WO2020203528A1 - 樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体 - Google Patents
樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体 Download PDFInfo
- Publication number
- WO2020203528A1 WO2020203528A1 PCT/JP2020/013252 JP2020013252W WO2020203528A1 WO 2020203528 A1 WO2020203528 A1 WO 2020203528A1 JP 2020013252 W JP2020013252 W JP 2020013252W WO 2020203528 A1 WO2020203528 A1 WO 2020203528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- phosphite
- sheet
- antioxidant
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/524—Esters of phosphorous acids, e.g. of H3PO3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
- C08K5/134—Phenols containing ester groups
- C08K5/1345—Carboxylic esters of phenolcarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/527—Cyclic esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
Definitions
- the present invention relates to a resin composition, a molded product using the resin composition, and a membrane structure, a structure, and an adhesive molded product using these. More specifically, the present invention relates to an ethylene-chlorotrifluoroethylene copolymer resin composition, a molded product using the resin composition, a membrane structure using them, a structure, and an adhesive molded product.
- Ethylene-chlorotrifluoroethylene copolymer (hereinafter, may be referred to as "ECTFE”) has weather resistance, chemical resistance, stain resistance, water repellency, insulation, low friction, and electrical insulation. It is used for structural parts of semiconductor manufacturing equipment, various corrosion-resistant linings, etc. because it has excellent low moisture absorption, water vapor barrier property, low chemical permeability, flame retardancy, and fire spread resistance. Further, since ECTFE can be formed into a film, it is widely used in various applications such as a surface protective film, a member film for a solar cell, a release film, and a film for a film structure.
- ECTFE is often used as a material for sheets and the like used to cover an object. Therefore, excellent transparency is required so that the object can be visually recognized through the sheet. Further, ECTFE has a problem that acid gas is likely to be generated under high temperature conditions when extrusion molding into a sheet or the like, and various stabilizers such as antioxidants have been added (for example, the following patent documents). See 1-7).
- the present invention is a resin composition that can maintain excellent transparency even when exposed to sunlight and ultraviolet rays and is less likely to cause cloudiness and yellowing, and molding using the resin composition.
- One of the problems is to provide a body, and a film structure, a structure, and an adhesive molded body using these.
- the present inventors have conducted ethylene-chlorotri, which contains a phosphite-based antioxidant having no phenol group in the molecule, that is, having no phenolic hydroxyl group. It has been found that the above-mentioned problems can be solved when the fluoroethylene copolymer resin composition is used, and the present invention exemplified below has been reached.
- the phosphite-based antioxidant in the resin composition of the present invention does not have a phenol group in the molecule, which is different from the conventional resin composition of the same type, and the problem according to the present invention. It is considered to be a major factor for the solution.
- the phosphite-based antioxidant (B) is tris (2,4-di-tert-butylphenyl) phosphite, 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa.
- the resin composition according to ⁇ 1> or ⁇ 2> which is 60 parts by mass or more with respect to 100 parts by mass of the total amount of the antioxidant.
- the phenolic antioxidant (C) is pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3- (3,5-di-tert-).
- the above ⁇ 4 which is at least one selected from stearyl butyl-4-hydroxyphenyl) propionate and 1,6-hexanediolbis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate].
- the content of the phosphite-based antioxidant (B) is 25 to 100 parts by mass with respect to 100 parts by mass of the total amount of the antioxidant in the composition.
- ⁇ 1> to ⁇ 5> The resin composition according to any one of. ⁇ 7> A molded product obtained by molding the resin composition according to any one of ⁇ 1> to ⁇ 6>.
- ⁇ 8> The molded product according to ⁇ 7>, which is in the form of a sheet or a film.
- ⁇ 9> The molded product according to ⁇ 7> or ⁇ 8>, which has been subjected to secondary processing.
- ⁇ 10> A film structure using the molded product according to any one of ⁇ 7> to ⁇ 9>.
- ⁇ 11> A building using the molded product according to any one of ⁇ 7> to ⁇ 9>.
- ⁇ 12> An adhesive molded product using the molded product according to any one of ⁇ 7> to ⁇ 9> as a base material.
- a resin composition that can maintain excellent transparency and is less likely to cause white turbidity and yellowing even when exposed to sunlight and ultraviolet rays, a molded product using the resin composition, and these.
- the film structures, structures and adhesive molded bodies used can be provided.
- the resin composition of the present embodiment contains an ethylene-chlorotrifluoroethylene copolymer (A) and a phosphite-based antioxidant (B) having no phenolic hydroxyl group in the molecule.
- the resin composition containing ECTFE may be referred to as "ECTFE resin composition”. It is not clear why the resin composition of the present embodiment can obtain the above-mentioned white turbidity (whitening) and yellowing suppressing effect. However, as can be seen from the comparison between Examples and Comparative Examples described later, when the ECTFE resin composition using various phosphite-based antioxidants was evaluated, the phos having no phenolic hydroxyl group in the molecule was evaluated.
- both the occurrence of white turbidity and yellowing, which are contradictory phenomena, can be suppressed from the viewpoint of the addition of the antioxidant.
- the effect of suppressing the occurrence of cloudiness can be exhibited for a long period of time.
- ECTFE ethylene-chlorotrifluoroethylene copolymer
- Et ethylene
- CFE chlorotrifluoroethylene
- ECTFE is not limited to a copolymer consisting only of Et monomer and CTFE monomer.
- the ECTEF in the present embodiment includes, for example, (perfluorohexyl) ethylene, (perfluorobutyl) ethylene, (perfluorooctyl) ethylene, and [4- (heptafluoroisopropyl) perfluoro. Butyl] Copolymers and the like using ethylene and the like as the third monomer are also included.
- the composition ratio (molar ratio) of each structural unit in the copolymerization of Et and CTFE can be measured by a method such as 19F NMR or FT-IR.
- the ratio of Et to CTFE (Et / CTFE ratio) in ECTFE is not particularly limited, but is preferably 30/70 to 70/30, and more preferably 40/60 to 60/40.
- the Et monomer ratio is 70 or less, the monomer ratio of CTFE does not decrease too much, so that the transparency, weather resistance, antifouling property and the like, which are the characteristics of the fluororesin, can be prevented from being impaired.
- the CTFE monomer ratio is 70 or less, the amount of acid gas generated during high temperature use can be prevented from becoming too high.
- ECTFE having an arbitrary Et / CTFE ratio may be used alone, or ECTFE having two or more different Et / CTFE ratios may be mixed and used.
- the content of ECTFE in the resin composition is not particularly limited, but is preferably 70 to 99.9% by mass, preferably 80 to 99.9, from the viewpoint of maintaining transparency. It is more preferably 90% by mass, and particularly preferably 90 to 99.9% by mass.
- a resin other than ECTFE may be added as needed, as long as the transparency of the ECTFE resin composition of the present embodiment is not impaired.
- Resins other than ECTFE include, for example, a tarpolymer of ethylene, chlorotrifluoroethylene and other third monomer, polychlorotrifluoroethylene (PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride.
- PCTFE polychlorotrifluoroethylene
- ETFE ethylene-tetrafluoroethylene copolymer
- polyvinylidene fluoride polyvinylidene fluoride
- PVDF polyvinylidene fluoride
- PVDF vinylidene fluoride-hexafluoropropylene copolymer
- PTFE polytetrafluoroethylene
- HFP polyhexafluoropropylene
- PFA polyperfluoroalkyl vinyl ether
- the ECTFE resin composition of the present embodiment contains at least a phosphite-based antioxidant (B) having no phenolic hydroxyl group in the molecule.
- phosphite-based antioxidant means an antioxidant having a phosphite ester structure in the molecule.
- the phosphite-based antioxidant (B) is not particularly limited, but in particular, tris (2,4-di-tert-butylphenyl) phosphite, 3,9-bis (octadecyloxy) -2, 4,8,10-Tetraoxa-3,9-diphosphaspiro [5,5] undecane, 2,4,8,10-tetrakis (1,1-dimethylethyl) -6-[(2-ethylhexyl) oxy] -12H -Dibenzo [d, g] [1,3,2] dioxaphosphocin and the like are preferable.
- phosphite-based antioxidant one type may be used alone, or two or more types may be used in combination.
- ECTFE By adding these phosphite-based antioxidants (B) to ECTFE, it is possible to achieve both high heat resistance and compatibility with ECTFE, in addition to the effect of suppressing whitening and yellowing against sunlight and the like. ..
- the phosphite-based antioxidant used in the present embodiment has a melting point of preferably 50 ° C. or higher, more preferably 100 ° C. or higher. When the melting point is 100 ° C. or higher, it is possible to avoid the risk of the phosphite-based antioxidant bleeding out to the sheet surface during film formation and the risk of coloring due to the decomposition of the phosphite-based antioxidant.
- the phosphite-based antioxidant (B) can reduce the oxides to prevent the resin composition or the cured product thereof from being colored. Therefore, although not particularly limited, when another antioxidant such as a phenolic antioxidant is used, the reducing effect (anticoloration) of the other antioxidant by the phosphite-based antioxidant (B) can be achieved.
- the content of the phosphite-based antioxidant (B) is preferably 25 to 100 parts by mass, preferably 50 to 100 parts by mass, based on 100 parts by mass of the total amount of the antioxidant in the composition. It is more preferably 75 to 100 parts by mass.
- the resin composition of the present embodiment has another phosphite-based antioxidant (B') having a phenolic hydroxyl group in the molecule as another antioxidant. ) May be included.
- the total amount of the phosphite-based antioxidant in the composition that is, the phosphite-based antioxidants (B) and (B')
- the content of the phosphite-based antioxidant (B) with respect to 100 parts by mass is preferably 60 parts by mass or more, more preferably 80 parts by mass or more, and more preferably 100 parts by mass. Especially preferable.
- the antioxidant may be added in advance in the granulation step of the ECTFE raw material, or the ECTFE raw material not added in the step of manufacturing the sheet of the ECTFE resin composition. It may be added while melting and mixing with.
- the content of the phosphite-based antioxidant (B) in the resin composition is not particularly limited in this embodiment, but is preferably 0.01 to 1.0% by mass, more preferably 0.01 to 0.5. It is mass%. When the content is 1.0% by mass or less, it is possible to prevent the transparency of the ECTFE resin composition from being excessively lowered. Further, when the content is 0.01% by mass or more, a sufficient acid gas reducing effect can be obtained.
- the resin composition of the present embodiment may further contain a phenol-based antioxidant in addition to the phosphite-based antioxidant. Since the phosphite-based antioxidant and the phenol-based antioxidant have different antioxidant mechanisms of the resin, it is more preferable to use them in combination from the viewpoint of reducing the amount of acid gas generated.
- the phenolic antioxidant means an antioxidant having a phenolic structure (C 6 H 5 OH).
- an antioxidant containing both a phenol structure and a phosphite structure is regarded as a phosphite-based antioxidant.
- the phenolic antioxidant is not particularly limited, but the phenolic antioxidant (C) having one or three or more structures represented by the following formula (1) in the molecule is preferable, and the formula (C) is more preferable. It is a phenolic antioxidant having three or more structures shown in 1). (In the formula, R indicates a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * indicates a binding site.)
- R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, and a t-butyl group.
- a t-butyl group is preferred.
- the two Rs may be the same as each other or may be different from each other. From the viewpoint of suppressing yellowing, the following structures (A) to (D) are preferable, and the structure (D) is particularly preferable as the structural example represented by the formula (1).
- the structure (D) is a hindered type in which two tert-butyl groups are present in the vicinity of the phenol group, and it is considered that dimerization that causes yellowing is unlikely to occur.
