WO2020203890A1 - 複合繊維、その製造方法、熱接着不織布、吸収性物品用表面シート、および吸収性物品 - Google Patents
複合繊維、その製造方法、熱接着不織布、吸収性物品用表面シート、および吸収性物品 Download PDFInfo
- Publication number
- WO2020203890A1 WO2020203890A1 PCT/JP2020/014325 JP2020014325W WO2020203890A1 WO 2020203890 A1 WO2020203890 A1 WO 2020203890A1 JP 2020014325 W JP2020014325 W JP 2020014325W WO 2020203890 A1 WO2020203890 A1 WO 2020203890A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- composite fiber
- less
- core
- sheath
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/22—Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
Definitions
- the present invention relates to a composite fiber, a method for producing the same, a heat-bonded nonwoven fabric containing the same, a surface sheet for an absorbent article, and an absorbent article.
- thermoplastic resins there are various types of fibers in composite fibers that use two types of thermoplastic resins with different melting points.
- the thermoplastic resin having a lower melting point is arranged outside the fiber (this resin component is called a sheath component), and the other has a higher melting point.
- the core-sheath composite fiber in which the thermoplastic resin is placed inside the fiber is heat placed on the outside of the fiber using a hot air treatment machine or a heated metal roll. It is known as a fiber that can be easily adhered to other fibers by melting a plastic resin.
- the fiber web containing such a core-sheath type composite fiber easily adheres to other fibers by melting the sheath component.
- the heat-bonded non-woven fabric thus obtained becomes a non-woven fabric having excellent bulkiness and flexibility, it forms a surface sheet for absorbent articles such as sanitary napkins and paper diapers, and a bag constituting an outer portion of the absorbent article.
- absorbent articles such as sanitary napkins and paper diapers
- bag constituting an outer portion of the absorbent article.
- various interpersonal wiping sheets various objective wiping sheets, medical supplies, cosmetics, various absorbent materials (for example, there are oil absorbents that absorb leaked oil), liquid filtration filters and air filters. It is used in a wide range of applications such as various filter materials such as Sanitary napkins.
- the heat-adhesive non-woven fabric is softer and smoother in applications where the heat-adhesive non-woven fabric comes into direct contact with human skin when used, such as a surface sheet or back sheet of an absorbent article or a skin coating sheet impregnated with cosmetics. It is required to have a good tactile sensation. Therefore, the composite fibers used for the heat-bonded non-woven fabric are required to have a smaller single fiber fineness.
- the composite fiber is used by a dry method, more specifically, a card method.
- a general method is to manufacture a fiber web containing the fiber web and heat the obtained fiber web to melt the sheath component of the composite fiber contained in the fiber web and bond the fibers to each other.
- the fiber web is manufactured by the card method, the smaller the fiber diameter (single fiber fineness of the fiber), the lower the card passability of the fiber, and the more easily the productivity of the non-woven fabric decreases.
- the fibers that pass through the card machine become fibers with a smaller single fiber fineness (diameter), which reduces the elasticity of the fibers, and when making a fiber web with the card machine, the inside of the card machine.
- the fibers are entangled with each other, and granular fiber lumps called NEP are likely to be generated.
- the fibers for which the fiber web is produced by the card machine are usually provided with a serrated crimp shape in order to improve the passability inside the card machine and facilitate the formation of the fiber web. ..
- the composite fibers are produced by imparting a desired number of crimps, but since these fibers are packed and shipped in a strongly compressed state, they are in a compressed state for a long time. In addition, when using the shipped composite fibers, the fibers are scraped off little by little from the compressed composite fiber mass, and the fibers are put into a card machine to form a fiber web. Strong force works.
- the shape of the crimps changes due to long-term storage in a compressed state and the force applied in the fiber opening process during non-woven fabric production. It may collapse. Fibers whose crimped shape has collapsed are not aligned by the cylinder roll inside the card machine and are difficult to entangle with other fibers, so they fly up inside the card machine without being entangled with the card wire, so-called "fly". The state becomes a state, and the productivity of the non-woven fabric decreases.
- the single fiber fineness of the fiber becomes small, that is, when the diameter of the fiber becomes small, the compressed state continues for a long period of time, or a strong force is applied to the fiber in the fiber opening process or the cotton mixing process before being put into the card machine.
- the shape of the crimp is easily broken, and from this point as well, improvement of card passability is required.
- heat-adhesive non-woven fabrics used for sanitary materials such as absorbent articles and medical products are usually required to have a white appearance in order to give the user a feeling of cleanliness.
- the surface sheet used for the surface in contact with the wearer's skin is not only white in appearance, but also blood (menstrual blood) discharged to the outside of the body, urine and fluidity.
- urine menstrual blood
- concealment is required to make the absorbed blood and excrement difficult to see from the surface.
- the composite fiber is made of an inorganic filler (white pigment) such as titanium dioxide (also simply referred to as titanium oxide) or zinc oxide.
- an inorganic filler such as titanium dioxide (also simply referred to as titanium oxide) or zinc oxide.
- inorganic filler such as titanium dioxide (also simply referred to as titanium oxide) or zinc oxide.
- Synthetic fibers containing an inorganic filler not only tend to decrease in spinnability because the inorganic filler acts as a foreign substance, but also decrease the strength of a single fiber and the elasticity of the fiber, so that when the fiber is opened by a card machine, a nep or the like is used. Fly is likely to occur.
- the composite fiber with fineness (less than 2.0 dtex) has the fineness and the card. Improvement of passability is required.
- a heat-adhesive non-woven fabric using a fine fiber composite fiber is used as a sheet for an absorbent article whose performance is significantly improved, it is required to further improve the bulkiness and liquid permeability of the heat-bonded non-woven fabric. .. Specifically, since a composite fiber having a fine fineness tends to be a fiber having a small fiber diameter, a heat-bonded nonwoven fabric containing the composite fiber is obtained as compared with a conventional composite fiber (that is, a composite fiber having a fineness of 2.0 dtex or more). It tends to be inferior in bulk (specific volume) of the heat-bonded non-woven fabric.
- the heat-bonded non-woven fabric containing the fine fiber of the fine fiber may not only lack the bulk of the non-woven fabric as described above, but also because the fiber is thin and the bulk is difficult to increase, the composite fiber of the fine fineness is said to be.
- the fiber layer containing the above may become an overly dense fiber layer having few voids existing between the fibers constituting the fiber layer.
- Patent Document 1 in order to adjust the fineness and crimp ratio of the heat-adhesive composite fiber, the difference between the maximum and minimum crimps, the toe is heated to a predetermined temperature before crimping, and then the finishing oil is applied.
- a heat-adhesive composite fiber made by a method of applying crimp after being sprayed and cooled is disclosed.
- the production equipment and manufacturing conditions are limited, and the fineness of the heat-adhesive fiber actually obtained is 2.4 to 3.4 dtex, which improves the tactile sensation. Therefore, further fineness is required.
- Patent Document 2 discloses a composite fiber containing an alkylene terephthalate having an intrinsic viscosity of 0.3 to 0.55 as a core component.
- a composite fiber having a fineness of less than 1.1 dtex is obtained, but since alkylene terephthalate having a particularly low intrinsic viscosity is used, the alkylene terephthalate resin that can be used is limited.
- this composite fiber is a composite fiber that is characterized by hand-cutting property when made into a non-woven fabric, and if it is used as a heat-bonded non-woven fabric for sanitary materials, face masks, filter materials, etc., it can be obtained by using the fiber or it. There is a risk that the mechanical strength of the non-woven fabric will be insufficient.
- Patent Document 3 contains a first component containing a polyester resin and a polyolefin resin, and when the fiber is broken, the breaking work amount is 1.6 cN ⁇ cm / dtex or more, the breaking strength (cN / dtex) and the breaking.
- Heat-sealing composite fibers having an elongation (%) ratio of 0.005 to 0.040 ([cN / dtex] / [%]) are disclosed.
- the heat-sealing composite fibers described in Patent Document 3 have a large elongation (100% or more), are easily stretched, and are in a soft state (Examples 1 to 5 of Patent Document 3). ..
- the fiber itself can withstand the stretching, but since the fiber itself is in a soft state where it is easy to stretch, the force is applied from various directions. When it is added, it is twisted and entangled with other fibers, which may easily cause nep in the card machine.
- the strength of the single fiber is low, when the obtained heat-sealing composite fiber is made into a fiber web, the elasticity and rigidity of the fiber web may be insufficient, which may cause a problem in handleability.
- Patent Documents 4 and 5 disclose composite fibers in which the core resin is a polyester resin and the sheath component is a polyolefin resin.
- Patent Document 4 discloses that the tow is manufactured by a method of keeping the toe temperature constant when crimping is applied
- Patent Document 5 discloses that the core component is a polyester resin having an intrinsic viscosity of 0.60 to 0.75.
- the composite fiber obtained by adding 7 to 12% by mass of inorganic particles to the core component is disclosed.
- the composite fibers described in Patent Documents 4 and 5 all have a fineness of 2.3 to 2.5 dtex, and further fineness is required in order to improve the tactile sensation.
- Patent Documents 4 and 5 did not study the processability of making a non-woven fabric such as card passability.
- Japanese Unexamined Patent Publication No. 2013-133571 Japanese Unexamined Patent Publication No. 2014-201855 JP-A-2018-172827 JP-A-2018-135622 Japanese Unexamined Patent Publication No. 2018-159151
- the present invention has been made in view of such circumstances, and although it is a composite fiber having an unprecedented fineness (less than 2.0 dtex), it has good card-passability, a smooth feel, and adhesive strength.
- a composite fiber capable of obtaining a highly heat-bonded nonwoven fabric, a method for producing the same, and a heat-bonded nonwoven fabric containing the same, a surface sheet for an absorbent article, and an absorbent article.
- the present invention is a composite fiber containing a core component and a sheath component, in which the core component and the sheath component are arranged substantially concentrically, and the composite ratio of the core component and the sheath component is the core component and the sheath component.
- the volume ratio (core component / sheath component) is 30/70 to 70/30, the single fiber fineness is 0.6 dtex or more and less than 2.0 dtex, and the core component contains 60% by mass or more of polyethylene resin.
- the sheath component contains 60% by mass or more of high-density polyethylene, and the melt mass flow rate (MFR: measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) of the high-density polyethylene is larger than 13 g / 10 minutes and 45 g / 10 minutes.
- the crystallite size measured for the [110] plane of the high-density polyethylene contained in the sheath component is 20.0 nm or more and 50.0 nm or less, and the high-density polyethylene measured by differential scanning calorie analysis (DSC).
- the present invention relates to a composite fiber characterized by a heat of fusion ( ⁇ H PE-HD ) of 145.0 mJ / mg or more.
- the present invention is also a method for producing a composite fiber, which is a step of extruding a core component containing 60% by mass or more of a polyester resin at a spinning temperature of 280 ° C. or higher and 380 ° C. or lower, melt mass flow rate (MFR: measurement temperature 190 ° C.). , Load 2.16 kgf (21.18N)) is larger than 13 g / 10 minutes and 45 g / 10 minutes or less.
- the sheath component is formed on the surface of the composite fiber in the fiber cross section so that the volume ratio of the core component and the sheath component is 30/70 to 70/30 (core component / sheath component).
- the present invention relates to a method for producing a composite fiber, which comprises a step of imparting crimp and a step of drying the stretched fiber tow to which the crimp has been imparted.
- the present invention also relates to a heat-bonded non-woven fabric containing 25% by mass or more of the above-mentioned composite fibers and at least a part of the above-mentioned composite fibers are bonded by a sheath component.
- the present invention is also a sheet for an absorbent article containing the composite fiber, the absorbent article including a first fiber layer in contact with the skin and a second fiber layer adjacent to the first fiber layer.
- the first fiber layer is a fiber layer containing 50% by mass or more of the first core-sheath type composite fiber
- the first core-sheath composite fiber is the composite fiber and the second core-sheath composite fiber.
- the fiber layer is a fiber layer containing 50% by mass or more of the second core-sheath type composite fiber
- the core component of the second core-sheath type composite fiber contains a polyester resin, and the sheath component is higher than the melting point of the polyester resin.
- the present invention relates to a surface sheet for an absorbent article in which at least a part of the above is heat-bonded to the first core sheath type composite fiber and the sheath component of the second core sheath type composite fiber.
- the present invention also relates to the heat-bonded non-woven fabric or an absorbent article including the surface sheet for the absorbent article.
- the composite fiber of the present invention is a composite fiber containing a core component and a sheath component.
- the core component and the sheath component are arranged substantially concentrically, and the composite of the core component and the sheath component is formed.
- the ratio is 30/70 to 70/30 in terms of volume ratio of core component and sheath component (core component / sheath component), single fiber fineness is 0.6 dtex or more and less than 2.0 dtex, and the core component is polyethylene resin.
- the sheath component contains 60% by mass or more of high-density polyethylene, and the melt mass flow rate (MFR: measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) of the high-density polyethylene is 13 g / It is larger than 10 minutes and 45 g / 10 minutes or less, and the crystallite size measured for the [110] plane of the high-density polyethylene contained in the sheath component constituting the composite fiber is 20.0 nm or more and 50.0 nm or less, and the difference is It is a composite fiber in which the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene measured by scanning calorific value analysis (DSC) is 145.0 mJ / mg or more.
- MFR melt mass flow rate
- DSC scanning calorific value analysis
- the composite fiber becomes a fiber having a smaller single fiber fineness and a smaller fiber diameter than the conventional composite fiber, and is formed into a fiber aggregate such as a heat-bonded non-woven fabric.
- the fineness of the fibers promotes diffuse reflection and scattering of light, which tends to increase the whiteness of the appearance of the fiber aggregate, and an appropriate amount of inorganic filler should be added. As a result, the whiteness and concealment of the fiber aggregate are improved.
- the core component and the sheath component are arranged substantially concentrically, and the composite ratio of the core component and the sheath component is 30 in terms of the volume ratio of the core component and the sheath component (core component / sheath component).
- the sheath component is uniformly present on the surface of the composite fiber, and the fibers can be easily heat-bonded to each other to provide a heat-bonded non-woven fabric having high adhesive strength.
- the crystallization and crystal growth of the high-density polyethylene contained in the sheath component constituting the surface of the composite fiber are progressing.
- the high-density polyethylene contained in the sheath component [ The crystallite size measured on the 110] plane is 20.0 nm or more and 50.0 nm or less.
- the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene measured by differential scanning calorimetry (DSC) is 145.0 mJ / mg or more. It is considered that the high-density polyethylene contained in the sheath component on the surface of the composite fiber has crystals growing from the crystallite size measured for the [110] plane.
- the sheath component of the composite fiber becomes a resin component containing high-density polyethylene in which both crystal growth and crystallization are progressing.
- the composite fiber of the present invention exhibits sufficient strength and elasticity even if the fiber has a small fiber diameter and a small fineness. Therefore, it is considered that excessive entanglement and frequent occurrence of NEP in the card process are reduced.
- this estimation does not limit the present invention.
- FIG. 1 is a schematic cross-sectional view showing a fiber cross section of a composite fiber according to an embodiment of the present invention.
- 2A to 2B are schematic views showing a crimped form of a composite fiber in one embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view of a surface sheet for an absorbent article according to an embodiment of the present invention.
- the present inventors have made 60% by mass or more of polyethylene resin in the core component and melt mass flow rate (MFR: measurement temperature 190 ° C., load 2.16 kgf (21)) in the sheath component.
- MFR melt mass flow rate
- the core component and the sheath component are arranged substantially concentrically, and the core component is formed.
- the composite ratio of the core component and the sheath component was set to 30/70 to 70/30 in terms of the volume ratio of the core component and the sheath component (core component / sheath component), and the [110] plane of the high-density polyethylene contained in the sheath component was measured.
- the crystallite size is 20.0 nm or more and 50.0 nm or less, and the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene measured by differential scanning calorific value analysis (DSC) is 145.0 mJ / mg or more.
- the composite fiber of the present invention is a core-sheath type composite fiber having a concentric structure containing a core component and a sheath component, and the core component and the sheath component are arranged substantially concentrically.
- the core component of the composite fiber of the present invention contains 60% by mass or more of polyester resin.
- the core component preferably contains a polyester resin in an amount of 75% by mass or more, more preferably 85% by mass or more, and particularly preferably 90% by mass or more.
- the upper limit of the polyester resin contained in the core component is not particularly limited, and the core component has a structure in which all the resin components are polyester resin, that is, the core component is a thermoplastic resin excluding the inorganic filler described later. May be configured to be all polyester resin.
- the polyester resin contained in the core component may be one kind or two or more kinds.
- the polyester resin is not particularly limited, but a polyester resin having a melting point higher than the melting point of high-density polyethylene contained in the sheath component described later by 50 ° C. or more is preferable.
- the melting point of the polyester resin is 50 ° C. or higher higher than the melting point of the high-density polyethylene contained in the sheath component, which not only improves the spinnability during melt spinning, but also improves the single fiber strength and composite of the obtained composite fiber.
- the strength of the heat-bonded non-woven fabric containing fibers becomes appropriate.
- the polyester resin is more preferably a polyester resin having a melting point higher than the melting point of the high-density polyethylene contained in the sheath component by 80 ° C. or higher, and further preferably a polyester resin having a melting point higher than 100 ° C. or higher.
- the polyester resin is not particularly limited, and either an aliphatic polyester resin or an aromatic polyester resin can be used.
- the polyester resin include polylactic acid (PLA), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) and the like. Since the polyester resin is a polyester resin having a melting point of 50 ° C. or higher, more preferably 80 ° C.
- the sheath component it is preferably an aromatic polyester resin, and polyethylene More preferably, it is at least one polyester resin selected from the group consisting of terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate. It is particularly preferable that the core component contains 60% by mass or more of polyethylene terephthalate as the polyester resin.
- polyethylene terephthalate is cheaper than polytrimethylene terephthalate and polybutylene terephthalate, and the resin itself has high rigidity and gives elasticity to the fibers, so that the resulting composite fiber is 2 Although it has a fineness of less than 0.0 dtex, it has an appropriate rigidity, and the card-passability of the composite fiber tends to be good.
- the intrinsic viscosity of the polyethylene terephthalate is preferably greater than 0.55 dL / g and less than 0.75 dL / g.
- Intrinsic viscosity also called intrinsic viscosity, depends on the molecular weight of polyethylene terephthalate.
- the intrinsic viscosity of polyethylene terephthalate is 0.55 dL / g or less, the molecular weight of polyethylene terephthalate is small, so that the strength and rigidity of the core component are insufficient, and the single fiber strength of the obtained composite fiber becomes low, or the composite fiber becomes There is a risk that the fibers will not maintain their crimped shape.
- the intrinsic viscosity of polyethylene terephthalate is preferably 0.58 dL / g or more and 0.70 dL / g or less, and more preferably 0.60 dL / g or more and 0.68 dL / g or less.
- the number average molecular weight of the polyethylene terephthalate resin is not particularly limited, but the number average molecular weight of the polyethylene terephthalate resin contained in the core component is preferably 2500 or more and 6500 or less.
- the obtained composite fiber becomes a resin component having appropriate elasticity in the core component, so that even if the fineness is less than 2.0 dtex, the card passability is possible.
- the heat-bonded non-woven fabric containing the composite fiber tends to have an excellent tactile sensation.
- the number average molecular weight of the polyethylene terephthalate resin is more preferably 3000 or more and 6000 or less, and particularly preferably 3500 or more and 5500 or less.
- the weight average molecular weight of the polyethylene terephthalate resin is not particularly limited, but the weight average molecular weight of the polyethylene terephthalate resin contained in the core component is preferably 6000 or more and 18,000 or less.
- the obtained composite fiber becomes a resin component having appropriate elasticity in the core component, so that even if the fineness is less than 2.0 dtex, the card passability is possible.
- the heat-bonded non-woven fabric containing the composite fiber tends to have an excellent tactile sensation.
- the weight average molecular weight of the polyethylene terephthalate resin is more preferably 8,000 or more and 15,000 or less, and particularly preferably 9000 or more and 14,000 or less.
- polyethylene terephthalate having a number average molecular weight (Mn) of 2500 or more and 27,000 or less and a weight average molecular weight (Mw) of 6000 or more and 80,000 or less is prepared as a raw material, and melt-spun as a core component of a composite fiber at a spinning temperature described later.
- Mn number average molecular weight
- Mw weight average molecular weight
- the intrinsic viscosity (also referred to as IV value) is larger than 0.55 dL / g and 0.8 dL / g or less, preferably 0.55 dL / g or more and 0.75 dL / g or less, more preferably 0.6 dL / g.
- the core component may contain a thermoplastic resin other than the polyester resin as long as the action of the present invention is not impaired.
- the thermoplastic resin other than the polyester resin is not particularly limited, and examples thereof include polyolefin resins, polyamide resins, polycarbonates, and polystyrenes.
- additives are added to the core components. It is possible. Examples of additives that can be added to the core component include known crystal nucleating agents, antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers, flame retardants, antibacterial agents, lubricants, plasticizers, softeners, and oxidations. Examples include preventive agents and ultraviolet absorbers. Such an additive is preferably contained in the core component so as to occupy 10% by mass or less of the total mass of the core component.
- the sheath component contains 60% by mass or more of high-density polyethylene.
- high-density polyethylene also referred to as PE-HD or HDPE refers to polyethylene having a density of 0.94 g / cm 3 or more measured according to JIS K 7112 (1999). Since high-density polyethylene has a higher density than other polyethylenes such as low-density polyethylene and linear low-density polyethylene, the obtained composite fiber tends to have high rigidity, and the composite fiber has card-passability and crimping. The expressiveness becomes good, and the obtained heat-bonded non-woven fabric tends to be bulky.
- the content of the high-density polyethylene contained in the sheath component is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably in the sheath component. All the thermoplastic resin components except the inorganic filler described later are high-density polyethylene.
- the high-density polyethylene contained in the sheath component is melt mass flow rate (MFR: measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) measured according to JIS K 7210-1 (2014).
- MFR190 melt mass flow rate
- the MFR190 of the high-density polyethylene is within the above range, not only the spinnability and stretchability are improved, but also the sheath component of the obtained composite fiber is sufficiently rigid to pass through the card machine. Therefore, the card-passability of the composite fiber is improved.
- the melt mass flow rate of the high-density polyethylene is preferably 15 g / 10 minutes or more and 40 g / 10 minutes or less, more preferably 18 g / 10 minutes or more and 35 g / 10 minutes or less, and 18 g / 10 minutes or more and 32 g / 10 minutes. The following is particularly preferable.
- the surface of the composite fiber of the present invention is composed of a sheath component containing 60% by mass or more of the high-density polyethylene. Therefore, the thermal adhesiveness of the composite fiber mainly depends on the fluidity when the high-density polyethylene is melted. Further, the strength of the heat-bonded non-woven fabric using the composite fiber mainly depends on the strength of the heat-bonding point between the constituent fibers generated by melting and heat-bonding the sheath component during the heat treatment. When the MFR190 of the high-density polyethylene satisfies the above-mentioned range, the fluidity of the sheath component at the time of melting can be appropriately suppressed.
- the fiber web containing the composite fiber is heat-treated near the melting point of the high-density polyethylene, the entire sheath component of the composite fiber is melted, but the fluidity is suppressed, so that the flow is difficult.
- the thickness of the sheath component becomes uniform, and heat-bonding points having the same bonding strength are formed between the constituent fibers at any bonding points, and the obtained heat-bonded non-woven fabric has sufficient strength. It is estimated that it will be expensive.
- the MFR190 of high-density polyethylene exceeds 45 g / 10 minutes, the sheath component tends to flow easily during heat treatment, the thickness of the sheath component becomes uneven in the composite fiber, and the adhesive strength is heat-bonded to the thin portion of the sheath component.
- Low thermal adhesion points may be formed inside the non-woven fabric.
- the adhesive points having weak adhesive strength tend to come off, resulting in insufficient strength of the non-woven fabric or fluffing of the non-woven fabric. There is a risk.
- the MFR190 of the high-density polyethylene is 13 g / 10 minutes or less, the fluidity of the sheath component is too low, so that the spinnability and drawability may decrease.
- the melting point of the high-density polyethylene is not particularly limited, but the melting point of the high-density polyethylene is determined in consideration of the card-passability of the composite fiber and the productivity, strength and heat resistance of the heat-bonded non-woven fabric. , 125 ° C. or higher and 140 ° C. or lower, and more preferably 128 ° C. or higher and 138 ° C. or lower.
- the melting point of high-density polyethylene refers to the melting peak temperature measured according to JIS K 7121 (1987).
- the sheath component may contain a resin other than the above high-density polyethylene as long as the action of the present invention is not impaired.
- the resin other than the high-density polyethylene is not particularly limited, and examples thereof include polyolefin resins other than high-density polyethylene, polyester resins, polyamide resins, polycarbonates, polystyrenes, and the like.
- the polyolefin resin other than the above high-density polyethylene is not particularly limited, and for example, polypropylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, polymethylpentene, polybutene-1, and acrylic acid and methacrylic acid thereof.
- Unsaturated carboxylic acids such as acids and maleic acids, esters of unsaturated carboxylic acids such as acrylic acid esters, methacrylic acid esters and maleic acid esters, unsaturated carboxylic acids such as acrylic acid anhydrides, methacrylic acid anhydrides and maleic acid anhydrides.
- esters of unsaturated carboxylic acids such as acrylic acid esters, methacrylic acid esters and maleic acid esters
- unsaturated carboxylic acids such as acrylic acid anhydrides, methacrylic acid anhydrides and maleic acid anhydrides.
- examples thereof include copolymers of at least one selected from the group consisting of anhydrides of acids, graft-polymerized products, and elastomers thereof.
- the polyester resin is not particularly limited, but for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polylactic acid, and acid components such as isophthalic acid, succinic acid, and adipic acid, and 1 , 4-Butanediol, glycol components such as 1,6-hexanediol, copolymers with polytetramethylene glycol, polyoxymethylene glycol and the like, and elastomers thereof.
- the polyamide resin is not particularly limited, and examples thereof include nylon 6, nylon 66, nylon 11, and nylon 12.
- additives can be added to the sheath component as long as the effects of the present invention are not impaired and the fiber productivity, non-woven fabric productivity, thermal adhesiveness, and tactile sensation are not affected. is there.
- the additive that can be added to the sheath component include known crystal nucleating agents, antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers, fusion inhibitors (including talc and calcium stearate), and Examples include flame retardants, antibacterial agents, lubricants, plasticizers, fabric softeners, antioxidants, and UV absorbers.
- the cross-sectional structure is a concentric circular structure in which the position of the center of gravity of the core component substantially coincides with the position of the center of gravity of the composite fiber. That is, in the fiber cross section, the position of the center of gravity of the core component does not substantially deviate from the position of the center of gravity of the composite fiber.
- FIG. 1 is a schematic view of a fiber cross section of a composite fiber for an absorbent article having a concentric structure.
- the sheath component 1 is arranged around the core component 2, and the sheath component 1 surrounds the core component 2. Therefore, in the composite fiber 10, the fiber surface other than the cut surface is covered with the sheath component 1.
- the fiber web composed of composite fibers is heat-bonded, the surface of the sheath component 1 is melted and the fibers are heat-bonded to each other.
- the core component 2 is not eccentric, that is, has a concentric structure, the thickness of the sheath component 1 in the fiber cross section is substantially constant at any part of the fiber cross section.
- the sheath component on the fiber surface is softened and melted, and the composite fiber has a uniform strength regardless of which part the other fiber comes into contact with. Since the heat-bonding points are formed, the heat-bonding non-woven fabric using the composite fiber has high adhesive strength, is resistant to friction, and is less likely to fluff.
- the center of gravity position 3 of the core component 2 does not substantially deviate from the center of gravity position 4 of the composite fiber 10.
- the fact that the position of the center of gravity of the core component does not substantially deviate from the position of the center of gravity of the composite fiber means that the rate of deviation (hereinafter, also referred to as eccentricity) obtained by the following method is 10% or less, preferably 7% or less. It means that it is particularly preferably 5% or less, and most preferably 3% or less.
- the composite ratio of the core component and the sheath component is 30/70 to 70/30 in terms of the volume ratio of the core component / sheath component.
- the core component affects the elasticity of the composite fiber
- the sheath component affects the adhesive strength, tactile sensation and hardness of the heat-bonded non-woven fabric containing the composite fiber.
- the composite ratio of the core component and the sheath component in the composite fiber is 30/70 to 70/30, it is possible to achieve both the card-passability of the composite fiber and the adhesive strength and tactile sensation of the heat-bonded non-woven fabric containing the composite fiber. ..
- the sheath component covering the fiber surface that is, the high-density polyethylene having a lower melting point accounts for a large proportion of the composite fiber, so that it is sufficient for the resin extruded from the nozzle to be taken up during melt spinning. It cannot be cooled, and there is a risk that fused fibers will occur frequently and thread breakage will occur frequently. Even if composite fibers are obtained, the heat-bonded non-woven fabric using the composite fibers has a large proportion of the sheath component, that is, the resin component that contributes to heat-bonding, so that the strength of the non-woven fabric is increased, but the texture of the non-woven fabric is hard. There is a risk of becoming.
- the core component is too large, the proportion of the sheath component that contributes to the thermal adhesion between the constituent fibers is small, and the sheath component exists like a layer that thinly covers the lateral peripheral surface of the composite fiber. Even if a heat-bonding point is formed between the constituent fibers, the heat-bonding point is small and it is easy to come off by an external force. Therefore, the strength of the non-woven fabric may be reduced, or fluffing may easily occur when friction is applied to the non-woven fabric. is there.
- the composite ratio which is the ratio of the core component to the sheath component, is preferably 30/70 to 60/40 in terms of the volume ratio of the core component / sheath component, and is 33/67 to 55/45. Is more preferable, 35/65 to 50/50 is particularly preferable, and 35/65 to 48/52 is most preferable.
- the morphology of the core component in the fiber cross section may be an elliptical shape, a Y shape, an X shape, a well shape, a polygonal shape, a star shape, or the like, in addition to the circular shape, and the morphology of the composite fiber in the fiber cross section.
- the crystallite size measured for the [110] plane of the high-density polyethylene contained in the sheath component is 20.0 nm or more and 50.0 nm or less.
- the crystallite size is also called the crystallite diameter and is the size of the smallest crystallite unit forming a crystal. Since the crystallite size is inversely proportional to the half-value width at the diffraction peak of the X-ray diffraction (XRD) of the object, if the crystallite size is large, that is, the crystallinity is high, the half-value width of the diffraction peak becomes small and the crystallite size becomes small.
- XRD X-ray diffraction
- the crystallite size measured for the [110] plane of the high-density polyethylene contained in the sheath component is preferably 22.0 nm or more and 45.0 nm or less, and 24.0 nm or more and 40.0 nm or less. More preferably, it is 24.5 nm or more and 37.5 nm or less.
- the crystallite size measured for the [200] plane of the high-density polyethylene contained in the sheath component is not particularly limited, but preferably, the crystallite size measured for the [200] plane is 12.0 nm or more and 35. It is preferably 0.0 nm or less. More preferably, the crystallite size measured for the [200] plane is 16.0 nm or more and 30.0 nm or less, particularly preferably 18.0 nm or more and 27.5 nm or less, and most preferably 18.5 nm or more and 25. It is 0.0 nm or less.
- the crystal face size is determined by performing wide-angle X-ray diffraction measurement on the object and measuring the half-value width with respect to the diffraction peak of the target crystal plane from the obtained 2 ⁇ - ⁇ intensity data. It can be calculated based on the formula 2 of.
- ⁇ Incident X-ray wavelength (nm)
- ⁇ e Half width of diffraction peak (°)
- ⁇ 0 Half width correction value (°)
- K Scherrer constant.
- the heat of fusion ( ⁇ H PE-HD ) of high-density polyethylene measured by differential scanning calorimetry (DSC) is 145.0 mJ / mg or more.
- the heat of fusion of the high-density polyethylene contained in the sheath component is 145.0 mJ / mg or more, it can be said that the high-density polyethylene is sufficiently crystallized.
- the crystallizer size measured for the [110] plane of the high-density polyethylene is 20.0 nm or more and 50.0 nm or less, the high-density polyethylene of the sheath component has such a range of crystallizer size and heat of fusion.
- both the growth and crystallization of the crystal are sufficiently advanced by satisfying the above conditions, and the sheath component of the composite fiber becomes a highly rigid resin component by the progress of the growth and crystallization of the crystal.
- strong rigidity is imparted to the composite fiber, and even if the fineness is fine, it is considered that the composite fiber is less likely to be excessively twisted inside the card and is less likely to generate neps.
- the crimp shape is less likely to collapse and the card passability is further improved. Conceivable.
- the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene is preferably 148.0 mJ / mg or more, more preferably 150.0 mJ / mg or more, and particularly preferably 152.0 mJ / mg or more. , 155.0 mJ / mg or more is most preferable.
- the upper limit of the heat of fusion ( ⁇ H PE-HD ) of high-density polyethylene is not particularly limited, but is preferably 210.0 mJ / mg or less, more preferably 200.0 mJ / mg or less, and particularly preferably 195.0 mJ / mg or less. It is preferably 190.0 mJ / mg or less, most preferably 190.0 mJ / mg or less.
- the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene is measured by the following procedure.
- the core-sheath ratio volume ratio
- the core-sheath ratio is based on the density and addition amount of the core component, the thermoplastic resin constituting the sheath component, and the inorganic filler with respect to the core-sheath ratio (volume ratio) for determining the heat of fusion of the high-density polyethylene.
- Is converted to the core-sheath ratio (mass ratio) Is converted to the core-sheath ratio (mass ratio), and the ratio of high-density polyethylene to the composite fiber (mass ratio of high-density polyethylene) is obtained from the ratio of the inorganic filler contained in the sheath component.
- the differential scanning calorimetry is performed on the composite fiber as a sample based on the transition temperature measurement method of JIS K 7121 (1987) plastic.
- the endothermic peak has a melting peak temperature in the temperature range of 125 ° C to 140 ° C (the endothermic reaction associated with melting is observed from about 120 ° C, and the melting peak temperature is reached from 125 ° C to 140 ° C, resulting in melting.
- the endothermic reaction that accompanies it ends at about 150 ° C.) is observed.
- the heat of fusion ( ⁇ H) measured between about 120 ° C. and about 150 ° C. the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene contained in the composite fiber is calculated by the following formula 3.
- the composite fiber of the present invention has a single fiber fineness of 0.6 dtex or more and less than 2.0 dtex.
- the single fiber fineness is less than 2.0 dtex, the heat-bonded nonwoven fabric containing the composite fiber has a smooth touch and becomes a soft nonwoven fabric.
- the non-woven fabric with the same grain size has a small single fiber fineness, the number of fibers constituting the non-woven fabric is larger than that of the non-woven fabric composed of fibers having a large single fiber fineness. It becomes a structure and tends to be a non-woven fabric with high concealment.
- the single fiber fineness of the composite fiber is 2.0 dtex or more, it is easy to obtain a non-woven fabric having a soft and smooth tactile sensation and high concealing property.
- the single fiber fineness of the composite fiber is preferably 1.8 dtex or less, more preferably 1.7 dtex or less, particularly preferably 1.6 dtex or less, and most preferably 1.5 dtex or less. ..
- the single fiber fineness of the composite fiber is preferably 0.8 dtex or more, more preferably 1.0 dtex or more, and particularly preferably 1.1 dtex or more.
- the single fiber fineness of the composite fiber is an arbitrary fineness in the above range for a composite fiber having a single fiber fineness of 0.6 dtex or more and less than 2.0 dtex by adjusting the single fiber fineness and the draw ratio of the undrawn fiber toe described later. It will be possible to manufacture at.
- the single fiber strength of the composite fiber is not particularly limited, but is preferably 1.5 cN / dtex or more and 5.0 cN / dtex or less.
- the obtained composite fiber has an appropriate strength and an appropriate rigidity, and the card-passability of the composite fiber and the handleability of the fiber web during the production of the non-woven fabric are improved. It will be good.
- the single fiber strength of the composite fiber is more preferably 1.6 cN / dtex or more and 4.0 cN / dtex or less, particularly preferably 1.8 cN / dtex or more and 3.8 cN / dtex or less, and 2.0 cN / dtex or less. Most preferably, it is 3.5 cN / dtex or less.
- the breaking elongation of the composite fiber is not particularly limited, but it is preferable that the breaking elongation is 20% or more and 150% or less.
- the breaking elongation of the composite fiber satisfies the above range, the obtained composite fiber has an appropriate strength and an appropriate rigidity, and the card passability of the composite fiber and the handleability of the fiber web during the production of the non-woven fabric are improved. It will be good.
- the breaking elongation of the composite fiber is more preferably 25% or more and 120% or less, further preferably 25% or more and 100% or less, particularly preferably 30% or more and 80% or less, and 30%. Most preferably, it is 60% or more and 60% or less.
- the single fiber strength and the elongation at break of the composite fiber are measured according to JIS L 1015 (2010).
- the ratio of single fiber strength to breaking elongation (single fiber strength [cN / dtex] / breaking elongation [%]) measured according to JIS L 1015 (2010) is larger than 0.04. It is preferably 0.12 or less.
- the ratio of single fiber strength to breaking elongation increases as the composite fiber has higher strength and lower elongation, and decreases as the composite fiber has lower strength and higher elongation.
- the ratio of the single fiber strength to the breaking elongation (single fiber strength / breaking elongation) of the composite fiber satisfies the above range, the composite fiber has an appropriate elasticity and rigidity in which the single fiber strength and the breaking elongation are balanced.
- the fiber has excellent card-passability, and the obtained fiber web is also excellent in handleability.
