WO2020204240A1 - 건설기계 - Google Patents

건설기계 Download PDF

Info

Publication number
WO2020204240A1
WO2020204240A1 PCT/KR2019/004110 KR2019004110W WO2020204240A1 WO 2020204240 A1 WO2020204240 A1 WO 2020204240A1 KR 2019004110 W KR2019004110 W KR 2019004110W WO 2020204240 A1 WO2020204240 A1 WO 2020204240A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
work
speed
electronic control
control unit
Prior art date
Application number
PCT/KR2019/004110
Other languages
English (en)
French (fr)
Inventor
김동수
김미옥
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
김동수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비, 김동수 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to US17/601,167 priority Critical patent/US20220178113A1/en
Priority to EP19922792.7A priority patent/EP3951071A4/en
Priority to PCT/KR2019/004110 priority patent/WO2020204240A1/ko
Priority to KR1020217033393A priority patent/KR20220037405A/ko
Priority to CN201980095148.9A priority patent/CN113795633A/zh
Publication of WO2020204240A1 publication Critical patent/WO2020204240A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function

Definitions

  • the present invention relates to a construction machine, and more particularly, improves working speed and work efficiency by controlling the speed of the bucket in consideration of the distance from the bucket end to the working area in the direction in which the bucket end moves (the speed direction of the bucket end). It relates to a construction machine having a function of limiting the work area to be made.
  • excavators are various types of work such as excavation work for digging the ground at construction sites, loading work to transport soil, digging work to make a foundation, crushing work to dismantle buildings, grading work to clear the ground, and even work to select the ground. It is a construction machine that performs.
  • a construction machine (1) such as an excavator includes a lower vehicle (2), an upper swing body (3), which is pivotably installed on the lower vehicle (2), and an upper swing body (3). It is provided with a working device (4) that is operably installed on the top and bottom direction.
  • the working device 4 is formed of a multi-joint, and the rear end is rotatably supported by the upper pivot 3, and the rear end is rotatably supported by the front end of the boom 4a. (4b) and a bucket 4c rotatably provided on the distal end side of the arm 4b. And hydraulic oil is supplied according to the user's operation of the lever, and the boom cylinder (5, actuator for work), arm cylinder (6, actuator for work), and bucket cylinder (7, actuator for work) are respectively connected to the boom (4a), the arm (4b) and Operate the bucket 4c.
  • Such a construction machine 1 operates the working devices 4 such as the boom 4a, the arm 4b, and the bucket 4c through respective manual control levers, but these working devices 4 are Since it is connected by means of a rotational motion, it requires considerable effort from the driver to operate each of the working devices 4 to work in a predetermined area.
  • a device for controlling a working area of an excavator is proposed in Japanese Patent No. 7-94735.
  • the work area control device controls the movement of the bucket according to the distance between the end of the bucket and the boundary line of the intrusion-proof area. Therefore, even if the driver accidentally tries to move the tip of the bucket to the intrusion-proof area, the bucket automatically stops at the boundary of the intrusion-proof area.
  • the driver can return the tip of the bucket by recognizing that the working device is approaching the impenetrable area because the speed of the working device is decreasing during work.
  • FIG. 2 shows that in a situation in which the driver sets the work area and then removes the work material accumulated in the work area, the posture of the bucket 13c is different, but the distance between the bucket end P1 and the work area is the same (a). To (c) shows the situation.
  • the speed of the bucket 13c is limited only by the shortest distance d between the bucket end P1 and the working area.
  • the shortest distance (d) between the end of the bucket (P1) and the work area is the same, depending on the attitude of the bucket (13c), the bucket (13c) does not invade the work area or there may be a situation where there is a lot of time to invade .
  • the speed of the bucket 13c is uniformly limited.
  • the present invention is to solve the problems of the prior art described above, and an object of the present invention is to control the speed of the bucket in consideration of the distance from the bucket end to the working area in the direction in which the bucket end moves (the speed direction of the bucket end). It is to provide a construction machine with a work area limitation function that improves work speed and work efficiency.
  • an aspect of the present invention includes a lower running body, an upper rotating body supported so as to be rotatable on the lower running body, a boom, an arm and a bucket operated by respective hydraulic cylinders.
  • a working device supported by an upper pivot, a control valve for controlling the hydraulic cylinder, an operation lever for outputting an operation signal corresponding to an operation amount of a driver, a work setting unit capable of setting and/or selecting a working area of the working device, According to a signal input from at least one of the operation lever, the operation setting unit, and the position information providing unit and a position information providing unit for collecting and/or calculating the position information of the work device and/or the position information of the work area.
  • the electronic control unit determines whether the working device is close to or farther from the working area when the manipulation signal of the manipulation lever is input, and when the working device is close to the working area It can only be a construction machine, which is configured to limit the speed of the work tool.
  • the electronic control unit may be a construction machine, configured to control the speed of the working device based on the distance from the bucket end to the work area in the speed direction of the bucket end.
  • the direction in which the end of the bucket moves may be a construction machine, which is a line connecting the end of the bucket and the bucket pin and a direction perpendicular to the end of the bucket.
  • the direction in which the end of the bucket moves may be a construction machine, which is a line connecting the end of the bucket and the arm pin and a direction perpendicular to the end of the bucket.
  • the electronic control unit compares the distance between the bucket end and the work area in the direction in which the bucket end moves with a preset reference value, and compares the distance between the bucket end and the work area in the direction in which the bucket end moves.
  • a preset reference value it may be a construction machine that is configured to be determined as a speed limit section.
  • the electronic control unit may be a construction machine, configured to set a deceleration rate of the working device in the speed limit section and limit the speed of the working device based on the set deceleration rate.
  • the electronic control unit is configured to set a speed limit section and/or a deceleration rate based on the shortest distance between the bucket end and the work area at the position of the bucket pin as a reference Can be
  • the electronic control unit may be a construction machine, configured to control the speed of the working device based on the deceleration rate when the working device enters the speed limit section.
  • the electronic control unit when the position of the bucket pin is raised above the position of the reference bucket pin, to reduce the speed limit of the working device in proportion to the increased distance of the bucket pin. Constructed, it may be a construction machine.
  • the location information providing unit includes: a location measurement unit for measuring location information of construction machines, a posture measurement unit for measuring posture information of construction machines and positions of each work device, and the position measurement unit And it may be a construction machine configured to include at least one of a coordinate calculation unit that calculates coordinates based on the position information measured from the posture measurement unit.
  • the operation lever may be a construction machine, which is an electric joystick and is configured to generate an electric signal in proportion to a driver's operation amount and provide it to the electronic control unit.
  • the work setting unit includes a plurality of work mode setting functions that can be set according to the needs of the driver, and terrain information and location provided from the location information providing unit according to the work mode setting It may be a construction machine, configured to display at least one of information and posture information of a construction machine on a display screen.
  • a decrease in work efficiency can be prevented by controlling the speed of the working device based on the distance between the bucket end and the work area in the direction in which the bucket end moves.
  • the driver can easily operate the work device regardless of the driving experience.
  • FIG. 1 is a perspective view showing the basic configuration of a construction machine according to the prior art.
  • FIG. 2 is a schematic diagram showing a speed control method of a working device according to the prior art.
  • FIG. 3 is a schematic diagram of a work area limitation function of a construction machine according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a method for controlling a speed of a working device during a bucket-in operation according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a speed control method of a working device when operating an arm of a construction machine according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a speed control method of a working device during a bucket-in operation of a construction machine according to another embodiment of the present invention.
  • the construction machine 10 is supported by the lower running body 11, the upper rotating body 12 supported so as to be rotatable on the lower running body 11, and the upper rotating body 12 It is provided with a working device (13).
  • the working device 13 includes a boom 13a, an arm 13b and a bucket 13c actuated by respective hydraulic cylinders.
  • the work device 13 is operated by limiting the amount of operation required by the operator to operate the work device 13 based on the distance between the bucket end and the work surface. It has a work area limitation function that controls to prevent invasion of the surface.
  • FIG. 3 is a schematic diagram of a work area limitation function of a construction machine according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a speed control method of a working device during bucket-in operation according to an embodiment of the present invention.
  • the construction machine 10 having a work area limiting function is a lower running body 11, an upper turning supported so as to be rotatable on the lower running body 11
  • a working device 13 including a sieve 12, a boom 13a, an arm 13b and a bucket 13c operated by each hydraulic cylinder, and supported by the upper pivot 12, and a hydraulic cylinder.
  • the location information providing unit 300 and the operation lever 200, the job setting unit 400, and the location information providing unit for collecting and/or calculating the location information of the work device and/or the location information of the work area ( 300) and an electronic control unit 500 for outputting a control signal for the control valve 100 according to a signal input from at least one.
  • the electronic control unit 500 is configured to calculate a distance between the work area and the work device, and to control the speed of the work device based on the calculated distance.
  • the control valve 100 is a member that opens and closes a flow path by a spool moving in the axial direction by receiving pressure. That is, the control valve 100 serves to convert the supply direction of hydraulic oil supplied by the hydraulic pump, which is a hydraulic source, to the hydraulic cylinder side.
  • the control valve 100 is connected to the hydraulic pump through a hydraulic pipe, and induces supply of hydraulic oil from the hydraulic pump to the hydraulic cylinder.
  • the operation lever 200 may be a hydraulic joystick or an electric joystick, and may preferably be an electric joystick that generates an electric signal in proportion to a driver's operation amount and provides it to the electronic control unit 500.
  • Whether the working device 13 approaches or moves away from the set working area is determined by the current position of the working device 13 and the operating direction of the operation lever 200.
  • the speed of the working device 13 may not be limited.
  • the location information providing unit 300 receives a signal transmitted from a GPS (Global Positioning System) satellite and measures the location information of the construction machine 10, the posture information of the construction machine 10 and the boom 13a , An attitude measuring unit that measures the position of at least one of the arm (13b) and the bucket (13c), and a coordinate calculation that calculates the coordinates of the construction machine 10 based on the position information measured from the position measuring unit and the attitude measuring unit It may include at least one of the parts.
  • GPS Global Positioning System
  • the location measurement unit 310 may include a receiver capable of receiving a signal transmitted from a GPS satellite, and measures location information of the construction machine 10 from the received signal.
  • the posture measurement unit 320 uses a plurality of inertial measurement units (IMU), angle sensors, etc. to position at least one of the boom 13a, the arm 20, and the bucket 13c, and / Or the posture, and the tilt of the body of the construction machine (10) is measured.
  • IMU inertial measurement units
  • angle sensors etc.
  • the coordinate calculation unit 330 uses the position information measured from the position measurement unit 310 and the posture measurement unit 320 to use at least one of the boom 13a, the arm 20, and the bucket 13c ( x, y, z) is calculated.
  • the location information providing unit 300 may further include a mapping unit that maps topographic information around the work location and construction information on the work location to the calculated coordinates.
