WO2020204034A1 - 過負荷保護装置、ギヤードモータ、及び、モータのトルク換算値を出力する方法 - Google Patents

過負荷保護装置、ギヤードモータ、及び、モータのトルク換算値を出力する方法 Download PDF

Info

Publication number
WO2020204034A1
WO2020204034A1 PCT/JP2020/014834 JP2020014834W WO2020204034A1 WO 2020204034 A1 WO2020204034 A1 WO 2020204034A1 JP 2020014834 W JP2020014834 W JP 2020014834W WO 2020204034 A1 WO2020204034 A1 WO 2020204034A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
motor
current
voltage
torque
Prior art date
Application number
PCT/JP2020/014834
Other languages
English (en)
French (fr)
Inventor
悦宏 小塚
佑介 斎藤
晃 水科
Original Assignee
富士変速機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士変速機株式会社 filed Critical 富士変速機株式会社
Publication of WO2020204034A1 publication Critical patent/WO2020204034A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Definitions

  • the present invention monitors the load state of the geared motor that drives the driven device, and cuts off or limits the supply of electric power to the geared motor when an excessive load is detected, thereby performing the driven device and / or the geared motor.
  • the present invention relates to an overload protection device for preventing damage to the motor and a geared motor provided with the overload protection device. Further, the present invention relates to a method of outputting a torque conversion value on the output shaft of the motor from the current measurement value and the voltage measurement value of the motor.
  • Patent Document 1 discloses a geared motor provided with an overload protection device for preventing destruction of an industrial machine by the geared motor.
  • the overload breaking device (4) selects a predetermined current value less than the rated current value of the motor (2) as the specified current value (6), and the overload current value exceeds the specified current value (6).
  • the designated value setting means (14) for selecting the predetermined time for the current to flow in (5) as the designated value (7) for the overload current time, and the designated value (6) for the current selected for the designated value setting means (14).
  • a power cutoff means (19) for cutting off the power supply to the motor (2) is provided.
  • a conventional overload protection device such as Patent Document 1 reads an increase in the value of the current flowing through the motor, and when the measured current value exceeds the specified value of the current, detects the overload and shuts off the motor from the power supply. To do. However, since the measured values of current and voltage do not accurately reflect the actual torque value of the motor, the motor could not be reliably stopped at the desired torque value. For example, if the torque value of the specified value of the current is larger than the assumed torque value, the motor may operate even if the desired torque value is exceeded, and the driven device or the geared motor may be damaged. On the other hand, if a margin is provided in anticipation of a deviation in the torque value and the specified value of the current is lowered, it is conceivable that the motor will stop frequently. That is, the problem with the conventional overload protection device is that the overload of the motor cannot be controlled with an accurate torque value.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an overload protection device and a geared motor that can control an overload of a motor with a more accurate torque value.
  • the overload protection device is electrically connected to a motor that drives the driven device, and operates to protect the motor when an overload of the motor is detected. It ’s a device, A current measuring means that measures the current flowing through the motor over time and acquires the measured current value. A voltage measuring means for measuring the voltage of the motor over time and acquiring the voltage measurement value, A power cutoff means that cuts off or reduces the supply of electric power from the power source to the motor, and A storage unit that stores a look-up table of motor characteristics, which is a group of data of the current value, voltage value, and torque value of the motor collected in advance. A control unit for controlling the operation of the current measuring means, the voltage measuring means, and the power cutoff means is provided.
  • the control unit refers to the look-up table from the storage unit, and outputs the torque conversion value of the motor over time based on the time-lapse data of the current measurement value and the voltage measurement value.
  • the control unit detects that the torque conversion value exceeds a preset predetermined cutoff threshold value or reaches the predetermined cutoff threshold value, the power supply cutoff means shuts off the power supply. Alternatively, it is characterized by reduction.
  • the overload protection device of the present invention refers to a lookup table showing the current-voltage-torque characteristics of the motor, and acquires the torque conversion value from the current measurement value and the voltage measurement value acquired over time. It is characterized in that overload is prevented by using the temporal data of the torque conversion value. Since this torque conversion value uses a torque curve according to the characteristics of the motor, it more accurately reflects the actual torque fluctuation of the motor as compared with the conventional monitoring by the current value. Therefore, the overload protection device of the present invention makes it possible to control the overload of the motor with a more accurate torque value.
  • the current value and torque value of the look-up table are obtained from the approximate curve of the measurement plot of the current value and torque value measured a plurality of times at a constant voltage, and the lookup The table is characterized in that it has the approximate curve for each of a plurality of voltage values. That is, by complementing the data between the measurement plots with an approximate curve, it is possible to output a more accurate torque conversion value corresponding to a fine fluctuation of the current value.
  • a further embodiment of the overload protection device of the present invention includes a first approximation curve of the current value and the torque value measured at the first constant voltage value, and a current value and the torque value measured at the second constant voltage value.
  • the torque conversion value in the voltage measurement value between the first constant voltage value and the second constant voltage value is complemented based on the second approximate curve of. That is, even in the voltage measurement value for which the actual measurement plot is not obtained, the torque conversion value is output with reference to the lookup table by complementing the data in the lookup table with the estimated torque value. Is possible.
  • a further form of the overload protection device of the present invention further comprises a communication means for transmitting and receiving data, and the storage unit is provided in an external server capable of communicating via the communication means. .. That is, by providing the storage unit on the external server, it is possible to handle a large amount of data without any hardware limitation, and the work of adding, deleting, updating, etc. of the data becomes easy.
  • a geared motor according to an embodiment of the present invention is characterized by including a motor, a speed reducer connected to an output shaft of the motor and outputting power to a driven device, and an overload protection device. That is, the geared motor of the present invention can exert the effect of the overload protection device as a geared motor.
  • the method of one embodiment of the present invention is a method of outputting a torque conversion value of a motor.
  • the method of outputting the torque conversion value of the motor of the present invention generates a lookup table showing the current-voltage-torque characteristics of the motor, and refers to the lookup table to obtain the current measurement value and the current measurement value acquired over time.
  • the feature is that the torque conversion value is acquired over time from the voltage measurement value and the time-lapse data of the torque conversion value is output. Since this torque conversion value uses a torque curve according to the characteristics of the motor, it more accurately reflects the actual torque fluctuation of the motor as compared with the conventional monitoring by the current value. Therefore, the method of the present invention outputs a more accurate torque conversion value without measuring the actual torque value, and enables accurate control of the motor.
  • overload protection device of the present invention makes it possible to control the overload of the motor with a more accurate torque value.