- the ratio of single fiber strength to breaking elongation (single fiber strength / breaking elongation) of the composite fiber is more preferably 0.05 or more and 0.12 or less, and more preferably 0.06 or more and 0.11 or less. It is preferably 0.07 or more and 0.10 or less, and most preferably 0.075 or more and 0.098 or less.
- the toughness is preferably 12.0 or more and 20.0 or less.
- the toughness of the composite fiber satisfies the above range, the composite fiber becomes a fiber having appropriate elasticity and rigidity with a good balance of strength and elongation, similar to the ratio of single fiber strength to breaking elongation described above, and passes through the card. It has excellent properties, and the resulting fiber web is also excellent in handleability.
- the toughness is more preferably 15.0 or more and 19.0 or less, particularly preferably 16.0 or more and 18.5 or less, and 16.5 or more and 18.5 or less. Is the most preferable.
- the fiber length of the composite fiber is not particularly limited, but is preferably 25 mm or more and 50 mm or less. This is because when the fiber length satisfies this range, the composite fiber has excellent card-passability even with fineness, and a fiber web (card web) having a good texture can be produced. If the fiber length is less than 25 mm, the fiber length is too short to be caught in the card, that is, a so-called fly state is likely to occur, and the card web may not be manufactured.
- the fiber length of the composite fiber is more preferably 27 mm or more and 48 mm or less, further preferably 28 mm or more and 46 mm or less, and particularly preferably 28 mm or more and 40 mm or less.
- the composite fiber has at least one type of crimp selected from the group consisting of serrated crimps (also referred to as mechanical crimps) shown in FIG. 2A and corrugated crimps shown in FIG. 2B, and the number of crimps. Is preferably 5 pieces / 25 mm or more and 28 pieces / 25 mm or less. A more preferable number of crimps is 8 pieces / 25 mm or more and 25 pieces / 25 mm or less, and a more preferable number of crimps is 10 pieces / 25 mm or more and 20 pieces / 25 mm or less.
- the composite fiber preferably has a crimp ratio of 5% or more and 20% or less from the viewpoint of the card-passability of the composite fiber and the tactile sensation and bulk recovery of the heat-bonded nonwoven fabric containing the composite fiber. It is more preferably% or more and 18% or less, and further preferably 6.5% or more and 16% or less.
- the composite fiber of the present invention can be used with respect to the core component and the sheath component as long as the effects of the present invention are not impaired and the fiber productivity, the non-woven fabric productivity, the thermal adhesiveness, and the tactile sensation are not affected.
- Various known additives can be added, and examples of the additives include known crystal nucleating agents, antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers, flame retardants, antibacterial agents, lubricants, and the like. It can contain a plasticizer, a softener, an antioxidant, an ultraviolet absorber and the like.
- the composite fiber of the present invention when used to obtain a non-woven fabric for an absorbent article, the composite fiber preferably contains an inorganic filler.
- non-woven fabrics for absorbent articles are required not only to have a white appearance, but also to have a concealing property that makes the color inconspicuous when menstrual blood, urine, and loose stool are absorbed.
- the amount of the inorganic filler contained in the composite fiber is not particularly limited, but it is preferable to contain 0.5% by mass or more and 10% by mass or less of the inorganic filler with respect to 100% by mass of the composite fiber. By including the inorganic filler in the above range, the whiteness of the appearance of the heat-bonded nonwoven fabric containing the composite fiber becomes excellent.
- the number of fibers constituting the non-woven fabric is larger than that of the composite fiber having a single fiber fineness of 2.0 dtex or more if the non-woven fabric has the same texture. As the number increases, the surface of the heat-bonded non-woven fabric tends to have a stronger white appearance.
- the amount of the inorganic filler contained in the composite fiber is preferably 0.8% by mass or more and 8% by mass or less, and further preferably 1% by mass or more and 6% by mass or more, based on 100% by mass of the composite fiber. More preferably, it is particularly preferably contained in an amount of 1.3% by mass or more and 5% by mass or less, and most preferably 1.5% by mass or more and 4.5% by mass or less.
- the inorganic filler is an inorganic powder having a high degree of whiteness because it whitens the appearance of the composite fiber and enhances the hiding property when the heat-bonded non-woven fabric containing the composite fiber is used for the surface sheet of an absorbent article. It is preferable to have.
- white inorganic powders such as titanium dioxide, zinc oxide, barium sulfate, calcium carbonate, magnesium oxide, silica (silicon dioxide), mica, zeolite, and talc can be contained in the composite fiber as an inorganic filler.
- the inorganic filler preferably contains at least one selected from the group consisting of titanium dioxide, zinc oxide, calcium carbonate, barium sulfate, silica and talc, more preferably at least titanium oxide, and substantially. It is particularly preferable that only titanium oxide is contained as an inorganic filler.
- the above-mentioned inorganic filler may be contained in either one of the sheath component and the core component constituting the composite fiber, or may be contained in both.
- at least the core component contains the inorganic filler, and only the core component contains the inorganic filler. Is more preferable. Since at least the core component contains an inorganic filler, the composite fiber and the non-woven fabric containing the composite fiber tend to have a stronger white appearance, which not only improves the hiding power but also has an excessive amount of the core component containing a highly rigid polyester resin. It is presumed to have the effect of suppressing hardening.
- the amount of the inorganic filler contained in the core component is preferably 2% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 10% by mass or less, when the core component is 100% by mass. It is particularly preferably 5.5% by mass or more and 8% by mass or less, and most preferably 5% by mass or more and 7.5% by mass or less.
- the composite fiber of the present invention promotes the crystallization of the high-density polyethylene contained in the sheath component, and has a predetermined crystallite size.
- the high-density polyethylene in which the crystallization and the growth of the crystal portion have progressed exists like a shell covering the surface of the composite fiber.
- the rigidity of the entire composite fiber is increased, and even if the composite fiber has a fine fineness, the fibers are less likely to be entangled with each other, and the occurrence of nep is reduced.
- the sheath component contains an inorganic filler
- the sheath component does not contain or contains the inorganic filler.
- the polyester resin preferably has a number average molecular weight (Mn) of 2500 or more and 27,000 or less and a weight average molecular weight (Mw) of 6000 or more and 80,000 or less, or an intrinsic viscosity of more than 0.55 dL / g and 0.8 dL.
- the core component containing 60% by mass or more of polyethylene terephthalate which is / g or less and the melt mass flow rate (MFR: measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) are larger than 13 g / 10 minutes and 45 g / 10 minutes or less.
- a sheath component containing 60% by mass or more of high-density polyethylene is prepared.
- Polyethylene terephthalate can be preferably used as long as it satisfies the preferable average molecular weight range or the preferable IV value range, but it satisfies the preferable average molecular weight range and the preferable IV value range. And more preferable.
- a composite nozzle arranged so that the surface of the composite fiber is covered with a sheath component and the position of the center of gravity of the core component coincides with the position of the center of gravity of the composite fiber is a concentric structure, for example, a concentric core sheath type.
- the sheath component and the core component are supplied to the composite nozzle to perform melt spinning.
- the temperature at which the core component is melted and extruded is 280 ° C. or higher and 380 ° C. or lower
- the temperature at which the sheath component is melted and extruded is 250 ° C. or higher and 350 ° C. or lower.
- the temperature is 250 ° C or higher and 350 ° C or lower for melt spinning.
- the number of holes (hereinafter, simply referred to as the number of holes) for melt-spinning the molten core component and the sheath component provided in the nozzle is particularly large. Not limited. However, considering the influence on the draft ratio described later and the fact that melt spinning is performed under the condition that the draft ratio is high, the number of holes is preferably 300 or more and 5000 or less, and 450 or more and 3500 or less. Is preferable. When the number of holes satisfies the above range, melt spinning can be performed under the condition that the draft ratio is high in a stable state.
- the diameter of the hole for melt-spinning the molten core component and sheath component (hereinafter referred to as the hole diameter) provided in the nozzle is not particularly limited.
- the hole diameter is preferably 0.2 mm or more and 0.8 mm or less, and 0.25 mm or more and 0.75 mm. The following is more preferable.
- melt spinning can be performed under the condition that the draft ratio is high in a stable state.
- the molten core component and sheath component are extruded from the holes provided in the nozzle to perform melt spinning.
- the value obtained by dividing the total amount of resin extruded from the nozzle in 1 minute by the number of holes that is, the amount of the molten core component and sheath component extruded in 1 minute per hole (hereinafter, resin discharge per single hole).
- the amount is not particularly limited, but is preferably 0.2 g / min or more and 1 g / min or less, and more preferably 0.25 g / min or more and 0.8 g / min or less.
- the picking speed is not particularly limited, but is preferably 500 m / min or more and 2500 m / min or less, and 600 m / min or more and 2300 m / min. It is more preferably less than a minute, and particularly preferably 650 m / min or more and 2000 m / min or less.
- melt spinning is performed by the above method to obtain a bundle of unstretched composite fiber (undrawn fiber tow) composed of a core component and a sheath component.
- melt spinning is performed under conditions where the draft ratio is increased.
- the draft ratio is 600 or more and 1500 or less.
- the sheath component that is, high-density polyethylene constituting the outer side of the undrawn fiber tow
- the crystallization of the high-density polyethylene is promoted, the melt spinning is completed, and the undrawn undrawn fiber is taken over.
- high-density polyethylene undergoes crystallization and its growth, and tends to have a large crystallite size.
- the draft ratio is preferably 620 or more and 1400 or less, more preferably 650 or more and 1300 or less, and particularly preferably 660 or more and 1250 or less.
- the draft ratio is calculated by the following mathematical formula 4.
- melt specific gravity is the specific gravity of the core component and the sheath component when they are melted.
- a certain volume of molten resin is extruded from an extruder set to the same temperature as during melt spinning, and the mass of the extruded resin is measured and extruded. It can be measured by dividing the mass of the resin obtained by the above constant volume.
- the undrawn fiber tow produced by the above-mentioned method preferably has a single fiber fineness of 1.8 dtex or more and 4.5 dtex or less.
- the undrawn fiber toe is drawn at an appropriate draw ratio in the drawing step described later to obtain a drawn fiber tow, whereby the core component and the sheath component of the undrawn fiber tow are obtained. It is possible to stably produce a composite fiber having an appropriate rigidity and elasticity and a single fiber fineness of 0.6 dtex to less than 2.0 dtex, which is further crystallized.
- the single fiber fineness of the undrawn fiber tow is more preferably 2.0 dtex or more and 4.2 dtex or less, particularly preferably 2.2 dtex or more and 4.0 dtex or less, and 2.2 dtex or more and 3.8 dtex or less. Is the most preferable.
- the undrawn fiber tow produced by the above method preferably has an elongation of 100% or more and 400% or less.
- the crystallization of the core component and the sheath component of the undrawn fiber tow becomes appropriate, and the undrawn fiber toe is stretched at an appropriate draw ratio in the stretching step described later.
- the core component and sheath component of the undrawn fiber tow are further crystallized into a drawn fiber tow, and a composite fiber having appropriate rigidity and elasticity and a single fiber fineness of 0.6 dtex to less than 2.0 dtex is stably produced. can do.
- the elongation of the undrawn fiber tow is more preferably 120% or more and 300% or less, and particularly preferably 140% or more and 250% or less.
- the obtained undrawn fiber tow is drawn at a temperature of 70 ° C. or higher and 120 ° C. or lower at a draw ratio of 1.6 times or more and 3.6 times or less.
- the lower limit of the more preferable stretching temperature is 75 ° C. or higher, and the lower limit of the particularly preferable stretching temperature is 80 ° C. or higher.
- a more preferable upper limit of the stretching temperature is 110 ° C. or lower, and a particularly preferable upper limit of the stretching temperature is 100 ° C. or lower.
- the stretching temperature is less than 70 ° C., crystallization of the core component and the sheath component is difficult to proceed, so that the composite fiber having sufficient rigidity and elasticity and fine fineness is not formed, and the fiber tends to be inferior in card passability.
- the stretching temperature exceeds 120 ° C., the fibers tend to fuse with each other.
- the lower limit of the more preferable draw ratio is 1.8 times or more, and the lower limit of the particularly preferable draw ratio is 2.0 times or more.
- the upper limit of the more preferable draw ratio is 3.4 times or less, and the upper limit of the particularly preferable draw ratio is 3.2 times or less.
- the stretching method is not particularly limited, and wet stretching is performed while heating the unstretched fiber tow using a high-temperature liquid such as hot water as a medium, and stretching is performed while heating in a high-temperature gas or a high-temperature metal roll.
- Known stretching treatments such as dry stretching and steam stretching in which the fibers are heated while the fibers are heated under normal pressure or pressure at 100 ° C. or higher can be performed.
- wet stretching using warm water or dry stretching using a high-temperature gas or a high-temperature metal roll is preferable, and the tension during stretching and the heat during stretching are applied to the single fibers constituting the undrawn fiber tow. Wet stretching is more preferable because it is easy and evenly applied.
- the stretching step may be a so-called one-step stretching in which the stretching step is only one step, a two-step stretching in which the stretching step is two steps, or a multi-step stretching in which the stretching step exceeds two steps. Since the composite fiber of the present invention has a small single fiber fineness of less than 2.0 dtex, melt spinning is performed at a high draft ratio, and the obtained undrawn fiber tow has a small fineness, it can be used for one-step drawing or two-step drawing. It is preferable to do this. Further, before and after the stretching treatment, an annealing treatment may be performed as necessary.
- crimping is applied to the drawn fiber toe using a known crimping machine such as a stuffing box type crimper, but the shape of the crimped fiber toe is not easily lost, in other words, the shape is easily maintained.
- crimp is imparted while the drawn fiber toe is sufficiently heated.
- a step (crimping step) of imparting crimp to the drawn fiber tow that has completed the stretching step will be described.
- the crimp shape is not easily lost, in other words, the shape of the crimp and the number of crimps applied are maintained for a long period of time, and the stretched fiber is drawn so that the durability of the crimp shape is high.
- the fiber toe is crimped while being heated.
- a step of heating the drawn fiber toe (hereinafter, also referred to as a tow heating step) is provided immediately before the step of imparting crimping.
- the high-density polyethylene constituting the drawn fiber toe becomes sufficiently heated, and the thermal vibration of the crystalline portion and the amorphous portion of the high-density polyethylene becomes active.
- the crystallized high-density polyethylene is deformed in a state where thermal vibration is active to give a crimped shape to the crystal portion of the high-density polyethylene.
- a sufficiently crimped shape is given.
- the drawn fiber tow that has completed the crimping step is cooled, and the crimped shape is imparted to the high-density polyethylene and the shape is fixed by cooling, so that the crimped shape of the obtained composite fiber is less likely to collapse.
- the drawn fiber tow is performed in a state where an appropriate tension is applied.
- the means for heating is not particularly limited, and there is a method of contacting with hot water, steam, dry air, or a heating roll.
- heating with steam is preferable because it can be heated in a short time.
- the heating temperature of the tow heating step is preferably 80 ° C.
- the heating time in the tow heating step is not particularly limited, but is preferably 0.5 seconds or more and 10 seconds or less, more preferably 1 second or more and 5 seconds or less, and further preferably 1 second or more and 3 seconds or less. is there.
- the drawn fiber tow is heated immediately before the crimping step by the method described above.
- the surface temperature of the drawn fiber toe immediately before performing the crimping step specifically, immediately before entering a known crimping machine such as a stuffing box type crimper is 60 ° C. or higher.
- crimping is applied to the drawn fiber toe that has been sufficiently heated.
- the number of crimps is not particularly limited in the composite fiber of the present invention and the method for producing the same, but it is preferable to impart crimps so that the number of crimps is 5/25 mm or more and 28/25 mm or less.
- the number of crimps is less than 5 pieces / 25 mm, the card passability tends to decrease, and the initial bulk and bulk recovery of the non-woven fabric tend to deteriorate.
- the number of crimps exceeds 28/25 mm, the number of crimps is too large, so that the card passability is lowered and the texture of the non-woven fabric is deteriorated.
- the number of crimps applied to the drawn fiber toe is more preferably 8 pieces / 25 mm or more and 25 pieces / 25 mm or less, and particularly preferably 10 pieces / 25 mm or more and 20 pieces / 25 mm or less.
- the crimp shape after passing through the crimping machine is not particularly limited, but it is preferable that at least one crimp shape selected from serrated crimp and wavy crimp is expressed.
- the surface temperature of the drawn fiber tow coming out from a known crimping machine such as a stuffing box type crimper immediately after the crimping step is completed is 50 ° C.
- the above is preferable. It can be presumed that the stretched fiber tow immediately after the completion of the crimping step was crimped to the stretched fiber tow in a sufficiently heated state when the surface temperature was 50 ° C. or higher.
- the surface temperature of the drawn fiber tow immediately after the completion of the crimping step is more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher.
- the temperature of the surface of the drawn fiber toe immediately before the crimping step is the average value of the temperature measured five times on the surface of the drawn fiber toe immediately before entering the inside of the crimping machine with a non-contact thermometer.
- the temperature of the surface of the drawn fiber toe immediately after the completion of the crimping step is the average of the temperatures measured five times on the surface of the drawn fiber toe immediately after coming out of the crimping machine with a non-contact thermometer. Use as a value.
- the drawn fiber toe may be treated with a fiber treatment agent before or after crimping, if necessary.
- a fiber treatment agent By treating with a fiber treatment agent, it is possible to impart antistatic properties to the composite fiber, which makes it difficult to generate static electricity. As a result, the obtained composite fiber has excellent card-passability.
- the non-woven fabric produced by using the obtained composite fiber can be imparted with water compatibility, that is, hydrophilicity, or can be imparted with water repellency.
- the fiber treatment agent is not particularly limited, and a known surfactant can be appropriately used.
- a known surfactant can be appropriately used.
- Sugar ester type also called “polyvalent alcohol ester type”
- fatty acid ester type alcohol type, alkylphenol type, polyoxyethylene / polyoxypropylene block polymer type, alkylamine type, bisphenol type, polyaromatic ring type, silicone type , Fluorine, and nonionic surfactants such as vegetable oils, anionic surfactants such as sulfate, sulfonate, carboxylic acid, and phosphate, and cationic surfactants such as ammonium and benzalkonium.
- a fiber treatment agent containing one or more surfactants selected from the agent and a surfactant such as an amphoteric surfactant such as a betaine type and a glycine type can be used.
- the above fiber treatment agent is appropriately selected according to the use of the composite fiber.
- a fiber treatment agent containing a hydrophilic component can be selected as the fiber treatment agent, and the gathered portion or back sheet (back surface) of the absorbent article can be selected.
- a non-woven fabric constituting also referred to as a sheet
- a water-repellent fiber treatment agent that is incompatible with water can be selected.
- the fiber treatment agent is preferably applied to the drawn fiber tow before the tow is heated. As a result, the convergence of the filament can be improved, and the temperature of the filament does not drop sharply after being applied after heating the toe.
- the method of applying the solution (treatment liquid) containing the fiber treatment agent to the fiber surface is not particularly limited, and examples thereof include known spray methods, impregnation methods, and roll touch methods.
- the treatment tank filled with the aqueous solution of the fiber treatment agent may be impregnated with the drawn fiber tow, and the excess aqueous solution of the fiber treatment agent may be squeezed out with a nip roll or the like.
- the amount of the fiber treatment agent attached is not particularly limited.
- the active ingredient of the fiber treatment agent that is, the component remaining on the fiber surface after evaporating water
- the active ingredient of the fiber treatment agent is 0.03 mass with respect to the fiber mass with respect to the composite fiber. It may be attached so as to adhere to% or more and 3% by mass or less.
- the amount of the fiber treatment agent attached can be measured by a rapid extraction method using an R-II type rapid residual fat extractor manufactured by Tokai Keiki Co., Ltd.
- the annealing treatment is preferably carried out in a temperature range of 80 ° C. or higher and 120 ° C. or lower in an atmosphere such as dry heat, moist heat, or steam heat, and more preferably in a temperature range of 90 ° C. or higher and 120 ° C. or lower.
- the drawn fiber tow that has been crimped by a crimping machine is dried at the same time as the annealing treatment in a dry heat atmosphere of 90 ° C. or higher and 120 ° C. or lower because the process can be simplified.
- the annealing treatment is performed at a temperature of 90 ° C. or higher, the dry heat shrinkage rate of the obtained composite fiber does not increase, and the composite fiber develops a clear crimped shape, so that the composite fiber has excellent card-passability.
- the composite fiber obtained by the above method mainly has at least one kind of crimp selected from the group consisting of serrated crimp (also referred to as mechanical crimp) shown in FIG. 2A and corrugated crimp shown in FIG. 2B. Since the number of crimps is 5/25 mm or more and 28/25 mm or less, it is possible to obtain a flexible and smooth non-woven fabric without deteriorating the card passability, which is preferable. Then, it is cut to a desired fiber length to obtain a composite fiber.
- serrated crimp also referred to as mechanical crimp
- corrugated crimp shown in FIG. 2B. Since the number of crimps is 5/25 mm or more and 28/25 mm or less, it is possible to obtain a flexible and smooth non-woven fabric without deteriorating the card passability, which is preferable. Then, it is cut to a desired fiber length to obtain a composite fiber.
- the single fiber fineness of the composite fiber can be adjusted as desired by adjusting the single fiber fineness and the draw ratio of the undrawn fiber tow. After the above-mentioned annealing treatment, the drawn fiber toe is cut to obtain the above-mentioned composite fiber having a predetermined length.
- the heat-bonded nonwoven fabric of the present invention contains 25% by mass or more of the composite fibers, and at least a part of the composite fibers are bonded by a sheath component.
- the heat-bonded nonwoven fabric can be obtained by producing a fiber web containing 25% by mass or more of the composite fiber, heat-bonding the obtained fiber web, and integrating the fibers with each other.
- other fibers for example, natural fibers, regenerated fibers, purified cellulose fibers, semi-synthetic fibers, and synthetic fibers can be used as the other fibers.
- Examples of the natural fiber include cotton, silk, wool, hemp, pulp and the like.
- Examples of the recycled fiber include rayon and cupra.
- Examples of the purified cellulose fiber include tencel and lyocell.
- Examples of the semi-synthetic fiber include acetate and triacetate.
- Examples of the synthetic fiber include acrylic fiber, polyester fiber, polyamide fiber, polyolefin fiber, polyurethane fiber and the like.
- As the other fiber one type or two or more types of fibers can be appropriately selected from the above-mentioned fibers depending on the intended use.
- Other fibers may be used by mixing with the composite fiber of the present invention, or may be used by laminating a fiber web made of the composite fiber of the present invention and a fiber web made of another fiber.
- the fiber web used in manufacturing the heat-bonded non-woven fabric examples include parallel web, semi-random web, random web, cross web, card web such as Chris cross web, and air-laid web.
- the non-woven fabric used for the absorbent article, particularly the surface sheet of the absorbent article, is required to be bulky, flexible, and have some voids between the fibers. Therefore, the fiber web is preferably a card web.
- the heat-bonded non-woven fabric two or more types of fiber webs different from the above fiber webs may be laminated and used.
- the fiber web may be subjected to an entanglement treatment such as a needle punching treatment or a water flow entanglement treatment before and / or after the heat treatment, if necessary.
- an entanglement treatment such as a needle punching treatment or a water flow entanglement treatment before and / or after the heat treatment, if necessary.
- the fiber web is heat-treated by a known heat treatment means.
- a heat treatment machine such as a hot air penetration type heat treatment machine, a hot air blowing type heat treatment machine, and an infrared heat treatment machine in which pressure such as wind pressure is not so much applied to the fiber web is preferably used.
- the heat treatment conditions such as the heat treatment temperature are selected and carried out so that, for example, the sheath components are sufficiently melted and / or softened so that the fibers are joined at the contact points or intersections and the crimps are not crushed.
- the heat treatment temperature is when the melting point of the high-density polyethylene contained in the sheath component (when a plurality of high-density polyethylenes are contained in the sheath component, the melting point of the high-density polyethylene having the highest melting point) is Tm.
- Tm melting point of the high-density polyethylene contained in the sheath component
- it is preferably in the range of Tm or more and (Tm + 40 ° C.) or less.
- the heat-bonded non-woven fabric is a non-woven fabric having a good surface feel.
- the surface texture of the heat-bonded non-woven fabric can be sensory-evaluated. Further, the surface texture of the heat-bonded non-woven fabric can be measured and evaluated based on the KES (Kawabata Evaluation System) method, which is one of the methods for measuring and objectively evaluating the texture of the fabric.
- KES Kawabata Evaluation System
- the characteristic values of surface friction hereinafter, also referred to as MIU
- MMD fluctuation of the average friction coefficient
- SMD standard average deviation of the surface roughness
- MIU indicates the slipperiness (or slipperiness) of the surface, and the larger this is, the less slippery it is.
- MMD shows the variation of friction, and the larger it is, the rougher the surface is.
- SMD represents the degree of unevenness on the surface of the non-woven fabric. The larger the measured SMD value, the larger the unevenness on the surface of the non-woven fabric, and the smaller the value, the smaller the unevenness on the surface of the non-woven fabric.
- the surface of the heat-bonded nonwoven fabric of the present invention tends to have a relatively small MIU, and the MMD and SMD tend to be particularly small as compared with the conventional nonwoven fabric.
- the device for measuring the characteristic value of the surface friction is not particularly limited as long as it can measure the surface friction based on the KES method.
- the characteristic values of surface friction are, for example, a friction feeling tester ("KES-SE”, “KES-SESRU”, all manufactured by Kato Tech Co., Ltd.), an automated surface tester ("KES-FB4-AUTO-A", Kato). It can be measured by using (manufactured by Tech Co., Ltd.).
- the surface characteristics of the heat-bonded non-woven fabric are obtained by heat-treating the surface opposite to the surface on which the hot air is blown, that is, the fiber web, when producing the heat-bonded non-woven fabric.
- a transport support used for transporting the inside of the heat treatment machine for example, a conveyor net for introducing and transporting the fiber web into the hot air penetration type heat treatment machine. Measure on the surface.
- the surface in contact with the transport support tends to be smoother than the surface on which hot air is blown, and a smooth tactile sensation is easily obtained.
- this surface is directly applied to the wearer's skin. This is because when it is used on the surface in contact (skin contact surface), the tactile sensation becomes smoother than when the surface on which the hot air is blown is applied to the skin, and the usability of the absorbent article is improved.
- skin contact surface skin contact surface
- the surface friction Is measured, and the surface having a smaller MMD value is used as the measurement surface.
- the heat-bonded non-woven fabric of the present invention has a smooth and soft touch.
- MMD affects the smoothness when the non-woven fabric is touched. Since the non-woven fabric containing the composite fiber of the present invention not only has a small MMD but also a relatively small average coefficient of friction (MIU), the surface of the non-woven fabric is slippery and has a light touch even when it comes into contact with the skin, as described above. give.
- some composite fibers have a large MIU and a small MMD when the surface of the non-woven fabric containing the composite fiber is evaluated based on the KES method. Since such a non-woven fabric transmits a relatively large amount of friction to the fingers and the skin without fluctuation, it gives a "moist touch” and a "slimy feeling” in which the friction is felt in a smooth touch. Since such a non-woven fabric is also preferable as a non-woven fabric used for an absorbent article, it is considered that the non-woven fabric used for the absorbent article is required to have as small a fluctuation (MMD) as possible in the average coefficient of friction.
- MMD small a fluctuation
- the variation (MMD) of the average friction coefficient of the non-woven fabric surface measured in a sufficiently dried state is preferably 0.1 or less, and more preferably 0.05 or less. , 0.01 or less, and particularly preferably 0.008 or less.
- the lower limit of the fluctuation of the average coefficient of friction (MMD) measured in a dried state of the non-woven fabric is not particularly limited, and the closer it is to 0, the more preferable it is, but it may be 0.003 or more, or 0.005. It may be the above.
- the standard average deviation (SMD) of the surface roughness on the surface of the non-woven fabric measured in a sufficiently dried state is preferably 4 or less, and more preferably 3.5 or less. It is preferably 3.2 or less, more preferably 3 or less, and particularly preferably 3 or less.
- the lower limit of the standard average deviation (SMD) of the surface roughness on the surface of the non-woven fabric measured in a dried state is not particularly limited and is preferably close to 0, but may be 0.5 or more. It may be 1 or more, or 1.5 or more.
- the non-woven fabric has an average coefficient of friction (MIU) of 0.25 or less, more preferably 0.24 or less, and 0.23, which is measured in a state where the non-woven fabric is sufficiently dried.
- MIU average coefficient of friction
- the lower limit of the average coefficient of friction (MIU) of the surface of the non-woven fabric measured in a dried state is not particularly limited, and the closer it is to 0, the more preferable it is, but it may be 0.05 or more, or 0. It may be 1 or more.
- the heat-bonded non-woven fabric of the present invention (that is, the heat-bonded non-woven fabric containing 25% by mass or more of the composite fibers of the present invention) is soft as a whole and gives a smooth touch when touching the surface of the non-woven fabric.
- the heat-bonded non-woven fabric can be preferably used as a surface sheet for various absorbent articles such as sanitary napkins, infant paper diapers, adult paper diapers, paper diapers for animals such as mammals, panty liners, and incontinence liners. Further, the non-woven fabric may be used as a back sheet for infant paper diapers and adult paper diapers that may be touched from the outside.
- the above-mentioned non-woven fabric wraps a sheet constituting various absorbent articles (hereinafter, also referred to as an absorbent article sheet), for example, a second sheet, a liquid diffusion sheet, and an absorber arranged directly under the surface sheet. It can also be used for sheets that are generally called core wrap sheets.
- an absorbent article sheet a sheet constituting various absorbent articles
- the composite fiber of the present invention is contained in an amount of 20% by mass or more, particularly on the skin contact surface.
- the present invention also applies to a so-called second sheet located on the absorbent side of the absorbent article, for example, directly under the surface sheet, rather than the surface sheet that comes into direct contact with the skin.
- the heat-bonded non-woven fabric of No. 1 can be preferably used.
- the texture of the heat-bonded nonwoven fabric of the present invention is not particularly limited, but is preferably 5 g / m 2 or more and 70 g / m 2 or less, more preferably 8 g / m 2 or more and 60 g / m 2 or less, and 10 g / m. more preferably 2 or more 55 g / m 2 or less, particularly preferably 15 g / m 2 or more 50 g / m 2 or less.
- the basis weight of the heat-bonded nonwoven fabric of the present invention may be outside these ranges depending on the use of the heat-bonded nonwoven fabric.
- heat-adhesive non-woven fabric when used for various purposes such as a surface sheet of various paper diapers and sanitary napkins, a back sheet of various paper diapers, and a second sheet arranged directly under the surface sheet of an absorbent article. Is appropriately selected according to its intended use.
- the heat-bonded nonwoven fabric When the heat-bonded nonwoven fabric is used as a surface sheet for an absorbent article, the heat-bonded nonwoven fabric contains 25% by mass or more of the composite fibers. Preferably, the heat-bonded nonwoven fabric contains the composite fiber in an amount of 30% by mass or more, and more preferably 40% by mass or more. This is because when the proportion of the composite fibers in the heat-bonded non-woven fabric is within the above range, a non-woven fabric having excellent surface tactile sensation and a soft and smooth tactile sensation when touched can be easily obtained. In the heat-bonded nonwoven fabric, the content of the composite fiber may be 100% by mass, 90% by mass or less, or 80% by mass or less.
- the heat-bonded non-woven fabric has the strength required when used as a non-woven fabric (for example, a surface sheet or a back sheet) constituting an absorbent article, prevents fluffing of the surface due to friction during use, and has a soft feel when touched.
- the tensile strength in the vertical direction measured according to JIS L 1096 (2010) 8.14.1 A method (strip method) is preferably 15 N / 5 cm or more, and 20 N / 5 cm or more. It is more preferably 25 N / 5 cm or more, and particularly preferably 28 N / 5 cm or more.
- the upper limit of the tensile strength is not particularly limited, but may be 70 N / 5 cm or less, 60 N / 5 cm or less, 55 N / 5 cm or less, or 50 N / 5 cm or less. You may.
- a heat-bonded non-woven fabric having a smooth texture and a soft touch can be obtained.
- Such heat-bonded non-woven fabrics are used for various sheets that make up absorbent articles, such as surface sheets, second sheets (also called liquid diffusion sheets), core wrap sheets that wrap absorbent bodies, infant paper diapers and adult paper diapers. It can be used for the back sheet forming the outer surface, but when the composite fiber of the present invention is used to obtain a surface sheet for various absorbent articles, the fiber layer containing the composite fiber is used.
- a surface sheet having excellent tactile sensation and liquid absorption performance can be obtained by using a laminated non-woven fabric having a surface in contact with the skin of the wearer of the absorbent article and another fiber layer provided under the layer. it can.
- the surface sheet for an absorbent article containing the composite fiber of the present invention will be described in detail below.
- the present inventors have made a first fiber layer in contact with the skin and adjacent to the first fiber layer.
- the first fiber layer is a fiber layer containing 50% by mass or more of the first core-sheath type composite fiber
- the second fiber layer is the second core-sheath type composite fiber.
- the above-mentioned composite fiber of the present invention having a single fiber fineness of 0.6 dtex or more and less than 2.0 dtex was used as the first core-sheath type composite fiber, and the core was used as the second core-sheath type composite fiber.
- the first core sheath is made of a fiber containing a polyester resin as a component, a sheath component containing a thermoplastic resin having a melting point of 50 ° C. or higher lower than the melting point of the polyester resin, and a single fiber fineness of 2.2 dtex or more and 7 dtex or less.
- a surface for an absorbent article is obtained by thermally adhering at least a part of the mold composite fiber and the second core sheath type composite fiber with the sheath component of the first core sheath type composite fiber and the second core sheath type composite fiber. It was found that the sheet has a smooth tactile sensation and that the liquid absorption characteristics such as run-off and liquid absorption rate are improved.
- the fineness of the first core-sheath type composite fiber constituting the first fiber layer in contact with the skin and the second fiber layer adjacent to the first fiber layer are formed.
- the fineness of the second core-sheath type composite fiber is set to a specific range, and the fineness of the first core-sheath type composite fiber is made smaller than that of the second core-sheath type composite fiber.
- the first The fiber treatment agent attached to the surface of the 1-core sheath type composite fiber is a fiber treatment agent having lower hydrophilicity, in other words, the fiber treatment agent attached to the surface of the 1-core sheath type composite fiber.
- the fiber treatment agent adhering to the surface of the second core-sheath type composite fiber is used as a fiber treatment agent with high hydrophilicity. It has been found that the liquid absorption characteristics such as run-off and liquid absorption rate are improved while having a smooth tactile sensation.
- the surface sheet for an absorbent article of the present invention includes a first fiber layer that comes into contact with the skin and a second fiber layer that is adjacent to the first fiber layer.
- FIG. 3 is a schematic cross-sectional view of a surface sheet for an absorbent article according to an embodiment of the present invention. As shown in FIG. 3, the surface sheet 30 for an absorbent article is composed of a first fiber layer 31 and a second fiber layer 32 adjacent to the first fiber layer 31.
- the first fiber layer is a fiber layer containing 50% by mass or more of the first core-sheath composite fiber, and the composite fiber of the present invention is used as the first core-sheath composite fiber.
- the composite fiber of the present invention has been specifically described above, and the content relating to the composite fiber of the present invention is incorporated as it is by simply replacing the "composite fiber" with the "first core-sheath composite fiber". Specific description of the core-sheath composite fiber will be omitted.
- the first fiber layer preferably contains 60% by mass or more of the first core-sheath type composite fiber, and more preferably 70% by mass or more of the first core-sheath type composite fiber. More preferably, it contains 80% by mass or more of the first core-sheath type composite fiber, and particularly preferably 90% by mass or more of the first core-sheath type composite fiber and 100% by mass of the first core-sheath type composite fiber. preferable.
- the first fiber layer contains other fibers in addition to the first core-sheath type composite fiber, for example, natural fibers, regenerated fibers, and synthetic fibers can be used as the other fibers.
- Examples of the natural fiber include cotton, silk, wool, hemp, pulp and the like.
- Examples of the regenerated fiber include rayon, cupra and the like.
- Examples of the synthetic fiber include acrylic fiber, polyester fiber, polyamide fiber, polyolefin fiber, polyurethane fiber and the like.
- As the other fiber one or more kinds of fibers can be appropriately selected from the above-mentioned fibers depending on the intended use and the like.
- the second fiber layer contains 50% by mass or more of the second core-sheath type composite fiber in which the core component contains a polyester resin and the sheath component contains a thermoplastic resin having a melting point of 50 ° C. or more lower than the melting point of the polyester resin. It is a fiber layer.
- the second fiber layer preferably contains the second core-sheath type composite fiber in an amount of 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. It is particularly preferably contained in an amount of 90% by mass or more, and most preferably composed of 100% by mass of the second core-sheath type composite fiber.
- the second fiber layer contains other fibers in addition to the second core-sheath type composite fiber
- the first fiber layer contains other fibers in addition to the first core-sheath type composite fiber.
- the illustrated fibers can also be included in the second fiber layer.
- one or more kinds of fibers can be appropriately selected from known fibers including the above-mentioned fibers according to the intended use.
- the second core-sheath type composite fiber has a fineness of 2.2 dtex or more and 7 dtex or less.
- the surface sheet for absorbent articles can be appropriately cushioned. It has properties, a smooth tactile sensation, and good liquid absorption characteristics.
- the fineness of the second core-sheath type composite fiber is less than 2.2 dtex, the number of constituent fibers of the second core-sheath type composite fiber is relatively large due to the small fineness of the second core-sheath type composite fiber, and as a result, the number of constituent fibers is relatively large.
- the second fiber layer has a dense structure, which makes it difficult to absorb excrement such as menstrual blood and urine. Further, when the fineness of the second core-sheath type composite fiber exceeds 7 dtex, the number of constituents of the second fiber layer is relatively small due to the large fineness of the second core-sheath type composite fiber, and as a result, the second fiber The layers become too sparse, making it difficult to absorb excrement such as menstrual blood and urine.
