WO2020203159A1 - 鋼板及びその製造方法 - Google Patents

鋼板及びその製造方法 Download PDF

Info

Publication number
WO2020203159A1
WO2020203159A1 PCT/JP2020/010938 JP2020010938W WO2020203159A1 WO 2020203159 A1 WO2020203159 A1 WO 2020203159A1 JP 2020010938 W JP2020010938 W JP 2020010938W WO 2020203159 A1 WO2020203159 A1 WO 2020203159A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
temperature
hot
martensite
Prior art date
Application number
PCT/JP2020/010938
Other languages
English (en)
French (fr)
Inventor
健悟 竹田
仁之 二階堂
裕之 川田
卓史 横山
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/434,981 priority Critical patent/US11732321B2/en
Priority to CN202080008848.2A priority patent/CN113286910B/zh
Priority to MX2021010461A priority patent/MX2021010461A/es
Priority to JP2021511358A priority patent/JP7160184B2/ja
Priority to KR1020217025972A priority patent/KR102633525B1/ko
Publication of WO2020203159A1 publication Critical patent/WO2020203159A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a steel sheet and a method for producing the same, and more particularly to a high-strength steel sheet having excellent overhang formability and a method for producing the same.
  • DP steel composite structure steel mainly composed of ferrite and martensite
  • a tensile strength of 550 MPa or more and 1100 MPa or less b. c. c.
  • ⁇ -fiber crystal orientation of (body-centered cubic lattice) in ⁇ -fiber.
  • the accumulation of orientations other than ⁇ -fiber needs to be as small as possible.
  • DP steel achieves high strength by utilizing the martensite structure, this martensite may accumulate in a specific orientation. This is due to the formation of the austenite texture.
  • Patent Documents 1 to 4 Although many inventions related to DP steel and high-strength steel sheets have been disclosed so far, there are few disclosure examples of technologies related to improvement of overhang formability. (See, for example, Patent Documents 1 to 4)
  • Patent Document 1 C: 0.010 to 0.10 wt%, Si, as a high-strength hot-rolled steel sheet with excellent formability, excellent stretch flange formability and fatigue characteristics, and good overhang formability and shape freezing property. : 0.50 to 1.50 wt%, Mn: 0.50 to 2.50 wt%, P: 0.05 wt% or less, S: 0.005 wt% or less, Ti: 0.005 to 0.03 wt% After the steel slab is held in the temperature range of 900 to 1300 ° C, continuous hot rolling is performed so that the rolling reduction at the final stand is less than 20% and the rolling end temperature is 870 to 980 ° C, and 50 to 200 after the rolling is completed.
  • Patent Document 2 as a high-strength cold-rolled steel sheet having a tensile strength (TS) of 440 MPa or more and having a small in-plane anisotropy and excellent press formability, C: 0.030 to 0. 20%, Si: 1.5% or less, Mn: 1.0 to 2.5%, P: 0.005 to 0.1%, S: 0.01% or less, Al: 0.005 to 1.5 % And N: 0.01% or less, the balance is composed of Fe and unavoidable impurities, and the area ratio with respect to the entire steel sheet structure contains a ferrite phase of 85% or more and 99% or less as a matrix phase, and a martensite phase.
  • TS tensile strength
  • the second phase is 1% or more and 15% or less, and the area ratio of the martensite phase to the entire steel sheet structure is 1% or more and 13% or less, and the ODF is formed in the texture of the plate surface at the 1/4 thickness position of the steel sheet.
  • the area ratio of the martensite structure is reduced, and the technique cannot obtain the characteristics of high strength and high ductility, which are the characteristics of DP steel. It can be understood from the disclosed technology that it is necessary to modify the martensite structure in order to improve the overhang formability while maintaining the characteristics of the conventional DP steel.
  • Patent Document 3 as a high-strength hot-dip zinc-plated steel sheet having a TS of 780 MPa or more, an excellent elongation El, and a TS ⁇ EL of 18,000 or more and excellent moldability, C: 0 in mass%. .03 to 0.15%, Si: 0.8 to 2.5%, Mn: 1.0 to 3.0%, P: 0.001 to 0.05%, S: 0.0001 to 0.01 %, Al: 0.001 to 0.1%, N: 0.0005 to 0.01%, Cr: 0.1 to 2.0%, and the balance is Fe and unavoidable impurities.
  • a steel sheet having a microstructure containing a ferrite phase of 50% or more and a martensite phase of 10% or more in terms of area ratio is disclosed.
  • this technology only the technology of applying a plating film and a post-treatment film to the surface of the steel sheet to increase the overhang height is disclosed, and the isotropic property of the shape after molding, which is an important index of overhang formability, is disclosed. No technology has been shown.
  • Patent Document 4 as a high-strength steel plate having a tensile strength of 590 MPa or more and simultaneously improving uniform elongation and hole expandability and having excellent workability, C: 0.04 to 0.10% in mass%. , Mn: 0.5 to 2.6%, Si: 0.8 to 2.0%, and the ratio C / Si of C amount to Si amount is 0.04 or more and less than 0.10. Disclosed is a high-strength steel plate having excellent workability in which the contents of P, S, and N are limited and the metal structure is composed of 90 to 95% ferrite and 5 to 10% tempered martensite by volume. There is.
  • Patent Document 4 disclose techniques relating to high-strength steel sheets, but no study has been made on overhang formability.
  • the present inventors diligently studied a method for solving the above problems, and investigated in detail the change in orientation in order to discriminate the bias of the aggregate structure of martensite.
  • orientations 252
  • the texture of martensite texture is suppressed (randomization of martensite orientation accumulation) and the overhang formability is improved (low difference).
  • the present inventors have difficulty in manufacturing a steel sheet having a small accumulation in the above-mentioned orientations even if the hot-rolling conditions and annealing conditions are simply devised, and the steel sheets are used in so-called integrated processes such as hot-rolling and annealing processes.
  • the present invention was completed by discovering through various studies that it can be manufactured only by achieving optimization.
  • the gist of the present invention is as follows.
  • Total of ferrite and bainite 10.0-90.0%
  • Total of martensite and tempered martensite 5.0-80.0%
  • total of pearlite and retained austenite 0-15.0%
  • the degree of integration of ferrite in the (111) ⁇ 112> orientation is 3.0 or more.
  • a hot rolling step comprising hot rolling the steel pieces, wherein the finishing temperature of the hot rolling is 650 to 950 ° C.
  • It includes a cold rolling step of cold rolling the hot-rolled steel sheet at a reduction rate of 10.0 to 90.0% and an annealing step of annealing the obtained cold-rolled steel sheet in a temperature range of 700 to 900 ° C.
  • the steel sheet according to the embodiment of the present invention is based on mass%.
  • % for a component means mass%.
  • C 0.05 to 0.20%
  • C is an element that inexpensively increases the tensile strength, and is an extremely important factor for controlling the azimuth integration degree of ferrite and bainite, or martensite and tempered martensite. If it is less than 0.05%, the retained austenite cannot be stabilized during hot winding, and the orientational accumulation of martensite cannot be randomized. Therefore, the lower limit is set to 0.05% or more.
  • the C content may be 0.06% or more, 0.07% or more, or 0.08% or more. Further, if the C content exceeds 0.20%, not only the elongation is lowered, but also the azimuth integration degree of ferrite is lowered, so that the overhang formability is deteriorated. Therefore, the upper limit is set to 0.20% or less.
  • the C content may be 0.18% or less, 0.16% or less, or 0.15% or less.
  • Si 0.01 to 1.30%)
  • Si is an element that acts as an antacid and affects the morphology of carbides and retained austenite after heat treatment. Further, in order to achieve both wear resistance and overhang formability, it is effective to reduce the volume fraction of carbides existing in the steel parts and further utilize retained austenite to increase the strength. If it is less than 0.01%, the formation of carbides is not suppressed, a large amount of carbides are present in the steel, and the overhang formability deteriorates. Therefore, the lower limit is set to 0.01% or more.
  • the Si content may be 0.05% or more, 0.10% or more, or 0.30% or more.
  • the upper limit is set to 1.30% or less.
  • the Si content may be 1.20% or less, 1.10% or less, 1.00% or less, or 0.90% or less.
  • Mn is a factor that affects the ferrite transformation of steel and is an effective element for increasing the strength. If it is less than 1.00%, martensitic transformation cannot be promoted in the cooling process in the cold rolled sheet annealing, causing a decrease in strength. Therefore, the lower limit is set to 1.00% or more.
  • the Mn content may be 1.10% or more, 1.30% or more, or 1.50% or more. Further, when the Mn content exceeds 3.00%, ferrite and bainite transformation in cold-rolled sheet annealing is suppressed, which causes a decrease in overhang formability. Therefore, the upper limit is set to 3.00% or less.
  • the Mn content may be 2.80% or less, 2.50% or less, or 2.20% or less.
  • P 0.0001 to 0.0200%
  • P is an element that strongly segregates at ferrite grain boundaries and promotes embrittlement of grain boundaries. The smaller the number, the better. If it is less than 0.0001%, the time required for refining increases in order to achieve high purity, which leads to a significant increase in cost. Therefore, the lower limit is set to 0.0001% or more.
  • the P content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more. Further, when the P content exceeds 0.0200%, the overhang moldability is deteriorated due to the grain boundary embrittlement. Therefore, the upper limit is set to 0.0200% or less.
  • the P content may be 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • S is an element that forms non-metal inclusions such as MnS in steel and causes a decrease in ductility of steel parts, and the smaller the amount, the more preferable. If it is less than 0.0001%, the time required for refining increases in order to achieve high purity, which leads to a significant increase in cost. Therefore, the lower limit is set to 0.0001% or more.
  • the S content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more. Further, when the S content exceeds 0.0200%, cracks are generated starting from non-metal inclusions during cold molding, and the overhang moldability is lowered. Therefore, the upper limit is set to 0.0200% or less.
  • the S content may be 0.0180% or less, 0.0150% or less, or 0.0120% or less.
  • Al 0.001 to 1.000%
  • Al is an element that acts as a deoxidizer for steel and stabilizes ferrite, and is added as needed. If it is less than 0.001%, the addition effect cannot be sufficiently obtained. Therefore, the lower limit is set to 0.001% or more.
  • the Al content may be 0.005% or more, 0.010% or more, or 0.020% or more. Further, when the Al content exceeds 1.000%, the ferrite transformation and the bainite transformation in the cooling process are excessively promoted in the cold rolled sheet annealing, so that the strength of the steel sheet is lowered. Therefore, the upper limit is set to 1.000% or less.
  • the Al content may be 0.950% or less, 0.900% or less, or 0.800% or less.
  • N is an element that forms coarse nitrides in the steel sheet and reduces the workability of the steel sheet. Further, N is an element that causes blow holes during welding. If it is less than 0.0001%, the manufacturing cost will increase significantly. Therefore, the lower limit is set to 0.0001% or more.
  • the N content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more. Further, when the N content exceeds 0.0200%, the overhang moldability is significantly lowered and blow holes are remarkably generated. Therefore, the upper limit is set to 0.0200% or less.
  • the N content may be 0.0180% or less, 0.0160% or less, or 0.0120% or less.
  • the basic composition of the steel sheet according to the embodiment of the present invention is as described above. Further, the steel sheet may contain the following elements, if necessary. The steel sheet may contain the following elements in place of a part of the remaining Fe.
  • Co (Co: 0 to 0.5000%) Co is an element effective for controlling the morphology of carbides and increasing the strength, and is added as needed. If it is less than 0.0001%, the addition effect cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Co content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more. Further, when the Co content exceeds 0.5000%, a large amount of fine Co carbides are precipitated, which may lead to an increase in strength and ductility of the steel material, which may reduce cold workability and overhang formability. Therefore, the upper limit is set to 0.5000% or less.
  • the Co content may be 0.4500% or less, 0.4000% or less, or 0.3000% or less.
  • Ni is a reinforcing element and is effective in improving hardenability. In addition, it may be added because it improves the wettability and promotes the alloying reaction. If it is less than 0.0001%, these effects cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Ni content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more. On the other hand, if the Ni content exceeds 0.5000%, the manufacturability during manufacturing and hot spreading may be adversely affected or the overhang moldability may be lowered. Therefore, the upper limit is set to 0.5000% or less.
  • the Ni content may be 0.4500% or less, 0.4000% or less, or 0.3000% or less.
  • Mo is an element effective for improving the strength of a steel sheet.
  • Mo is an element having an effect of suppressing ferrite transformation that occurs during heat treatment in a continuous annealing facility or a continuous hot dip galvanizing facility. If it is less than 0.0001%, the effect cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Mo content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more. Further, when the Mo content exceeds 0.5000%, the formability, particularly the overhang formability, may deteriorate because the ferrite and bainite transformations are suppressed and the martensitic transformation is promoted in the cold rolled sheet annealing. is there. Therefore, the upper limit is set to 0.5000% or less.
  • the Mo content may be 0.4500% or less, 0.4000% or less, or 0.3000% or less.
  • Cr Cr: 0 to 1.0000%
  • Cr is an element that suppresses pearlite transformation and is effective in increasing the strength of steel, and is added as necessary. If it is less than 0.0001%, the effect of addition cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Cr content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more. Further, when the Cr content exceeds 1.0000%, the stability of austenite is remarkably enhanced, and a large amount of retained austenite is present after annealing the cold-rolled plate, so that the overhang formability may deteriorate. Therefore, the upper limit is set to 1.0000% or less.
  • the Cr content may be 0.9000% or less, 0.8000% or less, or 0.7000% or less.
  • O 0 to 0.0200% Since O forms an oxide and deteriorates processability, it is necessary to suppress the amount of O added. In particular, oxides often exist as inclusions, and when they are present on the punched end face or the cut surface, notch-like scratches and coarse dimples are formed on the end face, so that during overhang molding or strong processing , Invites stress concentration, becomes the starting point of crack formation, and causes significant deterioration of workability. However, if it is less than 0.0001%, it causes an excessively high cost and is economically unfavorable. Therefore, the lower limit is preferably 0.0001% or more.
  • the O content may be 0.0005% or more, 0.0010% or more, or 0.0020% or more.
  • the upper limit is set to 0.0200% or less.
  • the O content may be 0.0180% or less, 0.0150% or less, or 0.0100% or less.
  • Ti is a reinforcing element. It contributes to the increase in the strength of the steel sheet by strengthening the precipitates, strengthening the fine grains by suppressing the growth of ferrite crystal grains, and strengthening the dislocations by suppressing recrystallization. If it is less than 0.0001%, these effects cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Ti content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more.
  • the upper limit is set to 0.5000% or less.
  • the Ti content may be 0.4500% or less, 0.4000% or less, or 0.3000% or less.
  • B is an element that suppresses the formation of ferrite and pearlite in the cooling process from austenite and promotes the formation of a low temperature metamorphic structure such as bainite or martensite. Further, B is an element useful for increasing the strength of steel, and is added as needed. If it is less than 0.0001%, the effect of increasing the strength or improving the wear resistance by addition cannot be sufficiently obtained. Furthermore, identification of less than 0.0001% requires careful analysis and reaches the lower limit of detection depending on the analyzer. Therefore, the lower limit is preferably 0.0001% or more.
  • the B content may be 0.0003% or more, 0.0005% or more, or 0.0010% or more.
  • the upper limit is set to 0.0100% or less.
  • the B content may be 0.0080% or less, 0.0060% or less, or 0.0050% or less.
  • Nb is an element that is effective in controlling the morphology of carbides, and is also an element that is also effective in improving toughness because the structure is refined by its addition. If it is less than 0.0001%, no effect can be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Nb content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more. Further, when the Nb content exceeds 0.5000%, a large number of fine and hard Nb carbides are precipitated, which causes remarkable deterioration of ductility as the strength of the steel material increases, and deteriorates cold workability and overhang formability. There is. Therefore, the upper limit is set to 0.5000% or less.
  • the Nb content may be 0.4500% or less, 0.4000% or less, or 0.3000% or less.
  • V is a reinforcing element. It contributes to the increase in the strength of the steel sheet by strengthening the precipitates, strengthening the fine grains by suppressing the growth of ferrite crystal grains, and strengthening the dislocations by suppressing recrystallization. If it is less than 0.0001%, these effects cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the V content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more. Further, when the V content exceeds 0.5000%, the precipitation of carbonitride increases and the moldability, particularly the overhang moldability, deteriorates. Therefore, the upper limit is set to 0.5000% or less.
  • the V content may be 0.4500% or less, 0.4000% or less, or 0.3000% or less.
  • Cu is an element effective for improving the strength of steel sheets. If it is less than 0.0001%, these effects cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Cu content may be 0.0002% or more, 0.0010% or more, or 0.0100% or more. Further, when the Cu content exceeds 0.5000%, the steel material becomes brittle during hot rolling, and hot rolling becomes impossible. Further, the strength of the steel is remarkably increased, and the overhang formability may be deteriorated. Therefore, the upper limit is set to 0.5000% or less.
  • the Cu content may be 0.4500% or less, 0.4000% or less, or 0.3000% or less.
  • W is an extremely important element because it is effective in increasing the strength of the steel sheet and the precipitates and crystallizations containing W become hydrogen trap sites. If it is less than 0.0001%, these effects cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the W content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the W content exceeds 0.1000%, the processability, particularly the overhang moldability, may decrease. Therefore, the upper limit is set to 0.1000% or less.
  • the W content may be 0.0800% or less, 0.0600% or less, or 0.0500% or less.
  • Ta is an element effective for controlling the morphology of carbides and increasing the strength, and is added as needed. If it is less than 0.0001%, the addition effect cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Ta content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more.
  • the upper limit is set to 0.1000% or less.
  • the Ta content may be 0.0800% or less, 0.0600% or less, or 0.0500% or less.
  • Sn is an element contained in steel when scrap is used as a raw material, and the smaller the amount, the more preferable. If it is less than 0.0001%, the refining cost will increase. Therefore, the lower limit is preferably 0.0001% or more.
  • the Sn content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the Sn content exceeds 0.0500%, the embrittlement of ferrite may cause a decrease in overhang formability. Therefore, the upper limit is set to 0.0500% or less.
