WO2024130920A1 - 一种基于SiC平台的双面冷却系统 - Google Patents

一种基于SiC平台的双面冷却系统 Download PDF

Info

Publication number
WO2024130920A1
WO2024130920A1 PCT/CN2023/090155 CN2023090155W WO2024130920A1 WO 2024130920 A1 WO2024130920 A1 WO 2024130920A1 CN 2023090155 W CN2023090155 W CN 2023090155W WO 2024130920 A1 WO2024130920 A1 WO 2024130920A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
sic
guide
flow channel
channel
Prior art date
Application number
PCT/CN2023/090155
Other languages
English (en)
French (fr)
Inventor
范佳伦
张伟
杨洋
吴鸿信
Original Assignee
一巨自动化装备(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一巨自动化装备(上海)有限公司 filed Critical 一巨自动化装备(上海)有限公司
Publication of WO2024130920A1 publication Critical patent/WO2024130920A1/zh

Links

Definitions

  • the present application belongs to the technical field of heat dissipation of electronic devices, and in particular to a double-sided cooling system based on a SiC platform.
  • the mainstream voltage platform of electric vehicles is 400-500V.
  • the charging power of the car is small and the charging speed is slow.
  • the charging voltage is increased from below 500V to 800V.
  • the charging power is further increased and the charging speed is greatly improved.
  • the various indicators of the electric drive system in the car need to be revised, and the electric drive components need to be redesigned.
  • the motor controller is concerned, the most critical part is the power semiconductor.
  • the mainstream power semiconductor is Si-IGBT.
  • SiC has more advantages than Si-IGBT due to its higher junction temperature, higher withstand voltage, and lower loss at the same switching frequency.
  • SiC silicon carbide
  • the common heat dissipation structure of SiC modules is a single-sided heat dissipation structure, which includes an indirect heat dissipation structure and a direct heat dissipation structure.
  • the indirect heat dissipation structure is generally as follows: the heat dissipation surface of the SiC module is a copper substrate, which is fixed to the heat dissipation plate below by bolts.
  • the direct heat dissipation structure is generally as follows: the heat dissipation surface of the SiC module is a copper substrate, and the surface of the copper substrate contains a number of heat dissipation fins, which are in direct contact with the water channel of the heat dissipation plate below through the heat dissipation fins.
  • the main purpose of this application is to provide a double-sided cooling system based on a SiC platform, which aims to solve the technical problem that the prior art adopts a single-sided heat dissipation structure design, the heat transfer channel can only be one-way, the thermal resistance of the junction-shell will be large, and the temperature rise of the SiC will be high, thereby affecting the power output and service life of the SiC module.
  • the present application provides a double-sided cooling system based on a SiC platform, which adopts the following technical solutions:
  • the first heat sink and the second heat sink are connected, and the several SiC modules are arranged between the first heat sink and the second heat sink, the first guide is connected to the first end of the first heat sink and the first end of the second heat sink, and the second guide is connected to the second end of the first heat sink and the second end of the second heat sink, the first guide is provided with a liquid inlet channel, and the second guide is provided with a liquid outlet channel, the inner side of the first heat sink and the first side of the several SiC modules form a first flow channel, the inner side of the second heat sink and the second side of the several SiC modules form a second flow channel, the liquid inlet channel is communicated with the first end of the first flow channel and the first end of the second flow channel, and the liquid outlet channel is communicated with the second end of the first flow channel and the second end of the second flow channel.
  • first heat sink and the second heat sink each include a single-phase flow channel, an interphase communicating flow channel and a SiC sealing groove;
  • the number of single-phase flow channels on the first heat sink and the second heat sink is arranged corresponding to the number of the SiC modules, and an interphase connecting flow channel is arranged between two adjacent single-phase flow channels on the first heat sink and the second heat sink; a SiC sealing groove is arranged around the outer side of each single-phase flow channel on the first heat sink and the second heat sink, and a SiC sealing ring is arranged in each SiC sealing groove, and a gap is formed between the bottom side of each single-phase flow channel of the first heat sink and the first side of the SiC module, and a gap is formed between the bottom side of each single-phase flow channel of the second heat sink and the second side of the SiC module.
  • a first guide channel is arranged near the first end of the first heat dissipation plate, and a second guide channel is arranged near the second end of the first heat dissipation plate; a third guide channel is arranged near the first end of the second heat dissipation plate, and a fourth guide channel is arranged near the second end of the second heat dissipation plate.
  • the first flow channel includes the first guide channel, the gap between the single-phase flow channel A of the first heat sink and the first side of the SiC module A, the phase-to-phase connecting flow channel A, the gap between the single-phase flow channel B of the first heat sink and the first side of the SiC module B, the phase-to-phase connecting flow channel B, the gap between the single-phase flow channel C of the first heat sink and the first side of the SiC module C, and the second guide channel, which are connected in sequence.
  • the second flow channel includes the third guide channel, the gap between the single-phase flow channel D of the second heat sink and the second side of the SiC module D, the interphase connecting flow channel C, the gap between the single-phase flow channel E of the second heat sink and the second side of the SiC module E, the interphase connecting flow channel D, the gap between the single-phase flow channel F of the second heat sink and the second side of the SiC module F, and the fourth guide channel, which are connected in sequence.
  • both ends of the first heat dissipation plate are provided with threaded holes and flow guide sealing grooves
  • both ends of the second heat dissipation plate are provided with threaded holes and flow guide sealing grooves.
  • the first heat sink is provided with a plurality of first mounting holes
  • the second heat sink is provided with first studs corresponding to the plurality of first mounting holes
  • the first heat sink also includes a plurality of second studs located on the outer side of the first heat sink.
  • the SiC module includes a substrate, a plurality of pins, a single-phase output copper busbar and a single-phase input copper busbar;
  • a plurality of nail-shaped fins are arranged on the front and rear sides of the substrate, the single-phase output copper bar is arranged at the upper end of the substrate, the pins are arranged on the upper end of the substrate and located on both sides of the single-phase output copper bar, the single-phase input copper bar is arranged at the lower end of the substrate, and the front and rear sides of the substrate are surrounded by sealing ring baffles on the outside of the nail-shaped fins.
  • the double-sided cooling system also includes a film capacitor, and the film capacitor is arranged on the outer side of the first heat sink.
  • first flow director and the second flow director each include a connector connected in sequence
  • the liquid inlet channel includes a liquid inlet hole, a first diverter hole and a second diverter hole; the liquid inlet hole is arranged on the joint part of the first guide, the first diverter hole and the second diverter hole both pass through the transition part and the connecting part of the first guide, the first end of the first diverter hole and the first end of the second diverter hole are connected to the liquid inlet hole, the second end of the first diverter hole is connected to the first flow channel, and the second end of the second diverter hole is connected to the second flow channel;
  • the liquid outlet channel includes a liquid outlet hole, a third diverter hole and a fourth diverter hole, the liquid outlet hole is arranged on the joint part of the second guide, the third diverter hole and the fourth diverter hole both pass through the transition part and the connecting part of the second guide, the first end of the third diverter hole is connected to the first flow channel, the first end of the fourth diverter hole is connected to the second flow channel, the second end of the third diverter hole and the second end of the fourth diverter
  • joint portion of the first flow guide and the joint portion of the second flow guide are straight or elbowed, the transition portion is conical, and the connecting portion is square.
  • the present application realizes double-sided cooling of several SiC modules, further improving the heat dissipation capacity of the modules, reducing the junction temperature of SiC, and greatly improving the output power and service life of the SiC modules.
  • the present application assembles thin film capacitors, a first heat sink, a second heat sink, SiC modules and other components together to form a modular assembly, which facilitates the assembly of the motor controller and reduces the initial production line investment.
  • the deflector structure of this application can meet the requirements of different inlet and outlet directions, reduce the development cycle, and quickly meet the requirements of different customers;
  • This application proposes a new film capacitor structure, which adopts an integrated design and eliminates the thermal pad and the outer shell of the film capacitor; further reduces thermal resistance, improves the heat dissipation capacity of the film core, and also reduces the cost of the film capacitor.
  • FIG1 shows an exploded schematic diagram of a double-sided cooling system based on a SiC platform according to an embodiment of the present application
  • FIG2 shows a cross-sectional schematic diagram of a double-sided cooling system based on a SiC platform according to an embodiment of the present application
  • FIG3 is a schematic diagram showing the inner structure of a first heat dissipation plate according to an embodiment of the present application.
  • FIG4 is a schematic diagram showing the outer structure of a first heat dissipation plate according to an embodiment of the present application.
  • FIG5 is a schematic cross-sectional view of a first heat dissipation plate according to an embodiment of the present application.
  • FIG6 shows a schematic diagram of the inner structure of a second heat dissipation plate according to an embodiment of the present application
  • FIG7 shows a schematic diagram of the outer structure of a second heat dissipation plate according to an embodiment of the present application
  • FIG8 shows a cross-sectional schematic diagram of a second heat dissipation plate according to an embodiment of the present application
  • FIG9 shows a schematic diagram of the structure of a SiC module according to an embodiment of the present application.
  • FIG10 shows an axonometric view of a first flow director and a second flow director according to an embodiment of the present application
  • FIG11 shows a cross-sectional schematic diagram of a first flow director and a second flow director according to an embodiment of the present application
  • FIG12 shows a schematic structural diagram of a SiC sealing ring according to an embodiment of the present application.
