WO2020204446A1 - 열전발전모듈 - Google Patents
열전발전모듈 Download PDFInfo
- Publication number
- WO2020204446A1 WO2020204446A1 PCT/KR2020/004045 KR2020004045W WO2020204446A1 WO 2020204446 A1 WO2020204446 A1 WO 2020204446A1 KR 2020004045 W KR2020004045 W KR 2020004045W WO 2020204446 A1 WO2020204446 A1 WO 2020204446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling water
- thermoelectric
- power module
- disposed
- upper cover
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title abstract description 10
- 239000000498 cooling water Substances 0.000 claims abstract description 98
- 238000001816 cooling Methods 0.000 claims abstract description 45
- 239000011810 insulating material Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 4
- SEWHDNLIHDBVDZ-UHFFFAOYSA-N 1,2,3-trichloro-4-(2-chlorophenyl)benzene Chemical compound ClC1=C(Cl)C(Cl)=CC=C1C1=CC=CC=C1Cl SEWHDNLIHDBVDZ-UHFFFAOYSA-N 0.000 description 14
- 230000008901 benefit Effects 0.000 description 9
- 239000012774 insulation material Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 239000002826 coolant Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/13—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
Definitions
- the present invention relates to a thermoelectric power module, and more particularly, to a vacuum structure of the thermoelectric power module.
- thermoelectric element refers to a device using various effects that appear through the interaction of heat and electricity.
- a thermoelectric device is a thermistor, which is a device that uses a temperature change in electrical resistance, a device that uses the Seebeck effect, a phenomenon in which electromotive force is generated by a temperature difference, and the Peltier effect, a phenomenon in which heat is absorbed (or generated) by current.
- Peltier devices which are devices using
- the thermoelectric power module may generate power by using a phenomenon in which electromotive force is generated due to a temperature difference applied to both ends of the thermoelectric element. Specifically, the thermoelectric power module generates electric energy by using thermal energy such as waste heat, and includes a thermoelectric element, and may generate electric power by generating a temperature difference on both sides of the thermoelectric element.
- thermoelectric power module is required to be formed in a vacuum structure so that exposure of the thermoelectric element to the atmosphere is minimized.
- thermoelectric power module there is a problem in that there is an unnecessary vacuum area inside, so that maintenance and repair are difficult, and design constraints and the like occur.
- An object of the present invention is to provide a thermoelectric power module with a minimized vacuum area.
- thermoelectric power module includes a heat collecting plate receiving heat from a heat source, an upper cover having a coolant inlet and a coolant outlet through which coolant passes, a thermoelectric element disposed between the heat collecting plate and the upper cover, and an upper cover and a thermoelectric element It is disposed between, and may include a cooling plate in which the cooling water passage is formed.
- a cooling water inlet and a cooling water outlet are formed in the upper cover, and the cooling water passage may communicate with the cooling water inlet and the cooling water outlet.
- thermoelectric power module further includes a lower cover disposed above the heat collecting plate, and a side cover disposed between the upper cover and the lower cover, and a vacuum space may be formed between the upper cover, the lower cover, and the side cover.
- a PCB, a thermoelectric element, and a cooling plate may be arranged in the vacuum space.
- the cooling plate is attached to the lower surface of the upper cover, and the thermoelectric element and the PCB can be attached to the lower surface of the cooling plate.
- thermoelectric elements there are a plurality of thermoelectric elements, and the cooling water passage includes a first flow passage in communication with the cooling water inlet, a second flow passage in communication with the cooling water outlet, and a third flow passage connected between the first flow passage and the second flow passage, and the first flow passage
- First and second thermoelectric element regions in which a plurality of thermoelectric elements are disposed may be formed under the and second flow paths.
- a PCB region in which a PCB is disposed may be formed between the first and second thermoelectric element regions.
- thermoelectric power module may further include a bypass diode connected in parallel to the plurality of thermoelectric elements.
- thermoelectric power module further includes an insulating material disposed around the thermoelectric element, and the thermoelectric element and the insulating material may be disposed in an inner space formed by a thin plate.
- the thickness of the insulating material may be thinner than that of the thermoelectric element.
- the size of the vacuum area can be minimized, thereby minimizing the size of the thermoelectric power module, and ease of maintenance. There is an advantage that can be secured.
- the thickness and size of the case can be minimized, thereby reducing the weight of the thermoelectric power module and improving manufacturing productivity.
- thermoelectric element disposed in the vacuum region by minimizing the size of the vacuum region, there is an advantage of improving power generation efficiency by minimizing heat loss of the thermoelectric element disposed in the vacuum region.
- thermoelectric element closest to the cooling water it is possible to maximize the temperature difference of the thermoelectric element to increase power generation efficiency, and the PCB is disposed between the thermoelectric elements to maintain a constant temperature.
- thermoelectric element in parallel, even if some thermoelectric elements are damaged, there is an advantage that power generated by the remaining thermoelectric elements can be output to the outside.
- thermoelectric device there is an advantage of minimizing heat loss of the thermoelectric device by vacuum packaging the thermoelectric device through a thin plate.
- thermoelectric device heat loss of the thermoelectric device can be minimized even by disposing an insulating material around the thermoelectric device.
- thermoelectric power module 1 is an exemplary view showing a thermoelectric power module according to an embodiment of the present invention.
- thermoelectric power module is a perspective view of a thermoelectric power module according to a first embodiment of the present invention.
- thermoelectric power module 3 is a side view of the thermoelectric power module shown in FIG. 2.
- FIG. 4 is a diagram illustrating an upper cover, a cooling plate, a thermoelectric element, a PCB, and a feed through illustrated in FIG. 3.
- FIG. 5 is a diagram illustrating a connection state of the thermoelectric device shown in FIG. 4, a PCB, and a feed through.
- thermoelectric power module 6 is a side view of a thermoelectric power module according to a second embodiment of the present invention.
- FIG. 7 is a view showing a cooling plate, a thermoelectric element, a feed through, and a heat insulating material shown in FIG. 6.
- module and “unit” for the constituent elements used in the following description are given in consideration of only the ease of writing in the present specification, and do not impart a particularly important meaning or role by themselves. Therefore, “module” and “unit” may be used interchangeably.
- thermoelectric power module 1 is an exemplary view showing a thermoelectric power module according to an embodiment of the present invention.
- thermoelectric power module 1 may be installed where the heat source 5 is present.
- the thermoelectric power module 1 uses the temperature difference generated by the heat collecting plate 2 receiving heat from the heat source 5, the cooling water passage 4 through which the cooling water flows, and the heat collecting plate 2 and the cooling water passage 4 Thus, it may include a power generating unit 3 for generating power.
- the power generation unit 3 may include at least one of a printed circuit board (PCB), a cooling plate, and at least one thermoelectric element.
- PCB printed circuit board
- thermoelectric power module 1 may omit some of the components illustrated in FIG. 1 or may further include other components.
- the heat source 5 refers to a heat source generating heat of about 750 to 1000°C, but need not be limited to 750 to 1000°C.
- the heat source 5 may include slabs, exhaust gas, waste heat, and the like.
- the thermoelectric power module 1 may receive heat from the heat source 5 in a radiation manner as shown in FIG. 1(a) or may receive heat in a conduction manner as shown in FIG. 1(b).
- the temperature of the heat source 5 that transfers heat to the thermoelectric power module 1 in a radiation manner may be higher than the temperature of the heat source 5 that transfers heat to the thermoelectric power module 1 in a conduction manner.
