WO2023048448A1 - 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법 - Google Patents

표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023048448A1
WO2023048448A1 PCT/KR2022/014012 KR2022014012W WO2023048448A1 WO 2023048448 A1 WO2023048448 A1 WO 2023048448A1 KR 2022014012 W KR2022014012 W KR 2022014012W WO 2023048448 A1 WO2023048448 A1 WO 2023048448A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolled steel
cold
strength
less
Prior art date
Application number
PCT/KR2022/014012
Other languages
English (en)
French (fr)
Inventor
류주현
김성일
서창효
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202280063315.3A priority Critical patent/CN118019871A/zh
Publication of WO2023048448A1 publication Critical patent/WO2023048448A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet used for structural members having a large amount of molding, such as pillars, seat rails, and members of automobile bodies, and a method for manufacturing the same, and more particularly, automotive parts having excellent surface quality and low material variation. It relates to a high-strength cold-rolled steel sheet that can be suitably used for and a manufacturing method thereof.
  • High-strength steels used in conventional automobile bodies include DP (Dual Phase) steel composed of a soft ferrite matrix and hard martensite two-phase, TRIP (Transformation Induced Plasticity) steel using transformation-induced plasticity of retained austenite, or ferrite and hard steel.
  • DP Dual Phase
  • TRIP Transformation Induced Plasticity
  • CP Complexed Phase steel composed of a complex structure of bainite or martensite.
  • the surface defect due to the dent in the furnace refers to a surface defect of the steel sheet formed by contact between the steel sheet and the roll during sheet passing, in which metal-based oxides on the surface of the steel sheet are adsorbed and accumulated on the annealing furnace rolls.
  • Patent Document 1 discloses a process of cold rolling a hot-rolled steel sheet containing a low-temperature transformation phase of 60% or more by volume at a cold reduction ratio of more than 60% and less than 80%, and ferrite and austenite steel sheets after cold rolling.
  • a high-strength cold-rolled steel sheet and its manufacturing method are presented through a continuous annealing process in the second phase.
  • the cold-rolled steel sheet obtained from Patent Document 1 has a low strength of 370 to 590 MPa, so it is difficult to apply to an automobile shock-resistant member and has a problem that it is limited only to the use of inner and outer panels.
  • Patent Document 2 discloses a method of manufacturing a cold-rolled steel sheet having high strength and high ductility at the same time by utilizing a tempered martensite phase and having excellent sheet shape after continuous annealing.
  • the technology of Patent Document 2 has a problem of poor weldability due to a high carbon content of 0.2% or more in the steel, and a problem of surface defects due to dents in the furnace due to a large amount of Si.
  • Patent Document 1 Korean Patent Publication No. 2004-0066935
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2010-090432
  • the present invention is intended to provide a high-strength cold-rolled steel sheet with excellent surface quality and low material variation and a manufacturing method thereof.
  • C 0.05 to 0.3%
  • Si 0.01 to 2.0%
  • Mn 1.5 to 3.0%
  • Al 0.01 to 0.1%
  • P 0.001 to 0.015%
  • S 0.001 to 0.01%
  • N 0.001 to 0.001% 0.01%
  • microstructure As a microstructure, by area%, ferrite: 50% or more, balance: including bainite and martensite,
  • a high-strength cold-rolled steel sheet having an average number of surface defects satisfying at least one condition of a depth of 100 ⁇ m or more and a short side length of 1 mm or more is less than 10/m 2 .
  • Another aspect of the present invention is,
  • C 0.05 to 0.3%
  • Si 0.01 to 2.0%
  • Mn 1.5 to 3.0%
  • Al 0.01 to 0.1%
  • P 0.001 to 0.015%
  • S 0.001 to 0.01%
  • N 0.001 to 0.001% Reheating a steel slab containing 0.01%, the balance Fe and other unavoidable impurities, and satisfying a value defined by the following relational expression 1 of 0.6 or more and less than 0.9 to 1100 to 1350 ° C;
  • the winding step is controlled so that the surface temperature (Te) of both ends in the width direction meets 601 to 700 ° C and the surface temperature (Tc) of the central portion meets 450 to 600 ° C, based on the entire width of the steel sheet.