  • FIG13 shows a schematic cross-sectional view taken along line A-A of FIG12 ;
  • FIG14 shows a schematic structural diagram of a seal ring of a flow guide according to an embodiment of the present application
  • FIG15 is a schematic diagram showing a cross-sectional view taken along line A-A of FIG14 ;
  • FIG16 shows a schematic diagram of the structure of a thin film capacitor according to an embodiment of the present application.
  • FIG17 is a schematic diagram showing the installation of a heat conducting plate on a film capacitor according to an embodiment of the present application.
  • FIG18 shows a schematic diagram of installing insulating paper and a DC output copper busbar according to an embodiment of the present application
  • FIG19 is a schematic diagram showing the inlet and outlet directions of the coolant in a first combination of the first flow guide and the second flow guide according to an embodiment of the present application;
  • FIG20 is a schematic diagram showing the inlet and outlet directions of the coolant in a second combination of the first flow guide and the second flow guide according to an embodiment of the present application;
  • FIG21 is a schematic diagram showing the inlet and outlet directions of the coolant in a third combination of the first flow guide and the second flow guide according to an embodiment of the present application;
  • FIG22 is a schematic diagram showing the inlet and outlet directions of the coolant in a fourth combination of the first flow guide and the second flow guide according to an embodiment of the present application;
  • FIG23 is a schematic diagram showing the inlet and outlet directions of the coolant in a fifth combination of the first flow guide and the second flow guide according to an embodiment of the present application;
  • FIG24 is a schematic diagram showing the inlet and outlet directions of the coolant in a sixth combination of the first flow guide and the second flow guide according to an embodiment of the present application;
  • FIG. 25 is a schematic diagram showing the inlet and outlet directions of the coolant in a seventh combination of the first flow guide and the second flow guide according to an embodiment of the present application.
  • SiC module 1, first guide; 3, second guide; 4, first heat sink; 5, second heat sink; 6, film capacitor; 7, SiC sealing ring; 8, guide seal ring; 9, single-phase flow channel; 10, interphase connecting flow channel; 11, SiC sealing groove; 12, first guide channel; 13, second guide channel; 14, third guide channel; 15, fourth guide channel; 16, first guide seal groove; 17, second threaded hole; 18, second guide seal groove; 19, third guide seal groove; 20, fourth threaded hole; 21, fourth guide seal groove; 22, first mounting hole; 2 3.
  • Base plate 26. Pin; 27. Single-phase output copper busbar; 28. Single-phase input copper busbar; 29. Pin-shaped fin; 30. Sealing ring baffle; 31. Positioning pin; 32.
  • the embodiment of the present application provides a double-sided cooling system based on the SiC platform, which replaces the single-sided heat dissipation structure of the SiC module with a double-sided heat dissipation structure, and designs corresponding heat dissipation water channel structures at both ends of the SiC module.
  • the heat dissipation channel changes from one-way to two-way, the heat dissipation efficiency is improved, the junction-to-shell thermal resistance can be reduced by 20% to 30%, the cooling performance is enhanced, the junction temperature of SiC is greatly reduced, and the output power and service life of the SiC module are greatly improved.
  • a double-sided cooling system based on a SiC platform is used to cool a plurality of SiC modules 1 , and includes a first flow director 2 , a second flow director 3 , a first heat sink 4 and a second heat sink 5 .
  • the first heat sink 4 and the second heat sink 5 are connected, and the plurality of SiC modules 1 are arranged between the first heat sink 4 and the second heat sink 5 .
  • the first heat sink 4 , the second heat sink 5 and the plurality of SiC modules 1 are fastened and connected by screws 100 .
  • the first guide 2 is connected to the first end of the first heat sink 4 and the first end of the second heat sink 5
  • the second guide 3 is connected to the second end of the first heat sink 4 and the second end of the second heat sink 5
  • the first guide 2 is provided with a liquid inlet channel
  • the second guide 3 is provided with a liquid outlet channel
  • the inner side of the first heat sink 4 and the first side of the plurality of SiC modules 1 form a first flow channel
  • the inner side of the second heat sink 5 and the second side of the plurality of SiC modules 1 form a second flow channel
  • the liquid inlet channel is communicated with the first end of the first flow channel and the first end of the second flow channel
  • the liquid outlet channel is communicated with the second end of the first flow channel and the second end of the second flow channel.
  • the coolant is divided from the liquid inlet channel on the first guide 2 and flows through the first flow channel and the second flow channel, and flows out from the liquid outlet channel on the second guide 3.
  • the coolant in the first flow channel and the second flow channel flows through both sides of the plurality of SiC modules 1 respectively, thereby realizing double-sided cooling of the plurality of SiC modules 1, further improving the heat dissipation capacity of the module, reducing the junction temperature of the SiC, and greatly improving the output power and service life of the SiC module 1.
  • the double-sided cooling system further includes a film capacitor 6 , which is disposed on the outer side of the first heat sink 4 .
  • the embodiment of the present application assembles thin film capacitor 6, first heat sink 4, second heat sink 5, SiC module 1 and other components together to form a modular assembly, which facilitates the assembly of the motor controller and reduces the initial production line investment.
  • the double-sided cooling system further includes a SiC sealing ring 7 and a deflector sealing ring 8 , the structures of the first heat sink 4 and the second heat sink 5 are mirror images of each other, and the first heat sink 4 and the second heat sink 5 both include a single-phase flow channel 9 , an interphase connecting flow channel 10 and a SiC sealing groove 11 .
  • the number of single-phase flow channels 9 on the first heat sink 4 and the second heat sink 5 is set to three corresponding to the number of SiC modules 1, and two interphase connecting flow channels 10 are set on the first heat sink 4 and the second heat sink 5.
  • An interphase connecting flow channel 10 is set between two adjacent single-phase flow channels 9 on the first heat sink 4 and the second heat sink 5, and each interphase connecting flow channel 10 is connected to adjacent single-phase flow channels 9.
  • a SiC sealing groove 11 is arranged around the outer side of each single-phase flow channel 9 on the first heat dissipation plate 4 and the second heat dissipation plate 5, and a SiC sealing ring 7 is arranged in each SiC sealing groove 11, and the SiC sealing ring 7 is used to form a seal between the SiC module 1 and the SiC sealing groove 11;
  • the single-phase flow channels 9 of the first heat dissipation plate 4 and the second heat dissipation plate 5 are used to envelop the SiC module 1, and the bottom side of each single-phase flow channel 9 of the first heat dissipation plate 4 has a gap with the first side of the SiC module 1, and the bottom side of each single-phase flow channel 9 of the second heat dissipation plate 5 has a gap with the second side of the SiC module 1.
  • a first guide channel 12 is arranged near the first end of the first heat dissipation plate 4, and a second guide channel is arranged near the second end of the first heat dissipation plate 4; a third guide channel 14 is arranged near the first end of the second heat dissipation plate 5, and a fourth guide channel 15 is arranged near the second end of the second heat dissipation plate 5.
  • the first flow channel includes a first guide channel 12, a gap between the single-phase flow channel 9A of the first heat sink 4 and the first side of the SiC module 1A, an interphase connecting flow channel 10A, a gap between the single-phase flow channel 9B of the first heat sink 4 and the first side of the SiC module 1B, an interphase connecting flow channel 10B, a gap between the single-phase flow channel 9C of the first heat sink 4 and the first side of the SiC module 1C, and a second guide channel 13, which are connected in sequence.
  • the second flow channel includes a third guide channel 14, a gap between the single-phase flow channel 9D of the second heat sink 5 and the second side of the SiC module 1D, an interphase connecting flow channel 10C, a gap between the single-phase flow channel 9E of the second heat sink 5 and the second side of the SiC module 1E, an interphase connecting flow channel 10D, a gap between the single-phase flow channel 9F of the second heat sink 5 and the second side of the SiC module 1F, and a fourth guide channel 15, which are connected in sequence.
  • a first end of the first heat dissipation plate 4 is provided with a first threaded hole and a first guide sealing groove 16, and the two first threaded holes are respectively arranged on both sides of the first guide sealing groove 16; a second end of the first heat dissipation plate 4 is provided with a second threaded hole 17 and a second guide sealing groove 18, and the two second threaded holes 17 are respectively arranged on both sides of the second guide sealing groove 18; a first end of the second heat dissipation plate 5 is provided with a third threaded hole and a third guide sealing groove 19, and the two third threaded holes are respectively arranged on both sides of the third guide sealing groove 19; a second end of the second heat dissipation plate 5 is provided with a fourth threaded hole 20 and a fourth guide sealing groove 21, and the two fourth threaded holes 20 are respectively arranged on both sides of the fourth guide sealing groove 21.
  • the first deflector 2 is fixedly connected to the first threaded hole and the third threaded hole by bolts
  • the second deflector 3 is fixedly connected to the second threaded hole 17 and the fourth threaded hole 20 by bolts
  • the first deflector sealing groove 16, the second deflector sealing groove 18, the third deflector sealing groove 19 and the fourth deflector sealing groove 21 are all provided with deflector sealing rings 8
  • the deflector sealing rings 8 are used to form a seal between the deflector and the heat sink.
  • a plurality of first mounting holes 22 are provided on the first heat sink 4, and first studs 23 are provided on the second heat sink 5 corresponding to the plurality of first mounting holes 22.
  • the first heat sink 4 and the second heat sink 5 are fixedly connected by screws 100 passing through the first mounting holes 22 and connecting with the first studs 23.
  • Multiple first mounting holes 22 are arranged on the upper and lower sides of the first heat sink 4, and multiple first studs 23 are correspondingly arranged on the upper and lower sides of the second heat sink 5. Furthermore, multiple first mounting holes 22 are symmetrically and evenly arranged along the center line of the first heat sink 4, and multiple first studs 23 are symmetrically and evenly arranged along the center line of the second heat sink 5.
