WO2020206981A1 - 差压传感器封装结构及电子设备 - Google Patents

差压传感器封装结构及电子设备 Download PDF

Info

Publication number
WO2020206981A1
WO2020206981A1 PCT/CN2019/112935 CN2019112935W WO2020206981A1 WO 2020206981 A1 WO2020206981 A1 WO 2020206981A1 CN 2019112935 W CN2019112935 W CN 2019112935W WO 2020206981 A1 WO2020206981 A1 WO 2020206981A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
substrate
pressure sensor
differential pressure
cavity
Prior art date
Application number
PCT/CN2019/112935
Other languages
English (en)
French (fr)
Inventor
李刚
梅嘉欣
邵成龙
Original Assignee
苏州敏芯微电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67414636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020206981(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 苏州敏芯微电子技术股份有限公司 filed Critical 苏州敏芯微电子技术股份有限公司
Priority to EP19923758.7A priority Critical patent/EP3954979A4/en
Publication of WO2020206981A1 publication Critical patent/WO2020206981A1/zh
Priority to US17/498,546 priority patent/US20220026299A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/06Devices or apparatus for measuring differences of two or more fluid pressure values using electric or magnetic pressure-sensitive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0654Protection against aggressive medium in general against moisture or humidity

Definitions

  • the invention relates to the technical field of sensors, in particular to a differential pressure sensor packaging structure and an electronic device.
  • the prior art usually places two air pressure sensors on the PCB circuit board of the electronic equipment, and judges whether the pressure difference reaches the threshold value after processing the pressure difference of the two air pressure sensors. Realize the detection of air pressure difference.
  • the technical problem to be solved by the present invention is to provide a differential pressure sensor packaging structure and electronic equipment to improve the detection accuracy of the differential pressure sensor and the reliability of the electronic equipment.
  • the present invention provides a differential pressure sensor packaging structure, comprising: a substrate and a housing, the edge of the housing is fixed on the front surface of the substrate, and a first cavity is formed between the housing and the substrate;
  • the element is fixed on the front surface of the substrate and is located in the first cavity.
  • the pressure sensing element has a second cavity and a pressure sensing layer.
  • the pressure sensing layer is located in the first cavity and the second cavity. Between the cavities; the first cavity communicates with the outside through a first through hole, and the second cavity communicates with the outside through a second through hole.
  • the first through hole penetrates the housing; the second through hole penetrates the substrate.
  • both the first through hole and the second through hole penetrate the substrate.
  • the first through hole and the second through hole are located on opposite sides or the same side of the differential pressure sensor packaging structure.
  • it further includes an application specific integrated circuit chip, which is fixed on the front surface of the substrate located in the first cavity; the application specific integrated circuit chip is connected to the detection signal output end of the pressure sensing element for The detection signal output by the pressure sensing element calculates the pressure difference value.
  • the surface of the ASIC chip is covered with a protective layer.
  • the application specific integrated circuit chip is configured to output a feedback signal when the calculated pressure difference value reaches a threshold value.
  • a sealing area is formed on the back of the substrate, and the sealing area is a closed pattern, and the projection of the second through hole on the plane where the sealing area is located is in the closed pattern.
  • the sealing area protrudes from the back of the substrate or is flush with the back of the substrate.
  • the sealing area includes a conductive ring or an insulating ring.
  • the technical solution of the present invention also provides an electronic device with a differential pressure sensor packaging structure, including: the differential pressure sensor packaging structure of any one of the above; a first circuit board, the first circuit The board has a third through hole, and the third through hole and the second through hole are in sealed communication.
  • the sealing area is located between the substrate and the first circuit board, and is welded to the first circuit board. Or it is fixed by bonding, so that the third through hole and the second through hole are in sealed communication.
  • it further includes a waterproof and breathable membrane covering the first through hole and/or the third through hole.
  • it further includes: a second circuit board, the substrate and the first circuit board are vertically fixed on the second circuit board, and the electrical connection between the first circuit board and the second circuit board connection.
  • the differential pressure sensor packaging structure has the application specific integrated circuit chip
  • the application specific integrated circuit chip is connected to the first circuit board through an electrical connection structure located in the substrate.
  • it further includes: a processor connected to the signal output terminal of the application specific integrated circuit chip and configured to obtain the feedback signal output by the application specific integrated circuit chip.
  • the application specific integrated circuit chip is configured to send a feedback signal to the processor when the pressure difference value detected by the pressure sensing element reaches a threshold value.
  • the processor stands by.
  • the differential pressure sensor package structure of the present invention has only one pressure sensing element.
  • the pressure sensing layer of the pressure sensing element is located between the first cavity and the second cavity.
  • the cavities have through holes respectively, so the pressure difference between the first cavity and the second cavity can be detected by a single pressure sensing element. Since there is only one pressure sensing element, the packaging structure is simple, the size is small, and the cost is low.
  • the differential pressure sensor packaging structure further includes an application specific integrated circuit chip for calculating the differential pressure value according to the detection signal of the pressure sensing element. Since the power consumption of the ASIC chip is low, compared with using the device processor to calculate the pressure difference value, the power consumption can be reduced.
  • the first circuit board of the electronic device of the present invention is fixed to the substrate of the differential pressure sensor, and the through hole on the first circuit board is sealed and communicated with the through hole of the substrate to prevent the gas from leaking between the first circuit board and the substrate. Improve the accuracy of detection.
  • the electronic device further includes a processor connected to an application specific integrated circuit chip of the differential pressure sensor, and the application specific integrated circuit chip sends feedback information to the processor when the differential pressure value reaches a threshold value. Therefore, the processor does not need to be started in real time, which can reduce the power consumption of the electronic device and extend the standby time.
  • FIG. 1 is a schematic structural diagram of an electronic device according to a first embodiment of the present invention
  • Figure 2 is a pressure sensing element of an electronic device according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the backside of the substrate of the differential pressure sensor packaging structure of the first embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electronic device according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an electronic device according to a third embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an electronic device according to a fourth embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of an electronic device according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an electronic device according to a sixth embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional structure diagram of an electronic device according to a specific embodiment of the present invention.
  • the electronic device includes a differential pressure sensor packaging structure
  • the differential pressure sensor packaging structure includes: a substrate 11 and a housing 1, the edge of the housing 1 is fixed on the front surface of the substrate 11, and the substrate 11 is formed between First cavity 6.
  • the material of the substrate 11 can be commonly used substrate materials such as RF-4, BT, or ceramic substrate. Solders or electrical connection structures may be formed on the substrate 11 to provide electrical connection points.
  • the substrate 11 may be a single-layer or multi-layer circuit board.
  • the surface of the substrate 11 may be formed with a circuit structure, or electrical contacts, such as solder pads, etc.; the substrate 11 may also be formed with an electrical connection structure for The electrical contacts on the front and back of the substrate 11 are connected.