  • Te surface temperature
  • Tc surface temperature
  • Example 1 shows pictures taken with a general low-magnification camera of surface defects of each cold-rolled steel sheet obtained from Inventive Example 1 and Comparative Example 1 of the present invention.
  • Figure 2 shows a photograph taken with a high-magnification scanning cell microscope (SEM) of the surface defect defined in the present invention.
  • the inventors of the present invention conducted intensive studies to provide a cold-rolled steel sheet that satisfies all of the above-described characteristics while solving the problems of the prior art. As a result, the composition and manufacturing conditions of the steel sheet were optimized, and the microstructure and surface defects were controlled By doing so, it was found that the above object can be achieved and the present invention has been completed.
  • the product of tensile strength and elongation satisfies 12,000 MPa% or more even though it has a high strength of 780 MPa or more, so that a structure such as a filler that requires a stable strength-elongation balance and shock absorption among parts constituting an automobile body
  • a high-strength cold-rolled steel sheet that can be suitably applied to member parts can be effectively provided.
  • C 0.05 to 0.3%
  • Si 0.01 to 2.0%
  • Mn 1.5 to 3.0%
  • Al 0.01 to 0.1%
  • P 0.001 to 0.015%
  • S 0.001 to 0.01%
  • N 0.001 to 0.01%
  • the balance including Fe and other unavoidable impurities.
  • the carbon (C) is a very important component in securing a martensitic structure effective in strengthening steel.
  • the martensite phase and bainite phase fractions increase, resulting in an increase in tensile strength. Therefore, in order to secure high strength, the lower limit of the C content is controlled to 0.05%.
  • the fraction of the martensite phase and bainite phase which are hard phases, increases by expanding the austenite region during the two-phase annealing, and the fraction of the ferrite phase, which is a soft phase, decreases, resulting in poor formability and poor weldability. It happens. Therefore, the upper limit of the C content is controlled to 0.3%.
  • the lower limit of the C content may be 0.06%, or the upper limit of the C content may be 0.12%.
  • the silicon (Si) is an element advantageous for deoxidizing molten steel, having a solid solution strengthening effect, and delaying the formation of coarse carbides to improve formability.
  • Si content is less than 0.01%, it is difficult to improve formability due to the small effect described above.
  • Si content exceeds 2.0%, red scale due to Si is severely formed on the surface of the steel sheet during hot rolling. Accordingly, surface defects are generated, or non-plating occurs due to concentration on the surface during the annealing process.
  • the plating adhesion is inferior due to the formation of surface oxide, and the surface quality is very poor. Therefore, in the present invention, the Si content is controlled to 0.01 to 2.0%.
  • the lower limit of the Si content may be 0.4%, or the upper limit of the Si content may be 1.2%.
  • the aluminum (Al) is a component mainly added for deoxidation. If the Al content is less than 0.01%, the addition effect is insufficient. On the other hand, when the Al content exceeds 0.1%, AlN is formed in combination with nitrogen, so that corner cracks are likely to occur in the slab during cast casting, and defects due to inclusion formation are likely to occur. Therefore, in the present invention, the Al content is controlled to 0.01 to 0.1%. On the other hand, in terms of further improving the above effects, more preferably, the lower limit of the Al content may be 0.015%, or the upper limit of the Al content may be 0.06%.
  • the phosphorus (P) is an alloying element having a very large solid solution strengthening effect, and is characterized in that a large strengthening effect can be obtained even with a small content.
  • P phosphorus
  • brittleness occurs due to grain boundary segregation, and fine cracks easily occur during molding, greatly deteriorating ductility and impact resistance.
