电容和/或感测电容的充电过程中),流过驱动晶体管T3的电流为恒定的电流,例如,使得驱动晶体管T3的电流为恒定的电流的方法可以参见图4B所示的示例,在此不再赘述。
例如,包括该像素电路的显示面板可以包括多个显示周期,每个显示周期用于显示一帧图像,且每个显示周期时间长度等于显示该帧图像的第一个像素点至显示该帧图像的最后一个像素点所需的时间;相邻的显示周期之间可以设置有空白时间(blanking time,或称为消隐时间)。在一个示例中,可以在空白时间执行步骤S403。在另一个示例中,还可以在开机黑画面阶段执行步骤S403。
需要说明的是,步骤S402和步骤S403的执行顺序可以根据实际应用需求进行设定,本公开的实施例对此不做具体限定。例如,可以在执行步骤S402之后执行步骤S403。
例如,可以基于在步骤1中记录下的设置温度,在步骤2中获取的设置温度下的阈值电压以及在步骤3中获取的设置温度下的感测电压获得设定温度下的温度条目。例如,在获得一个设定温度(例如,第一温度t1)下的数据条目之后,可以调整恒温设备的工作温度,以使用上述的步骤S401-步骤S403获得另一个温度(例如,第二温度t2)下的数据条目。
在另一个示例中,设置温度的数据条目包括设置温度下的阈值电压、设置温度下的感测电压以及设置温度下的迁移率;此种情况下,构建方法包括 以上步骤S401-步骤S403以及以下的步骤S404和步骤S405;并且,应用上述构建方法获取的温度补偿查找表可以为如表2所示的温度补偿查找表。
步骤S404:向驱动晶体管T3的栅极施加补偿后的数据电压,并获取流过驱动晶体管T3的电流。
步骤S405:基于流过驱动晶体管T3的电流以及检测数据电压GL获取驱动晶体管T3在设置温度下的迁移率。
例如,补偿后的数据电压Vdc等于检测数据电压GL与驱动晶体管T3在设置温度下的阈值电压之和。例如,步骤S404可以在包括该像素电路的显示面板的显示周期执行。例如,可以通过获取被上述像素电路驱动的发光元件EL发射光线的亮度获取流过驱动晶体管T3的电流Ids。
例如,在步骤S405中,由于Ids=K(GL) 2,且K=1/2×W/L×C×μ,因此,设置温度下的迁移率可以采用以下表达式(10)得到。
Figure PCTCN2020075617-appb-000008
例如,步骤S404可以在执行步骤S401-步骤S403之后执行,步骤S405可以在执行步骤S404之后执行。
在再一个示例中,设置温度的数据条目包括设置温度下的阈值电压、设置温度下的感测电压、设置温度下的迁移率以及设置温度下的补偿系数;此种情况下,构建方法包括以上步骤S401-步骤S404以及以下的步骤S406;并且,应用上述构建方法获取的温度补偿查找表可以为如表3所示的温度补偿查找表。
步骤S406:基于驱动晶体管T3在设置温度下的迁移率获取驱动晶体管T3在设置温度下的迁移率补偿系数。
例如,驱动晶体管T3在设置温度下的迁移率补偿系数与驱动晶体管T3在设置温度下的迁移率成反比。例如,驱动晶体管T3在设置温度下的迁移率补偿系数与驱动晶体管T3在设置温度下的迁移率的乘积为恒定值。例如,驱动晶体管T3在第一温度t1下的迁移率补偿系数Kc1与驱动晶体管T3在第一温度t1下的迁移率μ1的乘积等于驱动晶体管T3在第二温度t2下的迁移率补偿系数Kc2与驱动晶体管T3在第二温度t2下的迁移率μ2的乘积。
需要说明的是,在实际实施中,可以将温度补偿查找表的构建方法应用于显示面板上的每个像素电路,以获得每个像素电路的温度补偿查找表,由此可以基于各个像素电路的温度补偿查找表对显示面板上的各个像素电路进 行补偿(例如,逐行补偿)。
本公开的至少一个实施例还提供了一种显示面板的驱动方法,显示面板包括像素电路,驱动方法包括:对像素电路执行本公开的任一实施例提供的像素电路的检测方法,以用于至少获得像素电路的驱动晶体管的当前阈值电压。
例如,显示面板包括多个像素单元,每个像素单元可以包括像素电路,显示面板所包括的像素单元例如可以排布成阵列,相应地像素电路例如可以排布成阵列。例如,显示面板所包括的像素电路可以为图3A所示的像素电路,图3B所示的像素电路、图3C所示的像素电路或其它适用的像素电路。
图7是本公开至少一个实施例提供的显示面板的驱动方法的示例性流程图。例如,如图7所示,本公开至少一个的实施例提供的显示面板的驱动方法包括以下的步骤S510。
步骤S510:对像素电路执行本公开任一实施例提供的像素电路的检测方法,以用于获得像素电路的驱动晶体管的当前阈值电压。
例如,像素电路的检测方法可以参见图2示出的实施例,在此不再赘述。例如,根据实际应用需求,如图7所示,本公开至少一个的实施例提供的显示面板的驱动方法还包括步骤S520。