- the molecules are relatively small and can be uniformly dispersed in the resin.
- a phenolic antioxidant having three or more structures represented by the formula (1) can efficiently capture decomposition products such as radicals that cause resin decomposition. Guessed.
- phenolic antioxidant (C) examples include hindered or semi-hindered antioxidants.
- the phenolic antioxidant (C) pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3- (3,5-di-tert-) Stearyl butyl-4-hydroxyphenyl) propionate, 1,6-hexanediol bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and the like are preferable.
- the phenolic antioxidant one type may be used alone, or two or more types may be used in combination.
- the amount of acid gas generated is reduced, the transparency is high, and oxidation is performed. It has excellent heat resistance, weather resistance, and resistance to yellowing of the inhibitor. Further, when stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is used as the phenolic antioxidant (C), it is excellent in resistance to yellowing and generates acid gas. Both the amount reduction effect and high transparency can be achieved.
- the phenolic antioxidant used in this embodiment has a melting point of preferably 100 ° C. or higher, more preferably 150 ° C. or higher.
- the melting point is 100 ° C. or higher, it is possible to avoid the risk of the phenolic antioxidant bleeding out to the sheet surface during film formation and the risk of coloring due to the decomposition of the phenolic antioxidant.
- the phenolic antioxidant As a method of adding the phenolic antioxidant to the resin composition, it may be added in advance in the granulation step of the ECTFE raw material, or melt-mixed with the unadded ECTFE raw material in the step of manufacturing the sheet of the resin composition. It may be added while adding.
- the content of the phenolic antioxidant (C) in the resin composition of the present embodiment is not particularly limited in the present embodiment, but is preferably 0.01 to 1.0% by mass, more preferably 0.01 to. It is 0.5% by mass. When the content is 1.0% by mass or less, yellowing of the resin composition of the present embodiment can be suppressed and transparency can be prevented from being excessively lowered. Further, when the content is 0.01% by mass or more, a sufficient acid gas reducing effect can be obtained.
- the resin composition of the present embodiment may further contain a known heat stabilizer, stabilizing aid, and the like.
- the heat stabilizer include an organic sulfur-based antioxidant, an amine-based antioxidant, hydroxyamine, an organic tin compound, and a ⁇ -diketone.
- the heat stabilizer one type may be used alone, or two or more types may be used in combination.
- the heat stabilizer, the stabilizing aid, etc. As a method of adding the heat stabilizer, the stabilizing aid, etc. to the resin composition of the present embodiment, it may be added in advance in the granulation step of the ECTFE raw material, or a sheet of the resin composition of the present embodiment may be produced. In the step of adding the ECTFE raw material, the raw material may be added while being melt-mixed.
- the content of the heat stabilizer and the stabilizing aid in the resin composition is not particularly limited, but the total amount can be 0.01 to 1.0% by mass. When it is 1.0% by mass or less, it is possible to prevent the transparency of the ECTFE resin composition from being excessively lowered. When it is 0.01% by mass or more, a sufficient acid gas reducing effect can be obtained.
- the resin composition of the present embodiment further does not impair the transparency, color tone, glossiness, heat resistance, weather resistance, yellowing resistance sheet appearance, etc. in practice, and further absorbs plasticizers, lubricants, and ultraviolet rays.
- Agents, acid receiving agents, antistatic agents, antifogging agents, dropping agents, hydrophilic agents, liquid repellents and the like can be added. As an addition method, it may be added when the resin composition is kneaded, or it may be applied to the sheet surface after producing a sheet from the resin composition of the present embodiment.
- a pigment can be added as needed within a range that does not impair the difficulty of yellowing and transparency.
- Suitable pigments include, for example, metal oxides such as titanium oxide and zinc oxide, metal carbonates such as calcium carbonate, silica, carbon black, acetylene black, chrome yellow, phthalocyanine blue, phthalocyanine green and the like. Not limited.
- the resin composition of the present embodiment can be prepared by various methods. Here, a method for producing a pellet-shaped resin composition will be described.
- a method for producing the pellet-shaped resin composition a known method can be used, and examples thereof include a method for producing the pellet-shaped resin composition by a melt-kneading method using an extruder or the like.
- the ECTFE resin and the antioxidant are premixed in an unmelted state, then melted in an extruder and uniformly mixed. Then, it is extruded into a strand shape, the kneaded product is cooled, and then pelletized with a pelletizer to obtain a pellet-shaped ECTFE resin composition.
- the extruder a single screw type, a double screw type, a tandem type and the like can be generally used, but a twin screw type extruder is preferable from the viewpoint of uniform dispersion of the ECTFE resin and the antioxidant. ..
- the resin composition of the present embodiment can be molded into various shapes to form a molded product.
- the molded product using the resin of the present embodiment can have various shapes such as a sheet shape or a film shape depending on the purpose.
- the molded product of the present embodiment can be subjected to secondary processing according to the purpose. The secondary processing will be described later.
- the molded product of the present embodiment and a method for producing the same will be described by taking a sheet-shaped molded product (hereinafter, may be simply referred to as “sheet”) as an example.
- a known method can be used, and examples thereof include a method of forming by a melt extrusion method using an extruder and various T dies such as a feed block die or a multi-manifold die.
- the extruder a single-screw type, a twin-screw type, a tandem type and the like can be generally used, but a single-screw type extruder is preferable in terms of preventing resin from staying in the extruder system. ..
- a plurality of extruders may be used to co-extrude and laminate another ECTFE resin composition containing the resin composition of the present embodiment and the additive.
- the screw shape used in the single-screw extruder is not particularly limited as long as it does not generate excessive shear heat, but a full flight screw is more preferable for melt extrusion without excessive shearing.
- the range of the compression ratio of the screw is preferably 1.8 to 3.0, more preferably 2.1 to 2.7.
- the compression ratio is in the range of 1.8 to 3.0, the ECTFE is not sufficiently plasticized, some of the resin is trapped in the screen mesh as an unmelted substance, and the resin pressure is clogged. It is possible to prevent the amount of unmelted material from being mixed into the sheet as a defect, and it is possible to prevent the amount of acid gas generated from becoming excessive due to excessive shear heat generation.
- the ratio (L / D) of the screw length (L) to the screw (barrel) diameter (D) of the extruder is not particularly limited as long as it is an extruder having sufficient L / D necessary for plasticizing ECTFE. However, it is preferably 20 to 40, more preferably 25 to 35. When the L / D is in the range of 20 to 40, the resin is not sufficiently plasticized in the screw region, unmelted matter is generated, and it can be suppressed from being mixed in the sheet as a drawback, and excessive shearing is given. Therefore, it is possible to suppress an increase in the amount of acid gas generated.
- a breaker plate is provided between the screw tip of the extruder and the T-die.
- the aperture ratio of the breaker plate is preferably 40 to 60%, more preferably 42 to 58%.
- the aperture ratio is based on the portion exposed to the resin distribution portion of the extruder, and means the area of the portion where the resin through hole is formed with respect to the total area including the resin through hole.
- the resin penetration diameter of the breaker plate is preferably 3.7 mm to 7.0 mm.
- the resin penetration diameter is preferably 3.7 mm to 7.0 mm.
- the screen mesh arranged on the breaker plate is preferably a combination of two or more screen meshes having different openings.
- a screen mesh having the same opening can be used together.
- the minimum opening of the screen mesh is preferably 0.03 mm to 0.2 mm, more preferably 0.03 mm to 0.15 mm.
- the minimum opening of the screen mesh is preferably 0.03 mm to 0.2 mm, more preferably 0.03 mm to 0.15 mm.
- a coarse screen mesh having a larger opening may be introduced on the downstream side of the screen mesh having the smallest opening.
- the screen mesh is preferably placed 10 mm to 100 mm downstream from the tip of the screw.
- the flow path of the T-die used for sheet production is not particularly limited in its shape as long as the specifications are such that the resin does not easily stay, but an example of a T-die that can be preferably used is a coat hanger die.
- the main discharge direction of the resin is a form in which the resin is ejected horizontally and a form in which the resin is ejected in the direction orthogonal to the horizontal direction, and either form can be preferably used.
- the temperature setting of the extruder involved in sheet production varies depending on the type and fluidity of the ECTFE raw material, but is preferably 220 to 300 ° C, more preferably 230 to 290 ° C in the downstream portion of the extruder.
- the temperature is in the range of 220 to 300 ° C., the resin can be sufficiently plasticized, and it is possible to prevent the amount of acid gas generated from becoming too high due to excessive heating.
- the sheet extruded from the T-die immediately contacts the cooling roll close to the die and is taken out while being cooled to be cooled. Since ECTFE is a crystalline resin, it is preferable to quench it with a cooling roll before crystallization proceeds from the molten state in order to exhibit excellent transparency.
- the shortest distance between the outlet of the T-die and the point where the sheet comes into contact with the cooling roll is usually about 200 mm or less, preferably 150 mm or less, and more preferably 100 mm or less. When the distance is 200 mm or less, it is possible to prevent the crystallization from progressing more than necessary and the transparency of the sheet from being lowered.
- two rolls having a hard surface such as hard chrome plating are cooled by providing a gap suitable for obtaining an arbitrary sheet thickness and taking the sheet-shaped molten resin in contact between them.
- Any of the method of crimping the roll of the hard surface and the rubber roll of silicon or the like and cooling by taking out the molten resin in the form of a sheet while contacting the roll can be used.
- the roll material used for producing the sheet using the resin composition of the present embodiment is not particularly limited, but the maximum height (Ry), which is one index of the surface roughness, is preferably 1 s or less, more preferably 0. . Less than 3s.
- Ry exceeds 1 s, when the sheet-shaped molten resin is brought into contact with the cooling roll, the uneven shape of the roll is easily transferred to the sheet surface, and the external haze may be increased.
- the temperature of the cooling roll described above is preferably 20 ° C. to 150 ° C., more preferably 50 ° C. to 120 ° C.
- the temperature is 20 ° C to 150 ° C.
- dew condensation is less likely to occur on the roll surface, the risk of spoiling the appearance of the sheet can be reduced, and the ambient temperature is lowered, making it difficult to obtain excellent transparency. It can be suppressed or the sheet can be prevented from sticking to the roll without being sufficiently cooled.
- the sheet taken up as described above passes through a guide roll as appropriate within a range that does not damage the sheet surface, is slit to an arbitrary sheet width, and then is wound on a paper tube in a sufficiently cooled state.
- the material of the paper tube is not particularly limited, but it is preferable to apply a paper tube having a diameter that does not easily cause curl when reused after being stored in a roll.
- the thickness of the sheet is not particularly limited, but is preferably 0.005 mm to 1.0 mm, more preferably 0.01 mm to 0.5 mm.
- the thickness is in the range of 0.005 to 1.0 mm, the sheet is not easily torn and can be easily put into practical use, and it is possible to prevent the transparency of the sheet from being excessively lowered.
- sheet includes what is generally called “film”, the sheet is thick and the film is thin, and the "sheet” and the “film” are clearly distinguished. do not do.
- the width of the sheet is not particularly limited, but usually the range of 300 mm to 3000 mm is preferable from the viewpoint of handling.
- the resin sheet mainly composed of the resin composition of the present embodiment preferably exhibits the following physical properties, for example.
- the amount of heat of crystal melting obtained in the heating process from 23 ° C to 300 ° C at a heating rate of 10 ° C / min is less than 30 J / g.
- -Measured haze value is less than 15% according to JIS K7136, -Glossiness measured at an incident angle of 60 ° according to JIS Z8741 is 100 or more.