  • the housing 1 is used as an encapsulation housing of the differential pressure sensor to protect internal electronic components, and at the same time forms a first cavity 6 with the substrate 11.
  • the housing 1 can be made of metal material, with high temperature resistance and simple production process, and can be mass-produced.
  • the metal housing 1 also has the characteristics of corrosion resistance, electromagnetic shielding effect and high mechanical performance, which has a higher impact on the product. Protective effects.
  • the housing 1 may also be made of other hard materials such as plastic, which is not limited here.
  • the edge of the housing 1 is fixed to the front surface of the substrate 11 by welding or glue, so that a first cavity 6 is formed between the housing 1 and the substrate 11.
  • the housing 1 has a first through hole 4 passing through the housing of the housing 1 so that the first cavity 6 communicates with the outside of the housing 1.
  • the shell of the housing 1 has at least one first through hole 4.
  • the housing 1 has only one first through hole 4, in other embodiments, the housing 1 may also have more than two first through holes.
  • the edge of the housing 1 and the base plate 11 are in a sealed connection, so that the first cavity 6 can communicate with the outside only through the first through hole 4, and the gas in the first cavity 6 will not be in other positions. There is a leak.
  • the differential pressure sensor packaging structure further includes a pressure sensing element 2 fixed on the surface of the substrate 11 and located in the first cavity 6.
  • the pressure sensing element 2 is a MEMS device, and has a second cavity 10 and a pressure sensing layer located between the first cavity 6 and the second cavity 10.
  • FIG. 2 is a structural diagram of the pressure sensing element 2 of the electronic device in this embodiment.
  • the pressure sensing element 2 includes the pressure sensing layer 201 and a support structure 202 for supporting the edge of the pressure sensing layer 201, and the second cavity 10 is located in the pressure sensing layer 201 and the support structure 202 between.
  • the pressure sensing layer 201 of the pressure sensing element 2 may include a pressure sensitive film, and the pressure sensitive film may be a semiconductor film layer formed with a plurality of varistors 203, and the plurality of varistors 203 constitute a Wheatstone bridge structure .
  • the pressure sensing layer 201 is deformed under pressure, and the resistance of the varistor 203 changes, which causes the output signal of the Wheatstone bridge to change.
  • the pressure sensing element 2 is only for illustration, and does not represent the actual structure of the pressure sensing element 2.
  • the pressure sensing element 2 may also be another type of pressure sensing element with a cavity, for example, the pressure is detected by capacitance change.
  • the substrate 11 has a second through hole 9, the second through hole 9 is connected to the second cavity 10, and the second cavity is communicated with the outside through the second through hole 9.
  • the substrate 11 may also have more than two second through holes and The second cavity 10 is connected.
  • first through hole 4 and the second through hole 9 are located on opposite sides of the differential pressure sensor packaging structure. In other embodiments, the positions of the first through hole 4, the second through hole 9 and the pressure sensing element 2 can also be set reasonably according to actual detection requirements.
  • the surface of the first through hole 4 is covered with a waterproof and breathable membrane 3 to prevent corrosive substances from entering the first cavity 6.
  • the waterproof and breathable membrane may not be provided.
  • the waterproof breathable membrane 3 may be made of a hydrophobic material, and specifically may be at least one of PP spunbond non-woven fabric, PE polymer breathable membrane, and PP spunbonded non-woven fabric.
  • the waterproof and breathable membrane 3 covers the outer surface of the housing 1.
  • the waterproof and breathable membrane 3' may also cover the inner surface of the housing 1.
  • the differential pressure sensor packaging structure further includes an application specific integrated circuit chip 5 located in the first cavity 6 fixed on the surface of the substrate 11 located in the first cavity 6;
  • the ASIC chip 5 is connected to the detection signal output terminal of the pressure sensor element 2 and is used to calculate the pressure difference value according to the detection signal output by the pressure sensor element 2.
  • the gas pressure in the first cavity 6 and the second cavity 10 acts simultaneously On the pressure sensing layer of the pressure sensing element 2, so that the final pressure on the pressure sensing layer is the pressure difference between the first cavity 6 and the second cavity 10, so that the pressure sensing
  • the detection signal output by the element 2 corresponds to the pressure difference in the first cavity 6 and the second cavity 10, and the detection signal output by the pressure sensor element 2 is calculated by the application specific integrated circuit chip 5. Obtain the corresponding pressure difference value.
  • One pressure sensing element 2 can detect and obtain the pressure difference value at two through hole positions, and there is no need to set multiple pressure sensors at different through hole positions, which can reduce the pressure difference and make the size of the pressure sensor Be smaller and save costs.
  • the integrated circuit chip 5 has high reliability and low power consumption in the calculation process, which can save a lot of power consumption and prolong the standby time of the product.
  • the ASIC chip 5 is connected to the signal output terminal of the pressure sensing element 5 through gold wire bonding or other bonding processes, so as to calculate the pressure difference value according to the detection signal output by the pressure sensing element 2.
  • the ASIC chip 5 is also covered with a protective layer 15.
  • the ASIC chip 5 is configured to output a feedback signal when the pressure difference value reaches a threshold value, thereby avoiding the output of invalid signals and saving power consumption.
  • FIG. 3 is a schematic diagram of the backside of the substrate 11 of the aforementioned differential pressure sensor packaging structure.
  • the differential pressure sensor packaging structure further includes a sealing area 7 and a solder pad 14 on the back of the substrate 11.
  • the shape of the sealing area 7 is a closed figure, specifically, it may be a closed ring.
  • the projection of the second through hole 9 on the plane where the sealing area 7 is located is in the closed figure.
  • the sealing area 7 is circular.
  • the sealing area 7 may also be a closed shape such as a rectangle, a polygon, or various irregular shapes.
  • the sealing area 7 is used for fixed connection with the circuit board when the substrate 11 is connected to other circuit boards.
  • the sealing area 7 includes a conductive ring. While connecting the second through hole 9 and the third through hole 8, the conductive ring can form a gap between the substrate 11 and the first circuit board 12. The electrical connection between them can also be used as a ground (GND) terminal in the product performance.
  • GND ground
  • the sealing area 7 may also include an insulating ring, such as epoxy resin, rubber, etc., to achieve a better sealing effect.
  • an insulating ring such as epoxy resin, rubber, etc.
  • the sealing area 7 protrudes from the back surface of the substrate 11.
  • the substrate 11 at the edge of the sealing area 7 at least including the solder resist area 13 of the substrate 11 located inside the sealing area 7 can be polished, etched or ground. The process removes the solder resist material on the surface of the solder resist area 13 so that the surface of the solder resist area 13 is significantly lower than the sealing area 7.
  • the solder resist material may be glass filament or plastic on the surface of the substrate 11.
  • the electronic device shown further includes a first circuit board 12, and the differential pressure sensor packaging structure is fixed on the first circuit board 12.
  • the differential pressure sensor packaging structure is fixed on the first circuit board 12 through the substrate 11.
  • a circuit is formed on the first circuit board 12 and an electrical connection is formed with the substrate 11.
  • the ASIC chip 5 is electrically connected to the first circuit board 12 through an electrical connection structure located in the substrate 11 and a bonding pad 14.
  • a functional circuit is formed on the first circuit board 12, and the signal output by the application specific integrated circuit chip 5 is used as an input signal of the functional circuit on the first circuit board 12.
  • the functional circuits on the first circuit board 12 can process the signals output by the application specific integrated circuit chip 5.
  • other electronic components may be attached to the first circuit board 12.
  • the first circuit board 12 has a third through hole 8, and the third through hole 8 is in sealed communication with the second through hole 9, and the second cavity 10 passes through the second through hole 9 And the third through hole 8 communicates with the outside.