  • the Sn content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Sb is an element contained when scrap is used as a steel raw material. Sb is strongly segregated at the grain boundaries, causing embrittlement of the grain boundaries and a decrease in ductility. Therefore, the smaller the amount, the more preferably 0%. If it is less than 0.0001%, the refining cost will increase. Therefore, the lower limit is preferably 0.0001% or more.
  • the Sb content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the Sb content exceeds 0.0500%, the overhang moldability may be deteriorated. Therefore, the upper limit is set to 0.0500% or less.
  • the Sb content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • the lower limit is preferably 0.0001% or more.
  • the As content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the As content exceeds 0.0500%, the overhang moldability is deteriorated. Therefore, the upper limit is set to 0.0500% or less.
  • the As content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Mg is an element whose sulfide morphology can be controlled by adding a small amount, and is added as needed. If it is less than 0.0001%, the effect cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Mg content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the Mg content exceeds 0.0500%, the overhang formability may be lowered due to the formation of coarse inclusions. Therefore, the upper limit is set to 0.0500% or less.
  • the Mg content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Ca (Ca: 0 to 0.0500%)
  • Ca is also effective in controlling the morphology of sulfides. If it is less than 0.0001%, the effect is not sufficient. Therefore, the lower limit is preferably 0.0001% or more.
  • the Ca content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the Ca content exceeds 0.0500%, the processability, particularly the overhang moldability, may deteriorate. Therefore, the upper limit is set to 0.0500% or less.
  • the Ca content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Y is an element whose sulfide morphology can be controlled by adding a small amount, and is added as needed. If it is less than 0.0001%, these effects cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Y content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more.
  • the upper limit is set to 0.0500% or less.
  • the Y content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Zr 0 to 0.0500%
  • Zr is an element whose sulfide morphology can be controlled by adding a small amount, and is added as needed. If it is less than 0.0001%, these effects cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Zr content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the Zr content exceeds 0.0500%, coarse Zr oxide may be formed and the overhang moldability may be lowered. Therefore, the upper limit is set to 0.0500% or less.
  • the Zr content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • La is an element that is effective in controlling the morphology of sulfide by adding a small amount, and is added as needed. If it is less than 0.0001%, the effect cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the La content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more.
  • the upper limit is set to 0.0500% or less.
  • the La content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • Ce is an element whose sulfide morphology can be controlled by adding a small amount, and is added as needed. If it is less than 0.0001%, the effect cannot be obtained. Therefore, the lower limit is preferably 0.0001% or more.
  • the Ce content may be 0.0002% or more, 0.0010% or more, or 0.0050% or more. Further, if the Ce content exceeds 0.0500%, Ce oxide may be formed, which may lead to a decrease in overhang moldability. Therefore, the upper limit is set to 0.0500% or less.
  • the Ce content may be 0.0400% or less, 0.0300% or less, or 0.0200% or less.
  • the balance other than the components described above is composed of Fe and impurities.
  • Impurities are components that are mixed in by various factors in the manufacturing process, including raw materials such as ores and scraps, when steel sheets are industrially manufactured, and are the components that are mixed in with respect to the steel sheets according to the embodiment of the present invention. It includes those that are not intentionally added components (so-called unavoidable impurities).
  • Impurities are elements other than the components described above, and include elements contained in the steel sheet at a level at which the action and effect peculiar to the element do not affect the characteristics of the steel sheet according to the embodiment of the present invention. Is what you do.
  • Total of ferrite and bainite affects the elongation of steel, and the workability increases as the area ratio increases. If it is less than 10.0%, a high degree of control is required in manufacturing, which may lead to a decrease in yield and further a decrease in overhang formability. Therefore, the lower limit is set to 10.0% or more.
  • the total area ratio of ferrite and bainite may be 20.0% or more, 30.0% or more, or 35.0% or more. Further, if it exceeds 90%, the strength may be lowered. Therefore, the upper limit is set to 90.0% or less.
  • the total area ratio of ferrite and bainite may be 85.0% or less, 80.0% or less, or 75.0% or less.
  • Total of martensite and tempered martensite 5.0-80.0%
  • the total area ratio of martensite and tempered martensite affects the strength of steel, and the larger the area ratio, the higher the tensile strength. If it is less than 5.0%, the area ratio of martensite and tempered martensite may be insufficient, and the target tensile strength of 550 MPa or more may not be achieved. Therefore, the lower limit is set to 5.0% or more.
  • the total area ratio of martensite and tempered martensite may be 10.0% or more, 15.0% or more, or 20.0% or more.
  • the upper limit is set to 80.0% or less.
  • the total area ratio of martensite and tempered martensite may be 70.0% or less, 60.0% or less, or 55.0% or less.
  • Total of pearlite and retained austenite 0 to 15.0%
  • the remaining pearlite and retained austenite are tissue factors that deteriorate the local ductility of steel, and the smaller the amount, the more preferable.
  • the total area ratio of pearlite and retained austenite may be 0%, but less than 1.0% may require a high degree of control in production. From the viewpoint of suppressing the decrease in yield, the total area ratio of pearlite and retained austenite may be 1.0% or more.
  • the total area ratio of pearlite and retained austenite may be 2.0% or more, 3.0% or more, or 5.0% or more. Further, if it exceeds 15.0%, the overhang moldability may be deteriorated. Therefore, the upper limit is set to 15.0% or less.
  • the total area ratio of pearlite and retained austenite may be 13.0% or less, 11.0% or more, or 9.0% or more.
  • the degree of integration of ferrite in the (111) ⁇ 112> orientation is a factor that affects the isotropic deformation of steel, that is, the overhang formability, and the larger the degree of integration, the better the overhang formability. If it is less than 3.0, good overhang moldability cannot be obtained. Therefore, the lower limit is set to 3.0 or more. It is preferably 4.0 or more or 5.0 or more.
  • the upper limit of this degree of integration is not particularly limited, but may be 10.0 or less, 8.0 or less, or 7.0 or less.
  • the degree of accumulation of (252) ⁇ 2-11> orientations when martensite and tempered martensite are totaled is a factor that hinders isotropic deformation of steel, that is, affects overhang formability, and this accumulation The smaller the degree, the better the overhang formability. Above 5.0, the overhang formability deteriorates. Therefore, the upper limit is set to 5.0 or less. It is preferably 4.0 or less or 3.0 or less.
  • the lower limit of this degree of integration is not particularly limited, but may be 0.1 or more, 0.2 or more, or 0.3 or more.
  • the plate thickness of the steel plate is a factor that affects the rigidity of the steel member after molding, and the larger the plate thickness, the higher the rigidity of the member. If the plate thickness is less than 0.2 mm, the rigidity is lowered and the overhang formability is lowered due to the influence of unavoidable non-ferrous inclusions existing inside the steel material. Therefore, a plate thickness of 0.2 mm or more is preferable. If the plate thickness exceeds 3.0 mm, the molding load during overhang molding increases, which causes wear of the mold and a decrease in productivity. Therefore, a plate thickness of 3.0 mm or less is preferable.
  • the area ratio of ferrite and baynite is 1/8 centered on the 1/4 position of the plate thickness by the electron channeling contrast image using a field emission scanning electron microscope (FE-SEM: Field Emission-Scanning Electron Microscope). Obtained by observing the range of ⁇ 3/8 thickness.
  • the electron channeling contrast image is a method of detecting the difference in crystal orientation in the crystal grains as the difference in contrast of the image, and in the image, it is determined that the image is ferrite rather than pearlite, bainite, martensite, or retained austenite. Polygonal ferrite is the part of the structure that appears with uniform contrast.
  • Bainite is a collection of lath-shaped crystal grains, and contains no iron-based carbides with a major axis of 20 nm or more inside, or contains iron-based carbides with a major axis of 20 nm or more inside, and the carbides are single. It belongs to a variant, that is, a group of iron-based carbides extending in the same direction.
  • the iron-based carbide group extending in the same direction means that the difference in the elongation direction of the iron-based carbide group is within 5 °.
  • Bainite counts bainite surrounded by grain boundaries with an orientation difference of 15 ° or more as one bainite grain.
  • the total area ratio of ferrite and bainite in each of the eight fields of the electronic channeling contrast image of 35 ⁇ 25 ⁇ m is calculated by the method of image analysis, and the average value is taken as the total area ratio of ferrite and bainite.
  • the tempered martensite is a collection of lath-shaped crystal grains, and contains iron-based carbides having a major axis of 20 nm or more inside, and the carbides form a plurality of variants, that is, a plurality of iron-based carbide groups extending in different directions. It belongs to.
  • retained austenite also exists as a convex portion on the tissue observation surface. Therefore, by subtracting the area ratio of the convex portion obtained in the above procedure by the area ratio of retained austenite measured in the procedure described later, it is possible to correctly measure the total area ratio of martensite and tempered martensite. It becomes.
  • the area ratio of retained austenite can be calculated by measurement using X-rays. That is, the sample is removed from the plate surface to the depth 1/4 position in the plate thickness direction by mechanical polishing and chemical polishing. Then, the diffraction peaks of the bcc phase (200), (211) and the fcc phase (200), (220), and (311) obtained by using MoK ⁇ ray as the characteristic X-ray for the sample after polishing. The tissue fraction of retained austenite is calculated from the integrated intensity ratio of, and this is taken as the area ratio of retained austenite. In addition, pearlite obtains the area ratio from the image taken with the above-mentioned electronic channeling contrast. Pearlite is a structure in which plate-shaped carbides and ferrite are lined up.
  • the azimuth integration degree of ferrite is measured using an EBSD (Electron Backscattering Diffraction) apparatus. Further, the measurement can be performed by either the EBSP (Electron Backscattering Pattern) method or the ECP (Electron Channeling Pattern) method.
  • EBSD Electro Backscattering Diffraction
  • ECP Electro Channeling Pattern
  • the crystal orientation data at the same position as the above-mentioned electron beam channeling contrast is acquired by setting the STEP interval to 0.05 ⁇ m. From the crystal orientation data corresponding to ferrite in the data for eight fields of view acquired in this procedure, the degree of integration of the (111) ⁇ 112> orientation is obtained.
  • the degree of orientational accumulation of martensite and tempered martensite is also determined by EBSD.
  • the crystal orientation data collected for the method for evaluating the orientation integration of ferrite also includes the crystal orientation data of martensite and tempered martensite.
  • the degree of integration of the (252) ⁇ 2-11> orientation is obtained from the crystal orientation data of martensite and tempered martensite.
  • overhang formability is achieved while achieving a high tensile strength and a high strength ductility balance, specifically, a tensile strength of 550 to 1100 MPa and a total elongation of 10.0% or more. It is possible to improve.
  • the tensile strength is preferably 700 MPa or more, more preferably 800 MPa or more.
  • the method for producing a steel sheet according to an embodiment of the present invention is characterized by consistent management of hot rolling and cold rolling and annealing conditions using a material having the above-mentioned component range.
  • the method for producing a steel sheet according to the embodiment of the present invention is a casting step of continuously casting molten steel having the same chemical composition as that described above for the steel sheet to form a steel piece, and the temperature is adjusted to room temperature after the continuous casting.
  • a hot rolling step comprising hot rolling the steel pieces, wherein the finishing temperature of the hot rolling is 650 to 950 ° C.
  • each step will be described in detail.
  • the reduction rate is less than 5%, segregation is not eliminated, causing a decrease in the orientational integration of ferrite and bainite and a decrease in overhang formability.
  • the uniformity of the element-enriched portion in the steel piece for example, increasing the uniformity of the Mn-enriched portion
  • the residual unrecrystallized ferrite in the element-enriched portion is suppressed after cold rolling annealing, and the ferrite (111) is suppressed.
  • the orientations are accumulated on the surface, and the overhanging molded portion can easily spread isotropically.
  • austenite is easily generated in the hot-rolled plate in the holding step after winding, which will be described later.
  • the lower limit of the reduction rate is set to 5% or more, and may be 6% or more, 8% or more, or 10% or more.
  • the upper limit may be 40% or less, and may be 38% or less, 35% or less, or 30% or less.
  • the cast steel pieces are then subjected to a hot rolling process, in which the cast steel pieces are directly or once cooled and then reheated for hot rolling. Can be carried out by.
  • the heating temperature of the steel piece is generally 1100 ° C. or higher, and the upper limit is not particularly specified, but may be, for example, 1250 ° C. or lower.
  • the cast steel pieces may be roughly rolled before the finish rolling, for example, in order to adjust the plate thickness.
  • Such rough rolling is not particularly limited as long as a desired sheet bar size can be secured.
  • the obtained steel pieces or, if necessary, rough-rolled steel pieces are then subjected to finish rolling, and the finishing temperature (finishing temperature of hot rolling) at that time is in the range of 650 to 950 ° C. Be controlled.
  • the finishing temperature of hot rolling is a factor that has an effect on the control of the texture of the old austenite grain size. Below 650 ° C, the rolled texture of austenite develops, leading to the generation of anisotropy of steel properties. Therefore, the lower limit may be 650 ° C or higher, and may be 680 ° C or higher or 700 ° C or higher.
  • the upper limit may be set to 950 ° C or lower and may be 930 ° C or lower or 900 ° C or lower.
  • the obtained hot-rolled steel sheet is wound at a winding temperature of 400 to 700 ° C. in the next winding step.
  • the take-up temperature is an important factor in controlling ferrite and bainite that are transformed from austenite in the structural change of the hot-rolled plate. If the temperature is lower than 400 ° C., austenite existing after winding on the hot-rolled plate cannot be transformed into bainite even if the temperature raising treatment after winding is applied, which will be described later, and the desired hot-rolled structure can be obtained. I can't. In addition, this also deteriorates the overhang formability. Therefore, the lower limit value may be 400 ° C. or higher, and may be 420 ° C.
  • the upper limit may be 700 ° C. or lower and may be 680 ° C. or lower or 650 ° C. or lower.
  • the wound hot-rolled steel sheet is held as it is in the temperature range of the winding start temperature + 20 ° C. to 100 ° C. for 5 to 300 minutes without being cooled to room temperature.
  • the temperature rise and retention at the winding start temperature + 20 ° C. to 100 ° C. are extremely important control factors in the present invention.
  • ferrite or bainite transformation proceeds and carbon is concentrated in the balance austenite. This reaction proceeds even after the hot-rolled plate is wound into a coil, and once the temperature is raised after the ferrite or bainite transformation, the austenite / B. C. C.
  • the uniformity of the element-enriched portion in the steel piece is enhanced by controlling the reduction conditions of the steel piece in the casting process. By combining this with the temperature holding conditions in the holding step, austenite can be more appropriately generated and retained in the hot-rolled plate. Residual austenite stabilized in the hot-rolled state is present even after cold-rolling.
  • the retained austenite caused by the heat treatment on the hot-rolled sheet and the austenite generated in the KS relationship from the ferrite texture during cold-rolled annealing are mixed, and the austenite texture in the cold-rolled sheet is randomized to randomize the final product. It is possible to reduce the degree of integration of the (252) ⁇ 2-11> orientations in martensite.
  • the lower limit may be 5 minutes or more, and may be 15 minutes or more or 30 minutes or more.
  • oxygen is supplied from the surface of the steel strip to the inside to form an internal oxide on the hot-rolled plate.
  • the internal oxide is an oxide along the grain boundaries, and if it remains after cold rolling annealing, it becomes a starting point of cracks and causes deterioration of overhang moldability. Therefore, the upper limit may be set to 300 minutes or less and may be 250 minutes or less or 200 minutes or less.
  • both the retained austenite in the hot-rolled sheet generated in the casting step and the holding step described above and the austenite newly generated by cold-rolling annealing are both after cold-rolling annealing. It will remain. That is, austenites having different orientations remain mixed.
  • the wound hot-rolled steel sheet is unwound and subjected to pickling.
  • pickling the oxide scale on the surface of the hot-rolled steel sheet can be removed, and the chemical conversion treatment property and the plating property of the cold-rolled steel sheet can be improved.
  • Pickling may be performed once or may be divided into a plurality of times.
  • the cold rolling reduction rate affects the recrystallization behavior of ferrite during cold rolling annealing. It also has the effect of rotating the crystal orientation of retained austenite present in the hot-rolled plate by cold rolling and randomizing the crystal orientation of austenite produced by cold-rolled annealing. If it is less than 10.0%, the azimuth integration degree of ferrite decreases and the overhang formability deteriorates. Therefore, the lower limit may be 10.0% or more and 15.0% or more. Further, if it exceeds 90.0%, recrystallization of ferrite becomes easy, but austenite generated in the hot-rolled plate undergoes work-induced transformation, and the degree of orientational integration of martensite and tempered martensite increases. Deformability deteriorates. Therefore, the upper limit may be 90.0% or less and 75.0% or less.
  • the heating rate when the cold-rolled steel sheet passes through a continuous annealing line or a plating line is not particularly limited, but a heating rate of less than 0.5 ° C./sec may significantly impair productivity, and is therefore preferable.
  • the temperature is 0.5 ° C./sec or higher.
  • the heating rate is preferably 100 ° C./sec or less.