步骤S520:至少根据所获得的当前阈值电压对像素电路的待显示的数据信号进行补偿,并且使用补偿后的数据信号驱动像素电路。
例如,通过在驱动显示面板的过程中,对像素电路执行本公开任一实施例提供的像素电路的检测方法,可以减小阈值电压检测所需时间,并因此可以在开机期间实现像素电路的阈值特性的检测,因此提升了像素电路的阈值电压的补偿效果以及包括该像素电路的显示面板的亮度均匀性和/或显示效果。
例如,温度补偿查找表还包括在多个温度下的驱动晶体管的多个迁移率;在温度补偿查找表还包括在多个温度下的驱动晶体管的多个迁移率的情况下,在执行像素电路的检测方法中,还基于目标感测电压和温度补偿查找表获取驱动晶体管的当前迁移率,并且,至少根据所获得的当前阈值电压对像素电路的待显示的数据信号进行补偿包括:根据所获得的当前阈值电压以及当前迁移率对像素电路的待显示的数据信号进行补偿。
例如,在根据所获得的当前阈值电压以及所获得的当前迁移率对像素电 路的待显示的数据信号进行补偿中,首先,可以根据所获得的当前阈值电压对像素电路的待显示的数据信号进行补偿,然后可以使用所获得的当前迁移率对像素电路的待显示的数据信号进行补偿。
例如,在采用基于目标感测电压Vsenx和温度补偿查找表获取驱动晶体管T3的当前阈值电压和当前迁移率的方法的情况下,可以快速的获取驱动晶体管T3的当前阈值电压和当前迁移率,由此不仅可以降低像素电路的检测时间,而且还可以避免在感测迁移率过程中阈值电压改变导致的迁移率存在偏差的问题,由此可以进一步提升显示面板和显示装置的显示效果。
以下结合两个示例(仅对驱动晶体管的当前阈值电压进行补偿)对显示面板的驱动方法进行示例性说明。
在一个示例中,首先,可以逐行检测像素电路的驱动晶体管的当前阈值电压,然后,在获取显示面板的所有像素电路的驱动晶体管的当前阈值电压之后,对像素电路的待显示的数据信号(例如,待显示的数据电压)进行补偿,并使用补偿后的数据信号(例如,补偿后的数据电压)驱动像素电路;由此可以驱动显示面板显示一帧图像。
例如,逐行检测像素电路的驱动晶体管的当前阈值电压包括以下的步骤:首先,可以对位于第一行的像素电路执行本公开任一实施例提供的像素电路的检测方法,并获取位于第一行的像素电路的驱动晶体管的当前阈值电压;然后,可以对位于第二行的像素电路执行本公开任一实施例提供的像素电路的检测方法,并获取位于第二行的像素电路的驱动晶体管的当前阈值电压;接着,可以对显示面板的位于其它行的像素电路进行逐行检测,直至获取显示面板的所有像素电路的驱动晶体管的当前阈值电压。
例如,补偿后的数据电压等于待显示的数据电压与驱动晶体管的当前阈值电压之和。例如,使用补偿后的数据信号(例如,补偿后的数据电压)驱动像素电路包括:将补偿后的数据电压施加在驱动晶体管的栅极,由此可以至少根据所获得的当前阈值电压对像素电路的待显示的数据信号进行补偿,并且使用补偿后的数据信号驱动像素电路。
在另一个示例中,根据实际应用需求,还可以在检测获取一行像素电路的驱动晶体管的当前阈值电压之后,针对位于该行的每一个像素电路的待显示的数据信号进行补偿,并且使用补偿后的数据信号驱动位于该行的每一个像素电路。
需要说明的是,对于该显示面板的驱动方法的其它步骤可以参见适用的显示面板的驱动方法,这些是本领域的普通技术人员所应该理解的,在此不做赘述。
例如,本公开至少一个的实施例提供的显示面板的驱动方法可以降低像素电路检测所需时间,以使得可以在开机期间(例如,相邻的显示周期之间)实现显示面板的像素电路的驱动晶体管的阈值电压的检测和/或迁移率的检测,由此可以实现实时补偿,进而可以提升应用该驱动方法的显示面板的补偿效果,以及显示面板的亮度均匀度和/或显示效果。
本公开的至少一个实施例又提供了一种显示面板,该显示面板包括像素电路和控制器,像素电路包括驱动晶体管;控制器配置为执行如下的检测方法:向驱动晶体管的栅极施加第一数据电压,在施加第一数据电压后的第一时长且在驱动晶体管截止之前,在驱动晶体管的第一极获取第一感测电压,在该步骤中,第一数据电压等于检测数据电压与驱动晶体管的第一基准阈值电压之和;基于检测数据电压、第一感测电压以及温度补偿查找表获取驱动晶体管的当前阈值电压,在该步骤中,温度补偿查找表包括驱动晶体管在多个温度下的多个阈值电压以及基于检测数据电压在多个温度下获取的多个感测电压。
图8是本公开的至少一个实施例提供的显示面板的示例性框图。例如,如图8所示,该显示面板10包括像素电路和控制器120。像素电路可以为图3A所示的像素电路、图3B所示的像素电路、图3C所示的像素电路或其它适用的像素电路。例如,下面以本公开的至少一个实施例的显示面板中的像素电路实现为图3C示出的像素电路为例,对本公开的至少一个实施例提供的显示面板做具体说明,但本公开的实施例不限于此。