  • the upper limit of the P content is controlled to 0.015%.
  • the manufacturing cost is excessively required to meet this, which is not only economically disadvantageous, but also the strength obtained is insufficient, so the lower limit of the P content is controlled to 0.001% or more.
  • the P content it is preferable to control the P content to 0.001 to 0.015%.
  • the lower limit of the P content may be 0.003%, or the upper limit of the P content may be 0.012%.
  • S Sulfur
  • the S content is an impurity present in steel, and when the S content exceeds 0.01%, it combines with Mn to form non-metallic inclusions. Accordingly, it is easy to generate fine cracks during cutting and processing of steel, and the elongation flange property and impact resistance are improved. There is a problem that is greatly aggravating.
  • the S content in order to manufacture the S content to be less than 0.001%, there is a problem in that productivity is reduced due to the long time required during steelmaking operation. Therefore, in the present invention, it is preferable to control the S content to 0.001 to 0.01%.
  • the lower limit of the S content may be 0.002%, or the upper limit of the S content may be 0.007%.
  • N Nitrogen
  • the solid solution strengthening effect of N is superior to that of carbon, but as the amount of N in steel increases, there is a problem in that toughness decreases significantly.
  • the lower limit of the N content may be 0.002%, and the upper limit of the N content may be 0.006%.
  • the cold-rolled steel sheet by weight%, Cr: 1.0% or less (including 0%), Mo: 0.2% or less (including 0%) and B : 0.005% or less (including 0%) may further include one or more selected from among.
  • Cr 1.0% or less
  • Mo 0.2% or less
  • B 0.005% or less
  • Chromium (Cr) is a component added to improve the hardenability of steel and secure high strength, and is an element that plays a very important role in the formation of martensite. It is advantageous. Therefore, the Cr may be selectively added for the above effect. However, when the Cr content exceeds 1.0%, the aforementioned effect is saturated, and there is a problem in that cold rolling property deteriorates due to an excessive increase in hot rolling strength. In addition, since the martensite fraction greatly increases after annealing, there is a problem of reducing the elongation, so the upper limit of the Cr content is controlled to 1.0% or less. On the other hand, in terms of further improving the above-mentioned effect, more preferably, the lower limit of the Cr content may be 0.01%, or the upper limit of the Cr content may be 0.8%.
  • Molybdenum (Mo) is an element that suppresses pearlite formation and increases hardenability. Therefore, in order to secure the above effect, Mo may be selectively added in the present invention. However, when the Mo content exceeds 0.2%, the strength improvement effect is not greatly increased, but the ductility is deteriorated, which may be economically disadvantageous. Therefore, the Mo content is preferably controlled to 0.2% or less. On the other hand, in terms of further improving the above-mentioned effect, more preferably, the lower limit of the Mo content may be 0.01%, or the upper limit of the Mo content may be 0.1%.
  • B Boron
  • the B when present in a solid solution state in steel, has an effect of improving brittleness of steel in a low temperature range by stabilizing grain boundaries, and greatly increases hardenability of steel. Therefore, the B may be selectively added for the above effect.
  • the upper limit of B exceeds 0.005%, recrystallization is delayed during annealing, and oxide is formed on the surface, resulting in poor plating properties. Therefore, it is preferable to control the content of B to 0.005% or less.
  • the lower limit of the B content may be 0.0003%, or the upper limit of the B content may be 0.0025%.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • unintended impurities may inevitably be mixed due to raw materials or surrounding environmental variables in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary steel manufacturing process, not all of them are specifically mentioned in this specification.
  • the high-strength cold-rolled steel sheet may have a value defined by the following relational expression 1 of 0.6 or more and less than 0.9, thereby minimizing the material deviation of the cold-rolled steel sheet and suppressing the occurrence of surface defects to achieve the desired result. material can be obtained.