  • the schematic side view of the geared motor of one Embodiment of this invention The schematic diagram which shows the inside of the terminal box of the geared motor of FIG.
  • the block diagram of the overload protection device of one Embodiment of this invention The graph which shows the lookup table of the motor characteristic of the overload protection device of one Embodiment of this invention.
  • the graph which shows the approximate curve of the current value and torque at a constant voltage of 200V exemplarily in the overload protection device of one Embodiment of this invention.
  • the graph which shows the time change of the current measurement value, the voltage measurement value and the torque conversion value of a motor in the overload protection device of one Embodiment of this invention.
  • FIG. 1 is a schematic view illustrating an exemplary geared motor according to an embodiment of the present invention.
  • the geared motor 10 of the present embodiment includes a motor 11, a speed reducer 12, and a terminal box 13. By connecting the output shaft of the motor 11 to the speed reducer 12, the output shaft of the speed reducer 12 can obtain an output of low rotation speed and high torque to drive the driven device.
  • the driven device is, for example, a chip conveyor device (not shown), in which the output shaft of the geared motor is connected to the sprocket of the chip conveyor device.
  • the terminal box 13 includes a power supply terminal (U, V, W) 13a connected to the three-phase power supply 14, a motor terminal 13b electrically connected to the motor 11, and an external device. It is provided with an external terminal 13c for connecting to.
  • the power supply terminal 13a is electrically connected to the motor terminal 13b via a substrate.
  • the terminal box 13 includes a substrate in which a control unit (MCU), a current measurement circuit, a voltage measurement circuit, a communication circuit, and a relay circuit are incorporated, and the substrate constitutes an overload protection device (or overload protection system) 100. To do.
  • MCU control unit
  • FIG. 3 is a block diagram of the overload protection device 100 of the present embodiment.
  • the overload protection device 100 includes a control unit (MCU) 101 for monitoring and controlling the operation of the motor 11. Power is supplied to the control unit 101 from the three-phase power supply 14 via the power supply terminal 13a.
  • a three-phase power supply 14 is connected to the U, V, and W phases of the motor 11, and drive power is supplied to the motor 11 from the three-phase power supply 14.
  • the overload protection device 100 includes a current measuring circuit (current measuring means) 102 that measures the current flowing through the motor 11 over time and acquires a current measurement value, and measures the voltage of the motor 11 over time to measure the voltage.
  • a voltage measuring circuit (voltage measuring means) 103 for acquiring a value is provided.
  • the current measurement circuit 102 and the voltage measurement circuit 103 are connected to the control unit 101, and are configured to output the current measurement value and the voltage measurement value of the motor 11 to the control unit 101 over time.
  • the measured current value is the value of the input current of the motor 11, and the measured voltage is the value of the voltage applied to the motor 11.
  • the current measuring means and the voltage circuit means of the present invention may be an external device such as an oscilloscope.
  • the overload protection device 100 is provided with a relay 104 as a power cutoff means.
  • the relay 104 is directly or indirectly connected to the control unit 101 and the three-phase power supply 14.
  • the relay 104 is configured to receive an instruction from the control unit 101 to control the three-phase power supply 14 and cut off or reduce the supply of electric power from the three-phase power supply 14 to the motor 11.
  • the control unit 101 monitors the torque conversion value over time, and controls the relay 104 when the torque conversion value exceeds the predetermined cutoff threshold value or reaches the cutoff threshold value. Shut off or reduce power.
  • the control unit 101 may be set to shut off or reduce the power supply after a predetermined set time has elapsed without falling below the cutoff threshold value.
  • the overload protection device 100 includes a setting input unit 105 for the user to input settings.
  • the settings include the motor model, motor rotation direction, cutoff threshold, monitoring time, and the like.
  • the overload protection device 100 includes a communication circuit 106 as a means of communicating with the outside.
  • the communication circuit 106 connects the control unit 101 and the external server 107, and enables data to be transmitted and received between each other.
  • the external server 107 is set as a storage unit of the overload protection device 100. Since the overload protection device 100 of the present embodiment is provided with the storage unit in the external server 107, it is possible to hold a large amount of data regarding the lookup table of the motor characteristics, and it is easy to update and correct the data. ..
  • the external server 107 may store logs of various data output by the control unit 101 via the communication circuit 106 when the geared motor 10 is driven.
  • the present invention is not limited to the above-described embodiment, and the storage unit may be incorporated as a recording medium such as a memory or a hard disk in the substrate inside the terminal box 13.
  • the communication circuit 106 may optionally connect the control unit 101 and the user terminal 108.
  • the user terminal 108 is a terminal that can be operated by the user, such as a control panel, a smart phone, and a personal computer. By using this user terminal 108, the operation of the geared motor 10 (for example, current measurement value, voltage measurement value, torque conversion value) can be displayed and monitored on a monitor, and device settings can be remotely input to the control unit 101. can do.
  • connection between the communication circuit 106 and the external device may be either wired or wireless.
  • wireless connection means include WiFi (registered trademark) and Bluetooth (registered trademark).
  • the storage unit of the overload protection device 100 is configured to store a look-up table of motor characteristics composed of data groups of current value, voltage value, and torque value of the motor 11 collected in advance.
  • a look-up table is an array of numerical values consisting of current values, voltage values, and torque values.
  • the control unit 101 accesses the storage unit, refers to a lookup table including data groups of the current value, voltage value, and torque value of the motor, and refers to the current measurement circuit 102 and the voltage.
  • the current measurement value and the voltage measurement value measured over time by the measurement circuit 103 are applied to the current value and the voltage value of the lookup table, and the torque value of the lookup table is output as the torque conversion value.
  • the output of the torque conversion value is performed over time along with the current and voltage measurements.
  • the control unit 101 continuously inputs the voltage measurement value and the current measurement value into the look-up table, and continuously outputs the torque conversion value from the look-up table.
  • FIG. 4 is a graph of an example of the look-up table used in the present invention.
  • a look-up table is prepared at least according to conditions such as a motor model, a rotation direction, and a power supply frequency. This is because the motor characteristics differ depending on these conditions. It is preferable that the user inputs the above conditions via the setting input unit 105 and switches the lookup table according to the conditions.
  • the look-up table of FIG. 4 shows the torque characteristics peculiar to the motor under the conditions of clockwise rotation and power frequency of 60 Hz. It is preferable to create a plurality of look-up tables that meet various conditions.
  • Each motor characteristic (current / torque) curve in FIG. 4 is an aggregate of current value and torque value data groups (arrays) at each constant voltage (180V, 190V, 200V, 210V, 220V, 230V, 240V).
  • each motor characteristic curve is an approximate curve of the current / voltage plot collected in advance for the motor 11, and is represented by a predetermined polynomial curve (fifth-order polynomial in the present embodiment) as described later. ing.