  • the third through hole 8 and the second through hole 9 are in sealed communication, so that when external air enters the second cavity 10 through the third through hole 8 and the second through hole 9, it will not flow from the first
  • the leakage between the circuit board 12 and the substrate 11 can improve the accuracy of pressure difference detection.
  • the back of the substrate 11 is fixed to the first circuit board 12 through the sealing area 7 and the soldering pad 14.
  • the projections of the second through hole 9 and the third through hole 8 on the plane of the sealing area 7 are both located in the closed figure, and the sealing area 7 is located between the substrate 11 and the first circuit board 12, In order to make the third through hole 8 communicate with the second through hole 9.
  • solder pads 14 are not limited by FIG. 3, and can be set reasonably according to the specific circuit structure.
  • the sealing area 7 is a circular welding ring, and the sealing area 7 and the welding pad 14 are electrically connected with the circuit on the first circuit board 12 through a welding process to transmit signals.
  • the third through hole 8 is in sealed communication with the second through hole 9 .
  • the solder resist area 13 is significantly lower than the sealing area 7, so that the sealing area 7 can easily connect the substrate 11 and the first circuit board 12 tightly with a sealing material, ensuring the airtightness of the product.
  • the sealing area 7 may also be connected to the first circuit board 12 by means of glue bonding. At this time, there is an adhesive bond between the sealing area 7 and the first circuit board 12.
  • a sealing material (not shown in the figure) such as a glue layer makes the sealing connection between the sealing area 7 and the first circuit 12 sealed.
  • the sealing The edge of the connection position between the area 7 and the first circuit board 12 is further filled with sealing materials such as solder or glue, so as to improve the sealing performance between the sealing area 7 and the first circuit board 12.
  • the sealing area 7 may also be located in the surface of the substrate 11, at least partially lower than the back surface of the substrate 11 or flush with the back surface of the substrate 11. Sealing materials are filled between the circuit boards 12 and/or at the edges to achieve a sealed connection between the sealing area 7 and the circuit boards.
  • FIG. 4 is a schematic structural diagram of an electronic device according to another embodiment of the present invention.
  • the third through hole 8 of the first circuit board 12 is covered with a waterproof and breathable membrane 3'.
  • the waterproof and breathable membrane 3' covers the outer surface of the first circuit board 12 facing away from the differential pressure sensor. In other embodiments, it may also cover the inner surface of the first circuit board 12.
  • the surface of the through hole on the side where the air flow is applied can be covered with a waterproof and breathable membrane.
  • the surfaces of the first through hole 4 and the third through hole 8 on the opposite sides of the differential pressure sensor may be covered with waterproof and breathable membranes.
  • the differential pressure sensor packaging structure can be placed horizontally to detect the change of the air pressure difference between the upper and lower sides of the differential pressure sensor.
  • FIG. 5 is a schematic structural diagram of an electronic device according to another embodiment of the present invention.
  • the electronic device detects that the differential pressure sensor is located on both sides in the horizontal direction of the differential pressure sensor packaging structure to cause the pressure difference to change.
  • this embodiment further includes a second circuit board 16.
  • the substrate 11 and the first circuit board 12 are vertically fixed to the second circuit board 16, so that the first through hole 4 and the third through hole 8 respectively face the opposite sides in the horizontal plane.
  • the first circuit board 12 and the second circuit board 16 may be electrically connected through wires.
  • the first through hole 4 covered with the waterproof and breathable membrane 3 faces the direction of the airflow, and the airflow enters from the first through hole 4, a part of which passes through the waterproof and breathable membrane 3 into the first cavity 6, and the other part of the airflow is along the
  • the differential pressure sensor changes direction, bypasses the differential pressure sensor and flows to the back of the differential pressure sensor. At this time, the pressure of the gas entering the first through hole 4 and the third through hole 8 changes, and the pressure sensor The component outputs the pressure change signal to the ASIC chip to calculate the pressure difference value.
  • FIG. 6 is a schematic diagram of another embodiment of the differential pressure sensor package structure when used vertically.
  • the waterproof and breathable membrane 3 covers the third through hole 8, so that the third through hole 8 faces the airflow direction.
  • the first cavity 6 of the differential pressure sensor packaging structure communicates with the outside through the first through hole 4 a.
  • the first through hole 4 a penetrates the substrate 11 and communicates with the first cavity 6.
  • the air inlet or liquid inlet direction of the first through hole 4 a is parallel to the surface of the substrate 11, and the air outlet or liquid direction is perpendicular to the surface of the substrate 11.
  • the first through hole 4a and the third through hole 8 are respectively connected to different external environments, that is, the pressure difference in the different external environments can be tested.
  • the first cavity 6 between the housing 1 of the differential pressure sensor packaging structure and the substrate 11 communicates with the outside through the first through hole 4 b.
  • the first through hole 4 b penetrates the substrate 11 and communicates with the first cavity 6.
  • the first through hole 4 b vertically penetrates the substrate 11 and is located outside the sealing area 7. The external air or liquid enters the first cavity 6 through the first through hole 4b through the gap between the substrate 11 and the circuit board 12.
  • the first through hole 4b and the third through hole 8 are respectively connected to different external environments, that is, the pressure difference in the different external environments can be tested.
  • the position of the first through hole may be reasonably set according to factors such as different external environmental positions of the pressure difference to be measured.
  • the electronic device further includes a processor (CPU).
  • CPU central processing unit
  • the processor is connected to the signal output terminal of the application specific integrated circuit chip of the above-mentioned differential pressure sensor, and is used to obtain the output signal of the application specific integrated circuit chip, and initiate a corresponding instruction according to the output signal.
  • the processor can be mounted on the first circuit board 12 (please refer to FIG. 1) or the second circuit board 16, and can be mounted on the first circuit board 12 and/or the second circuit board 16
  • the functional circuit is connected to the signal output terminal of the ASIC chip.
  • the processor may also be mounted on other circuit boards, such as a motherboard, and connected to the first circuit board 12 or the second circuit board 16 through inter-board connections, so as to achieve communication with the The signal connection between the signal output ends of the application specific integrated circuit chip realizes the signal transmission between the processor and the application specific integrated circuit chip.
  • the application specific integrated circuit chip is configured to send a feedback signal to the processor when the pressure difference value detected by the pressure sensing element reaches a threshold value.
  • the processor is in the standby stage and does not need to process instructions related to the pressure difference value.
  • the differential pressure sensor When the electronic device is in the standby state, the differential pressure sensor automatically detects changes in the pressure value at regular intervals.
  • the pressure sensing element of the differential pressure sensor transmits the detection signal of pressure change to the ASIC chip, and the ASIC chip calculates the pressure difference value, and when the difference in air pressure on both sides reaches the set threshold, it is fed back to the processor ,
  • the processor initiates the relevant instructions.
  • the processor can be in a standby state to reduce power consumption. Since the power consumption of the ASIC chip is much smaller than the power consumption of the processor, the pressure difference is calculated through the ASIC chip, and then the effective pressure difference is fed back to the processor, which can save the power consumption of electronic equipment and improve the standby of the equipment duration.
  • the above electronic equipment has a simple structure and can be mass-produced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种差压传感器封装结构及电子设备,差压传感器封装结构包括:基板(11)与外壳(1),外壳(1)边缘固定于基板(11)的正面,与基板(11)之间形成第一腔体(6);压力传感元件(2),固定于基板(11)正面且位于第一腔体内(6),压力传感元件(2)具有第二腔体(10)以及压力感应层(201),压力感应层(201)位于第一腔体(6)与第二腔体(10)之间;第一腔体(6)通过第一通孔(4,4a,4b)与外部连通,第二腔体(10)通过第二通孔(9)与外部连通。差压传感器尺寸较小且功耗较低,可靠性高。