  • the mapping unit adjusts and maps the position and/or posture of each working device 13 measured by the posture measuring unit and the tilt of the body of the construction machine 10 according to each axis calculated by the coordinate calculating unit.
  • the work setting unit 400 may set and/or select a work area of the work device 13.
  • a work area limit mode, a swing position control mode, etc. may be provided with a work mode function that can be variously set and/or selected according to the driver's needs.
  • the work setting unit 400 is among the topographic information, location information, and attitude information of the construction machine 10 provided from the location information providing unit 300 according to the setting and/or selection of the work area and/or the work mode. At least one is displayed on the screen of the display 410. That is, the driver can set and/or select a work area and/or a work mode on the screen of the display 410, and can easily work using the displayed information.
  • the work area refers to a design surface that the driver has as a work target.
  • the electronic control unit 500 determines whether the current work device 13 is close to or away from the set work area. When it is determined that the work device 13 is close to the set work area, the distance between the work device 13 and the set work area is calculated. Then, the calculated distance is compared with a preset reference value to determine the speed limit amount of the working device 13. Finally, a control signal is output to the control valve 100 for controlling the hydraulic cylinder based on the speed limit.
  • a manipulation signal of the manipulation lever 200 and/or various location information of the location information providing unit 300 are input to the electronic control unit 500. Further, the electronic control unit 500 determines the speed limit amount of the working device 13 based on the collected information, and controls the movement of the working device 13 accordingly.
  • an operation method of a construction machine having a work area limitation function is as follows.
  • the driver selects an active control mode on the work setting unit 400 and sets a target work area. Then, a bucket in operation lever 200 is operated to perform a bucket excavation operation for the work area.
  • the location information providing unit 300 collects and/or calculates the location information of the work device 13 and/or the location information of the set work area, and provides it to the electronic control unit 500.
  • the electronic control unit 500 is based on the location information of the work device 13 provided from the location information providing unit 300 and/or the location information of the set work area, from the bucket end P1 to the bucket end P1. Calculate the distance (d s ) to the working area in the moving direction (the direction of the speed of the end of the bucket).
  • the direction in which the bucket end P1 moves may be a direction perpendicular to an imaginary line (Line 1) connecting the bucket end P1 and the bucket pin P2 at the bucket end P1. That is, in a circle having a diameter of an imaginary line connecting the bucket end P1 and the bucket pin P2 as a diameter, it may be a direction in which the tangent line at the bucket end P1 faces.
  • the electronic control unit 500 compares the calculated distance (d s ) from the bucket end (P1) to the working area in the speed direction of the bucket end (P1) with a preset reference value (d t ).
  • the electronic control unit 500 does not limit the speed of the bucket 13c when the distance (d s ) from the bucket end (P1) to the working area in the speed direction of the bucket end (P1) is greater than the set reference value (d t ). It is judged to be. That is, at this time, the electronic control unit 500 does not limit the speed of the bucket 13c.
  • the electronic control unit 500 determines the speed limit section.
  • the electronic control unit 500 sets the deceleration rate of the bucket 13c in the speed limit section.
  • the deceleration rate of the bucket 13c may be set linearly according to the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1, but is not limited thereto. .
  • the speed of the bucket 13c is controlled based on the deceleration rate in the speed limit section.
  • the electronic control unit 500 outputs a control signal to the control valve 100 based on a deceleration rate according to the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1.
  • the control valve 100 controls the hydraulic cylinder based on the control signal.
  • the shortest distance (d) between the end of the bucket (P1) and the work area is the same in the postures (a), (b) and (c), but the time taken to invade the work area when the bucket 13c is manipulated is all different.
  • the speeds of the buckets 13c are all the same in the postures (a) to (c). Limited. Accordingly, the working speed and efficiency may decrease during the excavation operation using the bucket 13c.
  • the speed of the bucket 13c needs to be controlled based on the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1.
  • the distance (d s ) from the bucket end (P1) to the working area in the speed direction of the bucket end (P1) in the posture (a) is the smallest as d 1
  • the distance (d s ) to the working area in the speed direction of the bucket end (P1) is the second smallest with d 2
  • the distance (d s ) of is the largest as d 3 .
  • the electronic control unit 500 controls the speed of the bucket 13c based on the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1, the bucket Depending on the posture of (13c), the bucket 13c does not invade the work area or in a situation where there is a lot of time to invade the bucket 13c, it is possible to operate the bucket 13c more efficiently.
  • FIG. 5 is a schematic diagram showing a speed control method of a working device when operating an arm of a construction machine according to another embodiment of the present invention.
  • an operation method of a working machine having a work area limitation function is as follows.
  • the driver selects an active control mode on the work setting unit 400 and sets a target work area. Then, the arm in operation lever 200 is operated for excavation work on the work area. At this time, the operation lever 200 of the bucket 13c may not be operated.
  • the location information providing unit 300 collects and/or calculates the location information of the work device 13 and/or the location information of the set work area, and provides it to the electronic control unit 500.
  • the electronic control unit 500 is based on the location information of the work device 13 provided from the location information providing unit 300 and/or the location information of the set work area, from the end of the bucket P1 to the end of the bucket P1. Calculate the distance (d s ) to the work area in the speed direction.
  • the direction in which the bucket end P1 moves may be a direction perpendicular to an imaginary line (Line 2) connecting the bucket end P1 and the arm pin P3 at the bucket end P1. That is, in a circle having a diameter of an imaginary line connecting the bucket end P1 and the arm pin P3 as a diameter, it may be a direction in which the tangent line at the bucket end P1 faces.
  • the electronic control unit 500 compares the calculated distance (d s ) from the bucket end (P1) to the working area in the speed direction of the bucket end (P1) with a preset reference value (d t ).
  • the electronic control unit 500 does not limit the speed of the bucket 13c when the distance (d s ) from the bucket end (P1) to the working area in the speed direction of the bucket end (P1) is greater than the set reference value (d t ). It is judged to be. That is, at this time, the electronic control unit 500 does not limit the speed of the bucket 13c.
  • the electronic control unit 500 determines the speed limit section.
  • the electronic control unit 500 sets the deceleration rate of the arm 13b in the speed limit section.
  • the deceleration rate of the arm 13b may be set linearly according to the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1, but is not limited thereto. .
  • the speed of the arm 13b is controlled based on the deceleration rate in the speed limit section.
  • the electronic control unit 500 outputs a control signal to the control valve 100 based on a deceleration rate according to the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1.
  • the control valve 100 controls the hydraulic cylinder based on the control signal.
  • the shortest distance (d) between the end of the bucket (P1) and the working area is the same in the postures (a), (b) and (c), but the time it takes to invade the working area when operating the arm 13b is all different.
  • the speed of the arm 13b is limited based on the shortest distance (d) between the bucket end (P1) and the working area, the speed of the arm (13b) in the (a) to (c) postures is the same. Limited. Accordingly, the working speed and efficiency may decrease during the excavation operation using the arm 13b.
  • the speed of the arm 13b needs to be controlled based on the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1.
  • the distance (d s ) from the bucket end (P1) to the working area in the speed direction of the bucket end (P1) in the posture (a) is the smallest as d 1
  • the distance (d s ) to the working area in the speed direction of the bucket end (P1) is the second smallest with d 2
  • the distance (d s ) of is the largest as d 3 .
  • the electronic control unit 500 controls the speed of the arm 13b based on the distance d s from the bucket end P1 to the working area in the speed direction of the bucket end P1, the arm ( Depending on the posture of 13b), the bucket 13c does not invade the work area or in a situation where there is a lot of time to invade the arm 13b more efficiently.
  • FIG. 6 is a schematic diagram showing a speed control method of a working device during a bucket-in operation of a construction machine according to another embodiment of the present invention.
  • an operation method of a construction machine having a work area limitation function is as follows.
  • the driver selects an active control mode on the work setting unit 400 and sets a target work area. Then, a bucket in operation lever 200 is operated to perform a bucket excavation operation for the work area.
  • the location information providing unit 300 collects and/or calculates the location information of the work device 13 and/or the location information of the set work area, and provides it to the electronic control unit 500.
  • the electronic control unit 500 sets the position of the reference bucket pin P2 based on the location information of the work device 13 provided from the location information providing unit 300 and/or the location information of the set work area. do.
  • the speed limit section and/or the deceleration rate are set based on the shortest distance d between the bucket end P1 and the working area at the position of the bucket pin P2 as a reference.
  • the electronic control unit 500 controls the speed of the bucket 13c according to the deceleration rate set based on the shortest distance d between the bucket end P1 and the work area when the bucket end P1 enters the speed limit section. do.
  • the electronic control unit 500 raises the position of the bucket pin P2 above the position of the reference bucket pin P2. Or, it is determined whether it is a case of descending.
  • the electronic control unit 500 limits the speed of the bucket 13c in proportion to the increased distance of the bucket pin P2. The amount can be reduced.
  • the electronic control unit 500 determines the speed of the bucket 13c in proportion to the distance that the bucket pin P2 fell. The limit can be increased.
  • the electronic control unit 500 sets the speed limit section and deceleration rate at the position of the bucket pin P2 as a reference, and reflects the amount of change in the position of the bucket pin P2 in the height direction of the bucket 13c. You can control the speed.
  • the shortest distance (d) between the bucket end (P1) and the working area is the same in both the postures (a) and (b), but the time taken to invade the working area when operating the bucket 13c is all different.
  • the speed of the bucket 13c is limited based on the shortest distance (d) between the end of the bucket (P1) and the working area, the speed of the bucket (13c) in the (a) and (b) postures is the same. Limited. Accordingly, the working speed and efficiency may decrease during the excavation operation using the bucket 13c.
  • the electronic control unit 500 needs to control the speed of the bucket 13c by reflecting the amount of change in the position of the bucket pin P2 in the height direction, even if the shortest distance d between the bucket end P1 and the working area is the same. There is.
  • the electronic control unit 500 when describing the case where the electronic control unit 500 recognizes the position of the bucket pin P2 in the (a) posture as a reference position, the electronic control unit 500 is (a) the bucket end P1 in the posture. Set the speed limit section and/or deceleration rate based on the shortest distance (d) between) and the work area.
  • (b) posture is a situation where there is more time to invade the work area than (a) posture, or a situation where the work area is not invaded. Represents. That is, although the distance between the bucket end P1 and the working area is the same, the position of the bucket pin P2 is raised by da from the reference position.
  • the electronic control unit 500 decreases the speed limit amount of the bucket 13c in proportion to the distance da that the position of the bucket pin P2 is raised from the reference position. That is, in Fig. 6, (a) the deceleration graph of the bucket 13c in the posture is the deceleration graph of the bucket 13c in the posture (b) by the distance da where the position of the bucket pin P2 is raised from the reference position. It moves in parallel with.
  • the speed limit of the bucket (13c) in (b) posture is the reference position. It decreases more in the phosphorus (a) posture.
  • the speed limit section of the bucket 13c in the posture (b) decreases from the posture (a) which is the reference position.
  • the electronic control unit 500 sets the position of the bucket pin P2 as a reference and controls the speed of the bucket 13c by reflecting the amount of change in the position of the bucket pin P2 in the height direction with respect to the reference position, During bucket excavation, a more efficient operation of the bucket 13c is possible in a situation where the bucket 13c does not invade the working area or there is a lot of time to invade the working area according to the attitude of the bucket 13c.
  • the driver can easily operate the work device regardless of the driving experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