例如,图9示出了图8所示的显示面板的示例性结构图。例如,如图9所示,该显示面板包括像素电路、模数转换器ADC、感测线和控制器120,显示面板具有显示区域和围绕显示区域设置的周边区域;显示面板的显示区域包括多个像素单元,每个像素单元可以包括像素电路,显示面板所包括的像素单元例如可以排布成阵列,相应地像素电路例如可以排布成阵列;显示面板的位于显示区域之外的周边区域设置控制器120。像素电路包括驱动晶体管,该驱动晶体管包括栅极和第一极,该感测线与驱动晶体管的第一极电连接。例如,控制器120配置为执行本公开任一实施例提供像素电路的检测方 法。例如,本公开的至少一个实施例中的检测方法的具体实现方式可以参见图2示出的实施例,在此不再赘述。
例如,显示面板还可以包括也设置在周边区域的数据驱动电路130、检测电路140和扫描驱动电路(未示出)。例如,控制器120还配置为控制数据驱动电路130和检测电路140。例如,数据驱动电路130配置为根据实际应用需求在不同的时刻提供第一数据电压和补偿后的数据电压。扫描驱动电路用于向第一晶体管以及第二晶体管提供扫描信号,从而控制第一晶体管以及第二晶体管是否开启。
例如,像素电路还配置为接收第一数据电压并将第一数据电压施加至驱动晶体管的栅极。例如,检测电路140配置为从感测线SENL读取第一感测电压。例如,检测电路140可以为采样电路,采样电路可提供采样信号SAMP,并可经由感测开关晶体管T2从驱动晶体管T3的第一极获取第一感测电压。
例如,像素电路还包括第二晶体管T2,发光元件EL例如可以为有机发光二极管,但本公开的实施例不限于此。例如,驱动晶体管的第二极和第一极可以配置为分别连接至第一电源电压端VDD以及发光元件EL的第一极,发光元件EL的第二极连接到第二电源电压端VSS。例如,第二晶体管T2的第一极与驱动晶体管的第一极连接,且第二晶体管T2的第二极与检测电路140电连接。
例如,像素电路还包括第一晶体管T1与存储电容Cst,第一晶体管T1配置为从数据驱动电路130获取数据信号(例如,第一数据电压),向驱动晶体管的栅极写入数据信号,存储电容Cst存储数据信号。例如,像素电路还可以包括数据线DL,第一晶体管T1的第一极连接到数据线DL。
例如,控制器120还可以包括处理器(图中未示出)和存储器(图中未示出),存储器包括可执行代码以及运行代码所需的数据或产生的数据,处理器运行可执行代码以执行本公开任一实施例提供的检测方法。
例如,该处理器例如是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,例如,该处理器可以实现为通用处理器,并且也为单片机、微处理器、数字信号处理器、专用的图像处理芯片、或现场可编程逻辑阵列等。存储器例如可以包括易失性存储器和/或非易失性存储器,例如可以包括只读存储器(ROM)、硬盘、闪存等。相应地,该存储器可以实现为一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,在所述计算机可读存储介质上可以存储一个 或多个可执行代码(例如,计算机程序指令)。处理器可以运行所述程序指令,以执行本公开任一实施例提供的像素电路的检测方法,由此可以获取显示面板所包括的像素电路的驱动晶体管的当前阈值电压,进而可以实现显示面板的阈值补偿功能。例如,该存储器还可以存储其他各种应用程序和各种数据,例如每个像素电路的目标感测电压,以及应用程序使用和/或产生的各种数据等。
例如,本公开的至少一个实施例提供的显示面板可以降低驱动晶体管的阈值电压检测所需时间,以使得可以在开机期间(例如,相邻的显示周期之间)实现驱动晶体管的阈值电压的检测,由此在显示面板的开机期间可以进行实时检测以及实时补偿,进而可以提升显示面板的补偿效果以及显示面板的亮度均匀度和/或显示效果。
本公开的至少一个实施例还提供了一种显示装置,其包括像素电路和控制器,像素电路包括驱动晶体管。控制器配置为执行如下的检测方法:向驱动晶体管的栅极施加第一数据电压,在施加第一数据电压后的第一时长且在驱动晶体管截止之前,在驱动晶体管的第一极获取第一感测电压,在该步骤中,第一数据电压等于检测数据电压与驱动晶体管的第一基准阈值电压之和;基于检测数据电压、第一感测电压以及温度补偿查找表获取驱动晶体管的当前阈值电压,其中,温度补偿查找表包括驱动晶体管在多个温度下的多个阈值电压以及基于检测数据电压在多个温度下获取的多个感测电压。