- the temperature of the heat source 5 that transfers heat to the thermoelectric power module 1 in a radiation manner is about 1000°C
- FIG. 2 is a perspective view of a thermoelectric power module according to a first embodiment of the present invention
- FIG. 3 is a side view of the thermoelectric power module shown in FIG. 2
- FIG. 4 is an upper cover and a cooling plate shown in FIG.
- the thermoelectric element, the PCB, and the feed-through are shown
- FIG. 5 is a diagram illustrating the connection of the thermoelectric element, the PCB, and the feed-through shown in FIG. 4.
- thermoelectric power generation module 10 includes a heat collecting plate 12, a case 13, a cooling water passage 14, a cooling plate 24, and thermoelectric elements 31 to 36. , It may include at least some or all of the PCB (41). In addition, according to an embodiment, the thermoelectric power module 10 may omit some of the above-described components or may further include other components.
- the cooling plate 24, the thermoelectric elements 31 to 36, and the PCB 41 may be disposed inside the case 13.
- Heat around the heat collecting plate 12 can be collected.
- the heat collecting plate 2 may include a heat absorbing plate, and the heat absorbing plate may absorb surrounding heat.
- the horizontal cross-sectional area of the heat collecting plate 12 may be greater than or equal to the horizontal cross-sectional area of the case 13.
- thermoelectric elements 31 to 36 are semiconductor materials, and may be formed of a high-temperature portion and a low-temperature portion, and may be a material capable of generating electric power due to a temperature difference between the high-temperature portion and the low-temperature portion.
- the case 13 may include an upper cover 21, a side cover 22, and a lower cover 23.
- the case 13 may protect the cooling plate 24, the thermoelectric elements 31 to 36, and the PCB 41 from the outside.
- the cooling plate 24 may be a separate member from the upper cover 21, or the cooling plate 24 may be a member integrally formed with the upper cover 21. That is, the cooling plate 24 and the upper cover 21 may be formed as a single member, or may be formed as separate members that can be separated.
- the cooling water passage 14 may be a separate member from the upper cover 21, or the cooling water passage 14 may be a member integrally formed with the upper cover 21. That is, the cooling water passage 14 and the upper cover 21 may be formed as a single member, or may be formed as separate members that can be separated.
- the upper cover 21 may be disposed to face the lower cover 23.
- a cooling water inlet and outlet 26 may be formed in the upper cover 21 to connect the cooling water passage 14 and the cooling water passage C formed in the cooling plate 24.
- the cooling water passage 14 includes a cooling water inlet passage 14a that guides cooling water introduced from the outside to the cooling water passage C, and a cooling water outlet passage 14b through which the cooling water that has passed through the cooling water passage C flows to the outside.
- the cooling water inlet and outlet 26 may include a cooling water inlet connecting the cooling water inlet passage 14a and the cooling water passage C, and a cooling water outlet connecting the cooling water outlet passage 14b and the cooling water passage C.
- the cooling water may sequentially pass through the cooling water inlet passage 14a, the cooling water inlet, the cooling water passage C, the cooling water outlet, and the cooling water outlet passage 14b by an externally disposed pump.
- the horizontal cross-sectional area of the upper cover 21 may be larger than the horizontal cross-sectional area of the cooling plate 24.
- the cooling plate 24 may be attached to the lower surface of the upper cover 21, and in this case, the upper cover 21 may have a protrusion 21a protruding horizontally from the cooling plate 24.
- the side cover 22 may be disposed between the upper cover 21 and the lower cover 23.
- the upper end of the side cover 22 may be attached to the protrusion 21a, and the lower end may be attached to the upper surface of the lower cover 23.
- the side cover 22 may be bonded by being seated on the protrusion 21a after the thermoelectric elements 31 to 36 are seated on the lower surface of the cooling plate 24.
- the side cover 22 may be bonded to the protrusion 21a and then bonded to the lower cover 23 to form an inner space in a vibrating state.
- the upper cover 21, the side cover 22, and the lower cover 23 may be made of the same material, and in this case, the upper cover 21, the side cover 22, and the lower cover 23 are joined by a welding process. Since this is possible, there is an advantage that a brazing process is unnecessary. Therefore, since a soldering process for joining dissimilar metals is unnecessary, the risk of occurrence of deformation due to the coefficient of thermal expansion occurring in the soldering process and a problem of high manufacturing cost can be minimized.
- thermoelectric power module 10 there is an advantage of being able to reduce weight and improve production productivity.
- the lower cover 23 may be disposed on the heat collecting plate 12.
- a vacuum space S may be formed between the upper cover 21 and the side cover 22 and the lower cover 23.
- a cooling plate 24, at least one thermoelectric element 31 to 36, and a PCB 41 may be disposed in the vacuum space S.
- the cooling plate 24 may be attached to the lower surface of the upper cover 21.
- the thermoelectric elements 31 to 36 and the PCB 41 may be attached to the lower surface of the cooling plate 24.
- thermoelectric elements 31 to 36 may contact the cooling plate 24, and lower ends of the thermoelectric elements 31 to 36 may contact the lower cover 23. Accordingly, a low temperature portion is formed at the upper end of the thermoelectric elements 31 to 36, a high temperature portion is formed at the lower end of the thermoelectric elements 31 to 36, and a temperature difference occurs between the low temperature and high temperature portions of the thermoelectric elements 31 to 36 It can generate electric power.
- thermoelectric elements 31 to 36 Power generated by the thermoelectric elements 31 to 36 is transmitted through the connection of the PCB 41 and the electrode 25, and may be output to the outside through a feed through 15 in contact with the PCB 41.
- the electrodes 25 of each of the thermoelectric elements 31 to 36 may be connected to the PCB 41.
- the feed through 15 may include an anode feed through 15a and a cathode feed through 15b.
- thermoelectric power module 10 may be connected to the PCB 41 through an electrode 25.
- the cooling water passage C may include a first passage C1, a second passage C2, and a third passage C3.
- the first flow path C1 communicates with the cooling water inlet
- the second flow path C2 communicates with the cooling water outlet
- the third flow path C3 may be connected between the first flow path C1 and the second flow path C2. have.
- the thermoelectric power module 10 includes a plurality of thermoelectric elements 31 to 36, and the plurality of thermoelectric elements 31 to 36 may be disposed under the cooling water passage C.
- thermoelectric element region in which a plurality of thermoelectric elements 31 to 36 are disposed may be formed under the cooling water passage C.
- a first thermoelectric element region in which the first to third thermoelectric elements 31 to 33 are disposed is formed under the first flow path C1, and the fourth through fourth flow paths are under the second flow path C2.
- a second thermoelectric element region in which the sixth thermoelectric elements 34 to 36 are disposed may be formed. Accordingly, the cooling water W passing through the cooling water passage C may cool the first to sixth thermoelectric elements 31 to 36 disposed under the cooling water passage C, and the first to sixth thermoelectric elements Upper portions of the elements 31 to 36 may be formed with a low temperature portion.
- a PCB region in which the PCB 41 is disposed may be formed between the first thermoelectric element region and the second thermoelectric element region.
- the PCB 41 may be disposed between the first to third thermoelectric elements 31 to 33 and the fourth to sixth thermoelectric elements 34 to 36 among the lower surfaces of the cooling plate 24. Even in this case, the PCB 41 may be cooled by the cooling water W, and the temperature of the PCB 41 may be higher than the temperature of the low temperature portion of the first to sixth thermoelectric elements 31 to 36. In addition, as the cooling water W continuously passes through the cooling water passage C, the PCB 41 may maintain a constant temperature.