본 발명의 일 실시예는 하부주행체, 상기 하부주행체 상에서 회전 가능하도록 지지되는 상부선회체, 각각의 유압 실린더에 의해 작동하는 붐, 아암 및 버킷을 포함하며 상기 상부선회체에 의해 지지되는 작업장치, 상기 유압 실린더를 제어하는 컨트롤밸브, 운전자의 조작량에 대응되는 조작신호를 출력하는 조작레버, 상기 작업장치의 작업영역를 설정 및/또는 선택할 수 있는 작업설정부, 상기 작업장치의 위치정보 및/또는 작업영역의 위치정보를 수집 및/또는 계산하는 위치정보 제공부 및 상기 조작레버, 상기 작업설정부 및 상기 위치정보 제공부 중 적어도 하나로부터 입력되는 신호에 따라 상기 컨트롤밸브에 대한 제어신호를 출력하는 전자제어부를 포함하되, 상기 전자제어부는, 상기 작업영역과 상기 작업장치 사이의 거리를 연산하고, 연산된 거리에 기초하여 작업장치의 속도를 제어하도록 구성되는, 건설기계를 제공한다.

Description

건설기계
본 발명은 건설기계에 관한 것으로, 더욱 상세하게는 버킷 끝단에서 버킷 끝단이 움직이는 방향(버킷 끝단의 속도 방향)으로 작업영역까지의 거리를 고려하여 버킷의 속도를 제어함으로써 작업속도 및 작업능률을 향상시키는 작업영역제한 기능을 갖는 건설기계에 관한 것이다.
일반적으로 굴삭기는 건설 현장 등에서 땅을 파는 굴삭 작업, 토사를 운반하는 적재 작업, 기초를 만들기 위한 터파기 작업, 건물을 해체하는 파쇄 작업, 지면을 정리하는 정지 작업, 지면을 고르는 고르기 작업 등 다양한 작업을 수행하는 건설기계이다.
도 1을 참조하면, 굴삭기와 같은 건설기계(1)는 하부주행체(2)와, 하부주행체(2) 상에 선회 가능하게 설치되는 상부선회체(3)와, 상부선회체(3) 상에 상하 방향으로 작동 가능하게 설치되는 작업장치(4)를 구비한다.
또한, 작업장치(4)는, 다관절로 형성되어, 후단부가 상부선회체(3)에 회전 가능하게 지지된 붐(4a)과, 붐(4a)의 선단에 후단부가 회전 가능하게 지지된 아암(4b)과, 아암(4b)의 선단측에 회전 가능하게 설치된 버킷(4c)을 구비한다. 그리고 사용자의 레버 조작에 따라 작동유가 공급되고, 붐 실린더(5, 작업용 액추에이터)와 아암 실린더(6, 작업용 액추에이터)와 버킷 실린더(7, 작업용 액추에이터)가 각각 붐(4a), 아암(4b) 및 버킷(4c)을 작동시킨다.
이와 같은 건설기계(1)는 붐(4a), 아암(4b), 버킷(4c) 등의 작업장치(4)를 각각의 수동조작레버를 통해 작동하고 있으나, 이러한 작업장치(4)는 각각 관절부에 의해 연결되어 회전운동을 하는 것이기 때문에 작업장치(4)를 각각 조작하여 소정의 영역을 작업하는 것은 운전자의 상당한 노력을 필요로 한다.
그러므로, 이와 같은 작업을 용이하게 하기 위하여 굴착기의 작업영역 제어장치가 일본등록특허 평7-94735에 제안되어 있다. 상기 작업영역 제어장치는 버킷 끝단과 침입불가영역의 경계선까지의 거리에 따라 버킷의 움직임을 제어한다. 따라서, 운전자가 실수로 침입불가영역에 버킷 끝단을 이동시키려 해도, 버킷은 자동적으로 침입불가영역의 경계선에서 정지하게 된다. 또한, 운전자는 작업 도중에 작업장치의 속도가 감소하고 있는 것으로부터 작업장치가 침입불가영역에 근접하고 있다는 것을 인지하여 버킷 선단을 되돌릴 수 있다.
도 2는 운전자가 작업영역을 설정한 다음 작업영역에 쌓인 작업물질을 걷어내는 상황에서 버킷(13c)의 자세는 각각 다르지만 버킷 끝단(P1)과 작업영역(work area) 사이의 거리는 동일한 (a) 내지 (c) 상황을 나타낸다.
이 때, 운전자가 설정한 작업영역에 쌓인 작업물질을 걷어내기 위해서는 버킷(13c)의 조작이 필요하다. 종래 기술에 따르면 버킷(13c)의 속도가 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)에 의해서만 제한된다. 다만, 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)가 같더라도 버킷(13c)의 자세에 따라 버킷(13c)이 작업영역을 침범하지 않거나 침범하는데 시간적 여유가 많은 상황이 발생할 수 있다. 이 경우에도, 종래 기술에 따르면 버킷(13c)의 속도가 일률적으로 동일하게 제한된다.
즉, (c) 상황은 (a) 및 (b) 상황과는 달리 운전자가 버킷(13c)을 조작을 하더라도 버킷(13c)이 작업영역을 침범하지 않게 되는 상황임에도, 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)가 동일하게 인식되어 (a) 및 (b) 상황과 동일하게 버킷(13c)의 속도가 제한된다. 이에 따라, 버킷(13c)을 이용한 굴삭 작업시 작업 속도 및 능률이 떨어지게 되는 문제점이 있다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 버킷 끝단에서 버킷 끝단이 움직이는 방향(버킷 끝단의 속도 방향)으로 작업영역까지의 거리를 고려하여 버킷의 속도를 제어함으로써 작업속도 및 작업능률을 향상시키는 작업영역제한 기능을 갖는 건설기계를 제공하는 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은 하부주행체, 상기 하부주행체 상에서 회전 가능하도록 지지되는 상부선회체, 각각의 유압 실린더에 의해 작동하는 붐, 아암 및 버킷을 포함하며 상기 상부선회체에 의해 지지되는 작업장치, 상기 유압 실린더를 제어하는 컨트롤밸브, 운전자의 조작량에 대응되는 조작신호를 출력하는 조작레버, 상기 작업장치의 작업영역를 설정 및/또는 선택할 수 있는 작업설정부, 상기 작업장치의 위치정보 및/또는 작업영역의 위치정보를 수집 및/또는 계산하는 위치정보 제공부 및 상기 조작레버, 상기 작업설정부 및 상기 위치정보 제공부 중 적어도 하나로부터 입력되는 신호에 따라 상기 컨트롤밸브에 대한 제어신호를 출력하는 전자제어부를 포함하되, 상기 전자제어부는, 상기 작업영역과 상기 작업장치 사이의 거리를 연산하고, 연산된 거리에 기초하여 작업장치의 속도를 제어하도록 구성되는, 건설기계를 제공한다.
본 발명의 일 실시예에 있어서, 상기 전자제어부는, 상기 조작레버의 조작신호가 입력되면 작업장치가 상기 작업영역에 가까워지는지 또는 멀어지는지 여부를 판단하고, 작업장치가 상기 작업영역에 가까워지는 경우에만 작업장치의 속도를 제한하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 전자제어부는, 버킷 끝단에서 버킷 끝단의 속도 방향으로 작업영역까지의 거리에 기초하여 작업장치의 속도를 제어하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 버킷 끝단이 움직이는 방향은, 버킷 끝단과 버킷 핀을 잇는 선과 버킷 끝단에서 수직을 이루는 방향인, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 버킷 끝단이 움직이는 방향은, 버킷 끝단과 아암 핀을 잇는 선과 버킷 끝단에서 수직을 이루는 방향인, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 전자제어부는, 버킷 끝단이 움직이는 방향으로의 버킷 끝단과 작업영역 사이의 거리를 기 설정된 기준값과 비교하여 버킷 끝단이 움직이는 방향으로의 버킷 끝단과 작업영역 사이의 거리가 기 설정된 기준값 보다 작을 때에는 속도제한구간으로 판단하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 전자제어부는, 상기 속도제한구간에서 작업장치의 감속율을 설정하고, 설정된 감속율에 기초하여 작업장치의 속도를 제한하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 전자제어부는, 기준이 되는 버킷 핀의 위치에서 버킷 끝단과 작업영역 사이의 최단 거리에 기초하여 속도제한구간 및/또는 감속율을 설정하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 전자제어부는, 작업장치가 상기 속도제한구간 내로 진입하면 상기 감속율에 기초하여 작업장치의 속도를 제어하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 전자제어부는, 버킷 핀의 위치가 상기 기준이 되는 버킷 핀의 위치보다 상승하게 되면, 버킷 핀의 상승한 거리만큼 비례하여 작업장치의 속도 제한량을 감소시키도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 위치정보 제공부는, 건설기계의 위치정보를 측정하는 위치 측정부, 건설기계의 자세 정보와 각각의 작업장치의 위치를 측정하는 자세 측정부 및 상기 위치 측정부와 상기 자세 측정부로부터 측정된 위치 정보를 토대로 좌표를 산출하는 좌표 산출부 중 적어도 하나를 포함하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 조작레버는, 전기식 조이스틱으로서 운전자의 조작량에 비례하여 전기적 신호를 발생시켜 전자제어부에 제공하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 실시예에 있어서, 상기 작업설정부는, 운전자의 필요에 따라 설정할 수 있는 복수의 작업모드 설정기능을 구비하고, 상기 작업모드 설정에 따라 상기 위치정보 제공부로부터 제공받은 지형 정보, 위치 정보 및 건설기계의 자세 정보 중 적어도 하나를 디스플레이 화면에 표시하도록 구성되는, 건설기계일 수 있다.