Description

差压传感器封装结构及电子设备 技术领域
本发明涉及传感器技术领域,尤其涉及一种差压传感器封装结构及一种电子设备。
背景技术
目前的在需要检测气压差的电子设备中,现有技术通常在电子设备的PCB电路板上放置两个气压传感器,通过对两个气压传感器的压力差值处理后判断压力差是否达到阈值,以实现对气压差的检测。
采用两个气压传感器会导致电子设备的成本提高;且两个气压传感器占用了较大空间影响产品的短小化设计;再者两个气压传感器相互依赖性强,损坏其中任意一颗都会导致整个产品失效,使得电子设备的失效风险较大。
因此,需要一种检测准确且可靠性高的差压传感器来实现气压差的检测。
发明内容
本发明所要解决的技术问题是,提供一种差压传感器封装结构及电子设备,提高差压传感器的检测准确性以及电子设备的可靠性。
为了解决上述问题,本发明提供了一种差压传感器封装结构,包括:基板与外壳,所述外壳边缘固定于所述基板的正面,与所述基板之间形成第一腔体;压力传感元件,固定于所述基板正面且位于所述第一腔体内,所述压力传感元件具有第二腔体以及压力感应层,所述压力感应层位于所述第一腔体与所述第二腔体之间;所述第一腔体通过第一通孔与外部连通,所述第二腔体通过第二通孔与外部连通。
可选的,所述第一通孔贯穿所述外壳;所述第二通孔贯穿所述基板。
可选的,所述第一通孔和第二通孔均贯穿所述基板。
可选的,所述第一通孔与所述第二通孔位于所述差压传感器封装结构相对的两侧或同一侧。
可选的,还包括专用集成电路芯片,固定于所述位于所述第一腔体内的基板的正面;所述专用集成电路芯片连接至所述压力传感元件的检测信号输出 端,用于根据所述压力传感元件输出的检测信号计算压差值。
可选的,所述专用集成电路芯片表面覆盖有保护层。
可选的,所述专用集成电路芯片被配置为在计算得到的压差值达到阈值时输出反馈信号。
可选的,所述基板背面形成有密封区域,且所述密封区域为封闭图形,所述第二通孔在所述密封区域所在平面的投影位于所述封闭图形内。
可选的,所述密封区域凸出于所述基板背面或者与所述基板背面齐平。
可选的,所述密封区域包括导电环或绝缘环。
为解决上述技术问题,本发明的技术方案还提供一种具有差压传感器封装结构的电子设备,包括:上述任一项所述的差压传感器封装结构;第一电路板,所述第一电路板具有第三通孔,且所述第三通孔与所述第二通孔之间密封连通。
可选的,当所述差压传感器封装结构的基板背面形成有密封区域时,所述密封区域位于所述基板与所述第一电路板之间,与所述第一电路板之间通过焊接或粘接方式固定,使得所述第三通孔与所述第二通孔之间密封连通。
可选的,还包括防水透气膜,覆盖所述第一通孔和/或第三通孔。
可选的,还包括:第二电路板,所述基板与所述第一电路板垂直固定于所述第二电路板上,且所述第一电路板与所述第二电路板之间电连接。
可选的,当所述差压传感器封装结构具有所述专用集成电路芯片时,所述专用集成电路芯片通过位于所述基板内的电连接结构,连接至所述第一电路板。
可选的,还包括:处理器,连接至所述专用集成电路芯片的信号输出端,用于获取所述专用集成电路芯片输出的反馈信号。
可选的,所述专用集成电路芯片被配置为当所述压力传感元件检测到的压差值到达阈值时,向所述处理器发送反馈信号。
可选的,当所述压差值未到达阈值时,所述处理器待机。
本发明的差压传感器封装结构,仅具有一个压力传感元件,所述压力传感元件的压力传感层位于第一腔体和第二腔体之间,所述第一腔体和第二腔体分别具有进通孔,因此,能够通过单个压力传感元件检测第一腔体和第二腔体之 间的压力差。由于仅有一个压力传感元件,封装结构简单,尺寸较小,成本较低。
进一步的,所述差压传感器封装结构还包括一专用集成电路芯片,用于根据所述压力传感元件的检测信号计算压差值。由于所述专用集成电路芯片的功耗较低,与采用设备处理器计算压差值相比,能够降低功耗。
本发明的电子设备的第一电路板与差压传感器的基板固定,第一电路板上的通孔与基板通孔密封连通,避免进入的气体在第一电路板与基板之间泄漏,从而可以提高检测的准确性。
进一步,所述电子设备还包括处理器,与差压传感器的专用集成电路芯片连接,所述专用集成电路芯片在压差值达到阈值时,向处理器发送反馈信息。因此,处理器不用实时启动,可以降低电子设备的功耗,延长待机时间。
附图说明
图1为本发明的第一实施例的电子设备的结构示意图;
图2为本发明的第一实施例的电子设备的压力传感元件;
图3为本发明的第一实施例的差压传感器封装结构的基板的背面示意图;
图4为本发明的第二实施例的电子设备的结构示意图;
图5为本发明的第三实施例的电子设备的结构示意图;
图6为本发明的第四实施例的电子设备的结构示意图;
图7为本发明的第五实施例的电子设备的结构示意图;
图8为本发明的第六实施例的电子设备的结构示意图。
实施例
下面结合附图对本发明提供的差压传感器封装结构及电子设备的实施例做详细说明。
第一实施例
请参考图1,为本发明一具体实施例的电子设备的剖面结构示意图。
所述电子设备包括一差压传感器封装结构,所述差压传感器封装结构,包括:基板11与外壳1,所述外壳1边缘固定于所述基板11的正面,与所述基 板11之间形成第一腔体6。
所述基板11的材质可以采用RF-4、BT或陶瓷基材等常用的基板材料。所述基板11上可以形成有焊点或电连接结构,用于提供电连接点。所述基板11可以为单层或多层电路板,所述基板11表面可以形成有电路结构,或电接触部,例如焊垫等;所述基板11内部还可以形成有电连接结构,用于连接所述基板11正面和背面的电接触部。
所述外壳1作为差压传感器的封装外壳,用于保护内部的电子元件,同时与所述基板11之间形成第一腔体6。所述外壳1可以为金属材质,耐高温且生产工艺简单,可以大规模量产,并且金属材质的外壳1还具有抗腐蚀、电磁屏蔽作用以及高机械性能等特性,对产品起到较高的保护作用。在其他的实施例中,所述外壳1也可以采用塑料等其他硬质材料,在此不作限定。