- thermoelectric power module 10 may further include a bypass diode D connected in parallel to the plurality of thermoelectric elements 31 to 36.
- the bypass diode D may be connected between the electrodes 25 of each of the plurality of thermoelectric elements 31 to 36.
- a first diode is connected between the electrodes 25 of the first thermoelectric element 31
- a second diode is connected between the electrodes 25 of the second thermoelectric element 32
- a third thermoelectric element A third diode is connected between the electrodes 25 of 31
- a fourth diode is connected between the electrodes 25 of the fourth thermoelectric element 34, and the electrode 25 of the fifth thermoelectric element 35
- a fifth diode may be connected therebetween
- a sixth diode may be connected between the electrodes 25 of the sixth thermoelectric element 36.
- FIG. 6 is a side view of a thermoelectric power module according to a second embodiment of the present invention
- FIG. 7 is a view showing a cooling plate, a thermoelectric element, a feed through, and a heat insulating material shown in FIG. 6.
- FIG. 7 may be a bottom view of a thermoelectric power module excluding a heat collecting plate in the thermoelectric power module illustrated in FIG. 6.
- thermoelectric power generation module 100 includes a heat collecting plate 112, an upper cover 121, a cooling water passage 114, a cooling plate 124, and thermoelectric elements 131 to 136. Wow, it may include at least some or all of the insulation materials (151, 153). In addition, according to an embodiment, the thermoelectric power module 100 may omit some of the above-described components or may further include other components.
- thermoelectric power module 100 may omit some of the above-described components or may further include other components.
- the heat collecting plate 112 may receive heat from a heat source.
- the heat collecting plate 112 may include a heat absorbing plate, and the heat absorbing plate may absorb surrounding heat.
- the horizontal cross-sectional area of the heat collecting plate 112 may be greater than or equal to the horizontal cross-sectional area of the upper cover 121.
- At least one thermoelectric element 131 to 136 may be disposed on the heat collecting plate 112, and a cooling plate 124 and an upper cover 121 may be disposed on the thermoelectric elements 131 to 136.
- the cooling plate 124 may be a separate member from the upper cover 121, or the cooling plate 124 may be a member integrally formed with the upper cover 121. That is, the cooling plate 124 and the upper cover 121 may be formed as a single member, or may be formed as separate separate members.
- the cooling water passage 114 may be a separate member from the upper cover 121, or the cooling water passage 114 may be a member integrally formed with the upper cover 121. That is, the cooling water passage 114 and the upper cover 121 may be formed as a single member, or may be formed as separate members that can be separated.
- the cooling plate 124 may be attached to the lower surface of the upper cover 121.
- a cooling water inlet 126 may be formed in the upper cover 121 to connect the cooling water passage 114 and the cooling water passage C formed in the cooling plate 124.
- the cooling water passage 114 is a cooling water inlet passage 114a that guides cooling water introduced from the outside to the cooling water passage C, and a cooling water outlet passage 114b through which the cooling water that has passed through the cooling water passage C flows out to the outside.
- the cooling water inlet 126 includes a cooling water inlet connecting the cooling water inlet passage 114a and the cooling water passage C, and a cooling water outlet connecting the cooling water outlet passage 114b and the cooling water passage C. I can.
- the cooling water may sequentially pass through the cooling water inlet passage 114a, the cooling water inlet, the cooling water passage C, the cooling water outlet, and the cooling water outlet passage 114b by an externally disposed pump.
- the horizontal cross-sectional area of the upper cover 121 may be greater than or equal to the horizontal cross-sectional area of the cooling plate 124.
- At least one thermoelectric element 131 to 136 may be disposed between the cooling plate 124 and the heat collecting plate 112.
- thermoelectric elements 131 to 136 are semiconductor materials, and may be formed of a high-temperature portion and a low-temperature portion, and may be a material capable of generating power due to a temperature difference between the high-temperature portion and the low-temperature portion.
- thermoelectric elements 131 to 136 may be disposed in an inner space formed by the thin plate 160.
- thermoelectric elements 131 to 136 may be disposed in an inner space formed by the thin plate 160 together with the heat insulating materials 151 and 153.
- the inner space may be in a vacuum state.
- the thin plate 160 may be a copper (Cu) thin plate, but this is only an example and is not limited thereto.
- thermoelectric elements 131 to 136 and the heat insulating materials 151 and 153 may be vacuum packaged by the thin plate 160.
- a thin plate may be preformed similar to the shape and arrangement spacing of the thermoelectric elements 131 to 136, and the preformed thin plate may be disposed above and below the thermoelectric elements 131 to 136.
- a thin plate disposed above the thermoelectric elements 131 to 136 may be an upper thin plate 160a
- a thin plate disposed below the thermoelectric elements 131 to 136 may be a lower thin plate 160b.
- thermoelectric elements 131 to 136 may be inserted around the thermoelectric elements 131 to 136.
- the insulation materials 151 and 153 may include an outer insulation material 151 disposed outside the thermoelectric element and an inner insulation material 153 disposed inside the thermoelectric element, that is, between the thermoelectric element and other thermoelectric elements.
- the heat insulators 151 and 153 may minimize the heat of the thermoelectric elements 131 to 136 from being radiated to the outside.
- thermoelectric elements 131 to 136 and the heat insulating material 151 and 153 After the thermoelectric elements 131 to 136 and the heat insulating material 151 and 153 are disposed, the electrodes 125 of each of the plurality of thermoelectric elements 131 to 136 may be wire bonded with a conductor 127 . Thereafter, each of the preformed upper and lower plates 160a and 160b is disposed above and below the thermoelectric elements 131 to 136 and the heat insulating materials 151 and 156, and the upper and lower plates 160a and 160b ) Is cooled and compressed to vacuum package the thermoelectric elements 131 to 136 and the heat insulators 151 and 153. Accordingly, the thermoelectric elements 131 to 136 and the heat insulating materials 151 and 153 are disposed in an inner space formed by the thin plate 160, and the inner space may be in a vacuum state.
- the insulating material 151 and 153 can block or minimize the contact between the upper and lower plates 160a and 160b, thereby minimizing heat transfer between the upper and lower plates 160a and 160b. By concentrating heat to the thermoelectric elements 131 to 136, power generation efficiency may be increased.
- Both ends of the conductive wire 127 are connected by feed-throughs 115a and 115b, and power generated from the plurality of thermoelectric elements 131 to 136 may be output to the outside through the feed-throughs 115a and 115b.
- each of the thermoelectric elements 131 to 136 may be the same. Accordingly, the heights of the plurality of thermoelectric elements 131 to 136 may be the same.
- the thickness of the insulating materials 151 and 153 may be thinner than the thickness of the thermoelectric elements 131 to 136.
- the upper ends of the thermal insulation materials 151 and 153 may be lower than the upper ends of the thermoelectric elements 131 to 136, and the lower ends of the thermal insulation materials 151 and 153 may be higher than the lower ends of the thermoelectric elements 131 to 136.
- the heat insulating materials 151 and 153 may be separated from the heat collecting plate 112 and the cooling plate 124.