본 발명의 일 측면에 따르면, 버킷 끝단이 움직이는 방향으로의 버킷 끝단과 작업영역 사이의 거리에 기초하여 작업장치의 속도를 제어함으로써 작업 효율의 저하를 방지할 수 있다.
또한, 운전자는 운전 경험과 무관하게 작업장치를 용이하게 조작할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 종래기술에 따른 건설기계의 기본구성을 도시한 사시도이다.
도 2는 종래기술에 따른 작업장치의 속도제어 방법을 나타내는 개략도이다.
도 3은 본 발명의 일 실시예에 따른 건설기계의 작업영역제한 기능의 개략도이다.
도 4는 본 발명의 일 실시예에 따른 버킷 인 조작시 작업장치의 속도제어 방법을 나타내는 개략도이다.
도 5는 본 발명의 다른 실시예에 따른 건설기계의 아암 인 조작시 작업장치의 속도제어 방법을 나타내는 개략도이다.
도 6은 본 발명의 또 다른 실시예에 따른 건설기계의 버킷 인 조작시 작업장치의 속도제어 방법을 나타내는 개략도이다.
이하 도 1 내지 도 6을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
본 발명의 실시 형태에 따른 건설기계(10)는 하부주행체(11), 상기 하부주행체(11) 상에서 회전 가능하도록 지지되는 상부선회체(12) 및 상기 상부선회체(12)에 의해 지지되는 작업장치(13)를 구비한다. 작업장치(13)는 각각의 유압 실린더에 의해 작동하는 붐(13a), 아암(13b) 및 버킷(13c)을 포함한다.
또한, 본 발명의 실시 형태에 따른 건설기계(10)는, 버킷 끝단과 작업표면(work surface) 사이의 거리에 기초하여 운전자의 작업장치(13) 조작 요구량을 제한함으로써 작업장치(13)가 작업표면을 침범하지 못하도록 제어하는 작업영역제한 기능을 갖는다.
도 3은 본 발명의 일 실시예에 따른 건설기계의 작업영역제한 기능의 개략도이고, 도 4는 본 발명의 일 실시예에 따른 버킷 인 조작시 작업장치의 속도제어 방법을 나타내는 개략도이다.
도 3 및 도 4를 참조하면, 본 발명의 실시 형태에 따른 작업영역제한 기능을 갖는 건설기계(10)는 하부주행체(11), 상기 하부주행체(11) 상에서 회전 가능하도록 지지되는 상부선회체(12), 각각의 유압 실린더에 의해 작동하는 붐(13a), 아암(13b) 및 버킷(13c)을 포함하며 상기 상부선회체(12)에 의해 지지되는 작업장치(13), 유압 실린더를 제어하는 컨트롤밸브(100), 운전자의 조작량에 대응되는 조작신호를 출력하는 조작레버(200), 상기 작업장치의 작업영역(work area)을 설정 및/또는 선택할 수 있는 작업설정부(400), 상기 작업장치의 위치정보 및/또는 작업영역의 위치정보를 수집 및/또는 계산하는 위치정보 제공부(300) 및 상기 조작레버(200), 상기 작업설정부(400) 및 상기 위치정보 제공부(300) 중 적어도 하나로부터 입력되는 신호에 따라 상기 컨트롤밸브(100)에 대한 제어신호를 출력하는 전자제어부(500)를 포함한다.
이 때, 본 발명의 일 실시예에 따른 상기 전자제어부(500)는, 상기 작업영역과 상기 작업장치 사이의 거리를 연산하고, 연산된 거리에 기초하여 작업장치의 속도를 제어하도록 구성된다.
컨트롤밸브(100)는 압력을 받아 축선방향으로 이동하는 스풀에 의해 유로를 개폐하는 부재이다. 즉, 컨트롤밸브(100)는 유압원인 유압펌프에 의해 공급되는 작동유의 공급 방향을 유압 실린더 측으로 전환하는 역할을 한다. 컨트롤밸브(100)는 유압 배관을 통하여 유압펌프와 연결되며, 유압펌프에서 유압 실린더로의 작동유 공급을 유도한다.
조작레버(200)는 유압식 조이스틱 또는 전기식 조이스틱(Electric Joystic)일 수 있으며, 바람직하게는 운전자의 조작량에 비례하여 전기적 신호를 발생시켜 전자제어부(500)에 제공하는 전기식 조이스틱일 수 있다.
작업장치(13)가 설정된 작업영역에 가까워지는지 또는 멀어지는지 여부는 작업장치(13)의 현재 위치와 조작레버(200)의 조작방향으로 판단된다.
작업장치(13)가 작업영역으로부터 멀어지는 경우에는 작업장치(13)의 속도가 제한되지 않을 수 있다.
위치정보 제공부(300)는 GPS(Global Positioning System) 위성이 송출하는 신호를 수신하여 건설기계(10)의 위치정보를 측정하는 위치 측정부, 건설기계(10)의 자세 정보와 붐(13a), 아암(13b) 및 버킷(13c) 중 적어도 하나의 위치를 측정하는 자세 측정부 및 상기 위치 측정부와 상기 자세 측정부로부터 측정된 위치 정보를 토대로 건설기계(10)의 좌표를 산출하는 좌표 산출부 중 적어도 하나를 포함할 수 있다.
위치 측정부(310)는 GPS 위성이 송출하는 신호를 수신할 수 있는 수신기를 구비할 수 있고, 수신한 신호로부터 건설기계(10)의 위치 정보를 측정한다.
자세 측정부(320)는 복수의 관성 측정 장치(Inertial measurement unit, IMU), 앵글 센서(Angle senor) 등을 이용하여 붐(13a), 암(20) 및 버킷(13c) 중 적어도 하나의 위치 및/또는 자세, 그리고 건설기계(10)의 본체 기울기 등을 측정한다.
좌표 산출부(330)는 상기 위치 측정부(310)와 상기 자세 측정부(320)로부터 측정된 위치 정보를 이용하여 붐(13a), 암(20) 및 버킷(13c) 중 적어도 하나의 좌표(x, y, z)를 산출한다.
또한, 위치정보 제공부(300)는 작업 위치 주변의 지형 정보 및 작업 위치에 대한 시공 정보를 산출된 좌표에 맵핑하는 맵핑부를 더 구비할 수 있다. 상기 맵핑부는 자세 측정부에서 측정된 각각의 작업장치(13)의 위치 및/또는 자세 그리고 건설기계(10)의 본체 기울기 등을 상기 좌표 산출부에서 계산된 각 축에 따라 조정하여 맵핑한다.
작업설정부(400)는 작업장치(13)의 작업영역(work area)를 설정 및/또는 선택할 수 있다. 또한, 작업 영역 제한(Work area limit) 모드, 스윙 포지션 컨트롤(Swing position control) 모드 등 운전자의 필요에 따라 다양하게 설정 및/또는 선택할 수 있는 작업모드 기능을 구비할 수 있다.
작업설정부(400)는 상기 작업영역 및/또는 상기 작업모드의 설정 및/또는 선택에 따라, 위치정보 제공부(300)로부터 제공받은 지형 정보, 위치 정보 및 건설기계(10)의 자세 정보 중 적어도 하나를 디스플레이(410) 화면에 표시한다. 즉, 운전자는 디스플레이(410) 화면에서 작업영역 및/또는 작업모드를 설정 및/또는 선택하고, 이에 따라 표시된 정보들을 이용하여 용이하게 작업할 수 있다. 이 때, 상기 작업영역은 운전자가 작업목표로 하는 디자인면(design surface)을 의미한다.
전자제어부(500, Electronic Control Unit)는 조작레버(200)의 조작신호가 입력되면 현재 작업장치(13)가 설정된 작업영역에 가까워지는지 또는 멀어지는지 여부를 판단한다. 작업장치(13)가 설정된 작업영역에 가까워지는 것으로 판단되면, 상기 작업장치(13)와 설정된 작업영역 사이의 거리를 연산한다. 그 다음, 연산된 거리를 기 설정된 기준값과 비교하여 작업장치(13)의 속도 제한량을 결정한다. 마지막으로, 상기 속도 제한량에 기초하여 유압 실린더를 제어하는 컨트롤밸브(100)에 제어신호를 출력한다.