  • a torque conversion value is derived from the lookup table based on the current measurement value and the voltage measurement value. More specifically, the motor characteristic curve is selected from the voltage measurement value of the motor 11, and the torque conversion value is read from the current measurement value of the selected motor characteristic curve.
  • the torque conversion value is obtained by inputting a current measurement value into a polynomial that approximates the selected motor characteristic curve and calculating it. For example, when the voltage measurement value of the motor 11 is 200V and the current measurement value is 0.5A, a motor characteristic curve of 200V is selected, and a torque conversion value of 142Nm is output from the motor characteristic curve.
  • This torque conversion value is a value according to the current-voltage-torque characteristic peculiar to the motor, and substantially faithfully reproduces the torque value on the output shaft of the actual motor 11.
  • the voltage measurement value is inserted.
  • the torque conversion value of the lookup table can be complemented by the two motor characteristic curves. That is, the first approximate curve measured at the first constant voltage value V1 lower than the voltage measurement value Vm and closest to the voltage measurement value Vm, and higher than the voltage measurement value Vm and the voltage measurement value. Torque conversion value at the voltage measurement value Vm between the first constant voltage value V1 and the second constant voltage value V2 based on the second approximation curve measured at the second constant voltage value V2 closest to Vm. Is complemented.
  • the method of outputting the torque conversion value of the motor 11 includes a step of collecting the data group of the current value, the voltage value and the torque value of the motor 11 in advance and generating a lookup table of the motor characteristics, and the current measurement circuit 102.
  • the process of measuring the current flowing through the motor 11 over time and acquiring the current measurement value, the process of measuring the voltage of the motor 11 over time with the voltage measurement circuit 103 and acquiring the voltage measurement value, and the lookup table. Refers to, and includes a step of outputting the torque conversion value of the motor 11 over time based on the time-lapse data of the current measurement value and the voltage measurement value.
  • the work of generating a look-up table of motor characteristics and the work of updating or extending a look-up table are mainly performed by the manufacturer or the user. Further, in the step of generating the lookup table of the method, the current value and the torque value measured a plurality of times at a constant voltage are represented by a plurality of plots of the current value and the torque value of the lookup table as a motor characteristic curve. Includes the step of creating an approximate curve for the measurement plot. Then, the lookup table has an approximate curve for each of a plurality of voltage values. Further, in the method, the control unit 101 measures the current value I1 and the torque value T1 at the first constant voltage value V1, the first approximate curve, and the current value measured at the second constant voltage value V2. A step of complementing and outputting the torque conversion value at the voltage measurement value Vm between the first constant voltage value V1 and the second constant voltage value V2 based on the second approximate curve of I2 and the torque value T2 is included. ..
  • FIG. 5 is a graph showing measurement plots of current value and torque value for each constant voltage of the motor 11.
  • Each measurement plot is a group of data of current value, voltage value and torque value measured and collected in advance with respect to the motor 11 in order to obtain the motor characteristics.
  • the torque value of the motor 11 incorporated in the geared motor 10 was measured by increasing the input current to the motor 11 under a plurality of constant voltage conditions.
  • the current and voltage values of the input current were recorded by a common measuring instrument such as an oscilloscope.
  • As for the torque value a torque meter was attached to the output shaft of the motor 11, and the value of the torque meter was recorded.
  • data was collected under seven constant voltage conditions at intervals of 10 V as an example. However, if more precise data is required, more data may be collected under finer conditions. In this way, the data group of the measurement plot shown in FIG. 5 was acquired.
  • the current-torque characteristics of the motor are different at each voltage, and the current and torque are not in a direct proportional relationship. Therefore, it can be seen that if only the fluctuation of the current value is used as an index of the fluctuation of the torque value as in the conventional case, the error from the actual torque value becomes large and the motor cannot be accurately controlled by the overload protection device.
  • each plot is calculated so as to be approximated by an approximate curve of a fifth-order polynomial.
  • the trendline is derived by a known statistical method such as regression analysis by the least squares method.
  • the fifth-order polynomial is optimally selected, but the degree of the polynomial can be arbitrarily selected.
  • the motor characteristic curve with a constant voltage of 180 V was represented by a fifth-order polynomial (see FIG. 6) of x (current value) and y (torque value).
  • the motor characteristic curve at a constant voltage of 200 V was represented by a fifth-order polynomial (see FIG. 7) of x (current value) and y (torque value).
  • x current value
  • y torque value
  • the torque conversion value is output as y.
  • a look-up table of motor characteristics was created by creating approximate curves for all constant voltage current-torque plots collected in advance.
  • FIG. 8 shows the time change of the current measurement value, the voltage measurement value, and the torque conversion value of the motor 11 until the load from the driven device rises and the power supply is cut off in the overload protection device 100 of the geared motor 10. It is a graph.
  • the motor 11 was driven by a constant voltage of 200 V, and the measured voltage value Vm was also measured over time as about 200 V.
  • the torque conversion value T was calculated over time as about 42 Nm from the voltage measurement values Vm to 200V and the current measurement values Im to 0.38A with reference to the motor characteristic look-up table of FIG. ..
  • the load from the driven device increases from the time when the time t is about 8 seconds, and the current measurement value Im increases as the load increases while the Vm remains substantially constant.
  • the torque conversion value T when the load increased was also output with reference to the motor characteristic look-up table.
  • the cutoff threshold value Tt is preset as 140 Nm. When the time t was 51 seconds, the torque conversion value T reached the cutoff threshold value Tt and exceeded it.
  • the control unit 101 detects that the torque conversion value T exceeds the cutoff threshold value Tt, drives the relay 104 to immediately shut off the power supply, and stops the operation of the motor 11.
  • the overload protection device 100 of the present embodiment reproduces the torque value on the output shaft of the motor 11 as the torque conversion value, the geared so that the output of the motor 11 does not exceed the desired torque value.
  • the motor 10 can be controlled.
  • the user sets the cutoff threshold value Tt according to the specifications of the driven device (limitation of the input torque value) and the standard of the geared motor 10, and more reliably damages the driven device and the geared motor 10 due to the increase in load. It is possible to prevent it.
  • the overload protection device is integrated on the control board built in the terminal box, but the geared motor or the motor may be separated from each other as long as each member can be controlled. ..
  • the overload protection device is incorporated in the geared motor and used, but the speed reducer may be omitted.
  • the look-up table of the overload protection device of the present invention may at least consist of data groups of the current value, voltage value, and torque value of the motor, and the approximate curve and the function of complementing the voltage value are omitted. May be done.
  • a relay as a power cutoff means is configured to send a power cutoff signal to the power supply, but the power cutoff means is arranged between the motor and the power supply, and the switch.
  • the power may be cut off by opening and closing. That is, the configuration of the above embodiment is only an example, and a person skilled in the art can make various modifications based on the technical idea of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

