WO2022083567A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2022083567A1
WO2022083567A1 PCT/CN2021/124573 CN2021124573W WO2022083567A1 WO 2022083567 A1 WO2022083567 A1 WO 2022083567A1 CN 2021124573 W CN2021124573 W CN 2021124573W WO 2022083567 A1 WO2022083567 A1 WO 2022083567A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
notch
electronic device
airflow
pressure sensor
Prior art date
Application number
PCT/CN2021/124573
Other languages
English (en)
French (fr)
Inventor
李刚
程腾艳
梅嘉欣
张永强
Original Assignee
苏州敏芯微电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011131216.3A external-priority patent/CN114383769A/zh
Priority claimed from CN202022361169.3U external-priority patent/CN214096464U/zh
Application filed by 苏州敏芯微电子技术股份有限公司 filed Critical 苏州敏芯微电子技术股份有限公司
Publication of WO2022083567A1 publication Critical patent/WO2022083567A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings

Definitions

  • the invention relates to the field of sensor packaging, in particular to an electronic device.
  • One method is to place two air pressure sensors on the PCB circuit board of the electronic device, and determine whether the pressure difference reaches a threshold by processing the pressure difference between the two air pressure sensors, so as to realize the detection of the air pressure difference.
  • the use of two air pressure sensors will increase the cost of electronic equipment; and the two air pressure sensors occupy a large space, which affects the short and small design of the product; in addition, the two air pressure sensors are strongly interdependent, and damage to any one of them will lead to The failure of the entire product increases the risk of failure of electronic equipment.
  • Another method is to use the differential pressure sensor to directly measure the pressure difference, and judge whether the pressure difference reaches the threshold value, so as to realize the detection of the air pressure difference and start the electronic equipment.
  • the signal generated by the differential pressure sensor is easily regarded as a valid signal by the external air flow, which causes the electronic equipment to start up by mistake.
  • the technical problem to be solved by the present invention is to provide an electronic device, which can prevent the electronic device from starting by mistake.
  • an electronic device which includes:
  • main body with air flow holes
  • the differential pressure sensor packaging structure has a first through hole, and the differential pressure sensor packaging structure communicates with the airflow hole through the first through hole to form an airflow channel;
  • At least one vent hole communicates with the airflow channel and communicates the airflow channel with the outside, so as to reduce the pressure of the airflow channel.
  • a ring pad is disposed between the package structure of the differential pressure sensor and the main body, and a via hole is formed in the center of the ring pad, and the via hole is connected to the first through hole and the airflow. hole.
  • the vent hole is disposed on the side wall of the first through hole, the via hole or the air flow hole.
  • the annular pad has at least one notch, and the notch forms the vent hole.
  • the plurality of notches are arranged symmetrically with the central axis of the via hole as the axis of symmetry.
  • the annular pad in the axial direction of the via hole, in the region corresponding to the notch, is partially or completely removed to form the notch.
  • the annular pad in the area corresponding to the notch, is completely removed to form the notch, and the bottom of the differential pressure sensor package structure has a groove corresponding to the notch, the concave The groove and the notch serve as the vent hole.
  • the bottom of the differential pressure sensor package structure has a solder resist layer, and in the region corresponding to the gap, the annular pad is completely removed to form the gap, at least when the gap corresponds to In the area, the solder resist layer has a window to serve as the vent hole together with the notch.
  • a blocking block protruding from the ring pad is provided at the edge of the notch.
  • the main body in the case where the annular pad is completely removed in the area corresponding to the notch to form the notch, the main body has a groove corresponding to the notch, and the groove is connected to the notch.
  • the notch is used as the vent hole.
  • the surface of the main body has a solder resist layer, and in the region corresponding to the gap, the annular pad is completely removed to form the gap, at least in the region corresponding to the gap, the A window is opened in the solder resist layer to serve as the vent hole together with the notch.
  • the package structure of the differential pressure sensor includes:
  • the edge of the casing is fixed on the front surface of the base plate, a first cavity is formed between the casing and the base plate, and the first through hole penetrates the base plate;
  • the pressure sensing element is fixed on the front surface of the substrate and is located in the first cavity, the pressure sensing element has a second cavity and a pressure sensing layer, and the pressure sensing layer is located between the first cavity and the first cavity. Between the second cavities, the second cavities communicate with the airflow holes through the first through holes to form the airflow channels.
  • the vent hole is disposed on the side wall of the second cavity.
  • the pressure sensing element is connected to the substrate through a sealing layer, the sealing layer has a through hole, and the through hole communicates with the first through hole and the second cavity.
  • the vent hole is disposed in the second cavity or the sidewall of the through hole.
  • the electronic device is an electronic cigarette.
  • the advantage of the present invention is that the pressure of the airflow channel is reduced by using the vent hole communicated with the airflow channel, and only when the airflow pressure in the airflow channel reaches a high value, the first through hole acts on the differential pressure
  • the airflow pressure of the sensor packaging structure can make the pressure difference detected by the differential pressure sensor packaging structure reach the startup threshold of the electronic device, and the electronic device will be activated at this time, thereby preventing the electronic device from being erroneously activated due to the influence of external interference airflow.
  • 1 to 28 are schematic structural diagrams of the electronic device of the present invention.
  • FIG. 1 is a partial cross-sectional structural diagram of an electronic device according to a first embodiment of the present invention.
  • the electronic device includes a main body and a differential pressure sensor packaging structure 2, and the differential pressure sensor packaging structure 2 is disposed on the main body.
  • the main body has a circuit board 1
  • the pressure sensor packaging structure 2 is disposed on the circuit board 1 and is electrically connected to the circuit board 1 .
  • the main body has airflow holes 10 .
  • the airflow hole 10 allows the airflow in the main body to flow to the pressure sensor packaging structure 2 through the airflow hole 10 .
  • the airflow hole 10 is composed of a section passing through the circuit board 1 and a section outside the circuit board 1 .
  • the pressure sensor package structure 2 has a first through hole 20, and the first through hole 20 communicates with the airflow hole 10 to form an airflow channel.
  • the pressure sensor package structure 2 includes a substrate 21 , a housing 22 and a pressure sensing element 23 .
  • the edge of the casing 22 is fixed to the front surface of the base plate 21 , and a first cavity 24 is formed between the casing 22 and the base plate 21 .
  • the first through hole 20 penetrates through the substrate 21 .
  • the pressure sensing element 23 is located in the first cavity 24 and covers the first through hole 20 .
  • a fifth through hole 25 is further provided on the housing 22 , and the fifth through hole 25 communicates with the first cavity 24 .
  • the pressure sensing element 2 covers the first through hole 20, that is, the pressure sensing element 23 is located between the first cavity 24 and the first through hole 20, the first cavity 24 and the gas pressure in the first through hole 20 act on the pressure sensing element 23 at the same time, so that the final pressure on the pressure sensing element 23 is the same as that in the first cavity 24 and the first through hole 20 Therefore, the detection signal output by the pressure sensing element 23 corresponds to the pressure difference between the first cavity 24 and the first through hole 20, and then the pressure sensing element is detected by the ASIC chip.
  • the detection signal output by 23 is calculated to obtain the corresponding differential pressure value, so as to realize the function of detecting the differential pressure by the package structure of the differential pressure sensor.
  • the electronic device of the present invention further includes at least one vent hole 3 .
  • the vent hole 3 communicates with the airflow channel, and communicates the airflow channel with the outside, so as to reduce the pressure of the airflow channel.
  • the vent hole 3 is arranged on the side wall of the airflow hole 10 .
  • the air vent holes 3 are provided on the side walls of the section where the air flow holes 10 are located outside the circuit board 1 .
  • the vent hole 3 can be communicated with the outside of the electronic device through a structure such as a connecting pipe, so as to reduce the pressure of the airflow channel.