所述外壳1边缘通过焊接或粘胶等方式,固定于所述基板11正面,使得所述外壳1与基板11之间形成第一腔体6。该具体实施方式中,所述外壳1具有贯穿所述外壳1的壳体的第一通孔4,使得所述第一腔体6与外壳1外部连通。所述外壳1的壳体上具有至少一个第一通孔4。该实施例中,所述外壳1仅具有1个第一通孔4,在其他实施例中,所述外壳1还可以具有两个以上的第一通孔。所述外壳1边缘与所述基板11之间密封连接,使得所述第一腔体6与外部仅能够通过所述第一通孔4连通,第一腔体6内的气体不会在其他位置处产生泄漏。
所述差压传感器封装结构还包括压力传感元件2,固定于所述基板11表面且位于所述第一腔体6内。所述压力传感元件2为MEMS器件,具有第二腔体10以及压力感应层,所述压力感应层位于所述第一腔体6与所述第二腔体10之间。
请参考图2,为该实施例中,所述电子设备的压力传感元件2的结构示意图。
所述压力传感元件2包括所述压力感应层201以及用于支撑所述压力感应层201边缘的支撑结构202,所述第二腔体10位于所述压力感应层201和所述支撑结构202之间。所述压力传感元件2的压力感应层201可以包括压敏薄膜,所述压敏薄膜可以为形成有若干压敏电阻203的半导体膜层,所述若干压敏电 阻203构成惠斯通电桥结构。所述压力感应层201受到压力作用下发生形变,所述压敏电阻203的电阻发生变化,使得惠斯通电桥的输出信号发生变化。
图1和图2中,压力传感元件2仅作为示意,并不代表压力传感元件2的实际结构。在其他实施例中,所述压力传感元件2还可以为其他类型的具有空腔的压力传感元件,例如通过电容变化检测压力。
所述基板11具有第二通孔9,所述第二通孔9连通至所述第二腔体10,所述第二腔体通过所述第二通孔9外部连通。该实施例中,所述基板11上仅有一个第二通孔9与所述第二腔体10连通;在其他实施例中,所述基板11还可以具有两个以上第二通孔与所述的第二腔体10连通。
该实施例中,所述第一通孔4与所述第二通孔9位于所述差压传感器封装结构相对的两侧。在其他实施例中,也可以根据实际检测需求,合理设置所述第一通孔4、第二通孔9以及压力传感元件2的位置。
该实施例中,所述第一通孔4表面覆盖有防水透气膜3,可以阻止腐蚀性物质进入所述第一腔体6内。在其他实施例中,也可以不设置所述防水透气膜。所述防水透气膜3可以采用疏水性材质,具体可以为PP纺粘无纺布、PE高分子透气膜以及PP纺粘无纺布中的至少一种。该实施例中,所述防水透气膜3覆盖于所述外壳1的外表面,在其他实施例中,所述防水透气膜3’也可以覆盖于所述外壳1的内表面。
该实施例中,所述差压传感器封装结构还包括位于所述第一腔体6内的专用集成电路芯片5,固定于所述位于所述第一腔体6内的基板11的表面;所述专用集成电路芯片5连接至所述压力传感元件2的检测信号输出端,用于根据所述压力传感元件2输出的检测信号计算压差值。
由于所述压力传感元件2的压力感应层位于所述第一腔体6和第二腔体10之间,因此,所述第一腔体6和第二腔体10内的气体压强同时作用于所述压力传感元件2的压力感应层上,使得所述压力感应层最终受到的压强为所述第一腔体6和第二腔体10内的压强差,从而使得所述压力传感元件2输出的检测信号对应于所述第一腔体6和第二腔体10内的压强差,再通过所述专用集成电路芯片5对所述压力传感元件2输出的检测信号进行计算,获得对应的压差值。通过一个所述压力传感元件2即可以检测获得两个通孔位置处的压差值, 无需在不同通孔位置处设置多个压力传感器,可以减小压差且使得所述压产传感器的尺寸变小,节约成本。所述集成电路芯片5的可靠性较高,计算过程功耗较低,可以节约大量功耗,延长产品的待机时间。
所述专用集成电路芯片5通过金线键合或其他键合工艺,与所述压力传感元件5的信号输出端连接,从而根据所述压力传感元件2输出的检测信号计算压差值。
为了保护所述专用集成电路芯片5及其与所述压力传感元件5之间的连接线,本实施例中,所述专用集成电路芯片5上还覆盖有保护层15。
所述专用集成电路芯片5被配置为在压差值达到阈值时输出反馈信号,从而避免无效信号的输出,节约功耗。
请参考图3,为上述差压传感器封装结构的基板11的背面示意图。
所述差压传感器封装结构还包括位于所述基板11背面的密封区域7以及焊垫14。所述密封区域7的形状为封闭图形,具体的,可以为封闭的环状。所述第二通孔9在所述密封区域7所在平面的投影位于所述封闭图形内。该实施例中,所述密封区域7为圆形。在其他实施例中,所述密封区域7还可以为矩形、多边形或者各种不规则图形等封闭图形。
所述密封区域7用于在所述基板11连接至其他电路板时,与所述电路板固定连接。
该实施例中,所述密封区域7包括一导电环,在使得第二通孔9与第三通孔8之间连接同时,所述导电环能够形成所述基板11与第一电路板12之间的电连接,还可以在产品性能中作为地(GND)端。
所述密封区域7还可以包括绝缘环,例如环氧树脂、橡胶等,能够起到较好的密封效果。
为了提高所述密封区域7连接到其他电路板时的密封效果,所述密封区域7凸出于所述基板11的背面。为了确保所述密封区域7凸出于所述基板11的背面,可以对密封区域7边缘的基板11,至少包括位于密封区域7内侧的基板11的阻焊区域13进行抛光、刻蚀或研磨等处理去除所述阻焊区域13表面的阻焊材料,使得所述阻焊区域13表面明显低于所述密封区域7。所述阻焊材料可以为所述基板11表面的玻璃丝或塑料等。
请继续参考图1,所示的电子设备还包括第一电路板12,所述差压传感器封装结构固定于所述第一电路板12上。具体的,所述差压传感器封装结构通过所述基板11固定于第一电路板12上。所述第一电路板12上形成有电路,与所述基板11之间形成电连接。所述专用集成电路芯片5通过位于所述基板11内的电连接结构,以及焊垫14电连接至所述第一电路板12。所述第一电路板12上形成有功能电路,所述专用集成电路芯片5输出的信号作为所述第一电路板12上功能电路的输入信号。所述第一电路板12上的功能电路能够对所述专用集成电路芯片5输出的信号进行处理。在其他实施例中,所述第一电路板12上还可以贴装有其他电子元件。
所述第一电路板12具有第三通孔8,且所述第三通孔8与所述第二通孔9之间密封连通,所述第二腔体10通过所述第二通孔9以及第三通孔8与外部连通。所述第三通孔8与所述第二通孔9之间密封连通,使得外部气体通过第三通孔8、第二通孔9进入所述第二腔体10时,不会从第一电路板12与基板11之间泄露,从而可以提高压差检测的准确性。