图10是本公开的至少一个实施例提供的一种显示装置的示例性框图。例如,如图10所示,该显示装置20包括像素电路和控制器。像素电路和控制器的具体设置可以参见图8示出的显示面板的实施例,在此不再赘述。
图11为本公开至少一个实施例提供的另一种显示装置的示意框图。如图11所示,显示装置60包括显示屏幕区6000、栅极驱动器6010、时序控制器6020和数据驱动器6030。显示屏幕区6000包括根据多条扫描线GL和多条数据线DL交叉限定的多个像素单元P,至少一个像素单元P包括本公开任一实施例提供的像素电路。栅极驱动器6010包括级联的多个移位寄存器单元,并用于驱动多条扫描线GL;数据驱动器6030用于驱动多条数据线DL。
如图11所示,时序控制器6020用于处理从显示装置60的外部输入的图像数据RGB,并用于向数据驱动器6030提供处理后的图像数据RGB。时序控制器6020还用于向栅极驱动器6010和数据驱动器6030分别输出栅极扫描 控制信号GCS(Gate Control Signal)和数据控制信号DCS(Data Control Signal),以分别控制栅极驱动器6010和数据驱动器6030。需要说明的是数据控制信号DCS也被称为源极控制信号SCS(Source Control Signal)。
例如,时序控制器6020被配置为参考数据驱动器6030提供的辅助时钟信号ACLK接收数据驱动器6030输出的辅助数据AData,并基于辅助数据AData对待显示的数据信号进行补偿(例如,通过可进行计算、转换和补偿等的算法),然后将补偿后的数据信号提供给数据驱动器6030。例如,数据驱动器6030可以基于通过像素电路的检测方法获取的驱动晶体管的当前阈值电压和/或当前迁移率生成辅助数据AData。例如,驱动晶体管的当前阈值电压和/或当前迁移率可以通过电学和/或光学检测方法获得,在此不再赘述。
例如,多条扫描线GL与排列为多行的像素单元P对应连接(例如,与像素单元P中像素电路的控制端G1对应连接)。栅极驱动电路6010中的各级移位寄存器单元的输出端Output依序输出信号到多条扫描线GaL,以逐行扫描显示屏幕区6000中的多行像素单元P。
例如,数据驱动器6030根据时序控制器6020提供的多个数据控制信号DCS将从时序控制器6020提供的数字图像数据RGB转换成数据信号。数据驱动器6030向多条数据线DL提供数据信号。
例如,时序控制器6020对外部输入的图像数据RGB进行处理以使得处理后的图像数据匹配显示屏幕区6000的大小和分辨率,然后时序控制器6020向数据驱动器6030提供处理后的图像数据。时序控制器6020使用从显示装置60外部输入的同步信号或者时序控制信号(例如,点时钟DCLK、数据使能信号DE、水平同步信号Hsync以及垂直同步信号Vsync,在图11中,水平同步信号Hsync以及垂直同步信号Vsync均使用SYNC进行表示)产生多条栅极扫描控制信号GCS和多条数据控制信号DCS。
例如,栅极驱动器6010和数据驱动器6030可以实现为半导体芯片。
例如,显示装置60还包括第一印刷电路板X-PCB(图中未示出),第一印刷电路板X-PCB用于连接数据驱动器6030。例如,每个显示装置60可以包括两个第一印刷电路板X-PCB。例如,时序控制器6020可以通过柔性扁平电缆(Flexible Flat Cable,FFC)与第一印刷电路板X-PCB。例如,可以通过多根内部集成电路总线(Inter Integrated Circuit Bus,IC总线)使得第一印刷电路板X-PCB与显示屏幕区彼此连接。
在一个示例中,显示装置60还包括第二印刷电路板Y-PCB(图中未示出),第二印刷电路板Y-PCB用于连接栅极驱动电路6010。在另一个示例中,可以使用栅集成阵列(gate on array,GOA)替代栅极驱动电路6010,此种情况下,显示装置60无需设置第二印刷电路板Y-PCB。
需要说明的是,对于该显示装置60的其它组成部分(例如图像数据编码/解码装置、信号解码电路、电压转换电路等、时钟电路等)可以采用适用的常规部件,这些均是本领域的普通技术人员所应该理解的,在此不做赘述,也不应作为对本公开的限制。
在一个示例中,显示装置还可以包括第二控制器(图11中未示出),第二控制器配置为执行本公开任一实施例提供像素电路的检测方法或本公开任一实施例提供显示面板的驱动方法。例如,本公开的至少一个实施例提供的像素电路的检测方法的具体实现方式可以参见图2示出的实施例,本公开的至少一个实施例提供的显示面板的驱动方法的具体实现方式可以参见图7-图9示出的实施例,在此不再赘述。在另一个示例中,第二控制器的功能可以使用时序控制器6020实现。