- the amount of heat of crystal melting is less than 30 J / g, it is possible to suppress a decrease in transparency as the crystallinity of the sheet increases.
- the haze value of the sheet measured by the haze meter in accordance with JIS K7136 is preferably 10% or less, more preferably 2% or less.
- the haze value is 10% or less, it is possible to suppress a decrease in design and a decrease in light collection efficiency in applications that require high transparency, such as membrane structures and front sheets for solar cells.
- the glossiness at a ray incident angle of 60 ° measured by a gloss meter in accordance with JIS Z8741 is preferably 100 or more, more preferably 120 or more.
- the glossiness is 100 or more, it is suitable for applications requiring excellent designability such as a film structure.
- the sheet obtained by molding the resin composition of the present embodiment as described above contains the phosphite-based antioxidant (B) which does not have a phenolic hydroxyl group in the molecule as described above.
- the phosphite-based antioxidant (B) include tris (2,4-di-tert-butylphenyl) phosphite.
- the sheet obtained by molding the resin composition of the present embodiment preferably contains a phenolic antioxidant having a melting point of 100 ° C. or higher and one or three or more structures represented by the formula (1). ..
- the phenolic antioxidant include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate].
- the sheet obtained by molding the resin composition of the present embodiment can be suitably used for applications requiring excellent visible light transmission performance and design. Among them, in particular, it can be used for membrane structures that use sheets as roofing materials as buildings.
- the simple material can be used as it is as a sheet for a membrane structure, or it can be used as a laminate with another base material. It is also possible to bind a part of the laminated sheets together and inflate the sheets by injecting air between the sheets in the non-bonded portion to form various shapes.
- weather resistance that can withstand long-term outdoor exposure is required.
- a method for determining the weather resistance performance for example, while irradiating ultraviolet rays having a wavelength of 300 to 400 nm and an intensity of 150 mW / cm 2 , (i) irradiating the ultraviolet rays under the conditions of a temperature of 63 ° C. and a relative humidity of 50% RH for 10 hours. Examples thereof include an aging acceleration test by ultraviolet irradiation, which is repeated for 996 hours in a cycle consisting of (ii) shower for 20 seconds and (iii) darkness for 2 hours.
- the test method is not limited to this, but is preferably a test that reflects long-term outdoor use.
- the haze change after the aging acceleration test by the ultraviolet irradiation is preferably 10% or less, more preferably 2% or less.
- the sheet obtained by molding the resin composition of the present embodiment is a sheet after the aging acceleration test by ultraviolet irradiation, and is b in the L * a * b * color system measured by a color difference meter.
- b * is 5.0 or less, the yellowness of the sheet itself is not easily recognized macroscopically, and deterioration of the design when used as a sheet for a membrane structure can be suppressed.
- the effect of reducing the generation of acid gas when the sheet obtained by molding the resin composition of the present embodiment is manufactured at a high temperature such as extrusion molding is an apparatus for measuring the acid gas concentration at an arbitrary place. It can be confirmed by using.
- the device is not particularly limited as long as it has sufficient quantification accuracy.
- An example of a measuring device that can be used is an acid gas concentration detector in which a glass tube is filled with an acid gas absorber to quantitatively recover the gas and obtain the gas concentration thereof.
- the measurement of the acid gas concentration is the sum of the acid gases at a position 100 mm away from the lip of the T die used in the method for producing a sheet using the resin composition of the present embodiment described above. This is done by measuring the concentration.
- the acid gas concentration is preferably less than 30 ppm, more preferably less than 20 ppm. When the gas concentration is less than 30 ppm, it is possible to suppress corrosion of the surrounding equipment steel material including the die, and it is possible to provide stable production for a long period of time.
- the sheet obtained by molding the resin composition of the present embodiment and the molded body obtained by secondary processing of the sheet realize high transparency, are excellent in design, and are suitably used for a film structure and a building. Can be done.
- the structure for example, pool, athletic, soccer stadium, baseball stadium, gymnasium, highway, sidewalk, carport, bus terminal, bus and taxi stand, airport, station, warehouse, collection using the molded body. Buildings such as venues, exhibition halls, commercial facilities, tourist facilities, aquaculture facilities, gardening facilities, and agricultural houses can be mentioned.
- examples of the membrane structure include those in which the above-mentioned sheet (molded body) is used in a partial portion such as an outer wall, a body, a roof, a window of the above-mentioned building, an automobile, a ship or the like.
- an adhesive molded product to which an adhesive / adhesive is applied using a molded product obtained by molding the ECTFE resin composition of the present embodiment as a base material, a so-called tape, is suitably used as a repair tape for a film structure. can do.
- “secondary processing” refers to hot plate welding, ultrasonic / high-frequency welder within a range that does not practically impair transparency, color tone, glossiness, heat resistance, weather resistance, resistance to yellowing, etc.
- the sheet obtained by molding the resin composition of the present embodiment has transparency, color tone, glossiness, heat resistance, weather resistance, resistance to yellowing, and the like within a range that does not impair practically the appearance of the sheet.
- Printing or the like may be performed.
- gravure printing, flexo printing, offset printing, inkjet printing, etc. were suitable for the purpose and application on the surface of the sheet of the ECTFE resin composition which had been subjected to corona treatment and plasma treatment in advance.
- a method of selecting a printing method and printing can be mentioned. By printing, it is possible to impart aesthetics and the like to the sheet and the film structure.