より正確なトルク値でモータの過負荷を制御可能とする過負荷保護装置を提供する。 過負荷保護装置は、モータに流れる電流を経時的に計測し、電流計測値を取得する電流計測手段と、モータの電圧を経時的に計測し、電圧計測値を取得する電圧計測手段と、電源からモータへの電力の供給を遮断又は低減する電源遮断手段と、事前に収集された、モータの電流値、電圧値及びトルク値のデータ群からなるモータ特性のルックアップテーブルを記憶する記憶部と、電流計測手段、電圧計測手段及び電源遮断手段の動作を制御する制御部と、を備える。制御部は、記憶部からルックアップテーブルを参照し、電流計測値及び電圧計測値の経時データに基づいてモータのトルク変換値を経時的に出力する。制御部は、トルク変換値が、予め設定された所定の遮断閾値を超過したこと、又は、所定の遮断閾値に到達したことを検知したときに、電源遮断手段で電源を遮断又は低減する。

Description

過負荷保護装置、ギヤードモータ、及び、モータのトルク換算値を出力する方法
 本発明は、被駆動装置を駆動するギヤードモータの負荷状態を監視し、過大な負荷を検出したときにギヤードモータへの電力の供給を遮断又は制限することにより、被駆動装置及び/又はギヤードモータの損傷を防止する過負荷保護装置、及び、該過負荷保護装置を備えたギヤードモータに関する。さらに、本発明は、モータの電流計測値及び電圧計測値からモータの出力軸におけるトルク換算値を出力する方法に関する。
 従来、コンベヤ装置等の被駆動装置をギヤードモータで駆動する際、異物の噛み込み等によって負荷が急激に上昇し、この過負荷状態でギヤードモータの駆動が続いた場合、ギヤードモータ及び被駆動装置の一方又は両方が物理的に損傷することがあった。これに対し、ギヤードモータの過負荷を検出し、ギヤードモータへの電力の供給を遮断又は制限することにより、ギヤードモータ及び被駆動装置の損傷を防止する過負荷保護装置が開発されている。
 例えば、特許文献1は、ギヤードモータによる産業機械が破壊を防止する過負荷保護装置を備えるギヤードモータを開示する。以下、当該段落において、()内に特許文献1の符号を示す。過負遮断装置(4)は、モータ(2)の定格電流値未満の所定の電流値を電流の指定値(6)に選定し、且つ、電流の指定値(6)を超える過負荷電流値(5)で電流が流れる所定の時間を過負荷電流時間の指定値(7)に選定する指定値設定手段(14)と、指定値設定手段(14)に選定された電流の指定値(6)を超過した過負荷電流値(5)と過負荷電流時間を検知する過電流検知手段(15)と、過負荷電流時間が過負荷電流時間の指定値を超えたことが過電流検知手段(15)によって検知された場合、モータ(2)に供給する電源を遮断する電源遮断手段(19)と、を備える。
特許第6216110号公報
 特許文献1のような従来の過負荷保護装置は、モータを流れる電流の値の上昇を読み取って、計測した電流値が電流の指定値を超えると、過負荷を検出してモータを電源から遮断する。しかしながら、電流及び電圧の測定値は、実際のモータのトルク値を正確に反映するものではないことから、モータを所望のトルク値で確実に停止させることができなかった。例えば、電流の指定値のトルク値が想定したトルク値よりも大きいと、所望のトルク値を超えてもモータが動作して被駆動装置やギヤードモータを損傷する虞があった。これに対して、トルク値のずれを見越してマージンを設けて電流の指定値を下げると、モータの停止が頻発するという不具合が生じることが考えられる。すなわち、従来の過負荷保護装置では、モータの過負荷を正確なトルク値で制御することができないことが課題であった。
 本発明は、上記課題を解決するためになされたものであり、その目的は、より正確なトルク値でモータの過負荷を制御可能とする過負荷保護装置及びギヤードモータを提供することにある。
 本発明の一形態に記載の過負荷保護装置は、被駆動装置を駆動するモータに電気的に接続され、前記モータの過負荷を検知したときに前記モータを保護するように動作する過負荷保護装置であって、
 前記モータに流れる電流を経時的に計測し、電流計測値を取得する電流計測手段と、
 前記モータの電圧を経時的に計測し、電圧計測値を取得する電圧計測手段と、
 電源から前記モータへの電力の供給を遮断又は低減する電源遮断手段と、
 事前に収集された、前記モータの電流値、電圧値及びトルク値のデータ群からなるモータ特性のルックアップテーブルを記憶する記憶部と、
 前記電流計測手段、前記電圧計測手段及び前記電源遮断手段の動作を制御する制御部と、を備え、
 前記制御部は、前記記憶部から前記ルックアップテーブルを参照し、前記電流計測値及び前記電圧計測値の経時データに基づいて前記モータのトルク変換値を経時的に出力し、
 前記制御部は、前記トルク変換値が、予め設定された所定の遮断閾値を超過したこと、又は、前記所定の遮断閾値に到達したことを検知したときに、前記電源遮断手段で前記電源を遮断又は低減することを特徴とする。
 本発明の過負荷保護装置は、モータの電流-電圧-トルク特性を示すルックアップテーブルを参照して、経時的に取得された電流計測値及び電圧計測値からトルク変換値を経時的に取得し、トルク変換値の経時データを利用して過負荷を防止することを特徴とする。このトルク変換値は、モータの特性に応じたトルク曲線を用いたものであることから、従来の電流値による監視と比べて、モータの実際のトルク変動をより正確に反映するものである。したがって、本発明の過負荷保護装置は、より正確なトルク値でモータの過負荷を制御可能とする。
 本発明のさらなる形態の過負荷保護装置は、前記ルックアップテーブルの電流値及びトルク値は、一定電圧で複数回測定された電流値及びトルク値の測定プロットの近似曲線から得られ、前記ルックアップテーブルは、複数の電圧値ごとに前記近似曲線をそれぞれ有することを特徴とする。すなわち、測定プロット間のデータを近似曲線で補完することによって、電流値の細かな変動に対応した、より高精度のトルク換算値を出力することができる。
 本発明のさらなる形態の過負荷保護装置は、第1の一定電圧値で測定された電流値及びトルク値の第1近似曲線、及び、第2の一定電圧値で測定された電流値及びトルク値の第2近似曲線に基づいて、前記第1の一定電圧値と前記第2の一定電圧値との間の電圧計測値におけるトルク変換値が補完されることを特徴とする。すなわち、実際の測定プロットが得られていない電圧計測値においても、トルク値の推定値でルックアップテーブルのデータ間が補完されることにより、ルックアップテーブルを参照してトルク換算値を出力することが可能である。