- the fineness of the second core-sheath type composite fiber is more preferably 2.5 dtex or more and 6 dtex or less, further preferably 3 dtex or more and 5.6 dtex or less, and most preferably 3.6 dtex or more and 4.8 dtex or less.
- the core component preferably contains 50% by mass or more of the polyester resin, more preferably 60% by mass or more, further preferably 70% by mass or more, and particularly preferably 80% by mass or more. ..
- the core component contains 50% by mass or more of the polyester resin, the card passability of the second core-sheath type composite fiber is improved.
- the polyester resin is not particularly limited, and for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polylactic acid, and acid components such as isophthalic acid, succinic acid, and adipic acid, and 1 , 4 Butanediol, 1,6 hexanediol and other glycol components, polytetramethylene glycol, polyoxymethylene glycol and other copolymers, and these elastomers.
- the polyester resin is preferably polyethylene terephthalate (hereinafter, also referred to as PET).
- the thermoplastic resin having a melting point lower than that of the polyester resin contained in the core component by 50 ° C. or more is not particularly limited, but it is preferable to use high-density polyethylene. Since the sheath component of the second core-sheath type composite fiber contains high-density polyethylene, the second core-sheath type composite fiber tends to have high rigidity, and the second core-sheath type composite fiber has card-passability and crimping property. Tends to be good.
- the content of high-density polyethylene contained in the sheath component of the second core sheath type composite fiber is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly. It is preferably 100% by mass.
- high-density polyethylene high-density polyethylene that can be used as a sheath component of the above-mentioned first core sheath type composite fiber can be used. It is preferable that the high-density polyethylene contained in the sheath component of the first core-sheath type composite fiber and the high-density polyethylene contained in the sheath component of the second core-sheath type composite fiber have substantially the same melting point.
- the first core-sheath type composite fiber and the second core-sheath type composite fiber are easily heat-bonded by the sheath component of the first core-sheath type composite fiber and the second core-sheath type composite fiber.
- the second core-sheath type composite fiber may be a composite fiber in which the core component contains a polyester resin and the sheath component contains a thermoplastic resin having a melting point of 50 ° C. or higher lower than the melting point of the polyester resin.
- the arrangement of the core component and the sheath component can be arbitrary in the cross section thereof. That is, the second core-sheath type composite fiber may be a core-sheath type composite fiber having a concentric structure in which the core component and the sheath component shown in FIG. 1 are arranged concentrically, and the position of the center of gravity of the core component is the fiber.
- the cross section of the second core-sheath type composite fiber is a core-sheath type composite having a concentric structure in which the core component and the sheath component are arranged concentrically from the viewpoint of the texture, bulkiness, and cushioning property of the obtained surface sheet for absorbent articles. It is preferably a fiber or an eccentric core-sheath type composite fiber (excluding side-by-side type), and more preferably a core-sheath type composite fiber having a concentric structure.
- the shape of the core component in the fiber cross section may be an elliptical shape, a Y shape, an X shape, a polygonal shape, a star shape, or the like, in addition to the circular shape.
- the shape in the above shape may be an elliptical shape, a Y shape, an X shape, a polygonal shape, a star shape, or the like, or a hollow shape.
- the fiber length of the second core-sheath type composite fiber is not particularly limited, and may be, for example, 76 mm or less. From the viewpoint of processability when producing a surface sheet for an absorbent article, the fiber length is preferably 35 mm or more and 65 mm or less, more preferably 40 mm or more and 60 mm or less, and further preferably 44 mm or more and 55 m or less.
- At least a part of the first core sheath type composite fiber and the second core sheath type composite fiber is a sheath component of the first core sheath type composite fiber and the second core sheath type composite fiber. Is heat-bonded.
- the first fiber web containing 50% by mass or more of the first core-sheath type composite fiber and the second fiber web containing 50% by mass or more of the second core-sheath type composite fiber are laminated, and the fiber web having a laminated structure is heat-treated.
- At least a part of the first core-sheath type composite fiber and the second core-sheath type composite fiber is heat-bonded by the sheath component.
- the textile web examples include parallel web, semi-random web, random web, cross web, card web such as Chris cross web, and air raid web. Since the surface sheet for absorbent articles is required to be bulky, flexible, and have some voids between fibers, the fiber web is preferably a card web.
- the first fiber layer and the second fiber layer may be different types of fiber webs.
- the fiber web of the laminated structure is heat-treated to heat-bond the first core-sheath type composite fiber and the second core-sheath type composite fiber by the sheath component of the first core-sheath type composite fiber and the second core-sheath type composite fiber.
- the surface sheet for absorbent articles of the present invention can be obtained in the form of a heat-bonded nonwoven fabric containing the first fiber layer (first fiber web) and the second fiber layer (second fiber web). This is because, in the form of the heat-bonded non-woven fabric, the effects such as flexibility in the thickness direction, bulk recovery, and smooth texture of the non-woven fabric surface are remarkably exhibited.
- the fiber web may be subjected to an entanglement treatment such as a needle punching treatment or a water flow entanglement treatment before and / or after the heat treatment, if necessary.
- an entanglement treatment such as a needle punching treatment or a water flow entanglement treatment before and / or after the heat treatment, if necessary.
- the first fiber web and the second fiber web may be intertwined with each other near the boundary.
- the above heat treatment can be performed by a known heat treatment machine.
- a heat treatment machine such as a hot air penetration type heat treatment machine, a hot air blowing type heat treatment machine, and an infrared heat treatment machine in which pressure such as wind pressure is not so much applied to the fiber web is preferably used.
- the heat treatment conditions such as the heat treatment temperature are such that the sheath components are sufficiently melted and / or softened, and the fibers are joined at the contact points or intersections.
- the heat treatment temperature is Tm, which is the melting point of the high-density polyethylene contained in the sheath component before spinning (when a plurality of high-density polyethylenes are contained in the sheath component, the melting point of the high-density polyethylene having the highest melting point). It is preferable that the range is Tm or more and (Tm + 40 ° C.) or less. A more preferable range of the heat treatment temperature is (Tm + 5 ° C.) or more and (Tm + 30 ° C.) or less.
- the basis weight of the first fiber layer is preferably lower than the basis weight of the second fiber layer from the viewpoint of liquid absorption characteristics.
- the texture of the first fiber layer is preferably 4 g / m 2 or more and 18 g / m 2 or less, and 5 g / m 2 or more and 15 g / m 2 or less. More preferably, it is 6 g / m 2 or more and 12 g / m 2 or less, and 8 g / m 2 or more and 12 g / m 2 or less is most preferable.
- the basis weight of the second fibrous layer is 8 g / m 2 or more 45 g / m 2 or less, 8 g / m 2 or more 35 g / m 2 or less It is more preferably 10 g / m 2 or more and 30 g / m 2 or less, and most preferably 10 g / m 2 or more and 25 g / m 2 or less.
- the basis weight of the entire surface sheet for absorbent articles is preferably 12 g / m 2 or more and 60 g / m 2 or less, more preferably 15 g / m 2 or more and 50 g / m 2 or less, and 15 g / m 2 or more and 40 g. / particularly preferably m 2 or less, and most preferably 18 g / m 2 or more 30 g / m 2 or less.
- the first fiber layer in contact with the skin has an average coefficient of friction on the surface of the first fiber layer measured in a sufficiently dried state from the viewpoint of excellent tactile sensation.
- the variation (MMD) of is preferably 0.1 or less, more preferably 0.05 or less, further preferably 0.01 or less, and particularly preferably 0.008 or less.
- the lower limit of the fluctuation of the average coefficient of friction (MMD) measured in a dried state of the non-woven fabric is not particularly limited, and the closer it is to 0, the more preferable it is, but it may be 0.003 or more, or 0.005. It may be the above.
- the first fiber layer in contact with the skin has a surface roughness on the surface of the first fiber layer measured in a state where the non-woven fabric is sufficiently dried from the viewpoint of excellent tactile sensation.
- the standard mean deviation (SMD) of is preferably 4 or less, more preferably 3.5 or less, further preferably 3.2 or less, and particularly preferably 3 or less.
- the lower limit of the standard average deviation (SMD) of the surface roughness on the surface of the non-woven fabric measured in a dried state is not particularly limited and is preferably close to 0, but may be 0.5 or more. It may be 1 or more, or 1.5 or more.
- the average friction coefficient (MIU) of the surface of the first fiber layer measured in a state where the non-woven fabric is sufficiently dried is 0. It is preferably 25 or less, more preferably 0.24 or less, and even more preferably 0.23 or less.
- the lower limit of the average coefficient of friction (MIU) of the surface of the non-woven fabric measured in a dried state is not particularly limited, and the closer it is to 0, the more preferable it is, but it may be 0.05 or more, or 0. It may be 1 or more.
- the surface sheet for absorbent articles includes a first fiber layer that comes into contact with the skin and a second fiber layer that is adjacent to the first fiber layer, and the first fiber layer that comes into contact with the skin has a fineness of 2.
- the fiber layer that comes into contact with the skin in the surface sheet for absorbent articles is composed of such fibers, after absorbing urine, menstrual blood, loose stool, etc., those liquids continue to be retained in the fiber layer. Liquid residue may occur, causing a decrease in usability.
- the fiber treatment agent adhering to the surface of the second core-sheath type composite fiber contained in the second fiber layer adjacent to the first fiber layer is referred to as a fiber treatment agent having a strong tendency to be hydrophilic.
- a fiber treatment agent having a strong tendency to be hydrophilic By doing so, it is preferable that the transferability of the liquid to the second fiber layer is enhanced.
- the fiber treatment agent attached to the surface of the first core-sheath type composite fiber contained in the first fiber layer is a fiber treatment agent having a weak tendency to be hydrophilic.
- the fiber treatment agent adhering to the surface of the first core-sheath type composite fiber as a fiber treatment agent having moderately weak hydrophilicity, the first fiber layer quickly absorbs urine and menstrual blood discharged to the surface.
- the liquid is not retained between the fibers and the absorbed liquid is transferred to the second fiber layer having stronger hydrophilicity, not only the liquid absorption property is excellent, but also the amount of liquid return can be reduced.
- the strength of hydrophilicity differs between the first fiber layer and the second fiber layer, and it is preferable that the second fiber layer has stronger hydrophilicity than the first fiber layer. ..
- the surface sheet for absorbent articles there are many methods for measuring the strength of hydrophilicity of the surface of the sheet, and minute water droplets are formed on the fibers constituting the first fiber layer and the second fiber layer of the surface sheet for absorbent articles. There is a method of dropping, measuring the contact angle, and measuring the strength of hydrophilicity on the surface of the sheet depending on the size, but by performing a run-off test on the surfaces of the first fiber layer and the second fiber layer, hydrophilicity is obtained.
- the strength of sex can be measured.
- the details of the run-off test will be described later, but after smoothing both surfaces by a predetermined method, physiological saline is dropped on the non-woven fabric tilted at 45 degrees until all the dropped water drops are absorbed in the sheet.
- This is a method of measuring the running distance and evaluating the strength of hydrophilicity based on the length.
- the runoff (R 2 ) measured on the surface of the second fiber layer is preferably 120 mm or less, more preferably 100 mm or less, and more preferably 80 mm or less. It is particularly preferable, and 75 mm or less is most preferable.
- the run-off (R 2 ) of the second fiber layer When the run-off (R 2 ) of the second fiber layer is 120 mm or less, the hydrophilicity of the second fiber layer becomes relatively strong, and the action of drawing the liquid from the first fiber layer becomes strong.
- the difference (R 1 ⁇ R 2 ) between the run-off value (R 1 ) measured on the surface of the first fiber layer and the run-off value (R 2 ) measured on the surface of the second fiber layer is larger than 3 mm. preferable.
- the difference (R 1 to R 2 ) between the run-off value (R 1 ) measured on the surface of the first fiber layer and the run-off value (R 2 ) measured on the surface of the second fiber layer is larger than 3 mm.
- the strength of hydrophilicity is generated between the 1st fiber layer and the 2nd fiber layer, and urine and menstrual blood discharged to the surface of the surface sheet for absorbent articles on the 1st fiber layer side are inside the 1st fiber layer.
- the difference (R 1- R 2 ) between the run-off value (R 1 ) measured on the surface of the first fiber layer and the run-off value (R 2 ) measured on the surface of the second fiber layer should be 4 mm or more. It is preferably 5 mm or more, and most preferably 6 mm or more.
- the run-off value (R 1 ) measured on the surface of the first fiber layer is not particularly limited, but the liquid absorption performance of the first fiber itself (that is, urine and menstrual blood discharged on the surface of the first fiber layer, etc.
- the run-off value (R 1 ) measured on the surface of the first fiber layer is preferably 20 mm or more and 150 mm or less, more preferably 25 mm or more and 140 mm or less, and 30 mm or more and 130 mm or less. It is particularly preferable to have.
- the first fiber layer comes into contact with the skin of the wearer who wears the absorbent articles.
- the surface sheet for absorbent articles is preferably used as a surface sheet for various absorbent articles such as sanitary napkins, infant paper diapers, adult paper diapers, paper diapers for animals such as mammals, panty liners, and incontinence liners. it can.
- the absorbent article of the present invention is not particularly limited as long as it contains the surface sheet for the absorbent article.
- Examples thereof include sanitary napkins, infant paper diapers, adult paper diapers, paper diapers for animals such as mammals, panty liners, and incontinence liners.
- the measurement method and evaluation method used in this example are as follows.
- melting point of high density polyethylene For the melting point of the high-density polyethylene, the melting peak temperature measured according to JIS K 7121 (1987) was taken as the melting point of the high-density polyethylene.
- melt mass flow rate of high density polyethylene (Melt mass flow rate of high density polyethylene (MFR190))
- MFR190 melt mass flow rate of high-density polyethylene was measured under the measurement conditions of a measurement temperature of 190 ° C. and a load of 2.16 kg (21.82 N) according to JIS K 7210-1 (2014).
- the intrinsic viscosity (extreme viscosity) of the polyester resin was measured according to JIS K 7376-5 (2000). Specifically, 1 g of polyethylene terephthalate is dissolved in 100 mL of a mixed solvent in which phenol and 1,1,2,2-tetrachloroethane have a mass ratio of 6/4 (phenol / 1,1,2,2-tetrachloroethane). Then, it was measured at 30 ° C. using a Ubbelohde viscometer.
- a composite fiber after spinning was prepared. 50 mg of the composite fiber was freeze-milled using liquid nitrogen, and the sample was collected with a 0.45 ⁇ m membrane filter and sufficiently dried. Next, 3 mg of the dried sample was weighed, 2.5 mL of a measurement solvent (hexafluoroisopropanol added with sodium trifluoroacetate to 5 mM: HFIP) was added to this sample, and the mixture was stirred at room temperature. At this time, the sheath component (high-density polyethylene) of the composite fiber that is insoluble in hexafluoroisopropanol and the added inorganic filler are generated as insoluble matter.
- a measurement solvent hexafluoroisopropanol added with sodium trifluoroacetate to 5 mM: HFIP
- filtration was performed with a 0.45 ⁇ m membrane filter to obtain a sample solution for measurement.
- the obtained sample solution for measurement was injected into a gel permeation chromatograph device under the conditions of a flow velocity of 0.2 mL / min and an injection amount of 0.02 mL / min to obtain a number average molecular weight (Mn) and a weight average molecular weight (Mw). ), The z average molecular weight (Mz) was measured.
- the crystallite size of high-density polyethylene contained in the sheath component of the composite fiber was calculated by Scherrer's formula (Formula 2) from the obtained diffraction peaks by performing wide-angle X-ray diffraction method by the following method.
- the composite fiber was cut to a length of 2.5 cm.
- the cut sample was weighed at 12.5 mg, and the sample was obtained by binding both ends with an enamel wire.
- a fiber bundle as a sample was fixed to a holder so as to be perpendicular to the incident direction of X-rays, and wide-angle X-ray diffraction was performed.
- the measurement conditions are as follows.
- X-ray diffractometer Smart Lab (registered trademark) for polymers manufactured by Rigaku Co., Ltd.
- X-ray source CuK ⁇ ray (using Ni filter)
- Output 40kV 50mA
- Slit system RS1: 15mm RS2: 20mm
- Measurement direction Fiber radial scan
- Equation 2 ⁇ , ⁇ 0 , and K are as follows. ⁇ (incident X-ray wavelength): 0.15418 nm ⁇ 0 (correction value of half width): 0.46 ° K (Scherrer constant): 0.9
- the transition temperature of the plastic is measured by the following procedure, and the heat absorption peak temperature exists in the temperature range of 125 ° C to 140 ° C.
- the composite fiber contains the amount of heat of fusion ( ⁇ H) of the peak (heat absorption associated with melting is observed from about 120 ° C., the melting peak temperature is reached from 125 ° C. to 140 ° C., and heat absorption associated with melting ends at about 150 ° C.). It was calculated by converting it to the amount of heat of melting ( ⁇ H PE-HD ) of the high-density polyethylene.
- the core-sheath ratio (volume ratio) is based on the density and addition amount of the core component, the thermoplastic resin constituting the sheath component, and the inorganic filler with respect to the core-sheath ratio (volume ratio) for determining the heat of fusion of the high-density polyethylene. ) was converted to the core-sheath ratio (mass ratio), and the ratio of high-density polyethylene to the composite fibers (mass ratio of high-density polyethylene) was determined from the ratio of the inorganic filler contained in the sheath component.
- the differential scanning calorimetry was performed on the composite fiber as a sample based on the transition temperature measurement method of JIS K 7121 (1987) plastic.
- the differential scanning calorimetry was measured using a differential scanning calorimeter (trade name "EXSTAR6000 / DSC6200” manufactured by Seiko Instruments Inc.). By differential scanning calorimetry, the endothermic reaction associated with the melting of the composite fiber was observed from about 120 ° C., the melting peak temperature was reached from 125 ° C. to 140 ° C., and the endothermic reaction associated with the melting of the high-density polyethylene was completed at about 150 ° C. The amount of heat of fusion ( ⁇ H) was measured for the endothermic peak observed in the range of about 120 ° C. to about 150 ° C. From the heat of fusion ( ⁇ H) measured between about 120 ° C. and about 150 ° C., the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene contained in the composite fiber was calculated by the following mathematical formula 3.
- the single fiber strength and breaking elongation of the composite fiber were measured by measuring the single fiber strength (tensile strength) and breaking elongation (elongation rate) according to JIS L 1015 (2010) 8.7 tensile strength and elongation.
- the ratio of single fiber strength to breaking elongation (single fiber strength / breaking elongation) and the product of single fiber strength to the positive square root of breaking elongation (single fiber strength x ⁇ breaking elongation) is JIS L 1015 (2010). It was calculated from the strength of single fiber and the elongation at break measured according to (year).
- the single fiber fineness of the composite fiber was measured according to JIS L 1015 (2010) 8.5 (vibration method).
- the fiber length of the composite fiber was measured according to JIS L 1015 (2010) 8.4.
- the ratio (core / sheath) of the total mass of the portion containing only the core component and the total mass of the portion containing only the sheath component was defined as the core-sheath ratio (volume ratio).
- the draft ratio was calculated by the following formula 4.
- Vs pick-up speed (cm / min)
- d Hole diameter (cm)
- W h Resin discharge amount per single hole (g / min)
- the melt specific gravity is the specific gravity of the core component and the sheath component when they are melted. A certain volume of molten resin is extruded from an extruder set to the same temperature as during melt spinning, and the mass of the extruded resin is measured and extruded. It was measured by dividing the mass of the resin obtained by the above constant volume.
- Card passability The card passability of the composite fiber was evaluated according to the following criteria based on the occurrence of neps and flies when the fiber web was produced using the card machine, and the texture of the obtained fiber web. ++: Since the fibers easily pass through the card machine and almost no neps or flies are generated, a fiber web with a good texture can be obtained. +: Some neps are generated, but it does not affect the texture of the fiber web so much. -: Fiber web cannot be obtained due to poor card passage or a large amount of neps.
- KES measurement method The texture of the heat-bonded non-woven fabric was mechanically evaluated based on the KES (Kawabata Evolution System) method. Specifically, when measuring the average friction coefficient (MIU) and the fluctuation of the average friction coefficient (MMD), a friction feeling tester (product number KES-SE) manufactured by Kato Tech Co., Ltd. is used, and a 10 mm square is used as the measurement sensor. The measurement was carried out under the condition of a static load of 25 gf using the piano wire sensor of. When measuring the average deviation (SMD) of the surface roughness, use a roughness / friction tester (product number KES-SESRU) manufactured by Kato Tech Co., Ltd., and use a 0.5 mm roughness sensor as the measurement sensor.
- KES Kawabata Evolution System
- the measuring unit that measures the friction on the surface of the non-woven fabric moves the sample at a speed of 1 mm per second so as to trace the surface of the non-woven fabric along the direction parallel to the vertical direction (MD direction) of the non-woven fabric.
- MD direction vertical direction
- the vertical direction can be easily recognized because the fibers are aligned in the vertical direction, but if the vertical direction of the non-woven fabric to be measured is unknown, it is perpendicular to any direction and that direction.
- the smaller value is taken as the average friction coefficient of the non-woven fabric, the fluctuation of the average friction coefficient, and the average deviation of the surface roughness.
- the measurement was performed three times, and the average value was taken as the measured value (MIU, MMD, SMD) in the sample.
- the measurement surface (the surface of the first fiber layer and the surface of the second fiber layer) is smoothed by placing the sample in contact with the conveyor net surface of the hot air penetration type heat treatment machine and treating for 9 seconds.
- the measurement surface (the surface of the first fiber layer and the surface of the second fiber layer) is smoothed by placing the sample in contact with the conveyor net surface of the hot air penetration type heat treatment machine and treating for 9 seconds.
- (3) Four "Kim Towels (registered trademarks)" manufactured by Nippon Paper Cresia Co., Ltd. are laid on a support base having a cross section of a substantially vertical isosceles triangle having a slope at an angle of 45 degrees with a horizontal plane. , The non-woven fabric to be used as a sample was placed and fixed on it so that the vertical direction of the non-woven fabric was at an angle of 45 degrees with the horizontal plane.
- a surface sheet for an absorbent article (vertical direction (MD direction) 10 cm, horizontal direction) for evaluating the liquid absorption rate and the liquid return property on the remaining absorber by peeling off the surface sheet from the commercially available absorbent article.
- the direction (CD direction) 10 cm) was placed.
- the surface of the first fiber layer was set so as to be the measurement surface.
- the liquid absorbing cylinder is placed on the set surface sheet for absorbent articles (that is, on the first fiber layer), and physiological saline can be poured into the first fiber layer of the surface sheet for absorbent articles through the liquid absorbing cylinder. I made it.
- the weight is removed, and the mass (W 1 ) of the filter paper (30 sheets stacked) that has absorbed the physiological saline is measured.
- the mass difference (W 1 ⁇ W 0 ) of the filter paper before and after absorbing the physiological saline was defined as the first liquid return amount (g).
- the above (i) to (iii) were repeated, and the second liquid absorption rate and the liquid return amount were measured.
- PET polyethylene terephthalate
- PE-HD high-density polyethylene
- PE-HD1 melting point: 133 ° C., density 0.956 g / cm 3 , MFR 190: 22 g / 10 min high-density polyethylene, manufactured by Japan Polyethylene Corporation, product name "Novatec (registered trademark) HE490"
- PE-HD2 melting point: 136 ° C., density 0.956 g / cm 3 , MFR190: 26 g / 10 min high-density polyethylene, manufactured by Japan Polyethylene Corporation, product name "Novatec (registered trademark) HE491J”
- PE-HD3 melting point: 135 ° C., density 0.954 g / cm 3 , MFR 190: 30 g / 10 min high-density polyethylene, manufactured by SK global chemical, product number "MM810”
- PE-HD4 melting point
- Examples 1 to 9, Comparative Examples 1 to 3 The above-mentioned high-density polyethylene was used as a sheath component, and the above-mentioned polyethylene terephthalate was used as a core component.
- the core component polyethylene terephthalate a masterbatch in which titanium oxide is added to the same polyethylene terephthalate is prepared in advance, and the content of titanium oxide in the entire composite fiber is the ratio shown in Tables 1 and 2.
- the masterbatch was added as in.
- the prepared sheath component and core component are discharged using a concentric concentric sheath-type composite nozzle so that the composite ratio (volume ratio) of the sheath component and the core component is the composite ratio shown in Tables 1 and 2.
- the spinning temperature of the sheath component is 270 ° C or 290 ° C
- the spinning temperature of the core component is 340 ° C
- the nozzle temperature is 290 ° C
- the extruded molten fibers are taken up so as to have the draft ratios shown in Tables 1 and 2.
- Undrawn fiber tow of single fiber fineness shown in Table 1 and Table 2 was obtained.
- the obtained undrawn fiber tow was wet-stretched in hot water at 80 ° C. at the draw ratios shown in Tables 1 and 2 to obtain a drawn fiber tow.
- the treatment tank filled with an aqueous solution of the fiber treatment agent to impart hydrophilicity concentration of the active ingredient of the fiber treatment agent: 5% by mass
- an excess aqueous solution of the fiber treatment agent is added.
- the water content was adjusted so that the component of the fiber treatment agent was 0.3% by mass when the mass of the composite fiber was 100% by mass by squeezing it out with a resin roll (nip roll).
- the tow heat treatment was performed on the drawn fiber tow to which the fiber treatment agent was applied.
- the tow heat treatment was carried out by putting the drawn fiber toe in a tense state 1.0 times and spraying steam set at 100 ° C. on the drawn fiber toe for 3 seconds.
- the drawn fiber toe that had been heat-treated toe under the above conditions was mechanically crimped with a stuffing box type crimper.
- the temperature of the surface of the drawn fiber toe immediately before entering the inside of the stuffing box type crimper was measured and found to be 85 ° C.
- the temperature of the surface of the drawn fiber toe immediately after coming out from the inside of the stuffing box type crimper was measured and found to be 70 ° C.
- the annealing treatment and the drying treatment were simultaneously performed in a relaxed state for 15 minutes.
- the drawn fiber tow was cut to a predetermined length shown in Tables 1 and 2 to obtain a composite fiber.
- Example 10 After obtaining undrawn fibers under the same melt-spun conditions as the composite fibers of Example 9, the obtained undrawn fibers were drawn under the same drawing conditions as in Example 9 to obtain drawn fiber tow. Next, the drawn fibers were placed in a treatment tank filled with an aqueous solution of a hydrophilic fiber treatment agent (concentration of the active ingredient of the fiber treatment agent: 5% by mass), which is mainly composed of C12 alkyl phosphate potassium salt and has no water resistance.
- a hydrophilic fiber treatment agent concentration of the active ingredient of the fiber treatment agent: 5% by mass
- the mass of the composite fiber is 100% by mass by impregnating the tow and then squeezing out an excess aqueous solution of the fiber treatment agent with a resin roll (nip roll)
- the component of the fiber treatment agent becomes 0.3% by mass.
- the amount of water was adjusted.
- the drawn fiber tow to which the fiber treatment agent was applied was heat-treated with the tow under the same conditions as in Example 9, and then mechanically crimped with a stuffing box type crimper and blown with hot air at 110 ° C.
- the annealing treatment and the drying treatment were simultaneously performed in a relaxed state for 15 minutes.
- the drawn fiber toe was cut to 45 mm to obtain a composite fiber.
- a fiber web having a basis weight of 20 g / m 2 was produced by a roller-type card machine.
- the obtained fiber web was heat-treated for 10 seconds using a hot air blowing device set at 135 ° C. to melt the sheath component, and the heat-bonded nonwoven fabric of Example 10 was obtained.
- Example 11 When producing the composite fiber, the composite fiber was produced under the same conditions except that the composite fiber was produced using a fiber treatment agent containing C12 alkyl phosphate potassium salt as a fiber treatment agent and having water resistance. The obtained composite fiber was used to prepare a heat-bonded non-woven fabric under the same conditions as in Example 10 to obtain a heat-bonded non-woven fabric of Example 11.
- Example 12 Similar to Example 11, under the same conditions as in Example 10 except that a water-repellent fiber treatment agent containing C18 alkyl phosphate potassium salt as a main component was used as the fiber treatment agent when producing the composite fiber.
- the composite fiber and the heat-bonded non-woven fabric were produced and used as the heat-bonded non-woven fabric of Example 12.
- Example 13 After obtaining undrawn fibers under the same melt-spun conditions as the composite fibers of Example 1, the obtained undrawn fibers were drawn under the same drawing conditions as in Example 1 to obtain drawn fiber tow. Next, the drawn fibers were placed in a treatment tank filled with an aqueous solution of a hydrophilic fiber treatment agent (concentration of the active ingredient of the fiber treatment agent: 5% by mass), which is mainly composed of C12 alkyl phosphate potassium salt and has no water resistance.
- a hydrophilic fiber treatment agent concentration of the active ingredient of the fiber treatment agent: 5% by mass
- the mass of the composite fiber is 100% by mass by impregnating the tow and then squeezing out an excess aqueous solution of the fiber treatment agent with a resin roll (nip roll)
- the component of the fiber treatment agent becomes 0.3% by mass.
- the amount of water was adjusted.
- the drawn fiber tow to which the fiber treatment agent was applied was heat-treated with the tow under the same conditions as in Example 1, and then mechanically crimped with a stuffing box type crimper, and then with a hot air blowing device set at 110 ° C.
- the annealing treatment and the drying treatment were simultaneously performed in a relaxed state for 15 minutes.
- the drawn fiber tow was cut to 30 mm to obtain a composite fiber.
- a fiber web having a basis weight of 20 g / m 2 was produced by a roller-type card machine.
- the obtained fiber web was heat-treated for 10 seconds using a hot air blowing device set at 135 ° C. to melt the sheath component, and the heat-bonded nonwoven fabric of Example 13 was obtained.
- Comparative Example 4 Commercially available core-sheath composite fiber with concentric structure (“NBF” manufactured by Daiwa Bow Polytech Co., Ltd. (NBF is a registered trademark), single fiber fineness 4.4 dtex, fiber length 51 mm, implemented as a fiber treatment agent to be attached to the fiber surface Using the same hydrophilic fiber treatment agent as the composite fiber used in producing the heat-bonded non-woven fabric of Example 10 and Example 13) under the same conditions as when the heat-bonded non-woven fabric of Example 10 was manufactured. A heat-bonded non-woven fabric was produced to obtain a heat-bonded non-woven fabric of Comparative Example 4.
- Example 14 Using the composite fiber produced in the same manner as in Example 13, a first fiber web having a basis weight of 10 g / m 2 was produced by a roller-type card machine. Next, a commercially available core-sheath composite fiber having a concentric structure (“NBF” manufactured by Daiwa Bow Polytech Co., Ltd. (NBF is a registered trademark), single fiber fineness 4.4 dtex, fiber length 51 mm, C12 alkyl phosphate potassium salt) is used. A fiber treatment agent having a higher hydrophilicity than the fiber treatment agent used for the composite fiber used in producing the heat-bonded non-woven fabric of Example 13 is attached to the fiber surface).
- NPF core-sheath composite fiber having a concentric structure
- a fiber treatment agent having a higher hydrophilicity than the fiber treatment agent used for the composite fiber used in producing the heat-bonded non-woven fabric of Example 13 is attached to the fiber surface).
- a second fiber web having a grain size of 15 g / m 2 was produced using a type card machine.
- the obtained laminated fiber web is heat-treated for 9 seconds using a hot air penetrating heat treatment machine set at 135 ° C. to obtain the first fiber web and the first fiber web.
- Heat-bonded non-woven fabric containing the first fiber layer and the second fiber layer by melting the sheath component of the composite fiber contained in the fiber web and heat-bonding the first fiber web and the second fiber web (grain 25 g / m 2 ).
- the laminated fiber web is heat-treated with the first fiber web, which is the first fiber layer, in contact with the conveyor net surface of the hot air penetrating heat treatment machine, and the hot air is applied to the laminated fiber web from the second fiber layer side. I sprayed it.
- the run-off value (R 1 ) on the surface of the first fiber layer was 51 mm
- the run-off value (R 2 ) of the second fiber layer was 40 mm
- the run-off value of the first fiber layer and the run-off value of the second fiber layer was 11 mm, and it was confirmed that the hydrophilicity of the second fiber layer was stronger than that of the first fiber layer.
- Example 15 Using the composite fiber produced in the same manner as in Example 13, a first fiber web having a basis weight of 10 g / m 2 was produced by a roller-type card machine. Next, a commercially available core-sheath composite fiber having a concentric structure (“NBF” manufactured by Daiwa Bow Polytech Co., Ltd. (NBF is a registered trademark), fineness 4.4 dtex, fiber length 51 mm, and heat-bonded nonwoven fabric of Example 11 are produced. Using the same fiber treatment agent as the fiber treatment agent used for the composite fiber used at the time, a second fiber web having a grain size of 10 g / m 2 was prepared by a roller type card machine.
- NPF core-sheath composite fiber having a concentric structure
- the obtained laminated fiber web is heat-treated for 15 seconds using a hot air penetrating heat treatment machine set at 135 ° C. to obtain the first fiber web and the first fiber web.
- a hot air penetrating heat treatment machine set at 135 ° C. to obtain the first fiber web and the first fiber web.
- the laminated fiber web is heat-treated with the first fiber web, which is the first fiber layer, in contact with the conveyor net surface of the hot air penetrating heat treatment machine, and the hot air is applied to the laminated fiber web from the second fiber layer side.
- the run-off value (R 1 ) on the surface of the first fiber layer was 51 mm
- the run-off value (R 2 ) of the second fiber layer was 43 mm
- the run-off value of the first fiber layer and the run-off value of the second fiber layer was 8 mm, and it was confirmed that the hydrophilicity of the second fiber layer was stronger than that of the first fiber layer.
- Example 16 Using the composite fiber produced in the same manner as in Example 10 (however, the fiber length was changed to 38 mm), a first fiber web having a basis weight of 10 g / m 2 was produced by a roller card machine. Next, a commercially available core-sheath composite fiber having a concentric structure (“NBF” manufactured by Daiwa Bow Polytech Co., Ltd. (NBF is a registered trademark), fineness 4.4 dtex, fiber length 51 mm, and heat-bonded nonwoven fabric of Example 11 are produced. Using the same fiber treatment agent as the fiber treatment agent used for the composite fiber used at the time, a second fiber web having a grain size of 10 g / m 2 was prepared by a roller type card machine.
- NPF core-sheath composite fiber having a concentric structure
- the obtained laminated fiber web is heat-treated for 15 seconds using a hot air penetrating heat treatment machine set at 135 ° C. to obtain the first fiber web and the first fiber web.
- a hot air penetrating heat treatment machine set at 135 ° C. to obtain the first fiber web and the first fiber web.
- the laminated fiber web is heat-treated with the first fiber web, which is the first fiber layer, in contact with the conveyor net surface of the hot air penetrating heat treatment machine, and the hot air is applied to the laminated fiber web from the second fiber layer side.
- the run-off value (R 1 ) on the surface of the first fiber layer was 55 mm
- the run-off value (R 2 ) of the second fiber layer was 48 mm
- the run-off value of the first fiber layer and the run-off value of the second fiber layer was 7 mm, and it was confirmed that the hydrophilicity of the second fiber layer was stronger than that of the first fiber layer.
- Example 17 Using the composite fiber produced in the same manner as in Example 13, a first fiber web having a basis weight of 10 g / m 2 was produced by a roller-type card machine. Next, the composite fiber used in producing the heat-bonded non-woven fabric of Comparative Example 4 (“NBF” (NBF is a registered trademark) manufactured by Daiwa Bow Polytech Co., Ltd.), fineness 4.4 dtex, fiber length 51 mm, heat-bonding of Example 13. A second fiber web with a grain size of 10 g / m 2 was prepared with a roller-type card machine using the same fiber treatment agent used for the composite fiber used when producing the non-woven fabric). ..
- the obtained laminated fiber web is heat-treated for 15 seconds using a hot air penetrating heat treatment machine set at 135 ° C. to obtain the first fiber web and the first fiber web.
- a hot air penetrating heat treatment machine set at 135 ° C. to obtain the first fiber web and the first fiber web.
- the laminated fiber web is heat-treated with the first fiber web, which is the first fiber layer, in contact with the conveyor net surface of the hot air penetrating heat treatment machine, and the hot air is applied to the laminated fiber web from the second fiber layer side.
- the run-off value (R 1 ) on the surface of the first fiber layer was 51 mm
- the run-off value (R 2 ) of the second fiber layer was 48 m
- the run-off value of the first fiber layer and the run-off value of the second fiber layer was 3 mm, and it was confirmed that the hydrophilicity of the first fiber layer and the second fiber layer was about the same.
- the composite fibers of Examples 1 to 9 have good card-passability. This is because the composite fibers of Examples 1 to 9 have a crystallite size of 20.0 nm or more and 50.0 nm or less measured on the [110] plane of high-density polyethylene, and are measured by differential scanning calorimetry (DSC). It is presumed that this is related to the fact that the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene was 145.0 mJ / mg or more. Since the composite fibers of Examples 1 to 9 have a larger heat of fusion ( ⁇ H PE-HD ) of high - density polyethylene than the composite fibers of Comparative Example 1, the composite fibers of Examples 1 to 9 have high-density polyethylene.
- DSC differential scanning calorimetry
- the crystallite size measured for the [110] plane of the above is not only crystallization progressing to 20.0 nm or more, but also the crystal is growing large, and in addition, the crystallization of high-density polyethylene is further progressing by tow heating. As a result, the rigidity of the sheath component is strengthened, and it is not possible to pass through the card machine at high speed, and it is presumed that the card passability is improved.
- the crystallite size and heat of fusion ( ⁇ H PE-HD ) of high-density polyethylene are within the above-mentioned ranges, so that the strength and elongation of the single fiber, the ratio of the strength and the elongation of the single fiber, and the strength and elongation of the single fiber can be determined.