즉, 본 발명에 따른 작업영역제한 기능이 활성화(active)되면, 조작레버(200)의 조작신호 및/또는 위치정보 제공부(300)의 다양한 위치 정보들이 전자제어부(500)로 입력된다. 그리고, 상기 전자제어부(500)는 취합된 정보를 토대로 작업장치(13)의 속도 제한량을 결정하고, 이에 따라 작업장치(13)의 움직임을 제어하게 된다.
도3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 작업영역제한 기능을 갖는 건설기계의 동작 방식은 다음과 같다.
먼저, 운전자가 작업설정부(400) 상에서 활성 제어 모드(Active control Mode)를 선택하고, 목표로 하는 작업영역을 설정한다. 그리고, 상기 작업영역에 대한 버킷굴삭 작업을 위해 버킷 인(Bucket in) 조작레버(200)를 조작한다.
이 때, 작업장치(13)가 설정된 작업영역에 가까워지는지 또는 멀어지는지 여부는 작업장치(13)의 현재 위치와 조작레버(200)의 조작방향으로 판단되며, 작업장치(13)가 작업영역에 가까워지는 경우에만 작업장치(13)의 속도가 제한될 수 있다.
그 다음, 위치정보 제공부(300)가 상기 작업장치(13)의 위치정보 및/또는 설정된 작업영역의 위치정보를 수집 및/또는 계산하고, 이를 전자제어부(500)에 제공한다.
전자제어부(500)는 상기 위치정보 제공부(300)로부터 제공되는 작업장치(13)의 위치정보 및/또는 설정된 작업영역의 위치정보에 기초하여, 버킷 끝단(P1)에서 버킷 끝단(P1)이 움직이는 방향(버킷 끝단의 속도 방향)으로 작업영역까지의 거리(ds)를 연산한다.
여기서, 버킷 끝단(P1)이 움직이는 방향은 버킷 끝단(P1)에서 버킷 끝단(P1)과 버킷 핀(P2)을 잇는 가상의 선(Line 1)과 수직을 이루는 방향일 수 있다. 즉, 버킷 끝단(P1)과 버킷 핀(P2)을 잇는 가상의 선을 지름으로 하는 원에서 버킷 끝단(P1)에서의 접선이 향하는 방향일 수 있다.
그 다음, 전자제어부(500)는 연산된 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)를 기 설정된 기준값(dt)과 비교한다.
전자제어부(500)는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 설정된 기준값(dt)보다 클 때에는 버킷(13c)의 속도를 제한하지 않아도 되는 것으로 판단한다. 즉, 이 때에는 전자제어부(500)가 버킷(13c)의 속도를 제한하지 않는다.
다만, 전자제어부(500)는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 기준값(dt)보다 작을 때에는 속도제한구간으로 판단한다.
그리고, 전자제어부(500)는 상기 속도제한구간에서의 버킷(13c)의 감속율을 설정한다. 이 때, 버킷(13c)의 감속율은 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)에 따라 선형적으로 설정될 수 있지만, 이에 한정되는 것은 아니다.
이에 따라, 버킷(13c)의 속도는 상기 속도제한구간에서 상기 감속율에 기초하여 제어된다.
즉, 전자제어부(500)는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)에 따른 감속율에 기초하여 컨트롤밸브(100)에 제어신호를 출력하며, 컨트롤밸브(100)는 상기 제어신호에 기초하여 유압 실린더를 제어한다.
계속 도 4를 참조하여, 버킷굴삭시 버킷의 자세에 따른 제어 방법을 설명하면 다음과 같다.
버킷 끝단(P1)과 작업영역 사이의 최단거리(d)는 (a), (b) 및 (c) 자세에서 모두 같지만, 버킷(13c) 조작시 작업영역을 침범하는데 걸리는 시간은 모두 다르다.
그럼에도, 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)를 기준으로 버킷(13c)의 속도를 제한하게 되면, (a) 내지 (c) 자세에서 버킷(13c)의 속도가 모두 동일하게 제한된다. 이에 따라, 버킷(13c)을 이용한 굴삭 작업시 작업 속도 및 능률이 떨어질 수 있다.
따라서, 버킷(13c)의 속도는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)를 기준으로 제어될 필요가 있다.
이 때, (a) 자세에서는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 d1으로 가장 작고, (b) 자세에서는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 d2으로 두번째로 작으며, (c) 자세에서는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 d3로 가장 크게 된다.
즉, 본 발명에 따르면, (a) 자세에서 버킷(13c)의 속도가 가장 많이 감속되고, (b) 자세에서 버킷(13c)의 속도가 두번째로 많이 감속되며, (c) 자세에서 버킷(13c)의 속도가 가장 작게 감속된다.
이처럼, 전자제어부(500)가 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)를 기준으로 버킷(13c)의 속도를 제어하게 되면, 버킷굴삭시 버킷(13c)의 자세에 따라 버킷(13c)이 작업영역을 침범하지 않거나 침범하는데 시간적 여유가 많은 상황에서 보다 효율적인 버킷(13c) 조작이 가능하게 된다.
도 5는 본 발명의 다른 실시예에 따른 건설기계의 아암 인 조작시 작업장치의 속도제어 방법을 나타내는 개략도이다.
도3 및 도 5를 참조하면, 본 발명의 다른 실시예에 따른 작업영역제한 기능을 갖는 작업기계의 동작 방식은 다음과 같다.
먼저, 운전자가 작업설정부(400) 상에서 활성 제어 모드(Active control Mode)를 선택하고, 목표로 하는 작업영역을 설정한다. 그리고, 상기 작업영역에 대한 굴삭 작업을 위해 아암 인(Arm in) 조작레버(200)를 조작한다. 이 때, 버킷(13c)의 조작레버(200)는 조작되지 않을 수 있다.
이 때, 작업장치(13)가 설정된 작업영역에 가까워지는지 또는 멀어지는지 여부는 작업장치(13)의 현재 위치와 조작레버(200)의 조작방향으로 판단되며, 작업장치(13)가 작업영역에 가까워지는 경우에만 작업장치(13)의 속도가 제한될 수 있다.
그 다음, 위치정보 제공부(300)가 상기 작업장치(13)의 위치정보 및/또는 설정된 작업영역의 위치정보를 수집 및/또는 계산하고, 이를 전자제어부(500)에 제공한다.
전자제어부(500)는 상기 위치정보 제공부(300)로부터 제공되는 작업장치(13)의 위치정보 및/또는 설정된 작업영역의 위치정보에 기초하여, 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)를 연산한다.
여기서, 버킷 끝단(P1)이 움직이는 방향은 버킷 끝단(P1)에서 버킷 끝단(P1)과 아암 핀(P3)을 잇는 가상의 선(Line 2)과 수직을 이루는 방향일 수 있다. 즉, 버킷 끝단(P1)과 아암 핀(P3)을 잇는 가상의 선을 지름으로 하는 원에서 버킷 끝단(P1)에서의 접선이 향하는 방향일 수 있다.
그 다음, 전자제어부(500)는 연산된 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)를 기 설정된 기준값(dt)과 비교한다.
전자제어부(500)는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 설정된 기준값(dt)보다 클 때에는 버킷(13c)의 속도를 제한하지 않아도 되는 것으로 판단한다. 즉, 이 때에는 전자제어부(500)가 버킷(13c)의 속도를 제한하지 않는다.
다만, 전자제어부(500)는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 기준값(dt)보다 작을 때에는 속도제한구간으로 판단한다.
그리고, 전자제어부(500)는 상기 속도제한구간에서의 아암(13b)의 감속율을 설정한다. 이 때, 아암(13b)의 감속율은 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)에 따라 선형적으로 설정될 수 있지만, 이에 한정되는 것은 아니다.
이에 따라, 아암(13b)의 속도는 상기 속도제한구간에서 상기 감속율에 기초하여 제어된다.
즉, 전자제어부(500)는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)에 따른 감속율에 기초하여 컨트롤밸브(100)에 제어신호를 출력하며, 컨트롤밸브(100)는 상기 제어신호에 기초하여 유압 실린더를 제어한다.