 本発明のさらなる形態の過負荷保護装置は、データを送受信するための通信手段をさらに備え、前記記憶部は、前記通信手段を介して通信可能な外部サーバーに設けられていることを特徴とする。すなわち、記憶部を外部サーバーに設けることにより、ハードウェア的な制限なしに大量のデータを取り扱うことが可能であり、尚且つ、データの追加、削除、更新等の作業も容易となる。
 本発明の一実施形態のギヤードモータは、モータ、前記モータの出力軸に連結され、被駆動装置に動力を出力する減速機、及び、過負荷保護装置を備えることを特徴とする。すなわち、本発明のギヤードモータは、上記過負荷保護装置の効果をギヤードモータとして発揮することが可能である。
 本発明の一実施形態の方法は、モータのトルク換算値を出力する方法であって、
 前記モータの電流値、電圧値及びトルク値のデータ群を収集し、モータ特性のルックアップテーブルを生成する工程と、
 電流計測手段で前記モータに流れる電流を経時的に計測し、電流計測値を取得する工程と、
 電圧計測手段で前記モータの電圧を経時的に計測し、電圧計測値を取得する工程と、
 前記ルックアップテーブルを参照し、前記電流計測値及び前記電圧計測値の経時データに基づいて前記モータのトルク変換値を経時的に出力する工程と、を含むことを特徴とする。
 本発明のモータのトルク換算値を出力する方法は、モータの電流-電圧-トルク特性を示すルックアップテーブルを生成し、当該ルックアップテーブルを参照して、経時的に取得された電流計測値及び電圧計測値からトルク変換値を経時的に取得し、トルク変換値の経時データを出力することを特徴とする。このトルク変換値は、モータの特性に応じたトルク曲線を用いたものであることから、従来の電流値による監視と比べて、モータの実際のトルク変動をより正確に反映するものである。したがって、本発明の方法は、実際のトルク値を測定することなく、より正確なトルク換算値を出力し、モータの正確な制御を可能とする。
 本発明の一形態の過負荷保護装置は、より正確なトルク値でモータの過負荷を制御可能とする。
本発明の一実施形態のギヤードモータの概略側面図。 図1のギヤードモータの端子箱の内部を示す概略図。 本発明の一実施形態の過負荷保護装置のブロック図。 本発明の一実施形態の過負荷保護装置のモータ特性のルックアップテーブルを示すグラフ。 本発明の一実施形態の過負荷保護装置において、モータの各定電圧ごとの電流値及びトルク値の測定プロットを示すグラフ。 本発明の一実施形態の過負荷保護装置において、定電圧180Vのときの電流値及びトルクの近似曲線を例示的に示すグラフ。 本発明の一実施形態の過負荷保護装置において、定電圧200Vのときの電流値及びトルクの近似曲線を例示的に示すグラフ。 本発明の一実施形態の過負荷保護装置において、モータの電流計測値、電圧計測値及びトルク変換値の時間変化を示すグラフ。
 以下、本発明の一実施形態について図面を参照しつつ説明する。なお、以下の説明において参照する各図の形状は、好適な形状を説明する上での概念図又は概略図であり、寸法比率等は実際の寸法比率とは必ずしも一致しない。つまり、本発明は、図面における寸法比率に限定されるものではない。
 図1は、本発明の一実施形態のギヤードモータを例示的に示す概略図である。本実施形態のギヤードモータ10は、モータ11、減速機12及び端子箱13を備える。モータ11の出力軸が減速機12に接続されることにより、減速機12の出力軸で低回転数且つ高トルクの出力を得て、被駆動装置を駆動することができる。被駆動装置は、例えば、チップコンベヤ装置(図示せず)であり、ギヤードモータの出力軸がチップコンベヤ装置のスプロケットに接続される。
 また、図2に示すように、端子箱13は、3相電源14に接続される電源端子(U,V,W)13aと、モータ11に電気的に接続されたモータ端子13bと、外部機器に接続するための外部端子13cとを備える。電源端子13aは基板を介してモータ端子13bに電気的に接続されている。この端子箱13は、制御部(MCU)、電流計測回路、電圧計測回路、通信回路、リレー回路が組み込まれた基板を備え、当該基板により過負荷保護装置(又は過負荷保護システム)100を構成する。
 図3は、本実施形態の過負荷保護装置100のブロック図である。過負荷保護装置100は、モータ11の動作を監視し、且つ、制御するための制御部(MCU)101を備える。制御部101には、3相電源14から電源端子13aを介して電力が供給される。モータ11のU,V,W相に3相電源14が接続され、モータ11に3相電源14から駆動電力が供給される。
 過負荷保護装置100には、モータ11に流れる電流を経時的に計測し、電流計測値を取得する電流計測回路(電流計測手段)102と、モータ11の電圧を経時的に計測し、電圧計測値を取得する電圧計測回路(電圧計測手段)103とが設けられている。電流計測回路102及び電圧計測回路103は、制御部101に接続され、モータ11の電流計測値及び電圧計測値を制御部101に経時的に制御部101に出力するように構成されている。ここでは、電流計測値をモータ11の入力電流の値とし、且つ、電圧計測値をモータ11への印加電圧の値とした。なお、本発明の電流計測手段及び電圧回路手段はオシロスコープなどの外部機器であってもよい。
 過負荷保護装置100には、電源遮断手段としてのリレー104が設けられている。リレー104は、制御部101及び3相電源14に直接的又は間接的に接続されている。リレー104は、制御部101からの指示を受け取って3相電源14を制御し、3相電源14からモータ11への電力の供給を遮断又は低減するように構成されている。本実施形態の過負荷保護装置100では、制御部101は、トルク変換値を経時的に監視し、トルク変換値が所定の遮断閾値を超過又は遮断閾値に到達した時点でリレー104を制御して電源を遮断又は低減する。あるいは、制御部101は、遮断閾値を下回ることなく所定の設定時間が経過した後に電源を遮断又は低減するように設定されてもよい。