  • first mounting holes 22 and eight first studs 23 are provided, four first mounting holes 22 are provided on each of the upper and lower sides of the first heat sink 4, the four first mounting holes 22 on the upper side and the four first mounting holes 22 on the lower side are symmetrical along the center line of the first heat sink 4, and the distances between adjacent first mounting holes 22 are the same; four first studs 23 are provided on each of the upper and lower sides of the second heat sink 5, the four first studs 23 on the upper side and the four first studs 23 on the lower side are symmetrical along the center line of the second heat sink 5, and the distances between adjacent second studs 24 are the same.
  • the first heat sink 4 also includes a plurality of second studs 24 , which are arranged on the outer side of the first heat sink 4 .
  • the second studs 24 are used to fix the film capacitor 6 .
  • the film capacitor 6 is fixedly connected to the outer side of the first heat sink 4 by screws 100 passing through the film capacitor 6 and connecting to the second studs 24 .
  • a plurality of second studs 24 are symmetrically and evenly arranged along the center line of the first heat sink 4 .
  • six second studs 24 are arranged, three on each side of the center line of the first heat sink 4 , and the distances between adjacent second studs 24 are the same.
  • the SiC module 1 includes a substrate 25 , a plurality of pins 26 , a single-phase output copper busbar 27 and a single-phase input copper busbar 28 , wherein a plurality of evenly distributed pin-shaped fins 29 (Pinfin) are provided on both sides of the front and rear of the substrate 25 , the single-phase output copper busbar 27 is provided at the upper end of the substrate 25 , the pins 26 are provided at the upper end of the substrate 25 on both sides of the single-phase output copper busbar 27 , and two single-phase input copper busbars 28 are provided, and the two single-phase input copper busbars 28 are both provided at the lower end of the substrate 25 .
  • a plurality of evenly distributed pin-shaped fins 29 Pinfin
  • Sealing ring baffles 30 are arranged on the front and rear sides of the substrate 25 outside a plurality of evenly distributed nail-shaped fins 29 .
  • the SiC sealing ring 7 is used to form a seal between the sealing ring baffle 30 and the SiC sealing groove 11 , thereby achieving sealing between the SiC module 1 and the first heat sink 4 and the second heat sink 5 .
  • sealing ring baffle 30 and the SiC sealing ring 7 are interference-fitted, which can ensure that the SiC sealing ring 7 can be stuck on both sides of the SiC module 1 to prevent the SiC sealing ring 7 from falling off.
  • the diagonals of the front and rear sides of the substrate 25 each include two positioning pins 31, and positioning holes 32 are provided on the first heat sink 4 and the second heat sink 5 to match the positioning pins 31.
  • the function of the positioning pins 31 is that when the SiC module 1, the first heat sink 4 and the second heat sink 5 are installed and fixed, the first heat sink 4 and the second heat sink 5 have corresponding positioning holes 32 to cooperate with them, thereby ensuring the relative position of the SiC module 1 on the first heat sink 4 and the second heat sink 5, and realizing the positioning installation more accurately.
  • the first deflector 2 and the second deflector 3 have the same structure.
  • the first deflector 2 and the second deflector 3 both include a joint portion 33, a conical transition portion 34 and a square connection portion 35 connected in sequence.
  • a plurality of second mounting holes 36 are arranged around the square connection portion 35.
  • the first deflector 2 is connected to the first end of the first heat dissipation plate 4 and the first end of the second heat dissipation plate 5 by passing through the four second mounting holes 36 on the first deflector 2 with the two first threaded holes and the two third threaded holes respectively;
  • the second deflector 3 is connected to the second end of the first heat dissipation plate 4 and the second end of the second heat dissipation plate 5 by passing through the four second mounting holes 36 on the second deflector 3 with the two second threaded holes 17 and the two fourth threaded holes 20 respectively.
  • the liquid inlet channel includes a liquid inlet hole 37 provided on the first flow guide 2 , and a first flow diversion hole 38 and a second flow diversion hole 39 provided on the first flow guide 2 and communicating with the liquid inlet hole 37 .
  • the liquid inlet hole 37 is arranged on the joint portion 33 of the first guide 2, one end of the first diversion hole 38 and one end of the second diversion hole 39 are connected to the liquid inlet hole 37, and the first diversion hole 38 and the second diversion hole 39 both pass through the conical transition portion 34 and the square connecting portion 35 of the first guide 2.
  • the liquid outlet channel includes a liquid outlet hole provided on the second flow guide 3 , and a third flow diversion hole and a fourth flow diversion hole provided on the second flow guide 3 and both connected to the liquid outlet hole.
  • the liquid outlet is arranged on the joint portion 33 of the second guide 3, one end of the third diversion hole and one end of the fourth diversion hole are connected to the liquid inlet 37, and the third diversion hole and the fourth diversion hole both pass through the conical transition portion 34 and the square connecting portion 35 of the second guide 3.
  • the SiC sealing ring 7, the sealing ring baffle 30, and the SiC sealing groove 11 are set to a square with four-corner arc transitions that match each other, and the SiC sealing ring 7 is installed on the sealing ring baffle 30.
  • One side of the SiC sealing ring 7 is tightly attached to the sealing ring baffle 30, and the other side is tightly attached to the SiC sealing groove 11 on the first heat sink 4 and the second heat sink 5, and is locked by screws 100 to generate a sealing force, thereby achieving sealing between the SiC module 1 and the first heat sink 4 and the second heat sink 5.
  • the cross-section of the SiC sealing ring 7 is set to a square with notches on both sides.
  • the deflector sealing ring 8 and the first deflector sealing groove 16, the second deflector sealing groove 18, the third deflector sealing groove 19, and the fourth deflector sealing groove 21 are all set to have a waist shape that matches each other.
  • One side of the deflector sealing ring 8 is installed in the first deflector sealing groove 16, the second deflector sealing groove 18, the third deflector sealing groove 19, and the fourth deflector sealing groove 21, and the other side is tightly attached to the sealing surface of the first deflector 2 and the second deflector 3, and is locked by the screw 100 to generate a sealing force, thereby realizing the sealing of the first deflector 2, the second deflector 3 and the first heat sink 4 and the second heat sink 5.
  • the double-sided cooling system further includes a thermal pad 40.
  • the film capacitor 6 is connected to the outer side of the first heat sink 4, and the thermal pad 40 is disposed between the film capacitor 6 and the first heat sink 4.
  • the film capacitor 6 includes a DC input copper bar 41, a DC output copper bar 42, a third mounting hole 43, a thermal conductive plate 44, a housing 45, a film core, and an epoxy resin 46.
  • the shell 45 is square, the top of the shell 45 is open, the heat conducting plate 44 is arranged at the bottom of the shell 45, and the epoxy resin 46 is encapsulated in the shell 45 with the film core, which is located above the heat conducting plate 44; the DC input copper bar 41 is arranged at the upper end of the shell 45, and the DC output copper bar 42 is arranged at the lower end of the shell 45.
  • the number of the DC output copper bar 42 is arranged corresponding to the number of SiC modules 1, and each group of DC output copper bars 42 is connected to the single-phase input copper bar 28 of each SiC module 1 by bolts or laser welding.
  • the third mounting holes 43 are arranged on both sides of the bottom of the housing 45 , and the number of the third mounting holes 43 corresponds to the number of the second studs 24 ; the thermal pad 40 is laid on the outside of the thermal conductive plate 44 , and the film capacitor 6 is fixed to the first heat sink 4 with bolts passing through the third mounting holes 43 .
  • a square fixing frame is provided on the outside of the first heat sink 4, and the film capacitor 6 includes a DC input copper busbar 41, a DC output copper busbar 42, an insulating paper 47, a film core and an epoxy resin 46.
  • the epoxy resin 46 encapsulates the film core in the fixing frame and is located on the outside of the first heat sink 4; the DC input copper busbar 41 is arranged at the upper end of the fixing frame, and the DC output copper busbar 42 is arranged at the lower end of the fixing frame.
  • the number of DC output copper busbars 42 is arranged corresponding to the number of SiC modules 1, and an insulating paper 47 is arranged between each DC output copper busbar 42 and the fixing frame.
  • Each group of DC output copper busbars 42 is connected to the single-phase input copper busbar 28 of each SiC module 1 by bolts or laser welding.
  • the embodiment of the present application proposes a new structure of the film capacitor 6, which adopts an integrated design and eliminates the thermal pad 40 and the film capacitor 6 shell 45; the thermal resistance is further reduced, the heat dissipation capacity of the film core is improved, and the cost of the film capacitor 6 is also reduced.
  • the joint portion 33 of the first guide 2 and the joint portion 33 of the second guide 3 can be set as a straight head or an elbow.
  • the angle of the elbow can be 90°.
  • An aa'-bb'-cc' spatial rectangular coordinate system is established on one side of the first guide 2, and an xx'-yy'-zz' spatial rectangular coordinate system is established on one side of the second guide 3.
  • the combination forms of the joint portion 33 of the first guide 2 and the joint portion 33 of the second guide 3 and the different inlet and outlet directions of the coolant are described.
  • the combination forms and the inlet and outlet directions of the coolant include but are not limited to:
  • the joint part 33 of the first flow guide 2 and the joint part 33 of the second flow guide 3 are both set to be straight heads, and the inlet and outlet directions of the coolant can be ax or x'a';
  • the joint part 33 of the first flow guide 2 and the joint part 33 of the second flow guide 3 are both configured as elbows, and the inlet and outlet directions of the coolant can be cz' or zc';
  • the joint part 33 of the first flow guide 2 and the joint part 33 of the second flow guide 3 are both configured as elbows, and the inlet and outlet directions of the coolant can be directions by' or yb';
  • the joint part 33 of the first deflector 2 is a straight head, and the joint parts 33 of the second deflector 3 are all elbows.
  • the inlet and outlet directions of the coolant can be ay' or ya';
  • the joint part 33 of the first deflector 2 is an elbow, and the joint part 33 of the second deflector 3 is a straight head.
  • the inlet and outlet directions of the coolant can be bx or x'b';
  • the joint part 33 of the first deflector 2 is a straight head, and the joint parts 33 of the second deflector 3 are all elbows.
  • the inlet and outlet directions of the coolant can be az' or za';
  • the joint part 33 of the first deflector 2 is an elbow, and the joint parts 33 of the second deflector 3 are all straight heads.
  • the inlet and outlet directions of the coolant can be cx or x'c'.
  • the independent first guide 2 and second guide 3 structures of the embodiment of the present application can meet the requirements of different inlet and outlet directions, reduce the development cycle, and quickly meet the requirements of different customers.