  • the annealing temperature is a factor that affects the recrystallization behavior of ferrite. It also affects the formation behavior of austenite and is an extremely important control factor in controlling the strength ductility balance of steel. Below 700 ° C., the amount of austenite produced is small, and undissolved carbides are present even after cold-rolled annealing. In addition, the presence of undissolved carbide promotes the transformation of austenite to pearlite, which leads to a decrease in the martensite structure ratio and an increase in the pearlite structure ratio in the structure after cold rolling annealing. In addition, unrecrystallized ferrite remains, which deteriorates the overhang formability. Therefore, the lower limit may be 700 ° C.
  • the upper limit may be 900 ° C. or lower and 850 ° C. or lower.
  • the steel sheet is subjected to a continuous annealing line and annealed by heating to an annealing temperature.
  • the holding time is preferably 10 to 600 seconds. If the holding time is less than 10 seconds, the fraction of austenite at the annealing temperature is insufficient, or the carbides existing before annealing are insufficiently dissolved, resulting in a predetermined structure and properties. It may not be obtained. Even if the holding time exceeds 600 seconds, there is no problem in terms of characteristics, but since the line length of the equipment becomes long, about 600 seconds is a practical upper limit.
  • the lower limit of the average cooling rate is not particularly limited, but may be, for example, 2.5 ° C./sec.
  • the reason why the lower limit of the average cooling rate is set to 2.5 ° C./sec is to prevent ferrite transformation from occurring in the base steel sheet and softening of the base steel sheet. If the average cooling rate is slower than 2.5 ° C / sec, the strength may decrease.
  • cooling rate is not limited. At temperatures below 550 ° C., a low temperature transformation structure is obtained and therefore the cooling rate is not limited. Cooling at a rate faster than 100.0 ° C./sec causes a low-temperature transformation structure on the surface layer, which causes variations in hardness. Therefore, cooling is preferably performed at 100.0 ° C./sec or less. More preferably, it is 80.0 ° C./sec or less. More preferably, it is 60.0 ° C./sec or less.
  • the above cooling is stopped at a temperature of 25 ° C to 550 ° C (cooling stop temperature), and subsequently, when the cooling stop temperature is less than the plating bath temperature of -40 ° C, the temperature range is 350 ° C to 550 ° C. It may be reheated and retained.
  • martensite is formed from untransformed austenite during cooling. After that, by reheating, martensite is tempered, carbide precipitation and dislocation recovery / rearrangement occur in the hard phase, and hydrogen brittleness is improved.
  • the lower limit of the cooling stop temperature is set to 25 ° C. because excessive cooling not only requires a large capital investment but also saturates the effect.
  • the steel sheet may be retained in a temperature range of 350 to 550 ° C. after reheating and before immersion in the plating bath.
  • the retention in this temperature range not only contributes to tempering of martensite, but also eliminates temperature unevenness in the width direction of the plate and improves the appearance after plating.
  • the cooling stop temperature is 350 ° C. to 550 ° C., retention may be performed without reheating.
  • the residence time is 10 seconds or more and 600 seconds or less in order to obtain the effect.
  • a cold-rolled sheet or a steel sheet obtained by plating a cold-rolled sheet is reheated after being cooled to room temperature or in the middle of cooling to room temperature (however, below the martensite transformation start temperature (Ms)). May be started and held in a temperature range of 150 ° C. or higher and 400 ° C. or lower for 2 seconds or longer.
  • Ms martensite transformation start temperature
  • the hydrogen brittleness can be improved by tempering the martensite generated during cooling after reheating to obtain tempered martensite.
  • the holding temperature is less than 150 ° C.
  • tempering when tempering is performed, it is preferable to hold the tempering in a temperature range of 150 ° C. or higher and 400 ° C. or lower for 2 seconds or longer. Tempering may be carried out in a continuous annealing facility, or may be carried out offline after continuous annealing in a separate facility. At this time, the tempering time differs depending on the tempering temperature. That is, the lower the temperature, the longer the time, and the higher the temperature, the shorter the time.
  • the cold-rolled steel sheet during or after the annealing step is hot-dip galvanized by heating or cooling it to (galvanizing bath temperature -40) ° C to (zinc plating bath temperature +50) ° C, if necessary. You may.
  • the hot-dip galvanizing step forms a hot-dip galvanizing layer on at least one surface, preferably both surfaces, of the cold-rolled steel sheet. In this case, the corrosion resistance of the cold-rolled steel sheet is improved, which is preferable. Even if hot-dip galvanizing is applied, the hydrogen brittleness resistance of the cold-rolled steel sheet can be sufficiently maintained.
  • the plating treatment is performed by the Zenzimer method, in which "after degreasing and pickling, heating in a non-oxidizing atmosphere, annealing in a reducing atmosphere containing H 2 and N 2 , then cooling to near the plating bath temperature and immersing in a plating bath".
  • An all-reduction furnace method that "adjusts the atmosphere at the time of annealing, first oxidizes the surface of the steel sheet, then reduces it to clean it before plating, and then immerse it in the plating bath", or "the steel sheet There is a flux method such as "after degreasing and pickling, flaxing with ammonium chloride or the like and immersing in a plating bath", but the effect of the present invention can be exhibited regardless of the conditions.
  • the plating bath temperature is preferably 450 to 490 ° C. If the plating bath temperature is less than 450 ° C., the viscosity of the plating bath becomes excessively high, it becomes difficult to control the thickness of the plating layer, and the appearance of the hot-dip galvanized steel sheet may be impaired. On the other hand, if the plating bath temperature exceeds 490 ° C., a large amount of fume is generated, which may make safe plating operation difficult.
  • the plating bath temperature is more preferably 455 ° C. or higher, and more preferably 480 ° C. or lower.
  • composition of the plating bath is preferably Zn as the main component, and the effective Al amount (value obtained by subtracting the total Fe amount from the total Al amount in the plating bath) is 0.050 to 0.250% by mass. If the amount of effective Al in the plating bath is less than 0.050% by mass, Fe may penetrate into the plating layer excessively and the plating adhesion may decrease. On the other hand, when the effective Al amount in the plating bath exceeds 0.250% by mass, an Al-based oxide that inhibits the movement of Fe atoms and Zn atoms is generated at the boundary between the steel sheet and the plating layer, and the plating adhesion is improved. It may decrease.
  • the amount of effective Al in the plating bath is more preferably 0.065% by mass or more, and more preferably 0.180% by mass or less.
  • the plating bath dipping plate temperature (the temperature of the steel plate when immersed in the hot dip galvanizing bath) is from a temperature 40 ° C lower than the hot dip galvanizing bath temperature (hot dip galvanizing bath temperature -40 ° C) to 50 ° C lower than the hot dip galvanizing bath temperature.
  • a temperature range up to a high temperature is preferable. If the temperature of the hot-dip galvanizing plate is lower than the hot-dip galvanizing bath temperature of ⁇ 40 ° C., the heat removed during the dipping in the plating bath is large, and a part of the hot-dip zinc may solidify, which is not desirable.
  • the plate temperature before immersion is lower than the hot-dip galvanizing bath temperature of -40 ° C, further heating is performed before immersion in the plating bath by any method to control the plate temperature to -40 ° C or higher. It may be immersed in a plating bath. Further, when the temperature of the plating bath dipping plate exceeds the hot dip galvanizing bath temperature + 50 ° C., an operational problem is induced due to the rise in the plating bath temperature.
  • the base steel sheet may be plated with one or more of Ni, Cu, Co, and Fe before annealing in the continuous hot-dip galvanizing line.
  • Hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets is subjected to upper layer plating and various treatments such as chromate treatment, phosphate treatment, and lubricity improvement. It is also possible to perform treatment, weldability improvement treatment and the like.
  • skin pass rolling may be performed for the purpose of improving ductility by straightening the shape of the steel sheet and introducing movable dislocations.
  • the rolling reduction of the skin pass after the heat treatment is preferably in the range of 0.1 to 1.5%. If it is less than 0.1%, the effect is small and control is difficult. Therefore, 0.1% is set as the lower limit. If it exceeds 1.5%, the productivity will drop significantly, so the upper limit is 1.5%.
  • the skin path may be done inline or offline.
  • the skin pass of the desired reduction rate may be performed at one time, or may be performed in several times.
  • the steel sheet according to the present invention can be obtained.
  • the mode of increasing the uniformity of the densed portion of the microsegregation of the steel piece by setting the reduction ratio in the casting process to 5% or more has been described.
  • the temperature of the steel piece in the casting process it is also possible to increase the uniformity of the concentrated part of the microsegregation.
  • the present invention is not limited to this one-condition example.
  • the present invention makes it possible to adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • Example 1 Steels having the chemical compositions shown in Table 1 are melted and steel pieces are continuously cast, and 6% reduction is applied at 800 ° C or higher and lower than 1200 ° C between the time of continuous casting and the time of cooling to room temperature for microsegregation. A steel piece with improved uniformity of the concentrated portion (reduced concentration difference of the element concentrated portion) was produced. This steel piece was inserted into a furnace heated to 1220 ° C., subjected to a homogenization treatment of holding for 60 minutes, then taken out into the atmosphere and hot-rolled to obtain a steel sheet having a plate thickness of 2.8 mm.
  • the end temperature (finishing temperature) of finish rolling in hot rolling is 920 ° C., and 1.5 seconds after the completion of finish rolling, cooling is applied by water cooling, and the winding temperature is 610 ° C. at a rate of 28 ° C./sec.
  • the steel sheet was subjected to a double heat treatment, which was cooled to 660 ° C. and held at 660 ° C. for 1 hour. Subsequently, the oxide scale of this hot-rolled steel sheet was removed by pickling and cold-rolled with a reduction ratio of 50.0% to finish the sheet thickness to 1.4 mm. Further, the cold-rolled steel sheet was heated to 790 ° C. at a rate of 8.0 ° C./sec, held at 790 ° C.
  • Table 2 shows the evaluation results of the characteristics of the steel sheet subjected to the above processing heat treatment. The balance other than the components shown in Table 1 is Fe and impurities.
  • the chemical composition of the sample collected from the produced steel sheet was the same as that of the steel shown in Table 1.
  • the tensile test conforms to JIS Z 2241 (2011), and the JIS No. 5 test piece is collected from the direction in which the longitudinal direction of the test piece is parallel to the rolling perpendicular direction of the steel strip, and the tensile strength (TS) and total elongation (TS) and total elongation ( El) was measured.
  • the overhang height of the surface is measured along the circumferential shape with a non-contact displacement meter using a laser or LED, and if the difference between the maximum overhang height and the minimum overhang height is 3 mm or less, it is passed ( ⁇ ). When the height difference exceeded 3 mm, it was rejected (x).
  • Example S-1 since the C content of Example S-1 was low, the orientational accumulation of martensite could not be randomized, and the orientations of martensite and tempered martensite (252) ⁇ 2-11> The degree of integration was greater than 5.0. As a result, the overhang formability was lowered. Since the C content of Example T-1 was high, the azimuth integration degree of ferrite was lowered, so that the overhang formability was lowered. Since Example U-1 had a high Si content, the tensile strength increased, embrittlement occurred, and the overhang formability decreased. Example V-1 had a low Mn content, so that the tensile strength decreased.
  • Example W-1 Since the Mn content of Example W-1 was high, the ferrite and bainite transformations were suppressed, and the overhang formability was lowered. Since the P content of Example X-1 was high, the steel sheet became brittle and the overhang formability deteriorated.
  • Example Y-1 had a high S content, so that cracks occurred during cold molding and the overhang moldability was lowered. Since the Al content of Example Z-1 was high, the ferrite transformation and the bainite transformation were excessively promoted, and the tensile strength decreased.
  • Example AA-1 had a high N content, so that coarse nitrides were formed in the steel sheet, and the overhang formability was lowered.
  • Example AB-1 had a high Co content, so that a large amount of fine Co carbides were precipitated, resulting in a decrease in overhang moldability.
  • Example AC-1 had a high Ni content, so that the overhang formability was lowered.
  • Example AD-1 had a high Mo content, so that martensitic transformation was promoted and the overhang formability was lowered. Since the Cr content of Example AE-1 was high, a large amount of retained austenite was generated, and the overhang formability was lowered.
  • Example AF-1 had a high O content, so oxides were formed and the overhang moldability was lowered.
  • Example AG-1 had a high Ti content, so that the precipitation of carbonitrides increased and the overhang formability deteriorated.
  • Example AH-1 had a high B content, so that coarse B oxide was formed in the steel, and the overhang formability was lowered.
  • Example AI-1 had a high Nb content, so that a large amount of Nb carbides were precipitated and the overhang moldability was lowered.
  • Example AJ-1 had a high V content, so that the precipitation of carbonitrides increased and the overhang formability deteriorated.
  • Example AK-1 had a high Cu content, so that the tensile strength became too high, and the overhang formability decreased in connection with it.
  • Example AL-1 had a high W content, so that the overhang moldability was lowered.
  • AM-1 had a high Ta content, a large number of fine Ta carbides were precipitated, and the overhang moldability was lowered.
  • Example AN-1 had a high Sn content, so that the embrittlement of ferrite reduced the overhang formability.
  • Examples AO-1 and AP-1 had high Sb and As contents, respectively, so that the overhang moldability was lowered due to grain boundary segregation. Since the Mg content of Example AQ-1 was high, the overhang formability was lowered due to the formation of coarse inclusions.
  • Example AR-1 had a high Ca content, so that the overhang moldability was lowered.
  • Examples AS-1 to AV-1 had high contents of Y, Zr, La and Ce, respectively, so that coarse oxides were generated and the overhang moldability was
  • Example 2 Further, in order to investigate the influence of the manufacturing conditions, the steel types A to R in which the excellent properties were recognized in Table 2 were subjected to the processing heat treatment under the manufacturing conditions shown in Table 3 to heat the plate thickness to 2.3 mm.
  • Rolled steel sheets were prepared and their characteristics after cold annealing were evaluated.
  • the symbols GI and GA of the plating treatment indicate the method of the zinc plating treatment
  • GI is a steel sheet in which the steel sheet is immersed in a hot-dip galvanizing bath at 460 ° C. to give a zinc plating layer on the surface of the steel sheet.
  • GA is a steel sheet in which an alloy layer of iron and zinc is provided on the surface of the steel sheet by immersing the steel sheet in a hot-dip galvanizing bath and then raising the temperature of the steel sheet to 485 ° C.
  • a tempering process is performed in which the steel sheet once cooled to 150 ° C. is reheated and held for 2 to 120 seconds before the steel sheet is cooled to room temperature after being held at each residence temperature. It was.
  • the example in which the tempering time is 3600 to 33000 seconds is an example in which the wound coil is tempered by another annealing device (box annealing furnace) after cooling to room temperature.
  • box annealing furnace another annealing device
  • Example D-2 the rolling reduction rate during cold rolling was high, so that the degree of accumulation of the (252) ⁇ 2-11> orientations of martensite and tempered martensite was high, and as a result, the tension was increased.
  • the moldability was reduced.
  • Example E-2 since the rolling reduction during cold rolling was low, the degree of integration of ferrite in the (111) ⁇ 112> orientation was low, and as a result, overhang formability was lowered.
  • Example F-2 the reduction in the casting process was too high, so that the degree of integration of the ferrite (111) ⁇ 112> orientation after annealing the cold-rolled plate was low, and as a result, the overhang formability was lowered.
  • Example L-2 since the holding time at a predetermined temperature after winding was short, the degree of accumulation of the (252) ⁇ 2-11> orientations of martensite and tempered martensite could not be reduced, resulting in tension. The moldability was reduced.
  • Example Q-2 since the annealing temperature was high, the degree of integration of the ferrite (111) ⁇ 112> orientation was low, and as a result, the overhang formability was lowered.
  • Example R-2 since the finishing temperature of hot rolling was low, the rolled texture of austenite developed and caused anisotropy of steel material properties, resulting in (252) ⁇ 2-11 in the final product martensite. > The degree of integration of orientation could not be reduced, and the overhang formability was reduced.
  • Example P-3 since the finishing temperature of hot rolling was high, abnormal grain growth of austenite occurred, and the texture could not be isotropic.
  • Example R-3 since the winding temperature was high, the pearlite transformation proceeded in the temperature raising process after winding, and the desired hot-rolled structure could not be obtained. As a result, (252) ⁇ 2- in the final product martensite. 11> The degree of integration of orientations increased, and the overhang formability decreased.
  • Example C-4 since the holding time at a predetermined temperature after winding was long, internal oxides were formed on the hot-rolled plate, and cracks were generated on the surface of the steel sheet in the subsequent treatment. Therefore, no tissue analysis or mechanical property evaluation was performed.
  • Example E-4 since the winding temperature was low, the desired hot-rolled structure could not be obtained even in the temperature raising process after winding, and as a result, the orientation of (252) ⁇ 2-11> in the final product martensite The degree of integration increased and the overhang formability decreased.
  • Example I-4 since the annealing temperature was low, the amount of austenite produced was small, the martensite structure ratio decreased in the structure after cold rolling annealing, and unrecrystallized ferrite remained, resulting in tensile strength and tension. The moldability was reduced.
  • Example O-4 since the reduction in the casting process was low, the degree of integration of ferrite (111) ⁇ 112> orientation was low, and the degree of integration of martensite and tempered martensite in (252) ⁇ 2-11> orientation was high. As a result, the overhang formability was lowered.
  • rolling is applied at a predetermined reduction rate, especially in the casting process, plus hot rolling finish temperature, take-up, cold rolling and annealing are adequately applied.
  • a steel sheet having high strength and excellent overhang formability could be obtained.
  • FIG. 1 shows the degree of integration of ferrite (111) ⁇ 112> orientations and the accumulation of martensite and tempered martensite (252) ⁇ 2-11> orientations on the overhang formability of DP steel in Examples 1 and 2. It is a figure which shows the influence of degree. As is clear from FIG. 1, the degree of integration of the (111) ⁇ 112> orientation of ferrite is 3.0 or more, and the degree of integration of the (252) ⁇ 2-11> orientation of martensite and tempered martensite is 5. It can be seen that a steel sheet having excellent overhang formability can be obtained by controlling it to 0 or less.