계속 도 5를 참조하여, 굴삭시 아암(13b)의 자세에 따른 제어 방법을 설명하면 다음과 같다.
버킷 끝단(P1)과 작업영역 사이의 최단거리(d)는 (a), (b) 및 (c) 자세에서 모두 같지만, 아암(13b) 조작시 작업영역을 침범하는데 걸리는 시간은 모두 다르다.
그럼에도, 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)를 기준으로 아암(13b)의 속도를 제한하게 되면, (a) 내지 (c) 자세에서 아암(13b)의 속도가 모두 동일하게 제한된다. 이에 따라, 아암(13b)을 이용한 굴삭 작업시 작업 속도 및 능률이 떨어질 수 있다.
따라서, 아암(13b)의 속도는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)를 기준으로 제어될 필요가 있다.
이 때, (a) 자세에서는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 d1으로 가장 작고, (b) 자세에서는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 d2으로 두번째로 작으며, (c) 자세에서는 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)가 d3로 가장 크게 된다.
즉, (a) 자세에서 아암(13b)의 속도가 가장 많이 감속되고, (b) 자세에서 아암(13b)의 속도가 두번째로 많이 감속되며, (c) 자세에서 아암(13b)의 속도가 가장 작게 감속된다.
이처럼, 전자제어부(500)가 버킷 끝단(P1)에서 버킷 끝단(P1)의 속도 방향으로 작업영역까지의 거리(ds)를 기준으로 아암(13b)의 속도를 제어하게 되면, 굴삭시 아암(13b)의 자세에 따라 버킷(13c)이 작업영역을 침범하지 않거나 침범하는데 시간적 여유가 많은 상황에서 보다 효율적인 아암(13b) 조작이 가능하게 된다.
도 6은 본 발명의 또 다른 실시예에 따른 건설기계의 버킷 인 조작시 작업장치의 속도제어 방법을 나타내는 개략도이다.
도 3 및 도 6을 참조하면, 본 발명의 또 다른 실시예에 따른 작업영역제한 기능을 갖는 건설기계의 동작 방식은 다음과 같다.
먼저, 운전자가 작업설정부(400) 상에서 활성 제어 모드(Active control Mode)를 선택하고, 목표로 하는 작업영역을 설정한다. 그리고, 상기 작업영역에 대한 버킷굴삭 작업을 위해 버킷 인(Bucket in) 조작레버(200)를 조작한다.
이 때, 작업장치(13)가 설정된 작업영역에 가까워지는지 또는 멀어지는지 여부는 작업장치(13)의 현재 위치와 조작레버(200)의 조작방향으로 판단되며, 작업장치(13)가 작업영역으로부터 가까워지는 경우에만 작업장치(13)의 속도가 제한될 수 있다.
그 다음, 위치정보 제공부(300)가 상기 작업장치(13)의 위치정보 및/또는 설정된 작업영역의 위치정보를 수집 및/또는 계산하고, 이를 전자제어부(500)에 제공한다.
전자제어부(500)는 상기 위치정보 제공부(300)로부터 제공되는 작업장치(13)의 위치정보 및/또는 설정된 작업영역의 위치정보에 기초하여, 기준이 되는 버킷 핀(P2)의 위치를 설정한다. 또한, 기준이 되는 버킷 핀(P2)의 위치에서 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)에 기초하여 속도제한구간 및/또는 감속율을 설정한다.
전자제어부(500)는 버킷 끝단(P1)이 상기 속도제한구간 내로 진입하면 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)에 기초하여 설정된 감속율에 따라 버킷(13c)의 속도를 제어한다.
여기서, 버킷 핀(P2)의 위치가 기준이 되는 버킷 핀(P2)의 위치에서 변동되면, 전자제어부(500)는 버킷 핀(P2)의 위치가 기준이 되는 버킷 핀(P2)의 위치보다 상승 또는 하강하는 경우인지를 판단한다.
버킷 핀(P2)의 위치가 기준이 되는 버킷 핀(P2)의 위치보다 상승하는 경우로 판단되면, 전자제어부(500)는 버킷 핀(P2)의 상승한 거리만큼 비례하여 버킷(13c)의 속도 제한량을 감소시킬 수 있다.
버킷 핀(P2)의 위치가 기준이 되는 버킷 핀(P2)의 위치보다 하강하는 경우로 판단되면, 전자제어부(500)는 버킷 핀(P2)의 하강한 거리만큼 비례하여 버킷(13c)의 속도 제한량을 증가시킬 수 있다.
즉, 전자제어부(500)는 기준이 되는 버킷 핀(P2)의 위치에서의 속도제한구간 및 감속율을 설정하고, 여기에 버킷 핀(P2)의 높이 방향 위치 변화량을 반영하여 버킷(13c)의 속도를 제어할 수 있다.
계속 도 6을 참조하여, 버킷굴삭시 버킷 핀(P2)의 위치에 따른 제어 방법을 설명하면 다음과 같다.
버킷 끝단(P1)과 작업영역 사이의 최단거리(d)는 (a) 및 (b) 자세에서 모두 같지만, 버킷(13c) 조작시 작업영역을 침범하는데 걸리는 시간은 모두 다르다.
그럼에도, 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)를 기준으로 버킷(13c)의 속도를 제한하게 되면, (a) 및 (b) 자세에서 버킷(13c)의 속도가 모두 동일하게 제한된다. 이에 따라, 버킷(13c)을 이용한 굴삭 작업시 작업 속도 및 능률이 떨어질 수 있다.
따라서, 전자제어부(500)는 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)가 같더라도, 버킷 핀(P2)의 높이 방향 위치 변화량을 반영하여 버킷(13c)의 속도를 제어할 필요가 있다.
예를 들어, 전자제어부(500)가 (a) 자세에서의 버킷 핀(P2)의 위치를 기준 위치로 인식한 경우를 설명하면, 전자제어부(500)는 (a) 자세에서의 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)를 기준으로 속도제한구간 및/또는 감속율을 설정한다.
그리고, 버킷(13c)의 자세가 (a) 자세에서 (b) 자세로 변경된 경우, (b) 자세는 (a) 자세 보다 작업영역을 침범하는데 시간적 여유가 많은 상황 또는 작업영역을 침범하지 않는 상황을 나타낸다. 즉, 버킷 끝단(P1)과 작업영역 사이의 거리는 동일하지만, 버킷 핀(P2)의 위치가 기준 위치 보다 da 만큼 상승한 경우이다.
이 때, 전자제어부(500)는 버킷 핀(P2)의 위치가 기준 위치보다 상승한 거리(da)에 비례하여 버킷(13c)의 속도 제한량을 감소시킨다. 즉, 도 6에서, (a) 자세에서의 버킷(13c)의 감속 그래프가 버킷 핀(P2)의 위치가 기준 위치보다 상승한 거리(da) 만큼 (b) 자세에서의 버킷(13c)의 감속 그래프로 평행이동 하게 된다.
이에 따라, (a) 자세와 (b) 자세는 버킷 끝단(P1)과 작업영역 사이의 최단 거리(d)가 같음에도 불구하고 (b) 자세에서의 버킷(13c)의 속도 제한량은 기준 위치인 (a) 자세에서 보다 감소하게 된다. 또한, (b) 자세에서의 버킷(13c)의 속도제한구간은 기준 위치인 (a) 자세에서 보다 감소하게 된다.
이처럼, 전자제어부(500)가 기준이 되는 버킷 핀(P2)의 위치를 설정하고, 기준 위치에 대한 버킷 핀(P2)의 높이 방향 위치 변화량을 반영하여 버킷(13c)의 속도를 제어하게 되면, 버킷굴삭시 버킷(13c)의 자세에 따라 버킷(13c)이 작업영역을 침범하지 않거나 침범하는데 시간적 여유가 많은 상황에서 보다 효율적인 버킷(13c) 조작이 가능하게 된다.
또한, 운전자는 운전 경험과 무관하게 작업장치를 용이하게 조작할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
부호의 설명
10 : 건설기계
11 : 하부 주행체
12 : 상부 선회체
13 : 작업장치
13a : 붐
13b : 아암
13c : 버킷
14 : 붐 실린더(작업용 액추에이터)
15 : 아암 실린더(작업용 액추에이터)
16 : 버킷 실린더(작업용 액추에이터)
100 : 컨트롤밸브
200 : 조작레버
300 : 위치정보 제공부
310 : 위치 측정부
320 : 자세 측정부
330 : 좌표 산출부
400 : 작업설정부
410 : 디스플레이
500 : 전자제어부
P1 : 버킷 끝단
P2 : 버킷 핀
P3 : 아암 핀
d : 버킷 끝단과 작업영역 사이의 최단 거리
ds : 버킷 끝단에서 버킷 끝단이 움직이는 방향(버킷 끝단의 속도 방향)으로 작업영역까지의 거리