  • the relational expression 1 is an expression representing the hardenability of the steel material according to the composition of the present invention, and the coefficient in front of each element quantitatively represents the scale that the corresponding element contributes to the hardenability.
  • the hardenability of the steel is high, it is advantageous to secure hard low-temperature transformation phases such as bainite and martensite phases, contributing to strength improvement, and when the hardenability is low, ferrite transformation is promoted, which is disadvantageous in securing strength.
  • the value defined by the relational expression 1 in order to secure high strength of 780 MPa or more of tensile strength (TS), which is the target in the present invention, the value defined by the relational expression 1 must satisfy 0.6 or more.
  • the value defined by the relational expression 1 when the value defined by the relational expression 1 is 0.9 or more, the strength is excessively high, resulting in deterioration of elongation.
  • the value defined by the relational expression 1 is 0.9 or more, the phase transformation of ferrite is greatly delayed in the step of cooling the hot-rolled steel sheet to 450 to 700 ° C. at an average cooling rate of 10 to 70 ° C. / s immediately after hot rolling.
  • the value defined by the relational expression 1 it is preferable to control the value defined by the relational expression 1 to satisfy 0.6 or more and less than 0.9.
  • the lower limit of the value defined by the relational expression 1 may be 0.62, or the upper limit of the value defined by the relational expression 1 may be 0.84.
  • the high-strength cold-rolled steel sheet includes ferrite: 50% or more, balance: bainite and martensite, in area%.
  • ferrite 50% or more
  • balance: bainite and martensite in area%.
  • the microstructures if ferrite is less than 50%, there is a problem of poor formability due to insufficient elongation. Also, the remainder may be 50% or less as bainite and martensite. If the sum of the bainite and martensite exceeds 50%, there is a problem in that the strength is too high and the elongation is insufficient.
  • the microstructure of the high-strength cold-rolled steel sheet is, in area %, ferrite: 50 to 85% and bainite and martensite Total: May contain 15-50%.
  • the microstructure of the high-strength cold-rolled steel sheet may include, more preferably, ferrite: 66 to 75% in area %.
  • the microstructure of the high-strength cold-rolled steel sheet may include bainite: 3-7%, and/or martensite: 19- may contain 31%.
  • bainite 3-7%
  • martensite 19- may contain 31%.
  • the bainite is less than 3%
  • a problem may occur that the target strength is not met, and if it exceeds 7%, the strength is high but the elongation is low.
  • the martensite is less than 19%, a problem may occur that the target strength is not reached, and if it exceeds 31%, the strength is high but the elongation is low.
  • the average number of surface defects that satisfy at least one condition of a depth of 100 ⁇ m or more and a short side length of 1 mm or more is less than 10 / m 2 (0 / m 2 included).
  • the condition of 'depth is 100 ⁇ m or more' or 'short side length is 1 mm or more' is only a sufficient criterion for measuring the average number of surface defects. do.
  • the upper limit values of the aforementioned depth and short side length are not particularly limited.
  • a surface defect means a defect having a groove shape, and specifically, a defect in the form of a depression in the thickness direction, and refers to a defect that can be confirmed when the surface of the steel sheet is observed with the naked eye.
  • the depth of the surface defect is the 'maximum depth' in the thickness direction of the groove-shaped defect, based on the cross section in the thickness direction of the cold-rolled steel sheet (ie, on a cross-sectional basis, meaning a direction perpendicular to the rolling direction).
  • the short side length of the surface defect may mean the shortest length passing through the point where the maximum depth is obtained based on the surface of the cold-rolled steel sheet.
  • the inventors of the present invention have been intensively researched to provide a cold-rolled steel sheet capable of solving the problems of the prior art and minimizing surface defects and material variations while securing desired levels of strength and formability.