Abstract

高強度でかつ張出成形性に優れる鋼板及びその製造方法を提供する。所定の化学組成及び組織を有し、フェライトの(111)<112>方位の集積度が3.0以上であり、マルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度が5.0以下である鋼板が提供される。所定の化学組成を有する溶鋼を連続鋳造し、連続鋳造後から室温に冷却するまでの間に800℃以上1200℃未満において5~40%の圧下を施す工程、熱間圧延の仕上げ温度が650~950℃である熱間圧延工程、熱延鋼板を400~700℃の巻取り温度で巻き取る工程、熱延鋼板を巻取り開始温度+20℃~100℃に5~300分間保持する工程、熱延鋼板を10.0~90.0%の圧下率で冷間圧延する工程、及び冷延鋼板を700~900℃で焼鈍する工程を含む鋼板の製造方法がさらに提供される。

Description

鋼板及びその製造方法
 本発明は、鋼板及びその製造方法に関し、より詳しくは張出成形性に優れる高強度鋼板及びその製造方法に関するものである。
 引張強度が550MPa以上かつ1100MPa以下のDP鋼(フェライトとマルテンサイトを主体とする複合組織鋼)の張出成形性を向上させるためには、b.c.c.(体心立方格子)の結晶方位をγ-fibreに集積させることが望ましい。さらに、γ-fibre以外への方位の集積は可能な限り小さくする必要がある。DP鋼ではマルテンサイト組織の活用により高強度を達成するものの、このマルテンサイトが特定の方位に集積することがある。これは、オーステナイトの集合組織の形成に原因があり、具体的にはCopper方位やBrass方位と呼ばれる方位にオーステナイトの集合組織が形成することで、オーステナイトを冷却した時に生成するマルテンサイトにも集合組織が生じるようになる。このマルテンサイトの集合組織の情報は、ODF(結晶方位分布関数)(φ2=45°)でも表れるものの、γ-fibre上にあり、母相フェライトとの集合組織の差を認識することは困難である。
 これまで、DP鋼や高強度鋼板に関する数多くの発明が開示されたものの、その中で張出成形性の改善に関する技術の開示例は少ない。(例えば、特許文献1~4、参照)
 特許文献1では、伸びフランジ成形性および疲労特性に優れ、また張出し成形性、形状凍結性も良好な、高成形性の高張力熱延鋼板として、C:0.010~0.10wt%、Si:0.50~1.50wt%、Mn:0.50~2.50wt%、P:0.05wt%以下、S:0.005wt%以下、Ti:0.005~0.03wt%を含有する鋼スラブを、900~1300℃の温度域に保定した後、最終スタンドにおける圧下率を20%未満、かつ圧延終了温度を870~980℃とする連続熱間圧延を行い、圧延終了後50~200℃/secの冷却速度で冷却して、300~650℃の温度範囲でコイルに巻き取ることにより、体積率70~97%のフェライト相と、残部はベイナイト相を主体とする低温変態相からなる組織とし、r値の面内異方性Δrを0.2以下とする技術が開示されている。なお、高強度化に有益なマルテンサイト組織を鋼組織に含む場合において、成形性を担保する技術は何ら示されていない。
 特許文献2では、伸び面内異方性が小さい、優れたプレス成形性を有する引張強さ(TS):440MPa以上の高強度冷延鋼板として、質量%で、C:0.030~0.20%、Si:1.5%以下、Mn:1.0~2.5%、P:0.005~0.1%、S:0.01%以下、Al:0.005~1.5%およびN:0.01%以下を含有し、残部はFeおよび不可避的不純物の組成にし、鋼板組織全体に対する面積率で、母相としてフェライト相を85%以上99%以下、マルテンサイト相を含む第2相を1%以上15%以下、かつ該マルテンサイト相の鋼板組織全体に対する面積率:1%以上13%以下とし、さらに鋼板の1/4板厚位置における板面の集合組織において、ODF(結晶方位分布関数)で表されるαファイバーのうちΦ=25~35°の範囲での平均結晶方位密度Iを2.0以上4.0以下とする技術が開示されている。なお、面内異方性を小さくするために、マルテンサイト組織の面積率を小さくしており、当該技術ではDP鋼の特徴である高強度かつ高延性の特性を得ることができない。従来のDP鋼の特性を維持しつつ、張出成形性を高めるためには、マルテンサイト組織の改質が必要であることを、当該開示技術からも理解できる。
 特許文献3では、780MPa以上のTSを有し、かつ優れた伸びElを有し、TS×ELが18000以上である成形性に優れた高強度溶融亜鉛めっき鋼板として、質量%で、C:0.03~0.15%、Si:0.8~2.5%、Mn:1.0~3.0%、P:0.001~0.05%、S:0.0001~0.01%、Al:0.001~0.1%、N:0.0005~0.01%、Cr:0.1~2.0%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ、面積率で、50%以上のフェライト相と10%以上のマルテンサイト相を含むミクロ組織を有する鋼板が開示されている。なお、当該技術では鋼板表面にめっき皮膜と後処理皮膜を与えて、張出高さを高める技術のみ開示されており、張出し成形性の重要な指標である成形後の形状の等方性については何ら技術が示されていない。
 特許文献4では、590MPa以上の引張強度を有し、均一伸びと穴広げ性とを同時に向上させた、加工性に優れる高強度鋼板として、質量%で、C:0.04~0.10%、Mn:0.5~2.6%、Si:0.8~2.0%を含有し、C量とSi量の比C/Siを0.04以上、0.10未満とし、Al、P、S、Nの含有量を制限し、金属組織が、体積率で、90~95%のフェライトと5~10%の焼戻しマルテンサイトとからなる加工性に優れた高強度鋼板が開示されている。なお、当該開示技術は加工性を高めるためにマルテンサイト組織に焼き戻しを与え、かつ、焼き戻しマルテンサイトの面積率を低減する手段に過ぎず、それゆえ特許文献4では、張出成形性向上の観点では依然として改善の余地があった。
 尚、上記以外にも、例えば特許文献5~7に、高強度鋼板に関する技術が開示されているが、張出成形性について何ら検討がなされていない。
特開2000-297349号公報 特開2009-132981号公報 特開2010-236027号公報 特開2011-032543号公報 特開2016-130357号公報 特開2016-130355号公報 特開2015-193897号公報
 本発明は、上記実情に鑑み、高強度でかつ張出成形性に優れる鋼板及びその製造方法を提供することを課題とするものである。
 本発明者らは、上記課題を解決する手法について鋭意研究し、マルテンサイトの集合組織の偏りを判別するため、方位の変化を詳しく調べた。その結果、(252)<2-11>という方位の集積を小さくすることで、マルテンサイトの集合組織の抑制(マルテンサイトの方位集積度のランダム化)、並びに張出成形性の向上(低異方性化)が可能になることを明らかにした。この方位はCopper方位とBrass方位のオーステナイトがマルテンサイトに変態した後に現れる方位であり、従来のODF(φ2=45°)ではこの方位を視認することはできないことも知見した。
 また、本発明者らは、上記方位の集積が小さい鋼板は、単に熱延条件や焼鈍条件などを単一にて工夫しても製造困難であり、熱延・焼鈍工程などのいわゆる一貫工程にて最適化を達成することでしか製造できないことも、種々の研究を積み重ねることで知見し、本発明を完成した。
 本発明の要旨は、次の通りである。
 (1)質量%で、
 C:0.05~0.20%、
 Si:0.01~1.30%、
 Mn:1.00~3.00%、
 P:0.0001~0.0200%、
 S:0.0001~0.0200%、
 Al:0.001~1.000%、
 N:0.0001~0.0200%、
 Co:0~0.5000%、
 Ni:0~0.5000%、
 Mo:0~0.5000%、
 Cr:0~1.0000%、
 O:0~0.0200%、
 Ti:0~0.5000%、
 B:0~0.0100%、
 Nb:0~0.5000%、
 V:0~0.5000%、
 Cu:0~0.5000%、
 W:0~0.1000%、
 Ta:0~0.1000%、
 Sn:0~0.0500%、
 Sb:0~0.0500%、
 As:0~0.0500%、
 Mg:0~0.0500%、
 Ca:0~0.0500%、
 Y:0~0.0500%、
 Zr:0~0.0500%、
 La:0~0.0500%、及び
 Ce:0~0.0500%
を含有し、残部がFe及び不純物からなる化学組成を有し、
 面積率で、
 フェライト及びベイナイトの合計:10.0~90.0%、
 マルテンサイト及び焼戻しマルテンサイトの合計:5.0~80.0%、並びに
 パーライト及び残留オーステナイトの合計:0~15.0%
を含有し、
 フェライトの(111)<112>方位の集積度が3.0以上であり、
 マルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度が5.0以下であることを特徴とする、鋼板。
 (2)Co:0.0001~0.5000%、
 Ni:0.0001~0.5000%、
 Mo:0.0001~0.5000%、
 Cr:0.0001~1.0000%、
 O:0.0001~0.0200%、
 Ti:0.0001~0.5000%、
 B:0.0001~0.0100%、
 Nb:0.0001~0.5000%、
 V:0.0001~0.5000%、
 Cu:0.0001~0.5000%、
 W:0.0001~0.1000%、
 Ta:0.0001~0.1000%、
 Sn:0.0001~0.0500%、
 Sb:0.0001~0.0500%、
 As:0.0001~0.0500%、
 Mg:0.0001~0.0500%、
 Ca:0.0001~0.0500%、
 Y:0.0001~0.0500%、
 Zr:0.0001~0.0500%、
 La:0.0001~0.0500%、及び
 Ce:0.0001~0.0500%
の1種又は2種以上を含有することを特徴とする、上記(1)に記載の鋼板。
 (3)上記(1)又は(2)に記載の化学組成を有する溶鋼を連続鋳造して鋼片を形成する鋳造工程であって、連続鋳造後から室温に冷却するまでの間に800℃以上1200℃未満において5~40%の圧下を施す鋳造工程、
 前記鋼片を熱間圧延することを含み、前記熱間圧延の仕上げ温度が650~950℃である熱間圧延工程、
 得られた熱延鋼板を400~700℃の巻取り温度で巻き取る工程、
 巻き取った熱延鋼板を室温まで冷却せずにそのまま巻取り開始温度+20℃~100℃の温度域に5~300分間保持する工程、
 前記熱延鋼板を10.0~90.0%の圧下率で冷間圧延する冷間圧延工程、及び
 得られた冷延鋼板を700~900℃の温度範囲で焼鈍する焼鈍工程
を含むことを特徴とする、鋼板の製造方法。
 本発明によれば、高強度でかつ張出成形性に優れる鋼板及びその製造方法を提供できる。
例1及び例2におけるDP鋼の張出成形性に与えるフェライトの(111)<112>方位の集積度とマルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度の影響を示す図である。
 以下、本発明の実施形態について説明する。なお、これらの説明は、本発明の実施形態の単なる例示を意図するものであって、本発明は以下の実施形態に限定されない。
<鋼板>
 本発明の実施形態に係る鋼板は、質量%で、
 C:0.05~0.20%、
 Si:0.01~1.30%、
 Mn:1.00~3.00%、
 P:0.0001~0.0200%、
 S:0.0001~0.0200%、
 Al:0.001~1.000%、
 N:0.0001~0.0200%、
 Co:0~0.5000%、
 Ni:0~0.5000%、
 Mo:0~0.5000%、
 Cr:0~1.0000%、
 O:0~0.0200%、
 Ti:0~0.5000%、
 B:0~0.0100%、
 Nb:0~0.5000%、
 V:0~0.5000%、
 Cu:0~0.5000%、
 W:0~0.1000%、
 Ta:0~0.1000%、
 Sn:0~0.0500%、
 Sb:0~0.0500%、
 As:0~0.0500%、
 Mg:0~0.0500%、
 Ca:0~0.0500%、
 Y:0~0.0500%、
 Zr:0~0.0500%、
 La:0~0.0500%、及び
 Ce:0~0.0500%
を含有し、残部がFe及び不純物からなる化学組成を有し、
 面積率で、
 フェライト及びベイナイトの合計:10.0~90.0%、
 マルテンサイト及び焼戻しマルテンサイトの合計:5.0~80.0%、並びに
 パーライト及び残留オーステナイトの合計:0~15.0%
を含有し、
 フェライトの(111)<112>方位の集積度が3.0以上であり、
 マルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度が5.0以下であることを特徴としている。
 まず、本発明の実施形態に係る鋼板の化学成分を限定した理由について説明する。ここで成分についての「%」は質量%を意味する。
(C:0.05~0.20%)
 Cは、安価に引張強度を増加させる元素であり、フェライト及びベイナイト、あるいはマルテンサイト及び焼き戻しマルテンサイトの方位集積度を制御するために極めて重要な因子である。0.05%未満では、熱延巻取り時に残留オーステナイトを安定化させることができず、マルテンサイトの方位集積度をランダム化することができない。このため下限値を0.05%以上とする。C含有量は0.06%以上、0.07%以上又は0.08%以上であってもよい。また、C含有量が0.20%超では、伸びの低下を招くだけでなく、フェライトの方位集積度が低下するため、張出成形性が劣化する。このため上限値を0.20%以下とする。C含有量は0.18%以下、0.16%以下又は0.15%以下であってもよい。
(Si:0.01~1.30%)
 Siは、脱酸剤として作用し、炭化物及び、熱処理後の残留オーステナイトの形態に影響を及ぼす元素である。また、耐摩耗性と張出成形性の両立には、鋼部品中に存在する炭化物の体積率を低減し、更に残留オーステナイトを活用して、高強度化を図ることが有効である。0.01%未満では、炭化物の生成が抑制されず、多量の炭化物が鋼に存在するようになり、張出成形性は劣化する。このため下限値を0.01%以上とする。Si含有量は0.05%以上、0.10%以上又は0.30%以上であってもよい。また、Si含有量が1.30%超では、鋼強度の増加とともに、部品の脆化を招き、張出成形性を低下させる。このため上限値を1.30%以下とする。Si含有量は1.20%以下、1.10%以下、1.00%以下又は0.90%以下であってもよい。
(Mn:1.00~3.00%)
 Mnは、鋼のフェライト変態に影響を与える因子であり、強度上昇に有効な元素である。1.00%未満では、冷延板焼鈍での冷却過程においてマルテンサイト変態を促すことができず、強度の低下を引き起こす。このため下限値を1.00%以上とする。Mn含有量は1.10%以上、1.30%以上又は1.50%以上であってもよい。また、Mn含有量が3.00%超では、冷延板焼鈍におけるフェライト及びベイナイト変態を抑制するため、張出成形性の低下を引き起こす。このため上限値を3.00%以下とする。Mn含有量は2.80%以下、2.50%以下又は2.20%以下であってもよい。
(P:0.0001~0.0200%)
 Pは、フェライト粒界に強く偏析し粒界の脆化を促す元素である。少ないほど好ましい。0.0001%未満では、高純度化するためには、精錬のために要する時間が多くなり、コストの大幅な増加を招く。このため下限値を0.0001%以上とする。P含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。また、P含有量が0.0200%超では、粒界脆化により張出成形性の低下を招く。このため上限値を0.0200%以下とする。P含有量は0.0180%以下、0.0150%以下又は0.0120%以下であってもよい。
(S:0.0001~0.0200%)
 Sは、鋼中でMnS等の非金属介在物を生成し、鋼材部品の延性の低下を招く元素であり、少ないほど好ましい。0.0001%未満では、高純度化するためには、精錬のために要する時間が多くなり、コストの大幅な増加を招く。このため下限値を0.0001%以上とする。S含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。また、S含有量が0.0200%超では、冷間成形時に非金属介在物を起点とした割れの発生を招き、張出成形性が低下する。このため上限値を0.0200%以下とする。S含有量は0.0180%以下、0.0150%以下又は0.0120%以下であってもよい。
(Al:0.001~1.000%)
 Alは、鋼の脱酸剤として作用しフェライトを安定化する元素であり、必要に応じて添加される。0.001%未満では、添加効果が十分に得られないこのため下限値を0.001%以上とする。Al含有量は0.005%以上、0.010%以上又は0.020%以上であってもよい。また、Al含有量が1.000%超では、冷延板焼鈍において冷却過程でのフェライト変態及びベイナイト変態が過度に促進するため鋼板の強度が低下する。このため上限値を1.000%以下とする。Al含有量は0.950%以下、0.900%以下又は0.800%以下であってもよい。
(N:0.0001~0.0200%)
 Nは、鋼板中で粗大な窒化物を形成し、鋼板の加工性を低下させる元素である。また、Nは、溶接時のブローホールの発生原因となる元素である。0.0001%未満では、製造コストの大幅な増加を招く。このため下限値を0.0001%以上とする。N含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。また、N含有量が0.0200%超では、張出成形性の低下や、ブローホールの発生が顕著となる。このため上限値を0.0200%以下とする。N含有量は0.0180%以下、0.0160%以下又は0.0120%以下であってもよい。