  • the electronic device is provided with only one of the air vent holes 3, but in other embodiments of the present invention, the electronic device may be provided with a plurality of the air vent holes 3 on the air flow channel to communicate with each other. Auxiliary, better reduce the pressure of the air flow channel, so as to prevent the electronic device from being accidentally activated due to the influence of the external disturbance air flow.
  • annular pad is provided between the differential pressure sensor package structure 2 and the main body, and the annular pad has a via hole in the center, and the via hole connects the first through hole and the airflow hole.
  • the ring pad can be arranged on the bottom of the differential pressure sensor package structure 2, or on the circuit board 1 of the main body, or on the bottom of the differential pressure sensor package structure 2 and the circuit board of the main body are set above.
  • ring-shaped pads are provided on the bottom of the differential pressure sensor package structure 2 and on the circuit board of the main body.
  • FIG. 2 is an enlarged schematic diagram of the area A in FIG. 1 .
  • a first annular pad 26 is disposed at the bottom of the differential pressure sensor package structure 2 , and the first annular pad 26 is in a closed annular configuration with a second through hole 27 in the center.
  • the first annular pad 26 protrudes from the substrate 21 of the differential pressure sensor package structure 2 , and in other embodiments, the first annular pad 26 does not protrude from the differential pressure sensor package structure 2 of the substrate 21.
  • the main body has a second annular pad 12, specifically, the second annular pad 12 is provided on the circuit board 1, and the second annular pad 12 is a closed annular configuration, the center of which has The third through hole 13 , the second through hole 27 and the third through hole 13 constitute the via hole.
  • the second annular pad 12 protrudes from the circuit board 1 , and in other embodiments, the second annular pad 12 does not protrude from the circuit board 1 .
  • the first ring pad 26 and the second ring pad 12 can be welded by solder 4 to fix the differential pressure sensor package structure 2 on the main body.
  • the first through hole 20 , the second through hole 27 , the third through hole 13 and the airflow hole 11 communicate with each other to form the airflow channel.
  • the advantage of this embodiment is that the air flow can be accurately controlled by setting the size and shape of the vent hole 3 .
  • FIG. 3 is a partial cross-sectional structural diagram of an electronic device according to a second embodiment of the present invention. Please refer to FIG. 3 .
  • the difference between the second embodiment and the first embodiment is that the positions of the vent holes 3 are different.
  • the vent hole 3 is provided on the side wall of the section where the airflow hole 10 penetrates the circuit board 1 .
  • the vent hole 3 can pass through the circuit board 1 obliquely and communicate with the outside.
  • a structure such as a connecting pipe, so as to realize the reduction of air leakage.
  • the purpose of small airflow channel pressure is that the vent hole 3 is formed by operating the circuit board 1 , which is realized by one-time molding, and the operation is convenient.
  • FIG. 4 is a partial cross-sectional structural diagram of an electronic device according to a third embodiment of the present invention. Please refer to FIG. 4 .
  • the difference between the third embodiment and the first embodiment is that the positions of the vent holes 3 are different.
  • the vent hole 3 is provided on the side wall of the first through hole 20 .
  • the vent hole 3 passes through the circuit board 1 along the axial direction perpendicular to the first through hole 20 , and communicates with the outside, thereby achieving the purpose of reducing the pressure of the airflow passage.
  • the vent hole 3 may also pass through the circuit board 1 obliquely downward in a direction forming an acute angle with the axial direction of the first through hole 20 to communicate with the outside, thereby realizing The purpose of reducing the pressure of the airflow channel.
  • the advantage of this embodiment is that the operation of the vent hole 3 can be completed before the package structure of the differential pressure sensor leaves the factory, and subsequent cooperation in use and matching solutions is not required.
  • FIG. 5 is a bottom schematic diagram of the package structure of the differential pressure sensor in the area A shown in FIG. 1 according to the fourth embodiment of the present invention
  • FIG. 6 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 5
  • the difference between the fourth embodiment and the first embodiment is that the positions of the vent holes 3 are different.
  • the vent hole 3 is located on the side wall of the second through hole 27 .
  • the first annular pad 26 has a first notch 261 , and the first notch 261 is the vent hole 3 .
  • the first annular pad 26 in the direction O along the axial direction of the second through hole 27 , in the region corresponding to the first notch, the first annular pad 26 is completely removed to form the first notch 261 . That is, in this embodiment, the first annular pad 26 is not a closed pattern, but a non-closed pattern that is cut off by the first gap 261, and the first gap 261 is used as the vent hole 3 to reduce the The purpose of small airflow channel pressure.
  • the advantage of this embodiment is that the operation of the first notch 261 can be completed before the package structure of the differential pressure sensor leaves the factory, the operation is simple, and no additional cost of the package structure of the differential pressure sensor is required.
  • FIG. 7 is a bottom schematic diagram of the packaging structure of the differential pressure sensor in the area A shown in FIG. 1 according to the fifth embodiment of the present invention
  • FIG. 8 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 7 , please refer to FIGS. 7 and 8
  • the difference between the fifth embodiment and the fourth embodiment is that, in the region corresponding to the first notch, the first annular pad 26 is partially removed to form the first notch 261 . That is, in this embodiment, in the axial direction O along the second through hole 27, in the region corresponding to the first notch, the first annular pad 26 is not completely removed, but only partially removed, and some are retained.
  • the vent hole 3 is used to achieve the purpose of reducing the pressure of the airflow channel.
  • the advantage of this embodiment is that the operation of the first notch 261 can be completed before the package structure of the differential pressure sensor leaves the factory, and compared with the fourth embodiment, the vent hole 3 can be controlled within a relatively small range.
  • FIG. 9 is a bottom schematic diagram of the package structure of the differential pressure sensor of the sixth embodiment of the present invention at the area A shown in FIG. 1
  • FIG. 10 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 9
  • the difference between the sixth embodiment and the fourth embodiment lies in that, in the area corresponding to the first gap 261, the first annular pad 26 is completely removed to form the first gap 261, the pressure difference
  • the bottom of the sensor package structure 2 has a groove corresponding to the first notch 261 , and the groove and the first notch 261 serve as the air vent 3 .
  • the bottom of the substrate 21 has a groove 211 corresponding to the first notch 261 , the groove 211 is recessed toward the inside of the substrate 21 , and the groove 211 and the first notch 261 are common It is the vent hole 3 to increase the volume of the vent hole 3 .
  • the advantage of this embodiment is that the operation of the first notch 261 can be completed before the package structure of the differential pressure sensor leaves the factory, and compared with the fourth and fifth embodiments, the vent hole 3 is enlarged to further reduce the airflow channel pressure.
  • FIG. 11 is a bottom schematic diagram of the package structure of the differential pressure sensor in the area A shown in FIG. 1 according to the seventh embodiment of the present invention
  • FIG. 12 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 11 , please refer to FIGS. 11 and 12
  • the pressure difference sensor package structure 2 has a solder resist layer 27 at the bottom, and the first ring pad 26 is completely removed in the area corresponding to the first gap 261 , in order to form the first notch 261 , at least in the area corresponding to the first notch 261 , the solder resist layer 27 has a window to serve as the vent hole 3 together with the first notch 261 .
  • the solder resist layer 27 is provided at the bottom of the substrate 21 .
  • the solder resist layer 27 has a window so as to be shared with the first notch 261 as the vent hole 3 .
  • the solder resist layer 27 may be opened only in the region corresponding to the first notch 261 .
  • FIG. 13 is a bottom schematic diagram of the package structure of the differential pressure sensor of the sixth embodiment of the present invention at the area A shown in FIG. 1
  • FIG. 14 is a schematic cross-sectional structure diagram along the C-C direction in FIG. 13 , please refer to FIGS. 13 and 14
  • the difference between the eighth embodiment and the seventh embodiment is that, on the first ring pad 26 , a first barrier protruding from the first ring pad 26 is provided at the edge of the first notch 261 Block 262.
  • the first blocking block 262 can limit the height of the solder 4 connecting the first annular pad 26 and the second annular pad 12, and can further limit the size of the formed vent hole 3 to avoid the vent hole being too large. large, affecting the normal operation of electronic equipment.