  • the above effect can be secured by controlling the average number of surface defects satisfying at least one of the aforementioned depth of 100 ⁇ m or more and short side length of 1 mm or more to less than 10/m 2 . That is, in the present invention, if the average number of surface defects is 10/m 2 or more, surface dents may occur. On the other hand, in terms of further improving the above-described effect, preferably, the average number of the above-described surface defects may be 8/m 2 or less.
  • the present inventors are conducting additional research to provide a cold-rolled steel sheet capable of securing desired levels of strength and formability at the same time without affecting material variation, even if surface defects exist on the surface of the steel sheet. repeated.
  • surface defect characteristics of a level that does not affect material variation or the like were additionally discovered.
  • the maximum depth of the surface defect may satisfy 500 ⁇ m or less. In this case, the maximum depth of the surface defect may mean the maximum value of the depth of each surface defect existing on the surface of the steel sheet.
  • the difference between the yield strength (YS) of both ends and the central portion may be 100 MPa or less.
  • the 'both ends' refers to a 30% section (total: corresponding to 60%) from both ends based on the total width (referred to as 100%) in the width direction of the cold-rolled steel sheet, and the 'central part' refers to the cold-rolled steel sheet Based on the entire width in the width direction of the steel sheet, it may mean the remaining 40% section excluding the both ends.
  • the cold-rolled steel sheet may have a tensile strength (TS) of 780 MPa or more, preferably 780 MPa or more and less than 1180 MPa, and more preferably 800 MPa or more and 1100 MPa or less. If the tensile strength of the cold-rolled steel sheet is less than 780 MPa, there may be a problem of not satisfying the target strength required for the applied part, and if it exceeds 1100 MPa, cracks may occur during molding of the part or the impact resistance of the part may be significantly reduced. .
  • TS tensile strength
  • the yield strength (YS) of the cold-rolled steel sheet may be 380 MPa or more, more preferably 390 MPa or more and 650 MPa or less. If the yield strength of the cold-rolled steel sheet is less than 380 MPa, a problem of deteriorating collision resistance of the part may occur, and if it exceeds 650 MPa, a problem of deterioration in formability may occur.
  • the cold-rolled steel sheet has a product of tensile strength and elongation of 12,000 MPa% or more (more preferably, 12,000 MPa% or more and 16,500 MPa% or less, most preferably 12,000 MPa% or more and 16,200 MPa%). below).
  • the cold-rolled steel sheet may further include a plating layer formed on a surface thereof.
  • the plating layer may be formed by a plating process to be described later.
  • the composition of the plating layer can be applied differently depending on the purpose, it is not particularly limited in the present specification, and a zinc-based plating layer and the like can be cited as an example.
  • the manufacturing method of the cold-rolled steel sheet according to the present invention does not necessarily mean that it must be manufactured by the following manufacturing method.
  • a steel slab meeting the above composition is reheated to 1100-1350°C.
  • the composition of the steel slab is the same as that of the above-mentioned cold-rolled steel sheet, and at this time, the description of the cold-rolled steel sheet described above is equally applied to the reason for adding each component and the reason for limiting the content of each component in the steel slab.
  • the reheating temperature of the steel slab is less than 1100 ° C., alloy elements segregated in the center of the slab remain, and the starting temperature of hot rolling is too low, causing a problem that the rolling load becomes severe.
  • the reheating temperature of the steel slab exceeds 1350° C.
  • a problem in that strength is lowered due to coarsening of austenite crystal grains occurs. Therefore, in the present invention, it is preferable to control the reheating temperature of the steel slab to 1100 to 1350 ° C.
  • the reheated steel slab is hot rolled at 850 to 1150 ° C.
  • the temperature of the hot rolling exceeds 1150° C.
  • the temperature of the hot-rolled steel sheet increases, resulting in a coarse grain size and deterioration in surface quality of the hot-rolled steel sheet.
  • the temperature of the hot rolling is less than 850 ° C., due to the development of elongated grains due to excessive recrystallization delay, the load during rolling increases and the temperature at both ends decreases significantly, resulting in an uneven microstructure during cooling, resulting in increased material deviation. And formability is also deteriorated.