 本発明の実施形態に係る鋼板の基本成分組成は上記のとおりである。さらに、当該鋼板は、必要に応じて以下の元素を含有していてもよい。当該鋼板は、残部のFeの一部に代えて以下の元素を含有していてもよい。
(Co:0~0.5000%)
 Coは、炭化物の形態制御と強度の増加に有効な元素であり、必要に応じて添加される。0.0001%未満では、添加効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Co含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、Co含有量が0.5000%超では、微細なCo炭化物が多数析出し、鋼材の強度上昇と延性の低下を招き、冷間加工性や張出成形性を低下させる場合がある。このため上限値を0.5000%以下とする。Co含有量は0.4500%以下、0.4000%以下又は0.3000%以下であってもよい。
(Ni:0~0.5000%)
 Niは、強化元素であるとともに焼入れ性の向上に有効である。加えて、濡れ性の向上や合金化反応の促進をもたらすことから添加しても良い。0.0001%未満では、これらの効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Ni含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、Ni含有量が0.5000%超では、製造時及び熱延時の製造性に悪影響を及ぼすか又は張出成形性を低下させる場合がある。このため上限値を0.5000%以下とする。Ni含有量は0.4500%以下、0.4000%以下又は0.3000%以下であってもよい。
(Mo:0~0.5000%)
 Moは、鋼板の強度の向上に有効な元素である。また、Moは、連続焼鈍設備又は連続溶融亜鉛めっき設備での熱処理時に生じるフェライト変態を抑制する効果を有する元素である。0.0001%未満では、その効果は得られない。このため下限値を0.0001%以上とすることが好ましい。Mo含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、Mo含有量が0.5000%超では、冷延板焼鈍において、フェライト及びベイナイト変態を抑制するとともに、マルテンサイト変態の促進を引き起こすため成形性、特には張出成形性が劣化する場合がある。このため上限値を0.5000%以下とする。Mo含有量は0.4500%以下、0.4000%以下又は0.3000%以下であってもよい。
(Cr:0~1.0000%)
 Crは、Mnと同様にパーライト変態を抑え、鋼の高強度化に有効な元素であり、必要に応じて添加される。0.0001%未満では、添加の効果を得られない。このため下限値を0.0001%以上とすることが好ましい。Cr含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、Cr含有量が1.0000%超では、オーステナイトの安定性を著しく高め、冷延板焼鈍後に多量の残留オーステナイトが存在するため、張出成形性が劣化する場合がある。このため上限値を1.0000%以下とする。Cr含有量は0.9000%以下、0.8000%以下又は0.7000%以下であってもよい。
(O:0~0.0200%)
 Oは、酸化物を形成し、加工性を劣化させることから、添加量を抑える必要がある。特に、酸化物は介在物として存在する場合が多く、打抜き端面、あるいは、切断面に存在すると、端面に切り欠き状の傷や粗大なディンプルを形成することから、張出成形時や強加工時に、応力集中を招き、亀裂形成の起点となり大幅な加工性の劣化をもたらす。しかしながら、0.0001%未満では、過度のコスト高を招き経済的に好ましくない。このため下限値を0.0001%以上とすることが好ましい。O含有量は0.0005%以上、0.0010%以上又は0.0020%以上であってもよい。一方、O含有量が0.0200%超では、上記加工性の劣化の傾向が顕著となる。このため上限値を0.0200%以下とする。O含有量は0.0180%以下、0.0150%以下又は0.0100%以下であってもよい。
(Ti:0~0.5000%)
 Tiは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。0.0001%未満では、これらの効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Ti含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、Ti含有量が0.5000%超では、炭窒化物の析出が多くなり成形性、特には張出成形性が劣化する場合がある。このため上限値を0.5000%以下とする。Ti含有量は0.4500%以下、0.4000%以下又は0.3000%以下であってもよい。
(B:0~0.0100%)
 Bは、オーステナイトからの冷却過程においてフェライト及びパーライトの生成を抑え、ベイナイト又はマルテンサイト等の低温変態組織の生成を促す元素である。また、Bは、鋼の高強度化に有益な元素であり、必要に応じて添加される。0.0001%未満では、添加による高強度化又は耐摩耗性の向上の効果が十分には得られない。更に、0.0001%未満の同定には分析に細心の注意を払う必要があるとともに、分析装置によっては検出下限に至る。このため下限値を0.0001%以上とすることが好ましい。B含有量は0.0003%以上、0.0005%以上又は0.0010%以上であってもよい。また、B含有量が0.0100%超では、鋼中に粗大なB酸化物の生成を招き、冷間成形時のボイドの発生起点となり、張出成形性は劣化する場合がある。このため上限値を0.0100%以下とする。B含有量は0.0080%以下、0.0060%以下又は0.0050%以下であってもよい。
(Nb:0~0.5000%)
 Nbは、Tiと同様に炭化物の形態制御に有効な元素であり、その添加により組織を微細化するため靭性の向上にも効果的な元素である。0.0001%未満では、効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Nb含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、Nb含有量が0.5000%超では、微細で硬質なNb炭化物が多数析出し、鋼材の強度上昇とともに延性の顕著な劣化を招き、冷間加工性や張出成形性を低下させる場合がある。このため上限値を0.5000%以下とする。Nb含有量は0.4500%以下、0.4000%以下又は0.3000%以下であってもよい。
(V:0~0.5000%)
 Vは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。0.0001%未満では、これらの効果が得られない。このため下限値を0.0001%以上とすることが好ましい。V含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、V含有量が0.5000%超では、炭窒化物の析出が多くなり成形性、特には張出成形性が劣化する。このため上限値を0.5000%以下とする。V含有量は0.4500%以下、0.4000%以下又は0.3000%以下であってもよい。
(Cu:0~0.5000%)
 Cuは、鋼板の強度の向上に有効な元素である。0.0001%未満では、これらの効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Cu含有量は0.0002%以上、0.0010%以上又は0.0100%以上であってもよい。また、Cu含有量が0.5000%超では、熱間圧延中に鋼材が脆化し、熱間圧延が不可能となる。更に、鋼の強度が著しく高まり、張出成形性が劣化する場合がある。このため上限値を0.5000%以下とする。Cu含有量は0.4500%以下、0.4000%以下又は0.3000%以下であってもよい。
(W:0~0.1000%)
 Wは、鋼板の強度上昇に有効である上、Wを含有する析出物及び晶出物は水素トラップサイトとなるため非常に重要な元素である。0.0001%未満では、これらの効果が得られない。このため下限値を0.0001%以上とすることが好ましい。W含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、W含有量が0.1000%超では、加工性、特には張出成形性が低下する場合がある。このため上限値を0.1000%以下とする。W含有量は0.0800%以下、0.0600%以下又は0.0500%以下であってもよい。
(Ta:0~0.1000%)
 Taは、Nb、V、Wと同様に、炭化物の形態制御と強度の増加に有効な元素であり、必要に応じて添加される。0.0001%未満では、添加効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Ta含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Ta含有量が0.1000%超では、微細なTa炭化物が多数析出し、鋼板の強度上昇と延性の低下を招き、耐曲げ性や張出成形性を低下させる場合がある。このため上限値を0.1000%以下とする。Ta含有量は0.0800%以下、0.0600%以下又は0.0500%以下であってもよい。
(Sn:0~0.0500%)
 Snは、原料としてスクラップを用いた場合に鋼中に含有される元素であり、少ないほど好ましい。0.0001%未満では、精錬コストの増加を招く。このため下限値を0.0001%以上とすることが好ましい。Sn含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Sn含有量が0.0500%超では、フェライトの脆化による張出成形性の低下を引き起こす場合がある。このため上限値を0.0500%以下とする。Sn含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(Sb:0~0.0500%)
 Sbは、Snと同様に鋼原料としてスクラップを用いた場合に含有される元素である。Sbは、粒界に強く偏析し粒界の脆化及び延性の低下を招くため、少ないほど好ましく、0%であってもよい。0.0001%未満では、精錬コストの増加を招く。このため下限値を0.0001%以上とすることが好ましい。Sb含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Sb含有量が0.0500%超では、張出成形性の低下を引き起こす場合がある。このため上限値を0.0500%以下とする。Sb含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(As:0~0.0500%)
 Asは、Sn、Sbと同様に鋼原料としてスクラップを用いた場合に含有され、粒界に強く偏析する元素であり、少ないほど好ましい。0.0001%未満では、精錬コストの増加を招く。このため下限値を0.0001%以上とすることが好ましい。As含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、As含有量が0.0500%超では、張出成形性の低下を招く。このため上限値を0.0500%以下とする。As含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(Mg:0~0.0500%)
 Mgは、微量添加で硫化物の形態を制御できる元素であり、必要に応じて添加される。0.0001%未満では、その効果は得られない。このため下限値を0.0001%以上とすることが好ましい。Mg含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Mg含有量が0.0500%超では、粗大な介在物の形成による張出成形性の低下を引き起こす場合がある。このため上限値を0.0500%以下とする。Mg含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(Ca:0~0.0500%)
 Caは、脱酸元素として有用であるほか、硫化物の形態制御にも効果を奏する。0.0001%未満では、効果が十分でない。このため下限値を0.0001%以上とすることが好ましい。Ca含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Ca含有量が0.0500%超では、加工性、特には張出成形性が劣化する場合がある。このため上限値を0.0500%以下とする。Ca含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(Y:0~0.0500%)
 Yは、Mg、Caと同様に微量添加で硫化物の形態を制御できる元素であり、必要に応じて添加される。0.0001%未満では、これらの効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Y含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Y含有量が0.0500%超では、粗大なY酸化物が生成し、張出成形性が低下する場合がある。このため上限値を0.0500%以下とする。Y含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(Zr:0~0.0500%)
 Zrは、Mg、Ca、Yと同様に微量添加で硫化物の形態を制御できる元素であり、必要に応じて添加される。0.0001%未満では、これらの効果が得られない。このため下限値を0.0001%以上とすることが好ましい。Zr含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Zr含有量が0.0500%超では、粗大なZr酸化物が生成し、張出成形性が低下する場合がある。このため上限値を0.0500%以下とする。Zr含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(La:0~0.0500%)
 Laは、微量添加で硫化物の形態制御に有効な元素であり、必要に応じて添加される。0.0001%未満では、その効果は得られない。このため下限値を0.0001%以上とすることが好ましい。La含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、La含有量が0.0500%超では、La酸化物が生成し、張出成形性の低下を招く場合がある。このため上限値を0.0500%以下とする。La含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
(Ce:0~0.0500%)
 Ceは、Laと同様に微量添加で硫化物の形態を制御できる元素であり、必要に応じて添加される。0.0001%未満では、その効果は得られない。このため下限値を0.0001%以上とすることが好ましい。Ce含有量は0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。また、Ce含有量が0.0500%超では、Ce酸化物が生成し、張出成形性の低下を招く場合がある。このため上限値を0.0500%以下とする。Ce含有量は0.0400%以下、0.0300%以下又は0.0200%以下であってもよい。
 なお、本発明の実施形態に係る鋼板では、上記に述べた成分以外の残部はFe及び不純物からなる。不純物とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明の実施形態に係る鋼板に対して意図的に添加した成分でないもの(いわゆる不可避的不純物)を包含するものである。また、不純物とは、上で説明した成分以外の元素であって、当該元素特有の作用効果が本発明の実施形態に係る鋼板の特性に影響しないレベルで当該鋼板中に含まれる元素をも包含するものである。
 続いて、本発明の実施形態に係る鋼板の組織及び特性の特徴を述べる。
(フェライト及びベイナイトの合計:10.0~90.0%)
 フェライト及びベイナイトの合計の面積率は、鋼の伸びに影響を与え、面積率の増加に伴い加工性が増加する。10.0%未満では、製造において高度な制御を要するため、歩留りの低下を招き、さらには張出成形性が低下する場合がある。このため下限値を10.0%以上とする。フェライト及びベイナイトの合計の面積率は20.0%以上、30.0%以上又は35.0%以上であってもよい。また、90%超では、強度の低下を招く場合がある。このため上限値を90.0%以下とする。フェライト及びベイナイトの合計の面積率は85.0%以下、80.0%以下又は75.0%以下であってもよい。
(マルテンサイト及び焼戻しマルテンサイトの合計:5.0~80.0%)
 マルテンサイト及び焼戻しマルテンサイトの合計の面積率は、鋼の強度に影響を与え、面積率が大きいほど引張強度が増加する。5.0%未満では、マルテンサイト及び焼戻しマルテンサイトの面積率が足りず、目標とする引張強度550MPa以上を達成することができない場合がある。このため下限値を5.0%以上とする。マルテンサイト及び焼戻しマルテンサイトの合計の面積率は10.0%以上、15.0%以上又は20.0%以上であってもよい。また、80.0%超では、引張強度が1100MPaを超えて強度延性バランスの低下や張出成形性の低下を招く場合がある。このため上限値を80.0%以下とする。マルテンサイト及び焼戻しマルテンサイトの合計の面積率は70.0%以下、60.0%以下又は55.0%以下であってもよい。
(パーライト及び残留オーステナイトの合計:0~15.0%)
 残部のパーライト及び残留オーステナイトは鋼の局部延性を劣化させる組織因子であり、少ない程好ましい。パーライト及び残留オーステナイトの合計の面積率は0%であってもよいが、1.0%未満では、製造において高度な制御を要する場合がある。歩留りの低下を抑える観点からは、パーライト及び残留オーステナイトの合計面積率を1.0%以上としてもよい。パーライト及び残留オーステナイトの合計の面積率は2.0%以上、3.0%以上又は5.0%以上であってもよい。また、15.0%超では、張出成形性の低下を招く場合がある。このため上限値を15.0%以下とする。パーライト及び残留オーステナイトの合計の面積率は13.0%以下、11.0%以上又は9.0%以上であってもよい。