- Antioxidant As the phosphite-based antioxidant and the phenol-based antioxidant, commercially available products shown in Table 1 below were used.
- Example 1 After premixing 0.4 parts by mass of "ADEKA STAB 2112” (phosphite-based antioxidant) manufactured by ADEKA with 100 parts by mass of ECTFE, use "Laboplast Mill Micro” manufactured by Toyo Seiki Seisakusho Co., Ltd. at 250 ° C. A molten resin sheet having a thickness of 0.25 mm was obtained.
- ADEKA STAB 2112 phosphite-based antioxidant
- the transparency of the resin sheet was evaluated according to the criteria shown in Table 2 below by measuring the haze value of the resin sheet. Specifically, the haze value was measured using a haze meter "NDH7000" manufactured by Nippon Denshoku Kogyo Co., Ltd. according to JIS K7136. Then, based on the measured haze values, the transparency of the sheet was determined according to the criteria shown in Table 2. When measuring the haze value, a sample cut out from any five points from the resin sheet was used, and the arithmetic mean value was adopted. The transparency was evaluated for each of the resin sheet before the weather resistance test described later and the resin sheet after the weather resistance test. If the transparency of the resin sheet after the weather resistance test is inferior (the haze value is high) as compared with the resin sheet before the weather resistance test, the sheet becomes cloudy and "whitening". Means that is occurring.
- the resin sheet formed by adding a phosphite-based antioxidant having no phenolic hydroxyl group to ECTFE has excellent transparency and is evaluated for weather resistance. An inhibitory effect on yellowing (b * ) was observed. Further, from the results of Examples 4 to 9, by adding a phenol-based antioxidant in addition to the phosphite-based antioxidant, the resin sheet formed by using the phenol-based antioxidant has excellent transparency and weather resistance evaluation. The effect of suppressing whitening and yellowing was observed.
- Comparative Example 1 From the results of Comparative Example 1, it can be seen that the addition of a phosphite-based antioxidant having a phenolic hydroxyl group in the molecule alone has an effect of suppressing whitening in the weather resistance evaluation, but a sufficient effect of suppressing yellowing cannot be obtained. all right. Further, in Comparative Examples 2 to 6, it was found that when the phenolic antioxidant was added to ECTFE alone, whitening and yellowing could not be sufficiently suppressed. In Comparative Example 7, it was found that when the antioxidant was not added, whitening and yellowing occurred and transparency could not be maintained.
- the resin sheet using the resin composition of the present invention exhibited excellent transparency, maintained excellent transparency even after the weather resistance test, and suppressed yellowing. From this result, the resin sheet (molded article) using the resin composition of the present invention can be suitably used for a membrane structure, a building application, or an adhesive molded article that is exposed to the outdoors for a long period of time. it can.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
エチレン-クロロトリフルオロエチレン共重合体(A)と、分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)と、を含む樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体。
Description
本発明は、樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体に関する。更に詳細には、エチレン-クロロトリフルオロエチレン共重合体樹脂組成物、樹脂組成物を用いた成形体、それらを用いた膜構造物、建造物及び粘着成形体に関する。
エチレン-クロロトリフルオロエチレン共重合体(以下、「ECTFE」と称することがある。)は、耐候性、耐薬品性、耐汚染性、撥水性、絶縁性、低摩擦性、電気絶縁性の他、低吸湿性、水蒸気バリア性、低薬品透過性、難燃性、耐延焼性などに優れることから、半導体製造機器の構造部品、各種耐蝕ライニング等に使用されている。また、ECTFEは、フィルム成形が可能であることから、表面保護フィルム、太陽電池用部材フィルム、離形フィルム、膜構造物用フィルム等の各種用途に幅広く使用されている。
また、ECTFEは、対象物を覆うために用いられるシート等用の材料として用いられることが多い。このため、対象物を、シートを介して視認できるように優れた透明性が求められている。また、ECTFEは、シート状等に押出成形するときの高温条件下で酸性ガスが発生しやすいという問題があり、酸化防止剤等の各種安定剤の添加が行われていた(例えば、下記特許文献1~7参照)。
しかし、ECTFEを用いたシート等の成形体は、屋外で用いた場合、太陽光や紫外線に曝されることによって成形体に含まれる酸化防止剤が経時的に劣化、黄変し、シートの透明性、外観が損なわれる課題がある。また、酸化防止剤を添加しない場合や酸化防止剤の種類によっては、同環境下でシートが白濁するという課題がある。
本発明は、上述の課題を解決すべく、太陽光及び紫外線に曝された場合でも、優れた透明性を維持でき、白濁、黄変を生じにくい樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体を提供することを課題の一つとする。
本発明者らは、前記課題を達成するべく鋭意研究を行った結果、分子内にフェノール基を有さない、即ちフェノール性水酸基を有さないホスファイト系酸化防止剤を含有するエチレン-クロロトリフルオロエチレン共重合体樹脂組成物を用いたときに、上述の課題が解決し得ることを見出し、以下に例示される本発明に至った。特に好ましい態様として、本発明の樹脂組成物中のホスファイト系酸化防止剤の分子内にフェノール基を有さないことが、従来の同種の樹脂組成物とは異なる点であり、本発明による課題解決のための大きな要因であると考えられる。
<1> エチレン-クロロトリフルオロエチレン共重合体(A)と、
分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)と、
を含む樹脂組成物。
<2> 前記ホスファイト系酸化防止剤(B)は、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン、2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシンから選ばれる少なくとも1種である、前記<1>に記載の樹脂組成物。
<3> さらに、分子内にフェノール性水酸基を有する他のホスファイト系酸化防止剤(B’)を含み、前記ホスファイト系酸化防止剤(B)の含有量が、組成物中のホスファイト系酸化防止剤の全量100質量部に対して、60質量部以上である、前記<1>又は前記<2>に記載の樹脂組成物。
<4> さらに、分子内に下記式(1)で示される構造を1つ、又は、3つ以上有するフェノール系酸化防止剤(C)を含む、前記<1>~前記<3>のいずれかに記載の樹脂組成物。
(式中、Rは、水素原子、又は、炭素数1~4のアルキル基を示し、*は、結合部位を示す。)
<5> 前記フェノール系酸化防止剤(C)は、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]から選ばれる少なくとも1種である前記<4>に記載の樹脂組成物。
<6> 前記ホスファイト系酸化防止剤(B)の含有量が、組成物中の酸化防止剤の全量100質量部に対して、25~100質量部である前記<1>~前記<5>のいずれかに記載の樹脂組成物。
<7> 前記<1>~前記<6>のいずれかに記載の樹脂組成物を成形した成形体。
<8> シート状又はフィルム状である、前記<7>に記載の成形体。
<9> 二次加工が施された前記<7>又は前記<8>に記載の成形体。
<10> 前記<7>~前記<9>のいずれかに記載の成形体を用いた膜構造物。
<11> 前記<7>~前記<9>のいずれかに記載の成形体を用いた建造物。
<12> 基材として、前記<7>~前記<9>のいずれかに記載の成形体を用いた粘着成形体。
分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)と、
を含む樹脂組成物。
<2> 前記ホスファイト系酸化防止剤(B)は、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン、2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシンから選ばれる少なくとも1種である、前記<1>に記載の樹脂組成物。
<3> さらに、分子内にフェノール性水酸基を有する他のホスファイト系酸化防止剤(B’)を含み、前記ホスファイト系酸化防止剤(B)の含有量が、組成物中のホスファイト系酸化防止剤の全量100質量部に対して、60質量部以上である、前記<1>又は前記<2>に記載の樹脂組成物。
<4> さらに、分子内に下記式(1)で示される構造を1つ、又は、3つ以上有するフェノール系酸化防止剤(C)を含む、前記<1>~前記<3>のいずれかに記載の樹脂組成物。
(式中、Rは、水素原子、又は、炭素数1~4のアルキル基を示し、*は、結合部位を示す。)
<5> 前記フェノール系酸化防止剤(C)は、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]から選ばれる少なくとも1種である前記<4>に記載の樹脂組成物。
<6> 前記ホスファイト系酸化防止剤(B)の含有量が、組成物中の酸化防止剤の全量100質量部に対して、25~100質量部である前記<1>~前記<5>のいずれかに記載の樹脂組成物。
<7> 前記<1>~前記<6>のいずれかに記載の樹脂組成物を成形した成形体。
<8> シート状又はフィルム状である、前記<7>に記載の成形体。
<9> 二次加工が施された前記<7>又は前記<8>に記載の成形体。
<10> 前記<7>~前記<9>のいずれかに記載の成形体を用いた膜構造物。
<11> 前記<7>~前記<9>のいずれかに記載の成形体を用いた建造物。
<12> 基材として、前記<7>~前記<9>のいずれかに記載の成形体を用いた粘着成形体。
本発明によれば、太陽光及び紫外線に曝された場合でも、優れた透明性を維持でき、白濁、黄変を生じにくい樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体を提供することができる。
以下、本発明について詳細に説明するが、本発明は以下に示す各実施形態に限定されるものではない。
<ECTFE樹脂組成物>
本実施形態の樹脂組成物は、エチレン-クロロトリフルオロエチレン共重合体(A)と、分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)と、を含む。以下、ECTFEを含む樹脂組成物を「ECTFE樹脂組成物」と称することがある。