  • the first blocking block 262 can also prevent the solder 4 from flowing to the opening area of the solder resist layer 27 , so as to avoid the occurrence of short circuits and the like.
  • the vent hole 3 is arranged on the side wall of the first through hole 20 , the second through hole 27 or the air flow hole 11 , but in the ninth embodiment of the present invention In the embodiment, the vent hole 3 is arranged on the side wall of the third through hole 13 .
  • 15 is a top schematic view of the circuit board of the ninth embodiment of the electronic device of the present invention at the area A shown in FIG. 1
  • FIG. 16 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 15 , please refer to FIG. 15 and FIG.
  • the difference between the embodiment and the first embodiment is that the vent hole 3 is arranged on the side wall of the third through hole 13 .
  • the second annular pad 12 has a second notch 121 , and the second notch 121 is the vent hole 3 .
  • the second annular pad 12 in the direction O along the axial direction of the third through hole 13, in the region corresponding to the second gap 121, the second annular pad 12 is completely removed to form the second gap 121. That is, in this embodiment, the second annular pad 12 is not a closed pattern, but a non-closed pattern cut off by the second gap 121, and the second gap 121 is used as the vent hole 3 to realize the reduction The purpose of small airflow channel pressure.
  • the advantage of this embodiment is that the second notch 121 can be formed before the differential pressure sensor packaging structure is combined with the body, which is simpler than the operation on the differential pressure sensor packaging structure, and does not require packaging of the differential pressure sensor.
  • the structure performs additional operations and saves costs.
  • the structure of the first annular pad 26 at the bottom of the differential pressure sensor package structure 2 may be the same as the structure of the first annular pad 26 in the first to eighth embodiments, and will not be repeated. Further, the first notch 261 of the first annular pad 26 may be directly opposite to the second notch 121 of the second annular pad 12 to jointly serve as the air vent 3 .
  • FIG. 17 is a top schematic view of the circuit board of the tenth embodiment of the electronic device of the present invention at the area A shown in FIG. 1
  • FIG. 18 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 17 , please refer to FIG. 17 and FIG.
  • the difference between the embodiment and the ninth embodiment is that in the region corresponding to the second notch, the second ring pad 12 is partially removed to form the second notch 121 . That is, in this embodiment, in the direction O along the axial direction of the third through hole 13, in the region corresponding to the second gap 121, the second annular pad 12 is not completely removed, but only Some are removed, some are kept.
  • the vent hole 3 is used to achieve the purpose of reducing the pressure of the airflow channel.
  • the advantage of this embodiment is that the second notch 121 can be formed before the differential pressure sensor packaging structure is combined with the body, which is simpler than the operation on the differential pressure sensor packaging structure, and compared with the ninth embodiment , the vent hole 3 can be controlled within a relatively small range.
  • the structure of the first annular pad 26 at the bottom of the differential pressure sensor package structure 2 may be the same as the structure of the first annular pad 26 in the first to eighth embodiments, and will not be repeated. Further, the first notch 261 of the first annular pad 26 may be directly opposite to the second notch 121 of the second annular pad 12 to jointly serve as the air vent 3 .
  • FIG. 19 is a top schematic view of the circuit board of the electronic device according to the eleventh embodiment of the present invention at the area A shown in FIG. 1
  • FIG. 20 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 19 , please refer to FIG. 19 and FIG.
  • the difference between the eleventh embodiment and the ninth embodiment is that in the area corresponding to the second notch 121 , the second annular pad 12 is completely removed to form the second notch 121 , the circuit board 1
  • the top bottom has a groove corresponding to the second notch 121 , and the groove and the second notch 121 serve as the vent hole 3 .
  • the groove 100 is concave toward the inside of the circuit board 1 , and the groove 100 is connected to the second notch 121 .
  • 121 together are the vent holes 3 to increase the volume of the vent holes 3 .
  • the advantage of this embodiment is that the second notch 121 can be formed before the differential pressure sensor packaging structure is combined with the body, which is simpler than the operation on the differential pressure sensor packaging structure, and is similar to the ninth and tenth implementations.
  • the vent hole 3 is enlarged to further reduce the air flow channel pressure.
  • the structure of the first annular pad 26 at the bottom of the differential pressure sensor package structure 2 may be the same as the structure of the first annular pad 26 in the first to eighth embodiments, and will not be repeated. Further, the first notch 261 of the first ring pad 26 can be directly opposite to the second notch 121 of the second ring pad 12 , and the groove 100 on the top of the circuit board 1 is packaged with the differential pressure sensor. The grooves 211 at the bottom of the structure 2 are facing each other, so as to jointly serve as the vent holes 3 .
  • FIG. 21 is a top schematic view of the circuit board of the twelfth embodiment of the present invention at the area A shown in FIG. 1
  • FIG. 22 is a schematic cross-sectional structure diagram along the B-B direction in FIG. 21 , please refer to FIG. 21 and FIG.
  • the difference between the twelfth embodiment and the ninth embodiment is that the top of the circuit board 1 has a solder resist layer 14, and in the area corresponding to the second gap 121, the second ring pad 12 is completely removed to form the In the case of the second notch 121 , at least in the region corresponding to the second notch 121 , the solder resist layer 14 has a window to serve as the vent hole 3 together with the second notch 121 .
  • the solder resist layer 14 is provided on the top of the circuit board 1 .
  • the solder resist layer 14 has a window to serve as the vent hole 3 together with the second notch 121 .
  • the solder resist layer 14 may be opened only in the region corresponding to the second notch 121 .
  • the advantage of this embodiment is that the second notch 121 can be formed before the differential pressure sensor packaging structure is combined with the body, which is simpler than the operation on the differential pressure sensor packaging structure, and is similar to the ninth and tenth implementations.
  • the vent hole 3 is enlarged to further reduce the air flow channel pressure.
  • the structure of the first annular pad 26 at the bottom of the differential pressure sensor package structure 2 may be the same as the structure of the first annular pad 26 in the first to eighth embodiments, and will not be repeated. Further, the first notch 261 of the first annular pad 26 may be directly opposite to the second notch 121 of the second annular pad 12 , and the opening of the solder resist layer 14 on the top of the circuit board 1 is aligned with the The openings of the solder resist 27 at the bottom of the differential pressure sensor package structure 2 are facing each other, so as to jointly serve as the vent hole 3 .
  • FIG. 23 is a top schematic view of the circuit board of the thirteenth embodiment of the present invention at the area A shown in FIG. 1
  • FIG. 24 is a schematic cross-sectional structural view along the C-C direction in FIG. 23 , please refer to FIG. 23 and FIG.
  • the difference between the thirteenth embodiment and the twelfth embodiment is that, on the second ring pad 12 , a second barrier protruding from the second ring pad 12 is provided at the edge of the second notch 121 Block 122.
  • the second blocking block 122 can limit the height of the solder 4 connecting the second annular pad 12 and the first annular pad 26, and can further limit the size of the formed air vent 3, so as to prevent the air vent from being too large. large, affecting the normal operation of electronic equipment.
  • the second blocking block 122 can also prevent the solder 4 from flowing to the opening area of the solder resist layer 14, thereby avoiding the occurrence of short circuits and the like.
  • the structure of the first annular pad 26 at the bottom of the differential pressure sensor package structure 2 may be the same as the structure of the first annular pad 26 in the first to eighth embodiments, and will not be repeated. Further, the first notch 261 of the first annular pad 26 may be directly opposite to the second notch 121 of the second annular pad 12 , and the opening of the solder resist layer 14 on the top of the circuit board 1 is aligned with the The openings of the solder resist 27 at the bottom of the differential pressure sensor package structure 2 are facing each other, so as to jointly serve as the vent hole 3 .
  • the second blocking block 122 is in abutment with the first blocking block 262 to prevent the solder from flowing into the window area of the solder resist layer.