- thermoelectric elements 131 to 136 and the insulating materials 151 and 153 are vacuum packaged may contact the heat collecting plate 112 and the upper end may contact the cooling plate 124. Accordingly, a low temperature portion may be formed at the upper end of the thermoelectric elements 131 to 136 and the upper end of the thin plate 160, and a high temperature portion may be formed at the lower end of the thermoelectric elements 131 to 136 and the lower end of the thin plate 160.
- the thermoelectric power module 100 may further include a bypass diode D, and the bypass diode D may be connected to the thermoelectric elements 131 to 136 in parallel. Accordingly, as described with reference to FIGS. 2 to 4, even if some thermoelectric elements are damaged, power may be delivered to the feed-throughs 115a and 115b through the bypass diode D.
- the circuit unit to which the bypass diode D is connected may be disposed close to the cooling plate 124 among the cooling plate 124 and the heat collecting plate 112. In this case, it is possible to minimize the case where the bypass diode D is damaged by heat.
- an insulation material may be disposed around the outer circumference of the bypass diode D.
- the insulation material may have a square tube shape.
- the side cover between the upper cover 121 and the heat collecting plate 112 is unnecessary, heat loss to the side cover can be reduced.
- the heat of the heat collecting plate 112 is transferred to the thermoelectric element. Because it moves intensively, there is an advantage that can increase power generation efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
본 발명은 진공 영역을 최소화한 열전발전모듈에 관한 것으로, 열전발전모듈은 열원으로부터 열을 전달받는 집열판, 냉각수가 지나는 냉각수 입구 및 냉각수 출구가 형성되는 어퍼 커버, 집열판과 어퍼 커버 사이에 배치되는 열전소자, 및 어퍼 커버와 열전소자 사이에 배치되며, 내부에 냉각수가 이동하는 냉각수로가 형성된 냉각판을 포함할 수 있다.
Description
본 발명은 열전발전모듈에 관한 것으로, 보다 상세하게는 열전발전모듈의 진공 구조에 관한 것이다.
열전소자(thermoelectric element)는 열과 전기의 상호작용으로 나타나는 각종 효과를 이용한 소자를 의미한다. 예를 들어, 열전소자는 전기저항의 온도 변화를 이용한 소자인 서미스터, 온도 차에 의해 기전력이 발생하는 현상인 제베크효과를 이용한 소자, 전류에 의해 열의 흡수(또는 발생)가 생기는 현상인 펠티에효과를 이용한 소자인 펠티에소자 등이 있다.
열전발전모듈은 열전소자의 양단에 인가되는 온도 차이에 의해 기전력이 발생되는 현상을 이용하여 전력을 발생시키는 것일 수 있다. 구체적으로, 열전발전모듈은 폐열 등의 열에너지를 이용하여 전기 에너지를 발생시키는 것으로서, 열전소자를 포함하며, 열전소자의 양면에 온도차를 발생시킴으로서 전력을 발생시킬 수 있다.
한편, 열전소자는 대기 중에 노출되면 산화현상이 발생하여 정상적으로 전력을 생산하지 못할 수 있다. 따라서, 열전발전모듈은 열전소자가 대기 중에 노출되는 것이 최소화되도록 진공 구조로 형성되는 것이 요구된다.
그러나, 종래 열전발전모듈은 내부에 불필요한 진공 영역이 존재하여 유지 및 보수의 어려움이 존재하고, 설계의 제약 조건 등이 발생하는 문제가 있다.
본 발명은 진공 영역을 최소화한 열전발전모듈을 제공하고자 한다.
본 발명의 실시 예에 따른 열전발전모듈은 열원으로부터 열을 전달받는 집열판, 냉각수가 지나는 냉각수 입구 및 냉각수 출구가 형성되는 어퍼 커버, 집열판과 어퍼 커버 사이에 배치되는 열전소자, 및 어퍼 커버와 열전소자 사이에 배치되며, 내부에 냉각수가 이동하는 냉각수로가 형성된 냉각판을 포함할 수 있다.
어퍼 커버에는 냉각수 입구와 냉각수 출구가 형성되고, 냉각수로는 냉각수 입구 및 냉각수 출구와 연통될 수 있다.
열전발전모듈은 집열판의 상부에 배치되는 로어 커버, 및 어퍼 커버와 로어 커버 사이에 배치되는 사이드 커버를 더 포함하고, 어퍼 커버와 로어 커버와 사이드 커버 사이에는 진공 공간이 형성될 수 있다.
진공 공간에는 PCB와, 열전소자와, 냉각판이 배치될 수 있다.
냉각판은 어퍼 커버의 하면에 부착되고, 열전소자와 PCB는 냉각판의 하면에 부착될 수 있다.
열전소자는 다수개이고, 냉각수로는 냉각수 입구와 연통되는 제1 유로와, 냉각수 출구와 연통되는 제2 유로와, 제1 유로와 제2 유로 사이에 연결되는 제3 유로를 포함하고, 제1 유로와 제2 유로 아래에는 다수개의 열전소자가 배치되는 제1 및 제2 열전소자 영역이 형성될 수 있다.
제1 및 제2 열전소자 영역 사이에는 PCB가 배치되는 PCB 영역이 형성될 수 있다.
열전발전모듈은 다수의 열전소자에 병렬 연결되는 바이패스 다이오드를 더 포함할 수 있다.
열전발전모듈은 열전소자 주변에 배치되는 단열재를 더 포함하고, 열전소자와 단열재는 박판에 의해 형성된 내부 공간에 배치될 수 있다.
단열재의 두께는 열전소자의 두께 보다 얇을 수 있다.
본 발명에 따르면, 냉각수 입구 및 냉각수 출구가 형성된 어퍼 커버와 집열판이 진공 공간에 배치되지 않으므로, 진공 영역의 크기를 최소화할 수 있고, 이에 따라 열전발전모듈의 크기를 최소화하며, 유지보수의 용이성을 확보할 수 있는 이점이 있다.
또한, 진공 영역의 크기를 최소화함에 따라 케이스의 두께 및 크기 등을 최소화할 수 있고, 이에 따라 열전발전모듈의 경량화 및 제작 생산성을 향상시킬 수 있는 이점이 있다.
또한, 진공 영역의 크기를 최소화함에 따라 진공 영역에 배치되는 열전소자의 열손실을 최소화함으로써 발전 효율을 향상시킬 수 있는 이점이 있다.
또한, 열전소자를 냉각수와 가장 가깝게 배치함으로써 열전소자의 온도차를 극대화하여 발전 효율을 높일 수 있고, PCB는 열전소자의 사이에 배치함으로써 일정 온도를 유지 가능한 이점이 있다.
또한, 열전소자에 바이패스 다이오드를 병렬 연결시킴으로써 일부 열전소자가 손상되더라도 나머지 열전소자에 의해 발생한 전력을 외부로 출력 가능한 이점이 있다.
또한, 열전소자를 박판을 통해 진공 패키징함으로써 열전소자의 열손실을 최소화할 수 있는 이점이 있다.
또한, 열전소자 주변에 단열재를 배치시킴으로써도 열전소자의 열손실을 최소화할 수 있는 이점이 있다.
도 1은 본 발명의 실시 예에 따른 열전발전모듈을 나타내는 예시 도면이다.
도 2는 본 발명의 제1 실시 예에 따른 열전발전모듈의 사시도이다.
도 3은 도 2에 도시된 열전발전모듈의 측면도이다.
도 4는 도 3에 도시된 어퍼 커버와, 냉각판과, 열전소자와, PCB와, 피드 스루가 도시된 도면이다.