(フェライトの(111)<112>方位の集積度:3.0以上)
 フェライトの(111)<112>方位の集積度は、鋼の等方的な変形、即ち張出成形性に影響を与える因子であり、この集積度が大きいほど張出成形性に優れる。3.0未満では、良好な張出成形性を得ることができない。このため下限値を3.0以上とする。好ましくは4.0以上又は5.0以上である。この集積度の上限値は、特に限定されないが、10.0以下、8.0以下又は7.0以下であってもよい。
(マルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度:5.0以下)
 マルテンサイト及び焼戻しマルテンサイトを合計した際の(252)<2-11>方位の集積度は、鋼の等法的な変形を妨げる、即ち張出成形性に影響を与える因子であり、この集積度が小さいほど張出成形性は優れる。5.0超では、張出成形性は劣化する。このため上限値を5.0以下とする。好ましくは4.0以下又は3.0以下である。この集積度の下限値は、特に限定されないが、0.1以上、0.2以上又は0.3以上であってもよい。
(板厚)
 鋼板の板厚は成形後の鋼部材の剛性に影響を与える因子であり、板厚が大きいほど部材の剛性は高くなる。板厚が0.2mm未満では剛性の低下を招くとともに、鋼材内部に存在する不可避的な非鉄介在物の影響を受けて張出成形性が低下するため、0.2mm以上の板厚が好ましい。なお、板厚が3.0mmを超えると張出成形時の成形荷重が増加し、金型の損耗や生産性の低下を招くため、3.0mm以下の板厚が好ましい。
 次に、上記で規定する組織の観察及び測定方法を述べる。
(フェライト及びベイナイトの合計の面積率の評価方法)
 フェライト及びベイナイトの面積率は、電界放出型走査電子顕微鏡(FE-SEM:Field Emission-Scanning Electron Microscope)を用いた電子チャンネリングコントラスト像により、板厚の1/4位置を中心とする1/8~3/8厚の範囲を観察することにより、求める。電子チャンネリングコントラスト像は、結晶粒内の結晶方位差を像のコントラストの差として検出する手法であり、当該像において、パーライト、ベイナイト、マルテンサイト、残留オーステナイトではなく、フェライトであると判断される組織において均一なコントラストで写る部分がポリゴナルフェライトである。また、ベイナイトは、ラス状の結晶粒の集合であり、内部に長径20nm以上の鉄系炭化物を含まないもの、又は、内部に長径20nm以上の鉄系炭化物を含み、その炭化物が、単一のバリアント、即ち、同一方向に伸張した鉄系炭化物群に属するものである。ここで、同一方向に伸長した鉄系炭化物群とは、鉄系炭化物群の伸長方向の差異が5°以内であるものをいう。ベイナイトは、方位差15°以上の粒界によって囲まれたベイナイトを1個のベイナイト粒として数える。35×25μmの電子チャネリングコントラスト像8視野を、画像解析の方法で、各視野でのフェライト及びベイナイトの合計の面積率を算出し、その平均値をフェライト及びベイナイトの合計の面積率とする。
(マルテンサイト及び焼戻しマルテンサイトの合計の面積率の評価方法)
 マルテンサイト及び焼戻しマルテンサイトも前述の電子チャンネリングコントラストで撮影した画像から合計の面積率を求める。これらの組織はフェライトよりもエッチングされにくいため、組織観察面上では凸部として存在する。なお、焼戻しマルテンサイトは、ラス状の結晶粒の集合であり、内部に長径20nm以上の鉄系炭化物を含み、その炭化物が複数のバリアント、即ち、異なる方向に伸長した複数の鉄系炭化物群に属するものである。また、残留オーステナイトも組織観察面上では凸部で存在する。このため、上記の手順で求めた凸部の面積率を、後述の手順で測定する残留オーステナイトの面積率で引くことにより、マルテンサイト及び焼戻しマルテンサイトの合計の面積率を正しく測定することが可能となる。
(パーライト及び残留オーステナイトの合計の面積率の評価方法)
 残留オーステナイトの面積率は、X線を用いた測定により算出することができる。すなわち、試料の板面から板厚方向に深さ1/4位置までを機械研磨及び化学研磨により除去する。そして、研磨後の試料に対して特性X線としてMoKα線を用いて得られた、bcc相の(200)、(211)及びfcc相の(200)、(220)、(311)の回折ピークの積分強度比から、残留オーステナイトの組織分率を算出し、これを、残留オーステナイトの面積率とする。また、パーライトは前述の電子チャンネリングコントラストで撮影した画像から面積率を求める。パーライトは板状の炭化物とフェライトが並んだ組織である。
(フェライトの(111)<112>方位の集積度の評価方法)
 フェライトの方位集積度は、EBSD(Electron Back Scattering Diffraction)装置を用いて測定する。また、EBSP(電子後方散乱パターン:Electron Back Scattering Pattern)法、またはECP(Electron Channeling Pattern)法のいずれでも測定が可能である。{110}極点図に基づきベクトル法により計算した3次元集合組織や、{110}、{100}、{211}、{310}の極点図のうち、複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。なお、EBSDによる測定では、前述の電子線チャンネリングコントラストと同じ位置の結晶方位データをSTEP間隔を0.05μmに設定して取得する。この手順で取得した8視野分のデータにおいてフェライトに対応する結晶方位データから、(111)<112>方位の集積度を求める。
(マルテンサイト及び焼戻しマルテンサイトを合計した際の(252)<2-11>方位の集積度の評価方法)
 マルテンサイト及び焼戻しマルテンサイトの方位集積度もEBSDにより求める。フェライトの方位集積度の評価方法のために採取した結晶方位データは、マルテンサイト及び焼戻しマルテンサイトの結晶方位データも含む。フェライトの場合と同じく、電子チャンネリングコントラスト像において、マルテンサイト及び焼戻しマルテンサイトの結晶方位データから(252)<2-11>方位の集積度を求める。
(機械特性)
 本発明の実施形態に係る鋼板によれば、高い引張強度及び高い強度延性バランス、具体的には550~1100MPaの引張強度及び10.0%以上の全伸びを達成しつつ、張出成形性を向上させることが可能である。引張強度は好ましくは700MPa以上であり、より好ましくは800MPa以上である。
<鋼板の製造方法>
 本発明の実施形態に係る鋼板の製造方法は上述した成分範囲の材料を用いて、熱間圧延と冷延及び焼鈍条件の一貫した管理を特徴としている。以下、鋼板の製造方法の一例について説明するが、本発明に係る鋼板の製造方法は以下の形態に限定されるものではない。
 本発明の実施形態に係る鋼板の製造方法は、鋼板に関して上で説明した化学組成と同じ化学組成を有する溶鋼を連続鋳造して鋼片を形成する鋳造工程であって、連続鋳造後から室温に冷却するまでの間に800℃以上1200℃未満において5~40%の圧下を施す鋳造工程、
 前記鋼片を熱間圧延することを含み、前記熱間圧延の仕上げ温度が650~950℃である熱間圧延工程、
 得られた熱延鋼板を400~700℃の巻取り温度で巻き取る工程、
 巻き取った熱延鋼板を室温まで冷却せずにそのまま巻取り開始温度+20℃~100℃の温度域に5~300分間保持する工程、
 前記熱延鋼板を10.0~90.0%の圧下率で冷間圧延する冷間圧延工程、及び
 得られた冷延鋼板を700~900℃の温度範囲で焼鈍する焼鈍工程
を含むことを特徴としている。以下、各工程について詳しく説明する。
(鋳造工程)
 本発明の実施形態に係る鋼板の製造方法では、まず、鋼板に関して上で説明した化学組成と同じ化学組成を有する溶鋼を連続鋳造して鋼片が形成され、次いで連続鋳造後から室温に冷却するまでの間に800℃以上1200℃未満において5~40%の圧下を施し、800℃以上1200℃未満において鋼片のミクロ偏析の濃化部の均一性を高める(具体的には、元素濃化部を鋼材内に細かく分散させて、元素濃化部の濃度差を小さくする)ことができる。5%未満の圧下率では、偏析が解消せず、フェライト及びベイナイトの方位集積度の低下及び張出成形性の低下を引き起こす。鋼片における元素濃化部の均一性を高める(例えばMn濃化部の均一性を高める)ことで、冷延焼鈍後に元素濃化部における未再結晶フェライトの残存を抑制してフェライトの(111)面に方位を集積させ、張出成形部が等方的に広がり易くなる。また、後述の巻き取り後の保持工程において熱延板中にオーステナイトを生成させ易くなる。このため圧下率の下限値を5%以上とし、6%以上、8%以上又は10%以上であってもよい。また、40%超では、設備の大型化が必要となり、多額の設備投資と高コスト化を招く。更に、凝固組織の成長方向を揃えるようになるため、この凝固組織の集合組織の影響を受け、冷延板焼鈍後におけるフェライト及びベイナイトの方位集積度が低下し、張出成形性が劣化する。このため上限値を40%以下とし、38%以下、35%以下又は30%以下であってもよい。
(熱間圧延工程)
 本方法では、鋳造された鋼片は、次に熱間圧延工程に供され、当該熱間圧延工程は、鋳造された鋼片を直接又は一旦冷却した後、再加熱して熱間圧延することにより実施することができる。再加熱を行う場合には、鋼片の加熱温度は、一般的には1100℃以上であり、上限値は特に規定しないが、例えば1250℃以下であってもよい。
(粗圧延)
 本方法では、例えば、鋳造された鋼片に対し、板厚調整等のために、任意選択で仕上げ圧延の前に粗圧延を施してもよい。このような粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
(仕上げ圧延)
 得られた鋼片又はそれに加えて必要に応じて粗圧延された鋼片は、次に仕上げ圧延を施され、その際の仕上げ温度(熱間圧延の仕上げ温度)は650~950℃の範囲に制御される。熱間圧延の仕上げ温度は、旧オーステナイト粒径の集合組織の制御に効果を与える因子である。650℃未満では、オーステナイトの圧延集合組織が発達し、鋼材特性の異方性の発生を招く。このため下限値を650℃以上とし、680℃以上又は700℃以上であってもよい。また、950℃超では、圧延前に素材が高温で保持されることにより、オーステナイトの異常粒成長が起こり、集合組織の等方化を図ることが難しくなる。このため上限値を950℃以下とし、930℃以下又は900℃以下であってもよい。
(巻取工程)
 熱間圧延工程の後、得られた熱延鋼板は、次の巻取工程において400~700℃の巻取り温度で巻き取られる。巻取り温度は、熱延板の組織変化においてオーステナイトから変態するフェライト及びベイナイトの制御に重要な因子である。400℃未満では、後述する巻取り後の昇温処理を与えたとしても、熱延板において巻取り後に存在するオーステナイトを、ベイナイトに変態させることができず、目的とする熱延組織を得ることができない。また、これにより、張出成形性も劣化する。このため下限値を400℃以上とし、420℃以上又は450℃以上であってもよい。また、700℃超では、熱延板の巻取り時においてオーステナイトからフェライト変態が過度に促され、炭素がオーステナイト中に濃化し、後述する巻取り後の昇温処理を与ると、パーライト変態が進むため、目的とする熱延組織を得ることができなくなる。このため上限値を700℃以下とし、680℃以下又は650℃以下であってもよい。
(保持工程)
 次に、巻き取った熱延鋼板は、室温まで冷却せずにそのまま巻取り開始温度+20℃~100℃の温度域において5~300分間にわたり保持される。巻取り開始温度+20℃~100℃の温度における昇温及び保持は本発明において極めて重要な制御因子である。熱間仕上げ圧延後、巻取り温度まで冷却及び冷却停止する際に、フェライトあるいはベイナイト変態が進み炭素が残部オーステナイトに濃化していく。この反応は熱延板をコイル状に巻き取った後も進行し、一旦フェライトあるいはベイナイト変態後に昇温させることにより、熱延板組織におけるオーステナイト/B.C.C.界面のオーステナイト側にあるMn濃化が減少するため、オーステナイト/B.C.C.界面の移動が可能になり、最終的に室温でも安定な残留オーステナイトが熱延板の状態で得られる。上述の通り、本発明の実施形態に係る鋼板の製造方法においては、鋳造工程における鋼片の圧下条件を制御することで、鋼片における元素濃化部の均一性を高めている。これと保持工程における温度保持条件とを組み合わせることで、熱延板中にオーステナイトをより適切に生成・残留させることができる。熱延板の状態で安定化した残留オーステナイトは冷延後にも存在する。この熱延板での熱処理に起因する残留オーステナイトと冷延焼鈍時にフェライトの集合組織からK-S関係で生じるオーステナイトが交じり、冷延板焼鈍におけるオーステナイトの集合組織がランダム化することで、最終製品のマルテンサイトにおける(252)<2-11>方位の集積度を低下させることが可能となる。保持温度を巻き取り開始温度+20℃以上とすることで、未変態のオーステナイトからベイナイトへの変態における界面の移動及びベイナイト組織の成長を促すとともに、残部オーステナイトへの炭素の濃化を促進することができる。また、保持温度を巻き取り開始温度+100℃以下とすることで、内部酸化を抑制することができる。5分未満の保持では、ベイナイト変態の進行によるオーステナイトの安定化が不十分であり、本発明の効果を得ることができない。このため下限値を5分以上とし、15分以上又は30分以上であってもよい。また、300分超では、鋼帯表面から内部に酸素が供給され、熱延板に内部酸化物を形成する。内部酸化物とは、粒界に沿った酸化物であり、冷延焼鈍後に残存すると亀裂の起点となり張出成形性の低下を招く。このため上限値を300分以下とし、250分以下又は200分以下であってもよい。
(冷間圧延及び焼鈍工程)
 最後に、得られた熱延鋼板は、必要に応じて酸洗等を行った後、10.0~90.0%の圧下率での冷間圧延及び700~900℃での焼鈍を施され、本発明の実施形態に係る鋼板が得られる。本発明の実施形態に係る鋼板の製造方法においては、上述した鋳造工程及び保持工程において生成した熱延板中の残留オーステナイトと、冷延焼鈍により新たに生成したオーステナイトとが、冷延焼鈍後にともに残ることとなる。すなわち、方位の異なるオーステナイトが混在して残ることとなる。このように、鋳造工程における圧下条件と、巻き取り時の温度保持条件と、冷延焼鈍条件とを組み合わせて、方位の異なるオーステナイトを混在させることで、最終的に得られる鋼板におけるマルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度をより適切且つ容易に低下させることができる。以下、冷間圧延、焼鈍及びめっき処理の好ましい実施形態について詳しく説明する。下記の記載は、冷間圧延、焼鈍及びめっき処理の好ましい実施形態の単なる例示であって、鋼板の製造方法を何ら限定するものではない。
(酸洗)
 まず、冷間圧延の前に、巻取った熱延鋼板を巻き戻し、酸洗に供する。酸洗を行うことで、熱延鋼板の表面の酸化スケールを除去して、冷延鋼板の化成処理性や、めっき性の向上を図ることができる。酸洗は、一回でもよいし、複数回に分けて行ってもよい。
(冷間圧下率)
 冷間圧下率は、冷延焼鈍時のフェライトの再結晶挙動に影響を与える。また、熱延板において存在する残留オーステナイトの結晶方位を冷間圧延により回転させ、冷延焼鈍で生成するオーステナイトの結晶方位をランダム化させる効果を持つ。10.0%未満では、フェライトの方位集積度が低下し、張出成形性が劣化する。このため下限値を10.0%以上とし、15.0%以上であってもよい。また、90.0%超では、フェライトの再結晶が容易になるものの、熱延板で生じさせたオーステナイトが加工誘起変態を生じ、マルテンサイト及び焼き戻しマルテンサイトの方位集積度が高まるため、張出成形性が劣化する。このため上限値を90.0%以下とし、75.0%以下であってもよい。
(冷延板焼鈍)
(加熱速度)
 冷延鋼板が連続焼鈍ラインやめっきラインを通板する場合における加熱速度は、特に制約されないが、0.5℃/秒未満の加熱速度では、生産性が大きく損なわれる場合があるため、好ましくは0.5℃/秒以上とする。一方、100℃/秒を超える加熱速度とすると、過度の設備投資を招くため、好ましくは100℃/秒以下とする。
(焼鈍温度)
 焼鈍温度は、フェライトの再結晶挙動に影響を与える因子である。また、オーステナイトの生成挙動にも影響を与え、鋼の強度延性バランスの制御において極めて重要な制御因子でもある。700℃未満では、オーステナイトの生成量が少なく、冷延焼鈍の保持後においても未溶解の炭化物が存在する。また、未溶解炭化物の存在によってオーステナイトからパーライトへの変態は促されるため、冷延焼鈍後の組織においてマルテンサイトの組織割合の低下とパーライトの組織割合の増加を招く。加えて未再結晶のフェライトも残るため、張出成形性が劣化する。このため下限値を700℃以上とし、750℃以上であってもよい。また、900℃超では、焼鈍での恒温保持中に生じるオーステナイトの量が増えるため、冷延焼鈍後の組織においてフェライト及びベイナイトの方位集積度が低下し、張出成形性が劣化する。このため上限値を900℃以下とし、850℃以下であってもよい。
(保持時間)
 鋼板を、連続焼鈍ラインに供し、焼鈍温度に加熱して焼鈍を施す。この際、保持時間は10~600秒であることが好ましい。保持時間が10秒未満であると焼鈍温度でのオーステナイトの分率が不十分であったり、焼鈍前までに存在していた炭化物の溶解が不十分となったりして、所定の組織及び特性が得られなくなるおそれがある。保持時間が600秒超となっても特性上は問題ないが、設備のライン長が長くなるので、600秒程度が実質的な上限となる。
(平均冷却速度)