  • FIG. 25 is a schematic cross-sectional structural diagram of a differential pressure sensor package structure according to a fourteenth embodiment of the present invention. Please refer to FIG. 25 .
  • the edge of the casing 22 is fixed to the front surface of the base plate 21 , and a first cavity 24 is formed between the casing 22 and the base plate 21 .
  • the first through hole 20 penetrates through the substrate 21 .
  • the pressure sensing element 23 is fixed on the front surface of the substrate 21 and located in the first cavity 24 .
  • the pressure sensing element 23 has a second cavity 231 and a pressure sensing layer 232, the pressure sensing layer 232 is located between the first cavity 24 and the second cavity 231, the second cavity 231 communicates with the airflow hole through the first through hole 20 to form the airflow channel.
  • a fifth through hole 25 is further provided on the housing 22 , and the fifth through hole 25 communicates with the first cavity 24 .
  • the vent hole 3 is provided on the side wall of the second cavity 231 .
  • the pressure sensing element 23 further includes a support structure 233 for supporting the edge of the pressure sensing layer 232 .
  • the support structure 233 is used as the side wall of the second cavity 231 . It penetrates through the support structure 233 to communicate with the second cavity 231 and further communicates with the airflow channel, so as to reduce the pressure of the airflow channel.
  • the advantage of this embodiment is that the operation of the vent hole 3 can be completed before the package structure of the differential pressure sensor leaves the factory, the operation is simple, and no additional cost of the package structure of the differential pressure sensor is required.
  • the vent hole 3 may not be disposed on the side wall of the second cavity 231 , but is disposed in the manner shown in the first embodiment to the thirteenth embodiment.
  • the pressure sensing element 23 is connected to the substrate 21 through a sealing layer 28 .
  • the support structure 233 is connected to the substrate 21 through the sealing layer 28 , so that the first cavity 24 and the second cavity 231 are not communicated.
  • FIG. 26 is a schematic cross-sectional structure diagram of the packaging structure of the differential pressure sensor of the fifteenth embodiment of the electronic device of the present invention. Please refer to FIG. 26.
  • the arrangement position of the air vent 3 has changed.
  • the vent hole 3 is not provided on the side wall of the second cavity 231 , but is provided on the sealing layer 28 .
  • the sealing layer 28 has a through hole 29 , and the through hole 29 communicates with the first through hole 20 and the second cavity 231 .
  • the vent hole 3 is disposed on the side wall of the through hole 29 , that is, the vent hole 3 penetrates the sealing layer 28 and communicates with the outside, thereby reducing the pressure of the airflow passage.
  • the advantage of this embodiment is that the operation of the vent hole 3 can be completed before the packaging structure of the differential pressure sensor leaves the factory, the operation is simple, and there is no need to increase the cost of the packaging structure of the differential pressure sensor. Manipulating the pressure sensing element 23, but the sealing layer, can prevent the pressure sensing element 23 from being damaged.
  • the vent hole 3 penetrates through the sealing layer. It can be understood that, in other embodiments of the present invention, when the pressure sensing element 23 is fixed on the substrate 21 , the vent hole 3 In the corresponding area, no sealing material may be provided, so as to form the vent hole 3 in the sealing layer.
  • the number of the vent holes is one is illustrated, but in other embodiments of the present invention, the number of the vent holes may be multiple.
  • the first ring pad 26 has a first notch 261
  • FIG. 27 it is the voltage difference of the sixteenth embodiment of the electronic device of the present invention