虽然上文中已经用一般性说明及具体实施方式,对本公开作了详尽的描述,但在本公开实施例基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本公开精神的基础上所做的这些修改或改进,均属于本公开要求保护的范围。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (16)

  1. 一种像素电路的检测方法,所述像素电路包括驱动晶体管,所述方法包括:
    向所述驱动晶体管的栅极施加第一数据电压,在施加所述第一数据电压后的第一时长且在所述驱动晶体管截止之前,在所述驱动晶体管的第一极获取第一感测电压,其中,所述第一数据电压等于检测数据电压与所述驱动晶体管的第一基准阈值电压之和;以及
    基于所述检测数据电压、所述第一感测电压以及温度补偿查找表获取所述驱动晶体管的当前阈值电压,
    其中,所述温度补偿查找表包括所述驱动晶体管在多个温度下的多个阈值电压以及基于所述第一时长和所述检测数据电压在所述多个温度下获取的多个感测电压。
  2. 根据权利要求1所述的检测方法,其中,基于所述检测数据电压、所述第一感测电压以及所述温度补偿查找表获取所述驱动晶体管的当前阈值电压包括:
    基于所述检测数据电压、所述第一感测电压以及所述温度补偿查找表获取所述驱动晶体管的目标感测电压;以及
    基于所述目标感测电压和所述温度补偿查找表获取所述驱动晶体管的当前阈值电压。
  3. 根据权利要求2所述的检测方法,其中,所述多个温度包括第一温度和第二温度,
    所述多个感测电压包括分别对应于所述第一温度和所述第二温度的第一基准感测电压和第二基准感测电压,
    所述多个阈值电压包括分别对应于所述第一温度和所述第二温度的所述第一基准阈值电压和第二基准阈值电压。
  4. 根据权利要求3所述的检测方法,其中,基于所述检测数据电压、所述第一感测电压以及所述温度补偿查找表获取所述驱动晶体管的目标感测电压包括:
    基于变化系数、所述第一基准感测电压、所述检测数据电压以及所述第一感测电压获取所述目标感测电压,
    其中,所述变化系数根据所述第一基准感测电压、所述第二基准感测电压、所述第一基准阈值电压和所述第二基准阈值电压进行拟合获取。
  5. 根据权利要求4所述的检测方法,其中,根据所述第一基准感测电压、所述第二基准感测电压、所述第一基准阈值电压和所述第二基准阈值电压进行拟合以获取所述变化系数包括:
    根据所述第一基准感测电压、所述第二基准感测电压、所述第一基准阈值电压和所述第二基准阈值电压进行线性拟合以获取所述变化系数,
    其中,所述变化系数采用以下表达式(1)得到:
    Figure PCTCN2020075617-appb-100001
    其中,β为所述变化系数,
    Vsenb1为所述第一基准感测电压,
    Vsenb2为所述第二基准感测电压,
    Vthb1为所述第一基准阈值电压,
    Vthb2为所述第二基准阈值电压。
  6. 根据权利要求5所述的检测方法,其中,所述目标感测电压采用以下表达式(2)得到:
    Figure PCTCN2020075617-appb-100002
    其中,Vsenx为所述目标感测电压,
    GL为所述检测数据电压,
    Vsen1为所述第一感测电压。
  7. 根据权利要求5或6所述的检测方法,其中,选择所述第一基准感测电压和所述第二基准感测电压,以使得所述第一感测电压位于所述第一基准感测电压和所述第二基准感测电压之间。
  8. 根据权利要求4-7任一项所述的检测方法,其中,基于所述目标感测电压和所述温度补偿查找表获取所述驱动晶体管的当前阈值电压包括:
    在所述多个感测电压包括所述目标感测电压的情况下,将所述温度补偿查找表中与所述目标感测电压对应的阈值电压作为所述驱动晶体管的当前阈值电压;以及
    在所述多个感测电压不包括所述目标感测电压的情况下,基于所述变化系数、所述第一基准感测电压、所述第一基准阈值电压和所述目标感测电压获取所述驱动晶体管的当前阈值电压。
  9. 根据权利要求8所述的检测方法,其中,在所述多个感测电压不包括 所述目标感测电压的情况下,所述驱动晶体管的当前阈值电压Vth采用以下表达式(3)获取:
    Vth=β(Vsenx-Vsenb1)+Vthb1,  (3)。
  10. 根据权利要求2-9任一所述的检测方法,其中,所述温度补偿查找表还包括在所述多个温度下的所述驱动晶体管的多个迁移率;以及
    所述检测方法还包括:
    基于所述目标感测电压和所述温度补偿查找表获取所述驱动晶体管的当前迁移率。