本実施形態の樹脂組成物によって、上述のような白濁(白化)及び黄変抑制効果が得られる理由については明らかではない。しかし、後述する実施例と比較例との対比からわかるように、種々のホスファイト系酸化防止剤を用いたECTFE樹脂組成物の評価を実施した際、分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤を用いたECTFE樹脂組成物が紫外線に曝されても、優れた透明性を維持でき、白濁、黄変を生じにくいという実験結果を得た。この結果から、ホスファイト系酸化防止剤の分子内にフェノール性水酸基(フェノール基)が含まれていると、ホスファイトの加水分解によって分子量の小さいフェノール性物質が生成し、それらが紫外線によって励起されて二量化することで、黄変の原因物質が生成するものと考えられる。また、ECTFE樹脂組成物に酸化防止剤を添加しない場合は、太陽光や紫外線等によって樹脂の分解が促進され、分解物が樹脂組成物内部で発泡することで白濁すると考えられる。本実施形態の樹脂組成物を用いると、酸化防止剤の添加の点から、相反する現象である白濁の発生と黄変とを、両方とも抑制することができる。特に、本実施形態の樹脂組成物を用いると長期にわたり白濁発生抑制効果を発揮することができる。
本実施形態の樹脂組成物は、エチレン-クロロトリフルオロエチレン共重合体(A)と、分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)と、を含む。以下、ECTFEを含む樹脂組成物を「ECTFE樹脂組成物」と称することがある。
本実施形態の樹脂組成物によって、上述のような白濁(白化)及び黄変抑制効果が得られる理由については明らかではない。しかし、後述する実施例と比較例との対比からわかるように、種々のホスファイト系酸化防止剤を用いたECTFE樹脂組成物の評価を実施した際、分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤を用いたECTFE樹脂組成物が紫外線に曝されても、優れた透明性を維持でき、白濁、黄変を生じにくいという実験結果を得た。この結果から、ホスファイト系酸化防止剤の分子内にフェノール性水酸基(フェノール基)が含まれていると、ホスファイトの加水分解によって分子量の小さいフェノール性物質が生成し、それらが紫外線によって励起されて二量化することで、黄変の原因物質が生成するものと考えられる。また、ECTFE樹脂組成物に酸化防止剤を添加しない場合は、太陽光や紫外線等によって樹脂の分解が促進され、分解物が樹脂組成物内部で発泡することで白濁すると考えられる。本実施形態の樹脂組成物を用いると、酸化防止剤の添加の点から、相反する現象である白濁の発生と黄変とを、両方とも抑制することができる。特に、本実施形態の樹脂組成物を用いると長期にわたり白濁発生抑制効果を発揮することができる。
[エチレン-クロロトリフルオロエチレン共重合体(A)]
エチレン-クロロトリフルオロエチレン共重合体(A)(ECTFE)は、エチレン(以下、「Et」と称することがある)とクロロトリフルオロエチレン(別名「三フッ化塩化エチレン」、以下、「CTFE」と称することがある)の共重合体である。
本実施形態において、ECTFEは、EtモノマーとCTFEモノマーとのみからなる共重合体に限定されない。本実施形態におけるECTEFには、Etモノマー、CTFEモノマーの他に、例えば、(パーフルオロヘキシル)エチレン、(パーフルオロブチル)エチレン、(パーフルオロオクチル)エチレン、[4-(ヘプタフルオロイソプロピル)パーフルオロブチル]エチレン等を、第3モノマーとして使用した共重合体等も含まれる。
エチレン-クロロトリフルオロエチレン共重合体(A)(ECTFE)は、エチレン(以下、「Et」と称することがある)とクロロトリフルオロエチレン(別名「三フッ化塩化エチレン」、以下、「CTFE」と称することがある)の共重合体である。
本実施形態において、ECTFEは、EtモノマーとCTFEモノマーとのみからなる共重合体に限定されない。本実施形態におけるECTEFには、Etモノマー、CTFEモノマーの他に、例えば、(パーフルオロヘキシル)エチレン、(パーフルオロブチル)エチレン、(パーフルオロオクチル)エチレン、[4-(ヘプタフルオロイソプロピル)パーフルオロブチル]エチレン等を、第3モノマーとして使用した共重合体等も含まれる。
EtとCTFEとの共重合における各構成単位の組成比(モル比)は、19F NMR、FT-IR等の手法で測定することができる。ECTFE中のEtとCTFEとの比(Et/CTFE比)は、特に限定されないが、好ましくは30/70~70/30であり、より好ましくは40/60~60/40である。Etモノマー比率が70以下であると、相対的にCTFEのモノマー比率が低下し過ぎないため、フッ素樹脂の特徴である透明性、耐候性、防汚性等を損なわないようにすることができる。また、CTFEモノマー比率が70以下であると、高温使用時における酸性ガス発生量が高くなり過ぎないようにすることができる。
本実施形態に用いるECTFEは、任意のEt/CTFE比のECTFEを単独で使用してもよいし、2種類以上の異なるEt/CTFE比のECTFEと混合して使用してもよい。
本実施形態において、ECTFEの樹脂組成物中の含有量は、特に限定されるものではないが、透明性維持の観点から、70~99.9質量%であることが好ましく、80~99.9質量%であることがさらに好ましく、90~99.9質量%であることが特に好ましい。
更に、本実施形態のECTFE樹脂組成物の透明性を阻害しない範囲で、必要に応じECTFE以外の樹脂を添加してもよい。ECTFE以外の樹脂として、例えば、エチレンとクロロトリフルオロエチレンとそれ以外の第3モノマーとのターポリマー、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(HFP)、ポリパーフルオロアルキルビニルエーテル(PFA)、テトラフルオロエチレンとフッ化ビニリデンとヘキサフルオロプロピレンとのターポリマー等が挙げられる。
本実施形態において、ECTFEの樹脂組成物中の含有量は、特に限定されるものではないが、透明性維持の観点から、70~99.9質量%であることが好ましく、80~99.9質量%であることがさらに好ましく、90~99.9質量%であることが特に好ましい。
更に、本実施形態のECTFE樹脂組成物の透明性を阻害しない範囲で、必要に応じECTFE以外の樹脂を添加してもよい。ECTFE以外の樹脂として、例えば、エチレンとクロロトリフルオロエチレンとそれ以外の第3モノマーとのターポリマー、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン(HFP)、ポリパーフルオロアルキルビニルエーテル(PFA)、テトラフルオロエチレンとフッ化ビニリデンとヘキサフルオロプロピレンとのターポリマー等が挙げられる。
[酸化防止剤]
(分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B))
本実施形態のECTFE樹脂組成物は、少なくとも、分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)を含有する。ここで、「ホスファイト系酸化防止剤」とは、分子内に亜リン酸エステル構造を有する酸化防止剤を意味する。
ホスファイト系酸化防止剤(B)は、特に限定されるものではないが、特に、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン、2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン等が好ましい。
ホスファイト系酸化防止剤(B)は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
これらのホスファイト系酸化防止剤(B)をECTFEに添加することにより、太陽光等に対する白化及び黄変抑制効果に加えて、高い耐熱性と、ECTFEとの相溶性とを両立することができる。
(分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B))
本実施形態のECTFE樹脂組成物は、少なくとも、分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)を含有する。ここで、「ホスファイト系酸化防止剤」とは、分子内に亜リン酸エステル構造を有する酸化防止剤を意味する。
ホスファイト系酸化防止剤(B)は、特に限定されるものではないが、特に、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン、2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン等が好ましい。
ホスファイト系酸化防止剤(B)は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
これらのホスファイト系酸化防止剤(B)をECTFEに添加することにより、太陽光等に対する白化及び黄変抑制効果に加えて、高い耐熱性と、ECTFEとの相溶性とを両立することができる。
また、本実施形態に用いるホスファイト系酸化防止剤は、融点が好ましくは50℃以上、より好ましくは100℃以上である。融点が100℃以上であると、製膜時にホスファイト系酸化防止剤がシート表面にブリードアウトするおそれや、ホスファイト系酸化防止剤の分解による着色のおそれを回避することができる。
また、後述のように、フェノール系酸化防止剤など他の酸化防止剤を用いた場合、フェノール系酸化防止剤や他の酸化防止剤が酸化防止剤としての役目を果たして酸化物となると、当該酸化物によって着色が生じることがある。このような場合、ホスファイト系酸化防止剤(B)がこれら酸化物を還元することで樹脂組成物又はその硬化物の着色を防止することができる。したがって、特に限定はされるものではないが、フェノール系酸化防止剤など他の酸化防止剤を用いる場合、ホスファイト系酸化防止剤(B)による他の酸化防止剤の還元効果(着色防止)の観点で、ホスファイト系酸化防止剤(B)の含有量は、組成物中の酸化防止剤の全量100質量部に対して、25~100質量部であることが好ましく、50~100質量部であることが更に好ましく、75~100質量部であることが特に好ましい。
なお、本実施形態の樹脂組成物は、ホスファイト系酸化防止剤(B)に加えて、他の酸化防止剤として、分子内にフェノール性水酸基を有する他のホスファイト系酸化防止剤(B’)を含んでもよい。但し、太陽光等に対する白化及び黄変抑制効果を十分に発揮させる観点から、組成物中のホスファイト系酸化防止剤の全量(即ち、ホスファイト系酸化防止剤(B)と(B’)との総量)100質量部に対する、ホスファイト系酸化防止剤(B)の含有量が、60質量部以上であることが好ましく、80質量部以上であることがさらに好ましく、100質量部であることが特に好ましい。
本実施形態における酸化防止剤の樹脂組成物への添加方法としては、ECTFE原料の造粒工程で予め添加してもよいし、ECTFE樹脂組成物のシートを製造する工程で、未添加のECTFE原料と溶融混合しながら添加してもよい。
ホスファイト系酸化防止剤(B)の樹脂組成物中の含有量は、本実施形態において特に限定されないが、好ましくは0.01~1.0質量%、より好ましくは0.01~0.5質量%である。前記含有量が1.0質量%以下であると、ECTFE樹脂組成物の透明性が低下し過ぎることを防ぐことができる。また、前記含有量が0.01質量%以上であると、十分な酸性ガス低減効果が得られる。
ホスファイト系酸化防止剤(B)の樹脂組成物中の含有量は、本実施形態において特に限定されないが、好ましくは0.01~1.0質量%、より好ましくは0.01~0.5質量%である。前記含有量が1.0質量%以下であると、ECTFE樹脂組成物の透明性が低下し過ぎることを防ぐことができる。また、前記含有量が0.01質量%以上であると、十分な酸性ガス低減効果が得られる。
(フェノール系酸化防止剤)
本実施形態の樹脂組成物は、ホスファイト系酸化防止剤に加えて、フェノール系酸化防止剤を更に含有することができる。ホスファイト系酸化防止剤とフェノール系酸化防止剤とは、樹脂の酸化防止機構が異なるため、それらを併用することが酸性ガス発生量低減の観点からより好ましい。ここで、フェノール系酸化防止剤とは、フェノール構造(C6H5OH)を有する酸化防止剤を意味する。但し、本実施形態においては、フェノール構造とホスファイト構造との両者を含む酸化防止剤については、ホスファイト系酸化防止剤とみなす。
本実施形態の樹脂組成物は、ホスファイト系酸化防止剤に加えて、フェノール系酸化防止剤を更に含有することができる。ホスファイト系酸化防止剤とフェノール系酸化防止剤とは、樹脂の酸化防止機構が異なるため、それらを併用することが酸性ガス発生量低減の観点からより好ましい。ここで、フェノール系酸化防止剤とは、フェノール構造(C6H5OH)を有する酸化防止剤を意味する。但し、本実施形態においては、フェノール構造とホスファイト構造との両者を含む酸化防止剤については、ホスファイト系酸化防止剤とみなす。
フェノール系酸化防止剤としては、特に限定はないが、分子内に下記式(1)で示される構造を1つ又は3つ以上有するフェノール系酸化防止剤(C)が好ましく、より好ましくは式(1)で示される構造を3つ以上有するフェノール系酸化防止剤である。
(式中、Rは、水素原子、又は、炭素数1~4のアルキル基を示し、*は、結合部位を示す。)
(式中、Rは、水素原子、又は、炭素数1~4のアルキル基を示し、*は、結合部位を示す。)
式(1)において、Rは、水素原子、又は、炭素数1~4のアルキル基を示す。炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基が挙げられ、メチル基、t-ブチル基が好ましい。また、2つのRはお互いに同一であってもよいし、異なっていてもよい。
黄変の抑制の観点から、式(1)で示される構造例としては、以下の構造(A)~(D)が好ましく、構造(D)が特に好ましい。
黄変の抑制の観点から、式(1)で示される構造例としては、以下の構造(A)~(D)が好ましく、構造(D)が特に好ましい。
(A)一方のRがメチル基で、他方のRが水素又は他のアルキル基である式(1)で示される構造
(B)一方のRがt-ブチル基で、他方のRが水素又は他のアルキル基である式(1)で示される構造
(C)2つのRが共にメチル基である式(1)で示される構造
(D)2つのRが共にt-ブチル基である式(1)で示される構造
(B)一方のRがt-ブチル基で、他方のRが水素又は他のアルキル基である式(1)で示される構造
(C)2つのRが共にメチル基である式(1)で示される構造
(D)2つのRが共にt-ブチル基である式(1)で示される構造
構造(D)はフェノール基の近傍に2つのtert-ブチル基が存在するヒンダードタイプのものであり、黄変の原因となる二量化を起こしにくいと考えられる。式(1)で示される構造が1つの場合は比較的分子が小さく、樹脂中に均一に分散させることができる。また、必ずしも明らかではないが、式(1)で示される構造を3つ以上有するフェノール系酸化防止剤は、樹脂分解の原因となるラジカル等の分解生成物を効率的に捕捉することができると推測される。