  • the hot-rolled steel sheet is cooled to 450 to 700°C at an average cooling rate of 10 to 70°C/s (more preferably, 20 to 50°C/s).
  • an average cooling rate 10 to 70°C/s (more preferably, 20 to 50°C/s).
  • hot-rolled oxides increase and are adsorbed to the rolls during annealing, resulting in accumulation of oxides on the rolls, and friction between the steel sheet and the rolls during sheet passing, causing surface defects such as dent defects on the surface of the steel sheet. do.
  • the hot-rolled oxide remains on the steel sheet, plating quality and plating adhesion are deteriorated during plating of the steel sheet.
  • the hot-rolled steel sheet with large material variation not only deteriorates in shape during cold rolling, but also causes material variation by position in the width direction even in the final annealed material, so the present inventors have conducted intensive research to solve the above-mentioned problem. As a result, a manufacturing method of differently controlling the temperature of both ends and the central part in the winding step has been sought.
  • the surface temperature (Te) of both ends in the width direction based on the entire width of the steel sheet during the winding is controlled to satisfy 601 to 700 ° C, and the surface temperature (Tc) of the central portion to meet 450 to 600 ° C.
  • the 'width direction of the steel sheet' means a direction perpendicular to the transport direction of the steel sheet based on the surface of the steel sheet.
  • the Te is less than 601 ° C, there is a problem that material deviation due to overcooling of both ends is intensified, and if the Te exceeds 700 ° C, there is a problem that material deviation and surface defects are intensified due to deterioration of the central part.
  • the Tc is less than 450 ° C, the temperature difference between the central part and both ends becomes severe, resulting in a problem of material deviation, and if the Tc exceeds 600 ° C, the temperature of the central part is too high, resulting in material deviation and surface defects.
  • the cooling water injected at both ends may be blocked before reaching the steel sheet, or the amount of cooling water injected may be controlled differently , or both methods may be combined.
  • the amount of cooling water injected onto both ends in the width direction is higher than the injection amount of the cooling water injected into the central portion excluding the both ends.
  • the amount of cooling water can be controlled to be larger.
  • the winding step is the surface temperature of the both ends and the surface temperature of the central part
  • the difference (Te-Tc) can be 150 ° C or less.
  • the value of Te-Tc exceeds 150 ° C.
  • the lower limit may not be separately limited, and may be preferably 0°C.
  • the lower limit of the Te-Tc value may be 50°C
  • the upper limit of the Te-Tc value may be 90°C.
  • the above-described winding step may optionally be moved into a heat-retaining cover and maintained at a temperature of 400 to 500° C. for 6 hours or more.
  • the winding step by maintaining in the heat-retaining cover for a long time, when the steel sheet is maintained at a temperature in the range of 601 to 700 ° C and 450 to 600 ° C, respectively, both ends and the center in the width direction of the steel plate for a long time, both ends and the center of the coil lengthwise.
  • a large amount of uniformly formed bainite structure is excellent in shape quality, and it is possible to manufacture a cold-rolled steel sheet having a uniform thickness with a small rolling load during cold rolling.
  • the surface temperature of the steel sheet can be adjusted to 400 to 500°C.
  • the surface temperature of the steel sheet is less than 400 ° C, the above-mentioned effect cannot be secured, and if it exceeds 500 ° C, coarse carbides are formed locally and hot-rolled oxides increase, thereby increasing the formability and surface of the steel. Quality may deteriorate.
  • the holding time in the heat insulating cover is less than 6 hours, material deviation may occur, and the upper limit of the holding time in the heat insulating cover is not particularly limited, but may be 8 hours or less as an example.
  • the rolled steel sheet can be stored in the heat-retaining cover within 90 minutes immediately after winding, and if the time before being accommodated in the heat-retaining cover exceeds 90 minutes, due to excessive air cooling
  • the range of 450 to 600 ° C. may not be satisfied due to supercooling occurring in the central portion in the width direction.