该实施例中,所述基板11背面通过密封区域7、焊垫14固定于所述第一电路板12上。所述第二通孔9和第三通孔8在所述密封区域7所在平面的投影均位于所述封闭图形内,所述密封区域7位于所述基板11和第一电路板12之间,以使所述第三通孔8与所述第二通孔9之间连通。
所述焊垫14的数量以及形状不受图3限制,可以根据具体电路结构合理设置。
该实施例中,所述密封区域7为圆形焊环,通过焊接工艺将所述密封区域7以及焊垫14与所述第一电路板12上的电路形成电连接,以传输信号。
为了避免液体或气体从第三通孔8进入第二通孔9时,在第一电路板12和基板11之间发生泄漏,所述第三通孔8与所述第二通孔9密封连通。阻焊区域13明显低于所述密封区域7,从而所述密封区域7容易通过密封材料将基板11和第一电路板12紧密的连接在一起,保证产品的气密性。在其他具体实施方式中,所述密封区域7也可以通过胶体粘结的方式与所述第一电路板12连接,此时,所述密封区域7与所述第一电路板12之间具有粘胶层等密封材料(图中未示出),使得所述密封区域7与所述第一电路12之间密封连接。
除了所述密封区域7与所述第一电路板12之间通过焊料、粘胶等材料与所述第一电路板12之间形成密封连接以外,在其他实施例中,还可以在所述密封区域7与第一电路板12的连接位置边缘进一步填充焊料、粘胶等密封材料,以提高所述密封区域7与所述第一电路板12之间的密封性。
在其他实施例中,所述密封区域7也可以位于所述基板11表面内,至少局部低于所述基板11的背面或与所述基板11的背面齐平,通过在密封区域7与第一电路板12之间和/或边缘填充密封材料来实现密封区域7与电路板之间的密封连接。
第二实施例
请参考图4,为本发明另一实施例的电子设备的结构示意图。
该具体实施方式中,所述第一电路板12的第三通孔8上覆盖有防水透气膜3’。所述防水透气膜3’覆盖于所述第一电路板12的背向所述差压传感器的外侧表面,在其他实施例中,还可以覆盖于所述第一电路板12的内侧表面。
通常,可以在施加气流一侧的通孔表面覆盖防水透气膜。在其他实施中,可以在所述差压传感器相对两侧的第一通孔4和第三通孔8表面均覆盖防水透气膜。
上述实施例中,所述差压传感器封装结构可以水平放置,检测所述差压传感器上方和下方之间的气压差变化。
第三实施例
请参考图5,为本发明另一实施例的电子设备的结构示意图。
该实施例中,所述电子设备检测位于所述差压传感器封装结构水平方向上两侧使得气压差变化。
具体的,该实施例中,还包括第二电路板16,所述基板11、第一电路板12垂直固定于所述第二电路板16,使得所述第一通孔4和第三通孔8分别朝向水平面内的相对两侧。
所述第一电路板12与所述第二电路板16之间可以通过导线实现电连接。
将覆盖有防水透气膜3的第一通孔4朝向气流方向,气流从第一通孔4进 入,其中一部分穿过所述防水透气膜3进入所述第一腔体6内,另一部分气流沿所述差压传感器改变方向,绕过所述差压传感器流向所述差压传感器的背面,此时,第一通孔4和第三通孔8进入的气体压强发生变化,所述压力传感元件将压力变化信号输出至所述专用集成电路芯片计算压差值。
第四实施例
请参考图6,为另一实施利中,差压传感器封装结构垂直使用时的示意图。
该实施例中,所述防水透气膜3’覆盖于第三通孔8,因此将所述第三通孔8朝向气流方向。
第五实施例
请参考图7,该实施例中,所述差压传感器封装结构的第一腔体6通过所述第一通孔4a与外部连通。所述第一通孔4a贯穿所述基板11与所述第一腔体6连通。该实施例中,所述第一通孔4a的进气或进液方向平行于所述基板11表面,出气或出液方向垂直于所述基板11表面。
所述电子设备在使用过程中,所述第一通孔4a和第三通孔8分别连通至不同的外部环境,即可以测试所述不同的外部环境内的压差。
第六实施例
请参考图8,该实施例中,所述差压传感器封装结构外壳1与基板11之间的第一腔体6通过所述第一通孔4b与外部连通。所述第一通孔4b贯穿所述基板11与所述第一腔体6连通。该实施例中,所述第一通孔4b垂直贯穿所述基板11,位于所述密封区域7外侧。所述外部气体或液体经由所述基板11与电路板12之间的间隙经由所述第一通孔4b进入所述第一腔体6内。
所述电子设备在使用过程中,所述第一通孔4b和第三通孔8分别连通至不同的外部环境,即可以测试所述不同的外部环境内的压差。
在其他实施例中,可以根据待测压差的不同外部环境位置等因素,合理设置所述第一通孔的位置。
第七实施例
本实施例中,所述电子设备还包括处理器(CPU)。
所述处理器连接至上述差压传感器的专用集成电路芯片的信号输出端,用于获取所述专用集成电路芯片的输出信号,并且,根据所述输出信号而启动对应的指令。
所述处理器(CPU)可以贴装于所述第一电路板12(请参考图1)或第二电路板16上,通过所述第一电路板12和/或第二电路板16上的功能电路,连接至所述专用集成电路芯片的信号输出端。在其他具体实施方式中,所述处理器也可以贴装于其他电路板上,例如主板,通过板间连线连接至所述第一电路板12或第二电路板16,以实现与所述专用集成电路芯片的信号输出端之间的信号连接,实现所述处理器与所述专用集成电路芯片之间的信号传输。
所述专用集成电路芯片被配置为当所述压力传感元件检测到的压差值到达阈值时,向所述处理器发送反馈信号。当所述压差值未到达阈值时,所述处理器处于待机阶段,无需处理与压差值相关的指令。
当所述电子设备在待机状态时,所述差压传感器每隔一定时间自动检测压力值的变化。差压传感器的压力传感元件将压力变化的检测信号传输到专用集成电路芯片,由所述专用集成电路芯片计算压差值,当两侧的气压差异达到设定的阈值时,反馈给处理器,由处理器启动相关指令。在压差值到达阈值之前,所述处理器可以处于待机状态,降低功耗。由于专用集成电路芯片的功耗远小于处理器的功耗,因此,通过专用集成电路芯片计算气压差,再将有效气压差值反馈给处理器,可以节约电子设备的功耗,提高设备的待机时长。且上述电子设备的结构简单,可以大规模量产。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (18)