  • the bottom schematic diagram of the sensor package structure at the area A shown in FIG. 1 in this embodiment, the first annular pad 26 has four first notches 261 , and the four first notches 261 can form four vent holes . Further, the four first notches 261 are symmetrically arranged with the central axis of the second through hole 27 as the axis of symmetry.
  • FIG. 28 which is the bottom schematic diagram of the package structure of the differential pressure sensor in the area A shown in FIG.
  • the first ring pad 26 has Two first notches 261, the two first notches 261 can form two vent holes. Further, the two first notches 261 are arranged symmetrically with the central axis of the second through hole 27 as the axis of symmetry, so as to simplify the process. It can be understood that, in other embodiments of the present invention, the number of the first notches 261 may also be other, which is not limited in the present invention.
  • the second ring pad 12 has one second notch 121 , while in other embodiments, the second ring pad 12 has a plurality of second notch 121 .
  • the arrangement thereof can refer to the arrangement of the first notches 261 .
  • the side wall of the through hole 29 has a vent hole 3
  • the side wall of the through hole 29 has a plurality of vent holes, a plurality of The vent holes may be symmetrically distributed with the central axis of the through hole 29 as the axis of symmetry.
  • the electronic device of the present invention can be an electronic cigarette, wherein the airflow hole can be communicated with the atomization channel in the electronic cigarette, so that the pressure difference sensor package structure can sense the pressure difference between the atomization channel and the outside world, so as to realize the electronic cigarette. start up.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明提供一种电子设备,其包括:主体,具有气流孔;压差传感器封装结构,具有第一通孔,所述第一通孔与所述气流孔连通,形成气流通道;至少一泄气孔,与所述气流通道导通,并将所述气流通道与外部连通,以减小所述气流通道的压力。本发明的优点在于,利用与气流通道连通的泄气孔,减小所述气流通道的压力,只有当气流通道中的气流压力达到一较高值时,通过所述第一通孔作用于压差传感器封装结构的气流压力才能够使压差传感器封装结构检测的压力差才达到所述电子设备的启动阈值,此时电子设备才会启动,从而避免电子设备受到外界干扰气流的影响而误启动。

Description

电子设备 技术领域
本发明涉及传感器封装领域,尤其涉及一种电子设备。
背景技术
目前,在需要检测气压差的电子设备中,通常采用两种方法检测气压差。
一种方法是,在电子设备的PCB电路板上放置两个气压传感器,通过对两个气压传感器的压力差值处理后判断压力差是否达到阈值,以实现对气压差的检测。但是,采用两个气压传感器会导致电子设备的成本提高;且两个气压传感器占用了较大空间影响产品的短小化设计;再者两个气压传感器相互依赖性强,损坏其中任意一颗都会导致整个产品失效,使得电子设备的失效风险较大。
另一种方法是利用压差传感器直接测量压力差,并判断压力差是否达到阈值,以实现对气压差的检测,启动电子设备。但是,在电子设备的启动阈值较小时,外界气流使压差传感器产生的信号容易被当做有效信号,使电子设备误启动。
因此,如何避免电子设备误启动,成为目前亟需解决的问题。
发明内容
本发明所要解决的技术问题是,提供一种电子设备,其能够避免电子设备误启动。
为了解决上述问题,本发明提供了一种电子设备,其包括:
主体,具有气流孔;
压差传感器封装结构,具有第一通孔,所述压差传感器封装结构通过所述第一通孔与所述气流孔连通,形成气流通道;
至少一泄气孔,与所述气流通道导通,并将所述气流通道与外部连通,以减小所述气流通道的压力。
在一实施例中,所述压差传感器封装结构与所述主体之间设置有环形焊盘,所述环形焊盘中心具有过孔,所述过孔连接所述第一通孔及所述气流孔。
在一实施例中,所述泄气孔设置在所述第一通孔、所述过孔或所述气流孔的侧壁。
在一实施例中,所述环形焊盘具有至少一缺口,所述缺口形成所述泄气孔。
在一实施例中,当所述环形焊盘具有多个缺口时,多个所述缺口以所述过孔的中心轴为对称轴对称设置。
在一实施例中,在沿所述过孔轴向方向上,在所述缺口对应区域,所述环形焊盘被部分或完全去除,以形成所述缺口。
在一实施例中,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,压差传感器封装结构底部具有与所述缺口对应的凹槽,所述凹槽与所述缺口作为所述泄气孔。
在一实施例中,所述压差传感器封装结构底部具有阻焊层,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,至少在所述缺口对应区域,所述阻焊层开窗,以与所述缺口共同作为所述泄气孔。
在一实施例中,在所述环形焊盘上,在所述缺口的边缘设置有突出于所述环形焊盘的阻挡块。
在一实施例中,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,所述主体具有与所述缺口对应的凹槽,所述凹槽与所述缺口作为所述泄气孔。
在一实施例中,所述主体表面具有阻焊层,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,至少在所述缺口对应区域,所述阻焊层开窗,以与所述缺口共同作为所述泄气孔。
在一实施例中,所述压差传感器封装结构包括:
外壳;
基板,所述外壳边缘固定于所述基板的正面,与所述基板之间形成第一腔体,所述第一通孔贯穿所述基板;
压力传感元件,固定于所述基板正面且位于所述第一腔体内,所述压力传感元件具有第二腔体以及压力感应层,所述压力感应层位于所述第一腔体与所述第二腔体之间,所述第二腔体通过所述第一通孔与所述气流孔连通,形成所述气流通道。
在一实施例中,所述泄气孔设置在所述第二腔体侧壁。
在一实施例中,所述压力传感元件通过密封层与所述基板连接,所述密封层具有贯穿孔,所述贯穿孔连通所述第一通孔与所述第二腔体。
在一实施例中,所述泄气孔设置在所述第二腔体或所述贯穿孔侧壁。
在一实施例中,所述电子设备为电子烟。
本发明的优点在于,利用与气流通道连通的泄气孔,减小所述气流通道的压力,只有当气流通道中的气流压力达到一较高值时,通过所述第一通孔作用于压差传感器封装结构的气流压力才能够使压差传感器封装结构检测的压力差才达到所述电子设备的启动阈值,此时电子设备才会启动,从而避免电子设备受到外界干扰气流的影响而误启动。
附图说明
图1~图28是本发明电子设备的结构示意图。
具体实施方式
下面结合附图对本发明提供的电子设备的具体实施方式做详细说明。
第一实施例
图1是本发明电子设备第一实施例的部分剖面结构示意图,请参阅图1,所述电子设备包括主体及压差传感器封装结构2,所述压差传感器封装结构2设置在所述主体上。具体地说,在本实施例中,所述主体具有一电路板1,所述压力传感器封装结构2设置在所述电路板1上,并与所述电路板1电连接。
所述主体具有气流孔10。所述气流孔10允许主体内的气流通过所述气流孔10流向所述压力传感器封装结构2。在本实施例中,所述气流孔10由贯穿所述电路板1的区段及位于所述电路板1之外的区段组成。
所述压力传感器封装结构2具有第一通孔20,所述第一通孔20与所述气流孔10连通,形成气流通道。