도 5는 도 4에 도시된 열전소자와, PCB와, 피드 스루와 연결 모습을 나타내는 도면이다.
도 6은 본 발명의 제2 실시 예에 따른 열전발전모듈의 측면도이다.
도 7은 도 6에 도시된 냉각판과, 열전소자와, 피드 스루와, 단열재를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명한다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.
도 1은 본 발명의 실시 예에 따른 열전발전모듈을 나타내는 예시 도면이다.
열전발전모듈(1)은 열원(5)이 존재하는 곳에 설치될 수 있다.
열전발전모듈(1)은 열원(5)으로부터 열을 전달받는 집열판(2)과, 냉각수가 유동되는 냉각수 통로(4)와, 집열판(2) 및 냉각수 통로(4)에 의해 발생하는 온도차를 이용하여 전력을 발생시키는 전력발생부(3)를 포함할 수 있다. 전력발생부(3)는 PCB(Printed Circuit Board), 냉각판, 적어도 하나의 열전소자(thermoelectric element) 중 적어도 하나를 포함할 수 있다. 그러나, 이는 설명의 편의를 위해 예시로 든 것에 불과하며, 열전발전모듈(1)은 도 1에 도시된 구성요소 중 일부를 생략하거나 다른 구성요소를 더 포함할 수도 있다.
열원(5)은 약 750 내지 1000 ℃의 열을 발생시키는 열 공급원을 의미하나, 750 내지 1000 ℃에 한정될 필요는 없다. 예를 들어, 열원(5)은 슬라브, 배기가스, 폐열 등을 포함할 수 있다.
열전발전모듈(1)은 도 1(a)에 도시된 바와 같이 열원(5)으로부터 복사 방식으로 열을 전달받거나, 도 1(b)에 도시된 바와 같이 전도 방식으로 열을 전달받을 수 있다. 열전발전모듈(1)에 복사 방식으로 열을 전달하는 열원(5)의 온도는 열전발전모듈(1)에 전도 방식으로 열을 전달하는 열원(5)의 온도 보다 높을 수 있다. 예를 들어, 열전발전모듈(1)에 복사 방식으로 열을 전달하는 열원(5)의 온도는 약 1000℃이고, 열전발전모듈(1)에 전도 방식으로 열을 전달하는 열원(5)의 온도는 약 750℃일 수 있다.
도 2는 본 발명의 제1 실시 예에 따른 열전발전모듈의 사시도이고, 도 3은 도 2에 도시된 열전발전모듈의 측면도이고, 도 4는 도 3에 도시된 어퍼 커버와, 냉각판과, 열전소자와, PCB와, 피드 스루가 도시된 도면이고, 도 5는 도 4에 도시된 열전소자와, PCB와, 피드 스루와 연결 모습을 나타내는 도면이다.
본 발명의 제1 실시 예에 따른 열전발전모듈(10)은 집열판(12)과, 케이스(13)와, 냉각수 통로(14)와, 냉각판(24)과, 열전소자(31 내지 36)와, PCB(41) 중 적어도 일부 또는 전부를 포함할 수 있다. 또한, 실시 예에 따라 열전발전모듈(10)은 상술한 구성요소 중 일부를 생략하거나 다른 구성요소를 더 포함할 수도 있다.
냉각판(24)과, 열전소자(31 내지 36)와, PCB(41)는 케이스(13) 내부에 배치될 수 있다.
집열판(12)의 주변의 열을 모을 수 있다. 집열판(2)은 흡열판을 포함할 수 있고, 흡열판이 주변의 열을 흡수할 수 있다. 집열판(12)의 수평방향 단면적은 케이스(13)의 수평방향 단면적 보다 넓거나 같을 수 있다.
열전소자(31 내지 36)는 반도체 재료로, 고온부 및 저온부가 형성될 수 있고, 고온부와 저온부 사이의 온도차에 의해 전력을 발생시킬 수 있는 소재일 수 있다.
케이스(13)는 어퍼 커버(21)와, 사이드 커버(22)와, 로어 커버(23)를 포함할 수 있다. 케이스(13)는 냉각판(24)과, 열전소자(31 내지 36)와, PCB(41)를 외부로부터 보호할 수 있다.
실시 예에 따라, 냉각판(24)은 어퍼 커버(21)와 별개의 부재이거나, 또는 냉각판(24)은 어퍼 커버(21)와 일체로 형성된 부재일 수도 있다. 즉, 냉각판(24)과 어퍼 커버(21)는 하나의 부재로 형성되거나, 혹은 분리 가능한 별개의 부재로 형성될 수도 있다.
마찬가지로, 실시 예에 따라, 냉각수 통로(14)는 어퍼 커버(21)와 별개의 부재이거나, 또는 냉각수 통로(14)는 어퍼 커버(21)와 일체로 형성된 부재일 수도 있다. 즉, 냉각수 통로(14)와 어퍼 커버(21)는 하나의 부재로 형성되거나, 혹은 분리 가능한 별개의 부재로 형성될 수도 있다.
어퍼 커버(21)는 로어 커버(23)와 대향하게 배치될 수 있다.
어퍼 커버(21)에는 냉각수 통로(14) 및 냉각판(24)에 형성된 냉각수로(C)를 연결하는 냉각수 입출구(26)가 형성될 수 있다. 냉각수 통로(14)는 외부에서 유입되는 냉각수를 냉각수로(C)로 안내하는 냉각수 유입로(14a)와, 냉각수로(C)를 통과한 냉각수가 외부로 유출되는 냉각수 유출로(14b)를 포함하고, 냉각수 입출구(26)는 냉각수 유입로(14a)와 냉각수로(C)를 연결하는 냉각수 입구와, 냉각수 유출로(14b)와 냉각수로(C)를 연결하는 냉각수 출구를 포함할 수 있다.
냉각수는 외부에 배치된 펌프 등에 의해 냉각수 유입로(14a), 냉각수 입구, 냉각수로(C), 냉각수 출구, 냉각수 유출로(14b)를 차례로 통과할 수 있다.
어퍼 커버(21)의 수평방향 단면적은 냉각판(24)의 수평방향 단면적 보다 넓을 수 있다. 냉각판(24)은 어퍼 커버(21)의 하면에 부착될 수 있고, 이 경우, 어퍼 커버(21)에는 냉각판(24) 보다 수평방향으로 돌출된 돌출부(21a)가 형성될 수 있다.
사이드 커버(22)는 어퍼 커버(21)와 로어 커버(23) 사이에 배치될 수 있다. 특히, 사이드 커버(22)의 상단은 돌출부(21a)에 부착되고, 하단은 로어 커버(23)의 상면에 부착될 수 있다.
사이드 커버(22)는 열전소자(31 내지 36)가 냉각판(24)의 하면에 안착된 뒤에 돌출부(21a)에 안착되어 접합될 수 있다. 사이드 커버(22)는 돌출부(21a)에 접합된 후, 로어 커버(23)와 접합된 후 내부 공간을 진동 상태로 형성할 수 있다.
어퍼 커버(21)와 사이드 커버(22)와 로어 커버(23)는 동일 재질의 금속일 수 있고, 이 경우 어퍼 커버(21)와 사이드 커버(22) 및 로어 커버(23)는 용접 공정으로 접합이 가능하여, 납땜(brazing) 공정이 불필요한 이점이 있다. 따라서, 이종 금속을 접합하는 납땜 공정이 불필요하므로, 납땜 공정의 경우 발생하는 열팽창 계수로 인한 변형 발생 위험과 제작 비용이 높은 문제를 최소화할 수 있다.