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请属于电子器件散热技术领域,公开一种基于SiC平台的双面冷却系统,用于对若干SiC模块进行冷却,冷却系统包括第一导流器、第二导流器、第一散热板和第二散热板;第一散热板和所述第二散热板连接,若干SiC模块均设置在第一散热板、第二散热板之间,第一导流器与第一散热板的第一端、第二散热板的第一端连接,第二导流器与第一散热板的第二端、第二散热板的第二端连接。

Description

一种基于SiC平台的双面冷却系统
本申请要求于2022年12月22日申请的、申请号为202211658357.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电子器件散热技术领域,特别涉及一种基于SiC平台的双面冷却系统。
背景技术
主流的电动汽车电压平台为400~500V,此电压下汽车的充电功率小,充电速度慢。为解决充电速度慢问题,充电电压由500V以下增加到800V,在此电压下,充电功率得到进一步增加,充电速度也得到大幅提升。电动汽车若要满足800V快充电压需求,汽车内的电驱动系统各项指标需要按照进行修订,电驱动零部件需要重新设计。就电机控制器而言,最关键的零件是功率半导体。在400~500V的电压平台,主流的功率半导体为Si-IGBT,可靠性方面,在800V的电压平台下,SiC因其更高结温、更高耐压、同开关频率下的更低损耗等特性,相比Si-IGBT更具有优势。
因SiC(碳化硅)单周期开关损耗小,SiC的开关频率可以做得更高,开关性能也会进一步提升。在800V电压平台下,为尽可能地发挥SiC开关性能和满足使用寿命,有必要对SiC进行散热设计。
车规级的SiC产品往往通过封装工艺制备成SiC模块。SiC模块常见的散热结构为单面散热结构,单面散热结构又包含间接散热结构和直接散热结构。间接散热结构一般如下:SiC模块散热面为铜基板,铜基板与下方散热板通过螺栓固定,为降低热阻,需要在铜基板和散热板之间增加导热硅脂;直接散热结构一般如下:SiC模块散热面为铜基板,铜基板表面含有若干散热翅片,通过散热翅片与下方散热板水道直接接触。
采用单面散热的中小功率SiC模块,虽然能满足一定的散热需求,但对于大热量散热需求的大功率SiC模块,如果继续使用单面散热结构,就显得力不从心。采用单面散热结构设计,传热通道只能为单向,结壳热阻会较大,这就导致SiC的温升较高,进而影响SiC模块的功率输出和使用寿命。
技术问题
本申请的主要目的是提供一种基于SiC平台的双面冷却系统,旨在解决现有技术采用单面散热结构设计,传热通道只能为单向,结壳热阻会较大,导致SiC的温升较高,进而影响SiC模块的功率输出和使用寿命的技术问题。
技术解决方案
为实现上述目的,本申请提供一种基于SiC平台的双面冷却系统,采用以下技术方案:
一种基于SiC平台的双面冷却系统,用于对若干SiC模块进行冷却,所述冷却系统包括第一导流器、第二导流器、第一散热板和第二散热板;
其中,所述第一散热板和所述第二散热板连接,若干所述SiC模块均设置在所述第一散热板、所述第二散热板之间,所述第一导流器与所述第一散热板的第一端、所述第二散热板的第一端连接,所述第二导流器与所述第一散热板的第二端、所述第二散热板的第二端连接,所述第一导流器上设置有进液通道,所述第二导流器上设置有出液通道,所述第一散热板内10侧与若干所述SiC模块第一侧形成第一流道,所述第二散热板内侧与若干所述SiC模块第二侧形成第二流道,所述进液通道与所述第一流道的第一端、所述第二流道的第一端连通,所述出液通道与所述第一流道的第二端、所述第二流道的第二端连通。
进一步的,所述第一散热板和所述第二散热板均包括单相流道、相间连通流道和SiC密封槽;
其中,所述第一散热板和所述第二散热板上的单相流道数量与所述SiC模块的数量对应设置,所述第一散热板和所述第二散热板上相邻的两个单相流道之间均设置有相间连通流道;所述第一散热板和所述第二散热板上的每个单相流道外侧环绕设置有SiC密封槽,每个SiC密封槽内均设置有SiC密封圈,所述第一散热板的每个单相流道的底侧与SiC模块的第一侧均具有间隙,第二散热板的每个单相流道的底侧与SiC模块的第二侧具有间隙。
进一步的,所述第一散热板的第一端靠近位置设置有第一导流通道,所述第一散热板的第二端靠近位置设置有第二导流通道;所述第二散热板的第一端靠近位置设置有第三导流通道,所述第二散热板的第二端靠近位置设置有第四导流通道。
进一步的,所述第一流道包括依次连通的所述第一导流通道、所述第一散热板的单相流道A与SiC模块A的第一侧的间隙、相间连通流道A、所述第一散热板的单相流道B与SiC模块B的第一侧的间隙、相间连通流道B、所述第一散热板的单相流道C与SiC模块C的第一侧的间隙、所述第二导流通道。
进一步的,所述第二流道包括依次连通的所述第三导流通道、所述第二散热板的单相流道D与SiC模块D的第二侧的间隙、相间连通流道C、所述第二散热板的单相流道E与SiC模块E的第二侧的间隙、相间连通流道D、所述第二散热板的单相流道F与SiC模块F的第二侧的间隙、第四导流通道。
进一步的,所述第一散热板两端均设置有螺纹孔和导流密封槽,所述第二散热板两端均设置有螺纹孔和导流密封槽。
进一步的,所述第一散热板上设置有多个第一安装孔,所述第二散热板上与多个所述第一安装孔对应设置有第一螺柱;所述第一散热板还包括多个第二螺柱,位于所述第一散热板的外侧。
进一步的,所述SiC模块包括基板、若干引脚、单相输出铜排和单相输入铜排;
其中,所述基板的前后两侧均设置有若干钉状翅片,所述单相输出铜排设置在所述基板的上端,所述引脚设置在所述基板的上端位于所述单相输出铜排的两侧,所述单相输入铜排设置在所述基板的下端,所述基板的前后两侧在所述钉状翅片外侧均围设有密封圈挡板。
进一步的,所述双面冷却系统还包括薄膜电容,所述薄膜电容设置在所述第一散热板的外侧。
进一步的,所述第一导流器和所述第二导流器均包括依次连接的接头
部、过渡部和连接部,所述连接部周边设置有多个第二安装孔;
所述进液通道包括进液孔、第一分流孔和第二分流孔;所述进液孔设置在所述第一导流器的接头部上,所述第一分流孔和所述第二分流孔均贯穿所述第一导流器的过渡部、连接部,所述第一分流孔的第一端和所述第二分流孔的第一端与所述进液孔连通,所述第一分流孔的第二端与所述第一流道连通,所述第二分流孔的第二端与所述第二流道连通;所述出液通道包括出液孔、第三分流孔和第四分流孔,所述出液孔设置在所述第二导流器的接头部上,所述第三分流孔和所述第四分流孔均贯穿所述第二导流器的过渡部、连接部,所述第三分流孔的第一端与所述第一流道连通,所述第四分流孔的第一端与所述第二流道连通,所述第三分流孔的第二端和所述第四分流孔的第二端与所述出液孔连通。
进一步的,所述第一导流器的接头部、所述第二导流器的接头部为直头或弯头,所述过渡部为锥形,所述连接部为方形。
有益效果
1、本申请实现了对若干SiC模块的双面冷却,进一步提高模块散热能力,降低SiC的结温,使得SiC模块的输出功率和使用寿命大大提高。
2、本申请将薄膜电容、第一散热板、第二散热板、SiC模块等零部件装配一起形成模块化组件,方便电机控制器装配,减少前期产线投入。
3、本申请的导流器结构可以满足不同进出水口方向要求,减少开发周期,快速满足不同客户要求;