- the composite fiber of Comparative Example 1 is a composite fiber of less than 2.0 dtex, but the card passability is lower than that of the composite fiber of Example. This is because the fibers of Comparative Example 1 are not subjected to the toe heat treatment unlike the composite fibers of Examples 1 to 9, so that when the drawn fiber filaments are crimped in the crimping step, the drawn fiber toe is formed.
- the desired crimped shape was given to the composite fiber in an unheated state, in other words, in a state where the thermal vibration of the crystalline part and the amorphous part inside the high-density polyethylene was not sufficient, the desired crimped shape was given to the composite fiber, so that the desired crimp shape was given to the composite fiber, so that depending on the passage of time and pressure. It is presumed that the crimped shape is easily lost. Further, from the results of Comparative Example 2 and Comparative Example 3, the balance between the fluidity and the cooling rate of the core component and the sheath component at the time of melt spinning is lost due to too much sheath component and too low fluidity of the sheath component. , It was confirmed that melt spinning could not be performed.
- the heat-bonded non-woven fabric containing the composite fiber of the present invention has an excellent texture, and when it touches the surface of the non-woven fabric, a feeling of friction is felt. It can be seen that there is little and smooth touch. That is, since the heat-bonded nonwoven fabrics of Examples 10 to 13 have a smaller average friction coefficient (MIU) than the nonwoven fabrics of Comparative Example 4, it can be confirmed that the frictional force itself generated when touched is small.
- MIU average friction coefficient
- the heat-bonded nonwoven fabrics of Examples 10 to 13 have a small friction feeling itself and Since the fluctuation is small, when the surface is touched with bare hands, a smooth texture can be obtained without a feeling of being caught on the skin due to the fluctuation of the friction coefficient. Further, it can be seen that by using the composite fiber of the present invention, a heat-bonded nonwoven fabric having excellent texture can be obtained regardless of the application.
- a fiber treatment agent for producing the composite fiber was selected, and a water-repellent fiber treatment agent was used from the composite fiber (Example 11) using the fiber treatment agent exhibiting strong hydrophilicity. There are even composite fibers (Example 12). Since the variation (MMD) of the average friction coefficient (MIU) and the average friction coefficient of each of the heat-bonded non-woven fabrics of Examples 10 to 12 is smaller than that of the heat-bonded non-woven fabric of Comparative Example 4, it can be obtained regardless of the type of fiber treatment agent.
- the composite fiber of the present invention using a fiber treatment agent exhibiting hydrophilicity can absorb the heat-bonded non-woven fabric containing it, such as a surface sheet for an article or interpersonal wiping.
- the tactile sensation when touched is smooth and preferable.
- the composite fiber of the present invention using a water-repellent fiber treatment agent has a smooth feel when touched when a heat-adhesive non-woven fabric containing the same is used for a back sheet (also called a leak-proof sheet) of an absorbent article. Will be preferable.
- a laminated nonwoven fabric in which the fiber layer containing the composite fiber of the present invention is used as the first fiber layer in contact with the skin and the fiber layer containing the composite fiber having a higher fineness than the composite fiber of the present invention is used as the second fiber layer. It can be seen that when used as a surface sheet for absorbent articles, it becomes a surface sheet for absorbent articles that exhibits an excellent texture. That is, in Table 4, the laminated nonwoven fabrics of Examples 14 to 17 have a variation in average friction coefficient (MIU) and average friction coefficient (MMD) for the first fiber layer, which is a surface in contact with the skin of the wearer of the absorbent article.
- MIU average friction coefficient
- MMD average friction coefficient
- the hydrophilicity of the second fiber layer becomes stronger than the hydrophilicity of the first fiber layer, so that between the second fiber layer and the first fiber layer.
- a hydrophilic gradient is generated, and the action of the second fiber layer to draw in and absorb liquids such as urine and menstrual blood absorbed by the first fiber layer is strengthened. Therefore, the urine and menstrual blood absorbed by the first fiber layer migrate to the second fiber layer and then to the absorber adjacent to the second fiber layer, so that the first fiber layer is dense containing composite fibers of fine fineness.
- the surface sheet for absorbent articles of Example 17 is hydrophilic because the fiber treatment agent attached to the fibers constituting the first fiber layer and the second fiber layer has the same degree of hydrophilicity. Since the gradient of the fiber is small or hardly occurs, the first fiber layer containing the fine fiber is likely to be a dense fiber layer, so that urine and menstrual blood absorbed by the first fiber layer are easily retained.
- the present invention includes, for example, one or more embodiments described below.
- a composite fiber containing a core component and a sheath component The core component and the sheath component are arranged substantially concentrically, and the composite ratio of the core component and the sheath component is 30/70 to 70 in terms of the volume ratio of the core component and the sheath component (core component / sheath component). / 30 Single fiber fineness is 0.6 dtex or more and less than 2.0 dtex,
- the core component contains 60% by mass or more of polyester resin.
- the sheath component contains 60% by mass or more of high-density polyethylene.
- the melt mass flow rate (MFR: measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) of the high-density polyethylene is larger than 13 g / 10 minutes and 45 g / 10 minutes or less.
- the crystallite size measured for the [110] plane of the high-density polyethylene contained in the sheath component is 20.0 nm or more and 50.0 nm or less.
- a composite fiber characterized in that the heat of fusion ( ⁇ H PE-HD ) of the high-density polyethylene measured by differential scanning calorimetry (DSC) is 145.0 mJ / mg or more.
- the single fiber strength of the composite fiber is 1.5 cN / dtex or more and 5.0 cN / dtex or less.
- the breaking elongation of the composite fiber is 20% or more and 150% or less.
- the composite according to [1], wherein the ratio of the single fiber strength to the breaking elongation (single fiber strength [cN / dtex] / breaking elongation [%]) of the composite fiber is larger than 0.04 and 0.12 or less. fiber.
- MFR melt mass flow rate
- the process of extruding at a temperature of 250 ° C or higher and 350 ° C or lower The sheath component covers the surface of the composite fiber in the fiber cross section so that the volume ratio of the core component and the sheath component (core component / sheath component) is 30/70 to 70/30 between the core component and the sheath component.
- the undrawn fibers in a molten state composed of the extruded core component and the sheath component are cooled while being taken up so that the draft ratio is 600 or more and 1500 or less, and the core component and the sheath component are solidified, and the single fiber fineness is 1.
- a step of obtaining an undrawn fiber tow of 8.8 dtex or more and 4.5 dtex or less A step of stretching the undrawn fiber tow at a temperature of 70 ° C. or higher and 120 ° C. or lower to 1.6 times or more and 3.6 times or less to obtain a drawn fiber tow having a single fiber fineness of 0.6 dtex or more and less than 2.0 dtex.
- a step of applying a fiber treatment agent to the drawn fiber tow A step of heating the surface of the drawn fiber tow to 60 ° C. or higher using steam as a medium for the drawn fiber tow to which the fiber treatment agent is applied.
- a method for producing a composite fiber including. [8] The method for producing a composite fiber according to [7], wherein the step of obtaining the drawn fiber tow is wet drawing using warm water of 70 ° C. or higher and 100 ° C. or lower. [9] A heat-bonded non-woven fabric containing 25% by mass or more of the composite fiber according to any one of [1] to [6], and at least a part of the composite fiber is bonded by a sheath component. [10] The heat-bonded non-woven fabric according to [9], wherein the variation (MMD) of the average friction coefficient measured based on the KES method is 0.01 or less.
- MMD variation of the average friction coefficient measured based on the KES method
- a surface sheet for an absorbent article including a first fiber layer in contact with the skin and a second fiber layer adjacent to the first fiber layer.
- the first fiber layer is a fiber layer containing 50% by mass or more of the first core-sheath type composite fiber
- the first core-sheath composite fiber is the composite fiber according to any one of claims 1 to 6.
- the second fiber layer is a fiber layer containing 50% by mass or more of a second core-sheath type composite fiber
- the second core-sheath type composite fiber contains a polyester resin as a core component and a sheath component of the polyester resin. It is a core-sheath type composite fiber containing a thermoplastic resin having a melting point of 50 ° C.
- the basis weight of the first fiber layer is 4 g / m 2 or more and 18 g / m 2 or less, the basis weight of the second fiber layer is 8 g / m 2 or more and 45 g / m 2 or less, and the second fiber layer.
- the first core-sheath type The fiber treatment agent adhering to the surface of the composite fiber is a fiber treatment agent with lower hydrophilicity.
- Surface sheet for. An absorbent article comprising the heat-bonded nonwoven fabric according to [9] or [10], or the surface sheet for an absorbent article according to any one of [11] to [13].
- the composite fiber of the present invention can be contained in a heat-bonded non-woven fabric, and the heat-bonded non-woven fabric can be used for sanitary napkins, infant paper diapers, adult paper diapers, paper diapers for animals such as mammals, panty liners, and incontinence. It can be preferably used as a surface sheet for various absorbent articles such as liners for paper, and for applications such as back sheets for infant paper diapers and adult paper diapers, and for absorbent articles, it is located on the absorber side of the surface sheet, for example, directly under the surface sheet. It can also be preferably used as a second sheet.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
本発明は、芯成分と鞘成分が実質的に同心円状に配置され、芯成分/鞘成分の体積比が30/70~70/30であり、単繊維繊度が0.6dtex以上2.0dtex未満であり、芯成分はポリエステル樹脂を60質量%以上含み、鞘成分は高密度ポリエチレンを60質量%以上含み、高密度ポリエチレンのメルトマスフローレイトが13g/10分より大きく45g/10分以下であり、鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0~50.0nmであり、示差走査熱量分析(DSC)で測定した高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上である複合繊維に関する。
Description
本発明は、複合繊維、その製造方法、ならびにそれを含む熱接着不織布、吸収性物品用表面シート、および吸収性物品に関する。
融点の異なる2種類の熱可塑性樹脂を使用した複合繊維には様々な種類の繊維が存在する。複合繊維の中でも、2種類の熱可塑性樹脂のうち、融点がより低い熱可塑性樹脂を繊維の外側に配置し(この樹脂成分は鞘成分と称される。)、もう一方の、融点がより高い熱可塑性樹脂を繊維の内側に配置した(この樹脂成分は芯成分と称される。)芯鞘型複合繊維は、熱風処理機や加熱した金属ロールを使用して繊維の外側に配置された熱可塑性樹脂を溶融することで、他の繊維と容易に接着させることができる繊維として知られている。このような芯鞘型複合繊維を含む繊維ウェブは、上記鞘成分を溶融させることで他の繊維と容易に接着する。このようにして得られる熱接着不織布は、嵩高性や柔軟性に優れた不織布になるため、生理用ナプキンや紙オムツなどの吸収性物品における表面シートや、吸収性物品の外側部分を構成するバックシートに使用されているだけでなく、各種対人ワイピングシート、各種対物ワイピングシート、医療用品、化粧品、各種吸収材(例えば漏出した油を吸収する油吸収材がある。)、液体ろ過フィルターやエアフィルターのろ過材といった各種フィルター材料など、幅広い用途で使用されている。
熱接着不織布の用途のうち、吸収性物品の表面シートやバックシート、化粧料含浸皮膚被覆シートなど、熱接着不織布が使用時に人の肌に直接触れる用途では、熱接着不織布がより柔らかく、より滑らかな触感を有することが求められている。そのため熱接着不織布に使用する複合繊維は単繊維繊度をより小さくすることが求められている。
熱接着不織布を製造する際、複合繊維を含む繊維ウェブを製造する方法は種々存在するが、嵩高で柔らかい熱接着不織布を得るためには乾式法、より具体的にはカード法にて複合繊維を含む繊維ウェブを製造し、得られた繊維ウェブを熱処理することで繊維ウェブに含まれる複合繊維の鞘成分を溶融し繊維同士を接着させる方法が一般的である。しかし、カード法で繊維ウェブを製造する場合、繊維の直径(繊維の単繊維繊度)が小さくなるほど当該繊維のカード通過性が低下し、不織布の生産性が低下しやすくなる。その原因としては、カード機を通過させる繊維が、より単繊維繊度(直径)の小さい繊維になることで繊維の弾性(コシ)が小さくなり、カード機にて繊維ウェブにする際、カード機内部で繊維同士が絡まり、ネップと呼ばれる粒状の繊維塊が発生しやすくなることが挙げられる。
また、カード機にて繊維ウェブを作製する繊維には、カード機内部での通過性を高め、繊維ウェブが容易に形成されるようにするため、通常鋸歯状の捲縮形状が付与されている。複合繊維は、所望の捲縮数を付与して製造されるが、これらの繊維は強く圧縮された状態で梱包されて出荷されるため、長時間圧縮された状態となる。加えて、出荷された複合繊維を使用する際、圧縮された複合繊維の塊から、繊維を少しずつ掻き取り、繊維をカード機に投入して繊維ウェブとするが、これらの工程でも繊維に対して強い力が働く。そのため繊維を製造する際、所望の捲縮数の捲縮が付与されていても、圧縮状態での長期間の保管、および不織布製造時の開繊工程で加えられる力によって、捲縮の形状が崩れることがある。捲縮の形状が崩れた繊維は、カード機内部でシリンダーロールによって引き揃えられず、他の繊維とも絡みにくいことから、カード機内部でカードワイヤーに絡まずに舞い上がってしまう、いわゆる"フライ"の状態になり、不織布の生産性が低下する。繊維の単繊維繊度が小さくなる、すなわち繊維の直径が小さくなると圧縮状態が長期間続くこと、あるいはカード機に投入される前の開繊工程や混綿工程において強い力が繊維に対して加えられることで捲縮の形状が崩れやすく、この点からもカード通過性の改良が求められている。
加えて、吸収性物品といった衛生材料や医療用品に使用する熱接着不織布は、使用者に対し清潔感を与えるため、通常見た目が白いことが求められる。また、吸収性物品に使用する不織布の中でも装着者の肌と接する面に使用する表面シートは、見た目が白いだけでなく、体の外に排出された血液(経血)や、尿や流動性のある便などの排泄物を迅速に吸収することに加え、吸収した血液や排泄物を表面から見えにくくする、いわゆる隠蔽性が求められる。熱接着不織布の見た目の白さを高めたり、熱接着不織布の隠蔽性を高めたりする目的で、複合繊維は二酸化チタン(単に酸化チタンとも称す。)や酸化亜鉛などの無機フィラー(白色顔料)を混ぜた熱可塑性樹脂を用いて製造する。無機フィラーを含む合成繊維は、無機フィラーが異物として働くため、可紡性が低下しやすいだけでなく、単繊維強度および繊維の弾性が低下するため、カード機にて開繊する際、ネップやフライが生じやすくなる。このように、細繊度にすることに伴うカード通過性の低下、および無機フィラーの添加に伴うカード通過性の低下から、細繊度(2.0dtex未満)の複合繊維では、細繊度化とともに、カード通過性の改良が求められている。
さらに、細繊度の複合繊維を使用した熱接着不織布を、特に性能の向上が著しい吸収性物品用シートとして用いる場合は、熱接着不織布の嵩高性、および通液性をさらに改善することが求められる。具体的には、細繊度の複合繊維が繊維径の小さい繊維になりやすいため、これを含む熱接着不織布は従来の複合繊維(すなわち、繊度が2.0dtex以上の複合繊維)と比較して得られる熱接着不織布の嵩(比容積)に劣る傾向がある。熱接着不織布の嵩が小さい場合、吸収性物品用シートとして所望の触感が得られないおそれがあり、吸収性物品の表面シートやバックシートではその傾向が顕著になる。また、細繊度の複合繊維を含む熱接着不織布は、前記のように不織布の嵩が不足する可能性があるだけでなく、繊維が細く、嵩が大きくなりにくいことから、当該細繊度の複合繊維を含む繊維層が、繊維層を構成する繊維と繊維との間に存在する空隙が少ない、緻密すぎる繊維層になるおそれがある。吸収性物品用表面シートにおいて、肌に触れる面が緻密になりすぎると、その繊維層を血液や尿といった液体が通過する際に時間がかかるようになり、通液性が悪化したり、血液や尿といった液体がシート上に残る、液残りを発生させたりするおそれがある。
複合繊維としては、これまで数々の提案がなされている。特許文献1では熱接着性複合繊維の繊度と捲縮率、捲縮数の最大値や最小値の差などを調整するため、捲縮付与前にトウを所定温度に加熱し、その後仕上げ油剤を吹きかけて冷却した後、捲縮を付与するという製法で作られた熱接着性複合繊維が開示されている。しかし、特許文献1に開示されている技術内容では、生産設備や製造条件が限られる他、実際に得られた熱接着性繊維の繊度は2.4~3.4dtexであり、触感の改良のため、さらなる細繊度化が求められるものである。特許文献2では、固有粘度0.3~0.55のアルキレンテレフタレートを芯成分とした複合繊維が開示されている。特許文献2に記載の複合繊維は、繊度が1.1dtex未満の複合繊維が得られているが、固有粘度が特に低粘度のアルキレンテレフタレートを使用するため、使用できるアルキレンテレフタレート樹脂が制限される。加えて、この複合繊維は不織布にした際の手切れ性に特徴がある複合繊維であり、衛生材料用の熱接着不織布やフェイスマスク、フィルター材といった用途であれば、繊維やそれを用いて得られる不織布の機械的強度が不足するおそれがある。
特許文献3にはポリエステル系樹脂を含む第1成分と、ポリオレフィン系樹脂とを含み、繊維を破断させたとき破断仕事量が1.6cN・cm/dtex以上、破断強度(cN/dtex)と破断伸度(%)の比が0.005~0.040([cN/dtex]/[%])の熱融着性複合繊維が開示されている。しかし特許文献3に記載の熱融着性複合繊維では、繊維の伸度がいずれも大きく(100%~)、伸びやすく、柔らかい状態であることが分かる(特許文献3の実施例1~5)。このため、繊維に対し繊維軸方向に対し引っ張る力が加えられた場合は、繊維自身が伸びることで耐えることができるが、繊維そのものは伸びやすい、柔らかい状態であるため、様々な方向から力が加わることでよじれ、他の繊維と絡み合うことで、カード機においてネップが発生しやすくなるおそれがある。加えて単繊維強度が小さいことから、得られる熱融着性複合繊維を繊維ウェブにした際、繊維ウェブの弾性、剛性が不足することで、取り扱い性に問題が生じるおそれもある。
特許文献4、5には芯樹脂がポリエステル樹脂、鞘成分がポリオレフィン樹脂で構成された複合繊維が開示されている。特許文献4では捲縮を付与する際にトウの温度を一定の温度にする方法で製造することが開示され、特許文献5では芯成分を固有粘度が0.60~0.75のポリエステル系樹脂とし、芯成分に無機粒子を7~12質量%添加して得られた複合繊維が開示されている。しかし、特許文献4、5に記載の複合繊維はいずれも繊度が2.3~2.5dtexであり、触感の改良のため、さらなる細繊度化が求められるものである。加えて特許文献4、5ではカード通過性など不織布にする際の工程性などは検討されていなかった。
本発明は、かかる実情に鑑みてなされたものであり、従来にない細繊度(2.0dtex未満)の複合繊維でありながら、カード通過性が良好であり、滑らかな触感を有するとともに、接着強度が高い熱接着不織布を得ることができる複合繊維、その製造方法、ならびにそれを含む熱接着不織布、吸収性物品用表面シート、および吸収性物品を提供する。
本発明は、芯成分と鞘成分を含む複合繊維であり、前記芯成分と前記鞘成分が実質的に同心円状に配置され、前記芯成分と前記鞘成分の複合比が、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30であり、単繊維繊度が0.6dtex以上2.0dtex未満であり、前記芯成分はポリエステル樹脂を60質量%以上含み、前記鞘成分は高密度ポリエチレンを60質量%以上含み、前記高密度ポリエチレンのメルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下であり、前記鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下であり、示差走査熱量分析(DSC)で測定した前記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上であることを特徴とする複合繊維に関する。
本発明は、また、複合繊維の製造方法であって、ポリエステル樹脂を60質量%以上含む芯成分を紡糸温度280℃以上380℃以下の温度で押し出す工程、メルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下である高密度ポリエチレンを60質量%以上含む鞘成分を紡糸温度250℃以上350℃以下の温度で押し出す工程、前記芯成分と前記鞘成分を、芯成分と鞘成分の体積比が(芯成分/鞘成分)で30/70~70/30となるように、繊維断面において複合繊維の表面を鞘成分が覆い、芯成分と鞘成分が実質的に同心円状に配置されている複合型ノズルに供給する工程、押し出された前記芯成分および前記鞘成分からなる溶融状態の未延伸繊維をドラフト比が600以上1500以下となるよう引き取りながら冷却し、前記芯成分および前記鞘成分が凝固した、単繊維繊度が1.8dtex以上4.5dtex以下である未延伸繊維トウを得る工程、前記未延伸繊維トウを70℃以上120℃以下の温度にて1.6倍以上3.6倍以下に延伸し、単繊維繊度が0.6dtex以上2.0dtex未満の延伸繊維トウを得る工程、前記延伸繊維トウに繊維処理剤を付与する工程、繊維処理剤を付与した延伸繊維トウに対し、水蒸気を媒体として延伸繊維束の表面を60℃以上に加熱する工程、表面の温度が60℃以上である前記延伸繊維トウに捲縮を付与する工程、捲縮が付与された延伸繊維トウを乾燥させる工程、を含む、複合繊維の製造方法に関する。
本発明は、また、前記の複合繊維を25質量%以上含み、少なくとも一部の前記複合繊維が鞘成分によって接着している熱接着不織布に関する。
本発明は、また、前記複合繊維を含む吸収性物品用シートであって、肌に当接する第1繊維層と、前記第1繊維層に隣接している第2繊維層とを含む吸収性物品用シートであって、前記第1繊維層は、第1芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第1芯鞘複合繊維は、前記の複合繊維であり、前記第2繊維層は、第2芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第2芯鞘型複合繊維は、芯成分がポリエステル樹脂を含み、鞘成分が前記ポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含み、単繊維繊度が2.2dtex以上7dtex以下である芯鞘型複合繊維であり、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の少なくとも一部が、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の鞘成分により熱接着している吸収性物品用表面シートに関する。
本発明は、また、前記熱接着不織布、あるいは前記吸収性物品用表面シートを含む吸収性物品に関する。
本発明の複合繊維は、芯成分と鞘成分を含む複合繊維であり、上記複合繊維は、上記芯成分と上記鞘成分が実質的に同心円状に配置され、上記芯成分と上記鞘成分の複合比が、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30であり、単繊維繊度が0.6dtex以上2.0dtex未満であり、上記芯成分はポリエステル樹脂を60質量%以上含み、上記鞘成分は高密度ポリエチレンを60質量%以上含み、上記高密度ポリエチレンのメルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下であり、上記複合繊維を構成する鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下であり、示差走査熱量分析(DSC)で測定した上記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上となっている複合繊維である。該複合繊維は、単繊維繊度が0.6dtex以上2.0dtex未満であることで、従来の複合繊維よりも単繊維繊度の小さい、繊維径の小さい繊維となり、熱接着不織布といった繊維集合物にした際、その表面が滑らかで柔らかな触感を有するだけなく、細繊度であることで光の乱反射、散乱が促進され、繊維集合物の見た目の白さが増しやすく、適度に無機フィラーを添加することで、繊維集合物の見た目の白さや隠蔽性が向上する。該複合繊維は、上記芯成分と上記鞘成分が実質的に同心円状に配置され、芯成分と上記鞘成分の複合比が、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30であることで、複合繊維表面に鞘成分が均一に存在するようになり、容易に繊維同士を熱接着し、接着強度が高い熱接着不織布を提供することができる。
また、該複合繊維は、複合繊維の表面を構成する鞘成分に含まれる高密度ポリエチレンの結晶化と結晶の成長が進んでおり、具体的には、該鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下となっている。これに加え、示差走査熱量分析(DSC)で測定した上記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上となっている。複合繊維表面の鞘成分に含まれる高密度ポリエチレンは、[110]面について測定した結晶子サイズから結晶が成長していると考えられる。そして、該鞘成分に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上となっていることから結晶化が進んでいると考えられる。鞘成分に含まれる高密度ポリエチレンが、上記結晶子サイズおよび融解熱量の範囲を満たすことで、複合繊維の鞘成分は結晶の成長と結晶化の両方が進んでいる高密度ポリエチレンを含む樹脂成分となり、その鞘成分が複合繊維の表面を殻のように覆うことで、本発明の複合繊維は、繊維径が細く、繊度の小さい繊維であっても十分な強度および弾性を示すため、繊維同士がよれて過剰に絡み、カード工程においてネップが多発することが低減されると考えられる。もっとも、この推定によって本発明が制限されることはない。
本発明者らは、上記課題を解決するために鋭意検討した結果、芯成分にポリエステル樹脂を60質量%以上含み、鞘成分にメルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下である高密度ポリエチレンを60質量%以上含む複合繊維において、上記芯成分と上記鞘成分を実質的に同心円状に配置し、芯成分と鞘成分の複合比を、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30とし、上記鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズを20.0nm以上50.0nm以下とし、示差走査熱量分析(DSC)で測定した上記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上にすることで、複合繊維全体の剛性が高くなり、単繊維繊度が2.0dtex未満の細繊度の複合繊維であってもカード通過性が良好であり、熱接着不織布にしたときの触感および接着強度に優れることを見出し、本発明に至った。
(複合繊維)
本発明の複合繊維は、芯成分と鞘成分を含み、芯成分と鞘成分が実質的に同心円状に配置された同心円構造の芯鞘型複合繊維である。