フェノール系酸化防止剤(C)としては、例えばヒンダード又はセミヒンダード系酸化防止剤が挙げられる。この中でも、フェノール系酸化防止剤(C)としては、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]等が好ましい。
なお、フェノール系酸化防止剤は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
なお、フェノール系酸化防止剤は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
フェノール系酸化防止剤(C)として、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]を用いると、酸性ガス発生量の低減、高透明性、酸化防止剤の耐熱性、耐候性、黄変のし難さに優れる。
また、フェノール系酸化防止剤(C)として、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリルを用いると、黄変のし難さに優れ、かつ酸性ガス発生量低減効果と高透明性とを両立することができる。
また、フェノール系酸化防止剤(C)として、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリルを用いると、黄変のし難さに優れ、かつ酸性ガス発生量低減効果と高透明性とを両立することができる。
本実施形態で使用するフェノール系酸化防止剤は、融点が好ましくは100℃以上、より好ましくは150℃である。融点が100℃以上であると、製膜時にフェノール系酸化防止剤がシート表面にブリードアウトするおそれや、フェノール系酸化防止剤の分解による着色のおそれを回避することができる。
フェノール系酸化防止剤の樹脂組成物への添加方法としては、ECTFE原料の造粒工程で予め添加してもよいし、樹脂組成物のシートを製造する工程で、未添加のECTFE原料と溶融混合しながら添加してもよい。
本実施形態の樹脂組成物中のフェノール系酸化防止剤(C)の含有量は、本実施形態において特に限定されないが、好ましくは0.01~1.0質量%、より好ましくは0.01~0.5質量%である。前記含有量が1.0質量%以下であると、本実施形態の樹脂組成物の黄変を抑えかつ透明性が低下し過ぎることを防ぐことができる。また、前記含有量が0.01質量%以上であると、十分な酸性ガス低減効果が得られる。
本実施形態の樹脂組成物中のフェノール系酸化防止剤(C)の含有量は、本実施形態において特に限定されないが、好ましくは0.01~1.0質量%、より好ましくは0.01~0.5質量%である。前記含有量が1.0質量%以下であると、本実施形態の樹脂組成物の黄変を抑えかつ透明性が低下し過ぎることを防ぐことができる。また、前記含有量が0.01質量%以上であると、十分な酸性ガス低減効果が得られる。
[他の添加剤]
本実施形態の樹脂組成物は、必要に応じて更に、公知の熱安定剤や安定化助剤等を含有してもよい。熱安定剤としては、有機イオウ系酸化防止剤、アミン系酸化防止剤、ヒドロキシアミン、有機スズ化合物、β-ジケトンなどが挙げられる。
なお、熱安定剤は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
本実施形態の樹脂組成物は、必要に応じて更に、公知の熱安定剤や安定化助剤等を含有してもよい。熱安定剤としては、有機イオウ系酸化防止剤、アミン系酸化防止剤、ヒドロキシアミン、有機スズ化合物、β-ジケトンなどが挙げられる。
なお、熱安定剤は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
熱安定剤、安定化助剤等の本実施形態の樹脂組成物への添加方法としては、ECTFE原料の造粒工程で予め添加してもよいし、本実施形態の樹脂組成物のシートを製造する工程で、未添加のECTFE原料と溶融混合しながら添加してもよい。
熱安定剤、安定化助剤の樹脂組成物中の含有量としては、特に限定はないが、総量として0.01~1.0質量%とすることができる。1.0質量%以下であると、ECTFE樹脂組成物の透明性が低下し過ぎること防ぐことができる。0.01質量%以上であると、十分な酸性ガス低減効果が得られる。
熱安定剤、安定化助剤の樹脂組成物中の含有量としては、特に限定はないが、総量として0.01~1.0質量%とすることができる。1.0質量%以下であると、ECTFE樹脂組成物の透明性が低下し過ぎること防ぐことができる。0.01質量%以上であると、十分な酸性ガス低減効果が得られる。
本実施形態の樹脂組成物は、透明性、色調、光沢性、耐熱性、耐候性、黄変のし難さシート外観等を、実用上損なわない範囲で、さらに、可塑剤、滑剤、紫外線吸収剤、受酸剤、帯電防止剤、防曇剤、流滴剤、親水剤撥液剤等を添加することができる。添加方法としては、樹脂組成物を混練する際に添加しても良いし、本実施形態の樹脂組成物からシートを製造した後にシート表面に塗布してもよい。
また、本実施形態の樹脂組成物は、黄変のし難さや透明性を損なわない範囲で、必要に応じ顔料を添加することができる。好適な顔料としては、例えば、酸化チタン、酸化亜鉛等の金属酸化物、炭酸カルシウム等の炭酸金属塩、シリカ、カーボンブラック、アセチレンブラック、クロムイエロー、フタロシアニンブルー、フタロシアニングリーン等が挙げられるが、特に限定されない。
<ペレット状樹脂組成物の製造方法>
本実施形態の樹脂組成物は、様々な方法で作製できる。ここでは、ペレット状樹脂組成物の製造方法について述べる。
本実施形態の樹脂組成物は、様々な方法で作製できる。ここでは、ペレット状樹脂組成物の製造方法について述べる。
ペレット状樹脂組成物の製造方法としては、公知の方法を用いることができるが、例えば、押出機を用いた溶融混練法等により製造する方法が挙げられる。ECTFE樹脂及び酸化防止剤をそれぞれが未溶融の状態で予備混合させた後、押出機内で溶融させ、均一に混合させる。その後、ストランド状に押し出し、混練物を冷却した後、ペレタイザーにてペレット化することにより、ペレット状のECTFE樹脂組成物ができる。押出機としては、単軸スクリュー型、二軸スクリュー型、タンデム型等が一般的なものとして使用できるが、ECTFE樹脂と酸化防止剤との均一分散の観点から、二軸スクリュー型押出機が好ましい。
<成形体>
本実施形態の樹脂組成物は、様々な形状に成形し成形体とすることができる。例えば、本実施形態の樹脂を用いた成形体は、シート状又はフィルム状など目的に応じて種々の形状とすることができる。また、本実施形態の成形体には、目的に応じて、二次加工を施すことができる。二次加工については後述する。
以下、シート状の成形体(以下、単に「シート」と称することがある)を例として本実施形態の成形体及びその製造方法について述べる。
本実施形態の樹脂組成物は、様々な形状に成形し成形体とすることができる。例えば、本実施形態の樹脂を用いた成形体は、シート状又はフィルム状など目的に応じて種々の形状とすることができる。また、本実施形態の成形体には、目的に応じて、二次加工を施すことができる。二次加工については後述する。
以下、シート状の成形体(以下、単に「シート」と称することがある)を例として本実施形態の成形体及びその製造方法について述べる。
シートの製造方法としては、公知の方法を用いることができるが、例えば、押出機とフィードブロックダイ又はマルチマニホールドダイ等の各種Tダイとを用いた溶融押出し法等により成形する方法が挙げられる。押出機としては、単軸スクリュー型、二軸スクリュー型、タンデム型等が一般的なものとして使用できるが、押出機系内における樹脂の滞留を防止する点で、単軸スクリュー型押出機が好ましい。また押出機を複数台用い、本実施形態の樹脂組成物と前記添加剤とを含む他のECTFE樹脂組成物を共押出し、積層してもよい。
前記単軸押出機に使用するスクリュー形状としては、過度なせん断発熱を伴わない構成であれば、特に限定されないが、過剰なせん断をかけずに溶融押出しする上で、フルフライトスクリューがより好ましい。
前記スクリューの圧縮比の範囲は、好ましくは1.8~3.0、より好ましくは2.1~2.7である。当該圧縮比が1.8~3.0の範囲内にあると、ECTFEが十分に可塑化されず、一部の樹脂が未溶融物のままスクリーンメッシュに捕捉され、目が詰まる事で樹脂圧が上がり易くなったり、シート中に未溶融物が欠点として混入することを抑制することができ、また、過剰なせん断発熱により、酸性ガス発生量が多くなり過ぎてしまう抑制することができる。
前記押出機のスクリュー長(L)とスクリュー(バレル)径(D)の比(L/D)は、ECTFEの可塑化に必要十分なL/Dを備えた押出機であれば、特に限定されないが、好ましくは20~40、より好ましくは25~35である。L/Dが20~40の範囲内にあると、樹脂がスクリュー領域で十分可塑化しきらず、未溶融物が発生し、欠点としてシート中に混入することを抑制でき、また、過剰なせん断を与えて酸性ガス発生量の増加に繋がることを抑制することができる。
押出機のスクリュー先端と前記Tダイとの間には、ブレーカープレートが備えられる。ブレーカープレートの開口率は好ましくは40~60%、より好ましくは42~58%である。ブレーカープレートの開口率を40%以上とすることで、樹脂への背圧を抑え樹脂の押出機内の滞留を抑えることができる。また、開口率を60%以下とすることで、シートの欠点数を長時間に渡り、安定的に低く保つことが可能となる。
なお、開口率とは押出機の樹脂流通部に露出する部分を基準とし、樹脂貫通孔も含めた全体の面積に対して、樹脂貫通孔が形成された部分の面積を意味する。
なお、開口率とは押出機の樹脂流通部に露出する部分を基準とし、樹脂貫通孔も含めた全体の面積に対して、樹脂貫通孔が形成された部分の面積を意味する。
ブレーカープレートの樹脂貫通口径は、好ましくは3.7mm~7.0mmである。樹脂貫通口径を3.7mm以上とすることで、樹脂への背圧を抑え樹脂の押出機内の滞留を抑えることができる。また7.0mm以下とすることで、シートの欠点数を長時間に渡り、安定的に低く保つことが可能となる。
ブレーカープレートに配置されたスクリーンメッシュは、目開きが異なる2枚以上のスクリーンメッシュを組み合わせることが好ましい。スクリーンメッシュは、目開きが同じスクリーンメッシュを併用することもできる。一般には樹脂流通部の上流側(スクリリュー近傍側)から下流側(ブレーカープレート開口側)に向かい、目開きの大きいスクリーンメッシュ、目開きの小さいスクリーンメッシュの順に配置することが好ましい。更に、目開きが最少のメッシュの下流には、樹脂圧力によるメッシュの破れを防止する目的で、当該メッシュより粗いメッシュを配置することが好ましい。本実施形態の樹脂組成物のシートの製造方法では、スクリーンメッシュの最小の目開きは、好ましくは0.03mm~0.2mm、より好ましくは0.03mm~0.15mmである。スクリーンメッシュの最小の目開きを0.03mm以上とすることで、樹脂の剪断発熱による劣化を抑制することができる。また、スクリーンメッシュの最小の目開きを0.2mm以下とすることで、樹脂中に混入するコンタミネーション、原料の劣化物等を低減することができる。
目開きの大きいスクリーンメッシュは、粗大な欠点を取り除く役割を担い、目開きは、好ましくは0.15mm~0.6mmである。更に、スクリーンメッシュが樹脂圧により破けるのを防ぐ目的で、目開きが最小のスクリーンメッシュの下流側に、それより目開きが大きい粗いスクリーンメッシュを導入してもよい。前記スクリーンメッシュの配置位置としては、スクリュー先端部から10mm~100mm下流側に設置されることが好ましい。
目開きの大きいスクリーンメッシュは、粗大な欠点を取り除く役割を担い、目開きは、好ましくは0.15mm~0.6mmである。更に、スクリーンメッシュが樹脂圧により破けるのを防ぐ目的で、目開きが最小のスクリーンメッシュの下流側に、それより目開きが大きい粗いスクリーンメッシュを導入してもよい。前記スクリーンメッシュの配置位置としては、スクリュー先端部から10mm~100mm下流側に設置されることが好ましい。
シート製造に用いるTダイの流路は、樹脂が滞留し難い仕様であれば、その形状において特に限定されないが、好適に使用することが可能な例として、コートハンガーダイが挙げられる。樹脂の吐出方向としては、水平方向に横出しする形態と水平方向に直行する方向に下出しする形態とが主なものとして挙げられるが、どちらの形態も好適に用いることができる。
シート製造に係る押出機の温度設定は、ECTFE原料の種類と流動性とによって様々であるが、押出機下流部において、好ましくは220~300℃、より好ましくは230~290℃である。当該温度が、220~300℃の範囲内にあると、十分に樹脂を可塑化させることでき、過剰な加熱により酸性ガスの発生量が高くなり過ぎることを抑制することができる。
Tダイより押し出されたシートは、直ぐにダイスに近接した冷却ロールに接触し、冷却されながら引き取られることにより、冷却される。ECTFEは結晶性樹脂であることから、優れた透明性を発現する上で、溶融状態から結晶化が進行する前に冷却ロールで急冷させることが好ましい。Tダイの出口とシートとが冷却ロールに接触する点を最短距離で結んだ距離は、通常200mm以下程度であり、好ましくは150mm以下、より好ましくは100mm以下である。当該距離が200mm以下であれば、必要以上に結晶化が進行し、シートの透明性が低下するのを抑制することができる。
冷却ロールによる冷却方式としては、ハードクロムメッキ等の硬質表面のロール2本を、任意のシート厚みを得るのに適した隙間を設け、その間にシート状の溶融樹脂を接触させながら引き取ることで冷却する方法、前記硬質表面のロールとシリコン等のゴムロールとを圧着させ、その間にシート状の溶融樹脂を接触させながら引き取ることで冷却する方法のいずれも用いることができる。
本実施形態の樹脂組成物を用いたシートの製造に用いるロール材料は、特に限定されないが、表面粗さの一つの指標となる最大高さ(Ry)が、好ましくは1s以下、より好ましくは0.3s未満である。Ryが1sを上回ると、シート状の溶融樹脂を冷却ロールに接触させた際、ロールの凹凸形状がシート表面に転写し易くなり、外部ヘイズが高くなることがある。
上述の冷却ロールの温度は、好ましくは20℃~150℃、より好ましくは50℃~120℃である。当該温度が20℃~150℃であると、ロール表面が結露しにくく、シート外観を損なう危険性を低減できるほか、周囲の雰囲気温度低下に繋がって、優れた透明性が得られ難くなることを抑制したり、シートが十分冷却されずにロールに粘着することを抑制することができる。
上述のようにして引き取られたシートは、シート表面に傷を与えない範囲で、適宜ガイドロールを通過し、任意のシート幅にスリットした後、十分冷却された状態で紙管に巻き取られる。紙管の材質については特に限定されないが、ロール保管後に再使用する際の巻き癖が発生し難い径の紙管を適用することが好ましい。
シートの厚さは、特に限定されないが、好ましくは0.005mm~1.0mm、より好ましくは0.01mm~0.5mmである。当該厚みが0.005~1.0mmの範囲内にあると、シートが破れにくく実用に供しやすくなり、また、シートの透明性が低下し過ぎてしまうのを抑制することができる。