또한, 어퍼 커버(21)와 사이드 커버(22) 및 로어 커버(23) 사이의 진공 공간(S)에는 냉각판(24)과, 열전소자(31 내지 36) 및 PCB(41)만 배치되므로, 진공 공간(S)의 크기를 최소화할 수 있고, 이 경우 열전발전모듈(10)의 강성 확보를 위한 케이스(13)의 두께 및 크기 등을 최소화할 수 있고, 이에 따라 열전발전모듈(10)의 경량화 및 제작 생산성을 향상시킬 수 있는 이점이 있다.
로어 커버(23)는 집열판(12)의 상부에 배치될 수 있다.
어퍼 커버(21)와 사이드 커버(22) 및 로어 커버(23) 사이에는 진공 공간(S)이 형성될 수 있다.
진공 공간(S)에는 냉각판(24)과, 적어도 하나의 열전소자(31 내지 36)와, PCB(41)가 배치될 수 있다.
냉각판(24)는 어퍼 커버(21)의 하면에 부착될 수 있다. 열전소자(31 내지 36)와, PCB(41)는 냉각판(24)의 하면에 부착될 수 있다.
열전소자(31 내지 36)의 상단은 냉각판(24)에 접촉되고, 열전소자(31 내지 36)의 하단은 로어 커버(23)에 접촉될 수 있다. 이에 따라, 열전소자(31 내지 36)의 상단에는 저온부가 형성되고, 열전소자(31 내지 36)의 하단에는 고온부가 형성되며, 열전소자(31 내지 36)의 저온부와 고온부 사이에는 온도차이가 발생하여 전력을 발생시킬 수 있다.
열전소자(31 내지 36)에서 발생한 전력은 PCB(41)와 전극(25) 연결을 통해 전달되며, PCB(41)에 접촉된 피드 스루(feed through, 15)를 통해 외부로 출력될 수 있다. 열전소자(31 내지 36) 각각의 전극(25)은 PCB(41)에 연결될 수 있다. 예를 들어,
피드 스루(15)는 양극피드스루(15a)와 음극피드스루(15b)를 포함할 수 있다.
열전발전모듈(10)에 포함된 다수의 열전소자 각각은 전극(25)을 통해 PCB(41)와 연결될 수 있다.
한편, 냉각수로(C)는 제1 유로(C1)와, 제2 유로(C2)와, 제3 유로(C3)를 포함할 수 있다. 제1 유로(C1)는 냉각수 입구와 연통되고, 제2 유로(C2)는 냉각수 출구와 연통되고, 제3 유로(C3)는 제1 유로(C1)와 제2 유로(C2) 사이에 연결될 수 있다.
열전발전모듈(10)은 다수개의 열전소자(31 내지 36)를 포함하고, 다수개의 열전소자(31 내지 36)는 냉각수로(C)의 아래에 배치될 수 있다.
냉각수로(C)의 아래에는 다수개의 열전소자(31 내지 36)가 배치되는 열전소자 영역이 형성될 수 있다. 구체적인 예를 들면, 제1 유로(C1)의 아래에는 제1 내지 제3 열전소자(31 내지 33)가 배치되는 제1 열전소자 영역이 형성되고, 제2 유로(C2)의 아래에는 제4 내지 제6 열전소자(34 내지 36)가 배치되는 제2 열전소자 영역이 형성될 수 있다. 이에 따라, 냉각수로(C)를 통과하는 냉각수(W)는 냉각수로(C)의 아래에 배치된 제1 내지 제6 열전소자(31 내지 36)를 냉각시킬 수 있고, 제1 내지 제6 열전소자(31 내지 36)의 상부는 저온부가 형성될 수 있다.
한편, 제1 열전소자 영역과 제2 열전소자 영역 사이에는 PCB(41)가 배치되는 PCB 영역이 형성될 수 있다. PCB(41)는 냉각판(24)의 하면 중 제1 내지 제3 열전소자(31 내지 33)와 제4 내지 제6 열전소자(34 내지 36) 사이에 배치될 수 있다. 이 경우에도, PCB(41)는 냉각수(W)에 의해 냉각될 수 있고, PCB(41)의 온도는 제1 내지 제6 열전소자(31 내지 36)의 저온부 온도 보다 높을 수 있다. 또한, 냉각수(W)가 냉각수로(C)를 지속적으로 통과함에 따라 PCB(41)는 일정 온도를 유지할 수 있다.
한편, 열전발전모듈(10)은 다수의 열전소자(31 내지 36)에 병렬 연결되는 바이패스 다이오드(D)를 더 포함할 수 있다. 바이패스 다이오드(D)는 다수의 열전소자(31 내지 36) 각각의 전극(25) 사이에 연결될 수 있다. 예를 들어, 제1 열전소자(31)의 전극(25) 사이에 제1 다이오드가 연결되고, 제2 열전소자(32)의 전극(25) 사이에 제2 다이오드가 연결되고, 제3 열전소자(31)의 전극(25) 사이에 제3 다이오드가 연결되고, 제4 열전소자(34)의 전극(25) 사이에 제4 다이오드가 연결되고, 제5 열전소자(35)의 전극(25) 사이에 제5 다이오드가 연결되고, 제6 열전소자(36)의 전극(25) 사이에 제6 다이오드가 연결될 수 있다.
이와 같이, 다수의 열전소자(31 내지 36) 각각에 바이패스 다이오드(D)가 병렬 연결된 경우에는, 다수의 열전소자(31 내지 36) 중 특정 열전소자가 손상되더라도 정상적인 열전소자들은 바이패스 다이오드(D)를 통해 피드 스루(15a)(15b)와 연결되므로, 전력을 생산하여 외부로 출력할 수 있다.
다음으로, 도 6은 본 발명의 제2 실시 예에 따른 열전발전모듈의 측면도이고, 도 7은 도 6에 도시된 냉각판과, 열전소자와, 피드 스루와, 단열재를 나타내는 도면이다.
특히, 도 7은 도 6에 도시된 열전발전모듈에서 집열판을 제외한 열전발전모듈의 저면도일 수 있다.
본 발명의 제2 실시 예에 따른 열전발전모듈(100)은 집열판(112)과, 어퍼 커버(121)와, 냉각수 통로(114)와, 냉각판(124)과, 열전소자(131 내지 136)와, 단열재(151, 153) 중 적어도 일부 또는 전부를 포함할 수 있다. 또한, 실시 예에 따라 열전발전모듈(100)은 상술한 구성요소 중 일부를 생략하거나 다른 구성요소를 더 포함할 수도 있다.
또한, 실시 예에 따라 열전발전모듈(100)은 상술한 구성요소 중 일부를 생략하거나 다른 구성요소를 더 포함할 수도 있다.
집열판(112)은 열원에서 열을 공급받을 수 있다. 집열판(112)은 흡열판을 포함할 수 있고, 흡열판이 주변의 열을 흡수할 수 있다. 집열판(112)의 수평방향 단면적은 어퍼 커버(121)의 수평방향 단면적 보다 넓거나 같을 수 있다.
집열판(112)의 위에는 적어도 하나의 열전소자(131 내지 136)가 배치되고, 열전소자(131 내지 136)의 위에는 냉각판(124) 및 어퍼 커버(121)가 배치될 수 있다.