本発明の複合繊維は、芯成分と鞘成分を含み、芯成分と鞘成分が実質的に同心円状に配置された同心円構造の芯鞘型複合繊維である。
(芯成分)
本発明の複合繊維の芯成分は、ポリエステル樹脂を60質量%以上含む。芯成分は、ポリエステル樹脂を好ましくは75質量%以上含み、より好ましくは85質量%以上含み、特に好ましくは90質量%以上含む。上記芯成分に含まれるポリエステル樹脂の上限は特に限定がなく、芯成分において、樹脂成分が全てポリエステル樹脂となっている構成、すなわち、芯成分において、後述する無機フィラーなどを除いた、熱可塑性樹脂が全てポリエステル樹脂となっている構成でもよい。上記芯成分に含まれるポリエステル樹脂は、1種であってもよく、2種以上であってもよい。
本発明の複合繊維の芯成分は、ポリエステル樹脂を60質量%以上含む。芯成分は、ポリエステル樹脂を好ましくは75質量%以上含み、より好ましくは85質量%以上含み、特に好ましくは90質量%以上含む。上記芯成分に含まれるポリエステル樹脂の上限は特に限定がなく、芯成分において、樹脂成分が全てポリエステル樹脂となっている構成、すなわち、芯成分において、後述する無機フィラーなどを除いた、熱可塑性樹脂が全てポリエステル樹脂となっている構成でもよい。上記芯成分に含まれるポリエステル樹脂は、1種であってもよく、2種以上であってもよい。
ポリエステル樹脂としては特に限定されないが、後述する鞘成分に含まれる高密度ポリエチレンの融点よりも50℃以上高い融点を有するポリエステル樹脂であることが好ましい。ポリエステル樹脂の融点が、鞘成分に含まれる高密度ポリエチレンの融点よりも50℃以上高いことで、溶融紡糸の際の可紡性が向上するだけでなく、得られる複合繊維の単繊維強度および複合繊維を含む熱接着不織布の強度が適度なものとなる。ポリエステル樹脂は、鞘成分に含まれる高密度ポリエチレンの融点よりも80℃以上高い融点を有するポリエステル樹脂であることがより好ましく、100℃以上高い融点を有するポリエステル樹脂であることがさらに好ましい。
ポリエステル樹脂としては、特に限定されることがなく、脂肪族ポリエステル樹脂、芳香族ポリエステル樹脂のいずれも使用することができる。ポリエステル樹脂としては、ポリ乳酸(PLA)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)などが挙げられる。ポリエステル樹脂は、鞘成分に含まれる高密度ポリエチレンの融点よりも好ましくは50℃以上、より好ましくは80℃以上高い融点を有するポリエステル樹脂であることから、芳香族ポリエステル樹脂であることが好ましく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートからなる群から選ばれる少なくとも一つのポリエステル樹脂であることがより好ましい。上記芯成分はポリエステル樹脂としてポリエチレンテレフタレートを60質量%以上含むことが特に好ましい。これは、ポリエチレンテレフタレートは、ポリトリメチレンテレフタレートやポリブチレンテレフタレートと比較して、安価であることに加え、樹脂そのものが高い剛直性を有し、繊維にコシを与えるので、得られる複合繊維は2.0dtex未満の細繊度でありながら適度な剛直性を有するようになり、複合繊維のカード通過性が良好なものになりやすい。
上記芯成分がポリエチレンテレフタレートを60質量%以上含む場合、上記ポリエチレンテレフタレートの固有粘度は、0.55dL/gより大きく0.75dL/g以下であることが好ましい。固有粘度は極限粘度とも呼ばれ、ポリエチレンテレフタレートの分子量に依存している。ポリエチレンテレフタレートの固有粘度が0.55dL/g以下では、ポリエチレンテレフタレートの分子量が小さいことから芯成分の強度、剛性が不足し、得られる複合繊維の単繊維強度が小さいものとなったり、複合繊維が捲縮形状を維持しにくい繊維となったりするおそれがある。一方、固有粘度が0.75dL/gを超えるとポリエチレンテレフタレートを溶融した際の粘度が高くなりすぎることで、溶融紡糸時の可紡性が低下するおそれがある。ポリエチレンテレフタレートの固有粘度は0.58dL/g以上0.70dL/g以下であることが好ましく、0.60dL/g以上0.68dL/g以下であることがより好ましい。
上記ポリエチレンテレフタレート樹脂の数平均分子量は特に限定されないが、前記芯成分に含まれるポリエチレンテレフタレート樹脂の数平均分子量は2500以上6500以下であることが好ましい。芯成分のポリエチレンテレフタレートの数平均分子量が上記範囲を満たすことで、得られる複合繊維は芯成分が適度な弾性を有する樹脂成分となるため、2.0dtex未満の細繊度であってもカード通過性が良好となるだけでなく、複合繊維を含む熱接着不織布は触感に優れるものとなりやすい。ポリエチレンテレフタレート樹脂の数平均分子量は3000以上6000以下であることがより好ましく、3500以上5500以下であることが特に好ましい。
上記ポリエチレンテレフタレート樹脂の重量平均分子量は特に限定されないが、前記芯成分に含まれるポリエチレンテレフタレート樹脂の重量平均分子量は6000以上18000以下であることが好ましい。芯成分のポリエチレンテレフタレートの重量平均分子量が上記範囲を満たすことで、得られる複合繊維は芯成分が適度な弾性を有する樹脂成分となるため、2.0dtex未満の細繊度であってもカード通過性が良好となるだけでなく、複合繊維を含む熱接着不織布は触感に優れるものとなりやすい。ポリエチレンテレフタレート樹脂の重量平均分子量は8000以上15000以下であることがより好ましく、9000以上14000以下であることが特に好ましい。
本発明において、原料として数平均分子量(Mn)が2500以上27000以下、重量平均分子量(Mw)が6000以上80000以下のポリエチレンテレフタレートを用意し、後述する紡糸温度にて複合繊維の芯成分として溶融紡糸を行うことで、複合繊維の芯成分に含まれるポリエチレンテレフタレートが上述した各種平均分子量を満たすやすくなるため好ましい。あるいは、原料として固有粘度(IV値ともいう)が0.55dL/gより大きく0.8dL/g以下、好ましくは0.55dL/g以上0.75dL/g以下、より好ましくは0.6dL/g以上0.7dL/g以下のポリエチレンテレフタレートを用意し、後述する紡糸温度にて複合繊維の芯成分として溶融紡糸を行うことで、複合繊維の芯成分に含まれるポリエチレンテレフタレートが上述した各種平均分子量を満たしやすくなるため好ましい。
上記芯成分は、本発明の作用を損なわない範囲であれば、上記ポリエステル樹脂以外の熱可塑性樹脂を含んでもよい。上記ポリエステル樹脂以外の熱可塑性樹脂としては、特に限定されないが、例えば、ポリオレフィン樹脂、ポリアミド樹脂、ポリカーボネート、ポリスチレンなどが挙げられる。
また、本発明の効果が阻害されず、繊維の生産性、繊維集合物の生産性、熱接着性、触感に影響を与えない範囲であれば、上記芯成分に、公知の各種添加剤を加えることが可能である。上記芯成分に添加できる添加剤としては、公知の結晶核剤、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、難燃剤、抗菌剤、滑剤、可塑剤、柔軟剤、酸化防止剤、紫外線吸収剤などが挙げられる。このような添加剤は、芯成分の全体質量の10質量%以下の量を占めるように、芯成分に含まれることが好ましい。
(鞘成分)
本発明の複合繊維において、鞘成分は、高密度ポリエチレンを60質量%以上含む。本発明において高密度ポリエチレン(PE-HDまたはHDPEとも称されている。)とはJIS K 7112(1999年)に準じて測定した密度が0.94g/cm3以上のポリエチレンを指す。高密度ポリエチレンは、低密度ポリエチレンや直鎖状低密度ポリエチレンといった他のポリエチレンと比較して密度が高いことから、得られる複合繊維が剛性の高いものとなりやすく、複合繊維のカード通過性、捲縮発現性が良好になり、得られる熱接着不織布も嵩高なものになりやすい。上記鞘成分に含まれる高密度ポリエチレンの含有量は好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは、鞘成分において、後述する無機フィラーを除く熱可塑性樹脂成分が全て高密度ポリエチレンとなっている構成である。
本発明の複合繊維において、鞘成分は、高密度ポリエチレンを60質量%以上含む。本発明において高密度ポリエチレン(PE-HDまたはHDPEとも称されている。)とはJIS K 7112(1999年)に準じて測定した密度が0.94g/cm3以上のポリエチレンを指す。高密度ポリエチレンは、低密度ポリエチレンや直鎖状低密度ポリエチレンといった他のポリエチレンと比較して密度が高いことから、得られる複合繊維が剛性の高いものとなりやすく、複合繊維のカード通過性、捲縮発現性が良好になり、得られる熱接着不織布も嵩高なものになりやすい。上記鞘成分に含まれる高密度ポリエチレンの含有量は好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは、鞘成分において、後述する無機フィラーを除く熱可塑性樹脂成分が全て高密度ポリエチレンとなっている構成である。
上記複合繊維において、上記鞘成分に含まれる高密度ポリエチレンは、JIS K 7210-1(2014年)に準じて測定したメルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N) 以下、MFR190とも称す。)が13g/10分より大きく45g/10分以下である。高密度ポリエチレンのMFR190が上記の範囲内であることにより、紡糸引き取り性および延伸性が良好になるだけでなく、得られる複合繊維の鞘成分もカード機を通過するのに充分な剛性を持つようになり、複合繊維のカード通過性が良好になる。高密度ポリエチレンのメルトマスフローレイトは15g/10分以上40g/10分以下であることが好ましく、18g/10分以上35g/10分以下であることがより好ましく、18g/10分以上32g/10分以下であることが特に好ましい。
本発明の複合繊維は、その表面が上記高密度ポリエチレンを60質量%以上含む鞘成分で構成されている。そのため、上記複合繊維の熱接着性は、主に高密度ポリエチレンが溶融したときの流動性に依存する。また、上記複合繊維を用いた熱接着不織布の強度は、主に上記鞘成分が熱処理の際に融解、熱接着したことで生じる構成繊維間の熱接着点の強度に依存している。上記高密度ポリエチレンのMFR190が上述した範囲を満たすことで、鞘成分は溶融時の流動性が適度に抑えられるようになる。その結果、上記複合繊維を含む繊維ウェブを高密度ポリエチレンの融点付近で熱処理すると、複合繊維の鞘成分全体が溶融するものの、流動性が抑えられているため、流れにくい。その結果、鞘成分の厚みがムラのないものとなり、どの接着点においても接着強度が揃った熱接着点が構成繊維間に形成されるようになり、得られた熱接着不織布の強度が充分に高いものになると推測される。高密度ポリエチレンのMFR190が45g/10分を超えると、熱処理時に鞘成分が流れやすくなる傾向があり、複合繊維において鞘成分の厚みにムラが生じ、鞘成分が薄い部分と熱接着した接着強度の低い熱接着点が不織布内部に形成されるおそれがある。その結果、不織布を縦方向および/または横方向に引っ張ったり、不織布表面を擦ることで摩擦を加えると接着強度の弱い接着点が外れやすくなり、不織布の強度が不足したり、不織布の毛羽立ちを招くおそれがある。一方、高密度ポリエチレンのMFR190が13g/10分以下であると、鞘成分の流動性が低すぎるため紡糸引き取り性や延伸性が低下するおそれがある。
上記複合繊維の鞘成分において、上記高密度ポリエチレンの融点は特に限定されないが、複合繊維のカード通過性、ならびに熱接着不織布の生産性、強度および耐熱性を考慮すると、上記高密度ポリエチレンの融点は、125℃以上140℃以下であることが好ましく、128℃以上138℃以下であることがより好ましい。本発明において、高密度ポリエチレンの融点とはJIS K 7121(1987年)に準じて測定した融解ピーク温度を指す。
本発明の複合繊維において、鞘成分は、本発明の作用を損なわない範囲であれば、上記高密度ポリエチレン以外の樹脂を含んでもよい。上記高密度ポリエチレン以外の樹脂としては、特に限定されないが、例えば、高密度ポリエチレン以外のポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリカーボネート、ポリスチレンなどが挙げられる。上記高密度ポリエチレン以外のポリオレフィン樹脂としては、特に限定されないが、例えば、ポリプロピレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリメチルペンテン、ポリブテン-1、およびこれらとアクリル酸、メタクリル酸、マレイン酸等の不飽和カルボン酸、アクリル酸エステル、メタクリル酸エステル、マレイン酸エステル等の不飽和カルボン酸のエステル、アクリル酸無水物、メタクリル酸無水物、マレイン酸無水物等の不飽和カルボン酸の無水物からなる群から選ばれる少なくとも一種以上を共重合したもの、グラフト重合したもの、ならびにこれらのエラストマーなどが挙げられる。上記ポリエステル樹脂としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、およびこれらとイソフタル酸、コハク酸、アジピン酸等の酸成分や、1,4-ブタンジオール、1,6-ヘキサンジオール等のグリコール成分、ポリテトラメチレングリコール、ポリオキシメチレングリコール等との共重合体、ならびにこれらのエラストマーが挙げられる。上記ポリアミド樹脂としては、特に限定されないが、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12などが挙げられる。また、本発明の効果が阻害されず、繊維生産性、不織布生産性、熱接着性、触感に影響を与えない範囲であれば、上記鞘成分に、公知の各種添加剤を加えることが可能である。上記鞘成分に添加できる添加剤としては、公知の結晶核剤、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、融着防止剤(タルクやステアリン酸カルシウムなどが挙げられる)、難燃剤、抗菌剤、滑剤、可塑剤、柔軟剤、酸化防止剤、紫外線吸収剤等があげられる。
本発明の複合繊維において、断面構造は、芯成分の重心位置が複合繊維の重心位置と実質的に一致した同心円構造となっている。すなわち、繊維断面において、芯成分の重心位置は複合繊維の重心位置から実質的にずれていない。図1は、同心円構造の吸収性物品用複合繊維の繊維断面の模式図である。芯成分2の周囲に鞘成分1が配置され、鞘成分1が芯成分2の周囲を囲むことで、複合繊維10において、切断面以外の繊維表面は鞘成分1に覆われている。これにより、複合繊維で構成された繊維ウェブを熱接着時に、鞘成分1は表面が溶融し、繊維同士を熱接着する。複合繊維10において、芯成分2が偏心していない、すなわち同心円構造になっているため、繊維断面における鞘成分1の厚みは、繊維断面のいずれの箇所においてもほぼ一定の厚みになっている。その結果、複合繊維で構成された繊維ウェブを熱処理する際、繊維表面の鞘成分が軟化・溶融している複合繊維に対し、いずれの部分に他の繊維が接触しても、均一な強度の熱接着点が形成されるため、上記複合繊維を使用した熱接着不織布は、接着強度が高く、摩擦に強く毛羽立ちにくいものとなる。芯成分2の重心位置3は複合繊維10の重心位置4から実質的にずれていない。芯成分の重心位置が複合繊維の重心位置から実質的にずれていないとは、下記の方法で求められるずれの割合(以下、偏心率とも記す。)が10%以下、好ましくは7%以下、特に好ましくは5%以下、最も好ましくは3%以下であることを指す。
<偏心率>
複合繊維10の繊維断面を走査型電子顕微鏡などで拡大撮影し、芯成分2の重心位置3をC1とし、複合繊維10の重心位置4をCfとし、複合繊維10の半径5をrfとしたとき、下記数式1で算出する。
複合繊維10の繊維断面を走査型電子顕微鏡などで拡大撮影し、芯成分2の重心位置3をC1とし、複合繊維10の重心位置4をCfとし、複合繊維10の半径5をrfとしたとき、下記数式1で算出する。
上記複合繊維において、芯成分と鞘成分の複合比が芯成分/鞘成分の体積比で30/70~70/30である。芯成分は複合繊維の弾性を左右し、鞘成分は複合繊維を含む熱接着不織布の接着強度、触感および硬さを左右する。上記複合繊維における芯成分と鞘成分の複合比が30/70~70/30であると、複合繊維のカード通過性、および複合繊維を含む熱接着不織布の接着強度や触感を両立することができる。鞘成分が多くなりすぎると、繊維表面を覆う鞘成分、すなわちより融点の低い高密度ポリエチレンが複合繊維に占める割合が多くなるため、溶融紡糸の際、ノズルから押し出した樹脂が引き取られるまでに十分冷却できず、融着した繊維が多発したり、糸切れが多発したりするおそれがある。また複合繊維が得られたとしても、その複合繊維を使用した熱接着不織布は、鞘成分、すなわち熱接着に寄与する樹脂成分が占める割合が大きいため、不織布強力は上がるが、不織布の触感が硬くなるおそれがある。一方、芯成分が多くなりすぎると、構成繊維同士の熱接着に寄与する鞘成分の割合が少なく、鞘成分が複合繊維の側周表面を薄く覆った層のように存在するため、熱処理して構成繊維間に熱接着点を形成しても熱接着点が小さく、外部からの力で外れやすいため、不織布強力が小さくなったり、不織布に摩擦を加えた場合容易に毛羽立ちを生じたりするおそれがある。上記複合繊維において、芯成分と鞘成分の比率である複合比は、芯成分/鞘成分の体積比で30/70~60/40であることが好ましく、33/67~55/45であることがより好ましく、35/65~50/50であることが特に好ましく、35/65~48/52であることが最も好ましい。
上記複合繊維において、芯成分の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形であってもよく、複合繊維の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形、または中空形であってもよい。
上記複合繊維において、上記鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズは20.0nm以上50.0nm以下である。結晶子サイズは結晶子径とも呼ばれ結晶を形作っている最小微結晶単位の大きさである。結晶子サイズは対象物のX線回折(XRD)の回折ピークにおける半値幅と反比例するため、結晶子サイズが大きい、すなわち結晶性が高ければ、回折ピークの半値幅は小さくなり、結晶子サイズが小さい、すなわち結晶性が低い場合、回折ピークの半値幅は大きくなる。上記複合繊維において、上記鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズは22.0nm以上45.0nm以下であると好ましく、24.0nm以上40.0nm以下であるとより好ましく、24.5nm以上37.5nm以下であると特に好ましい。
上記複合繊維において、上記鞘成分に含まれる高密度ポリエチレンの[200]面について測定した結晶子サイズは特に限定されないが、好ましくは、[200]面について測定した結晶子サイズが12.0nm以上35.0nm以下であることが好ましい。より好ましいのは[200]面について測定した結晶子サイズが16.0nm以上30.0nm以下であり、特に好ましいのは18.0nm以上27.5nm以下であり、最も好ましいのは18.5nm以上25.0nm以下である。
上記結晶子サイズは、対象物に対し、広角X線回折測定を行い、得られた2θ-θ強度データから対象とする結晶面の回折ピークに対し、半値幅を測定し、半値幅から、以下の数式2に基づいて計算できる。
上記複合繊維において、示差走査熱量測定(DSC)で測定した高密度ポリエチレンの融解熱量(ΔHPE-HD)は145.0mJ/mg以上である。鞘成分に含まれている高密度ポリエチレンの融解熱量が145.0mJ/mg以上であることで、この高密度ポリエチレンは、結晶化が十分に進んでいるといえる。上記の通り、高密度ポリエチレンは[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下であることから、鞘成分の高密度ポリエチレンがこのような結晶子サイズおよび融解熱量の範囲を満たすことで、結晶の成長と結晶化が両方とも十分に進んでいると考えられ、結晶の成長と結晶化が進むことで、複合繊維の鞘成分が剛性の高い樹脂成分となる。これにより複合繊維には強い剛性が付与され、細繊度であっても、カード内部で過剰によれにくく、ネップを発生させにくい複合繊維になると考えられる。加えて、このような結晶の成長と結晶化が十分に進んだ樹脂成分に対し、捲縮の形状を強固に固定することで、捲縮の形状が崩れにくくなり、カード通過性がさらに向上すると考えられる。高密度ポリエチレンの融解熱量(ΔHPE-HD)は148.0mJ/mg以上であることが好ましく、150.0mJ/mg以上であることがより好ましく、152.0mJ/mg以上であることが特に好ましく、155.0mJ/mg以上であることが最も好ましい。高密度ポリエチレンの融解熱量(ΔHPE-HD)の上限は特に限定されないが、210.0mJ/mg以下であることが好ましく、200.0mJ/mg以下がより好ましく、195.0mJ/mg以下が特に好ましく、190.0mJ/mg以下が最も好ましい。
上記高密度ポリエチレンの融解熱量(ΔHPE-HD)は以下の手順で測定する。
まず、高密度ポリエチレンの融解熱量を求める複合繊維の芯鞘比(体積比)に対し、芯成分、鞘成分を構成する熱可塑性樹脂および無機フィラーの密度や添加量から、芯鞘比(体積比)を芯鞘比(質量比)に換算し、鞘成分に含まれる無機フィラーの割合から、複合繊維に占める高密度ポリエチレンの比率(高密度ポリエチレンの質量比率)を求める。次に、試料となる複合繊維について、JIS K 7121(1987年) プラスチックの転移温度測定方法に基づき、示差走査熱量測定を行う。示差走査熱量測定により、125℃~140℃の温度範囲に融解ピーク温度が存在する吸熱ピーク(融解に伴う吸熱は約120℃から観測され、125℃から140℃にて融解ピーク温度となり、融解に伴う吸熱は約150℃にて終了する)が観測される。この約120℃から約150℃の間に測定される融解熱量(ΔH)から複合繊維に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)を以下の数式3で求める。
まず、高密度ポリエチレンの融解熱量を求める複合繊維の芯鞘比(体積比)に対し、芯成分、鞘成分を構成する熱可塑性樹脂および無機フィラーの密度や添加量から、芯鞘比(体積比)を芯鞘比(質量比)に換算し、鞘成分に含まれる無機フィラーの割合から、複合繊維に占める高密度ポリエチレンの比率(高密度ポリエチレンの質量比率)を求める。次に、試料となる複合繊維について、JIS K 7121(1987年) プラスチックの転移温度測定方法に基づき、示差走査熱量測定を行う。示差走査熱量測定により、125℃~140℃の温度範囲に融解ピーク温度が存在する吸熱ピーク(融解に伴う吸熱は約120℃から観測され、125℃から140℃にて融解ピーク温度となり、融解に伴う吸熱は約150℃にて終了する)が観測される。この約120℃から約150℃の間に測定される融解熱量(ΔH)から複合繊維に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)を以下の数式3で求める。
本発明の複合繊維は、単繊維繊度が0.6dtex以上2.0dtex未満である。単繊維繊度が2.0dtex未満であることで、上記複合繊維を含む熱接着不織布は、触感が滑らかであり、柔らかい不織布となる。また、単繊維繊度が小さいことで、同じ目付の不織布の場合、単繊維繊度が大きい繊維で構成させた不織布より不織布を構成する繊維の本数が多いため、不織布の見た目において繊維が詰まった密な組織となり、隠蔽性の高い不織布になりやすい。上記複合繊維の単繊維繊度が2.0dtex以上となると、柔らかく滑らかな触感を有し、隠蔽性の高い不織布が得られにくくなりやすい。上記複合繊維の単繊維繊度は1.8dtex以下であることが好ましく、1.7dtex以下であることがより好ましく、1.6dtex以下であることが特に好ましく、1.5dtex以下であることが最も好ましい。上記複合繊維において、単繊維繊度が0.6dtex以上であることにより、複合繊維のカード通過性が良好になり、生産性も向上する。上記複合繊維の単繊維繊度は、0.8dtex以上であることが好ましく、1.0dtex以上であることがより好ましく、1.1dtex以上であることが特に好ましい。上記複合繊維の単繊維繊度は、後述する未延伸繊維トウの単繊維繊度および延伸倍率を調節することによって、単繊維繊度が0.6dtex以上2.0dtex未満の複合繊維を前記範囲の任意の繊度にて製造できるようになる。
上記複合繊維の単繊維強度は特に限定されないが、1.5cN/dtex以上5.0cN/dtex以下であることが好ましい。複合繊維の単繊維強度が上記範囲を満たすことで、得られる複合繊維は適度な強度、および適度な剛性を有するようになり、複合繊維のカード通過性および不織布生産時の繊維ウェブの取り扱い性が良好なものとなる。複合繊維の単繊維強度は1.6cN/dtex以上4.0cN/dtex以下であることがより好ましく、1.8cN/dtex以上3.8cN/dtex以下であることが特に好ましく、2.0cN/dtex以上3.5cN/dtex以下であることが最も好ましい。
上記複合繊維の破断伸度は特に限定されないが、破断伸度が20%以上150%以下であると好ましい。複合繊維の破断伸度が上記範囲を満たすことで、得られる複合繊維は適度な強度、および適度な剛性を有するようになり、複合繊維のカード通過性および不織布生産時の繊維ウェブの取り扱い性が良好なものとなる。上記複合繊維の破断伸度は25%以上120%以下であることがより好ましく、25%以上100%以下であることがさらにより好ましく、30%以上80%以下であることが特に好ましく、30%以上60%以下であることが最も好ましい。なお、本発明において、複合繊維の単繊維強度および破断伸度は、JIS L 1015(2010年)に準じて測定する。
上記複合繊維において、JIS L 1015(2010年)に準じて測定される単繊維強度と破断伸度の比率(単繊維強度[cN/dtex]/破断伸度[%])が0.04より大きく0.12以下であることが好ましい。単繊維強度と破断伸度の比率は、複合繊維が高強度で低伸度であるほど大きくなり、低強度で高伸度であるほど小さくなる。複合繊維の単繊維強度と破断伸度の比率(単繊維強度/破断伸度)が上記範囲を満たすことで、複合繊維が単繊維強度と破断伸度がバランスの取れた、適度な弾性、剛性を有する繊維となり、カード通過性に優れ、得られる繊維ウェブも取り扱い性に優れるものとなる。複合繊維の単繊維強度と破断伸度の比率(単繊維強度/破断伸度)は0.05以上0.12以下であることがより好ましく、0.06以上0.11以下であることがより好ましく、0.07以上0.10以下であることが特に好ましく、0.075以上0.098以下であることが最も好ましい。
複合繊維の単繊維強度、破断伸度から繊維の弾性、剛性を評価する指標として、単繊維強度と破断伸度の正の平方根(√伸度)の積(以下、タフネスとも称す。)がある。本発明の複合繊維において、タフネスは12.0以上20.0以下であることが好ましい。複合繊維のタフネスが上記範囲を満たすと、上述した単繊維強度と破断伸度の比率と同様、複合繊維が強度と伸度がバランスの取れた、適度な弾性、剛性を有する繊維となり、カード通過性に優れ、得られる繊維ウェブも取り扱い性に優れるものとなる。本発明の複合繊維において、タフネスは15.0以上19.0以下であることがより好ましく、16.0以上18.5以下であることが特に好ましく、16.5以上18.5以下であることが最も好ましい。
上記複合繊維は、その繊維長は特に限定されないが、25mm以上50mm以下であることが好ましい。繊維長がこの範囲を満たすことで、上記複合繊維は細繊度であってもカード通過性に優れ、地合の良好な繊維ウェブ(カードウェブ)を製造できるためである。繊維長が25mm未満であると、繊維長が短すぎてカードに引っかからない、いわゆるフライの状態になりやすく、カードウェブが製造できなくなるおそれがある。繊維長が50mmを超えると複合繊維がカード機のワイヤーにかかりすぎたり、複合繊維同士が絡みやすくなったりすることで毛玉状に繊維が集まる、いわゆるネップが多発し、カードウェブが製造できなくなるおそれがある。上記複合繊維の繊維長は、より好ましくは27mm以上48mm以下であり、さらに好ましくは28mm以上46mm以下であり、特に好ましくは28mm以上40mm以下である。
上記複合繊維は、主として、図2Aに示す鋸歯状捲縮(機械捲縮とも称す。)と図2Bに示す波形状捲縮からなる群から選ばれる少なくとも一種の捲縮を有し、捲縮数が5個/25mm以上28個/25mm以下であることが好ましい。より好ましい捲縮数は8個/25mm以上25個/25mm以下であり、さらに好ましい捲縮数は10個/25mm以上20個/25mm以下である。また、上記複合繊維は、複合繊維のカード通過性、および該複合繊維を含む熱接着不織布の触感や嵩回復性の観点から、捲縮率が5%以上20%以下であることが好ましく、6%以上18%以下であることがより好ましく、6.5%以上16%以下であることがさらに好ましい。
本発明の複合繊維は上述の通り、本発明の効果が阻害されず、繊維生産性、不織布生産性、熱接着性、触感に影響を与えない範囲であれば、芯成分や鞘成分に対し、公知の各種添加剤を加えることが可能であり、添加剤としては、公知の結晶核剤、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、難燃剤、抗菌剤、滑剤、可塑剤、柔軟剤、酸化防止剤、紫外線吸収剤等を含有させることができる。この中でも、本発明の複合繊維を用いて吸収性物品用不織布を得ようとする場合、複合繊維は無機フィラーを含むことが好ましい。吸収性物品用の不織布は見た目の白さを求められるだけでなく、経血や尿、軟便を吸収した際、その色を目立たなくする隠蔽性が求められるためである。上記複合繊維に含まれる無機フィラーの量は特に限定されないが、複合繊維100質量%に対して無機フィラーを0.5質量%以上10質量%以下含むことが好ましい。上述した範囲の無機フィラーを含むことにより、上記複合繊維を含む熱接着不織布の見た目の白さに優れるようになる。加えて、上記複合繊維の単繊維繊度は2.0dtex未満であることから、単繊維繊度が2.0dtex以上の複合繊維に比べて、同じ目付の不織布であれば不織布を構成する繊維の本数が増えるため、熱接着不織布表面は見た目の白さが強くなりやすい。上記複合繊維に含まれる無機フィラーの量は、複合繊維100質量%に対して無機フィラーを0.8質量%以上8質量%以下含むことが好ましく、1質量%以上6質量%以上含むことがさらにより好ましく、1.3質量%以上5質量%以下含むことが特に好ましく、1.5質量%以上4.5質量%以下含むことが最も好ましい。
上記無機フィラーは、上記複合繊維の見た目を白くし、この複合繊維を含む熱接着不織布を吸収性物品の表面シートに用いた場合における隠蔽性を高めるという関連から、白色度の高い無機粉体であることが好ましい。具体的には、二酸化チタン、酸化亜鉛、硫酸バリウム、炭酸カルシウム、酸化マグネシウム、シリカ(二酸化ケイ素)、マイカ、ゼオライト、タルク等の白色の無機粉末を無機フィラーとして複合繊維に含有させることができる。上記無機フィラーは、二酸化チタン、酸化亜鉛、炭酸カルシウム、硫酸バリウム、シリカおよびタルクからなる群から選ばれる少なくとも1種を含有することが好ましく、少なくとも酸化チタンを含有することがより好ましく、実質的に酸化チタンのみを無機フィラーとして含有していることが特に好ましい。
上記無機フィラーは複合繊維を構成する鞘成分および芯成分のいずれか一方に含有させてもよいし、両方に含有させてもよい。しかし、複合繊維の生産性、ならびに複合繊維や複合繊維を用いて製造される不織布の特性といった観点から、少なくとも芯成分に無機フィラーを含有させることが好ましく、芯成分のみに無機フィラーを含有させることがより好ましい。少なくとも芯成分が無機フィラーを含むことで、複合繊維および複合繊維を含む不織布は見た目の白さが強くなりやすく、隠蔽性が向上するだけでなく、剛性の高いポリエステル樹脂を含む芯成分が過剰に硬くなるのを抑制する効果があると推測される。芯成分に含まれる無機フィラーの量は、芯成分を100質量%としたとき2質量%以上10質量%以下であることが好ましく、3質量%以上10質量%以下であることがより好ましく、4.5質量%以上8質量%以下であることが特に好ましく、5質量%以上7.5質量%以下であることが最も好ましい。
本発明の複合繊維は、上述の通り、鞘成分に含まれる高密度ポリエチレンの結晶化を促進し、所定の結晶子サイズとしている。これにより、結晶化、および結晶部の成長が進んだ高密度ポリエチレンが複合繊維表面を覆う殻のように存在するようになる。その結果、複合繊維全体の剛性が高められ、細繊度の複合繊維であっても繊維同士が絡みにくくなり、ネップの発生を低減していると推測される。鞘成分に無機フィラーが含まれると、無機フィラーの存在により高密度ポリエチレンの結晶化や結晶部の成長が阻害されると推測されるため、鞘成分は無機フィラーを含まないか、含んでいたとしても少量、例えば鞘成分を100質量%としたとき5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下、特に好ましくは0.5質量%以下の割合で無機フィラーを含んでいる。
(製造方法)
以下、本発明の複合繊維の製造方法について説明する。
以下、本発明の複合繊維の製造方法について説明する。
まず、ポリエステル樹脂、好ましくは、数平均分子量(Mn)が2500以上27000以下、かつ重量平均分子量(Mw)が6000以上80000以下であるか、あるいは固有粘度が0.55dL/gより大きく0.8dL/g以下であるポリエチレンテレフタレートを60質量%以上含む芯成分と、メルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下である高密度ポリエチレンを60質量%以上含む鞘成分を準備する。ポリエチレンテレフタレートは、好ましい平均分子量の範囲を満たすか、好ましいIV値の範囲を満たしていれば好ましく使用することができるが、好ましい平均分子量の範囲を満たし、かつ好ましいIV値の範囲を満たすものであるとより好ましい。次に、繊維断面において、複合繊維の表面を鞘成分が覆い、かつ芯成分の重心位置が複合繊維の重心位置と一致した同心円構造になるように配置された複合型ノズル、例えば同心円芯鞘型複合ノズルに鞘成分および芯成分を供給し、溶融紡糸を行う。このとき、例えば、芯成分を溶融、押し出す際の温度(紡糸温度)を280℃以上380℃以下、鞘成分を溶融、押し出す温度(紡糸温度)を250℃以上350℃以下とし、上記複合型ノズルの温度を250℃以上350℃以下として溶融紡糸する。
上記同心円芯鞘型複合ノズル(以下、単にノズルと称す。)において、ノズルに設けられている、溶融した芯成分および鞘成分を溶融紡糸する孔の数(以下、ホール数と称す。)は特に限定されない。しかし、後述するドラフト比への影響およびドラフト比が高くなる条件で溶融紡糸を行うことを考慮すると、ホール数は300個以上5000個以下であることが好ましく、450個以上3500個以下であることが好ましい。ホール数が上記範囲を満たすことで、安定した状態でドラフト比が高くなる条件で溶融紡糸することが可能となる。
上記ノズルにおいて、ノズルに設けられている、溶融した芯成分および鞘成分を溶融紡糸する孔の直径(以下、ホール径と称す。)は特に限定されない。しかし、後述するドラフト比への影響およびドラフト比が高くなる条件で溶融紡糸を行うことを考慮すると、ホール径は0.2mm以上0.8mm以下であることが好ましく、0.25mm以上0.75mm以下であることがより好ましい。ホール径が上記範囲を満たすことで、安定した状態でドラフト比が高くなる条件で溶融紡糸することが可能となる。
上記ノズルに設けられた孔より、溶融した芯成分および鞘成分を押し出し、溶融紡糸を行う。このとき、1分間にノズルから押し出される樹脂の総量をホール数で除した値、すなわちホール1個あたりの1分間に溶融した芯成分および鞘成分が押し出される量(以下、単孔あたりの樹脂吐出量と称す。)は特に限定されないが、0.2g/分以上1g/分以下であることが好ましく、0.25g/分以上0.8g/分以下であることがより好ましい。単孔あたりの樹脂吐出量が上記範囲を満たすことで、安定した状態でドラフト比が高くなる条件で溶融紡糸することが可能となる。
上記ノズルに設けられた孔より押し出された、溶融している芯成分および鞘成分を高速で引き取りながら冷却して未延伸繊維トウを得る。このとき、溶融している芯成分および鞘成分を引き取る速度(以下、引き取り速度と称す。)は特に限定されないが、500m/分以上2500m/分以下であることが好ましく、600m/分以上2300m/分以下であることがより好ましく、650m/分以上2000m/分以下であることが特に好ましい。引き取り速度が上記範囲を満たすことで、安定した状態でドラフト比が高くなる条件で溶融紡糸することが可能となる。
本発明の複合繊維を製造する際、上記の方法で溶融紡糸を行い、芯成分および鞘成分からなる未延伸状態の複合繊維の束(未延伸繊維トウ)を得る。本発明の製造方法では、ドラフト比を高めた条件で溶融紡糸を行う。本発明の複合繊維を得る製造方法において、ドラフト比は600以上1500以下である。ドラフト比が上記範囲を満たすことで、溶融紡糸の際、溶融状態の芯成分および鞘成分に対し、繊維の長さ方向に沿って強い張力が加わる。特に、未延伸繊維トウの外側を構成する鞘成分(すなわち高密度ポリエチレン)に対し、強い張力が加わることで、高密度ポリエチレンの結晶化が促進され、溶融紡糸が終了し、引き取られた未延伸繊維トウにおいて、高密度ポリエチレンは結晶化とその成長が進み、結晶子サイズが大きい状態になりやすい。ドラフト比は620以上1400以下であることが好ましく、650以上1300以下であることがより好ましく、660以上1250以下であることが特に好ましい。
本発明において、ドラフト比は以下の数式4で算出する。
Vs:引き取り速度(cm/分)
d:ホール径(cm)
Wh:単孔あたりの樹脂吐出量(g/分)
なお、溶融比重は芯成分および鞘成分の溶融時の比重であり、溶融紡糸時と同じ温度に設定された押出機から一定体積の溶融樹脂を押し出し、押し出された樹脂の質量を測定し、押し出された樹脂の質量を上記一定体積で除することで測定できる。
上述した方法で製造された未延伸繊維トウは、単繊維繊度が1.8dtex以上4.5dtex以下であることが好ましい。溶融紡糸で得られた未延伸繊維トウが上記範囲を満たすことで、後述する延伸工程にて適度な延伸倍率で延伸を行い延伸繊維トウとすることで、未延伸繊維トウの芯成分および鞘成分の結晶化がさらに進んだ、適度な剛性、および弾性を有する単繊維繊度が0.6dtexから2.0dtex未満の複合繊維を安定して製造することができる。未延伸繊維トウの単繊維繊度は2.0dtex以上4.2dtex以下であることがより好ましく、2.2dtex以上4.0dtex以下であることが特に好ましく、2.2dtex以上3.8dtex以下であることが最も好ましい。
上述した方法で製造された未延伸繊維トウは、伸度が100%以上400%以下であることが好ましい。未延伸繊維トウの伸度が上記範囲を満たすことで、未延伸繊維トウは芯成分および鞘成分の結晶化が適度なものとなり、後述する延伸工程にて適度な延伸倍率で延伸することで、未延伸繊維トウの芯成分および鞘成分の結晶化がさらに進んだ延伸繊維トウとなり、適度な剛性、および弾性を有する単繊維繊度が0.6dtexから2.0dtex未満の複合繊維を安定して製造することができる。未延伸繊維トウの伸度は120%以上300%以下であることがより好ましく、140%以上250%以下であることが特に好ましい。
次に、得られた未延伸繊維トウを70℃以上120℃以下の温度にて1.6倍以上3.6倍以下の延伸倍率で延伸する。より好ましい延伸温度の下限は、75℃以上であり、特に好ましい延伸温度の下限は80℃以上である。より好ましい延伸温度の上限は、110℃以下であり、特に好ましい延伸温度の上限は100℃以下である。延伸温度が70℃未満であると、芯成分や鞘成分の結晶化が進みにくいため、十分な剛性や弾性を有する細繊度の複合繊維にならず、カード通過性に劣る繊維となりやすい。延伸温度が120℃を超えると、繊維同士が融着する傾向がある。より好ましい延伸倍率の下限は、1.8倍以上であり、特に好ましい延伸倍率の下限は2.0倍以上である。より好ましい延伸倍率の上限は3.4倍以下であり、特に好ましい延伸倍率の上限は3.2倍以下である。延伸倍率が1.6倍以上3.6倍以下であると、鞘成分および芯成分の結晶化が進み、カード通過性が良好な繊維が得られるだけでなく、延伸時の繊維の断裂も発生しにくいため、安定して製造できる。
延伸方法は特に限定されず、熱水を始めとする高温の液体を媒体として未延伸繊維トウを加熱しながら延伸を行う湿式延伸、高温の気体中または高温の金属ロールなどで加熱しながら延伸を行う乾式延伸、100℃以上の水蒸気を常圧もしくは加圧状態にして繊維を加熱しながら延伸を行う水蒸気延伸などの公知の延伸処理を行うことができる。この中でも温水を使用した湿式延伸、または高温の気体や高温の金属ロールを使用した乾式延伸が好ましく、延伸する際の張力および延伸時の熱を、未延伸繊維トウを構成している単繊維に対し容易かつ均等にかけやすいことから湿式延伸がより好ましい。上記延伸工程は、延伸工程が一段階のみの、いわゆる1段延伸でも良いし、延伸工程が二段階ある2段延伸でもよく、延伸工程が二段階を超える多段延伸であってもよい。本発明の複合繊維は単繊維繊度が2.0dtex未満と小さいこと、溶融紡糸を高いドラフト比で行っていること、得られる未延伸繊維トウの繊度が小さいことから1段延伸または2段延伸にて行うことが好ましい。また、上記延伸処理の前後において、必要に応じて、アニーリング処理を施してもよい。
次いで、スタッフィングボックス型クリンパーなど公知の捲縮機を用いて延伸繊維トウに対し捲縮を付与するが、延伸繊維トウに対し、捲縮の形状が失われにくい、言い換えるならば形状維持されやすい捲縮を付与するため、延伸繊維トウを十分に加熱した状態で捲縮を付与する。以下、延伸工程が終了した延伸繊維トウに対し、捲縮を付与する工程(捲縮工程)を説明する。
延伸繊維トウに対し、捲縮の形状が失われにくい捲縮、言い換えるならば付与した捲縮の形状や捲縮数が長期間維持され、捲縮形状の耐久性が高い状態となるよう、延伸繊維トウを加熱した状態で捲縮を付与する。このような処理を行うために、捲縮を付与する工程の直前に、延伸繊維トウを加熱する工程(以下、トウ加熱工程とも称す。)を設ける。捲縮工程を行う直前に延伸繊維トウを加熱し、所定温度以上となった延伸繊維トウに対し、捲縮工程を行うことで捲縮形状が失われにくい捲縮を付与できるようになる。