4、本申请提出一种新的薄膜电容结构,采用集成化设计,取消导热垫和薄膜电容的外壳;进一步降低热阻,薄膜芯子散热能力提升,同时也降低了薄膜电容的成本。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书以及附图中所指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本申请实施例的一种基于SiC平台的双面冷却系统的爆炸示意图;
图2示出了根据本申请实施例的一种基于SiC平台的双面冷却系统的截面示意图;
图3示出了根据本申请实施例的第一散热板的内侧结构示意图;
图4示出了根据本申请实施例的第一散热板的外侧结构示意图;
图5示出了根据本申请实施例的第一散热板的截面示意图;
图6示出了根据本申请实施例的第二散热板的内侧结构示意图;
图7示出了根据本申请实施例的第二散热板的外侧结构示意图;
图8示出了根据本申请实施例的第二散热板的截面示意图;
图9示出了根据本申请实施例的SiC模块结构示意图;
图10示出了根据本申请实施例的第一导流器和第二导流器的轴测图;
图11示出了根据本申请实施例的第一导流器和第二导流器的截面示意图;
图12示出了根据本申请实施例的SiC密封圈的结构示意图;
图13示出了图12的A-A截面示意图;
图14示出了根据本申请实施例的导流器密封圈的结构示意图;
图15示出了图14的A-A截面示意图;
图16示出了根据本申请实施例的薄膜电容的结构示意图;
图17示出了根据本申请实施例的薄膜电容上的导热板安装示意图;
图18示出了根据本申请实施例的绝缘纸与DC输出铜排的安装示意图;
图19示出了根据本申请实施例的第一导流器和第二导流器的第一种组合形式下的冷却液进出方向示意图;
图20示出了根据本申请实施例的第一导流器和第二导流器的第二种组合形式下的冷却液进出方向示意图;
图21示出了根据本申请实施例的第一导流器和第二导流器的第三种组合形式下的冷却液进出方向示意图;
图22示出了根据本申请实施例的第一导流器和第二导流器的第四种组合形式下的冷却液进出方向示意图;
图23示出了根据本申请实施例的第一导流器和第二导流器的第五种组合形式下的冷却液进出方向示意图;
图24示出了根据本申请实施例的第一导流器和第二导流器的第六种组合形式下的冷却液进出方向示意图;
图25示出了根据本申请实施例的第一导流器和第二导流器的第七种组合形式下的冷却液进出方向示意图。
图中:1、SiC模块;2、第一导流器;3、第二导流器;4、第一散热板;5、第二散热板;6、薄膜电容;7、SiC密封圈;8、导流器密封圈;9、单相流道;10、相间连通流道;11、SiC密封槽;12、第一导流通道;13、第二导流通道;14、第三导流通道;15、第四导流通道;16、第一导流密封槽;17、第二螺纹孔;18、第二导流密封槽;19、第三导流密封槽;20、第四螺纹孔;21、第四导流密封槽;22、第一安装孔;23、第一螺柱;24、第二螺柱;25、基板;26、引脚;27、单相输出铜排;28、单相输入铜排;29、钉状翅片;30、密封圈挡板;31、定位销;32、定位孔;33、接头部;34、锥形过渡部;35、方形连接部;36、第二安装孔;37、进液孔;38、第一分流孔;39、第二分流孔;40、导热垫;41、DC输入铜排;42、DC输出铜排;43、第三安装孔;44、导热板;45、外壳;46、环氧树脂;47、绝缘纸;100、螺钉。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。
为解决大功率SiC模块因单面散热影响功率输出和使用寿命的问题,本申请实施例提供一种基于SiC平台的双面冷却系统,将SiC模块单面散热结构替换为双面散热结构,同时在SiC模块两端设计相应散热水道结构。通过将单面散热结构替换为双面结构,散热通道由单向变为双向,散热效率提高,结壳热阻能降低20%~30%,冷却性能得到增强,SiC的结温大幅降低,SiC模块的输出功率和使用寿命大大提高。
如图1和图2所示,一种基于SiC平台的双面冷却系统,用于对若干SiC模块1进行冷却,包括第一导流器2、第二导流器3、第一散热板4和第二散热板5。
其中,第一散热板4和第二散热板5连接,若干SiC模块1均设置在第一散热板4、第二散热板5之间,第一散热板4、第二散热板5和若干SiC模块1通过螺钉100紧固连接。
第一导流器2与第一散热板4的第一端、第二散热板5的第一端连接,第二导流器3与第一散热板4的第二端、第二散热板5的第二端连接,第一导流器2上设置有进液通道,第二导流器3上设置有出液通道,第一散热板4内侧与若干SiC模块1第一侧形成第一流道,第二散热板5内侧与若干SiC模块1第二侧形成第二流道,进液通道与第一流道的第一端、第二流道的第一端连通,出液通道与第一流道的第二端、第二流道的第二端连通。
本申请实施例的双面冷却系统,冷却液从第一导流器2上的进液通道分流后流经第一流道、第二流道,从第二导流器3上的出液通道流出,第一流道和第二流道的冷却液分别流经若干SiC模块1的两侧,实现了对若干SiC模块1的双面冷却,进一步提高模块散热能力,降低SiC的结温,使得SiC模块1的输出功率和使用寿命大大提高。
如图1所示,在一个实施例中,双面冷却系统还包括薄膜电容6,薄膜电容6设置在第一散热板4的外侧。
本申请实施例将薄膜电容6、第一散热板4、第二散热板5、SiC模块1等零部件装配一起形成模块化组件,方便电机控制器装配,减少前期产线投入。
如图1-图8所示,在一个实施例中,SiC模块1设置3个,双面冷却系统还包括SiC密封圈7和导流器密封圈8,第一散热板4和第二散热板5的结构互为镜像,第一散热板4和第二散热板5均包括单相流道9、相间连通流道10和SiC密封槽11。
第一散热板4和第二散热板5上的单相流道9数量与SiC模块1的数量对应设置3个,第一散热板4和第二散热板5上的相间连通流道10均设置2个,第一散热板4和第二散热板5上相邻的两个单相流道9之间均设置有相间连通流道10,每个相间连通流道10连通相邻的单相流道9。
第一散热板4和第二散热板5上每个单相流道9外侧环绕设置有SiC密封槽11,每个SiC密封槽11内均设置有SiC密封圈7,SiC密封圈7用于在SiC模块1和SiC密封槽11之间形成密封;第一散热板4和第二散热板5的单相流道9用于包络SiC模块1,第一散热板4的每个单相流道9的底侧与SiC模块1的第一侧均具有间隙,第二散热板5的每个单相流道9的底侧与SiC模块1的第二侧均具有间隙。
靠近第一散热板4的第一端设置有第一导流通道12,靠近第一散热板4的第二端设置有第二导流通;靠近第二散热板5的第一端设置有第三导流通道14,靠近第二散热板5的第二端设置有第四导流通道15。
其中,第一流道包括依次连通的第一导流通道12、第一散热板4的单相流道9A与SiC模块1A的第一侧的间隙、相间连通流道10A、第一散热板4的单相流道9B与SiC模块1B的第一侧的间隙、相间连通流道10B、第一散热板4的单相流道9C与SiC模块1C的第一侧的间隙、第二导流通道13。
第二流道包括依次连通的第三导流通道14、第二散热板5的单相流道9D与SiC模块1D的第二侧的间隙、相间连通流道10C、第二散热板5的单相流道9E与SiC模块1E的第二侧的间隙、相间连通流道10D、第二散热板5的单相流道9F与SiC模块1F的第二侧的间隙、第四导流通道15。