 また、過負荷保護装置100は、ユーザーが設定を入力するための設定入力部105を備える。設定には、モータ機種、モータの回転方向、遮断閾値、監視時間などが含まれる。さらに、過負荷保護装置100は、外部との通信手段として通信回路106を含んでいる。通信回路106は、制御部101と外部サーバー107とを接続し、相互間でデータの送受信を可能とする。本実施形態では、外部サーバー107には、過負荷保護装置100の記憶部として設定されている。本実施形態の過負荷保護装置100は、外部サーバー107に記憶部を設けたことにより、モータ特性のルックアップテーブルに関する多くのデータを保有可能であり、尚且つ、データの更新修正が容易となる。また、外部サーバー107は、ギヤードモータ10駆動の際、制御部101によって通信回路106を介して出力された各種データのログを記憶してもよい。ただし、本発明は上記形態に限定されず、記憶部は端子箱13内部の基板にメモリやハードディスク等の記録媒体として組み込まれてもよい。
 また、通信回路106は、任意に制御部101とユーザー端末108とを接続してもよい。ユーザー端末108は、制御盤、スマートホン、パーソナルコンピュータなど、ユーザーが操作可能な端末である。このユーザー端末108を用いることで、ギヤードモータ10の動作(例えば、電流計測値、電圧計測値、トルク変換値)をモニタに表示させて監視したり、制御部101に装置設定を遠隔入力したりすることができる。
 通信回路106と上記外部機器との接続は、有線及び無線のいずれであってもよい。無線接続手段として、例えば、WiFi(登録商標)、Bluetooth(登録商標)などが挙げられる。
 過負荷保護装置100の記憶部は、事前に収集された、モータ11の電流値、電圧値及びトルク値のデータ群からなるモータ特性のルックアップテーブルを記憶するように構成されている。ルックアップテーブルは、電流値、電圧値及びトルク値からなる数値の配列である。本実施形態の過負荷保護装置100では、制御部101は、記憶部にアクセスしてモータの電流値、電圧値及びトルク値のデータ群からなるルックアップテーブルを参照し、電流計測回路102及び電圧計測回路103によって経時的に計測された電流計測値及び電圧計測値をルックアップテーブルの電流値及び電圧値に当て嵌めて、ルックアップテーブルのトルク値をトルク変換値として出力する。トルク変換値の出力は、電流及び電圧の計測とともに経時的に実行される。換言すると、制御部101が電圧計測値及び電流計測値を連続的にルックアップテーブルに入力し、ルックアップテーブルからトルク変換値を連続的に出力する。
 図4は、本発明で用いられるルックアップテーブルの一例をグラフ化したものである。このようなルックアップテーブルは、少なくとも、モータ機種、回転方向、電源周波数などの条件に応じて準備される。これら条件毎に、モータ特性が異なるからである。ユーザーが上記条件を設定入力部105を介して入力し、ルックアップテーブルを条件に応じて切り替えることが好ましい。なお、図4のルックアップテーブルは、右回転、電源周波数60Hzの条件によるモータ固有のトルク特性を示すものである。各種条件に合った複数のルックアップテーブルが作成されることが好ましい。
 図4の各モータ特性(電流・トルク)曲線は、各一定電圧(180V、190V、200V、210V、220V、230V、240V)における電流値及びトルク値のデータ群(配列)の集合体である。本実施形態では、各モータ特性曲線は、当該モータ11について事前に収集された電流・電圧プロットの近似曲線であり、後述するように所定の多項式曲線(本実施形態では5次多項式)で表されている。電流計測値及び電圧計測値に基づいて当該ルックアップテーブルからトルク換算値が導き出される。より具体的には、モータ11の電圧計測値からモータ特性曲線が選択され、選択されたモータ特性曲線の電流計測値からトルク変換値が読み取られる。トルク変換値は、選択されたモータ特性曲線を近似的に示す多項式に電流計測値を入力して演算することによって得られる。例えば、モータ11の電圧計測値が200Vであり、電流計測値が0.5Aである場合、200Vのモータ特性曲線が選択され、当該モータ特性曲線からトルク換算値が142N・mとして出力される。このトルク換算値は、モータ固有の電流-電圧-トルク特性に従った値であり、実際のモータ11の出力軸でのトルク値をほぼ忠実に再現する。
 本実施形態では、電圧計測値が、事前に収集されたモータ特性曲線のいずれの電圧にも該当せず、モータ特性曲線の一定電圧値からずれている場合であっても、電圧計測値を挟み込む2つのモータ特性曲線によってルックアップテーブルのトルク換算値が補完され得る。すなわち、電圧計測値Vmよりも低く、且つ、電圧計測値Vmに最も近い第1の一定電圧値V1で測定された第1近似曲線、及び、電圧計測値Vmよりも高く、且つ、電圧計測値Vmに最も近い第2の一定電圧値V2で測定された第2近似曲線に基づいて、第1の一定電圧値V1と第2の一定電圧値V2との間の電圧計測値Vmにおけるトルク変換値が補完される。本実施形態では、第1及び第2の一定電圧値V1,V2の近似曲線の多項式に電流計測値を入力してトルク値T1,T2を算出し、以下の式を用いて、トルク変換値Tを算出する。
 T=T1+(T2-T1)×(Vm-V1)/(V2-V1)
 すなわち、モータ11のトルク換算値を出力する方法は、モータ11の電流値、電圧値及びトルク値のデータ群を事前に収集し、モータ特性のルックアップテーブルを生成する工程と、電流計測回路102でモータ11に流れる電流を経時的に計測し、電流計測値を取得する工程と、電圧計測回路103でモータ11の電圧を経時的に計測し、電圧計測値を取得する工程と、ルックアップテーブルを参照し、電流計測値及び電圧計測値の経時データに基づいてモータ11のトルク変換値を経時的に出力する工程と、を含む。モータ特性のルックアップテーブルを生成する作業やルックアップテーブルを更新又は拡張する作業は、主として製造元やユーザーによって実施される。また、当該方法のルックアップテーブルを生成する工程は、ルックアップテーブルの電流値及びトルク値の複数のプロットをモータ特性曲線として表すように、一定電圧で複数回測定された電流値及びトルク値の測定プロットの近似曲線を作成する工程を含む。そして、ルックアップテーブルは、複数の電圧値ごとに近似曲線をそれぞれ有する。さらに、当該方法は、制御部101により、第1の一定電圧値V1で測定された電流値I1及びトルク値T1の第1近似曲線、及び、第2の一定電圧値V2で測定された電流値I2及びトルク値T2の第2近似曲線に基づいて、第1の一定電圧値V1と第2の一定電圧値V2との間の電圧計測値Vmにおけるトルク変換値を補完して出力する工程を含む。