실시 예에 따라, 냉각판(124)은 어퍼 커버(121)와 별개의 부재이거나, 또는 냉각판(124)은 어퍼 커버(121)와 일체로 형성된 부재일 수도 있다. 즉, 냉각판(124)과 어퍼 커버(121)는 하나의 부재로 형성되거나, 혹은 분리 가능한 별개의 부재로 형성될 수도 있다.
마찬가지로, 실시 예에 따라, 냉각수 통로(114)는 어퍼 커버(121)와 별개의 부재이거나, 또는 냉각수 통로(114)는 어퍼 커버(121)와 일체로 형성된 부재일 수도 있다. 즉, 냉각수 통로(114)와 어퍼 커버(121)는 하나의 부재로 형성되거나, 혹은 분리 가능한 별개의 부재로 형성될 수도 있다.
냉각판(124)은 어퍼 커버(121)의 하면에 부착될 수 있다. 어퍼 커버(121)에는 냉각수 통로(114) 및 냉각판(124)에 형성된 냉각수로(C)를 연결하는 냉각수 입출구(126)가 형성될 수 있다.
구체적으로, 냉각수 통로(114)는 외부에서 유입되는 냉각수를 냉각수로(C)로 안내하는 냉각수 유입로(114a)와, 냉각수로(C)를 통과한 냉각수가 외부로 유출되는 냉각수 유출로(114b)를 포함하고, 냉각수 입출구(126)는 냉각수 유입로(114a)와 냉각수로(C)를 연결하는 냉각수 입구와, 냉각수 유출로(114b)와 냉각수로(C)를 연결하는 냉각수 출구를 포함할 수 있다.
냉각수는 외부에 배치된 펌프 등에 의해 냉각수 유입로(114a), 냉각수 입구, 냉각수로(C), 냉각수 출구, 냉각수 유출로(114b)를 차례로 통과할 수 있다.
어퍼 커버(121)의 수평방향 단면적은 냉각판(124)의 수평방향 단면적 보다 넓거나 같을 수 있다.
냉각판(124)과 집열판(112) 사이에는 적어도 하나의 열전소자(131 내지 136)가 배치될 수 있다.
열전소자(131 내지 136)는 반도체 재료로, 고온부 및 저온부가 형성될 수 있고, 고온부와 저온부 사이의 온도차에 의해 전력을 발생시킬 수 있는 소재일 수 있다.
열전소자(131 내지 136)는 박판(160)에 의해 형성된 내부 공간에 배치될 수 있다. 또한, 열전소자(131 내지 136)는 단열재(151)(153)와 함께 박판(160)에 의해 형성된 내부 공간에 배치될 수 있다. 여기서, 내부 공간은 진공 상태일 수 있다.
박판(160)은 구리(Cu) 박판일 수 있으나, 이는 예시적인 것에 불과하므로, 이에 제한되지 않는다.
열전소자(131 내지 136)와 단열재(151)(153) 중 적어도 하나는 박판(160)에 의해 진공 패키징될 수 있다. 구체적으로, 열전소자(131 내지 136)의 형상 및 배치 간격과 유사하게 박판을 프리포밍(preforming)하고, 프리포밍한 박판을 열전소자(131 내지 136)의 위와, 아래에 배치시킬 수 있다. 이 때, 열전소자(131 내지 136)의 위에 배치되는 박판이 상박판(160a)이고, 열전소자(131 내지 136)의 아래에 배치되는 박판이 하박판(160b)일 수 있다.
한편, 열전소자(131 내지 136)의 주변에는 단열재(151)(153)가 삽입될 수 있다.
단열재(151)(153)는 열전소자의 외측에 배치되는 외측 단열재(151)와, 열전소자의 내측, 즉, 열전소자와 다른 열전소자 사이에 배치되는 내측 단열재(153)를 포함할 수 있다. 단열재(151)(153)는 열전소자(131 내지 136)의 열이 외부로 방출되는 것을 최소화할 수 있다.
열전소자(131 내지 136)와 단열재(151)(153)가 배치된 후에는 다수의 열전소자(131 내지 136) 각각의 전극(125)이 도선(127)으로 와이어 본딩(wire bonding)될 수 있다. 이후, 프리포밍된 상박판(160a)과 하박판(160b) 각각이 열전소자(131 내지 136)와 단열재(151)(156)의 위와 아래에 배치되며, 상박판(160a)과 하박판(160b)이 냉각 압착되면서 열전소자(131 내지 136)와 단열재(151)(153)를 진공 패키징할 수 있다. 이에 따라, 열전소자(131 내지 136)와 단열재(151)(153)는 박판(160)에 의해 형성된 내부 공간에 배치되고, 내부 공간은 진공 상태일 수 있다.
단열재(151)(153)는 상박판(160a)과 하박판(160b)이 접촉되는 것을 차단 또는 최소화할 수 있고, 이에 따라 상박판(160a)과 하박판(160b) 사이에서의 열전달을 최소화하여 열전소자(131 내지 136)로 열을 집중시켜, 발전 효율을 상승시킬 수 있다.
도선(127)의 양단은 피드 스루(115a, 115b)로 연결되며, 다수의 열전소자(131 내지 136)에서 발생된 전력은 피드 스루(115a, 115b)를 통해 외부로 출력될 수 있다.
한편, 열전소자(131 내지 136) 각각의 두께는 동일할 수 있다. 따라서, 다수의 열전소자(131 내지 136)의 높이는 동일할 수 있다.
단열재(151)(153)의 두께는 열전소자(131 내지 136)의 두께 보다 얇을 수 있다. 이 경우, 단열재(151)(153)의 상단은 열전소자(131 내지 136)의 상단 보다 낮고, 단열재(151)(153)의 하단은 열전소자(131 내지 136)의 하단 보다 높을 수 있다. 이 경우, 단열재(151)(153)를 집열판(112) 및 냉각판(124)으로부터 이격시킬 수 있다.
열전소자(131 내지 136)와 단열재(151)(153)가 진공 패키징된 박판(160)의 하단은 집열판(112)에 접촉되고, 상단은 냉각판(124)에 접촉될 수 있다. 이에 따라, 열전소자(131 내지 136)의 상단과 박판(160)의 상단에는 저온부가 형성되고, 열전소자(131 내지 136)의 하단과 박판(160)의 하단에는 고온부가 형성될 수 있다.
열전발전모듈(100)은 바이패스 다이오드(D)를 더 포함할 수 있고, 바이패스 다이오드(D)는 열전소자(131 내지 136)와 병렬 연결될 수 있다. 이에 따라, 도 2 내지 도 4에서 설명한 바와 같이, 일부 열전소자가 손상되더라도 바이패스 다이오드(D)를 통해 피드 스루(115a, 115b)로 전력이 전달될 수 있다.
한편, 바이패스 다이오드(D)가 연결된 회로부는 냉각판(124)과 집열판(112) 중 냉각판(124)에 가깝게 배치될 수 있다. 이 경우, 바이패스 다이오드(D)가 열에 의해 손상되는 경우를 최소화할 수 있다.
또한, 바이패스 다이오드(D)가 열에 의해 손상되는 것을 최소화하기 위해 바이패스 다이오드(D)의 외둘레에 단열재가 배치될 수 있고, 예를 들어, 단열재는 사각 튜브 형상일 수 있다.