  1. 一种差压传感器封装结构,其特征在于,包括:
    基板与外壳,所述外壳边缘固定于所述基板的正面,与所述基板之间形成第一腔体;
    压力传感元件,固定于所述基板正面且位于所述第一腔体内,所述压力传感元件具有第二腔体以及压力感应层,所述压力感应层位于所述第一腔体与所述第二腔体之间;
    所述第一腔体通过第一通孔与外部连通,所述第二腔体通过第二通孔与外部连通。
  2. 根据权利要求1所述的差压传感器封装结构,其特征在于,所述第一通孔贯穿所述外壳;所述第二通孔贯穿所述基板。
  3. 根据权利要求1所述的差压传感器封装结构,其特征在于,所述第一通孔和第二通孔均贯穿所述基板。
  4. 根据权利要求1所述的差压传感器封装结构,其特征在于,所述第一通孔与所述第二通孔位于所述差压传感器封装结构相对的两侧或同一侧。
  5. 根据权利要求1所述的差压传感器封装结构,其特征在于,还包括专用集成电路芯片,固定于所述位于所述第一腔体内的基板的正面;所述专用集成电路芯片连接至所述压力传感元件的检测信号输出端,用于根据所述压力传感元件输出的检测信号计算压差值。
  6. 根据权利要求5所述的差压传感器封装结构,其特征在于,所述专用集成电路芯片表面覆盖有保护层。
  7. 根据权利要求5所述的差压传感器封装结构,其特征在于,所述专用集成电路芯片被配置为在计算得到的压差值达到阈值时输出反馈信号。
  8. 根据权利要求1所述的差压传感器封装结构,其特征在于,所述基板背面形成有密封区域,且所述密封区域为封闭图形,所述第二通孔在所述密封区域所在平面的投影位于所述封闭图形内。
  9. 根据权利要求8所述的差压传感器封装结构,其特征在于,所述密封区域凸出于所述基板背面或者与所述基板背面齐平。
  10. 根据权利要求8所述的差压传感器封装结构,其特征在于,所述密封区域 包括导电环或绝缘环。
  11. 一种电子设备,其特征在于,包括:
    如权利要求1至10任一项所述的差压传感器封装结构;
    第一电路板,所述第一电路板具有第三通孔,且所述第三通孔与所述第二通孔之间连通。
  12. 根据权利要求11所述的电子设备,其特征在于,当所述差压传感器封装结构的基板背面形成有密封区域时,所述密封区域位于所述基板与所述第一电路板之间,与所述第一电路板之间通过焊接或粘接方式固定,使得所述第三通孔与所述第二通孔之间密封连通。
  13. 根据权利要求11所述的电子设备,其特征在于,还包括防水透气膜,覆盖所述第一通孔和/或第三通孔。
  14. 根据权利要求11所述的电子设备,其特征在于,还包括:第二电路板,所述基板与所述第一电路板垂直固定于所述第二电路板上,且所述第一电路板与所述第二电路板之间电连接。
  15. 根据权利要求11所述的电子设备,其特征在于,当所述差压传感器封装结构具有所述专用集成电路芯片时,所述专用集成电路芯片通过位于所述基板内的电连接结构,连接至所述第一电路板。
  16. 根据权利要求15所述的电子设备,其特征在于,还包括:处理器,连接至所述专用集成电路芯片的信号输出端,用于获取所述专用集成电路芯片输出的反馈信号。
  17. 根据权利要求16所述的电子设备,其特征在于,所述专用集成电路芯片被配置为当所述压力传感元件检测到的压差值到达阈值时,向所述处理器发送反馈信号。
  18. 根据权利要求17所述的电子设备,其特征在于,当所述压差值未到达阈值时,所述处理器待机。
PCT/CN2019/112935 2019-04-09 2019-10-24 差压传感器封装结构及电子设备 WO2020206981A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19923758.7A EP3954979A4 (en) 2019-04-09 2019-10-24 HOUSING STRUCTURE FOR DIFFERENTIAL PRESSURE SENSOR AND ELECTRONIC DEVICE
US17/498,546 US20220026299A1 (en) 2019-04-09 2021-10-11 Package structure for differential pressure sensor, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910280377.XA CN110082027A (zh) 2019-04-09 2019-04-09 差压传感器封装结构及电子设备
CN201910280377.X 2019-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/498,546 Continuation US20220026299A1 (en) 2019-04-09 2021-10-11 Package structure for differential pressure sensor, and electronic device