上記トウ加熱によって延伸繊維トウが加熱されると、延伸繊維トウを構成する高密度ポリエチレンが十分に加熱された状態となり、高密度ポリエチレンの結晶部および非晶質部の熱振動が活発な状態になる。この状態で捲縮工程を行うことで、結晶化の進んだ高密度ポリエチレンに対し、熱振動が活発な状態で変形させ、捲縮形状を付与するようになり、高密度ポリエチレンの結晶部に対し、十分に捲縮形状が付与される。捲縮工程を終えた延伸繊維トウは冷却され、捲縮形状が高密度ポリエチレンに付与されるとともに冷却によってその形状が固定され、得られる複合繊維の捲縮形状は崩れにくくなる。
上記のトウ加熱工程においては、延伸繊維トウは適度な張力を与えた状態で行われる。具体的にはトウ加熱工程において倍率が0.95倍以上1.3倍以下の緊張状態の下でトウ加熱を行うことが好ましい。緊張状態でトウ加熱工程を行うことで、高密度ポリエチレンの結晶化がさらに促進されるためである。上記のトウ加熱工程において、加熱する手段としては特に限定されず、温水、蒸気、ドライエアーまたは加熱ロールに接触させる方法があり、何れの方法を用いてもよいが、延伸繊維トウに対し、均一かつ短時間で加熱できることから蒸気による加熱であることが好ましい。上記のトウ加熱工程の加熱温度は、80℃以上120℃以下であることが好ましく、より好ましくは90℃以上110℃以下である。上記のトウ加熱工程における加熱時間が特に限定されないが、0.5秒以上10秒以下であることが好ましく、より好ましくは1秒以上5秒以下であり、さらに好ましくは1秒以上3秒以下である。
上述した方法で、捲縮工程の直前に延伸繊維トウを加熱する。その結果、捲縮工程を行う直前、具体的にはスタッフィングボックス型クリンパーなど公知の捲縮機に入る直前の延伸繊維トウの表面温度は60℃以上である。この状態で捲縮工程を行うことで、上述したように形状が失われにくい捲縮、言い換えるならば付与した捲縮の形状が長期間維持され、形状の耐久性が高い捲縮が付与された複合繊維が得られる。捲縮工程を行う直前の、延伸繊維トウ表面の温度は70℃以上であることが好ましく、75℃以上であることがより好ましく、80℃以上であることが特に好ましい。
トウ加熱工程で、十分加熱された延伸繊維トウに対し、捲縮を付与する。本発明の複合繊維とその製造方法において捲縮数は特に限定されないが、捲縮数が5個/25mm以上28個/25mm以下となるよう捲縮を付与することが好ましい。捲縮数が5個/25mm未満であると、カード通過性が低下するとともに、不織布の初期嵩や嵩回復性が悪くなる傾向がある。一方、捲縮数が28個/25mmを超えると、捲縮数が多すぎるためにカード通過性が低下し、不織布の地合が悪くなる。延伸繊維トウに付与する捲縮数は8個/25mm以上25個/25mm以下であることがより好ましく、10個/25mm以上20個/25mm以下であることが特に好ましい。なお、捲縮機を通過した後の捲縮形状は特に限定されないが、鋸歯状捲縮と波形状捲縮から選ばれる少なくとも一方の捲縮形状の捲縮が発現していることが好ましい。
加熱した延伸繊維トウに対して捲縮工程を行うため、捲縮工程を完了した直後、具体的にはスタッフィングボックス型クリンパーなど公知の捲縮機から出てきた延伸繊維トウの表面温度は50℃以上であることが好ましい。捲縮工程を完了した直後の延伸繊維トウについて、その表面温度が50℃以上であることで、十分に加熱された状態の延伸繊維トウに対し捲縮付与されたと推定できる。捲縮工程を完了した直後の延伸繊維トウについて、その表面温度は60℃以上であることがより好ましく、70℃以上であることが特に好ましい。本発明において捲縮工程を行う直前の延伸繊維トウ表面の温度は、捲縮機の内部に入る直前の延伸繊維トウの表面を非接触方式の温度計にて5回測定した温度の平均値とする。また、捲縮工程を完了した直後の延伸繊維トウ表面の温度は、捲縮機の内部から出てきた直後の延伸繊維トウの表面を非接触方式の温度計にて5回測定した温度の平均値とする。
本発明の複合繊維を製造方法において、延伸繊維トウ(フィラメント)に対し捲縮を付与する前または捲縮を付与した後において、必要に応じて繊維処理剤で処理してもよい。繊維処理剤で処理をすることで、複合繊維に対し、静電気を発生させにくくする制電性を付与することができる。これにより、得られる複合繊維はカード通過性に優れたものとなる。また、適度な繊維処理剤を選択することで、得られる複合繊維を用いて製造した不織布の水に対するなじみ性、すなわち親水性を付与することもできるし、撥水性を付与することもできる。
上記繊維処理剤は特に限定されず、公知の界面活性剤を適宜用いることができる。例えば。糖エステル型(「多価アルコールエステル型」とも呼ばれる)、脂肪酸エステル型、アルコール型、アルキルフェノール型、ポリオキシエチレン・ポリオキシプロピレンブロックポリマー型、アルキルアミン型、ビスフェノール型、多芳香環型、シリコーン系、フッ素系、および植物油型などの非イオン性界面活性剤、サルフェート型、スルホネート型、カルボン酸型、およびホスフェート型などのアニオン性界面活性剤、アンモニウム型およびベンザルコニウム型などのカチオン性界面活性剤、およびベタイン型、およびグリシン型などの両性界面活性剤などの界面活性剤から選択される1または複数の界面活性剤を含む繊維処理剤を使用できる。
上記繊維処理剤は複合繊維の用途に応じて適宜選択される。例えば、本発明の複合繊維を吸収性物品の表面シートに使用するのであれば繊維処理剤として親水性を有する成分を含む繊維処理剤を選択できるし、吸収性物品のギャザー部やバックシート(背面シートとも称される)を構成する不織布として使用するのであれば、水となじまない撥水性の繊維処理剤を選択できる。繊維処理剤は、延伸繊維トウに対し、トウ加熱を行う前に付与することが好ましい。これにより、フィラメントの収束性を高めることもできるし、トウ加熱後に付与してフィラメントの温度が急激に低下することもない。繊維表面に繊維処理剤を含む溶液(処理液)を付与する方法は特に限定されず、例えば、公知のスプレー法、含浸法、およびロールタッチ法等が挙げられる。具体的には、繊維処理剤の水溶液で満たした処理槽に延伸繊維トウを含浸し、余分な繊維処理剤の水溶液をニップロールなどで絞り落とすことで行ってもよい。繊維処理剤の付着量は、特に限定されず、例えば複合繊維に対し、繊維処理剤の有効成分(すなわち水分を蒸発させた後、繊維表面に残る成分)が繊維質量に対し、0.03質量%以上3質量%以下付着するように付着させればよい。
本発明の複合繊維において、繊維処理剤の付着量は、東海計器株式会社製のR-II型迅速残脂抽出装置を用い、迅速抽出法により測定することができる。
(1)所定長に切断された繊維4gをカード機にかけて繊維ウェブとし、得られた繊維ウェブの質量(Wf)を測定する。
(2)質量を測定した繊維ウェブを金属製の筒(内径16mm、長さ130mm、底部はすり鉢状で最底部には1mmの孔があるもの)に充填した後、上部よりメタノール10mLを投入する。
(3)底部の孔より滴下する、繊維試料に付着していた繊維処理剤が溶解したメタノールを、アルミニウム製の皿(質量:W1)を加熱しながら受け、メタノールを蒸発させる。アルミニウム製の皿の質量(W1)は、乾燥機でアルミニウム製の皿を充分に乾燥させてから、メタノールを受ける前に測定する。メタノールが完全に蒸発した後、繊維処理剤が残留しているアルミニウム皿の質量(W2)を測定する。
(4)繊維の質量に対する繊維処理剤の付着量を、次の式から算出する。
(1)所定長に切断された繊維4gをカード機にかけて繊維ウェブとし、得られた繊維ウェブの質量(Wf)を測定する。
(2)質量を測定した繊維ウェブを金属製の筒(内径16mm、長さ130mm、底部はすり鉢状で最底部には1mmの孔があるもの)に充填した後、上部よりメタノール10mLを投入する。
(3)底部の孔より滴下する、繊維試料に付着していた繊維処理剤が溶解したメタノールを、アルミニウム製の皿(質量:W1)を加熱しながら受け、メタノールを蒸発させる。アルミニウム製の皿の質量(W1)は、乾燥機でアルミニウム製の皿を充分に乾燥させてから、メタノールを受ける前に測定する。メタノールが完全に蒸発した後、繊維処理剤が残留しているアルミニウム皿の質量(W2)を測定する。
(4)繊維の質量に対する繊維処理剤の付着量を、次の式から算出する。
さらに、上記捲縮機にて捲縮を付与した後、アニーリング処理をするのが好ましい。アニーリング処理は、80℃以上120℃以下の温度範囲内で、乾熱、湿熱、蒸熱などの雰囲気下で行うことが好ましく、90℃以上120℃以下の温度範囲内で行うことがより好ましい。具体的には、捲縮機にて捲縮を付与した延伸繊維トウを90℃以上120℃以下の乾熱雰囲気下でアニーリング処理と同時に乾燥処理をすることが、工程を簡略化できて好ましい。90℃以上の温度でアニーリング処理をすると、得られる複合繊維の乾熱収縮率が大きくならないとともに、複合繊維が明瞭な捲縮形状を発現するため、カード通過性に優れた複合繊維となる。
上記方法により得られた複合繊維は、主として、図2Aに示す鋸歯状捲縮(機械捲縮とも称す)と図2Bに示す波形状捲縮からなる群から選ばれる少なくとも一種の捲縮を有し、捲縮数が5個/25mm以上28個/25mm以下であるので、カード通過性を低下させることなく、柔軟で風合いの滑らかな不織布を得ることができ、好ましい。そして、所望の繊維長に切断されて、複合繊維が得られる。
上記複合繊維の単繊維繊度は、未延伸繊維トウの単繊維繊度および延伸倍率を調節することによって、所望のように調節することができる。上述したアニーリング処理の後で、延伸繊維トウを切断することにより、所定の長さの上記複合繊維が得られる。
(熱接着不織布)
続いて、本発明の複合繊維を含む不織布の一例として、熱接着不織布をその製造方法とともに説明する。本発明の熱接着不織布は、上記複合繊維を25質量%以上含み、少なくとも一部の上記複合繊維が鞘成分によって接着している。上記熱接着不織布は、上記複合繊維を25質量%以上含有する繊維ウェブを作製し、得られた繊維ウェブを熱接着し、繊維同士を一体化させることによって得ることができる。他の繊維を用いる場合には、当該他の繊維として、例えば、天然繊維、再生繊維、精製セルロース繊維、半合成繊維、合成繊維を用いることができる。上記天然繊維としては、例えば、コットン、シルク、ウール、麻、パルプなどが挙げられる。上記再生繊維としては、例えば、レーヨン、キュプラなどが挙げられる。上記精製セルロース繊維としては、テンセル、リヨセルなどが挙げられる。上記半合成繊維としては、アセテート、トリアセテートなどが挙げられる。上記合成繊維としては、例えば、アクリル系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリオレフィン系繊維、ポリウレタン系繊維などが挙げられる。他の繊維としては、上述した繊維から、1種または2種以上の繊維を用途などに応じて適宜に選択することができる。他の繊維は、本発明の複合繊維と混合して使用してよく、あるいは本発明の複合繊維からなる繊維ウェブと他の繊維からなる繊維ウェブを積層して用いてよい。
続いて、本発明の複合繊維を含む不織布の一例として、熱接着不織布をその製造方法とともに説明する。本発明の熱接着不織布は、上記複合繊維を25質量%以上含み、少なくとも一部の上記複合繊維が鞘成分によって接着している。上記熱接着不織布は、上記複合繊維を25質量%以上含有する繊維ウェブを作製し、得られた繊維ウェブを熱接着し、繊維同士を一体化させることによって得ることができる。他の繊維を用いる場合には、当該他の繊維として、例えば、天然繊維、再生繊維、精製セルロース繊維、半合成繊維、合成繊維を用いることができる。上記天然繊維としては、例えば、コットン、シルク、ウール、麻、パルプなどが挙げられる。上記再生繊維としては、例えば、レーヨン、キュプラなどが挙げられる。上記精製セルロース繊維としては、テンセル、リヨセルなどが挙げられる。上記半合成繊維としては、アセテート、トリアセテートなどが挙げられる。上記合成繊維としては、例えば、アクリル系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリオレフィン系繊維、ポリウレタン系繊維などが挙げられる。他の繊維としては、上述した繊維から、1種または2種以上の繊維を用途などに応じて適宜に選択することができる。他の繊維は、本発明の複合繊維と混合して使用してよく、あるいは本発明の複合繊維からなる繊維ウェブと他の繊維からなる繊維ウェブを積層して用いてよい。
上記熱接着不織布を製造する際に用いられる繊維ウェブとしては、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスウェブ、およびクリスクロスウェブなどのカードウェブ、エアレイドウェブ等が挙げられる。吸収性物品に使用する不織布、特に吸収性物品の表面シートは嵩高性、柔軟性、および繊維間にある程度空隙が存在することが求められるため、上記繊維ウェブはカードウェブであることが好ましい。上記熱接着不織布としては、上記の繊維ウェブから異なる種類の繊維ウェブを2種類以上積層して用いてもよい。
上記繊維ウェブに熱処理を施して、鞘成分で繊維同士を熱接着させた熱接着不織布の形態で不織布を得ることが好ましい。熱接着不織布は、本発明の複合繊維がもたらす効果、例えば、不織布表面の滑らかな風合いなどの効果を顕著に発揮するからである。繊維間を絡合させるために、繊維ウェブには、必要に応じて、熱処理前および/または熱処理後にニードルパンチ処理や水流交絡処理等の交絡処理を施してもよい。
熱接着不織布を得るために、上記繊維ウェブには、公知の熱処理手段により熱処理を施す。熱処理手段としては、熱風貫通式熱処理機、熱風吹き付け式熱処理機および赤外線式熱処理機等、風圧等の圧力が繊維ウェブにあまり加わらない熱処理機が好ましく用いられる。熱処理温度等の熱処理条件は、例えば、鞘成分が十分に溶融および/または軟化して、繊維同士が接点または交点において接合するとともに、捲縮がつぶれないような条件を選択して実施する。例えば、熱処理温度は、鞘成分に含まれる高密度ポリエチレンの融点(複数の高密度ポリエチレンが鞘成分に含まれている場合には、最も高い融点を有する高密度ポリエチレンの融点)をTmとしたときに、Tm以上かつ(Tm+40℃)以下の範囲とすることが好ましい。
上記熱接着不織布は、表面触感が良好な不織布となる。熱接着不織布の表面触感は、官能評価することができる。また、熱接着不織布の表面触感は、布帛の風合いを計測し客観的に評価する方法の一つである、KES(Kawabata Evaluation System)法に基づいて計測・評価することができる。具体的には、表面摩擦の特性値として、平均摩擦係数(以下、MIUとも称す。)、平均摩擦係数の変動(摩擦係数μの平均偏差といわれることもあり、以下、MMDとも称す。)、および表面粗さの標準平均偏差(以下、SMDとも称す)が測定される。
MIUは、表面のすべりにくさ(またはすべりやすさ)を表し、これが大きいほどすべりにくいことを示す。MMDは、摩擦のばらつきを示し、これが大きいほど表面がざらざらしていることを示す。SMDは不織布表面の凹凸の程度を表し、測定されたSMDの値が大きいほど不織布表面の凹凸が大きく、小さいほど不織布表面の凹凸が小さくなる。本発明の熱接着不織布の表面は、MIUが比較的小さい傾向があり、MMDおよびSMDが、従来の不織布と比較して特に小さくなる傾向がある。そのような不織布は、手や肌に触れたときに、摩擦感が小さいだけでなく、摩擦係数の変動が小さい、すなわち不織布表面のどの部分も摩擦係数が小さく、指や肌に引っかかるような感覚を与えないことから、肌と接触しても滑りやすい軽い触感を与える。これら表面摩擦の特性値を測定する機器は、KES法に基づいた表面摩擦の測定が行える機器であれば特に限定されない。表面摩擦の特性値は、例えば、摩擦感テスター(「KES-SE」、「KES-SESRU」、いずれもカトーテック株式会社製)、自動化表面試験機(「KES-FB4-AUTO-A」、カトーテック株式会社製)などを使用することで測定できる。
上記熱接着不織布の表面特性、即ち、上記熱接着不織布の表面摩擦は、熱接着不織布を製造する際、熱風が吹き付けられた面の反対側の面、すなわち繊維ウェブに熱風による熱処理を施して熱接着不織布にする際、繊維ウェブを載置し、熱処理機内を搬送させるのに用いた搬送支持体(例えば、熱風貫通式熱処理機内に繊維ウェブを導入、搬送するコンベアネットを指す。)に接していた面で測定する。搬送支持体に接していた面は、熱風が吹き付けられた面よりも平滑になりやすく、滑らかな触感が得られやすいことから、吸収性物品の表面シートにおいて、この面を着用者の肌に直接接する面(肌当接面)に使用すると、熱風が吹き付けた面を肌に当てた場合よりも触感が滑らかになり、吸収性物品の使用感が向上するためである。なお、熱接着不織布の表面摩擦を測定する際、どちらの面が、熱処理時に熱風が吹き付けられた面、或いは熱処理時に搬送支持体に載置されていた面であるのかがはっきりしない場合は表面摩擦を測定し、MMDがより小さい値となった面を測定面とする。
本発明の熱接着不織布は、触感が滑らかで柔らかい。上述したKES法に基づく表面摩擦の特性値の中でも、MMDが、不織布を触ったときの滑らかさに影響を及ぼす。本発明の複合繊維を含む不織布は、MMDが小さいだけでなく、平均摩擦係数(MIU)も比較的小さいことから、その不織布表面は前記のように、肌と接触しても滑りやすく軽い触感を与える。
なお、複合繊維によっては、当該複合繊維を含む不織布の表面をKES法に基づいて評価したときにMIUが大きく、MMDが小さい値となるものも存在する。このような不織布は比較的大きな摩擦が変動することなく指や皮膚に伝わるため、滑らかな触感の中に摩擦を感じる「しっとりとした触感」や「ぬめり感」を与えるようになる。このような不織布もまた吸収性物品に使用する不織布としては好ましいものとなるため、吸収性物品に使用する不織布は平均摩擦係数の変動(MMD)が可能な限り小さいことが求められると考えられる。
上記熱接着不織布は、不織布を十分に乾燥させた状態で測定した不織布表面の平均摩擦係数の変動(MMD)が、0.1以下であることが好ましく、0.05以下であることがより好ましく、0.01以下であることがさらに好ましく、0.008以下であることが特に好ましい。不織布を乾燥させた状態で測定した平均摩擦係数の変動(MMD)は、下限値が特に制限されず、0に近づけば近づくほど好ましいが、0.003以上であってもよいし、0.005以上であってもよい。
上記熱接着不織布は、不織布を十分に乾燥させた状態で測定した、不織布表面における表面粗さの標準平均偏差(SMD)が、4以下であることが好ましく、3.5以下であることがより好ましく、3.2以下であることがさらに好ましく、3以下であることが特に好ましい。不織布を乾燥させた状態で測定した、不織布表面における表面粗さの標準平均偏差(SMD)は下限値が特に限定されず、0に近いことが好ましいが、0.5以上であってもよいし、1以上であってもよいし、1.5以上であってもよい。
上記不織布は、不織布を十分に乾燥させた状態で測定した不織布表面の平均摩擦係数(MIU)が、0.25以下であることが好ましく、0.24以下であることがより好ましく、0.23以下であることがさらに好ましい。不織布を乾燥させた状態で測定した不織布表面の平均摩擦係数(MIU)は、下限値が特に制限されず、0に近づけば近づくほど好ましいが、0.05以上であってもよいし、0.1以上であってもよい。
本発明の熱接着不織布(すなわち、本発明の複合繊維を25質量%以上含む熱接着不織布)は、不織布全体が柔らかく、不織布表面に触れたときに滑らかな触感を与える。上記熱接着不織布は、生理用ナプキン、幼児用紙オムツ、成人用紙オムツ、ほ乳類を始めとする動物用の紙オムツ、パンティーライナー、失禁用ライナーなどの各種吸収性物品の表面シートに好ましく使用できる。また、上記不織布は、外側から触れる機会のある、幼児用紙オムツや成人用紙オムツのバックシートに用いてもよい。また、上記不織布は、各種吸収性物品を構成するシート(以下において、吸収性物品用シートとも称す。)、例えば、表面シートの直下に配置されるセカンドシート、液拡散シート、吸収体を包んでいる、一般的にコアラップシートと呼ばれるシートなどにも使用できる。本発明の熱接着不織布を吸収性物品シートとして用いる場合、特に肌当接面に、本発明の複合繊維を20質量%以上含むことが好ましい。また、不織布全体の柔軟性、不織布の隠蔽性を活かすため、吸収性物品において、肌に直接触れる表面シートよりも吸収体側、例えば、表面シートの直下に位置する、いわゆるセカンドシートにも、本発明の熱接着不織布を好ましく使用できる。
本発明の熱接着不織布の目付は特に限定されないが、5g/m2以上70g/m2以下であることが好ましく、8g/m2以上60g/m2以下であることがより好ましく、10g/m2以上55g/m2以下であることがさらに好ましく、15g/m2以上50g/m2以下であることが特に好ましい。なお、本発明の熱接着不織布の目付は、熱接着不織布の用途によっては、これらの範囲外にあってもよい。また、上記熱接着不織布を各用途、例えば各種紙オムツや生理用ナプキンの表面シート、各種紙オムツのバックシート、吸収性物品の表面シート直下に配置されるセカンドシートなどの用途に使用する場合には、その用途に応じて、その目付が適宜選択される。
上記熱接着不織布を吸収性物品の表面シートとして用いる場合、上記熱接着不織布は上記複合繊維を25質量%以上含有している。好ましくは、上記熱接着不織布は上記複合繊維を30質量%以上含有し、40質量%以上含有することがより好ましい。上記熱接着不織布において、上記複合繊維の割合が上記範囲内にあると、表面触感に優れ、触れたときに柔らかく滑らかな触感を感じる不織布が容易に得られるためである。上記熱接着不織布において、上記複合繊維の含有量は100質量%であってもよく、90質量%以下であってもよく、80質量%以下であってもよい。
上記熱接着不織布は、吸収性物品を構成する不織布(例えば表面シートやバックシート)として使用する際に必要な強度、また使用時の摩擦による表面の毛羽立ちの防止、そして触ったときの柔軟な触感などの観点から、JIS L 1096(2010年) 8.14.1 A法(ストリップ法)に準じて測定した縦方向の引張強さが15N/5cm以上であることが好ましく、20N/5cm以上であることがより好ましく、25N/5cm以上であることがさらに好ましく、28N/5cm以上であることが特に好ましい。引張強さの上限は特に限定されないが、70N/5cm以下であってもよいし、60N/5cm以下であってもよいし、55N/5cm以下であってもよいし、50N/5cm以下であってもよい。
本発明の複合繊維を25質量%以上含む熱接着不織布とすることで、風合いが滑らかで柔らかい触感の熱接着不織布が得られる。このような熱接着不織布は吸収性物品を構成する様々なシート、例えば、表面シート、セカンドシート(液拡散シートとも呼ばれる)、吸収体を包んでいるコアラップシート、幼児用紙オムツや成人用紙オムツの外側表面を形成するバックシートに対して使用することができるが、本発明の複合繊維を使用して各種吸収性物品用の表面シートを得ようとする場合、前記複合繊維を含む繊維層を当該吸収性物品の装着者の肌に接触する面とし、その層の下側に別の繊維層を設けた積層不織布にすることで、シートの触感、吸液性能に優れた表面シートとすることができる。以下に本発明の複合繊維を含む吸収性物品用表面シートについて詳細に説明する。
(吸収性物品用表面シート)
本発明者らは、吸収性物品用表面シートの触感、嵩高性および吸液特性を向上させることについて鋭意検討した結果、肌に当接する第1繊維層と、前記第1繊維層と隣接している第2繊維層とを含む吸収性物品用表面シートにおいて、第1繊維層は第1芯鞘型複合繊維を50質量%以上含む繊維層とし、第2繊維層は第2芯鞘型複合繊維を50質量%以上含む繊維層とし、第1芯鞘型複合繊維として単繊維繊度が0.6dtex以上2.0dtex未満の上述した本発明の複合繊維を用い、第2芯鞘型複合繊維として芯成分がポリエステル樹脂を含み、鞘成分が前記ポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含み、単繊維繊度が2.2dtex以上7dtex以下の繊維を用い、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の少なくとも一部を、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の鞘成分により熱接着することで、吸収性物品用表面シートが滑らかな触感を有するとともに、ランオフや吸液速度等の吸液特性が良好になることを見出した。
本発明者らは、吸収性物品用表面シートの触感、嵩高性および吸液特性を向上させることについて鋭意検討した結果、肌に当接する第1繊維層と、前記第1繊維層と隣接している第2繊維層とを含む吸収性物品用表面シートにおいて、第1繊維層は第1芯鞘型複合繊維を50質量%以上含む繊維層とし、第2繊維層は第2芯鞘型複合繊維を50質量%以上含む繊維層とし、第1芯鞘型複合繊維として単繊維繊度が0.6dtex以上2.0dtex未満の上述した本発明の複合繊維を用い、第2芯鞘型複合繊維として芯成分がポリエステル樹脂を含み、鞘成分が前記ポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含み、単繊維繊度が2.2dtex以上7dtex以下の繊維を用い、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の少なくとも一部を、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の鞘成分により熱接着することで、吸収性物品用表面シートが滑らかな触感を有するとともに、ランオフや吸液速度等の吸液特性が良好になることを見出した。
上述したように、上記吸収性物品用表面シートにおいて、肌に当接する第1繊維層を構成する第1芯鞘型複合繊維の繊度と、第1繊維層に隣接する第2繊維層を構成する第2芯鞘型複合繊維の繊度を特定の範囲にするとともに第1芯鞘型複合繊維の繊度を第2芯鞘型複合繊維の繊維より小さくしている。これに加え、好ましくは、第1芯鞘型複合繊維の表面に付着している繊維処理剤と、前記第2芯鞘型複合繊維の表面に付着している繊維処理剤を比較したとき、第1芯鞘型複合繊維の表面に付着している繊維処理剤の方を親水性の低い繊維処理剤とする、言い換えるならば、第1芯鞘型複合繊維の表面に付着している繊維処理剤を、親水性の低い繊維処理剤とし、第2芯鞘型複合繊維の表面に付着している繊維処理剤を、親水性の高い繊維処理剤とすることにより、吸収性物品用表面シートがより滑らかな触感を有するとともに、ランオフや吸液速度等の吸液特性がより良好になることを見出した。
本発明の吸収性物品用表面シートは、肌に当接する第1繊維層と、前記第1繊維層と隣接している第2繊維層とを含む。図3は、本発明の一実施形態の吸収性物品用表面シートの断面模式図である。図3に示しているように、吸収性物品用表面シート30は、第1繊維層31と、第1繊維層31と隣接している第2繊維層32で構成されている。
(第1繊維層)
第1繊維層は、第1芯鞘複合繊維を50質量%以上含む繊維層であり、第1芯鞘複合繊維として本発明の複合繊維を用いる。本発明の複合繊維については、上記において具体的に説明しており、本発明の複合繊維に関する内容を、「複合繊維」を「第1芯鞘複合繊維」に置き換えるのみでそのまま援用し、第1芯鞘複合繊維についての具体的な説明は省略する。
第1繊維層は、第1芯鞘複合繊維を50質量%以上含む繊維層であり、第1芯鞘複合繊維として本発明の複合繊維を用いる。本発明の複合繊維については、上記において具体的に説明しており、本発明の複合繊維に関する内容を、「複合繊維」を「第1芯鞘複合繊維」に置き換えるのみでそのまま援用し、第1芯鞘複合繊維についての具体的な説明は省略する。
第1繊維層は、触感および吸液特性に優れるという観点から、第1芯鞘型複合繊維を60質量%以上含むことが好ましく、より好ましくは第1芯鞘型複合繊維を70質量%以上含み、さらに好ましくは第1芯鞘型複合繊維を80質量%以上含み、特に好ましくは第1芯鞘型複合繊維を90質量%以上含み、第1芯鞘型複合繊維100質量%からなることが最も好ましい。第1繊維層に、第1芯鞘型複合繊維に加えて、他の繊維を含ませる場合には、他の繊維として、例えば、天然繊維、再生繊維、合成繊維を用いることができる。前記天然繊維としては、例えば、コットン、シルク、ウール、麻、パルプ等が挙げられる。前記再生繊維としては、例えば、レーヨン、キュプラ等が挙げられる。前記合成繊維としては、例えば、アクリル系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリオレフィン系繊維、ポリウレタン系繊維等が挙げられる。他の繊維としては、上述した繊維から、1種または複数種の繊維を用途等に応じて適宜に選択することができる。
(第2繊維層)
第2繊維層は、芯成分がポリエステル樹脂を含み、鞘成分がポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含んでいる第2芯鞘型複合繊維を50質量%以上含む繊維層である。第2繊維層は、吸液特性に優れるという観点から、第2芯鞘型複合繊維を60質量%以上含むことが好ましく、より好ましくは70質量%以上含み、さらに好ましくは80質量%以上含み、特に好ましくは90質量%以上含み、第2芯鞘型複合繊維100質量%からなることが最も好ましい。第2繊維層に、第2芯鞘型複合繊維に加えて、他の繊維を含ませる場合には、第1繊維層に第1芯鞘型複合繊維に加えて他の繊維を含ませる場合に例示した繊維を第2繊維層に対しても含ませることができる。他の繊維は上述した繊維を始めとする公知の繊維から、1種または複数種の繊維を用途等に応じて適宜に選択することができる。
第2繊維層は、芯成分がポリエステル樹脂を含み、鞘成分がポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含んでいる第2芯鞘型複合繊維を50質量%以上含む繊維層である。第2繊維層は、吸液特性に優れるという観点から、第2芯鞘型複合繊維を60質量%以上含むことが好ましく、より好ましくは70質量%以上含み、さらに好ましくは80質量%以上含み、特に好ましくは90質量%以上含み、第2芯鞘型複合繊維100質量%からなることが最も好ましい。第2繊維層に、第2芯鞘型複合繊維に加えて、他の繊維を含ませる場合には、第1繊維層に第1芯鞘型複合繊維に加えて他の繊維を含ませる場合に例示した繊維を第2繊維層に対しても含ませることができる。他の繊維は上述した繊維を始めとする公知の繊維から、1種または複数種の繊維を用途等に応じて適宜に選択することができる。
第2芯鞘型複合繊維は、繊度が2.2dtex以上7dtex以下である。第2繊維層を構成する第2芯鞘型複合繊維の繊度を、第1繊維層を構成する第1芯鞘型複合繊維の繊度より大きくすることで、吸収性物品用表面シートが適度なクッション性を有し、触感が滑らかになるとともに、吸液特性も良好になる。第2芯鞘型複合繊維の繊度が2.2dtex未満であると、第2芯鞘型複合繊維の繊度が小さいことで第2繊維層の構成繊維の本数が相対的に多くなり、その結果、第2繊維層が密な構造となって経血や尿等の排泄物を吸液しにくくなる。また、第2芯鞘型複合繊維の繊度が7dtexを超えると、第2芯鞘型複合繊維の繊度が大きいことで第2繊維層の構成本数が相対的に少なくなり、その結果、第2繊維層が疎になりすぎて、経血や尿等の排泄物を吸液しにくくなる。第2芯鞘型複合繊維の繊度は2.5dtex以上6dtex以下であるとより好ましく、3dtex以上5.6dtex以下であるとさらに好ましく、3.6dtex以上4.8dtex以下であることが最も好ましい。
第2芯鞘型複合繊維において、芯成分はポリエステル樹脂を50質量%以上含むことが好ましく、より好ましくは60質量%以上含み、さらに好ましくは70質量%以上含み、特に好ましくは80質量%以上含む。芯成分がポリエステル樹脂を50質量%以上含むことにより、第2芯鞘型複合繊維のカード通過性が良好になる。前記ポリエステル樹脂としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、およびこれらとイソフタル酸、コハク酸、アジピン酸等の酸成分や、1,4ブタンジオール、1,6ヘキサンジオール等のグリコール成分、ポリテトラメチレングリコール、ポリオキシメチレングリコール等との共重合体、ならびにこれらのエラストマーが挙げられる。吸収性物品用表面シートの嵩高性、クッション性、および吸液速度の観点から、前記ポリエステル樹脂は、ポリエチレンテレフタレート(以下において、PETとも記す。)であることが好ましい。
第2芯鞘型複合繊維において、芯成分に含まれるポリエステル樹脂より融点が50℃以上低い熱可塑性樹脂は、特に限定されないが、高密度ポリエチレンを用いることが好ましい。第2芯鞘型複合繊維の鞘成分が高密度ポリエチレンを含むことにより、第2芯鞘型複合繊維が剛性の高いものとなりやすく、第2芯鞘型複合繊維のカード通過性、捲縮発現性が良好になりやすい。第2芯鞘型複合繊維の鞘成分に含まれる高密度ポリエチレンの含有量は好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは100質量%である。前記高密度ポリエチレンとしては、上述した第1芯鞘型複合繊維の鞘成分に用いることができる高密度ポリエチレンを用いることができる。第1芯鞘型複合繊維の鞘成分に含まれる高密度ポリエチレンと、第2芯鞘型複合繊維の鞘成分に含まれる高密度ポリエチレンは融点がほぼ同等であることが好ましい。第1芯鞘型複合繊維と第2芯鞘型複合繊維とを第1芯鞘型複合繊維と第2芯鞘型複合繊維の鞘成分により熱接着しやすくなる。
第2芯鞘型複合繊維は、芯成分がポリエステル樹脂を含み、鞘成分が前記ポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含んでいる複合繊維であればよく、第2芯鞘型複合繊維において、その断面において、芯成分および鞘成分の配置は任意のものにすることができる。すなわち、第2芯鞘型複合繊維は図1に示す芯成分と鞘成分が同心円状に配置されている同心円構造の芯鞘型複合繊維であってもよいし、芯成分の重心位置が、繊維の中心からずれている偏心芯鞘型の複合繊維であってもよいし、芯成分と鞘成分が並んだ状態で配置されているサイドバイサイド型(並列型)の複合繊維であってもよい。第2芯鞘型複合繊維の断面は、得られる吸収性物品用表面シートの地合い、嵩高性、クッション性の観点から、芯成分と鞘成分が同心円状に配置された同心円構造の芯鞘型複合繊維か、偏心芯鞘型複合繊維(サイドバイサイド型は除く)であることが好ましく、同心円構造の芯鞘型複合繊維であることがより好ましい。
第2芯鞘型複合繊維において、芯成分の繊維断面における形態は、円形以外に、楕円形、Y形、X形、多角形、星形等の異形であってもよく、複合繊維の繊維断面における形態は、円形以外に、楕円形、Y形、X形、多角形、星形等の異形、または中空形であってもよい。
第2芯鞘型複合繊維は、その繊維長は特に限定されず、例えば、76mm以下であればよい。吸収性物品用表面シートを製造するときの工程性の観点から、繊維長は35mm以上65mm以下であることが好ましく、より好ましくは40mm以上60mm以下であり、さらに好ましくは44mm以上55m以下である。
本発明の吸収性物品用表面シートにおいて、第1芯鞘型複合繊維と第2芯鞘型複合繊維の少なくとも一部が、第1芯鞘型複合繊維と第2芯鞘型複合繊維の鞘成分により熱接着している。第1芯鞘型複合繊維を50質量%以上含有する第1繊維ウェブと、第2芯鞘型複合繊維を50質量%以上含有する第2繊維ウェブを積層し、積層構造の繊維ウェブを熱処理して第1芯鞘型複合繊維と第2芯鞘型複合繊維の少なくとも一部を鞘成分により熱接着させる。
上記繊維ウェブとしては、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスウェブ、およびクリスクロスウェブ等のカードウェブ、エアレイドウェブ等が挙げられる。吸収性物品用表面シートは嵩高性や柔軟性、繊維間にある程度空隙が存在することが求められるため、繊維ウェブはカードウェブであることが好ましい。第1繊維層と第2繊維層は、異なる種類の繊維ウェブであってもよい。
上記積層構造の繊維ウェブに熱処理を施して、第1芯鞘型複合繊維と第2芯鞘型複合繊維の鞘成分により第1芯鞘型複合繊維と第2芯鞘型複合繊維を熱接着させることで、第1繊維層(第1繊維ウェブ)と第2繊維層(第2繊維ウェブ)を含む熱接着不織布の形態で、本発明の吸収性物品用表面シートを得ることができる。熱接着不織布の形態であれば、厚み方向の柔軟性、嵩回復性、ならびに不織布表面の滑らかな風合い等の効果を顕著に発揮するからである。繊維間を絡合させるために、繊維ウェブには、必要に応じて、熱処理前および/または熱処理後にニードルパンチ処理や水流交絡処理等の交絡処理を施してもよい。第1繊維ウェブと第2繊維ウェブは境目付近で互いに絡合してもよい。
上記熱処理は、公知の熱処理機により施すことができる。例えば、熱処理には、熱風貫通式熱処理機、熱風吹き付け式熱処理機および赤外線式熱処理機等、風圧等の圧力が繊維ウェブにあまり加わらない熱処理機が好ましく用いられる。熱処理温度等の熱処理条件は、例えば、鞘成分が十分に溶融および/または軟化して、繊維同士が接点または交点において接合する。例えば、熱処理温度は、鞘成分に含まれる高密度ポリエチレンの紡糸前の融点(複数の高密度ポリエチレンが鞘成分に含まれている場合には、最も高い融点を有する高密度ポリエチレンの融点)をTmとしたときに、Tm以上かつ(Tm+40℃)以下の範囲とすることが好ましい。より好ましい熱処理温度の範囲は(Tm+5℃)以上かつ(Tm+30℃)以下である。
上記吸収性物品用表面シートにおいて、吸液特性の観点から、第1繊維層の目付は第2繊維層の目付より低いことが好ましい。液戻りが少なく、耐ウェットバック性に優れるという観点から、第1繊維層の目付は4g/m2以上18g/m2以下であることが好ましく、5g/m2以上15g/m2以下であることがより好ましく、6g/m2以上12g/m2以下であることが特に好ましく、8g/m2以上12g/m2以下であることが最も好ましい。また、液戻りが少なく、耐ウェットバック性に優れるという観点から、第2繊維層の目付は8g/m2以上45g/m2以下であることが好ましく、8g/m2以上35g/m2以下であることがより好ましく、10g/m2以上30g/m2以下であることが特に好ましく、10g/m2以上25g/m2以下であることが最も好ましい。吸収性物品用表面シート全体の目付は、12g/m2以上60g/m2以下であることが好ましく、15g/m2以上50g/m2以下であることがより好ましく、15g/m2以上40g/m2以下であることが特に好ましく、18g/m2以上30g/m2以下であることが最も好ましい。
上記吸収性物品用表面シート(積層不織布)において、肌に当接する第1繊維層は、触感に優れる観点から、不織布を十分に乾燥させた状態で測定した、第1繊維層表面の平均摩擦係数の変動(MMD)が、0.1以下であることが好ましく、0.05以下であることがより好ましく、0.01以下であることがさらに好ましく、0.008以下であることが特に好ましい。不織布を乾燥させた状態で測定した平均摩擦係数の変動(MMD)は、下限値が特に制限されず、0に近づけば近づくほど好ましいが、0.003以上であってもよいし、0.005以上であってもよい。
上記吸収性物品用表面シート(積層不織布)において、肌に当接する第1繊維層は、触感に優れる観点から、不織布を十分に乾燥させた状態で測定した、第1繊維層表面における表面粗さの標準平均偏差(SMD)が、4以下であることが好ましく、3.5以下であることがより好ましく、3.2以下であることがさらに好ましく、3以下であることが特に好ましい。不織布を乾燥させた状態で測定した、不織布表面における表面粗さの標準平均偏差(SMD)は下限値が特に限定されず、0に近いことが好ましいが、0.5以上であってもよいし、1以上であってもよいし、1.5以上であってもよい。
上記吸収性物品用表面シート(積層不織布)において、肌に当接する第1繊維層は、不織布を十分に乾燥させた状態で測定した第1繊維層表面の平均摩擦係数(MIU)が、0.25以下であることが好ましく、0.24以下であることがより好ましく、0.23以下であることがさらに好ましい。不織布を乾燥させた状態で測定した不織布表面の平均摩擦係数(MIU)は、下限値が特に制限されず、0に近づけば近づくほど好ましいが、0.05以上であってもよいし、0.1以上であってもよい。
上記吸収性物品用表面シートは、肌に当接する第1繊維層と、前記第1繊維層と隣接している第2繊維層とを含み、肌に当接する第1繊維層には繊度が2.0dtex未満の第1芯鞘型複合繊維が含まれている。繊度の小さい繊維を含む繊維集合物は繊維同士の間隔が狭く、繊維間の空隙に液体を吸収した場合、吸収した液体を保持する傾向が強い。吸収性物品用表面シートにおいて肌に当接する繊維層がこのような繊維で構成されていると、尿や経血、軟便等を吸収した後、それらの液体が当該繊維層に保持され続けることで液残りが発生し、使用感の低下を引き起こすおそれがある。
上記吸収性物品用シートにおいて、第1繊維層に隣接する第2繊維層に含まれる第2芯鞘型複合繊維の表面に付着している繊維処理剤を親水性の傾向が強い繊維処理剤とすることで、第2繊維層への液体の移行性が高められていることが好ましい。加えて、第1繊維層に含まれる第1芯鞘型複合繊維の表面に付着している繊維処理剤が親水性の傾向が弱い繊維処理剤であるとより好ましい。第1芯鞘型複合繊維の表面に付着している繊維処理剤を親水性が適度に弱い繊維処理剤とすることで、第1繊維層は表面に排出された尿や経血をすばやく吸収するものの、繊維間に液体を保持せず、より親水性の強い第2繊維層に吸収した液体を移行させるため、吸液性に優れるだけでなく、液戻りする量も減少させることができる。
従って、本発明の吸収性物品用表面シートは第1繊維層と第2繊維層とで親水性の強さが異なり、第2繊維層の方が第1繊維層よりも親水性が強いほうが好ましい。吸収性物品用表面シートにおいて、シートの表面の親水性の強弱を測定する方法は多々あり、吸収性物品用表面シートの第1繊維層および第2繊維層を構成する繊維について、微小な水滴を滴下し、その接触角を測定し、その大小でシートの表面の親水性の強弱を測定する方法等があるが、第1繊維層と第2繊維層の表面についてランオフ試験を行うことで、親水性の強弱を測定することができる。ランオフ試験の詳細は後述するが、所定の方法で両表面を平滑化させた後、45度に傾けた不織布に対し生理食塩水を滴下し、滴下した水滴が全てシート内に吸収されるまでに流れ落ちる距離を測定し、その長さで親水性の強弱を評価する方法である。本発明の吸収性物品用表面シートにおいて、第2繊維層の表面で測定されたランオフ(R2)は120mm以下であることが好ましく、100mm以下であることがより好ましく、80mm以下であることが特に好ましく、75mm以下が最も好ましい。第2繊維層のランオフ(R2)が120mm以下であると、第2繊維層の親水性が比較的強いものとなり、第1繊維層から液体を引き込む作用が強くなる。そして、第1繊維層の表面で測定したランオフの値(R1)と第2繊維層の表面で測定したランオフの値(R2)の差(R1-R2)が3mmより大きいことが好ましい。第1繊維層の表面で測定したランオフの値(R1)と第2繊維層の表面で測定したランオフの値(R2)の差(R1-R2)が3mmより大きいことで、第1繊維層と第2繊維層との間に親水性の強弱が生じ、吸収性物品用表面シートの第1繊維層側の表面に排出された尿や経血が、第1繊維層の内部に吸収されると同時に第2繊維層への移行が始まり、装着者の肌に接している第1繊維層に含まれる液体の量が少なくなり、吸収性物品の装着者の快適性が向上する。第1繊維層の表面で測定したランオフの値(R1)と第2繊維層の表面で測定したランオフの値(R2)の差(R1-R2)は4mm以上であることがより好ましく、5mm以上であることが特に好ましく、6mm以上であることが最も好ましい。