  11. 根据权利要求10所述的检测方法,其中,所述温度补偿查找表还包括在所述多个温度下的所述驱动晶体的多个补偿系数,所述多个补偿系数用于在显示中对所述驱动晶体管的迁移率进行补偿。
  12. 一种显示面板的驱动方法,所述显示面板包括像素电路,所述驱动方法包括:
    对所述像素电路执行如权利要求1-8任一所述的像素电路的检测方法,以用于至少获得所述像素电路的驱动晶体管的当前阈值电压。
  13. 根据权利要求12所述的驱动方法,其中,所述温度补偿查找表还包括在所述多个温度下的所述驱动晶体管的多个迁移率;以及
    在执行所述像素电路的检测方法中,还基于所述目标感测电压和所述温度补偿查找表获取所述驱动晶体管的当前迁移率。
  14. 根据权利要求12或13所述的驱动方法,还包括:
    至少根据所获得的所述当前阈值电压对所述像素电路的待显示的数据信号进行补偿,并且使用补偿后的数据信号驱动所述像素电路。
  15. 一种显示装置,包括像素电路和控制器,其中,所述像素电路包括驱动晶体管;
    所述控制器配置为执行如下的检测方法:
    向所述驱动晶体管的栅极施加第一数据电压,在施加所述第一数据电压后的第一时长且在所述驱动晶体管截止之前,在所述驱动晶体管的第一极获取第一感测电压,其中,所述第一数据电压等于检测数据电压与所述驱动晶体管的第一基准阈值电压之和;以及
    基于所述检测数据电压、所述第一感测电压以及温度补偿查找表获取所述驱动晶体管的当前阈值电压,其中,所述温度补偿查找表包括所述驱动晶体管在多个温度下的多个阈值电压以及基于所述检测数据电压在所述多个温度下获取的多个感测电压。
  16. 一种温度补偿查找表的构建方法,所述温度补偿查找表用于像素电路补偿且包括对应于多个温度的多个数据条目,所述像素电路包括驱动晶体管,将所述多个温度中的任一温度作为设置温度,所述构建方法包括:
    使得所述像素电路保持在所述设置温度;
    获取所述像素电路的驱动晶体管在所述设置温度下的阈值电压;
    向所述驱动晶体管的栅极施加测试数据电压,在施加所述测试数据电压后的第一时长且在所述驱动晶体管截止之前,在所述驱动晶体管的第一极获取所述设置温度下的感测电压,其中,所述测试数据电压等于检测数据电压与所述设置温度下的阈值电压之和,且所述设置温度的数据条目包括所述设置温度下的阈值电压和所述设置温度下的感测电压。
PCT/CN2020/075617 2019-04-10 2020-02-18 检测方法、驱动方法、显示装置和补偿查找表的构建方法 WO2020207117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910285024.9 2019-04-10
CN201910285024.9A CN109961728B (zh) 2019-04-10 2019-04-10 检测方法、驱动方法、显示装置和补偿查找表的构建方法

Publications (2)

Publication Number Publication Date
WO2020207117A1 true WO2020207117A1 (zh) 2020-10-15
WO2020207117A9 WO2020207117A9 (zh) 2021-01-07

Family

ID=67025873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075617 WO2020207117A1 (zh) 2019-04-10 2020-02-18 检测方法、驱动方法、显示装置和补偿查找表的构建方法

Country Status (2)

Country Link
CN (1) CN109961728B (zh)
WO (1) WO2020207117A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375817A (zh) * 2021-06-23 2021-09-10 厦门极深微电子技术有限公司 一种非线性温度的显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109961728B (zh) * 2019-04-10 2021-01-22 京东方科技集团股份有限公司 检测方法、驱动方法、显示装置和补偿查找表的构建方法
CN110491319B (zh) * 2019-08-23 2022-09-27 深圳市华星光电半导体显示技术有限公司 发光二极管驱动电路及驱动晶体管电子迁移率检测方法