본 발명의 제2 실시 예에 따르면, 어퍼 커버(121)와 집열판(112) 사이에 사이드 커버가 불필요하므로 사이드 커버로의 열손실을 줄일 수 있고, 이 경우 집열판(112)의 열이 열전소자로 집중 이동하므로 발전 효율을 높일 수 있는 이점이 있다.
또한, 본 발명의 제2 실시 예에 따르면, 집열판(112)과 냉각판(124)의 다양한 설계가 가능하여, 성능 확보와 양산성이 있도록 제작 편의성 제공, 제품 단가 절감, 공정 간소화를 통해 생산성을 향상시키며, 유지 보수가 용이하여 품질을 향상시킬 수 있는 이점이 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (10)
- 열원으로부터 열을 전달받는 집열판;냉각수가 지나는 냉각수 입구 및 냉각수 출구가 형성되는 어퍼 커버;상기 집열판과 상기 어퍼 커버 사이에 형성된 진공 공간에 배치되는 열전소자; 및상기 어퍼 커버와 상기 열전소자 사이에 배치되며, 내부에 상기 냉각수가 이동하는 냉각수로가 형성된 냉각판을 포함하는열전발전모듈.
- 제1항에 있어서,상기 어퍼 커버에는 냉각수 입구와 냉각수 출구가 형성되고,상기 냉각수로는 상기 냉각수 입구 및 상기 냉각수 출구와 연결되는열전발전모듈.
- 제2항에 있어서,상기 집열판의 상부에 배치되는 로어 커버; 및상기 어퍼 커버와 상기 로어 커버 사이에 배치되는 사이드 커버를 더 포함하고,상기 어퍼 커버와 상기 로어 커버와 상기 사이드 커버 사이에 상기 진공 공간이 형성되는열전발전모듈.
- 제3항에 있어서,상기 진공 공간에는 PCB와, 상기 열전소자와, 상기 냉각판이 배치되는열전발전모듈.
- 제4항에 있어서,상기 냉각판은 상기 어퍼 커버의 하면에 부착되고,상기 열전소자와 상기 PCB는 상기 냉각판의 하면에 부착되는열전발전모듈.
- 제5항에 있어서,상기 열전소자는 다수개이고,상기 냉각수로는상기 냉각수 입구와 연통되는 제1 유로와, 상기 냉각수 출구와 연통되는 제2 유로와, 상기 제1 유로와 상기 제2 유로 사이에 연결되는 제3 유로를 포함하고,상기 제1 유로와 상기 제2 유로 아래에는 다수개의 열전소자가 배치되는 제1 및 제2 열전소자 영역이 형성되는열전발전모듈.
- 제6항에 있어서,상기 제1 및 제2 열전소자 영역 사이에는 상기 PCB가 배치되는 PCB 영역이 형성되는열전발전모듈.
- 제6항에 있어서,상기 다수의 열전소자에 병렬 연결되는 바이패스 다이오드를 더 포함하는열전발전모듈.
- 제2항에 있어서,상기 열전소자 주변에 배치되는 단열재를 더 포함하고,상기 열전소자와 상기 단열재는 박판에 의해 형성되는 진공 공간에 배치되는열전발전모듈.
- 제9항에 있어서,상기 단열재의 두께는 상기 열전소자의 두께 보다 얇은열전발전모듈.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0038192 | 2019-04-02 | ||
KR1020190038192A KR102150308B1 (ko) | 2019-04-02 | 2019-04-02 | 열전발전모듈 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020204446A1 true WO2020204446A1 (ko) | 2020-10-08 |
Family
ID=72450835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/004045 WO2020204446A1 (ko) | 2019-04-02 | 2020-03-25 | 열전발전모듈 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102150308B1 (ko) |
WO (1) | WO2020204446A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022097792A1 (ko) * | 2020-11-04 | 2022-05-12 | 주식회사 리빙케어 | 대용량 열전모듈 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084718A1 (ja) * | 2009-01-21 | 2010-07-29 | 財団法人電力中央研究所 | パッケージ熱電変換モジュール |
JP2015523489A (ja) * | 2012-05-08 | 2015-08-13 | エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー | 熱電発電器を有する熱交換器 |
KR20160099668A (ko) * | 2014-03-26 | 2016-08-22 | 가부시키가이샤 케르쿠 | 열전 발전 장치 및 열전 발전 방법 |
KR20170061454A (ko) * | 2015-11-26 | 2017-06-05 | 현대자동차주식회사 | 열전발전시스템 |
KR20180134070A (ko) * | 2017-06-08 | 2018-12-18 | 엘지이노텍 주식회사 | 열변환장치 |
-
2019
- 2019-04-02 KR KR1020190038192A patent/KR102150308B1/ko active IP Right Grant
-
2020
- 2020-03-25 WO PCT/KR2020/004045 patent/WO2020204446A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084718A1 (ja) * | 2009-01-21 | 2010-07-29 | 財団法人電力中央研究所 | パッケージ熱電変換モジュール |
JP2015523489A (ja) * | 2012-05-08 | 2015-08-13 | エーバーシュペッヒャー・エグゾースト・テクノロジー・ゲーエムベーハー・ウント・コンパニー・カーゲー | 熱電発電器を有する熱交換器 |
KR20160099668A (ko) * | 2014-03-26 | 2016-08-22 | 가부시키가이샤 케르쿠 | 열전 발전 장치 및 열전 발전 방법 |
KR20170061454A (ko) * | 2015-11-26 | 2017-06-05 | 현대자동차주식회사 | 열전발전시스템 |
KR20180134070A (ko) * | 2017-06-08 | 2018-12-18 | 엘지이노텍 주식회사 | 열변환장치 |
Also Published As
Publication number | Publication date |
---|---|
KR102150308B1 (ko) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019182216A1 (ko) | 양면냉각형 파워 모듈 및 그의 제조 방법 | |
WO2020054998A1 (ko) | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 | |
WO2015005612A1 (ko) | 전지 어셈블리 | |
WO2017217633A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 | |
WO2010067944A1 (en) | Middle or large-sized battery pack of novel air cooling structure | |
WO2019221376A1 (ko) | 일체형 냉매 회로 부재를 갖는 프레임 프로파일을 포함한 전지 팩 | |
WO2011062380A2 (ko) | 태양광 발전장치 | |
WO2017179853A1 (ko) | 전지 시스템 및 그것의 조립 방법 | |
WO2021075666A1 (ko) | 전지팩 및 이를 포함하는 디바이스 | |
WO2020204446A1 (ko) | 열전발전모듈 | |
WO2022092994A1 (en) | Battery pack | |
WO2021096023A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2021145621A1 (ko) | 발전장치 | |
WO2024130920A1 (zh) | 一种基于SiC平台的双面冷却系统 | |
WO2023158186A1 (ko) | 절연유를 포함하는 전지모듈 및 이를 포함하는 전지팩 | |
WO2020040479A1 (ko) | 열전 모듈 | |
WO2022250358A1 (ko) | 인버터 파워모듈 | |
WO2022182063A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022092819A1 (ko) | 수소 연료 전지 차량용 직류 컨버터 | |
WO2022059936A1 (ko) | 냉각성능이 향상된 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2021145677A1 (ko) | 발전장치 | |
WO2024049182A1 (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
WO2023132595A1 (ko) | 세라믹 기판 유닛 및 그 제조방법 | |
WO2018143596A1 (ko) | 전지 모듈용 집전시스템, 전지 모듈 및 자동차 | |
WO2024090709A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20785217 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20785217 Country of ref document: EP Kind code of ref document: A1 |