第一散热板4的第一端设置有第一螺纹孔和第一导流密封槽16,2个第一螺纹孔分别设置在第一导流密封槽16的两侧;第一散热板4的第二端设置有第二螺纹孔17和第二导流密封槽18,2个第二螺纹孔17分别设置在第二导流密封槽18的两侧;第二散热板5的第一端设置有第三螺纹孔和第三导流密封槽19,2个第三螺纹孔分别设置在第三导流密封槽19的两侧;第二散热板5的第二端设置有第四螺纹孔20和第四导流密封槽21,2个第四螺纹孔20分别设置在第四导流密封槽21的两侧。
第一导流器2与第一螺纹孔、第三螺纹孔通过螺栓固定连接,第二导流器3与第二螺纹孔17、第四螺纹孔20通过螺栓固定连接;第一导流密封槽16、第二导流密封槽18、第三导流密封槽19和第四导流密封槽21内均设置有导流器密封圈8,导流器密封圈8用于在导流器和散热板之间形成密封。
在一个实施例中,第一散热板4上设置有多个第一安装孔22,第二散热板5上与多个第一安装孔22对应设置有第一螺柱23,通过螺钉100穿过第一安装孔22与第一螺柱23连接,实现第一散热板4和第二散热板5的固定连接。
多个第一安装孔22设置在第一散热板4的上下两侧,多个第一螺柱23对应设置在第二散热板5的上下两侧,进一步的,多个第一安装孔22沿第一散热板4中心线对称均布设置,多个第一螺柱23沿第二散热板5中心线对称均布设置。
例如,第一安装孔22和第一螺柱23均设置8个,第一安装孔22在第一散热板4上下两侧各设置4个,上侧4个第一安装孔22和下侧的4个第一安装孔22沿第一散热板4中心线对称,相邻的第一安装孔22之间的距离相同;第一螺柱23在第二散热板5上下两侧各设置4个,上侧4个第一螺柱23和下侧的4个第一螺柱23沿第二散热板5中心线对称,相邻的第二螺柱24之间的距离相同。
第一散热板4还包括多个第二螺柱24,多个第二螺柱24设置在第一散热板4的外侧,第二螺柱24用于固定薄膜电容6,通过螺钉100穿过薄膜电容6与第二螺柱24连接,将薄膜电容6与第一散热板4的外侧固定连接。
进一步的,多个第二螺柱24沿第一散热板4中心线对称均布设置,例如,第二螺柱24设置6个,在第一散热板4中心线的两侧各设置3个,相邻的第二螺柱24之间的距离相同。
如图9所示,在一个实施例中,SiC模块1包括基板25、若干引脚26、单相输出铜排27和单相输入铜排28,其中,基板25的前后两侧均设置有若干均布的钉状翅片29(Pinfin),单相输出铜排27设置在基板25的上端,引脚26设置在基板25的上端位于单相输出铜排27的两侧,单相输入铜排28设置2个,2个单相输入铜排28均设置在基板25的下端。
基板25的前后两侧在若干均布的钉状翅片29外侧均围设有密封圈挡板30,SiC密封圈7用于在密封圈挡板30与SiC密封槽11之间形成密封,从而实现SiC模块1与第一散热板4、第二散热板5的密封。
进一步的,密封圈挡板30与SiC密封圈7过盈配合,可以保证SiC密封圈7能被卡在SiC模块1两侧,防止SiC密封圈7脱落。
在一个实施例中,基板25前后两侧面的对角均包含2个定位销31,第一散热板4和第二散热板5上与定位销31匹配设置有定位孔32,定位销31的作用是安装固定SiC模块1、第一散热板4及第二散热板5时,第一散热板4及第二散热板5上均有对应的定位孔32与之配合,保证了SiC模块1在第一散热板4、第二散热板5上的相对位置,更准确地实现了定位安装。
如图10和图11所示,在一个实施例中,第一导流器2和第二导流器3的结构相同,第一导流器2和第二导流器3均包括依次连接的接头部33、锥形过渡部34和方形连接部35,方形连接部35周边设置有多个第二安装孔36,通过螺钉100穿过第一导流器2上的4个第二安装孔36分别与2个第一螺纹孔、2个第三螺纹孔连接,将第一导流器2与第一散热板4的第一端、第二散热板5的第一端连接;通过螺钉100穿过第二导流器3上的4个第二安装孔36分别与2个第二螺纹孔17、2个第四螺纹孔20连接,将第二导流器3与第一散热板4的第二端、第二散热板5的第二端连接。
进液通道包括设置在第一导流器2上的进液孔37,以及设置在第一导流器2上与进液孔37连通的第一分流孔38和第二分流孔39。
具体的,进液孔37设置在第一导流器2的接头部33上,第一分流孔38的一端和第二分流孔39的一端与均与进液孔37连通,第一分流孔38和第二分流孔39均贯穿第一导流器2的锥形过渡部34、方形连接部35。
出液通道包括设置在第二导流器3上的出液孔,以及设置在第二导流器3上均与出液孔连通的第三分流孔和第四分流孔。
具体的,出液孔设置在第二导流器3的接头部33上,第三分流孔的一端和第四分流孔的一端与均与进液孔37连通,第三分流孔和第四分流孔均贯穿第二导流器3的锥形过渡部34、方形连接部35。
如图12和图13所示,在一个实施例中,SiC密封圈7与密封圈挡板30、SiC密封槽11设置为相互匹配的四角圆弧过渡的方形,SiC密封圈7安装在密封圈挡板30上,SiC密封圈7的一边与密封圈挡板30紧贴,另一边与第一散热板4和第二散热板5上的SiC密封槽11紧贴,并通过螺钉100锁紧产生密封力,从而实现SiC模块1与第一散热板4和第二散热板5的密封,进一步的,SiC密封圈7的横截面设置为两侧具有缺口的方形。
如图14和图15所示,在一个实施例中,导流器密封圈8与第一导流密封槽16、第二导流密封槽18、第三导流密封槽19、第四导流密封槽21内均设置为相互匹配的腰形,导流器密封圈8一边安装在第一导流密封槽16、第二导流密封槽18、第三导流密封槽19、第四导流密封槽21内,另一边与第一导流器2、第二导流器3密封面紧贴,并通过螺钉100锁紧产生密封力,从而实现第一导流器2、第二导流器3与第一散热板4和第二散热板5的密封。
如图1所示,在一个实施例中,双面冷却系统还包括导热垫40,如图16和图17所示,薄膜电容6与第一散热板4的外侧连接,导热垫40设置在薄膜电容6与第一散热板4之间。薄膜电容6包括DC输入铜排41、DC输出铜排42、第三安装孔43、导热板44、外壳45、薄膜芯子和环氧树脂46。
其中,外壳45呈方形,外壳45的顶部开口,导热板44设置在外壳45的底部,环氧树脂46将薄膜芯子灌封在外壳45内,位于导热板44的上方;DC输入铜排41设置在外壳45的上端,DC输出铜排42设置在外壳45的下端,DC输出铜排42的数量与SiC模块1数量对应设置,每组DC输出铜排42与每个SiC模块1的单相输入铜排28通过螺栓连接或激光焊接。
第三安装孔43设置在外壳45底部的两侧,第三安装孔43的数量与第二螺柱24的数量对应设置;导热垫40铺设在导热板44的外侧,用螺栓穿过第三安装孔43将薄膜电容6固定在第一散热板4上。
如图18所示,在一个实施例中,第一散热板4的外侧设置有方形固定框,薄膜电容6包括DC输入铜排41、DC输出铜排42、绝缘纸47、薄膜芯子和环氧树脂46,环氧树脂46将薄膜芯子灌封在固定框内,位于第一散热板4的外侧;DC输入铜排41设置在固定框的上端,DC输出铜排42设置在固定框的下端,DC输出铜排42的数量与SiC模块1数量对应设置,每个DC输出铜排42与固定框之间均设置有绝缘纸47,每组DC输出铜排42与每个SiC模块1的单相输入铜排28通过螺栓连接或激光焊接。
本申请实施例提出一种新的薄膜电容6结构,采用集成化设计,取消导热垫40和薄膜电容6外壳45;进一步降低热阻,薄膜芯子散热能力提升,同时也降低了薄膜电容6的成本。