Claims (13)

  1. 하부주행체;
    상기 하부주행체 상에서 회전 가능하도록 지지되는 상부선회체;
    각각의 유압 실린더에 의해 작동하는 붐, 아암 및 버킷을 포함하며, 상기 상부선회체에 의해 지지되는 작업장치;
    상기 유압 실린더를 제어하는 컨트롤밸브;
    운전자의 조작량에 대응되는 조작신호를 출력하는 조작레버;
    상기 작업장치의 작업영역를 설정 및/또는 선택할 수 있는 작업설정부;
    상기 작업장치의 위치정보 및/또는 작업영역의 위치정보를 수집 및/또는 계산하는 위치정보 제공부; 및
    상기 조작레버, 상기 작업설정부 및 상기 위치정보 제공부 중 적어도 하나로부터 입력되는 신호에 따라 상기 컨트롤밸브에 대한 제어신호를 출력하는 전자제어부를 포함하되,
    상기 전자제어부는, 상기 작업영역과 상기 작업장치 사이의 거리를 연산하고, 연산된 거리에 기초하여 작업장치의 속도를 제어하도록 구성되는, 건설기계.
  2. 제1항에 있어서,
    상기 전자제어부는, 상기 조작레버의 조작신호가 입력되면 작업장치가 상기 작업영역에 가까워지는지 또는 멀어지는지 여부를 판단하고, 작업장치가 상기 작업영역에 가까워지는 경우에만 작업장치의 속도를 제한하도록 구성되는, 건설기계.
  3. 제1항에 있어서,
    상기 전자제어부는, 버킷 끝단에서 버킷 끝단의 속도 방향으로 작업영역까지의 거리에 기초하여 작업장치의 속도를 제어하도록 구성되는, 건설기계.
  4. 제3항에 있어서,
    상기 버킷 끝단이 움직이는 방향은, 버킷 끝단과 버킷 핀을 잇는 선과 버킷 끝단에서 수직을 이루는 방향인, 건설기계.
  5. 제3항에 있어서,
    상기 버킷 끝단이 움직이는 방향은, 버킷 끝단과 아암 핀을 잇는 선과 버킷 끝단에서 수직을 이루는 방향인, 건설기계.
  6. 제3항에 있어서,
    상기 전자제어부는, 버킷 끝단에서 버킷 끝단의 속도 방향으로 작업영역까지의 거리를 기 설정된 기준값과 비교하여 버킷 끝단에서 버킷 끝단의 속도 방향으로 작업영역까지의 거리가 기 설정된 기준값 보다 작을 때에는 속도제한구간으로 판단하도록 구성되는, 건설기계.
  7. 제6항에 있어서,
    상기 전자제어부는, 상기 속도제한구간에서 작업장치의 감속율을 설정하고, 설정된 감속율에 기초하여 작업장치의 속도를 제한하도록 구성되는, 건설기계.
  8. 제1항에 있어서,
    상기 전자제어부는, 기준이 되는 버킷 핀의 위치에서 버킷 끝단과 작업영역 사이의 최단 거리에 기초하여 속도제한구간 및/또는 감속율을 설정하도록 구성되는, 건설기계.
  9. 제8항에 있어서,
    상기 전자제어부는, 작업장치가 상기 속도제한구간 내로 진입하면 상기 감속율에 기초하여 작업장치의 속도를 제어하도록 구성되는, 건설기계.
  10. 제9항에 있어서,
    상기 전자제어부는, 버킷 핀의 위치가 상기 기준이 되는 버킷 핀의 위치보다 상승하게 되면, 버킷 핀의 상승한 거리만큼 비례하여 작업장치의 속도 제한량을 감소시키도록 구성되는, 건설기계.
  11. 제1항에 있어서,
    상기 위치정보 제공부는, 건설기계의 위치정보를 측정하는 위치 측정부, 건설기계의 자세 정보와 각각의 작업장치의 위치를 측정하는 자세 측정부 및 상기 위치 측정부와 상기 자세 측정부로부터 측정된 위치 정보를 토대로 좌표를 산출하는 좌표 산출부 중 적어도 하나를 포함하도록 구성되는, 건설기계.
  12. 제1항에 있어서,
    상기 조작레버는, 전기식 조이스틱으로서 운전자의 조작량에 비례하여 전기적 신호를 발생시켜 전자제어부에 제공하도록 구성되는, 건설기계.
  13. 제1항에 있어서,
    상기 작업설정부는, 운전자의 필요에 따라 설정할 수 있는 복수의 작업모드 설정기능을 구비하고, 상기 작업모드 설정에 따라 상기 위치정보 제공부로부터 제공받은 지형 정보, 위치 정보 및 건설기계의 자세 정보 중 적어도 하나를 디스플레이 화면에 표시하도록 구성되는, 건설기계.
PCT/KR2019/004110 2019-04-05 2019-04-05 건설기계 WO2020204240A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/601,167 US20220178113A1 (en) 2019-04-05 2019-04-05 Construction equipment
EP19922792.7A EP3951071A4 (en) 2019-04-05 2019-04-05 CONSTRUCTION EQUIPMENT
PCT/KR2019/004110 WO2020204240A1 (ko) 2019-04-05 2019-04-05 건설기계
KR1020217033393A KR20220037405A (ko) 2019-04-05 2019-04-05 건설기계
CN201980095148.9A CN113795633A (zh) 2019-04-05 2019-04-05 施工设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/004110 WO2020204240A1 (ko) 2019-04-05 2019-04-05 건설기계