 次に、図4のモータ特性のルックアップテーブルを作成する方法について説明する。図5は、モータ11の各定電圧ごとの電流値及びトルク値の測定プロットを示すグラフである。各測定プロットは、モータ特性を求めるべく、モータ11に対して事前に測定されて収集された電流値、電圧値及びトルク値のデータ群である。ギヤードモータ10に組み込まれるモータ11について、複数の定電圧条件の下で、モータ11への入力電流を上昇させてトルク値を計測した。入力電流の電流値及び電圧値は、オシロスコープなどの一般的な計測器によって記録された。トルク値は、モータ11の出力軸にトルク計を取り付け、該トルク計の値が記録された。本実施形態では、例示的に10Vおき7つの定電圧条件でデータを収集した。しかしながら、より精密なデータが必要である場合には、より細かい条件でより多くのデータが収集されてもよい。このようにして、図5に示す測定プロットのデータ群を取得した。
 図5によれば、各電圧においてモータの電流-トルク特性が異なり、且つ、電流及びトルクが正比例の関係にない。よって、従来のように、電流値の変動のみをトルク値の変動の指標とすると、実際のトルク値からの誤差が大きくなり、過負荷保護装置による正確なモータの制御ができないことが分かる。
 なお、図5の測定プロットのデータ群であっても、十分にルックアップテーブルの機能を発揮することができるが、本実施形態の過負荷保護装置100では、緻密なトルク変換値の出力を可能とするように測定プロット間のデータを補完すべく、各プロットの近似曲線を作成した。
 図6及び図7は、定電圧180V、200Vの電流値-トルク値のプロットから求めた近似曲線を例示する。本実施形態では、各プロットが、5次多項式の近似曲線によって近似されるように演算された。近似曲線は、最小二乗法による回帰分析などの公知の統計学的手法によって導出される。なお、本実施形態では、5次多項式が最適に選択されたが、多項式の次数は任意に選択され得る。そして、定電圧180Vのモータ特性曲線は、x(電流値)とy(トルク値)の5次多項式(図6参照)によって表された。同様に、定電圧200Vのモータ特性曲線は、x(電流値)とy(トルク値)の5次多項式(図7参照)によって表された。制御部101により、5次多項式のxに電流計測値が入力されることによって、トルク変換値がyで出力される。事前に収集した全ての定電圧の電流値-トルク値のプロットについて、近似曲線を作成することによって、モータ特性のルックアップテーブルを作成した。
 図8は、ギヤードモータ10の過負荷保護装置100において、被駆動装置からの負荷が上昇し、電源を遮断するまでのモータ11の電流計測値、電圧計測値及びトルク変換値の時間変化を示すグラフである。モータ11は、200Vの一定電圧で駆動され、電圧計測値Vmも約200Vとして経時的に計測された。電流計測値Imは、時間t=0~約8秒の一定の負荷の下で約0.38Aとして経時的に計測された。そして、トルク変換値Tは、図4のモータ特性のルックアップテーブルを参照して、電圧計測値Vm~200V及び電流計測値Im~0.38Aから、約42N・mとして経時的に算出された。そして、時間tが約8秒の時点から被駆動装置からの負荷が上昇し、Vmがほぼ一定のまま、負荷の上昇に従って電流計測値Imが上昇する。負荷上昇時のトルク変換値Tもモータ特性のルックアップテーブルを参照して出力された。本実施形態では、遮断閾値Ttが140N・mとして予め設定されている。時間tが51秒の時点でトルク変換値Tが遮断閾値Ttに到達し、それを超過した。制御部101は、トルク変換値Tが遮断閾値Ttを超過したことを検出して、リレー104を駆動して電源を即時遮断し、モータ11の動作が停止した。
 すなわち、本実施形態の過負荷保護装置100は、トルク変換値がモータ11の出力軸でのトルク値を再現するものであることから、モータ11の出力が所望のトルク値を超えないようにギヤードモータ10を制御することができる。これにより、ユーザーは、被駆動装置の仕様(入力トルク値の制限)や、ギヤードモータ10の規格に合わせて遮断閾値Ttを定め、負荷の増大による被駆動装置やギヤードモータ10の損傷をより確実に防止することが可能となる。
[別実施形態・変形例]
 本発明は、上記実施形態に限定されず、種々の実施形態及び変形例を取り得る。以下、本発明の別実施形態及び変形例を説明する。
(1)上記実施形態では、過負荷保護装置は、端子箱に内蔵された制御基板に集約されたが、各部材を制御可能である限り、ギヤードモータ又はモータの離隔して設けられてもよい。
(2)本実施形態では、過負荷保護装置は、ギヤードモータに組み込まれて使用されたが、減速機を省略した形態で用いられてもよい。
(3)本発明の過負荷保護装置のルックアップテーブルは、少なくとも、モータの電流値、電圧値及びトルク値のデータ群からなるものであればよく、近似曲線や電圧値の補完の機能は省略されてもよい。
(4)本発明の過負荷保護装置では、電源遮断手段としてのリレーが電源に電源遮断の信号を送るように構成されているが、電源遮断手段はモータ及び電源の間に配置され、スイッチの開閉によって電源が遮断されてもよい。すなわち、上記実施形態の構成は一例にすぎず、当業者であれば、本発明の技術的思想の下、種々の改変を行うことが可能である。
 本発明は上述した実施形態や変形例に限定されるものではなく、本発明の技術的範囲に属する限りにおいて種々の態様で実施しうるものである。
10   ギヤードモータ
11   モータ
12   減速機
13   端子箱
14   3相電源
100  過負荷保護装置
101  制御部(MCU)
102  電流計測回路(電流計測手段)
103  電圧計測回路(電圧計測手段)
104  リレー(電源遮断手段)
105  設定入力部
106  通信回路(通信手段)
107  外部サーバー
108  ユーザー端末
 