如图19-图25所示,在一个实施例中,第一导流器2的接头部33和第二导流器3的接头部33可以设置为直头或弯头,例如,弯头的角度可以是90°,在第一导流器2一侧建立aa’-bb’-cc’空间直角坐标系,在第二导流器3一侧建立xx’-yy’-zz’空间直角坐标系,其中,方向a及a’、x及x’代表的导流器为直头型,方向b及b’、c及c’、y及y’、z及z’代表的导流器为90°弯头型,结合以上坐标系对第一导流器2的接头部33和第二导流器3的接头部33组合形式及冷却液不同的进出方向进行说明,组合形式及冷却液的进出方向包括但不限于:
1、第一导流器2的接头部33和第二导流器3的接头部33均设置为直头,冷却液的进出方向可以是ax或及x’a’;
2、第一导流器2的接头部33和第二导流器3的接头部33均设置为弯头,冷却液的进出方向可以是cz’或zc’;
3、第一导流器2的接头部33和第二导流器3的接头部33均设置为弯头,冷却液的进出方向可以是方向by’或yb’;
4、第一导流器2的接头部33为直头,第二导流器3的接头部33均为弯头,冷却液的进出方向可以是ay’或ya’;
5、第一导流器2的接头部33为弯头,第二导流器3的接头部33均为直头,冷却液的进出方向可以是bx或x’b’;
6、第一导流器2的接头部33为直头,第二导流器3的接头部33均为弯头,冷却液的进出方向可以是az’或za’;
7、第一导流器2的接头部33为弯头,第二导流器3的接头部33均为直头,冷却液的进出方向可以是cx或x’c’。
本申请实施例独立的第一导流器2和第二导流器3结构可以满足不同进出水口方向要求,减少开发周期,快速满足不同客户要求。
尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种基于SiC平台的双面冷却系统,用于对若干SiC模块进行冷却,其中,所述冷却系统包括第一导流器、第二导流器、第一散热板和第二散热板;
    其中,所述第一散热板和所述第二散热板连接,若干所述SiC模块均设置在所述第一散热板、所述第二散热板之间,所述第一导流器与所述第一散热板的第一端、所述第二散热板的第一端连接,所述第二导流器与所述第一散热板的第二端、所述第二散热板的第二端连接,所述第一导流器上设置有进液通道,所述第二导流器上设置有出液通道,所述第一散热板内侧与若干所述SiC模块第一侧形成第一流道,所述第二散热板内侧与若干所述SiC模块第二侧形成第二流道,所述进液通道与所述第一流道的第一端、所述第二流道的第一端连通,所述出液通道与所述第一流道的第二端、所述第二流道的第二端连通。
  2. 根据权利要求1所述的基于SiC平台的双面冷却系统,其中,所述第一散热板和所述第二散热板均包括单相流道、相间连通流道和SiC密封槽;
    其中,所述第一散热板和所述第二散热板上的单相流道数量与所述SiC模块的数量对应设置,所述第一散热板和所述第二散热板上相邻的两个单相流道之间均设置有相间连通流道;所述第一散热板和所述第二散热板上的每个单相流道外侧环绕设置有SiC密封槽,每个SiC密封槽内均设置有SiC密封圈,所述第一散热板的每个单相流道的底侧与SiC模块的第一侧均具有间隙,第二散热板的每个单相流道的底侧与SiC模块的第二侧具有间隙。
  3. 根据权利要求2所述的基于SiC平台的双面冷却系统,其中,所述第一散热板的第一端靠近位置设置有第一导流通道,所述第一散热板的第二端靠近位置设置有第二导流通;所述第二散热板的第一端靠近位置设置有第三导流通道,所述第二散热板的第二端靠近位置设置有第四导流通道。
  4. 根据权利要求1所述的基于SiC平台的双面冷却系统,其中,所述第一流道包括依次连通的所述第一导流通道、所述第一散热板的单相流道A与SiC模块A的第一侧的间隙、相间连通流道A、所述第一散热板的单相流道B与SiC模块B的第一侧的间隙、相间连通流道B、所述第一散热板的单相流道C与SiC模块C的第一侧的间隙、所述第二导流通道。
  5. 根据权利要求3所述的基于SiC平台的双面冷却系统,其中,所述第二流道包括依次连通的所述第三导流通道、所述第二散热板的单相流道D与SiC模块D的第二侧的间隙、相间连通流道C、所述第二散热板的单相流道E与SiC模块E的第二侧的间隙、相间连通流道D、所述第二散热板的单相流道F与SiC模块F的第二侧的间隙、第四导流通道。
  6. 根据权利要求1所述的基于SiC平台的双面冷却系统,其中,所述第一散热板两端均设置有螺纹孔和导流密封槽,所述第二散热板两端均设置有螺纹孔和导流密封槽。
  7. 根据权利要求1所述的基于SiC平台的双面冷却系统,其中,所述第一散热板上设置有多个第一安装孔,所述第二散热板上与多个所述第一安装孔对应设置有第一螺柱;所述第一散热板还包括多个第二螺柱,位于所述第一散热板的外侧。
  8. 根据权利要求1所述的基于SiC平台的双面冷却系统,其中,所述SiC模块包括基板、若干引脚、单相输出铜排和单相输入铜排;
    其中,所述基板的前后两侧均设置有若干钉状翅片,所述单相输出铜排设置在所述基板的上端,所述引脚设置在所述基板的上端位于所述单相输出铜排的两侧,所述单相输入铜排设置在所述基板的下端,所述基板的前后两侧在所述钉状翅片外侧均围设有密封圈挡板。
  9. 根据权利要求1-8任一所述的基于SiC平台的双面冷却系统,其中,所述双面冷却系统还包括薄膜电容,所述薄膜电容设置在所述第一散热板的外侧。
  10. 根据权利要求1-8任一所述的基于SiC平台的双面冷却系统,其中,所述第一导流器和所述第二导流器均包括依次连接的接头部、过渡部和连接部,所述连接部周边设置有多个第二安装孔;
    所述进液通道包括进液孔、第一分流孔和第二分流孔;所述进液孔设置在所述第一导流器的接头部上,所述第一分流孔和所述第二分流孔均贯穿所述第一导流器的过渡部、连接部,所述第一分流孔的第一端和所述第二分流孔的第一端与所述进液孔连通,所述第一分流孔的第二端与所述第一流道连通,所述第二分流孔的第二端与所述第二流道连通;
    所述出液通道包括出液孔、第三分流孔和第四分流孔,所述出液孔设置在所述第二导流器的接头部上,所述第三分流孔和所述第四分流孔均贯穿所述第二导流器的过渡部、连接部,所述第三分流孔的第一端与所述第一流道连通,所述第四分流孔的第一端与所述第二流道连通,所述第三分流孔的第二端和所述第四分流孔的第二端与所述出液孔连通。
  11. 根据权利要求10所述的基于SiC平台的双面冷却系统,其中,所述第一导流器的接头部、所述第二导流器的接头部为直头或弯头,所述过渡部为锥形,所述连接部为方形。
PCT/CN2023/090155 2022-12-22 2023-04-23 一种基于SiC平台的双面冷却系统 WO2024130920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211658357.XA CN115988836A (zh) 2022-12-22 2022-12-22 一种基于SiC平台的双面冷却系统
CN202211658357.X 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024130920A1 true WO2024130920A1 (zh) 2024-06-27