其中,所述压力传感器封装结构2包括基板21、外壳22及压力传感元件23。所述外壳22边缘固定于所述基板21的正面,与所述基板21之间形成第一腔体24。所述第一通孔20贯穿所述基板21。所述压力传感元件23位于所述第一腔体24内,且覆盖所述第一通孔20。在所述外壳22上还设置有第五通孔25,所述第五通孔25与所述第一腔体24连通。
由于所述压力传感元件2覆盖所述第一通孔20,即所述压力传感元件23位于所述第一腔体24与第一通孔20之间,因此,所述第一腔体24和所述第一通孔20内的气体压力同时作用于所述压力传感元件23上,使得压力传感元件23最终受到的压力为所述第一腔体24和第一通孔20内的压力差,从而使得所述压力传感元件23输出的检测信号对应于所述第一腔体24和第一通孔20内的压力差,再通过专用集成电路芯片对所述压力传感元件23输出的检测信号进行计算,获得对应的压差值,从而实现压差传感器封装结构检测压力差的功能。
而如背景技术所述,在电子设备的启动阈值较小时,外界气流使压差传感器封装结构产生的信号容易被当做有效信号,使电子设备误启动。因此,本发明电子设备还包括至少一泄气孔3。所述泄气孔3与所述气流通道导通,并将所述气流通道与外部连通,以减小所述气流通道的压力。具体地说,气流通道中的气流流向请参阅图1中箭头所示,当有气流通过所述气流通道流向所述压力传感元件23时,部分气流会通过所述泄气孔3流出至外部,使实际通过第一通孔20作用于所述压力传感元件23的气流压力减小,只有当气流通道中的气流压力达到一较高值时,通过所述第一通孔20作用于所述压力传感元件23的气流压力才足够大,使得所述第一腔体24和第一通孔20内的压力差达到所述电子设备的启动阈值,此时电子设备才会启动,从而避免电子设备受到外界干扰气流的影响而误启动。
其中,所述泄气孔3设置在所述气流孔10的侧壁。具体地说,在本实施例中,所述泄气孔3设置在所述气流孔10位于所述电路板1之外的区段的侧壁上。所述泄气孔3可通过连接管等结构与电子设备外部连通,以实现降低气流通道压力的作用。在本实施例中,所述电子设备仅设置一个所述泄气孔3,而在本发明其他实施例中,所述电子设备可在所述气流通道上设置多个所述泄气孔3,以互相辅助,更好地减小所述气流通道的压力,从而避免电子设备受到外界干扰气流的影响而误启动。
可选地,所述压差传感器封装结构2与所述主体之间设置有环形焊盘,所述环形焊盘中心具有过孔,所述过孔连接所述第一通孔及所述气流孔。其中,所述环形焊盘可设置在所述压差传感器封装结构2底 部,或者设置在所述主体的电路板1上,或者在所述压差传感器封装结构2底部及所述主体的电路板上均设置。
在本实施例中,在所述压差传感器封装结构2底部及所述主体的电路板上均设置有环形焊盘。具体地说,请参阅图2,其为图1中A区域的放大示意图。所述压差传感器封装结构2底部设置有第一环形焊盘26,所述第一环形焊盘26为闭合的环形构型,其中心具有第二通孔27。其中,所述第一环形焊盘26突出于所述压差传感器封装结构2的基板21,而在其他实施例中,所述第一环形焊盘26并未突出于所述压差传感器封装结构2的基板21。所述主体具有第二环形焊盘12,具体地说,所述第二环形焊盘12设置在所述电路板1上,所述第二环形焊盘12为闭合的环形构型,其中心具有第三通孔13,所述第二通孔27与所述第三通孔13构成所述过孔。其中,所述第二环形焊盘12突出于所述电路板1,而在其他实施例中,所述第二环形焊盘12并未突出于所述电路板1。
所述第一环形焊盘26与所述第二环形焊盘12可通过焊料4焊接,以将所述压差传感器封装结构2固定在所述主体上。所述第一通孔20、所述第二通孔27、所述第三通孔13及所述气流孔11连通,形成所述气流通道。此实施例的优点在于,可以通过所述泄气孔3的大小和形状的设置而准确地实现对气流的控制。
第二实施例
图3是本发明电子设备第二实施例的部分剖面结构示意图,请参阅图3,第二实施例与第一实施例的区别在于,所述泄气孔3的位置不同。具体地说,在本实施例中,所述泄气孔3设置在所述气流孔10贯穿所述电路板1的区段的侧壁上。所述泄气孔3可倾斜穿过所述电路板1,并与外部连通,例如,所述泄气孔3倾斜穿过所述电路板1后,可通过连接管等结构与外部连通,进而实现减小气流通道压力的目的。此实施例的优点在于,通过对电路板1进行操作而形成所述泄气孔3,实现方式一次成型,操作方便。
第三实施例
图4是本发明电子设备第三实施例的部分剖面结构示意图,请参阅图4,第三实施例与第一实施例的区别在于,所述泄气孔3的位置不同。具体地说,在本实施例中,所述泄气孔3设置在所述第一通孔20的侧壁。所述泄气孔3沿垂直所述第一通孔20的轴向方向穿过所述电路板1,与外部连通,进而实现减小气流通道压力的目的。而在本发明其他实施例中,所述泄气孔3也可沿与所述第一通孔20的轴向呈一锐角的方向斜向下方穿过所述电路板1,与外部连通,进而实现减小气流通道压力的目的。此实施例的优点在于,可以在压差传感器封装结构出厂前完成对所述泄气孔3的操作,不需要后续在使用及配套的方案上进行配合。
第四实施例
图5是本发明电子设备第四实施例的压差传感器封装结构在图1所示A区域处的底部示意图,图6是沿图5中B-B向的剖面结构示意图,请参阅图5及图6,第四实施例与第一实施例的区别在于,所述泄气孔3的位置不同。具体地说,所述泄气孔3位于所述第二通孔27的侧壁。所述第一环形焊盘26具有第一缺口261,所述第一缺口261即为所述泄气孔3。在本实施例中,在沿所述第二通孔27轴向O方向上,在所述第一缺口对应区域,所述第一环形焊盘26被完全去除,以形成所述第一缺口261。即在本实施例中,所述第一环形焊盘26不是闭合图形,而是被所述第一缺口261截断的非闭合图形,所述第一缺口261作为所述泄气孔3,以实现减小气流通道压力的目的。此实施例的优点在于,可以在压差传感器封装结构出厂前完成对第一缺口261的操作,操作简单,不需要额外的增加压差传感器封装结构的成本。
第五实施例
图7是本发明电子设备第五实施例的压差传感器封装结构在图1所示A区域处的底部示意图,图8是沿图7中B-B向的剖面结构示意图,请参阅图7及图8,第五实施例与第四实施例的区别在于,在所述第一缺口对应区域,所述第一环形焊盘26被部分去除,以形成所述第一缺口261。即在该实施例中,在沿所述第二通孔27轴向O方向上,在所述第一缺口对应区域,所述第一环形焊盘26并未被完全去除,而是仅有部分去除,有部分被保留。例如,在本实施例中,在所述第一缺口261对应区域,所述第一环形焊盘26的底部被去除,顶部被保留,形成所述第一缺口261,所述第一缺口261作为所述泄气孔3, 以实现减小气流通道压力的目的。此实施例的优点在于,可以在压差传感器封装结构出厂前完成对第一缺口261的操作,和第四实施例相比,可以实现将所述泄气孔3控制在相对较小的范围内。
第六实施例
图9是本发明电子设备第六实施例的压差传感器封装结构在图1所示A区域处的底部示意图,图10是沿图9中B-B向的剖面结构示意图,请参阅图9及图10,第六实施例与第四实施例的区别在于,在所述第一缺口261对应区域,所述第一环形焊盘26被完全去除,以形成所述第一缺口261的情况下,压差传感器封装结构2底部具有与所述第一缺口261对应的凹槽,所述凹槽与所述第一缺口261作为所述泄气孔3。具体地说,在所述基板21底部具有与所述第一缺口261对应的凹槽211,所述凹槽211朝向所述基板21内部凹陷,所述凹槽211与所述第一缺口261共同为所述泄气孔3,以增大所述泄气孔3的容积。此实施例的优点在于,可以在压差传感器封装结构出厂前完成对第一缺口261的操作,且和第四、第五实施例相比,所述泄气孔3被增大,进一步减小气流通道压力。
第七实施例
图11是本发明电子设备第七实施例的压差传感器封装结构在图1所示A区域处的底部示意图,图12是沿图11中B-B向的剖面结构示意图,请参阅图11及图12,第七实施例与第四实施例的区别在于,所述压差传感器封装结构2底部具有阻焊层27,在所述第一缺口261对应区域,所述第一环形焊盘26被完全去除,以形成所述第一缺口261的情况下,至少在所述第一缺口261对应区域,所述阻焊层27开窗,以与所述第一缺口261共同作为所述泄气孔3。具体地说,在本实施例中,在所述基板21的底部设置有所述阻焊层27。在所述第一缺口261对应的区域及背离所述第一环形焊盘26的区域(如图11中阴影所示),所述阻焊层27开窗,以与所述第一缺口261共同作为所述泄气孔3。在本发明其他实施例中,也可仅在所述第一缺口261对应的区域,所述阻焊层27开窗。此实施例的优点在于,可以在压差传感器封装结构出厂前完成对第一缺口261的操作,且和第四、第五实施例相比,所述泄气孔3被增大,进一步减小气流通道压力。
第八实施例
图13是本发明电子设备第六实施例的压差传感器封装结构在图1所示A区域处的底部示意图,图14是沿图13中C-C向的剖面结构示意图,请参阅图13及图14,第八实施例与第七实施例的区别在于,在所述第一环形焊盘26上,在所述第一缺口261的边缘设置有突出于所述第一环形焊盘26的第一阻挡块262。所述第一阻挡块262能够限定将所述第一环形焊盘26与所述第二环形焊盘12连接的焊料4的高度,进而能够限定形成的泄气孔3的大小,以避免泄气孔太大,影响电子设备的正常工作。同时,所述第一阻挡块262也能够阻止焊料4流淌向所述阻焊层27的开窗区域,从而避免短路等情况发生。
第九实施例
在上述第一~第八实施例中,所述泄气孔3设置在所述第一通孔20、或所述第二通孔27或所述气流孔11的侧壁,而在本发明第九实施例中,所述泄气孔3设置在所述第三通孔13的侧壁。图15是本发明电子设备第九实施例的电路板在图1所示A区域处的顶部示意图,图16是沿图15中B-B向的剖面结构示意图,请参阅图15及图16,第九实施例与第一实施例的区别在于,所述泄气孔3设置在所述第三通孔13的侧壁。具体地说,所述第二环形焊盘12具有第二缺口121,所述第二缺口121即为所述泄气孔3。在本实施例中,在沿所述第三通孔13轴向O方向上,在所述第二缺口121对应区域,所述第二环形焊盘12被完全去除,以形成所述第二缺口121。即在本实施例中,所述第二环形焊盘12不是闭合图形,而是被所述第二缺口121截断的非闭合图形,所述第二缺口121作为所述泄气孔3,以实现减小气流通道压力的目的。此实施例的优点在于,可在压差传感器封装结构与所述本体结合之前形成所述第二缺口121,相对于在压差传感器封装结构上进行操作更简单,且不需要对压差传感器封装结构进行额外的操作,节约成本。