CN110782840B (zh) * 2019-11-15 2021-08-06 京东方科技集团股份有限公司 一种像素电路、补偿方法和显示面板
CN111292700A (zh) * 2020-03-31 2020-06-16 京东方科技集团股份有限公司 一种tft阈值电压补偿方法、装置及显示器
CN111486979B (zh) * 2020-04-23 2022-02-01 京东方科技集团股份有限公司 一种温度检测电路及其驱动方法、显示装置及其驱动方法
WO2024065086A1 (zh) * 2022-09-26 2024-04-04 京东方科技集团股份有限公司 驱动方法及装置、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227505A1 (en) * 2010-03-17 2011-09-22 Kyong-Tae Park Organic light emitting display device
CN104700772A (zh) * 2013-12-03 2015-06-10 乐金显示有限公司 有机发光显示装置及其图像质量补偿方法
US20180090103A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Temperature sensor on display active area
CN109166526A (zh) * 2018-10-19 2019-01-08 京东方科技集团股份有限公司 一种温度补偿方法及装置、显示装置
CN109961728A (zh) * 2019-04-10 2019-07-02 京东方科技集团股份有限公司 检测方法、驱动方法、显示装置和补偿查找表的构建方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485683B (zh) * 2013-03-28 2015-05-21 Innolux Corp 畫素電路及其驅動方法與顯示面板
KR102505896B1 (ko) * 2016-07-29 2023-03-06 엘지디스플레이 주식회사 유기발광 표시장치 및 이의 센싱방법
KR102603596B1 (ko) * 2016-08-31 2023-11-21 엘지디스플레이 주식회사 유기발광 표시장치와 그의 열화 센싱 방법
CN108877686B (zh) * 2017-05-12 2020-12-08 京东方科技集团股份有限公司 数据补偿方法及装置、显示驱动方法及装置、显示装置
CN107749280A (zh) * 2017-12-06 2018-03-02 京东方科技集团股份有限公司 显示装置的驱动方法及显示装置
CN108597449B (zh) * 2018-04-26 2020-04-21 京东方科技集团股份有限公司 像素电路的检测方法、显示面板的驱动方法和显示面板
CN109377931B (zh) * 2018-12-07 2022-02-08 合肥鑫晟光电科技有限公司 阈值电压获取方法、像素补偿方法及显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110227505A1 (en) * 2010-03-17 2011-09-22 Kyong-Tae Park Organic light emitting display device
CN104700772A (zh) * 2013-12-03 2015-06-10 乐金显示有限公司 有机发光显示装置及其图像质量补偿方法
US20180090103A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Temperature sensor on display active area
CN109166526A (zh) * 2018-10-19 2019-01-08 京东方科技集团股份有限公司 一种温度补偿方法及装置、显示装置
CN109961728A (zh) * 2019-04-10 2019-07-02 京东方科技集团股份有限公司 检测方法、驱动方法、显示装置和补偿查找表的构建方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375817A (zh) * 2021-06-23 2021-09-10 厦门极深微电子技术有限公司 一种非线性温度的显示装置
CN113375817B (zh) * 2021-06-23 2022-05-03 厦门极深微电子技术有限公司 一种非线性温度的显示装置