  • air cooling or water cooling may be additionally performed to room temperature after the step of maintaining the heat insulating cover.
  • the coiled steel sheet is subjected to cold rolling at a cold rolling reduction of 40 to 70%. If the cold reduction ratio is less than 40%, it is difficult to secure the target thickness and it is difficult to correct the shape of the steel sheet. On the other hand, if it exceeds 70%, cracks at the edge of the steel sheet are likely to occur and the cold rolling load is There is a problem to come. Therefore, in the present invention, it is preferable to limit the cold rolling reduction to 40 to 70%.
  • the cold-rolled steel sheet is continuously annealed at 740 to 900 ° C. If the annealing temperature is less than 740 ° C, non-recrystallization may occur, resulting in insufficient strength and elongation, and if the annealing temperature exceeds 900 ° C, surface oxide may occur. On the other hand, in terms of further improving the above-mentioned effect, more preferably the annealing temperature may be 750 ⁇ 850 °C.
  • the continuous annealing step optionally primary cooling to 650 ⁇ 700 °C at a cooling rate of 1 ⁇ 10 °C / sec; After the primary cooling step, secondary cooling at a cooling rate of 11 to 20 °C/sec from Ms-100 °C to Ms+100 °C; may be further included.
  • an overaging step may be further included while selectively maintaining a constant temperature. the primary cooling step; Strength and elongation can be further improved by satisfying the conditions of the secondary cooling step and overaging step.
  • the Ms means the starting temperature at which martensite is generated when the steel sheet is cooled after annealing, and from the following relational expression 2 can be saved
  • a step of plating preferably, hot-dip galvanizing
  • the cold-rolled steel sheet may be further included, and a coated steel sheet may be obtained by performing the plating.
  • a steel slab satisfying the composition of Table 1 below was reheated at 1200 ° C, hot rolled at 900 ° C, cooled to 450 to 700 ° C at a cooling rate of 20 to 50 ° C / s, and then wound.
  • the surface temperature (Te) of the steel sheet at both ends of the 30% section from both ends and the surface temperature (Tc) of the remaining 40% of the central portion of the steel sheet are as follows, based on the total width of the steel sheet in the width direction
  • the amount of cooling water injected into the central portion excluding the both ends was controlled to be greater than the amount of cooling water injected onto both end portions in the width direction of the steel sheet.
  • the rolled hot-rolled steel sheet was moved into the heat-retaining cover and controlled to satisfy the average temperature and holding time before and after charging into the cover as conditions for the heat-retaining cover described in Table 2 below. Subsequently, the hot-rolled steel sheet is cold-rolled at a cold rolling reduction of 50%, continuously annealed at 800°C, followed by primary cooling at an average cooling rate of 8°C/s to 670°C, and then average cooling rate up to Ms+100°C. A cold-rolled steel sheet was obtained by secondary cooling at 12°C/s.
  • the average number of surface defects is obtained by visually observing the surface of the manufactured steel sheet and measuring the average number of surface defects that satisfy at least one condition of a depth of 100 ⁇ m or more and a short side length of 1 mm or more.
  • the maximum depth of the surface defect was measured in the same manner as described herein.
  • the yield strength was measured in the same manner as described above, and the material deviation in the width direction was measured and shown in Tables 4 and 5 below. was
  • Comparative Examples 1 to 16 that do not satisfy at least one of the composition and manufacturing conditions of the present invention, material variation is poor, surface defects occur, and / or it is difficult to secure desired physical properties in the present invention.
  • Comparative Steel 1 did not satisfy Relational Expression 1 because the amount of Si added exceeded 2.0%. Therefore, in the case of Comparative Examples 13 and 14 using Comparative Steel 1, even if the material deviation is good by satisfying the manufacturing conditions presented in the present invention, a dent problem occurs due to the accumulation of Si oxide in the annealing furnace, resulting in product surface defects. There was a problem that the average number exceeded the target value.