其中,所述压差传感器封装结构2的底部的第一环形焊盘26的结构可与第一~八实施例的第一环形焊盘26的结构相同,不再赘述。进一步,所述第一环形焊盘26的第一缺口261可与所述第二环形焊盘12的第二缺口121正对,以共同作为所述泄气孔3。
第十实施例
图17是本发明电子设备第十实施例的电路板在图1所示A区域处的顶部示意图,图18是沿图17 中B-B向的剖面结构示意图,请参阅图17及图18,第十实施例与第九实施例的区别在于,在所述第二缺口对应区域,所述第二环形焊盘12被部分去除,以形成所述第二缺口121。即在该实施例中,在沿所述第三通孔13轴向O方向上,在所述第二缺口121对应区域,所述第二环形焊盘12并未被完全去除,而是仅有部分去除,有部分被保留。例如,在本实施例中,在所述第二缺口121对应区域,所述第二环形焊盘12的顶部被去除,底部被保留,形成所述第二缺口121,所述第二缺口121作为所述泄气孔3,以实现减小气流通道压力的目的。此实施例的优点在于,可在压差传感器封装结构与所述本体结合之前形成所述第二缺口121,相对于在压差传感器封装结构上进行操作更简单,且和第九实施例相比,能够将所述泄气孔3控制在相对较小的范围内。
其中,所述压差传感器封装结构2的底部的第一环形焊盘26的结构可与第一~八实施例的第一环形焊盘26的结构相同,不再赘述。进一步,所述第一环形焊盘26的第一缺口261可与所述第二环形焊盘12的第二缺口121正对,以共同作为所述泄气孔3。
第十一实施例
图19是本发明电子设备第十一实施例的电路板在图1所示A区域处的顶部示意图,图20是沿图19中B-B向的剖面结构示意图,请参阅图19及图20,第十一实施例与第九实施例的区别在于,在所述第二缺口121对应区域,所述第二环形焊盘12被完全去除,以形成所述第二缺口121的情况下,电路板1顶部底部具有与所述第二缺口121对应的凹槽,所述凹槽与所述第二缺口121作为所述泄气孔3。具体地说,在所述电路板1顶部具有与所述第二缺口121对应的凹槽100,所述凹槽100朝向所述电路板1内部凹陷,所述凹槽100与所述第二缺口121共同为所述泄气孔3,以增大所述泄气孔3的容积。此实施例的优点在于,可在压差传感器封装结构与所述本体结合之前形成所述第二缺口121,相对于在压差传感器封装结构上进行操作更简单,且和第九、第十实施例相比,所述泄气孔3被增大,进一步减小气流通道压力。
其中,所述压差传感器封装结构2的底部的第一环形焊盘26的结构可与第一~八实施例的第一环形焊盘26的结构相同,不再赘述。进一步,所述第一环形焊盘26的第一缺口261可与所述第二环形焊盘12的第二缺口121正对,所述电路板1顶部的凹槽100与所述压差传感器封装结构2底部的凹槽211正对,以共同作为所述泄气孔3。
第十二实施例
图21是本发明电子设备第十二实施例的电路板在图1所示A区域处的顶部示意图,图22是沿图21中B-B向的剖面结构示意图,请参阅图21及图22,第十二实施例与第九实施例的区别在于,所述电路板1顶部具有阻焊层14,在所述第二缺口121对应区域,所述第二环形焊盘12被完全去除,以形成所述第二缺口121的情况下,至少在所述第二缺口121对应区域,所述阻焊层14开窗,以与所述第二缺口121共同作为所述泄气孔3。具体地说,在本实施例中,在所述电路板1顶部设置有所述阻焊层14。在所述第二缺口121对应的区域及背离所述第二环形焊盘12的区域,所述阻焊层14开窗,以与所述第二缺口121共同作为所述泄气孔3。在本发明其他实施例中,也可仅在所述第二缺口121对应的区域,所述阻焊层14开窗。此实施例的优点在于,可在压差传感器封装结构与所述本体结合之前形成所述第二缺口121,相对于在压差传感器封装结构上进行操作更简单,且和第九、第十实施例相比,所述泄气孔3被增大,进一步减小气流通道压力。
其中,所述压差传感器封装结构2的底部的第一环形焊盘26的结构可与第一~八实施例的第一环形焊盘26的结构相同,不再赘述。进一步,所述第一环形焊盘26的第一缺口261可与所述第二环形焊盘12的第二缺口121正对,所述电路板1顶部的阻焊层14的开窗与所述压差传感器封装结构2底部的阻焊鞥27的开窗正对,以共同作为所述泄气孔3。
第十三实施例
图23是本发明电子设备第十三实施例的电路板在图1所示A区域处的顶部示意图,图24是沿图23中C-C向的剖面结构示意图,请参阅图23及图24,第十三实施例与第十二实施例的区别在于,在所述第二环形焊盘12上,在所述第二缺口121的边缘设置有突出于所述第二环形焊盘12的第二阻挡块122。所述第二阻挡块122能够限定将所述第二环形焊盘12与所述第一环形焊盘26连接的焊料4的高度,进而能够限定形成的泄气孔3的大小,以避免泄气孔太大,影响电子设备的正常工作。同时,所述第二阻 挡块122也能够阻止焊料4流淌向所述阻焊层14的开窗区域,从而避免短路等情况发生。
其中,所述压差传感器封装结构2的底部的第一环形焊盘26的结构可与第一~八实施例的第一环形焊盘26的结构相同,不再赘述。进一步,所述第一环形焊盘26的第一缺口261可与所述第二环形焊盘12的第二缺口121正对,所述电路板1顶部的阻焊层14的开窗与所述压差传感器封装结构2底部的阻焊鞥27的开窗正对,以共同作为所述泄气孔3。所述第二阻挡块122与所述第一阻挡块262抵接,以避免焊料流淌至阻焊层的开窗区域。
第十四实施例
图25是本发明电子设备第十四实施例的压差传感器封装结构的剖面结构示意图,请参阅图25,所述压力传感器封装结构2包括基板21、外壳22及压力传感元件23。所述外壳22边缘固定于所述基板21的正面,与所述基板21之间形成第一腔体24。所述第一通孔20贯穿所述基板21。所述压力传感元件23固定于所述基板21正面且位于所述第一腔体24内。所述压力传感元件23具有第二腔体231以及压力感应层232,所述压力感应层232位于所述第一腔体24与所述第二腔体231之间,所述第二腔体231通过所述第一通孔20与所述气流孔连通,形成所述气流通道。在所述外壳22上还设置有第五通孔25,所述第五通孔25与所述第一腔体24连通。
在该实施例中,所述泄气孔3设置在所述第二腔体231侧壁。具体地说,所述压力感应元件23还包括用于支撑所述压力感应层232边缘的支撑结构233,所述支撑结构233作为所述第二腔体231的侧壁,则所述泄气孔3贯穿所述支撑结构233,以与所述第二腔体231连通,进而与所述气流通道连通,实现降低气流通道压力的作用。此实施例的优点在于,可以在压差传感器封装结构出厂前完成对泄气孔3操作,操作简单,不需要额外的增加压差传感器封装结构的成本。在本发明其他实施例中,所述泄气孔3也可不设置在所述第二腔体231的侧壁,而是如实施例一至实施例十三所示的设置方式。
进一步,所述压力传感元件23通过密封层28与所述基板21连接。具体地说,所述支撑结构233通过密封层28与所述基板21连接,以使所述第一腔体24与所述第二腔体231不连通。
第十五实施例
图26是本发明电子设备第十五实施例的压差传感器封装结构的剖面结构示意图,请参阅图26,相对于第十四实施例,在本实施例中,所述泄气孔3的设置位置发生了变化。具体地说,在本实施例中,所述泄气孔3并未设置在所述第二腔体231的侧壁,而是设置在所述密封层28。所述密封层28具有贯穿孔29,所述贯穿孔29连通所述第一通孔20与所述第二腔体231。所述泄气孔3设置在所述贯穿孔29的侧壁,即所述泄气孔3贯穿所述密封层28,并与外部连通,进而实现减小气流通道压力的目的。此实施例的优点在于,可以在压差传感器封装结构出厂前完成对泄气孔3操作,操作简单,不需要额外的增加压差传感器封装结构的成本,且相对于第十四实施例,不需要对所述压力传感元件23进行操作,而是对密封层进行操作,可以避免所述压力传感元件23被破坏。
在本实施例中,所述泄气孔3贯穿所述密封层,可以理解的是,在本发明其他实施例中,在将压力传感元23固定在基板21上时,在所述泄气孔3对应区域,可不设置密封材料,以在所述密封层中形成所述泄气孔3。
在上述各个实施例中,仅示意所述泄气孔为一个的情况,而在本发明的其他实施例中,所述泄气孔的数量可为多个。
例如,在第四实施例中,所述第一环形焊盘26具有第一缺口261,而在其他实施例中,如图27所示,其为本发明电子设备第十六实施例的压差传感器封装结构在图1所示A区域处的底部示意图,在该实施例中,所述第一环形焊盘26具有四个第一缺口261,该四个第一缺口261能够形成四个泄气孔。进一步,该四个第一缺口261以所述第二通孔27的中心轴为对称轴对称设置。如图28所示,其为本发明电子设备第十七实施例的压差传感器封装结构在图1所示A区域处的底部示意图,在该实施例中,所述第一环形焊盘26具有两个第一缺口261,该两个第一缺口261能够形成两个泄气孔。进一步,该两个第一缺口261以所述第二通孔27的中心轴为对称轴对称设置,以简化工艺制程。可以理解的是,在本发明其他实施例中,所述第一缺口261也可为其他数量,本发明对此不进行限定。
再例如,在第九实施例中,所述第二环形焊盘12具有一个第二缺口121,而在其他实施例中,所述第二环形焊盘12具有多个第二缺口121。其排布可参考第一缺口261的排布。
再例如,在第十五实施例中,所述贯穿孔29的侧壁具有一个泄气孔3,而在本发明其他实施例中,所述贯穿孔29的侧壁具有多个泄气孔,多个所述泄气孔可以所述贯穿孔29的中心轴为对称轴对称分布。