 上記焼鈍後の冷却では、750℃から550℃まで平均冷却速度100.0℃/秒以下で冷却することが好ましい。平均冷却速度の下限値は、特に限定されないが、例えば2.5℃/秒であってよい。平均冷却速度の下限値を2.5℃/秒とする理由は、母材鋼板でフェライト変態が生じ、母材鋼板が軟化することを抑制するためである。2.5℃/秒より平均冷却速度が遅い場合、強度が低下する場合がある。より好ましくは5.0℃/秒以上、さらに好ましくは10.0℃/秒以上、さらに好ましくは20.0℃/秒以上である。750℃超ではフェライト変態が生じにくいため、冷却速度は制限しない。550℃未満の温度では、低温変態組織が得られるため、冷却速度を制限しない。100.0℃/秒より速い速度で冷却すると表層にも低温変態組織が生じ、硬さのばらつきの原因となるため、好ましくは100.0℃/秒以下で冷却する。さらに好ましくは80.0℃/秒以下である。さらに好ましくは60.0℃/秒以下である。
(冷却停止温度)
 上記の冷却は、25℃~550℃の温度で停止し(冷却停止温度)、続いて、この冷却停止温度がめっき浴温度-40℃未満であった場合には350℃~550℃の温度域に再加熱して滞留させてもよい。上述の温度範囲で冷却を行うと冷却中に未変態のオーステナイトからマルテンサイトが生成する。その後、再加熱を行うことで、マルテンサイトは焼き戻され、硬質相内での炭化物析出や転位の回復・再配列が起こり、耐水素脆性が改善する。冷却停止温度の下限を25℃としたのは、過度の冷却は大幅な設備投資を必要とするばかりでなく、その効果が飽和するためである。
(滞留温度)
 再加熱後かつめっき浴浸漬前に、350~550℃の温度域で鋼板を滞留させても良い。この温度域での滞留は、マルテンサイトの焼き戻しに寄与するばかりでなく、板の幅方向の温度ムラをなくし、めっき後の外観を向上させる。なお、冷却停止温度が350℃~550℃であった場合には、再加熱を行わずに滞留を行えばよい。
(滞留時間)
 滞留を行う時間は、その効果を得るために10秒以上600秒以下とすることが望ましい。
(焼戻し)
 一連の焼鈍工程において、冷延板又は冷延板にめっき処理を施した鋼板を、室温まで冷却した後、あるいは、室温まで冷却する途中(ただしマルテンサイト変態開始温度(Ms)以下)において再加熱を開始し、150℃以上400℃以下の温度域で2秒以上保持しても良い。この工程によれば、再加熱後の冷却中に生成したマルテンサイトを焼戻して、焼戻しマルテンサイトとすることにより、耐水素脆性を改善することができる。焼戻し工程を行う場合、保持温度が150℃未満又は保持時間が2秒未満では、マルテンサイトが十分に焼き戻されず、ミクロ組織及び機械特性において満足のいく変化をもたらすことができない場合がある。一方、保持温度が400℃を超えると、焼戻しマルテンサイト中の転位密度が低下してしまい、引張強度の低下を招く場合がある。そのため、焼戻しを行う場合には、150℃以上400℃以下の温度域で2秒以上保持することが好ましい。焼戻しは、連続焼鈍設備内で行っても良いし、連続焼鈍後にオフラインで、別設備で実施しても構わない。この際、焼戻し時間は、焼戻し温度により異なる。すなわち、低温ほど長時間となり、高温ほど短時間となる。
(めっき)
 焼鈍工程中又は焼鈍工程後の冷延鋼板に対して、必要に応じて、(亜鉛めっき浴温度-40)℃~(亜鉛めっき浴温度+50)℃に加熱又は冷却して、溶融亜鉛めっきを施してもよい。溶融亜鉛めっき工程によって、冷延鋼板の少なくとも一方の表面、好ましくは両方の表面には、溶融亜鉛めっき層が形成される。この場合、冷延鋼板の耐食性が向上するので好ましい。溶融亜鉛めっきを施しても、冷延鋼板の耐水素脆性を十分に維持することができる。
 めっき処理は、「脱脂酸洗後、非酸化雰囲気にて加熱し、H2及びN2を含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、めっき浴に浸漬する」というゼンジマー法、「焼鈍時の雰囲気を調節し、最初、鋼板表面を酸化させた後、その後還元することによりめっき前の清浄化を行った後にめっき浴に浸漬する」という全還元炉方式、あるいは、「鋼板を脱脂酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に浸漬する」というフラックス法等があるが、いずれの条件で処理を行ったとしても本発明の効果は発揮できる。
(めっき浴の温度)
 めっき浴温度は450~490℃であることが好ましい。めっき浴温度が450℃未満であると、めっき浴の粘度が過大に上昇し、めっき層の厚さの制御が困難となり、溶融亜鉛めっき鋼板の外観が損なわれるおそれがある。一方、めっき浴温度が490℃を超えると、多量のヒュームが発生し、安全なめっき操業が困難となるおそれがある。めっき浴温度は455℃以上であるのがより好ましく、480℃以下であるのがより好ましい。
(めっき浴の組成)
 めっき浴の組成は、Znを主体とし、有効Al量(めっき浴中の全Al量から全Fe量を引いた値)が0.050~0.250質量%であることが好ましい。めっき浴中の有効Al量が0.050質量%未満であると、めっき層中へのFeの侵入が過度に進み、めっき密着性が低下するおそれがある。一方、めっき浴中の有効Al量が0.250質量%を超えると、鋼板とめっき層との境界に、Fe原子及びZn原子の移動を阻害するAl系酸化物が生成し、めっき密着性が低下するおそれがある。めっき浴中の有効Al量は0.065質量%以上であるのがより好ましく、0.180質量%以下であるのがより好ましい。
(めっき浴への侵入時の鋼板温度)
 めっき浴浸漬板温度(溶融亜鉛めっき浴に浸漬する際の鋼板の温度)は、溶融亜鉛めっき浴温度より40℃低い温度(溶融亜鉛めっき浴温度-40℃)から溶融亜鉛めっき浴温度より50℃高い温度(溶融亜鉛めっき浴温度+50℃)までの温度範囲が好ましい。めっき浴浸漬板温度が溶融亜鉛めっき浴温度-40℃を下回ると、めっき浴浸漬時の抜熱が大きく、溶融亜鉛の一部が凝固してしまいめっき外観を劣化させる場合があるため望ましくない。浸漬前の板温度が溶融亜鉛めっき浴温度-40℃を下回っていた場合、任意の方法でめっき浴浸漬前にさらに加熱を行い、板温度を溶融亜鉛めっき浴温度-40℃以上に制御してからめっき浴に浸漬させても良い。また、めっき浴浸漬板温度が溶融亜鉛めっき浴温度+50℃を超えると、めっき浴温度上昇に伴う操業上の問題を誘発する。
(めっきプレ処理)
 めっき密着性をさらに向上させるために、連続溶融亜鉛めっきラインにおける焼鈍前に、母材鋼板に、Ni、Cu、Co、Feの単独あるいは複数から成るめっきを施しても良い。
(めっき後処理)
 溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の表面に、塗装性、溶接性を改善する目的で、上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施すこともできる。
(スキンパス圧延)
 さらに、鋼板形状の矯正や可動転位導入により延性の向上を図ることを目的として、スキンパス圧延を施してもよい。熱処理後のスキンパス圧延の圧下率は、0.1~1.5%の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、0.1%を下限とする。1.5%を超えると生産性が著しく低下するので1.5%を上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
 上記の製造方法によれば、本発明に係る鋼板を得ることができる。尚、上記においては、鋳造工程における圧下率を5%以上とすることで鋼片のミクロ偏析の濃化部の均一性を高める形態について説明したが、例えば、鋳造工程における鋼片の温度制御によってミクロ偏析の濃化部の均一性を高めることもあり得る。
 以下に本発明に係る実施例を示す。本発明はこの一条件例に限定されるものではない。本発明は、本発明要旨を逸脱せず、本発明目的を達する限りにおいては、種々の条件を採用可能とするものである。
[例1]
 表1に示す化学組成を有する鋼を溶製して鋼片を連続鋳造し、連続鋳造後から室温に冷却するまでの間に800℃以上1200℃未満において6%の圧下を施し、ミクロ偏析の濃化部の均一性を高めた(元素濃化部の濃度差を小さくした)鋼片を製造した。この鋼片を1220℃に加熱した炉内に挿入し、60分間保持する均一化処理を与えた後に大気中に取出し、熱間圧延して板厚2.8mmの鋼板を得た。熱間圧延における仕上げ圧延の終了温度(仕上げ温度)は920℃であり、仕上げ圧延完了後、1.5秒経過後に水冷にて冷却を与え、28℃/秒の速度で610℃の巻取り温度まで冷却して、660℃で1時間保持する複熱処理を鋼板に与えた。続いて、この熱延鋼板の酸化スケールを酸洗により除去し、圧下率50.0%の冷間圧延を施し、板厚を1.4mmに仕上げた。さらに、この冷延鋼板を790℃まで8.0℃/秒の速度で加熱し、790℃で105秒間保持した後に、4.0℃/秒の平均冷却速度で480℃まで冷却し、続いて、460℃で12秒間保持する冷延板焼鈍を施した。さらに、この冷延板焼鈍後の板に、鋼帯の伸び率が0.3%のスキンパス圧延を施した。表2は上記の加工熱処理を与えた鋼板の特性の評価結果である。なお、表1に示す成分以外の残部はFe及び不純物である。また、製造した鋼板から採取した試料を分析した化学組成は、表1に示す鋼の化学組成と同等であった。
(引張特性の評価方法)
 引張試験はJIS Z 2241(2011)に準拠し、試験片の長手方向が鋼帯の圧延直角方向と平行になる向きからJIS5号試験片を採取して行い、引張強度(TS)及び全伸び(El)を測定した。
(張出成形性の評価方法)
 張出成形性は、次の球頭張出し試験を行い評価した。
 ・サンプル引き抜き巾:200×200mm
 ・金型:半径60mmの球頭のポンチ、ビード付きダイス
 ・押しつけ荷重:60t
 ・張り出し速度:30mm/分
 ・塗油:防錆油塗布
 上記条件で25mmの高さまで張出し加工を施した鋼板において、球頭ポンチの中心軸から25mm離れた位置で、球面に張出した鋼板における外側表面の張出し高さをレーザーあるいはLEDによる非接触式の変位計で円周形状に沿って測定し、最大張出し高さと最少張出し高さの差が3mm以下であった場合に合格(○)とし、高さの差が3mmを超えた場合は不合格(×)とした。
 引張強度が550~1100MPaであり、張出成形性の評価が○である場合を高強度でかつ張出成形性に優れた鋼板として評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2を参照すると、例S-1はC含有量が低かったため、マルテンサイトの方位集積度をランダム化することができず、マルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度が5.0よりも大きくなった。その結果、張出成形性が低下した。例T-1はC含有量が高かったため、フェライトの方位集積度が低下したため、張出成形性が低下した。例U-1はSi含有量が高かったため、引張強度が増加して脆化を生じ、張出成形性が低下した。例V-1はMn含有量が低かったため、引張強度が低下した。例W-1はMn含有量が高かったため、フェライト及びベイナイト変態が抑制されてしまい、張出成形性が低下した。例X-1はP含有量が高かったため、鋼板が脆化してしまい、張出成形性が低下した。例Y-1はS含有量が高かったため、冷間成形時に割れが発生し、張出成形性が低下した。例Z-1はAl含有量が高かったため、フェライト変態及びベイナイト変態が過度に促進されてしまい、引張強度が低下した。例AA-1はN含有量が高かったため、鋼板中で粗大な窒化物が形成し、張出成形性が低下した。
 例AB-1はCo含有量が高かったため、微細なCo炭化物が多数析出してしまい、張出成形性が低下した。例AC-1はNi含有量が高かったために張出成形性が低下した。例AD-1はMo含有量が高かったため、マルテンサイト変態が促進されてしまい、張出成形性が低下した。例AE-1はCr含有量が高かったため、多量の残留オーステナイトが生成し、張出成形性が低下した。例AF-1はO含有量が高かったため、酸化物が形成されて張出成形性が低下した。例AG-1はTi含有量が高かったため、炭窒化物の析出が多くなり張出成形性が低下した。例AH-1はB含有量が高かったため、鋼中に粗大なB酸化物が生成してしまい、張出成形性が低下した。例AI-1はNb含有量が高かったため、Nb炭化物が多数析出し、張出成形性が低下した。例AJ-1はV含有量が高かったため、炭窒化物の析出が多くなり張出成形性が低下した。
 例AK-1はCu含有量が高かったため、引張強度が高くなりすぎ、それに関連して張出成形性が低下した。例AL-1はW含有量が高かったために張出成形性が低下した。例AM-1はTa含有量が高かったため、微細なTa炭化物が多数析出し、張出成形性が低下した。例AN-1はSn含有量が高かったため、フェライトの脆化によって張出成形性が低下した。例AO-1及びAP-1はそれぞれSb及びAs含有量が高かったため、粒界偏析により張出成形性が低下した。例AQ-1はMg含有量が高かったため、粗大な介在物の形成により張出成形性が低下した。例AR-1はCa含有量が高かったために張出成形性が低下した。例AS-1~AV-1はそれぞれY、Zr、La及びCe含有量が高かったため、粗大な酸化物が生成し、張出成形性が低下した。
 これとは対照的に、例A-1~R-1では、鋼板の化学組成及び組織並びにフェライト及びマルテンサイトの集積度を適切に制御することにより、高強度でかつ張出成形性に優れた鋼板を得ることができた。
[例2]
 さらに、製造条件の影響を調べるために、表2において優れた特性が認められた鋼種A~Rを対象として、表3に記載する製造条件の加工熱処理を与えて、板厚2.3mmの熱延鋼板を作製し、冷延焼鈍後の特性を評価した。ここで、めっき処理の符号GI及びGAは亜鉛めっき処理の方法を示しており、GIは460℃の溶融亜鉛めっき浴中に鋼板を浸漬して鋼板の表面に亜鉛めっき層を与えた鋼板であり、GAは溶融亜鉛めっき浴中に鋼板を浸漬した後に485℃に鋼板を昇温させて鋼板の表面に鉄と亜鉛の合金層を与えた鋼板である。また、冷延板焼鈍においてそれぞれの滞留温度で保持した後の鋼板を室温まで冷却するまでの間に、一旦150℃まで冷却した鋼板を再加熱して、2~120秒間保持する焼戻し処理を与えた。なお、焼戻し時間が3600~33000秒である実施例は、室温まで冷却後に、巻き取ったコイルを別の焼鈍装置(箱焼鈍炉)によって焼戻しを与えた実施例である。さらに、表3において、焼戻しを「なし」と記載する実施例は、焼戻しを与えていない実施例である。得られた結果を表4に示す。なお、特性の評価方法は例1の場合と同様である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表4を参照すると、例D-2は冷間圧延の際の圧下率が高かったため、マルテンサイト及び焼き戻しマルテンサイトの(252)<2-11>方位の集積度が高くなり、結果として張出成形性が低下した。例E-2は冷間圧延の際の圧下率が低かったため、フェライトの(111)<112>方位の集積度が低くなり、結果として張出成形性が低下した。例F-2は鋳造工程における圧下が高すぎたため、冷延板焼鈍後におけるフェライトの(111)<112>方位の集積度が低くなり、結果として張出成形性が低下した。例L-2は巻き取り後の所定温度での保持時間が短かったため、マルテンサイト及び焼き戻しマルテンサイトの(252)<2-11>方位の集積度を低下させることができず、結果として張出成形性が低下した。
 例Q-2は焼鈍温度が高かったため、フェライトの(111)<112>方位の集積度が低くなり、結果として張出成形性が低下した。例R-2は熱間圧延の仕上げ温度が低かったため、オーステナイトの圧延集合組織が発達して鋼材特性の異方性の発生を招き、結果として最終製品のマルテンサイトにおける(252)<2-11>方位の集積度を低下させることができず、張出成形性が低下した。例P-3は熱間圧延の仕上げ温度が高かったため、オーステナイトの異常粒成長が起こり、集合組織の等方化を図ることができず、結果としてフェライトの(111)<112>方位の集積度が低くなり、張出成形性が低下した。例R-3は巻取り温度が高かったため、巻取り後の昇温処理においてパーライト変態が進み、目的とする熱延組織が得られず、結果として最終製品のマルテンサイトにおける(252)<2-11>方位の集積度が高くなり、張出成形性が低下した。
 例C-4は巻き取り後の所定温度での保持時間が長かったため、熱延板に内部酸化物が形成されてしまい、その後の処理において鋼板表面に亀裂が生じてしまった。したがって、組織の分析及び機械特性の評価は行わなかった。例E-4は巻取り温度が低かったため、巻取り後の昇温処理においても目的とする熱延組織が得られず、結果として最終製品のマルテンサイトにおける(252)<2-11>方位の集積度が高くなり、張出成形性が低下した。例I-4は焼鈍温度が低かったため、オーステナイトの生成量が少なく、冷延焼鈍後の組織においてマルテンサイトの組織割合が低下し、さらには未再結晶のフェライトも残り、結果として引張強度及び張出成形性が低下した。例O-4は鋳造工程における圧下が低かったため、フェライトの(111)<112>方位の集積度が低くなり、マルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度が高くなり、結果として張出成形性が低下した。
 これとは対照的に、本発明に係る全ての実施例において、とりわけ鋳造工程において所定の圧下率で圧下を施し、加えて熱間圧延の仕上げ温度、巻き取り、冷間圧延及び焼鈍を適切に制御することにより、高強度でかつ張出成形性に優れた鋼板を得ることができた。
 図1は、例1及び例2におけるDP鋼の張出成形性に与えるフェライトの(111)<112>方位の集積度とマルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度の影響を示す図である。図1から明らかなように、フェライトの(111)<112>方位の集積度を3.0以上に、そしてマルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度を5.0以下に制御することで、張出成形性に優れた鋼板が得られることがわかる。