Publications (1)

Publication Number Publication Date
WO2020204240A1 true WO2020204240A1 (ko) 2020-10-08

Family

ID=72666539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004110 WO2020204240A1 (ko) 2019-04-05 2019-04-05 건설기계

Country Status (5)

Country Link
US (1) US20220178113A1 (ko)
EP (1) EP3951071A4 (ko)
KR (1) KR20220037405A (ko)
CN (1) CN113795633A (ko)
WO (1) WO2020204240A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033461A (ko) 2021-09-01 2023-03-08 볼보 컨스트럭션 이큅먼트 에이비 건설기계

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794735A (ja) 1993-09-24 1995-04-07 Mitsubishi Materials Corp Mos構造
JPH11190042A (ja) * 1997-12-26 1999-07-13 Hitachi Constr Mach Co Ltd 自動運転ショベル
KR100226282B1 (ko) * 1994-06-30 1999-10-15 토니헬샴 굴삭기의작업범위제한장치
KR101766846B1 (ko) * 2016-11-28 2017-08-10 (주)영신디엔씨 고정밀 gps 측량이 가능한 굴삭작업 가이드 및 컨트롤 시스템
WO2018085553A1 (en) * 2016-11-02 2018-05-11 Clark Equipment Company System and method for defining a zone of operation for a lift arm
WO2018105527A1 (ja) * 2016-12-06 2018-06-14 住友建機株式会社 建設機械

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112814B2 (ja) * 1995-08-11 2000-11-27 日立建機株式会社 建設機械の領域制限掘削制御装置
US5704429A (en) * 1996-03-30 1998-01-06 Samsung Heavy Industries Co., Ltd. Control system of an excavator
JPH10159123A (ja) * 1996-12-03 1998-06-16 Shin Caterpillar Mitsubishi Ltd 建設機械の制御装置
JP4776640B2 (ja) * 2008-01-29 2011-09-21 日立建機株式会社 油圧ショベルのフロント制御装置
KR101729050B1 (ko) * 2013-04-12 2017-05-02 가부시키가이샤 고마쓰 세이사쿠쇼 건설 기계의 제어 시스템 및 제어 방법
DE112015000030B4 (de) * 2014-06-04 2019-01-10 Komatsu Ltd. Baumaschinensteuersystem, Baumaschine und Baumaschinensteuerverfahren
JP6532797B2 (ja) * 2015-10-08 2019-06-19 日立建機株式会社 建設機械
WO2016125916A1 (ja) * 2016-03-17 2016-08-11 株式会社小松製作所 作業車両の制御システム、制御方法、及び作業車両
CN106460360B (zh) * 2016-05-31 2018-06-12 株式会社小松制作所 工程机械的控制系统、工程机械、以及工程机械的控制方法
JP6564739B2 (ja) * 2016-06-30 2019-08-21 日立建機株式会社 作業機械
JP6901406B2 (ja) * 2017-07-14 2021-07-14 株式会社小松製作所 作業機械および作業機械の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794735A (ja) 1993-09-24 1995-04-07 Mitsubishi Materials Corp Mos構造
KR100226282B1 (ko) * 1994-06-30 1999-10-15 토니헬샴 굴삭기의작업범위제한장치
JPH11190042A (ja) * 1997-12-26 1999-07-13 Hitachi Constr Mach Co Ltd 自動運転ショベル
WO2018085553A1 (en) * 2016-11-02 2018-05-11 Clark Equipment Company System and method for defining a zone of operation for a lift arm
KR101766846B1 (ko) * 2016-11-28 2017-08-10 (주)영신디엔씨 고정밀 gps 측량이 가능한 굴삭작업 가이드 및 컨트롤 시스템
WO2018105527A1 (ja) * 2016-12-06 2018-06-14 住友建機株式会社 建設機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033461A (ko) 2021-09-01 2023-03-08 볼보 컨스트럭션 이큅먼트 에이비 건설기계
EP4148189A1 (en) 2021-09-01 2023-03-15 Volvo Construction Equipment AB Construction equipment

Also Published As

Publication number Publication date
CN113795633A (zh) 2021-12-14
EP3951071A1 (en) 2022-02-09
US20220178113A1 (en) 2022-06-09
KR20220037405A (ko) 2022-03-24
EP3951071A4 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2014051170A1 (en) Automatic grading system for construction machine and method for controlling the same
WO2011162561A2 (ko) 건설기계의 작업궤적 제어 장치 및 그 방법
WO2013051737A1 (ko) 굴삭기를 이용한 평탄화 작업 제어시스템
GB2420422A (en) Excavator level control system
KR102493019B1 (ko) 쇼벨, 쇼벨의 표시장치 및 쇼벨의 표시방법
WO2020204238A1 (ko) 건설기계
WO2016104832A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
WO2014092355A1 (ko) 조이스틱 컨트롤 기반의 건설장비 자동 제어 시스템 및 방법
WO2018048291A1 (ko) 건설기계의 제어 시스템 및 건설기계의 제어 방법
WO2014069702A1 (ko) 건설기계의 선회 제어장치 및 그 제어방법
GB2420617A (en) Excavator work linkage position determining system
WO2014123253A1 (en) Swing control system for construction machines
KR20230033461A (ko) 건설기계
WO2020204240A1 (ko) 건설기계
JPWO2018181534A1 (ja) ショベル、ショベルの表示装置及びショベルにおける画像の表示方法
WO2013103157A2 (ko) 건설기계용 덤프 구동 제어방법
EP3907336A1 (en) Monitoring device and construction machine
WO2014123300A1 (ko) 건설장비
WO2017094985A1 (ko) 건설기계의 유압 제어 장치 및 유압 제어 방법
JP4108328B2 (ja) 作業現場における作業機械の表示を行うための方法及び装置
WO2022139032A1 (ko) 굴착기 및 굴착기를 제어하는 방법 및 디바이스
WO2022050681A1 (ko) 자율 작업 굴착기 및 그의 동작 방법
WO2014115908A1 (ko) 건설기계의 주행 제어장치
JP3611394B2 (ja) 作業機械のカメラ方向制御装置
WO2023234746A1 (ko) 머신 가이던스 프로그램 및 이를 이용하는 굴착기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922792

Country of ref document: EP

Effective date: 20211105