本发明电子设备可为电子烟,其中,气流孔可与电子烟中的雾化通道连通,以使所述压差传感器封装结构能够感测雾化通道与外界的压差,从而实现电子烟的启动。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (16)

  1. 一种电子设备,包括:
    主体,具有气流孔;
    压差传感器封装结构,具有第一通孔,所述压差传感器封装结构通过所述第一通孔与所述气流孔连通,形成气流通道;
    至少一泄气孔,与所述气流通道导通,并将所述气流通道与外部连通,以减小所述气流通道的压力。
  2. 根据权利要求1所述的电子设备,其中,所述压差传感器封装结构与所述主体之间设置有环形焊盘,所述环形焊盘中心具有过孔,所述过孔连接所述第一通孔及所述气流孔。
  3. 根据权利要求2所述的电子设备,其中,所述泄气孔设置在所述第一通孔、所述过孔或所述气流孔的侧壁。
  4. 根据权利要求2所述的电子设备,其中,所述环形焊盘具有至少一缺口,所述缺口形成所述泄气孔。
  5. 根据权利要求4所述的电子设备,其中,当所述环形焊盘具有多个缺口时,多个所述缺口以所述过孔的中心轴为对称轴对称设置。
  6. 根据权利要求4所述的电子设备,其中,在沿所述过孔轴向方向上,在所述缺口对应区域,所述环形焊盘被部分或完全去除,以形成所述缺口。
  7. 根据权利要求6所述的电子设备,其中,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,压差传感器封装结构底部具有与所述缺口对应的凹槽,所述凹槽与所述缺口作为所述泄气孔。
  8. 根据权利要求6所述的电子设备,其中,所述压差传感器封装结构底部具有阻焊层,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,至少在所述缺口对应区域,所述阻焊层开窗,以与所述缺口共同作为所述泄气孔。
  9. 根据权利要求8所述的电子设备,其中,在所述环形焊盘上,在所述缺口的边缘设置有突出于所述环形焊盘的阻挡块。
  10. 根据权利要求6所述的电子设备,其中,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,所述主体具有与所述缺口对应的凹槽,所述凹槽与所述缺口作为所述泄气孔。
  11. 根据权利要求6所述的电子设备,其中,所述主体表面具有阻焊层,在所述缺口对应区域,所述环形焊盘被完全去除,以形成所述缺口的情况下,至少在所述缺口对应区域,所述阻焊层开窗,以与所述缺口共同作为所述泄气孔。
  12. 根据权利要求1所述的电子设备,其中,所述压差传感器封装结构包括:
    外壳;
    基板,所述外壳边缘固定于所述基板的正面,与所述基板之间形成第一腔体,所述第一通孔贯穿所述基板;
    压力传感元件,固定于所述基板正面且位于所述第一腔体内,所述压力传感元件具有第二腔体以及
    压力感应层,所述压力感应层位于所述第一腔体与所述第二腔体之间,所述第二腔体通过所述第一通孔与所述气流孔连通,形成所述气流通道。
  13. 根据权利要求12所述的电子设备,其中,所述泄气孔设置在所述第二腔体侧壁。
  14. 根据权利要求12所述的电子设备,其中,所述压力传感元件通过密封层与所述基板连接,所述密封层具有贯穿孔,所述贯穿孔连通所述第一通孔与所述第二腔体。
  15. 根据权利要求14所述的电子设备,其中,所述泄气孔设置在所述第二腔体或所述贯穿孔侧壁。
  16. 根据权利要求1所述的电子设备,其中,所述电子设备为电子烟。
PCT/CN2021/124573 2020-10-21 2021-10-19 电子设备 WO2022083567A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011131216.3 2020-10-21
CN202011131216.3A CN114383769A (zh) 2020-10-21 2020-10-21 电子设备
CN202022361169.3U CN214096464U (zh) 2020-10-21 2020-10-21 电子设备
CN202022361169.3 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022083567A1 true WO2022083567A1 (zh) 2022-04-28

Family

ID=81291632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124573 WO2022083567A1 (zh) 2020-10-21 2021-10-19 电子设备

Country Status (1)

Country Link
WO (1) WO2022083567A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738284A (zh) * 2008-11-21 2010-06-16 重庆川仪自动化股份有限公司 用于传感器的悬浮装置
JP2012150008A (ja) * 2011-01-19 2012-08-09 Daiwa Seiko Inc 接触覚検知装置
CN107923807A (zh) * 2015-07-20 2018-04-17 美国血液技术公司 用于测量流体流动的压力的系统和方法
CN108692856A (zh) * 2017-04-07 2018-10-23 沛喆科技股份有限公司 差压传感器及其制造方法
CN110082027A (zh) * 2019-04-09 2019-08-02 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备
CN214096464U (zh) * 2020-10-21 2021-08-31 苏州敏芯微电子技术股份有限公司 电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738284A (zh) * 2008-11-21 2010-06-16 重庆川仪自动化股份有限公司 用于传感器的悬浮装置
JP2012150008A (ja) * 2011-01-19 2012-08-09 Daiwa Seiko Inc 接触覚検知装置
CN107923807A (zh) * 2015-07-20 2018-04-17 美国血液技术公司 用于测量流体流动的压力的系统和方法
CN108692856A (zh) * 2017-04-07 2018-10-23 沛喆科技股份有限公司 差压传感器及其制造方法
CN110082027A (zh) * 2019-04-09 2019-08-02 苏州敏芯微电子技术股份有限公司 差压传感器封装结构及电子设备
CN214096464U (zh) * 2020-10-21 2021-08-31 苏州敏芯微电子技术股份有限公司 电子设备

Similar Documents

Publication Publication Date Title
CN101616863B (zh) 包括差动传感器mems器件和带孔衬底的电子器件
US20100310390A1 (en) Fan
CN110631759A (zh) 差压传感器封装结构及电子设备
KR102013654B1 (ko) 통합형 센서 내장형 자기진단 변압기
WO2020206981A1 (zh) 差压传感器封装结构及电子设备
WO2022083567A1 (zh) 电子设备
US20170284884A1 (en) Differential pressure sensor
CN214096464U (zh) 电子设备
WO2017012250A1 (zh) 一种环境传感器
CN207649640U (zh) 一种惯性传感器、环境传感器的封装结构
CN114827858A (zh) 麦克风封装结构及电子设备
US6802222B2 (en) Diaphragm-type semiconductor device and method for manufacturing diaphragm-type semiconductor device
US20100218613A1 (en) Semiconductor device including a cavity
CN217845478U (zh) 压力传感结构及电子设备
CN114383769A (zh) 电子设备
CN211061108U (zh) 差压传感器封装结构及电子设备
WO2018179997A1 (ja) 圧力センサ
JP2010008434A (ja) 半導体圧力センサ
US11561145B2 (en) Sensor membrane structure with insulating layer
CN207802370U (zh) 一种麦克风和电容式传感器集成结构
JP3840784B2 (ja) 圧力センサ
CN218790608U (zh) 用于电子烟的压力感应结构及电子烟
CN108955998A (zh) 一种汽车压差传感器的电路板总成结构
TWM570120U (zh) 應用於手持式裝置的氣體感測器
CN115571848A (zh) Mems芯片、差压传感器和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881983

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/10/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 21881983

Country of ref document: EP

Kind code of ref document: A1