Family

ID=85962093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090155 WO2024130920A1 (zh) 2022-12-22 2023-04-23 一种基于SiC平台的双面冷却系统

Country Status (2)

Country Link
CN (1) CN115988836A (zh)
WO (1) WO2024130920A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115988836A (zh) * 2022-12-22 2023-04-18 一巨自动化装备(上海)有限公司 一种基于SiC平台的双面冷却系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180025670A (ko) * 2016-09-01 2018-03-09 현대모비스 주식회사 직접냉각유로를 갖는 적층형 전력반도체 양면 냉각 장치
CN214707588U (zh) * 2021-04-28 2021-11-12 比亚迪股份有限公司 电机控制器和车辆
CN114786440A (zh) * 2022-04-28 2022-07-22 戴胜日研新能源(苏州)有限公司 一种集成型双面水冷散热模块
CN115988836A (zh) * 2022-12-22 2023-04-18 一巨自动化装备(上海)有限公司 一种基于SiC平台的双面冷却系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180025670A (ko) * 2016-09-01 2018-03-09 현대모비스 주식회사 직접냉각유로를 갖는 적층형 전력반도체 양면 냉각 장치
CN214707588U (zh) * 2021-04-28 2021-11-12 比亚迪股份有限公司 电机控制器和车辆
CN114786440A (zh) * 2022-04-28 2022-07-22 戴胜日研新能源(苏州)有限公司 一种集成型双面水冷散热模块
CN115988836A (zh) * 2022-12-22 2023-04-18 一巨自动化装备(上海)有限公司 一种基于SiC平台的双面冷却系统

Also Published As

Publication number Publication date
CN115988836A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN101901638B (zh) 汇流排组件、车辆逆变器模块和冷却逆变器模块的方法
EP3093974B1 (en) Three-level power conversion device
US10319665B2 (en) Cooler and cooler fixing method
EP2802198B1 (en) Power conversion apparatus
GB2559180A (en) Semiconductor cooling arrangement
US10811958B2 (en) Water-cooling power supply module
JP2020505900A (ja) 半導体構成
TWI611753B (zh) 電源轉換裝置
JP2018512742A (ja) パワーエレクトロニクスモジュール
US20210243923A1 (en) Power module assembly
JP2005516570A (ja) 複数の回路板を支持する小型流体冷却式電力コンバータ
CN101174799A (zh) 电力转换装置
JP3300566B2 (ja) パワーモジュール及び電力変換装置
WO2024130920A1 (zh) 一种基于SiC平台的双面冷却系统
EP3905318A1 (en) Power module assembly
CN111540730A (zh) 基于导电金属夹扣互连的多芯片宽禁带功率模块封装结构
CA2751034C (en) Semiconductor stack and power converter using the same
US20210407875A1 (en) Semiconductor device
CN111554645B (zh) 集成叠层母排的双面水冷SiC半桥模块封装结构
JP4455914B2 (ja) 電力変換装置
JP2023110904A (ja) パワーエレクトロニクスアセンブリ及びその製造方法
CN108569125B (zh) 电驱动系统和包括所述电驱动系统的汽车
GB2565071A (en) Semiconductor module
CN219288021U (zh) 一种基于SiC平台的双面冷却系统
JP2002125381A (ja) 電力変換装置