Claims (3)

  1.  質量%で、
     C:0.05~0.20%、
     Si:0.01~1.30%、
     Mn:1.00~3.00%、
     P:0.0001~0.0200%、
     S:0.0001~0.0200%、
     Al:0.001~1.000%、
     N:0.0001~0.0200%、
     Co:0~0.5000%、
     Ni:0~0.5000%、
     Mo:0~0.5000%、
     Cr:0~1.0000%、
     O:0~0.0200%、
     Ti:0~0.5000%、
     B:0~0.0100%、
     Nb:0~0.5000%、
     V:0~0.5000%、
     Cu:0~0.5000%、
     W:0~0.1000%、
     Ta:0~0.1000%、
     Sn:0~0.0500%、
     Sb:0~0.0500%、
     As:0~0.0500%、
     Mg:0~0.0500%、
     Ca:0~0.0500%、
     Y:0~0.0500%、
     Zr:0~0.0500%、
     La:0~0.0500%、及び
     Ce:0~0.0500%
    を含有し、残部がFe及び不純物からなる化学組成を有し、
     面積率で、
     フェライト及びベイナイトの合計:10.0~90.0%、
     マルテンサイト及び焼戻しマルテンサイトの合計:5.0~80.0%、並びに
     パーライト及び残留オーステナイトの合計:0~15.0%
    を含有し、
     フェライトの(111)<112>方位の集積度が3.0以上であり、
     マルテンサイト及び焼戻しマルテンサイトの(252)<2-11>方位の集積度が5.0以下であることを特徴とする、鋼板。
  2.  Co:0.0001~0.5000%、
     Ni:0.0001~0.5000%、
     Mo:0.0001~0.5000%、
     Cr:0.0001~1.0000%、
     O:0.0001~0.0200%、
     Ti:0.0001~0.5000%、
     B:0.0001~0.0100%、
     Nb:0.0001~0.5000%、
     V:0.0001~0.5000%、
     Cu:0.0001~0.5000%、
     W:0.0001~0.1000%、
     Ta:0.0001~0.1000%、
     Sn:0.0001~0.0500%、
     Sb:0.0001~0.0500%、
     As:0.0001~0.0500%、
     Mg:0.0001~0.0500%、
     Ca:0.0001~0.0500%、
     Y:0.0001~0.0500%、
     Zr:0.0001~0.0500%、
     La:0.0001~0.0500%、及び
     Ce:0.0001~0.0500%
    の1種又は2種以上を含有することを特徴とする、請求項1に記載の鋼板。
  3.  請求項1又は2に記載の化学組成を有する溶鋼を連続鋳造して鋼片を形成する鋳造工程であって、連続鋳造後から室温に冷却するまでの間に800℃以上1200℃未満において5~40%の圧下を施す鋳造工程、
     前記鋼片を熱間圧延することを含み、前記熱間圧延の仕上げ温度が650~950℃である熱間圧延工程、
     得られた熱延鋼板を400~700℃の巻取り温度で巻き取る工程、
     巻き取った熱延鋼板を室温まで冷却せずにそのまま巻取り開始温度+20℃~100℃の温度域に5~300分間保持する工程、
     前記熱延鋼板を10.0~90.0%の圧下率で冷間圧延する冷間圧延工程、及び
     得られた冷延鋼板を700~900℃の温度範囲で焼鈍する焼鈍工程
    を含むことを特徴とする、鋼板の製造方法。
PCT/JP2020/010938 2019-03-29 2020-03-12 鋼板及びその製造方法 WO2020203159A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/434,981 US11732321B2 (en) 2019-03-29 2020-03-12 Steel sheet and method of producing same
CN202080008848.2A CN113286910B (zh) 2019-03-29 2020-03-12 钢板及其制造方法
MX2021010461A MX2021010461A (es) 2019-03-29 2020-03-12 Lamina de acero y metodo de produccion de la misma.
JP2021511358A JP7160184B2 (ja) 2019-03-29 2020-03-12 鋼板及びその製造方法
KR1020217025972A KR102633525B1 (ko) 2019-03-29 2020-03-12 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068535 2019-03-29
JP2019068535 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203159A1 true WO2020203159A1 (ja) 2020-10-08

Family

ID=72668748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010938 WO2020203159A1 (ja) 2019-03-29 2020-03-12 鋼板及びその製造方法

Country Status (6)

Country Link
US (1) US11732321B2 (ja)
JP (1) JP7160184B2 (ja)
KR (1) KR102633525B1 (ja)
CN (1) CN113286910B (ja)
MX (1) MX2021010461A (ja)
WO (1) WO2020203159A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502439A (zh) * 2021-05-31 2021-10-15 武汉钢铁有限公司 一种易加工高强钢及其生产方法
CN113528933A (zh) * 2021-05-31 2021-10-22 武汉钢铁有限公司 一种热连轧复相高强钢及其生产方法
WO2022145068A1 (ja) * 2020-12-28 2022-07-07 日本製鉄株式会社 鋼材
WO2023027528A1 (ko) * 2021-08-26 2023-03-02 주식회사 포스코 우수한 용접성, 강도 및 성형성을 갖는 냉연 강판 및 그 제조방법
WO2023048448A1 (ko) * 2021-09-24 2023-03-30 주식회사 포스코 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855091A (zh) * 2022-05-30 2022-08-05 江苏沃盾耐磨新材料有限公司 一种高韧性耐磨复合板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
JP2013060630A (ja) * 2011-09-13 2013-04-04 Nippon Steel & Sumitomo Metal Corp 耐かじり性に優れた高強度鋼板及びその製造方法
JP2015160984A (ja) * 2014-02-27 2015-09-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2016113789A1 (ja) * 2015-01-15 2016-07-21 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2017145469A (ja) * 2016-02-18 2017-08-24 新日鐵住金株式会社 高強度鋼板の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800902B2 (ja) * 1999-03-19 2006-07-26 Jfeスチール株式会社 面内異方性の小さい加工用高炭素鋼板およびその製造方法
JP2000297349A (ja) 1999-04-13 2000-10-24 Kawasaki Steel Corp 伸びフランジ性と疲労特性に優れる高張力熱延鋼板およびその製造方法
JP3990549B2 (ja) * 2001-06-05 2007-10-17 新日本製鐵株式会社 形状凍結性に優れた高伸びフランジ性鋼板およびその製造方法
JP3907963B2 (ja) * 2001-04-25 2007-04-18 株式会社神戸製鋼所 延性および張り出し成形性に優れる溶融亜鉛めっき鋼板およびその製造方法
JP3996824B2 (ja) * 2002-09-12 2007-10-24 新日本製鐵株式会社 耐低温変態割れ性に優れた液相拡散接合用鋼材
JP4867257B2 (ja) * 2005-09-29 2012-02-01 Jfeスチール株式会社 剛性に優れた高強度薄鋼板およびその製造方法
JP5217395B2 (ja) 2007-11-30 2013-06-19 Jfeスチール株式会社 伸びの面内異方性が小さい高強度冷延鋼板およびその製造方法
JP5504677B2 (ja) 2009-03-31 2014-05-28 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板
JP5304522B2 (ja) 2009-08-03 2013-10-02 新日鐵住金株式会社 加工性に優れた高強度鋼板及びその製造方法
JP5408382B2 (ja) 2011-03-28 2014-02-05 新日鐵住金株式会社 熱延鋼板及びその製造方法
JP5488763B2 (ja) 2011-05-25 2014-05-14 新日鐵住金株式会社 冷延鋼板及びその製造方法
WO2013005714A1 (ja) * 2011-07-06 2013-01-10 新日鐵住金株式会社 冷延鋼板の製造方法
JP5556948B1 (ja) 2013-10-28 2014-07-23 Jfeスチール株式会社 低温用鋼板およびその製造方法
JP6306481B2 (ja) 2014-03-17 2018-04-04 株式会社神戸製鋼所 延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6515281B2 (ja) * 2014-07-11 2019-05-22 日本製鉄株式会社 冷延鋼板およびその製造方法
MX2017009017A (es) 2015-01-09 2018-04-13 Kobe Steel Ltd Lamina de acero chapada de alta resistencia y metodo para su produccion.
JP6093411B2 (ja) 2015-01-09 2017-03-08 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
MX2017010754A (es) * 2015-02-24 2017-11-28 Nippon Steel & Sumitomo Metal Corp Hoja de acero laminada en frio, metodo para fabricar la misma.
JP6620474B2 (ja) * 2015-09-09 2019-12-18 日本製鉄株式会社 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP6811694B2 (ja) * 2017-08-24 2021-01-13 株式会社神戸製鋼所 鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
JP2013060630A (ja) * 2011-09-13 2013-04-04 Nippon Steel & Sumitomo Metal Corp 耐かじり性に優れた高強度鋼板及びその製造方法
JP2015160984A (ja) * 2014-02-27 2015-09-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2016113789A1 (ja) * 2015-01-15 2016-07-21 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2017145469A (ja) * 2016-02-18 2017-08-24 新日鐵住金株式会社 高強度鋼板の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145068A1 (ja) * 2020-12-28 2022-07-07 日本製鉄株式会社 鋼材
CN113502439A (zh) * 2021-05-31 2021-10-15 武汉钢铁有限公司 一种易加工高强钢及其生产方法
CN113528933A (zh) * 2021-05-31 2021-10-22 武汉钢铁有限公司 一种热连轧复相高强钢及其生产方法
WO2023027528A1 (ko) * 2021-08-26 2023-03-02 주식회사 포스코 우수한 용접성, 강도 및 성형성을 갖는 냉연 강판 및 그 제조방법
WO2023048448A1 (ko) * 2021-09-24 2023-03-30 주식회사 포스코 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법

Also Published As

Publication number Publication date
MX2021010461A (es) 2021-09-21
CN113286910B (zh) 2023-03-17
US20220145417A1 (en) 2022-05-12
KR102633525B1 (ko) 2024-02-07
KR20210116563A (ko) 2021-09-27
JPWO2020203159A1 (ja) 2021-10-21
US11732321B2 (en) 2023-08-22
CN113286910A (zh) 2021-08-20
JP7160184B2 (ja) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2020203159A1 (ja) 鋼板及びその製造方法
CN108138277B (zh) 高强度钢板用原材料、高强度钢板及其制造方法
CN107709598B (zh) 高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板
JP4964494B2 (ja) 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法
JP6314520B2 (ja) 引張最大強度1300MPa以上を有する成形性に優れた高強度鋼板、高強度溶融亜鉛めっき鋼板、及び、高強度合金化溶融亜鉛めっき鋼板とそれらの製造方法
US10934600B2 (en) High-strength steel sheet and production method therefor
WO2020203158A1 (ja) 鋼板
JP6777274B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
US10472697B2 (en) High-strength steel sheet and production method therefor
JP6750772B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
US11035019B2 (en) High-strength steel sheet and production method therefor
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
JP6777272B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
WO2020262652A1 (ja) 鋼板
JP6750771B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP7464887B2 (ja) 鋼板およびその製造方法
JP7440800B2 (ja) 鋼板及びその製造方法
WO2023032339A1 (ja) 鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511358

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217025972

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783492

Country of ref document: EP

Kind code of ref document: A1