Also Published As

Publication number Publication date
CN109961728A (zh) 2019-07-02
CN109961728B (zh) 2021-01-22
WO2020207117A9 (zh) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2020207117A1 (zh) 检测方法、驱动方法、显示装置和补偿查找表的构建方法
CN108417169B (zh) 像素电路的检测方法、显示面板的驱动方法和显示面板
US11308875B2 (en) Detection method of pixel circuit, driving method of display panel and display panel
CN107657923B (zh) 像素电路的检测方法、显示面板的驱动方法、显示装置及像素电路
CN110036435B (zh) 像素电路、主动矩阵有机发光二极管显示面板、显示设备和补偿驱动晶体管阈值电压的方法
US8917224B2 (en) Pixel unit circuit and OLED display apparatus
US10643535B2 (en) Driving method for preventing image sticking of display panel upon shutdown, and display device
JP5552117B2 (ja) 有機el表示装置の表示方法および有機el表示装置
KR101443224B1 (ko) 유기 발광 다이오드의 화소 구조 및 그것의 구동 방법
WO2018145499A1 (zh) 像素电路、显示面板、显示装置及驱动方法
WO2018223702A1 (zh) 显示面板、像素的补偿电路和补偿方法
US11341914B2 (en) Method for driving organic light emitting display device, driving controller and display device
WO2019037300A1 (zh) Amoled像素驱动电路
EP3622504A1 (en) A data voltage compensation method, a display driving method, and a display apparatus
KR20150077710A (ko) 유기 발광 표시 장치 및 그의 구동 방법
WO2019000970A1 (zh) 显示面板的补偿方法、补偿装置及显示设备
JP2009265459A (ja) 画素回路および表示装置
WO2016150079A1 (zh) Oled显示装置和用于矫正oled显示装置的残像的方法
EP3048603B1 (en) Pixel unit driving circuit and method, pixel unit, and display device
US10559266B2 (en) Pixel driving method, pixel driving and display apparatus
WO2019076134A1 (zh) 像素电路的检测方法、显示面板的驱动方法和显示装置
US20210335258A1 (en) Method for driving display panel and display device
US11056071B2 (en) Display device and method of driving the same
KR102244932B1 (ko) 유기 발광 표시 장치 및 그의 구동 방법
US11776438B2 (en) Detecting method of pixel circuit, driving method of display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786975

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20786975

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20786975

Country of ref document: EP

Kind code of ref document: A1