なお、本明細書において「シート」とは、一般的に「フィルム」と呼ばれるものを含み、シートは厚め、フィルムは薄めのものを指すにとどまり、「シート」と「フィルム」とを明確に区別しない。
シートの幅は、特に限定されないが、通常300mm~3000mmの範囲が取扱いの点から好ましい。
本実施形態の樹脂組成物を主体とする樹脂シートは、例えば、以下の物性を示すことが好ましい。
- 示唆走査熱量分析において、10℃/minの昇温速度で23℃から300℃迄の昇温過程で得られる結晶融解熱量が30J/g未満、
- JIS K7136に従い、測定されるヘイズ値が15%未満、
- JIS Z8741に従い、入射角60°で測定される光沢度が100以上。
- 示唆走査熱量分析において、10℃/minの昇温速度で23℃から300℃迄の昇温過程で得られる結晶融解熱量が30J/g未満、
- JIS K7136に従い、測定されるヘイズ値が15%未満、
- JIS Z8741に従い、入射角60°で測定される光沢度が100以上。
前記結晶融解熱量が30J/g未満であると、シートの結晶性の増加に伴い、透明性の低下を抑えることができる。
ヘイズメーターによりJIS K7136に準拠して測定されるシートのヘイズ値は、好ましくは10%以下、より好ましくは2%以下である。ヘイズ値が10%以下であると、膜構造物、太陽電池用フロントシートをはじめとした高透明性が求められる用途における意匠性の低下、集光効率の低下を抑制することができる。
グロスメーターによりJIS Z8741に準拠して測定される光線入射角60°における光沢度は、好ましくは100以上、より好ましくは120以上である。光沢度が100以上であると、膜構造物をはじめとする優れた意匠性を求める用途に好適である。
上述のように本実施形態の樹脂組成物を成形して得られたシートは、上述のように分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)を含有する。当該ホスファイト系酸化防止剤(B)としては、例えば、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイトが挙げられる。
また、本実施形態の樹脂組成物を成形して得られたシートは、融点100℃以上かつ式(1)で示す構造を1つ又は3つ以上有するフェノール系酸化防止剤を含有することが好ましい。当該フェノール系酸化防止剤としては、例えば、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]が挙げられる。
本実施形態の樹脂組成物を成形して得られたシートは、優れた可視光透過性能、意匠性が求められる用途に好適に使用することができる。その中でも特に、建造物として屋根材等にシートを使用する膜構造物に使用できる。シートは、単味をそのまま膜構造物用シートとして用いることも可能であり、他の基材との積層物として用いることも可能である。また、積層したシート同士の一部を結着させて、結着していない部分のシート間に空気を入れて膨らませ、種々の形状を作ることもできる。
ここで、膜構造物にECTFE樹脂組成物シートを単味で適用する場合、長期間の屋外曝露に耐え得る耐候性能が求められる。
耐候性能を判断する方法としては、例えば、波長300~400nm、強度150mW/cm2の紫外線を照射しながら、(i)温度63℃、相対湿度50%RHの条件下で紫外線を10時間照射、(ii)シャワー20秒、(iii)暗黒2時間からなるサイクル996時間繰り返し行う、紫外線照射による老化促進試験が挙げられる。試験方法は、これに限定されないが、屋外で長期間使用することを反映させた試験であることが好ましい。
本実施形態の樹脂組成物シートの耐候性能は、前記紫外線照射による老化促進試験後のヘイズ変化が好ましくは10%以下、より好ましくは2%以下である。
耐候性能を判断する方法としては、例えば、波長300~400nm、強度150mW/cm2の紫外線を照射しながら、(i)温度63℃、相対湿度50%RHの条件下で紫外線を10時間照射、(ii)シャワー20秒、(iii)暗黒2時間からなるサイクル996時間繰り返し行う、紫外線照射による老化促進試験が挙げられる。試験方法は、これに限定されないが、屋外で長期間使用することを反映させた試験であることが好ましい。
本実施形態の樹脂組成物シートの耐候性能は、前記紫外線照射による老化促進試験後のヘイズ変化が好ましくは10%以下、より好ましくは2%以下である。
また、本実施形態の樹脂組成物を成形して得られたシートは、前記紫外線照射による老化促進試験後におけるシートにおいて、色差計より測定されるL*a*b*表色系の内のb*が、好ましくは5.0以下、より好ましくは2.0以下である。b*が5.0以下であると、巨視的にシート自身の黄色度が認められにくく、膜構造物用シートとして使用する際の意匠性の低下を抑制することができる。
更にまた、本実施形態の樹脂組成物を成形して得られたシートを押出成形等の高温下で製造するときの酸性ガスの発生低減効果は、任意の場所における酸性ガス濃度を測定する装置を用いて確認することができる。装置は、十分な定量精度を有するものであれば、特に限定されない。使用可能な測定装置の一例としては、ガラス管内に酸性ガスの吸収剤が充填され、ガスの定量回収及びそのガス濃度を得られる酸性ガス濃度検知器が挙げられる。
前記酸性ガス濃度の測定は、具体的には、前述の本実施形態の樹脂組成物を用いたシートの製造方法に用いられるTダイのリップから、直線距離で100mm離れた箇所における酸性ガスの合算濃度を計測することにより行う。酸性ガス濃度は、好ましくは30ppm未満、より好ましくは20ppm未満である。当該ガス濃度が30ppm未満であると、ダイスを含む周辺の設備鋼材に腐食を生じるのを抑制でき、長時間に渡り安定的な生産に供することができる。
<膜構造物、建造物、粘着成形体>
本実施形態の樹脂組成物を成形して得られたシート及びシートを二次加工した成形体は、高い透明性を実現し、意匠性に優れ、膜構造物、建造物に好適に使用することができる。
構造物としては、前記成形体を用いた、例えば、プール、アスレチック、サッカースタジアム、ベースボールスタジアム、体育館、高速道路、歩道、カーポート、バスターミナル、バス及びタクシー乗り場、空港、駅、倉庫、集会場、展示場、商業施設、観光施設、養殖施設、園芸施設、農業ハウス等の建造物が挙げられる。
また、膜構造物としては、上述の建造物、自動車、船等の外壁、ボディー、屋根、窓等の部分的な箇所に上述のシート(成形体)を使用したものが挙げられる。さらに、本実施形態のECTFE樹脂組成物を成形して得られた成形体を基材として、粘着剤・接着剤を塗布した粘着成形体、いわゆるテープは、膜構造物の補修テープとして好適に使用することができる。
ここで、「二次加工」とは、透明性、色調、光沢性、耐熱性、耐候性、黄変のし難さシート外観等を実用上損なわない範囲で熱板溶着、超音波・高周波ウェルダー溶着、レーザー溶着、熱風溶着、積層、切削・スリット、プレス成形、真空成形等の加工を施すことを示す。
なお、本実施形態の樹脂組成物を成形して得られたシートは、透明性、色調、光沢性、耐熱性、耐候性、黄変のし難さシート外観等を実用上損なわない範囲で、印刷等を施してもよい。印刷方法としては、予め、コロナ処理、プラズマ処理を印刷面に施したECTFE樹脂組成物のシートの表面に、グラビア印刷、フレキソ印刷、オフセット印刷、インクジェット印刷等の、目的と用途の適性にあった印刷方法を選択し、印刷を行う方法が挙げられる。印刷を施すことにより、シートや膜構造物に審美性等を付与することができる。
本実施形態の樹脂組成物を成形して得られたシート及びシートを二次加工した成形体は、高い透明性を実現し、意匠性に優れ、膜構造物、建造物に好適に使用することができる。
構造物としては、前記成形体を用いた、例えば、プール、アスレチック、サッカースタジアム、ベースボールスタジアム、体育館、高速道路、歩道、カーポート、バスターミナル、バス及びタクシー乗り場、空港、駅、倉庫、集会場、展示場、商業施設、観光施設、養殖施設、園芸施設、農業ハウス等の建造物が挙げられる。
また、膜構造物としては、上述の建造物、自動車、船等の外壁、ボディー、屋根、窓等の部分的な箇所に上述のシート(成形体)を使用したものが挙げられる。さらに、本実施形態のECTFE樹脂組成物を成形して得られた成形体を基材として、粘着剤・接着剤を塗布した粘着成形体、いわゆるテープは、膜構造物の補修テープとして好適に使用することができる。
ここで、「二次加工」とは、透明性、色調、光沢性、耐熱性、耐候性、黄変のし難さシート外観等を実用上損なわない範囲で熱板溶着、超音波・高周波ウェルダー溶着、レーザー溶着、熱風溶着、積層、切削・スリット、プレス成形、真空成形等の加工を施すことを示す。
なお、本実施形態の樹脂組成物を成形して得られたシートは、透明性、色調、光沢性、耐熱性、耐候性、黄変のし難さシート外観等を実用上損なわない範囲で、印刷等を施してもよい。印刷方法としては、予め、コロナ処理、プラズマ処理を印刷面に施したECTFE樹脂組成物のシートの表面に、グラビア印刷、フレキソ印刷、オフセット印刷、インクジェット印刷等の、目的と用途の適性にあった印刷方法を選択し、印刷を行う方法が挙げられる。印刷を施すことにより、シートや膜構造物に審美性等を付与することができる。
以下に実施例をもって本発明を更に詳細に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
<原料>
本実施例及び比較例に使用した原料を以下に示す。
・エチレン-クロロトリフルオロエチレン共重合体(ECTFE)
Solvay社製 “Halar ECTFE 700HC”
融点202℃,MFR9.0g/10min
(ASTM D1238 275℃/2.16kg荷重)
本実施例及び比較例に使用した原料を以下に示す。
・エチレン-クロロトリフルオロエチレン共重合体(ECTFE)
Solvay社製 “Halar ECTFE 700HC”
融点202℃,MFR9.0g/10min
(ASTM D1238 275℃/2.16kg荷重)
(酸化防止剤)
ホスファイト系酸化防止剤、フェノール系酸化防止剤は以下の表1に示す市販品を使用した。
ホスファイト系酸化防止剤、フェノール系酸化防止剤は以下の表1に示す市販品を使用した。
以下、表中のホスファイト系酸化防止剤の構造式を示す。
<実施例1>
ECTFE100質量部に対し、ADEKA社製「アデカスタブ2112」(ホスファイト系酸化防止剤)を0.4質量部予備混合した後、(株)東洋精機製作所製「ラボプラストミルマイクロ」を用い、250℃で溶融混合し、厚み0.25mmの溶融樹脂シートを得た。
ECTFE100質量部に対し、ADEKA社製「アデカスタブ2112」(ホスファイト系酸化防止剤)を0.4質量部予備混合した後、(株)東洋精機製作所製「ラボプラストミルマイクロ」を用い、250℃で溶融混合し、厚み0.25mmの溶融樹脂シートを得た。
<実施例2~9、比較例1~7>
実施例1の方法に従い、表3~5に記載の原料添加量に基づいて各実施例比較例のシートを作製した。
実施例1の方法に従い、表3~5に記載の原料添加量に基づいて各実施例比較例のシートを作製した。
<シート評価>
下記に従って、耐候性試験前後の樹脂シートの“透明性”“黄変度”を評価した。耐候性試験前後のシート評価(透明度、黄変度)を、下記表2~表5に示す。
下記に従って、耐候性試験前後の樹脂シートの“透明性”“黄変度”を評価した。耐候性試験前後のシート評価(透明度、黄変度)を、下記表2~表5に示す。
(透明性の評価)
樹脂シートの透明性は、樹脂シートのヘイズ値を測定し、下記表2に記載の基準に従って評価した。具体的には、ヘイズ値を、JIS K7136に従い、日本電色工業(株)製のヘイズMeter“NDH7000”を使用して測定した。次いで、測定したヘイズ値を基づいて、表2に記載の基準に従ってシートの透明性を判定した。なお、ヘイズ値の測定に際しては、樹脂シートから任意の5点から切り出した試料を用い、その算術平均値を採用した。透明性の評価は、後述する耐候性試験を行う前の樹脂シート、及び、行った後の樹脂シートのそれぞれについて行った。
なお、耐候性試験前の樹脂シートに比して耐候性試験後の樹脂シートの透明性が劣っている(ヘイズ値が高くなっている)場合には、シートが白濁しており、「白化」が生じていることを意味する。
樹脂シートの透明性は、樹脂シートのヘイズ値を測定し、下記表2に記載の基準に従って評価した。具体的には、ヘイズ値を、JIS K7136に従い、日本電色工業(株)製のヘイズMeter“NDH7000”を使用して測定した。次いで、測定したヘイズ値を基づいて、表2に記載の基準に従ってシートの透明性を判定した。なお、ヘイズ値の測定に際しては、樹脂シートから任意の5点から切り出した試料を用い、その算術平均値を採用した。透明性の評価は、後述する耐候性試験を行う前の樹脂シート、及び、行った後の樹脂シートのそれぞれについて行った。
なお、耐候性試験前の樹脂シートに比して耐候性試験後の樹脂シートの透明性が劣っている(ヘイズ値が高くなっている)場合には、シートが白濁しており、「白化」が生じていることを意味する。
(黄変度の評価)
樹脂シートの黄変度の評価は、日本電色工業(株)製の測色色差計「ZE6000」を使用し、L*a*b*表色系の内のb*を透過法にて測定した。計測したb*値に基づいて、下記の表2の基準に従って耐候性試験後の樹脂シートの黄変度を判定した。黄変度の評価は、後述する耐候性試験を行う前の樹脂シート、及び、行った後の樹脂シートのそれぞれについて行った。
なお、耐候性試験前の樹脂シートに比して耐候性試験後の樹脂シートの黄変度が劣っている(b*が高くなっている)場合には、シートの「黄変」が生じていることを意味する。
樹脂シートの黄変度の評価は、日本電色工業(株)製の測色色差計「ZE6000」を使用し、L*a*b*表色系の内のb*を透過法にて測定した。計測したb*値に基づいて、下記の表2の基準に従って耐候性試験後の樹脂シートの黄変度を判定した。黄変度の評価は、後述する耐候性試験を行う前の樹脂シート、及び、行った後の樹脂シートのそれぞれについて行った。
なお、耐候性試験前の樹脂シートに比して耐候性試験後の樹脂シートの黄変度が劣っている(b*が高くなっている)場合には、シートの「黄変」が生じていることを意味する。
(耐候性試験)
樹脂シートの耐候性試験は、超促進耐候性試験機(岩崎電気(株)製の「アイスーパーUVテスターSUV-W161」)を用いた。当該測定においては、波長300~400nm、強度150mW/cm2の紫外線を照射しながら、(i)温度63℃、相対湿度50%RHの条件下で紫外線を10時間照射、(ii)シャワー20秒間、(iii)暗黒下で2時間静置、からなるサイクルを996時間繰り返した。
樹脂シートの耐候性試験は、超促進耐候性試験機(岩崎電気(株)製の「アイスーパーUVテスターSUV-W161」)を用いた。当該測定においては、波長300~400nm、強度150mW/cm2の紫外線を照射しながら、(i)温度63℃、相対湿度50%RHの条件下で紫外線を10時間照射、(ii)シャワー20秒間、(iii)暗黒下で2時間静置、からなるサイクルを996時間繰り返した。