Claims (6)

  1.  被駆動装置を駆動するモータに電気的に接続され、前記モータの過負荷を検知したときに前記モータを保護するように動作する過負荷保護装置であって、
     前記モータに流れる電流を経時的に計測し、電流計測値を取得する電流計測手段と、
     前記モータの電圧を経時的に計測し、電圧計測値を取得する電圧計測手段と、
     電源から前記モータへの電力の供給を遮断又は低減する電源遮断手段と、
     事前に収集された、前記モータの電流値、電圧値及びトルク値のデータ群からなるモータ特性のルックアップテーブルを記憶する記憶部と、
     前記電流計測手段、前記電圧計測手段及び前記電源遮断手段の動作を制御する制御部と、を備え、
     前記制御部は、前記記憶部から前記ルックアップテーブルを参照し、前記電流計測値及び前記電圧計測値の経時データに基づいて前記モータのトルク変換値を経時的に出力し、
     前記制御部は、前記トルク変換値が、予め設定された所定の遮断閾値を超過したこと、又は、前記所定の遮断閾値に到達したことを検知したときに、前記電源遮断手段で前記電源を遮断又は低減することを特徴とする過負荷保護装置。
  2.  前記ルックアップテーブルの電流値及びトルク値は、一定電圧で複数回測定された電流値及びトルク値の測定プロットの近似曲線から得られ、前記ルックアップテーブルは、複数の電圧値ごとに前記近似曲線をそれぞれ有することを特徴とする請求項1に記載の過負荷保護装置。
  3.  第1の一定電圧値で測定された電流値及びトルク値の第1近似曲線、及び、第2の一定電圧値で測定された電流値及びトルク値の第2近似曲線に基づいて、前記第1の一定電圧値と前記第2の一定電圧値との間の電圧計測値におけるトルク変換値が補完されることを特徴とする請求項2に記載の過負荷保護装置。
  4.  データを送受信するための通信手段をさらに備え、前記記憶部は、前記通信手段を介して通信可能な外部サーバーに設けられていることを特徴とする請求項1から3のいずれか一項に記載の過負荷保護装置。
  5.  モータ、前記モータの出力軸に連結され、被駆動装置に動力を出力する減速機、及び、請求項1に記載の過負荷保護装置を備えることを特徴とするギヤードモータ。
  6.  モータのトルク換算値を出力する方法であって、
     前記モータの電流値、電圧値及びトルク値のデータ群を収集し、モータ特性のルックアップテーブルを生成する工程と、
     電流計測手段で前記モータに流れる電流を経時的に計測し、電流計測値を取得する工程と、
     電圧計測手段で前記モータの電圧を経時的に計測し、電圧計測値を取得する工程と、
     前記ルックアップテーブルを参照し、前記電流計測値及び前記電圧計測値の経時データに基づいて前記モータのトルク変換値を経時的に出力する工程と、を含むことを特徴とする方法。
PCT/JP2020/014834 2019-04-01 2020-03-31 過負荷保護装置、ギヤードモータ、及び、モータのトルク換算値を出力する方法 WO2020204034A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069723 2019-04-01
JP2019069723A JP7270923B2 (ja) 2019-04-01 2019-04-01 過負荷保護装置、ギヤードモータ、及び、モータのトルク換算値を出力する方法

Publications (1)

Publication Number Publication Date
WO2020204034A1 true WO2020204034A1 (ja) 2020-10-08

Family

ID=72668141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014834 WO2020204034A1 (ja) 2019-04-01 2020-03-31 過負荷保護装置、ギヤードモータ、及び、モータのトルク換算値を出力する方法

Country Status (2)

Country Link
JP (1) JP7270923B2 (ja)
WO (1) WO2020204034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977885A (zh) * 2024-04-01 2024-05-03 佛山市津上医疗科技有限公司 一种根管马达检测结构及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228822A (ja) * 1999-02-05 2000-08-15 Tsubakimoto Chain Co 過負荷保護装置及びこれを備えた減速機
JP2001245490A (ja) * 2000-02-28 2001-09-07 Bunka Shutter Co Ltd 開閉体制御装置
JP2015023635A (ja) * 2013-07-17 2015-02-02 株式会社ジェイテクト モータ制御装置
JP2015073352A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 電力変換装置および電力変換システム
JP2017046368A (ja) * 2015-08-24 2017-03-02 株式会社リコー モータ過負荷異常検出装置、モータ駆動制御装置、画像形成装置、およびモータ過負荷異常検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228822A (ja) * 1999-02-05 2000-08-15 Tsubakimoto Chain Co 過負荷保護装置及びこれを備えた減速機
JP2001245490A (ja) * 2000-02-28 2001-09-07 Bunka Shutter Co Ltd 開閉体制御装置
JP2015023635A (ja) * 2013-07-17 2015-02-02 株式会社ジェイテクト モータ制御装置
JP2015073352A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 電力変換装置および電力変換システム
JP2017046368A (ja) * 2015-08-24 2017-03-02 株式会社リコー モータ過負荷異常検出装置、モータ駆動制御装置、画像形成装置、およびモータ過負荷異常検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977885A (zh) * 2024-04-01 2024-05-03 佛山市津上医疗科技有限公司 一种根管马达检测结构及方法
CN117977885B (zh) * 2024-04-01 2024-06-14 佛山市津上医疗科技有限公司 一种根管马达检测结构及方法

Also Published As

Publication number Publication date
JP2020171070A (ja) 2020-10-15
JP7270923B2 (ja) 2023-05-11

Similar Documents

Publication Publication Date Title
US7475801B2 (en) Systems for providing controlled power to ultrasonic welding probes
US3593099A (en) Automatic battery tester with recording means for battery performance
US20150069946A1 (en) Electromotive drive arrangement
US6888708B2 (en) Method and apparatus for control and detection in resistance grounded electrical systems
US9939795B2 (en) Dynamic simulated motor for controller testing
US9479091B2 (en) Circuit for thermal protection and power regulation of electric motors
CN103986121A (zh) 电动机械器具以及电池组
WO2020204034A1 (ja) 過負荷保護装置、ギヤードモータ、及び、モータのトルク換算値を出力する方法
US5602708A (en) Process and device for electronically monitoring the overload on electric motor drives
CN104459589A (zh) 电流传感器的自动测试系统
JP6652998B1 (ja) 情報処理装置および制御方法
KR102001287B1 (ko) 냉각 장치 및 냉각 장치의 제어 방법
CN104049220A (zh) 自动调压器及其控制方法
JP5507978B2 (ja) インバータ装置
CN107395095A (zh) 电机驱动控制装置和电机驱动控制方法
CN113960937A (zh) 一种激光仪器的控制系统及控制方法
DK1646139T3 (en) Control device, especially for a work table
US10663943B2 (en) Parameter determination support device, and non-transitory computer-readable medium encoded with program
KR100394576B1 (ko) 반도체 제조설비의 웨이퍼 리프트 속도 및 동작시간모니터링장치
TW201601449A (zh) 發電機的勵磁輔助裝置及勵磁輔助電源控制方法
JP4794499B2 (ja) 過電流試験器
CN110927487B (zh) 使用基于对拖的变频器测试系统实施的变频器测试方法
JP3339774B2 (ja) エンコーダ制御装置
EP1646141A2 (en) Numerical control device
WO2022014034A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782224

Country of ref document: EP

Kind code of ref document: A1