また、第1繊維層の表面で測定されるランオフの値(R1)は特に制限されないが、第1繊維自体の吸液性能(すなわち、第1繊維層表面に排出された尿や経血といった液体を繊維層内部に吸収する速さ)および第1繊維層の内部に吸収した尿や経血といった液体をすばやく第2繊維層へ移行させるために必要な第2繊維層との親水性の強弱の違いを考慮すると、第1繊維層の表面で測定されるランオフの値(R1)は20mm以上150mm以下であることが好ましく、25mm以上140mm以下であることがより好ましく、30mm以上130mm以下であることが特に好ましい。
上記吸収性物品用表面シートにおいて、第1繊維層は、吸収性物品を着用する着用者の肌に当接する。第1芯鞘型複合繊維を含む第1繊維層が肌に当たることで、吸収性物品の使用者に対し、快適な使用感を与えることができる。前記吸収性物品用表面シートは、生理用ナプキン、幼児用紙オムツ、成人用紙オムツ、ほ乳類を始めとする動物用の紙オムツ、パンティーライナー、失禁用ライナー等の各種吸収性物品の表面シートとして好ましく使用できる。
本発明の吸収性物品としては、前記吸収性物品用表面シートを含むものであればよく、特に限定されない。例えば、生理用ナプキン、幼児用紙オムツ、成人用紙オムツ、ほ乳類を始めとする動物用の紙オムツ、パンティーライナー、失禁用ライナー等が挙げられる。
以下、実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。
本実施例で用いた測定方法および評価方法は、以下のとおりである。
(高密度ポリエチレンの融点)
高密度ポリエチレンの融点は、JIS K 7121(1987年)に準じて測定した融解ピーク温度を当該高密度ポリエチレンの融点とした。
高密度ポリエチレンの融点は、JIS K 7121(1987年)に準じて測定した融解ピーク温度を当該高密度ポリエチレンの融点とした。
(高密度ポリエチレンのメルトマスフローレイト(MFR190))
高密度ポリエチレンのメルトマスフローレイト(MFR190)は、JIS K 7210-1(2014年)に準じ、測定温度190℃、荷重2.16kg(21.82N)の測定条件で測定した。
高密度ポリエチレンのメルトマスフローレイト(MFR190)は、JIS K 7210-1(2014年)に準じ、測定温度190℃、荷重2.16kg(21.82N)の測定条件で測定した。
(ポリエステル樹脂の固有粘度)
ポリエステル樹脂の固有粘度(極限粘度)は、JIS K 7367-5(2000年)に準じて測定した。具体的には、ポリエチレンテレフタレート1gをフェノールと1,1,2,2-テトラクロロエタンが質量比(フェノール/1,1,2,2-テトラクロロエタン)が6/4となる混合溶媒100mL中に溶解し、30℃でウベローデ型粘度計を用いて測定した。
ポリエステル樹脂の固有粘度(極限粘度)は、JIS K 7367-5(2000年)に準じて測定した。具体的には、ポリエチレンテレフタレート1gをフェノールと1,1,2,2-テトラクロロエタンが質量比(フェノール/1,1,2,2-テトラクロロエタン)が6/4となる混合溶媒100mL中に溶解し、30℃でウベローデ型粘度計を用いて測定した。
(ポリエステル樹脂の分子量分布測定)
ポリエステル樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、およびMwとMnの比であるQ値(Mw/Mn)をゲル浸透クロマトグラフ分析(GPC)により測定した。測定には、検出器として示差屈折率検出器RIを備えるゲル浸透クロマトグラフ装置を使用した。
ポリエステル樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)、およびMwとMnの比であるQ値(Mw/Mn)をゲル浸透クロマトグラフ分析(GPC)により測定した。測定には、検出器として示差屈折率検出器RIを備えるゲル浸透クロマトグラフ装置を使用した。
測定に用いる試料として、紡糸後の複合繊維を用意した。複合繊維50mgを液体窒素を用いて凍結粉砕し、0.45μmのメンブレンフィルターにて試料を回収し、十分に乾燥させた。次に、乾燥させた試料3mgを秤量し、この試料に対し、測定溶媒(5mMとなるようトリフルオロ酢酸ナトリウムを添加したヘキサフルオロイソプロパノール:HFIP)を2.5mL加え、室温で撹拌した。このときヘキサフルオロイソプロパノールに溶解しない複合繊維の鞘成分(高密度ポリエチレン)や添加していた無機フィラーが不溶物として発生する。十分に撹拌してポリエステル樹脂を溶解させた後、0.45μmのメンブレンフィルターにてろ過を行い、測定用試料溶液を得た。得られた測定用試料溶液を、ゲル浸透クロマトグラフ装置に対し、流速を0.2mL/分、注入量0.02mL/分の条件で注入して数平均分子量(Mn)、重量平均分子量(Mw)、z平均分子量(Mz)を測定した。測定する際、カラムとして昭和電工株式会社製Shodex(Shodexは登録商標)HFIP-Gを1本、昭和電工株式会社製Shodex(Shodexは登録商標)HFIP-606Mを2本使用し、単分散ポリメチルメタクリレートを標準試料として分子量の校正を行った。
(高密度ポリエチレンの結晶子サイズ)
複合繊維の鞘成分に含まれる高密度ポリエチレンの結晶子サイズは、以下の方法で広角X線回折法を行い、得られた回折ピークより、Scherrerの式(数式2)によって計算した。
複合繊維の鞘成分に含まれる高密度ポリエチレンの結晶子サイズは、以下の方法で広角X線回折法を行い、得られた回折ピークより、Scherrerの式(数式2)によって計算した。
複合繊維を2.5cmの長さに切断した。切断した試料を12.5mg秤量し、両端をエナメル線で結束したものを試料とした。試料である繊維束をX線の入射方向に対して垂直になるようホルダーに固定して広角X線回折を行った。測定条件は以下の通りである。
X線回折装置:株式会社 リガク 製 高分子用 Smart Lab(登録商標)
X線源:CuKα線(Niフィルター使用)
出力:40kV 50mA
スリット系:RS1:15mm RS2:20mm
測定方向:繊維径方向スキャン
スキャン方法:連続スキャン
測定範囲:2θ=10~40°
ステップ:0.05°
スキャン速度:2°/min
X線源:CuKα線(Niフィルター使用)
出力:40kV 50mA
スリット系:RS1:15mm RS2:20mm
測定方向:繊維径方向スキャン
スキャン方法:連続スキャン
測定範囲:2θ=10~40°
ステップ:0.05°
スキャン速度:2°/min
また、得られたX線回折ピークの半値幅より、下記数式2(Scherrerの式)にて結晶子サイズを算出した。数式2において、λ、β0、Kは以下の通りとした。
λ(入射X線波長):0.15418nm
β0(半値幅の補正値):0.46°
K(Scherrer定数):0.9
β0(半値幅の補正値):0.46°
K(Scherrer定数):0.9
(高密度ポリエチレンの融解熱量(ΔHPE-HD)の測定)
複合繊維の鞘成分に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)は、以下の手順でプラスチックの転移温度測定を行い、125℃~140℃の温度範囲に融解ピーク温度が存在する吸熱ピーク(融解に伴う吸熱は約120℃から観測され、125℃から140℃にて融解ピーク温度となり、融解に伴う吸熱は約150℃にて終了する)の融解熱量(ΔH)を複合繊維に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)に換算して求めた。
複合繊維の鞘成分に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)は、以下の手順でプラスチックの転移温度測定を行い、125℃~140℃の温度範囲に融解ピーク温度が存在する吸熱ピーク(融解に伴う吸熱は約120℃から観測され、125℃から140℃にて融解ピーク温度となり、融解に伴う吸熱は約150℃にて終了する)の融解熱量(ΔH)を複合繊維に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)に換算して求めた。
まず、高密度ポリエチレンの融解熱量を求める複合繊維の芯鞘比(体積比)に対し、芯成分、鞘成分を構成する熱可塑性樹脂および無機フィラーの密度や添加量から、芯鞘比(体積比)を芯鞘比(質量比)に換算し、鞘成分に含まれる無機フィラーの割合から、複合繊維に占める高密度ポリエチレンの比率(高密度ポリエチレンの質量比率)を求めた。次に、試料となる複合繊維について、JIS K 7121(1987年) プラスチックの転移温度測定方法に基づき、示差走査熱量測定を行った。示差走査熱量測定には示差走査熱量計(セイコーインスツル株式会社 製 商品名「EXSTAR6000/DSC6200」)を用いて測定した。示差走査熱量測定により、複合繊維の融解に伴う吸熱が約120℃から観測され、125℃から140℃にて融解ピーク温度となり、高密度ポリエチレンの融解に伴う吸熱は約150℃にて終了した。この約120℃から約150℃の範囲で観測される吸熱ピークについて、融解熱量(ΔH)を測定した。この、約120℃から約150℃の間に測定される融解熱量(ΔH)から複合繊維に含まれる高密度ポリエチレンの融解熱量(ΔHPE-HD)を下記数式3で求めた。
(捲縮数および捲縮率)
JIS L 1015(2010年)に準じて測定した。
JIS L 1015(2010年)に準じて測定した。
(単繊維強度および破断伸度)
複合繊維の単繊維強度、破断伸度は、JIS L 1015(2010年) 8.7 引張り強さと伸び率に準じて単繊維強度(引張強さ)と破断伸度(伸び率)を測定した。単繊維強度と破断伸度の比率(単繊維強度/破断伸度)、および単繊維強度と破断伸度の正の平方根との積(単繊維強度×√破断伸度)はJIS L 1015(2010年)に準じて測定した単繊維強度および破断伸度から計算して求めた。
複合繊維の単繊維強度、破断伸度は、JIS L 1015(2010年) 8.7 引張り強さと伸び率に準じて単繊維強度(引張強さ)と破断伸度(伸び率)を測定した。単繊維強度と破断伸度の比率(単繊維強度/破断伸度)、および単繊維強度と破断伸度の正の平方根との積(単繊維強度×√破断伸度)はJIS L 1015(2010年)に準じて測定した単繊維強度および破断伸度から計算して求めた。
(複合繊維の単繊維繊度および繊維長)
複合繊維の単繊維繊度はJIS L 1015(2010年)8.5(振動法)に準じて測定した。また、複合繊維の繊維長はJIS L 1015(2010年)8.4に準じて測定した。
複合繊維の単繊維繊度はJIS L 1015(2010年)8.5(振動法)に準じて測定した。また、複合繊維の繊維長はJIS L 1015(2010年)8.4に準じて測定した。
(複合繊維の芯鞘比(体積比))
まず、芯鞘比を測定する複合繊維について繊維の断面を、走査型電子顕微鏡(SEM)を用いて500~2500倍に拡大して撮影した。このとき、撮影した写真を印刷した際、印刷されている1本の複合繊維の直径が5~8cmになるよう倍率を調整して観察、撮影した。得られた走査型電子顕微鏡の写真から芯鞘型複合繊維の画像のみを切り出した。切り出した芯鞘型複合繊維の画像を芯成分、鞘成分の境界に沿って切り分け、芯成分の部分、鞘成分に切り分けた。この作業を20本の繊維について行い、上記20本の芯鞘型複合繊維から切り出した芯成分のみの部分について、合計質量を電子天秤にて測定した。鞘成分も同様に、上記20本の芯鞘型複合繊維から切り出した鞘成分のみの部分について、合計質量を電子天秤にて測定した。芯成分のみの部分の合計質量、鞘成分のみの部分の合計質量の比率(芯/鞘)を芯鞘比(体積比)とした。
まず、芯鞘比を測定する複合繊維について繊維の断面を、走査型電子顕微鏡(SEM)を用いて500~2500倍に拡大して撮影した。このとき、撮影した写真を印刷した際、印刷されている1本の複合繊維の直径が5~8cmになるよう倍率を調整して観察、撮影した。得られた走査型電子顕微鏡の写真から芯鞘型複合繊維の画像のみを切り出した。切り出した芯鞘型複合繊維の画像を芯成分、鞘成分の境界に沿って切り分け、芯成分の部分、鞘成分に切り分けた。この作業を20本の繊維について行い、上記20本の芯鞘型複合繊維から切り出した芯成分のみの部分について、合計質量を電子天秤にて測定した。鞘成分も同様に、上記20本の芯鞘型複合繊維から切り出した鞘成分のみの部分について、合計質量を電子天秤にて測定した。芯成分のみの部分の合計質量、鞘成分のみの部分の合計質量の比率(芯/鞘)を芯鞘比(体積比)とした。
(ドラフト比)
ドラフト比は、下記数式4で算出した。
上記数式4において
Vs:引き取り速度(cm/分)
d:ホール径(cm)
Wh:単孔あたりの樹脂吐出量(g/分)
なお、溶融比重は芯成分および鞘成分の溶融時の比重であり、溶融紡糸時と同じ温度に設定された押出機から一定体積の溶融樹脂を押し出し、押し出された樹脂の質量を測定し、押し出された樹脂の質量を上記一定体積で除することで測定した。
ドラフト比は、下記数式4で算出した。
Vs:引き取り速度(cm/分)
d:ホール径(cm)
Wh:単孔あたりの樹脂吐出量(g/分)
なお、溶融比重は芯成分および鞘成分の溶融時の比重であり、溶融紡糸時と同じ温度に設定された押出機から一定体積の溶融樹脂を押し出し、押し出された樹脂の質量を測定し、押し出された樹脂の質量を上記一定体積で除することで測定した。
(カード通過性)
複合繊維のカード通過性を、カード機を用いて繊維ウェブを作製した際のネップおよびフライの発生状況、ならびに得られた繊維ウェブの地合に基づいて、以下の基準で評価した。
++:繊維がカード機を容易に通過し、ネップやフライもほとんど発生しないため、地合が良好な繊維ウェブを得られる。
+:ネップが若干発生するが、繊維ウェブの地合にそれほど影響ない。
-:カード通過性が悪い、もしくはネップが大量に発生するため繊維ウェブが得られない。
複合繊維のカード通過性を、カード機を用いて繊維ウェブを作製した際のネップおよびフライの発生状況、ならびに得られた繊維ウェブの地合に基づいて、以下の基準で評価した。
++:繊維がカード機を容易に通過し、ネップやフライもほとんど発生しないため、地合が良好な繊維ウェブを得られる。
+:ネップが若干発生するが、繊維ウェブの地合にそれほど影響ない。
-:カード通過性が悪い、もしくはネップが大量に発生するため繊維ウェブが得られない。
(不織布の引張強さ)
JIS L 1096(2010年) 8.14.1 A法(ストリップ法)に準じて、定速緊張形引張試験機を用いて、試料片の幅5cm、つかみ間隔10cm、引張速度30±2cm/分の条件で引張試験に付し、切断時の荷重値(引張強度)を測定し、引張強さとした。引張試験は、不織布の縦方向(MD方向)を引張方向として実施した。評価結果はいずれも3点の試料について測定した値の平均で示している。
JIS L 1096(2010年) 8.14.1 A法(ストリップ法)に準じて、定速緊張形引張試験機を用いて、試料片の幅5cm、つかみ間隔10cm、引張速度30±2cm/分の条件で引張試験に付し、切断時の荷重値(引張強度)を測定し、引張強さとした。引張試験は、不織布の縦方向(MD方向)を引張方向として実施した。評価結果はいずれも3点の試料について測定した値の平均で示している。
(表面触感)
不織布の表面を触って、下記の評価基準に従って評価した。
++:非常に滑らかである。
+:滑らかである。
-:触感に硬さや荒さがある。
不織布の表面を触って、下記の評価基準に従って評価した。
++:非常に滑らかである。
+:滑らかである。
-:触感に硬さや荒さがある。
(KES測定法)
熱接着不織布の風合いを、KES(Kawabata Evaluation System)法に基づいて機械的に評価した。具体的には、平均摩擦係数(MIU)、平均摩擦係数の変動(MMD)を測定する際にはカトーテック株式会社製 摩擦感テスター(品番 KES-SE)を使用し、測定センサーとして、10mm角のピアノワイヤセンサーを使用し、静荷重25gfの条件で測定を行った。表面粗さの平均偏差(SMD)を測定する際には、カトーテック株式会社製 粗さ/摩擦感テスター(品番 KES-SESRU)を使用し、測定センサーとして0.5mm粗さセンサーを使用し、静荷重10gfの条件で測定を行った。測定の際、不織布表面の摩擦を測定する測定部(摩擦子、センサー)が不織布の縦方向(MD方向)に平行な方向に沿って不織布表面をなぞるように試料を毎秒1mmの速さで移動させる。カードウェブを用いた熱接着不織布であれば、繊維が縦方向に揃っているため容易に縦方向が認識できるが、測定する不織布の縦方向が不明の場合は任意の方向と、その方向に直角の方向について測定を行い、より値の小さい方を、その不織布の平均摩擦係数、平均摩擦係数の変動、表面粗さの平均偏差とする。測定は3回行い、その平均値をその試料における測定値(MIU、MMD、SMD)とした。
熱接着不織布の風合いを、KES(Kawabata Evaluation System)法に基づいて機械的に評価した。具体的には、平均摩擦係数(MIU)、平均摩擦係数の変動(MMD)を測定する際にはカトーテック株式会社製 摩擦感テスター(品番 KES-SE)を使用し、測定センサーとして、10mm角のピアノワイヤセンサーを使用し、静荷重25gfの条件で測定を行った。表面粗さの平均偏差(SMD)を測定する際には、カトーテック株式会社製 粗さ/摩擦感テスター(品番 KES-SESRU)を使用し、測定センサーとして0.5mm粗さセンサーを使用し、静荷重10gfの条件で測定を行った。測定の際、不織布表面の摩擦を測定する測定部(摩擦子、センサー)が不織布の縦方向(MD方向)に平行な方向に沿って不織布表面をなぞるように試料を毎秒1mmの速さで移動させる。カードウェブを用いた熱接着不織布であれば、繊維が縦方向に揃っているため容易に縦方向が認識できるが、測定する不織布の縦方向が不明の場合は任意の方向と、その方向に直角の方向について測定を行い、より値の小さい方を、その不織布の平均摩擦係数、平均摩擦係数の変動、表面粗さの平均偏差とする。測定は3回行い、その平均値をその試料における測定値(MIU、MMD、SMD)とした。
(吸収性物品用表面シートのランオフ測定方法)
第1繊維層および第2繊維層で構成される吸収性物品用表面シート(積層不織布)について、以下の方法でランオフの測定を行い、第1繊維層および第2繊維層それぞれの表面における親水性の強さを比較した。
(1)第1繊維層のランオフおよび第2繊維層のランオフを測定する熱接着不織布の試料(縦方向(MD方向)18cm、横方向(CD方向)7cm)を必要枚数準備し、測定面を平滑にするため、135℃に設定した熱風貫通式熱処理機で熱処理を行う。測定面を熱風貫通式熱処理機のコンベアネット面に接した状態で試料を載置し、9秒処理することで、測定面(第1繊維層の表面および第2繊維層の表面)を平滑化した試料を得た。
(2)水平面と45度の角度をなす斜面を有する、略垂直二等辺三角形の断面を有する支持台の上に日本製紙クレシア株式会社製「キムタオル(登録商標)」を4枚重ねたものを敷き、その上に試料とする不織布を、不織布の縦方向が水平面と45度の角度をなすように載せて固定した。
(3)不織布表面の上端1cmの位置から、生理食塩水をマイクロチューブポンプにて1g/10secの速度で計6g滴下し、注いだ生理食塩水のすべてが不織布に吸収され、生理食塩水の水滴が不織布の表面から消えた位置を測定し、当該位置と生理食塩水を不織布表面に滴下した位置との間の、生理食塩水の水滴が不織布表面を流れた距離を求めた。なお、上記において、マイクロチューブポンプの代わりにビュレットを用いて生理食塩水を滴下してもよい。
第1繊維層および第2繊維層で構成される吸収性物品用表面シート(積層不織布)について、以下の方法でランオフの測定を行い、第1繊維層および第2繊維層それぞれの表面における親水性の強さを比較した。
(1)第1繊維層のランオフおよび第2繊維層のランオフを測定する熱接着不織布の試料(縦方向(MD方向)18cm、横方向(CD方向)7cm)を必要枚数準備し、測定面を平滑にするため、135℃に設定した熱風貫通式熱処理機で熱処理を行う。測定面を熱風貫通式熱処理機のコンベアネット面に接した状態で試料を載置し、9秒処理することで、測定面(第1繊維層の表面および第2繊維層の表面)を平滑化した試料を得た。
(2)水平面と45度の角度をなす斜面を有する、略垂直二等辺三角形の断面を有する支持台の上に日本製紙クレシア株式会社製「キムタオル(登録商標)」を4枚重ねたものを敷き、その上に試料とする不織布を、不織布の縦方向が水平面と45度の角度をなすように載せて固定した。
(3)不織布表面の上端1cmの位置から、生理食塩水をマイクロチューブポンプにて1g/10secの速度で計6g滴下し、注いだ生理食塩水のすべてが不織布に吸収され、生理食塩水の水滴が不織布の表面から消えた位置を測定し、当該位置と生理食塩水を不織布表面に滴下した位置との間の、生理食塩水の水滴が不織布表面を流れた距離を求めた。なお、上記において、マイクロチューブポンプの代わりにビュレットを用いて生理食塩水を滴下してもよい。
(吸収性物品用表面シートの吸液速度および液戻り量の測定)
(1)吸収性物品用表面シートの吸液速度および液戻り量を測定するために、下記の物品を用意した。
吸収体:市販されている吸収性物品(花王株式会社製「リリーフ(登録商標)」、紙パンツ専用パッド 安心フィット2回分吸収)から表面シートを剥がしたものを吸収体とした。
生理食塩水:塩化ナトリウムの濃度が0.9質量%となるように調製した塩化ナトリウム水溶液(見やすくするため青色染料にて着色)を生理食塩水として使用した。温度は37℃、粘度は、0.7mPa・sであった。
ろ紙:東洋濾紙株式会社製、ADVANTEC(登録商標) No.2、10cm×10cm
重り:5kg
吸液筒:外径が45mm、内径が40mmのアクリル樹脂製の筒(吸収性物品の表面シートに載せた際、安定するよう、中央に貫通孔が設けられた9cm×9cmのアクリル樹脂板が台座として取り付けられている。吸収筒全体の質量:1125g)を使用して、所定量の生理食塩水を表面シートに注いだ。
(2)方法
吸液速度および液戻り量を下記の手順に従って測定した。
(i)上記市販されている吸収性物品ら表面シートを剥がし、残った吸収体の上に吸液速度および液戻り性を評価する吸収性物品用表面シート(縦方向(MD方向)10cm、横方向(CD方向)10cm)を乗せた。このとき、第1繊維層の表面が測定面になるようにセットした。セットした吸収性物品用表面シートの上(すなわち、第1繊維層の上)に上記吸液筒を載せ、吸液筒を通じて生理食塩水を吸収性物品用表面シートの第1繊維層に注げるようにした。
(ii)上記吸液筒をセットした吸収性物品用表面シートに対し、生理食塩水150gを上記吸液筒の上端部から注ぎ入れた。この時、生理食塩水が吸収性物品用表面シートに注がれてから吸収性物品用表面シートの表面から見えなくなる(生理食塩水が吸収性物品用表面シートの表面(第1繊維層の表面)から、当該吸収性物品用表面シートの下に位置する吸収体に移行し、吸収性物品用表面シートの表面に液体として生理食塩水が確認されなくなる)までの時間(吸液時間)を、ストップウォッチを使用して測定し、1回目の吸液速度とした。
(iii)生理食塩水を注いでから10分後、吸液筒を吸収性物品用表面シートから外し、30枚重ねた状態で質量(W0)を測定したろ紙(東洋濾紙株式会社製、ADVANTEC(登録商標) No.2)を、質量(W0)を測定したときと同じように30枚重ね、生理食塩水を注ぎ入れた場所がろ紙の中央になるように位置を合わせて吸収性物品用表面シートの上に載せ、ろ紙の上に重り(5kg)を載せて20秒間放置し、生理食塩水をろ紙に吸収させた。20秒経過した後、重りを取り除き、生理食塩水を吸収したろ紙(30枚重ね)の質量(W1)を測定する。生理食塩水を吸収させる前後におけるろ紙の質量差(W1-W0)を1度目の液戻り量(g)とした。
(iv)前記(i)~(iii)を繰り返し、2回目の吸液速度および液戻り量を測定した。吸収性物品表面シートに対し、生理食塩水を注ぐ際、1回目の測定時と同じ位置に生理食塩水を注ぐように吸液筒を吸収性物品用表面シートの上に載せ、1回目の測定時と同じ位置に生理食塩水(150g)を注ぐようにした。
(1)吸収性物品用表面シートの吸液速度および液戻り量を測定するために、下記の物品を用意した。
吸収体:市販されている吸収性物品(花王株式会社製「リリーフ(登録商標)」、紙パンツ専用パッド 安心フィット2回分吸収)から表面シートを剥がしたものを吸収体とした。
生理食塩水:塩化ナトリウムの濃度が0.9質量%となるように調製した塩化ナトリウム水溶液(見やすくするため青色染料にて着色)を生理食塩水として使用した。温度は37℃、粘度は、0.7mPa・sであった。
ろ紙:東洋濾紙株式会社製、ADVANTEC(登録商標) No.2、10cm×10cm
重り:5kg
吸液筒:外径が45mm、内径が40mmのアクリル樹脂製の筒(吸収性物品の表面シートに載せた際、安定するよう、中央に貫通孔が設けられた9cm×9cmのアクリル樹脂板が台座として取り付けられている。吸収筒全体の質量:1125g)を使用して、所定量の生理食塩水を表面シートに注いだ。
(2)方法
吸液速度および液戻り量を下記の手順に従って測定した。
(i)上記市販されている吸収性物品ら表面シートを剥がし、残った吸収体の上に吸液速度および液戻り性を評価する吸収性物品用表面シート(縦方向(MD方向)10cm、横方向(CD方向)10cm)を乗せた。このとき、第1繊維層の表面が測定面になるようにセットした。セットした吸収性物品用表面シートの上(すなわち、第1繊維層の上)に上記吸液筒を載せ、吸液筒を通じて生理食塩水を吸収性物品用表面シートの第1繊維層に注げるようにした。
(ii)上記吸液筒をセットした吸収性物品用表面シートに対し、生理食塩水150gを上記吸液筒の上端部から注ぎ入れた。この時、生理食塩水が吸収性物品用表面シートに注がれてから吸収性物品用表面シートの表面から見えなくなる(生理食塩水が吸収性物品用表面シートの表面(第1繊維層の表面)から、当該吸収性物品用表面シートの下に位置する吸収体に移行し、吸収性物品用表面シートの表面に液体として生理食塩水が確認されなくなる)までの時間(吸液時間)を、ストップウォッチを使用して測定し、1回目の吸液速度とした。
(iii)生理食塩水を注いでから10分後、吸液筒を吸収性物品用表面シートから外し、30枚重ねた状態で質量(W0)を測定したろ紙(東洋濾紙株式会社製、ADVANTEC(登録商標) No.2)を、質量(W0)を測定したときと同じように30枚重ね、生理食塩水を注ぎ入れた場所がろ紙の中央になるように位置を合わせて吸収性物品用表面シートの上に載せ、ろ紙の上に重り(5kg)を載せて20秒間放置し、生理食塩水をろ紙に吸収させた。20秒経過した後、重りを取り除き、生理食塩水を吸収したろ紙(30枚重ね)の質量(W1)を測定する。生理食塩水を吸収させる前後におけるろ紙の質量差(W1-W0)を1度目の液戻り量(g)とした。
(iv)前記(i)~(iii)を繰り返し、2回目の吸液速度および液戻り量を測定した。吸収性物品表面シートに対し、生理食塩水を注ぐ際、1回目の測定時と同じ位置に生理食塩水を注ぐように吸液筒を吸収性物品用表面シートの上に載せ、1回目の測定時と同じ位置に生理食塩水(150g)を注ぐようにした。
実施例および比較例で用いたポリエチレンテレフタレート(PET)、高密度ポリエチレン(PE-HD)は以下のとおりである。
(1)PET(融点:255℃、固有粘度(IV値):0.64の市販のポリエチレンテレフタレート、INDORAMA製 TEXTILE GRADE(SEMIDULL)を使用)
(2)PE-HD1(融点:133℃、密度0.956g/cm3、MFR190:22g/10minの高密度ポリエチレン、日本ポリエチレン株式会社製、品名「ノバテック(登録商標)HE490」)
(3)PE-HD2(融点:136℃、密度0.956g/cm3、MFR190:26g/10minの高密度ポリエチレン、日本ポリエチレン株式会社製、品名「ノバテック(登録商標)HE491J」)
(4)PE-HD3(融点:135℃、密度0.954g/cm3、MFR190:30g/10minの高密度ポリエチレン、SK global chemical製、品番「MM810」)
(5)PE-HD4(融点:133℃、密度:0.956g/cm3、MFR190:13g/10minの高密度ポリエチレン、日本ポリエチレン株式会社製、品番「ノバテック(登録商標)HE481」)
(1)PET(融点:255℃、固有粘度(IV値):0.64の市販のポリエチレンテレフタレート、INDORAMA製 TEXTILE GRADE(SEMIDULL)を使用)
(2)PE-HD1(融点:133℃、密度0.956g/cm3、MFR190:22g/10minの高密度ポリエチレン、日本ポリエチレン株式会社製、品名「ノバテック(登録商標)HE490」)
(3)PE-HD2(融点:136℃、密度0.956g/cm3、MFR190:26g/10minの高密度ポリエチレン、日本ポリエチレン株式会社製、品名「ノバテック(登録商標)HE491J」)
(4)PE-HD3(融点:135℃、密度0.954g/cm3、MFR190:30g/10minの高密度ポリエチレン、SK global chemical製、品番「MM810」)
(5)PE-HD4(融点:133℃、密度:0.956g/cm3、MFR190:13g/10minの高密度ポリエチレン、日本ポリエチレン株式会社製、品番「ノバテック(登録商標)HE481」)
(実施例1~9、比較例1~3)
上述した高密度ポリエチレンを鞘成分として用い、上述したポリエチレンテレフタレートを芯成分として用いた。また、芯成分のポリエチレンテレフタレートには、あらかじめ同じポリエチレンテレフタレート中に酸化チタンを添加したマスターバッチを用意し、複合繊維全体に占める酸化チタンの含有量が、表1および表2に記載の割合になるようにマスターバッチを加えた。準備した鞘成分および芯成分を、同心円芯鞘型複合ノズルを用い、鞘成分と芯成分の複合比(体積比)を表1および表2に記載の複合比になるように各成分の吐出量を調整して溶融紡糸を行った。鞘成分の紡糸温度は270℃または290℃、芯成分の紡糸温度は340℃、ノズルの温度を290℃として、押し出された溶融フィラメントを表1および表2に記載のドラフト比となるように引き取り、表1および表2に記載の単繊維繊度の未延伸繊維トウを得た。
上述した高密度ポリエチレンを鞘成分として用い、上述したポリエチレンテレフタレートを芯成分として用いた。また、芯成分のポリエチレンテレフタレートには、あらかじめ同じポリエチレンテレフタレート中に酸化チタンを添加したマスターバッチを用意し、複合繊維全体に占める酸化チタンの含有量が、表1および表2に記載の割合になるようにマスターバッチを加えた。準備した鞘成分および芯成分を、同心円芯鞘型複合ノズルを用い、鞘成分と芯成分の複合比(体積比)を表1および表2に記載の複合比になるように各成分の吐出量を調整して溶融紡糸を行った。鞘成分の紡糸温度は270℃または290℃、芯成分の紡糸温度は340℃、ノズルの温度を290℃として、押し出された溶融フィラメントを表1および表2に記載のドラフト比となるように引き取り、表1および表2に記載の単繊維繊度の未延伸繊維トウを得た。
得られた未延伸繊維トウを、80℃の熱水中で表1および表2に記載の延伸倍率で湿式延伸し、延伸繊維トウとした。次いで、親水性を付与する繊維処理剤の水溶液(繊維処理剤の有効成分の濃度:5質量%)で満たした処理槽に上記延伸繊維トウを含浸し、その後、余分な繊維処理剤の水溶液を樹脂ロール(ニップロール)で絞り落とすことで複合繊維の質量を100質量%としたとき上記繊維処理剤の成分が0.3質量%になるよう水分量を調整した。
繊維処理剤を付与した延伸繊維トウに対し、実施例ではトウ加熱処理を行った。トウ加熱処理は、延伸繊維トウを1.0倍の緊張状態とし、延伸繊維トウに対し、100℃に設定した水蒸気を3秒間吹き付けることで行った。
必要に応じて上記条件でトウ加熱処理した延伸繊維トウ(比較例1はトウ加熱せず)に対し、スタッフィングボックス型クリンパーにて機械捲縮を付与した。このとき、スタッフィングボックス型クリンパーの内部に入る直前の延伸繊維トウ表面の温度を測定したところ85℃であった。また、スタッフィングボックス型クリンパーの内部から出てきた直後の延伸繊維トウ表面の温度を測定したところ70℃であった。そして、110℃に設定した熱風吹き付け装置にて15分間、弛緩した状態でアニーリング処理と乾燥処理を同時に施した。その後、延伸繊維トウを表1および表2に記載の所定の長さに切断して、複合繊維を得た。
(熱接着不織布の製造方法)
実施例および比較例で得られた複合繊維を用い、ローラー式カード機にて目付30g/m2の繊維ウェブを作製した。この際、上記評価基準で複合繊維のカード通過性を評価した。得られた繊維ウェブを135℃に設定した熱風吹き付け装置を用いて、10秒間熱処理に付し、鞘成分を溶融させて、熱接着不織布を得た。
実施例および比較例で得られた複合繊維を用い、ローラー式カード機にて目付30g/m2の繊維ウェブを作製した。この際、上記評価基準で複合繊維のカード通過性を評価した。得られた繊維ウェブを135℃に設定した熱風吹き付け装置を用いて、10秒間熱処理に付し、鞘成分を溶融させて、熱接着不織布を得た。
各実施例および各比較例で得られた繊維および不織布の性能を、下記表1および表2に示した。
(実施例10)
実施例9の複合繊維と同じ溶融紡糸の条件で未延伸繊維を得た後、得られた未延伸繊維を実施例9と同じ延伸条件で延伸処理を行い、延伸繊維トウとした。次いで、C12アルキルリン酸エステルカリウム塩を主体とする、耐水性を有さない親水性繊維処理剤の水溶液(繊維処理剤の有効成分の濃度:5質量%)で満たした処理槽に上記延伸繊維トウを含浸し、その後、余分な繊維処理剤の水溶液を樹脂ロール(ニップロール)で絞り落とすことで複合繊維の質量を100質量%としたとき上記繊維処理剤の成分が0.3質量%になるよう水分量を調整した。繊維処理剤を付与した延伸繊維トウに対し、実施例9と同じ条件でトウ加熱処理を行った後、スタッフィングボックス型クリンパーにて機械捲縮を付与し、110℃に設定した熱風吹き付け装置にて15分間、弛緩した状態でアニーリング処理と乾燥処理を同時に施した。その後、延伸繊維トウを45mmに切断して複合繊維を得た。この複合繊維を使用して、ローラー式カード機にて目付20g/m2の繊維ウェブを作製した。得られた繊維ウェブを135℃に設定した熱風吹き付け装置を用いて、10秒間熱処理に付し、鞘成分を溶融させて、実施例10の熱接着不織布を得た。
実施例9の複合繊維と同じ溶融紡糸の条件で未延伸繊維を得た後、得られた未延伸繊維を実施例9と同じ延伸条件で延伸処理を行い、延伸繊維トウとした。次いで、C12アルキルリン酸エステルカリウム塩を主体とする、耐水性を有さない親水性繊維処理剤の水溶液(繊維処理剤の有効成分の濃度:5質量%)で満たした処理槽に上記延伸繊維トウを含浸し、その後、余分な繊維処理剤の水溶液を樹脂ロール(ニップロール)で絞り落とすことで複合繊維の質量を100質量%としたとき上記繊維処理剤の成分が0.3質量%になるよう水分量を調整した。繊維処理剤を付与した延伸繊維トウに対し、実施例9と同じ条件でトウ加熱処理を行った後、スタッフィングボックス型クリンパーにて機械捲縮を付与し、110℃に設定した熱風吹き付け装置にて15分間、弛緩した状態でアニーリング処理と乾燥処理を同時に施した。その後、延伸繊維トウを45mmに切断して複合繊維を得た。この複合繊維を使用して、ローラー式カード機にて目付20g/m2の繊維ウェブを作製した。得られた繊維ウェブを135℃に設定した熱風吹き付け装置を用いて、10秒間熱処理に付し、鞘成分を溶融させて、実施例10の熱接着不織布を得た。
(実施例11)
複合繊維を製造する際、繊維処理剤として、C12アルキルリン酸エステルカリウム塩を含み、耐水性を有する繊維処理剤を使用して複合繊維を製造したこと以外は同じ条件で複合繊維を製造し、得られた複合繊維を、実施例10と同じ条件で熱接着不織布を作製し、実施例11の熱接着不織布とした。
複合繊維を製造する際、繊維処理剤として、C12アルキルリン酸エステルカリウム塩を含み、耐水性を有する繊維処理剤を使用して複合繊維を製造したこと以外は同じ条件で複合繊維を製造し、得られた複合繊維を、実施例10と同じ条件で熱接着不織布を作製し、実施例11の熱接着不織布とした。
(実施例12)
実施例11と同様に、複合繊維を製造する際、繊維処理剤として、C18アルキルリン酸エステルカリウム塩を主成分とする撥水性の繊維処理剤を使用したこと以外は実施例10と同じ条件で複合繊維、および熱接着不織布を製造し、実施例12の熱接着不織布とした。
実施例11と同様に、複合繊維を製造する際、繊維処理剤として、C18アルキルリン酸エステルカリウム塩を主成分とする撥水性の繊維処理剤を使用したこと以外は実施例10と同じ条件で複合繊維、および熱接着不織布を製造し、実施例12の熱接着不織布とした。
(実施例13)
実施例1の複合繊維と同じ溶融紡糸の条件で未延伸繊維を得た後、得られた未延伸繊維を実施例1と同じ延伸条件で延伸処理を行い、延伸繊維トウとした。次いで、C12アルキルリン酸エステルカリウム塩を主体とする、耐水性を有さない親水性繊維処理剤の水溶液(繊維処理剤の有効成分の濃度:5質量%)で満たした処理槽に上記延伸繊維トウを含浸し、その後、余分な繊維処理剤の水溶液を樹脂ロール(ニップロール)で絞り落とすことで複合繊維の質量を100質量%としたとき上記繊維処理剤の成分が0.3質量%になるよう水分量を調整した。繊維処理剤を付与した延伸繊維トウに対し、実施例1と同じ条件でトウ加熱処理を行った後、スタッフィングボックス型クリンパーにて機械捲縮を付与し、110℃に設定した熱風吹き付け装置にて15分間、弛緩した状態でアニーリング処理と乾燥処理を同時に施した。その後、延伸繊維トウを30mmに切断して複合繊維を得た。この複合繊維を使用して、ローラー式カード機にて目付20g/m2の繊維ウェブを作製した。得られた繊維ウェブを135℃に設定した熱風吹き付け装置を用いて、10秒間熱処理に付し、鞘成分を溶融させて、実施例13の熱接着不織布を得た。
実施例1の複合繊維と同じ溶融紡糸の条件で未延伸繊維を得た後、得られた未延伸繊維を実施例1と同じ延伸条件で延伸処理を行い、延伸繊維トウとした。次いで、C12アルキルリン酸エステルカリウム塩を主体とする、耐水性を有さない親水性繊維処理剤の水溶液(繊維処理剤の有効成分の濃度:5質量%)で満たした処理槽に上記延伸繊維トウを含浸し、その後、余分な繊維処理剤の水溶液を樹脂ロール(ニップロール)で絞り落とすことで複合繊維の質量を100質量%としたとき上記繊維処理剤の成分が0.3質量%になるよう水分量を調整した。繊維処理剤を付与した延伸繊維トウに対し、実施例1と同じ条件でトウ加熱処理を行った後、スタッフィングボックス型クリンパーにて機械捲縮を付与し、110℃に設定した熱風吹き付け装置にて15分間、弛緩した状態でアニーリング処理と乾燥処理を同時に施した。その後、延伸繊維トウを30mmに切断して複合繊維を得た。この複合繊維を使用して、ローラー式カード機にて目付20g/m2の繊維ウェブを作製した。得られた繊維ウェブを135℃に設定した熱風吹き付け装置を用いて、10秒間熱処理に付し、鞘成分を溶融させて、実施例13の熱接着不織布を得た。
(比較例4)
市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、単繊維繊度4.4dtex、繊維長51mm、繊維表面に付着させる繊維処理剤として、実施例10、実施例13の熱接着不織布を作製する際に使用した複合繊維と同じ親水性の繊維処理剤を使用)を使用して、実施例10の熱接着不織布を製造したときと同じ条件で熱接着不織布を製造し、比較例4の熱接着不織布を得た。
市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、単繊維繊度4.4dtex、繊維長51mm、繊維表面に付着させる繊維処理剤として、実施例10、実施例13の熱接着不織布を作製する際に使用した複合繊維と同じ親水性の繊維処理剤を使用)を使用して、実施例10の熱接着不織布を製造したときと同じ条件で熱接着不織布を製造し、比較例4の熱接着不織布を得た。
実施例10~13、および比較例4の熱接着不織布を使用し、熱接着不織布について、上述したKES(Kawabata Evaluation System)測定法に基づいた表面特性の測定・評価を行った。得られた結果を表3に示す。
(実施例14)
実施例13と同様にして作製した複合繊維を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、単繊維繊度4.4dtex、繊維長51mm、C12アルキルリン酸エステルカリウム塩を含み、実施例13の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤よりも親水性の強い繊維処理剤が繊維表面に付着している)を使用して、ローラー式カード機にて目付15g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、9秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付25g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は51mm、第2繊維層のランオフ値(R2)は40mm、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は11mmであり、第1繊維層に比べ、第2繊維層の親水性が強いことを確認した。
実施例13と同様にして作製した複合繊維を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、単繊維繊度4.4dtex、繊維長51mm、C12アルキルリン酸エステルカリウム塩を含み、実施例13の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤よりも親水性の強い繊維処理剤が繊維表面に付着している)を使用して、ローラー式カード機にて目付15g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、9秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付25g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は51mm、第2繊維層のランオフ値(R2)は40mm、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は11mmであり、第1繊維層に比べ、第2繊維層の親水性が強いことを確認した。