Publications (1)

Publication Number Publication Date
WO2020206981A1 true WO2020206981A1 (zh) 2020-10-15

Family

ID=67414636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112935 WO2020206981A1 (zh) 2019-04-09 2019-10-24 差压传感器封装结构及电子设备

Country Status (4)

Country Link
US (1) US20220026299A1 (zh)
EP (1) EP3954979A4 (zh)
CN (1) CN110082027A (zh)
WO (1) WO2020206981A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082027A (zh) * 2019-04-09 2019-08-02 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备
CN110954262A (zh) * 2019-12-04 2020-04-03 上海矽睿科技有限公司 一种抗水防油封装的差压传感器
WO2022083567A1 (zh) * 2020-10-21 2022-04-28 苏州敏芯微电子技术股份有限公司 电子设备
CN112665775B (zh) * 2020-12-18 2021-08-13 深圳安培龙科技股份有限公司 一种新型的压差传感器及其封装方法
CN115060412B (zh) * 2022-05-30 2023-11-03 无锡胜脉电子有限公司 一种基于二次标定的差压压力传感器制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204612856U (zh) * 2015-03-23 2015-09-02 凯龙高科技股份有限公司 一种压差传感器
CN206538189U (zh) * 2017-03-17 2017-10-03 上海春蝶实业股份有限公司 一种差压传感器的封装结构
CN107991016A (zh) * 2017-12-15 2018-05-04 芜湖致通汽车电子有限公司 一种差压传感器结构
CN108072487A (zh) * 2016-11-11 2018-05-25 测量专业股份有限公司 校正压力传感器的方法和设备
US10065853B2 (en) * 2016-05-23 2018-09-04 Rosemount Aerospace Inc. Optimized epoxy die attach geometry for MEMS die
CN109827703A (zh) * 2019-03-27 2019-05-31 歌尔股份有限公司 气压检测方法、装置和洗衣机
CN110082027A (zh) * 2019-04-09 2019-08-02 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1494004B1 (de) * 2003-07-03 2011-03-09 Grundfos A/S Differenzdrucksensor
JP2008304245A (ja) * 2007-06-06 2008-12-18 Denso Corp 圧力センサ
DE102012109314A1 (de) * 2012-10-01 2014-04-17 Endress + Hauser Gmbh + Co. Kg Drucksensor mit Feuchtefilter
KR101803408B1 (ko) * 2016-03-23 2017-11-30 주식회사 아이티엠반도체 압력 센서 장치와 압력 센서 조립체 및 압력 센서 장치의 제조 방법
US10589989B2 (en) * 2016-10-14 2020-03-17 Semiconductor Components Industries, Llc Absolute and differential pressure sensors and related methods
IT201600121210A1 (it) * 2016-11-30 2018-05-30 St Microelectronics Srl Modulo di trasduzione multi-dispositivo, apparecchiatura elettronica includente il modulo di trasduzione e metodo di fabbricazione del modulo di trasduzione
CN211504505U (zh) * 2019-04-09 2020-09-15 苏州敏芯微电子技术股份有限公司 传感器封装结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204612856U (zh) * 2015-03-23 2015-09-02 凯龙高科技股份有限公司 一种压差传感器
US10065853B2 (en) * 2016-05-23 2018-09-04 Rosemount Aerospace Inc. Optimized epoxy die attach geometry for MEMS die
CN108072487A (zh) * 2016-11-11 2018-05-25 测量专业股份有限公司 校正压力传感器的方法和设备
CN206538189U (zh) * 2017-03-17 2017-10-03 上海春蝶实业股份有限公司 一种差压传感器的封装结构
CN107991016A (zh) * 2017-12-15 2018-05-04 芜湖致通汽车电子有限公司 一种差压传感器结构
CN109827703A (zh) * 2019-03-27 2019-05-31 歌尔股份有限公司 气压检测方法、装置和洗衣机
CN110082027A (zh) * 2019-04-09 2019-08-02 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备

Also Published As

Publication number Publication date
EP3954979A1 (en) 2022-02-16
US20220026299A1 (en) 2022-01-27
EP3954979A4 (en) 2023-01-18
CN110082027A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020206981A1 (zh) 差压传感器封装结构及电子设备
CN110631759A (zh) 差压传感器封装结构及电子设备
US7176541B2 (en) Pressure sensor
US20180148323A1 (en) Multi-device transducer modulus, electronic apparatus including the transducer modulus and method for manufacturing the transducer modulus
KR101740014B1 (ko) 압력센서장치 및 그 제조방법
JP2010169460A (ja) 流量式センサ
WO2016037302A1 (zh) 一种压力传感器及其制造方法
WO2022188524A1 (zh) 封装模组、封装工艺及电子设备
CN211504505U (zh) 传感器封装结构
US11146893B2 (en) Sensor system, sensor arrangement, and assembly method using solder for sealing
US10285275B2 (en) Sensor device having printed circuit board substrate with built-in media channel
CN211061108U (zh) 差压传感器封装结构及电子设备
US7938016B2 (en) Multiple layer strain gauge
JP2005265732A (ja) 圧力センサ
US9013014B2 (en) Chip package and a method of manufacturing the same
JP4207847B2 (ja) 圧力センサ
EP2555006B1 (en) Semiconductor device
JP2020201205A (ja) 物理量測定装置
JP2014126507A (ja) 圧力センサモジュール
JP2015090318A (ja) 半導体圧力センサ装置
TWI841438B (zh) 電子裝置
TWI738044B (zh) 感測器以及積體電路模組
JP2005345303A (ja) 圧力センサ
KR20160147503A (ko) 압력센서장치 및 그 제조방법
JP2005265555A (ja) 圧力センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019923758

Country of ref document: EP

Effective date: 20211109