実施例1~3の結果から、フェノール性水酸基を有さないホスファイト系酸化防止剤をECTFEに添加することにより、これを用いて形成された樹脂シートにおいて、透明性に優れ、耐候性評価における黄変(b*)の抑制効果が認められた。
また、実施例4~9の結果から、ホスファイト系酸化防止剤に加えてフェノール系酸化防止剤も添加することにより、これを用いて形成された樹脂シートにおいて、透明性に優れ、耐候性評価における白化及び黄変抑制効果が認められた。
また、実施例4~9の結果から、ホスファイト系酸化防止剤に加えてフェノール系酸化防止剤も添加することにより、これを用いて形成された樹脂シートにおいて、透明性に優れ、耐候性評価における白化及び黄変抑制効果が認められた。
比較例1の結果から、分子内にフェノール性水酸基を有するホスファイト系酸化防止剤の添加のみでは、耐候性評価における白化抑制効果は見られるものの、十分な黄変抑制効果が得られないことがわかった。
また、比較例2~6において、フェノール系酸化防止剤を単独でECTFEに添加したところ、十分に白化及び黄変抑制できないことがわかった。比較例7において、酸化防止剤を添加しない場合は、白化及び黄変が生じ透明性が維持できないことがわかった。
また、比較例2~6において、フェノール系酸化防止剤を単独でECTFEに添加したところ、十分に白化及び黄変抑制できないことがわかった。比較例7において、酸化防止剤を添加しない場合は、白化及び黄変が生じ透明性が維持できないことがわかった。
上述のように、本発明の樹脂組成物を用いた樹脂シートは、優れた透明性を発揮しながら、耐候性試験後においても優れた透明性が保持、及び、黄変が抑制されていた。この結果から、本発明の樹脂組成物を用いた樹脂シート(成形体)は、長期間、屋外に曝される膜構造物、建造物用途、又は、粘着成形体においても好適に使用することができる。
2019年3月29日に出願された日本国特許出願2019-067611号の開示は、その全体が参照により本明細書に取り込まれる。
また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (12)
- エチレン-クロロトリフルオロエチレン共重合体(A)と、
分子内にフェノール性水酸基を有さないホスファイト系酸化防止剤(B)と、
を含む樹脂組成物。 - 前記ホスファイト系酸化防止剤(B)は、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5,5]ウンデカン、2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシンから選ばれる少なくとも1種である、請求項1に記載の樹脂組成物。
- さらに、分子内にフェノール性水酸基を有する他のホスファイト系酸化防止剤(B’)を含み、
前記ホスファイト系酸化防止剤(B)の含有量が、組成物中のホスファイト系酸化防止剤の全量100質量部に対して、60質量部以上である請求項1又は請求項2に記載の樹脂組成物。 - 前記フェノール系酸化防止剤(C)は、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]から選ばれる少なくとも1種である、請求項4に記載の樹脂組成物。
- 前記ホスファイト系酸化防止剤(B)の含有量が、組成物中の酸化防止剤の全量100質量部に対して、25~100質量部である請求項1~請求項5のいずれか一項に記載の樹脂組成物。
- 請求項1~請求項6のいずれか一項に記載の樹脂組成物を成形した成形体。
- シート状又はフィルム状である、請求項7に記載の成形体。
- 二次加工が施された請求項7又は請求項8に記載の成形体。
- 請求項7~請求項9のいずれか一項に記載の成形体を用いた膜構造物。
- 請求項7~請求項9のいずれか一項に記載の成形体を用いた建造物。
- 基材として、請求項7~請求項9のいずれか一項に記載の成形体を用いた粘着成形体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20784426.7A EP3950806A4 (en) | 2019-03-29 | 2020-03-25 | RESIN COMPOSITION, MOLDING USING SAID RESIN COMPOSITION AND FILM STRUCTURE, BUILDING STRUCTURE AND ADHESIVE MOLDING USING SAID RESIN COMPOSITION OR SAID MOLDING |
JP2021511528A JP7445647B2 (ja) | 2019-03-29 | 2020-03-25 | 樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体 |
CN202080025774.3A CN113646374A (zh) | 2019-03-29 | 2020-03-25 | 树脂组合物、使用了该树脂组合物的成型体、以及使用了它们的膜结构物、建造物及粘合成型体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019067611 | 2019-03-29 | ||
JP2019-067611 | 2019-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020203528A1 true WO2020203528A1 (ja) | 2020-10-08 |
Family
ID=72668261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/013252 WO2020203528A1 (ja) | 2019-03-29 | 2020-03-25 | 樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3950806A4 (ja) |
JP (1) | JP7445647B2 (ja) |
CN (1) | CN113646374A (ja) |
TW (1) | TWI837335B (ja) |
WO (1) | WO2020203528A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539354A (en) | 1981-07-06 | 1985-09-03 | Allied Corporation | Stabilized ethylene/chlorotrifluoroethylene copolymer composition |
JPS60188447A (ja) | 1984-02-16 | 1985-09-25 | オウシモント・ユーエスエイ・インコーポレーテッド | 安定化したフルオロポリマー組成物 |
US4775709A (en) | 1987-07-06 | 1988-10-04 | Ausimont, U.S.A., Inc. | Thermal stabilizer for thermoplastic polymers |
US5051460A (en) | 1989-09-18 | 1991-09-24 | Ausimont, U.S.A., Inc. | Stabilized halopolymer compositions |
JPH1077318A (ja) | 1996-07-05 | 1998-03-24 | Ausimont Spa | エチレンフッ素含有コポリマー |
JP2001270969A (ja) | 2000-02-15 | 2001-10-02 | Ausimont Spa | 熱可塑性フルオロポリマー |
JP2016518512A (ja) * | 2013-05-21 | 2016-06-23 | ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. | フルオロポリマー組成物 |
WO2017033701A1 (ja) * | 2015-08-26 | 2017-03-02 | デンカ株式会社 | 樹脂フィルムの製造方法 |
WO2018066584A1 (ja) * | 2016-10-05 | 2018-04-12 | デンカ株式会社 | 樹脂組成物及びそれを用いた膜構造物 |
JP2019067611A (ja) | 2017-09-29 | 2019-04-25 | 日本電産株式会社 | プラズマ処理装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI696495B (zh) * | 2016-12-02 | 2020-06-21 | 日商旭化成股份有限公司 | 非水電解質電池用無機粒子及使用其之非水電解質電池 |
CN109054531B (zh) * | 2018-07-12 | 2020-11-20 | 杭州福斯特应用材料股份有限公司 | 一种耐候性透明涂料及其应用 |
CN109277004A (zh) * | 2018-11-01 | 2019-01-29 | 浙江省化工研究院有限公司 | 一种乙烯-三氟氯乙烯共聚物微孔分离膜及其制备方法和应用 |
-
2020
- 2020-03-25 JP JP2021511528A patent/JP7445647B2/ja active Active
- 2020-03-25 WO PCT/JP2020/013252 patent/WO2020203528A1/ja unknown
- 2020-03-25 EP EP20784426.7A patent/EP3950806A4/en active Pending
- 2020-03-25 CN CN202080025774.3A patent/CN113646374A/zh active Pending
- 2020-03-27 TW TW109110647A patent/TWI837335B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539354A (en) | 1981-07-06 | 1985-09-03 | Allied Corporation | Stabilized ethylene/chlorotrifluoroethylene copolymer composition |
JPS60188447A (ja) | 1984-02-16 | 1985-09-25 | オウシモント・ユーエスエイ・インコーポレーテッド | 安定化したフルオロポリマー組成物 |
US4775709A (en) | 1987-07-06 | 1988-10-04 | Ausimont, U.S.A., Inc. | Thermal stabilizer for thermoplastic polymers |
US5051460A (en) | 1989-09-18 | 1991-09-24 | Ausimont, U.S.A., Inc. | Stabilized halopolymer compositions |
JPH1077318A (ja) | 1996-07-05 | 1998-03-24 | Ausimont Spa | エチレンフッ素含有コポリマー |
JP2001270969A (ja) | 2000-02-15 | 2001-10-02 | Ausimont Spa | 熱可塑性フルオロポリマー |
JP2016518512A (ja) * | 2013-05-21 | 2016-06-23 | ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. | フルオロポリマー組成物 |
WO2017033701A1 (ja) * | 2015-08-26 | 2017-03-02 | デンカ株式会社 | 樹脂フィルムの製造方法 |
WO2018066584A1 (ja) * | 2016-10-05 | 2018-04-12 | デンカ株式会社 | 樹脂組成物及びそれを用いた膜構造物 |
JP2019067611A (ja) | 2017-09-29 | 2019-04-25 | 日本電産株式会社 | プラズマ処理装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3950806A4 |
Also Published As
Publication number | Publication date |
---|---|
CN113646374A (zh) | 2021-11-12 |
JP7445647B2 (ja) | 2024-03-07 |
TW202102551A (zh) | 2021-01-16 |
EP3950806A1 (en) | 2022-02-09 |
JPWO2020203528A1 (ja) | 2020-10-08 |
EP3950806A4 (en) | 2022-05-25 |
TWI837335B (zh) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3524640B1 (en) | Resin composition and membrane structure using same | |
US11338558B2 (en) | Multilayer assembly | |
US20130319510A1 (en) | Fluoropolymer-based film for photovoltaic application | |
TWI712637B (zh) | 樹脂薄膜之製造方法 | |
WO2015005120A1 (ja) | 遮熱フィルムの製造方法、遮熱フィルム及び遮熱カーテン | |
JP7445647B2 (ja) | 樹脂組成物、当該樹脂組成物を用いた成形体、並びに、これらを用いた膜構造物、建造物及び粘着成形体 | |
TWI550010B (zh) | 氟系樹脂薄膜及太陽能電池模組 | |
JP2012161282A (ja) | 農業用フィルム | |
KR20150085024A (ko) | 불소계 수지 필름, 그 제조 방법 및 태양전지 모듈 | |
JP2011018851A (ja) | フッ化ビニリデン系樹脂フィルムおよびそれを用いた太陽電池裏面保護シート | |
JP4866834B2 (ja) | 農業用ポリオレフィン系多層フィルム | |
WO2021117531A1 (ja) | 樹脂組成物及び当該組成物を用いた成形体 | |
JP2006273980A (ja) | フッ化ビニリデン系樹脂フィルムおよび製造方法 | |
JP2012070662A (ja) | 農業用フィルム | |
JP2005323599A (ja) | ポリオレフィン系農業用フィルム | |
JP5014746B2 (ja) | 積層フィルムおよび農園芸用施設 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20784426 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021511528 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020784426 Country of ref document: EP Effective date: 20211029 |