(実施例15)
実施例13と同様にして作製した複合繊維を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、繊度4.4dtex、繊維長51mm、実施例11の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤と同じ繊維処理剤を使用)を使用して、ローラー式カード機にて目付10g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、15秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付20g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は51mm、第2繊維層のランオフ値(R2)は43mm、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は8mmであり、第1繊維層に比べ、第2繊維層の親水性が強いことを確認した。
実施例13と同様にして作製した複合繊維を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、繊度4.4dtex、繊維長51mm、実施例11の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤と同じ繊維処理剤を使用)を使用して、ローラー式カード機にて目付10g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、15秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付20g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は51mm、第2繊維層のランオフ値(R2)は43mm、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は8mmであり、第1繊維層に比べ、第2繊維層の親水性が強いことを確認した。
(実施例16)
実施例10と同様にして作製した複合繊維(ただし繊維長を38mmに変更した。)を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、繊度4.4dtex、繊維長51mm、実施例11の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤と同じ繊維処理剤を使用)を使用して、ローラー式カード機にて目付10g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、15秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付20g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は55mm、第2繊維層のランオフ値(R2)は48mm、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は7mmであり、第1繊維層に比べ、第2繊維層の親水性が強いことを確認した。
実施例10と同様にして作製した複合繊維(ただし繊維長を38mmに変更した。)を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、市販されている同心円構造の芯鞘型複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、繊度4.4dtex、繊維長51mm、実施例11の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤と同じ繊維処理剤を使用)を使用して、ローラー式カード機にて目付10g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、15秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付20g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は55mm、第2繊維層のランオフ値(R2)は48mm、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は7mmであり、第1繊維層に比べ、第2繊維層の親水性が強いことを確認した。
(実施例17)
実施例13と同様にして作製した複合繊維を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、比較例4の熱接着不織布を製造する際に使用した複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、繊度4.4dtex、繊維長51mm、実施例13の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤と同じ繊維処理剤を使用)を使用して、ローラー式カード機にて目付10g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、15秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付20g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は51mm、第2繊維層のランオフ値(R2)は48m、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は3mmであり、第1繊維層と第2繊維層の親水性が同程度であることを確認した。
実施例13と同様にして作製した複合繊維を用い、ローラー式カード機にて目付10g/m2の第1繊維ウェブを作製した。次に、比較例4の熱接着不織布を製造する際に使用した複合繊維(ダイワボウポリテック株式会社製「NBF」(NBFは登録商標)、繊度4.4dtex、繊維長51mm、実施例13の熱接着不織布を作製する際に使用した複合繊維に使用されている繊維処理剤と同じ繊維処理剤を使用)を使用して、ローラー式カード機にて目付10g/m2の第2繊維ウェブを作製した。次いで、第1繊維ウェブの上に第2繊維ウェブを積層した後、得られた積層繊維ウェブを135℃に設定した熱風貫通式熱処理機を用いて、15秒間熱処理し、第1繊維ウェブおよび第2繊維ウェブに含まれる複合繊維の鞘成分を溶融させて第1繊維ウェブと第2繊維ウェブを熱接着させて第1繊維層と第2繊維層を含む熱接着不織布(目付20g/m2)を得た。このとき、積層繊維ウェブは第1繊維層となる第1繊維ウェブを熱風貫通式熱処理機のコンベアネット面に接した状態で熱処理しており、熱風は第2繊維層側から積層繊維ウェブに対し吹き当てた。得られた熱接着不織布について、第1繊維層表面のランオフ値(R1)は51mm、第2繊維層のランオフ値(R2)は48m、第1繊維層のランオフ値と第2繊維層のランオフ値の差(R1-R2)は3mmであり、第1繊維層と第2繊維層の親水性が同程度であることを確認した。
実施例14~17の積層不織布について、吸収性物品用表面シートとしての性能を評価するため、上述したように吸液試験および液戻りの測定・評価を行った。得られた結果を表4に示す。
実施例1~9の複合繊維は、上述したとおり、カード通過性が良好なものとなっている。これは実施例1~9の複合繊維が、高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下であることに加え、示差走査熱量分析(DSC)で測定した上記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上になったことが関係していると推測される。実施例1~9の複合繊維は、比較例1の複合繊維と比較して高密度ポリエチレンの融解熱量(ΔHPE-HD)が大きいことから、実施例1~9の複合繊維では、高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上と結晶化が進むだけでなく、結晶が大きく成長していること、加えてトウ加熱により高密度ポリエチレンの結晶化がさらに進んでいることで、鞘成分の剛直性が強められ、高速でカード機を通過させてもよれないようになり、カード通過性が向上したと推測される。また、高密度ポリエチレンの結晶子サイズおよび融解熱量(ΔHPE-HD)が上述した範囲であることで、単繊維強度、伸度、単繊維強度と伸度の比および単繊維強度と伸度の正の平方根(√伸度)の積といった、繊維物性の値が上記好ましい範囲を満たしやすく、カード通過性がより向上した。
一方、比較例1の複合繊維は、2.0dtex未満の複合繊維となっているが、カード通過性が実施例の複合繊維と比較して低下している。これは、比較例1の繊維は実施例1~9の複合繊維とは異なり、トウ加熱処理を行ってないため、捲縮工程にて延伸繊維フィラメントに捲縮を付与する際、延伸繊維トウが加熱されていない状態、言い換えるならば高密度ポリエチレン内部の結晶質部や非晶質部の熱振動が十分ではない状態で複合繊維に対し所望の捲縮形状を付与したため、時間の経過や圧力によって捲縮形状が失われやすいものになったと推測される。また、比較例2、比較例3の結果から、鞘成分が多すぎること、鞘成分の流動性が低すぎることで、溶融紡糸時の芯成分と鞘成分の流動性や冷却速度のバランスが崩れ、溶融紡糸ができなくなることを確認した。
実施例10~13の熱接着不織布と比較例4の熱接着不織布を比較することで、本発明の複合繊維を含む熱接着不織布は、風合いに優れ、不織布の表面に触れた際、摩擦感が少なく、滑らかな触感であることがわかる。すなわち、実施例10~13の熱接着不織布は比較例4の不織布と比べ、平均摩擦係数(MIU)が小さいことから、触れた際に生じる摩擦力そのものが小さいことが確認できる。加えて、平均摩擦係数の変動(MMD)が比較例4の熱接着不織布と比較して極端に小さくなっていることから、実施例10~13の熱接着不織布は、摩擦感そのものが小さく、かつ、その変動が小さいことから、表面に素手で触れた際、滑らかで、摩擦係数の変動に伴う肌への引っかかり感のない風合いが得られる。また、本発明の複合繊維を使用することで、風合いに優れる熱接着不織布が用途を問わず得られることが分かる。実施例10~12の不織布は複合繊維を製造する時の繊維処理剤を選択し、強い親水性を示す繊維処理剤を使用した複合繊維(実施例11)から撥水性の繊維処理剤を使用した複合繊維(実施例12)まである。実施例10~12の熱接着不織布はいずれも平均摩擦係数(MIU)平均摩擦係数の変動(MMD)が比較例4の熱接着不織布よりも小さいことから、繊維処理剤の種類によらず、得られる熱接着不織布は上記のような滑らかな触感が得られるため、親水性を示す繊維処理剤を使用した本発明の複合繊維は、それを含む熱接着不織布を吸収性物品用表面シートや対人ワイピングシートといった用途に使用した際、触れた際の触感が滑らかで好ましいものとなる。また、撥水性の繊維処理剤を使用した本発明の複合繊維は、それを含む熱接着不織布を吸収性物品のバックシート(防漏シートとも呼ばれる)に使用した際、触れた際の触感が滑らかで好ましいものとなる。
表4から、本発明の複合繊維を含む繊維層を肌と接触する第1繊維層とし、本発明の複合繊維よりも繊度が大きい複合繊維を含む繊維層を第2繊維層とした積層不織布を吸収性物品用表面シートとして使用することで、優れた風合いを示す吸収性物品用表面シートとなることがわかる。すなわち、表4において、実施例14~17の積層不織布は、吸収性物品の装着者の肌と接触する面である第1繊維層について、平均摩擦係数(MIU)および平均摩擦係数の変動(MMD)が、それぞれ0.25以下および0.1以下と小さい値となっており、肌に触れた際の触感が非常に滑らかであることを示している。加えて、実施例10~13の吸収性物品用表面シートは、第2繊維層の親水性が第1繊維層の親水性よりも強くなることで第2繊維層と第1繊維層の間で親水性の勾配が生じ、第1繊維層が吸収した尿や経血といった液体を第2繊維層が引き込み吸収する作用が強くなっている。そのため、第1繊維層が吸収した尿や経血は第2繊維層に移行し、第2繊維層に隣接する吸収体へと移行するため、第1繊維層が細繊度の複合繊維を含む密な繊維層であっても、尿や経血が第2繊維層を通じて吸収体に移行しやすくなるため、繰り返し尿や経血を吸収しても、吸液速度の低下や液戻り量の増加が抑えられている。一方、実施例17の吸収性物品用表面シートは、第1繊維層と第2繊維層を構成する繊維に付着している繊維処理剤の親水性が同程度のものであることから、親水性の勾配が小さい、あるいはほとんど生じていないため、細繊度の複合繊維を含む第1繊維層が密な繊維層となりやすいことから、第1繊維層に吸収された尿や経血が保持されやすくなり、第1繊維層から吸収体への移行が遅くなるため、実施例14~16の吸収性物品用表面シートと比較して、1度目の吸収速度が遅くなるだけでなく、繰り返し尿や経血を吸収した際の吸液速度の低下や液戻り量の増加が大きくなっている。
本発明は、例えば、下記の1以上の実施態様を含む。
[1] 芯成分と鞘成分を含む複合繊維であり、
前記芯成分と前記鞘成分が実質的に同心円状に配置され、前記芯成分と前記鞘成分の複合比が、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30であり、
単繊維繊度が0.6dtex以上2.0dtex未満であり、
前記芯成分はポリエステル樹脂を60質量%以上含み、
前記鞘成分は高密度ポリエチレンを60質量%以上含み、
前記高密度ポリエチレンのメルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下であり、
前記鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下であり、
示差走査熱量分析(DSC)で測定した前記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上であることを特徴とする、複合繊維。
[2] 前記複合繊維の単繊維強度が1.5cN/dtex以上5.0cN/dtex以下であり、
前記複合繊維の破断伸度が20%以上150%以下であり、
前記複合繊維の単繊維強度と破断伸度の比(単繊維強度[cN/dtex]/破断伸度[%])が0.04より大きく0.12以下である、[1]に記載の複合繊維。
[3] 前記複合繊維の単繊維強度と破断伸度の正の平方根との積で表されるタフネス(タフネス=単繊維強度[cN/dtex]×√破断伸度[%])が12.0以上20.0以下である、[1]または[2]に記載の複合繊維。
[4] 前記鞘成分に含まれる高密度ポリエチレンの[200]面について測定した結晶子サイズが16.7nmより大きく30.0nm以下である、[1]~[3]のいずれかに記載の複合繊維。
[5] 繊維長が25mm以上50mm以下である、[1]~[4]のいずれかに記載の複合繊維。
[6] 前記複合繊維の質量を100質量%としたとき、無機フィラーを0.5質量%以上10質量%以下含有する、[1]~[5]のいずれかに記載の複合繊維。
[7] ポリエステル樹脂を60質量%以上含む芯成分を、紡糸温度280℃以上380℃以下の温度で押し出す工程、
メルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下である高密度ポリエチレンを60質量%以上含む鞘成分を、紡糸温度250℃以上350℃以下の温度で押し出す工程、
前記芯成分と前記鞘成分を、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30となるように、繊維断面において複合繊維の表面を鞘成分が覆い、芯成分と鞘成分が実質的に同心円状に配置されている複合型ノズルに供給する工程、
押し出された前記芯成分および前記鞘成分からなる溶融状態の未延伸繊維をドラフト比が600以上1500以下となるよう引き取りながら冷却し、前記芯成分および前記鞘成分が凝固した、単繊維繊度が1.8dtex以上4.5dtex以下の未延伸繊維トウを得る工程、
前記未延伸繊維トウを70℃以上120℃以下の温度にて1.6倍以上3.6倍以下に延伸し、単繊維繊度が0.6dtex以上2.0dtex未満の延伸繊維トウを得る工程、
前記延伸繊維トウに、繊維処理剤を付与する工程、
繊維処理剤を付与した延伸繊維トウに対し、水蒸気を媒体として延伸繊維トウの表面を60℃以上に加熱する工程、
表面の温度が60℃以上となっている前記延伸繊維トウに捲縮を付与する工程、
捲縮が付与された延伸繊維トウを乾燥させる工程、
を含む、複合繊維の製造方法。
[8] 前記延伸繊維トウを得る工程が、70℃以上100℃以下の温水を用いた湿式延伸である、[7]に記載の複合繊維の製造方法。
[9] [1]~[6]のいずれかに記載の複合繊維を25質量%以上含み、少なくとも一部の前記複合繊維が鞘成分によって接着している、熱接着不織布。
[10] KES法に基づいて測定した平均摩擦係数の変動(MMD)が0.01以下である、[9]に記載の熱接着不織布。
[11] 肌に当接する第1繊維層と、前記第1繊維層に隣接している第2繊維層とを含む吸収性物品用表面シートであって、
前記第1繊維層は、第1芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第1芯鞘複合繊維は、請求項1~6のいずれかに記載の複合繊維であり、
前記第2繊維層は、第2芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第2芯鞘型複合繊維は、芯成分がポリエステル樹脂を含み、鞘成分が前記ポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含み、単繊維繊度が2.2dtex以上7dtex以下である芯鞘型複合繊維であり、
前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の少なくとも一部が、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の鞘成分により熱接着している吸収性物品用表面シート。
[12] 前記第1繊維層の目付が4g/m2以上18g/m2以下であり、前記第2繊維層の目付が8g/m2以上45g/m2以下であり、前記第2繊維層の目付が前記第1繊維層の目付より大きい、[11]に記載の吸収性物品用表面シート。
[13] 前記第1芯鞘型複合繊維の表面に付着している繊維処理剤と、前記第2芯鞘型複合繊維の表面に付着している繊維処理剤を比較すると、第1芯鞘型複合繊維の表面に付着している繊維処理剤の方が親水性の低い繊維処理剤であり、
前記第1繊維層のランオフ(R1)と前記第2繊維層のランオフ(R2)の差(R1-R2)が3mmより大きい、[11]または[12]に記載の吸収性物品用表面シート。
[14] [9]または[10]に記載の熱接着不織布、あるいは[11]~[13]のいずれかに記載の吸収性物品用表面シートを含む吸収性物品。
前記芯成分と前記鞘成分が実質的に同心円状に配置され、前記芯成分と前記鞘成分の複合比が、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30であり、
単繊維繊度が0.6dtex以上2.0dtex未満であり、
前記芯成分はポリエステル樹脂を60質量%以上含み、
前記鞘成分は高密度ポリエチレンを60質量%以上含み、
前記高密度ポリエチレンのメルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下であり、
前記鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下であり、
示差走査熱量分析(DSC)で測定した前記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上であることを特徴とする、複合繊維。
[2] 前記複合繊維の単繊維強度が1.5cN/dtex以上5.0cN/dtex以下であり、
前記複合繊維の破断伸度が20%以上150%以下であり、
前記複合繊維の単繊維強度と破断伸度の比(単繊維強度[cN/dtex]/破断伸度[%])が0.04より大きく0.12以下である、[1]に記載の複合繊維。
[3] 前記複合繊維の単繊維強度と破断伸度の正の平方根との積で表されるタフネス(タフネス=単繊維強度[cN/dtex]×√破断伸度[%])が12.0以上20.0以下である、[1]または[2]に記載の複合繊維。
[4] 前記鞘成分に含まれる高密度ポリエチレンの[200]面について測定した結晶子サイズが16.7nmより大きく30.0nm以下である、[1]~[3]のいずれかに記載の複合繊維。
[5] 繊維長が25mm以上50mm以下である、[1]~[4]のいずれかに記載の複合繊維。
[6] 前記複合繊維の質量を100質量%としたとき、無機フィラーを0.5質量%以上10質量%以下含有する、[1]~[5]のいずれかに記載の複合繊維。
[7] ポリエステル樹脂を60質量%以上含む芯成分を、紡糸温度280℃以上380℃以下の温度で押し出す工程、
メルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下である高密度ポリエチレンを60質量%以上含む鞘成分を、紡糸温度250℃以上350℃以下の温度で押し出す工程、
前記芯成分と前記鞘成分を、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30となるように、繊維断面において複合繊維の表面を鞘成分が覆い、芯成分と鞘成分が実質的に同心円状に配置されている複合型ノズルに供給する工程、
押し出された前記芯成分および前記鞘成分からなる溶融状態の未延伸繊維をドラフト比が600以上1500以下となるよう引き取りながら冷却し、前記芯成分および前記鞘成分が凝固した、単繊維繊度が1.8dtex以上4.5dtex以下の未延伸繊維トウを得る工程、
前記未延伸繊維トウを70℃以上120℃以下の温度にて1.6倍以上3.6倍以下に延伸し、単繊維繊度が0.6dtex以上2.0dtex未満の延伸繊維トウを得る工程、
前記延伸繊維トウに、繊維処理剤を付与する工程、
繊維処理剤を付与した延伸繊維トウに対し、水蒸気を媒体として延伸繊維トウの表面を60℃以上に加熱する工程、
表面の温度が60℃以上となっている前記延伸繊維トウに捲縮を付与する工程、
捲縮が付与された延伸繊維トウを乾燥させる工程、
を含む、複合繊維の製造方法。
[8] 前記延伸繊維トウを得る工程が、70℃以上100℃以下の温水を用いた湿式延伸である、[7]に記載の複合繊維の製造方法。
[9] [1]~[6]のいずれかに記載の複合繊維を25質量%以上含み、少なくとも一部の前記複合繊維が鞘成分によって接着している、熱接着不織布。
[10] KES法に基づいて測定した平均摩擦係数の変動(MMD)が0.01以下である、[9]に記載の熱接着不織布。
[11] 肌に当接する第1繊維層と、前記第1繊維層に隣接している第2繊維層とを含む吸収性物品用表面シートであって、
前記第1繊維層は、第1芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第1芯鞘複合繊維は、請求項1~6のいずれかに記載の複合繊維であり、
前記第2繊維層は、第2芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第2芯鞘型複合繊維は、芯成分がポリエステル樹脂を含み、鞘成分が前記ポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含み、単繊維繊度が2.2dtex以上7dtex以下である芯鞘型複合繊維であり、
前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の少なくとも一部が、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の鞘成分により熱接着している吸収性物品用表面シート。
[12] 前記第1繊維層の目付が4g/m2以上18g/m2以下であり、前記第2繊維層の目付が8g/m2以上45g/m2以下であり、前記第2繊維層の目付が前記第1繊維層の目付より大きい、[11]に記載の吸収性物品用表面シート。
[13] 前記第1芯鞘型複合繊維の表面に付着している繊維処理剤と、前記第2芯鞘型複合繊維の表面に付着している繊維処理剤を比較すると、第1芯鞘型複合繊維の表面に付着している繊維処理剤の方が親水性の低い繊維処理剤であり、
前記第1繊維層のランオフ(R1)と前記第2繊維層のランオフ(R2)の差(R1-R2)が3mmより大きい、[11]または[12]に記載の吸収性物品用表面シート。
[14] [9]または[10]に記載の熱接着不織布、あるいは[11]~[13]のいずれかに記載の吸収性物品用表面シートを含む吸収性物品。
本発明の複合繊維は、熱接着不織布に含ませることができ、該熱接着不織布は、生理用ナプキン、幼児用紙オムツ、成人用紙オムツ、ほ乳類を始めとする動物用の紙オムツ、パンティーライナー、失禁用ライナーなどの各種吸収性物品の表面シートに好ましく使用できるほか、幼児用紙オムツや成人用紙オムツのバックシートといった用途、吸収性物品において、表面シートよりも吸収体側、例えば、表面シートの直下に位置するセカンドシートにも好ましく使用できる。
1 鞘成分
2 芯成分
3 芯成分の繊維断面における重心位置
4 複合繊維の繊維断面における重心位置
5 複合繊維の繊維断面における半径
10 複合繊維
30 吸収性物品用表面シート
31 第1繊維層
32 第2繊維層
2 芯成分
3 芯成分の繊維断面における重心位置
4 複合繊維の繊維断面における重心位置
5 複合繊維の繊維断面における半径
10 複合繊維
30 吸収性物品用表面シート
31 第1繊維層
32 第2繊維層
Claims (14)
- 芯成分と鞘成分を含む複合繊維であり、
前記芯成分と前記鞘成分が実質的に同心円状に配置され、前記芯成分と前記鞘成分の複合比が、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30であり、
単繊維繊度が0.6dtex以上2.0dtex未満であり、
前記芯成分はポリエステル樹脂を60質量%以上含み、
前記鞘成分は高密度ポリエチレンを60質量%以上含み、
前記高密度ポリエチレンのメルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下であり、
前記鞘成分に含まれる高密度ポリエチレンの[110]面について測定した結晶子サイズが20.0nm以上50.0nm以下であり、
示差走査熱量分析(DSC)で測定した前記高密度ポリエチレンの融解熱量(ΔHPE-HD)が145.0mJ/mg以上であることを特徴とする、複合繊維。 - 前記複合繊維の単繊維強度が1.5cN/dtex以上5.0cN/dtex以下であり、
前記複合繊維の破断伸度が20%以上150%以下であり、
前記複合繊維の単繊維強度と破断伸度の比(単繊維強度[cN/dtex]/破断伸度[%])が0.04より大きく0.12以下である、請求項1に記載の複合繊維。 - 前記複合繊維の単繊維強度と破断伸度の正の平方根との積で表されるタフネス(タフネス=単繊維強度[cN/dtex]×√破断伸度[%])が12.0以上20.0以下である、請求項1または2に記載の複合繊維。
- 前記鞘成分に含まれる高密度ポリエチレンの[200]面について測定した結晶子サイズが16.7nmより大きく30.0nm以下である、請求項1~3のいずれかに記載の複合繊維。
- 繊維長が25mm以上50mm以下である、請求項1~4のいずれかに記載の複合繊維。
- 前記複合繊維の質量を100質量%としたとき、無機フィラーを0.5質量%以上10質量%以下含有する、請求項1~5のいずれかに記載の複合繊維。
- ポリエステル樹脂を60質量%以上含む芯成分を、紡糸温度280℃以上380℃以下の温度で押し出す工程、
メルトマスフローレイト(MFR:測定温度190℃、荷重2.16kgf(21.18N))が13g/10分より大きく45g/10分以下である高密度ポリエチレンを60質量%以上含む鞘成分を、紡糸温度250℃以上350℃以下の温度で押し出す工程、
前記芯成分と前記鞘成分を、芯成分と鞘成分の体積比(芯成分/鞘成分)で30/70~70/30となるように、繊維断面において複合繊維の表面を鞘成分が覆い、芯成分と鞘成分が実質的に同心円状に配置されている複合型ノズルに供給する工程、
押し出された前記芯成分および前記鞘成分からなる溶融状態の未延伸繊維をドラフト比が600以上1500以下となるよう引き取りながら冷却し、前記芯成分および前記鞘成分が凝固した、単繊維繊度が1.8dtex以上4.5dtex以下の未延伸繊維トウを得る工程、
前記未延伸繊維トウを70℃以上120℃以下の温度にて1.6倍以上3.6倍以下に延伸し、単繊維繊度が0.6dtex以上2.0dtex未満の延伸繊維トウを得る工程、
前記延伸繊維トウに、繊維処理剤を付与する工程、
繊維処理剤を付与した延伸繊維トウに対し、水蒸気を媒体として延伸繊維トウの表面を60℃以上に加熱する工程、
表面の温度が60℃以上となっている前記延伸繊維トウに捲縮を付与する工程、
捲縮が付与された延伸繊維トウを乾燥させる工程、
を含む、複合繊維の製造方法。 - 前記延伸繊維トウを得る工程が、70℃以上100℃以下の温水を用いた湿式延伸である、請求項7に記載の複合繊維の製造方法。
- 請求項1~6のいずれかに記載の複合繊維を25質量%以上含み、少なくとも一部の前記複合繊維が鞘成分によって接着している、熱接着不織布。
- KES法に基づいて測定した平均摩擦係数の変動(MMD)が0.01以下である、請求項9に記載の熱接着不織布。
- 肌に当接する第1繊維層と、前記第1繊維層に隣接している第2繊維層とを含む吸収性物品用表面シートであって、
前記第1繊維層は、第1芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第1芯鞘複合繊維は、請求項1~6のいずれかに記載の複合繊維であり、
前記第2繊維層は、第2芯鞘型複合繊維を50質量%以上含む繊維層であり、前記第2芯鞘型複合繊維は、芯成分がポリエステル樹脂を含み、鞘成分が前記ポリエステル樹脂の融点よりも50℃以上低い融点を有する熱可塑性樹脂を含み、単繊維繊度が2.2dtex以上7dtex以下である芯鞘型複合繊維であり、
前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の少なくとも一部が、前記第1芯鞘型複合繊維と前記第2芯鞘型複合繊維の鞘成分により熱接着している吸収性物品用表面シート。 - 前記第1繊維層の目付が4g/m2以上18g/m2以下であり、前記第2繊維層の目付が8g/m2以上45g/m2以下であり、前記第2繊維層の目付が前記第1繊維層の目付より大きい、請求項11に記載の吸収性物品用表面シート。
- 前記第1芯鞘型複合繊維の表面に付着している繊維処理剤と、前記第2芯鞘型複合繊維の表面に付着している繊維処理剤を比較すると、第1芯鞘型複合繊維の表面に付着している繊維処理剤の方が親水性の低い繊維処理剤であり、
前記第1繊維層のランオフ(R1)と前記第2繊維層のランオフ(R2)の差(R1-R2)が3mmより大きい、請求項11または12に記載の吸収性物品用表面シート。 - 請求項9または10に記載の熱接着不織布、あるいは請求項11~13のいずれかに記載の吸収性物品用表面シートを含む吸収性物品。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021512076A JP7447090B2 (ja) | 2019-03-29 | 2020-03-27 | 複合繊維、その製造方法、熱接着不織布、吸収性物品用表面シート、および吸収性物品 |
CN202080026446.5A CN113748234B (zh) | 2019-03-29 | 2020-03-27 | 复合纤维、其制造方法、热粘合无纺布、吸收性物品用表面片材以及吸收性物品 |
JP2024028795A JP2024063103A (ja) | 2019-03-29 | 2024-02-28 | 複合繊維、その製造方法、熱接着不織布、吸収性物品用表面シート、および吸収性物品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019067817 | 2019-03-29 | ||
JP2019-067817 | 2019-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020203890A1 true WO2020203890A1 (ja) | 2020-10-08 |
Family
ID=72668872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014325 WO2020203890A1 (ja) | 2019-03-29 | 2020-03-27 | 複合繊維、その製造方法、熱接着不織布、吸収性物品用表面シート、および吸収性物品 |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP7447090B2 (ja) |
CN (1) | CN113748234B (ja) |
WO (1) | WO2020203890A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7311723B1 (ja) * | 2023-03-01 | 2023-07-19 | 積水フーラー株式会社 | 積層体 |
WO2024202530A1 (ja) * | 2023-03-31 | 2024-10-03 | 東洋紡エムシー株式会社 | 芯鞘複合繊維及びそれから形成される不織布 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000096344A (ja) * | 1998-09-16 | 2000-04-04 | Kuraray Co Ltd | 消臭性熱融着性繊維 |
JP2006283212A (ja) * | 2005-03-31 | 2006-10-19 | Nippon Ester Co Ltd | 芯鞘型複合繊維及び不織布 |
JP2009114613A (ja) * | 2007-10-19 | 2009-05-28 | Es Fibervisions Co Ltd | ポリエステル系熱融着性複合繊維 |
JP2015094060A (ja) * | 2013-11-14 | 2015-05-18 | 花王株式会社 | 不織布 |
JP2016186134A (ja) * | 2015-03-27 | 2016-10-27 | ダイワボウホールディングス株式会社 | 複合繊維、不織布および吸収性物品用シート |
JP2018135622A (ja) * | 2017-02-24 | 2018-08-30 | 東レ株式会社 | 熱接着性複合繊維およびその製造方法 |
JP2019063414A (ja) * | 2017-10-04 | 2019-04-25 | ダイワボウホールディングス株式会社 | 吸収性物品用不織布、吸収性物品用表面シート、及びそれを含む吸収性物品 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013133571A (ja) * | 2011-12-27 | 2013-07-08 | Teijin Ltd | 機械捲縮性能の高い熱接着性複合繊維およびその製造方法 |
CN104540988B (zh) * | 2012-08-08 | 2017-12-15 | 大和纺控股株式会社 | 无纺织物、用于吸收制品的片材和使用其的吸收制品 |
CN106460241B (zh) * | 2014-04-18 | 2020-03-17 | 大和纺控股株式会社 | 吸收性物品用复合短纤维、其制造方法、吸收性物品用热粘接无纺布、吸收性物品用表面片材和吸收性物品 |
JP6228699B1 (ja) * | 2017-03-31 | 2017-11-08 | Esファイバービジョンズ株式会社 | 熱融着性複合繊維およびこれを用いた不織布 |
-
2020
- 2020-03-27 JP JP2021512076A patent/JP7447090B2/ja active Active
- 2020-03-27 CN CN202080026446.5A patent/CN113748234B/zh active Active
- 2020-03-27 WO PCT/JP2020/014325 patent/WO2020203890A1/ja active Application Filing
-
2024
- 2024-02-28 JP JP2024028795A patent/JP2024063103A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000096344A (ja) * | 1998-09-16 | 2000-04-04 | Kuraray Co Ltd | 消臭性熱融着性繊維 |
JP2006283212A (ja) * | 2005-03-31 | 2006-10-19 | Nippon Ester Co Ltd | 芯鞘型複合繊維及び不織布 |
JP2009114613A (ja) * | 2007-10-19 | 2009-05-28 | Es Fibervisions Co Ltd | ポリエステル系熱融着性複合繊維 |
JP2015094060A (ja) * | 2013-11-14 | 2015-05-18 | 花王株式会社 | 不織布 |
JP2016186134A (ja) * | 2015-03-27 | 2016-10-27 | ダイワボウホールディングス株式会社 | 複合繊維、不織布および吸収性物品用シート |
JP2018135622A (ja) * | 2017-02-24 | 2018-08-30 | 東レ株式会社 | 熱接着性複合繊維およびその製造方法 |
JP2019063414A (ja) * | 2017-10-04 | 2019-04-25 | ダイワボウホールディングス株式会社 | 吸収性物品用不織布、吸収性物品用表面シート、及びそれを含む吸収性物品 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7311723B1 (ja) * | 2023-03-01 | 2023-07-19 | 積水フーラー株式会社 | 積層体 |
WO2024202530A1 (ja) * | 2023-03-31 | 2024-10-03 | 東洋紡エムシー株式会社 | 芯鞘複合繊維及びそれから形成される不織布 |
Also Published As
Publication number | Publication date |
---|---|
CN113748234B (zh) | 2024-07-05 |
JP7447090B2 (ja) | 2024-03-11 |
CN113748234A (zh) | 2021-12-03 |
JP2024063103A (ja) | 2024-05-10 |
JPWO2020203890A1 (ja) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6216013B2 (ja) | 不織布、吸収性物品用シート、ならびにそれを用いた吸収性物品 | |
WO2015159978A1 (ja) | 吸収性物品用複合短繊維、その製造方法、吸収性物品用熱接着不織布、吸収性物品用表面シート及び吸収性物品 | |
US7919419B2 (en) | High strength and high elongation wipe | |
KR101259968B1 (ko) | 저온 가공성을 가지는 복합 섬유, 이것을 사용한 부직포 및 성형체 | |
JP2024063103A (ja) | 複合繊維、その製造方法、熱接着不織布、吸収性物品用表面シート、および吸収性物品 | |
JP5404396B2 (ja) | 熱接着性複合繊維およびその製造方法、ならびに繊維集合物 | |
WO2002061192A1 (en) | Non-woven fabrics of wind-shrink fiber and laminates thereof | |
JP6927299B2 (ja) | 不織布 | |
JP6397210B2 (ja) | 吸収性物品用表面シート、及びこれを含む吸収性物品 | |
US20030181112A1 (en) | Spunbonded nonwoven fabric and absorbent article | |
JP6505493B2 (ja) | 吸収性物品用複合短繊維、その製造方法、並びにそれを含む吸収性物品用熱接着不織布、及び吸収性物品 | |
TWI776814B (zh) | 熱熔接性複合纖維和使用其的不織布、製品 | |
JP2020147857A (ja) | 熱接着性複合繊維および不織布 | |
US20050245158A1 (en) | Multicomponent fibers and nonwoven fabrics and surge management layers containing multicomponent fibers | |
JP7371316B2 (ja) | 吸収性物品用不織布、及びこれを含む吸収性物品 | |
JP6598951B2 (ja) | 吸収性物品用表面シート、及びこれを含む吸収性物品 | |
JP2010084297A (ja) | ワイパー用不織布およびその製造方法 | |
JP4013346B2 (ja) | 不織布およびこれを用いた吸収性物品 | |
JP2021023668A (ja) | 吸収性物品用不織布及びその製造方法 | |
JP7490419B2 (ja) | 吸収性物品用不織布、吸収性物品用トップシート、およびそれを含む吸収性物品 | |
JP2024518171A (ja) | 強度促進不織布 | |
JP2023182007A (ja) | 不織布及び不織布の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20782581 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021512076 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20782581 Country of ref document: EP Kind code of ref document: A1 |