  • Comparative Steel 2 did not satisfy Relational Equation 1 because the amount of added alloy was small. Therefore, in the case of Comparative Examples 15 and 16 using Comparative Steel 2, even though surface defects and material variation were good by satisfying the manufacturing conditions presented in the present invention, the tensile strength was less than 780 MPa and did not satisfy the target material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은, 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 표면 결함이 적고 재질 편차가 적으면서도, 높은 강도 및 연신율을 확보하여 자동차용 부품에 적합하게 사용될 수 있는 고강도 냉연강판 및 이의 제조방법에 관한 것이다.

Description

표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
본 발명은 자동차 차체의 필러, 시트 레일 및 멤버 등의 성형량이 많은 구조 부재에 사용되는 고강도 냉연강판 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 표면 품질이 우수하고 재질 편차가 적어, 자동차용 부품에 적합하게 사용될 수 있는 고강도 냉연강판 및 이의 제조방법에 관한 것이다.
최근, 자동차 산업은 안전 및 환경에 대한 규제가 강화되고 있어, 차량의 연비 향상과 승객의 보호를 위해 차체를 제조할 때 인장강도 780MPa급 이상의 고강도강의 사용이 증가하고 있다.
종래의 자동차 차체에 사용되는 고강도강은 연질의 페라이트 기지와 경질의 마르텐사이트 2상으로 구성된 DP(Dual Phase)강, 잔류 오스테나이트의 변태유기 소성을 이용한 TRIP(Transformation Induced Plasticity)강 혹은 페라이트와 경질의 베이나이트 또는 마르텐사이트의 복합 조직으로 구성되는 CP(Complexed Phase)강 등이 있었다.
그러나, 고강도강에 있어서, Si, Al, Mn 등이 다량 첨가된 경우에는 용접성이 열위하고, 소둔 시 로내 덴트에 의한 강판의 표면 결함이 발생하는 문제가 있다. 또한, Mn, Cr, Mo 등의 경화능 원소가 다량 첨가된 경우에는 열연 코일의 재질 편차가 발생하여 냉간 압연 시, 두께 품질이 악화되는 문제가 있다. 이 때, 로내 덴트에 의한 표면 결함은 강판 표면의 금속계 산화물이 소둔로 롤에 흡착 및 집적되어, 통판 시 강판과 롤의 접촉으로 형성되는 강판의 표면 결함을 의미한다.
상기와 같은 문제를 해결하기 위한 고강도 냉연강판 및 용융 아연 도금강판의 제조기술과 관련된 선행 기술의 내용을 간략히 설명하면 다음과 같다.
종래 기술 중, 특허문헌 1은, 체적율로, 60% 이상의 저온 변태상을 포함하는 열연강판을 냉간 압하율 60% 초과 80% 미만으로 냉간 압연하는 공정과, 냉간 압연 후의 강판을 페라이트 및 오스테나이트 2상역에서 연속 소둔하는 공정을 통하여 고강도 냉연강판 및 그 제조 방법을 제시하고 있다. 그러나, 특허문헌 1로부터 얻어지는 냉연강판은 강도가 370~590MPa 수준으로 낮아, 자동차 내충격 부재에 적용이 어렵고 내외판 패널(Panel)의 용도로만 한정되는 문제가 있었다.
또한, 특허문헌 2는, 템퍼드 마르텐사이트(tempered martensite)상을 활용하여 고강도와 고연성을 동시에 얻고, 연속 소둔 후의 판 형상도가 우수한 냉연강판을 제조하는 방법을 개시하고 있다. 그런데, 특허문헌 2의 기술은 강 중, 탄소의 함량이 0.2% 이상으로 높아 용접성이 열위한 문제 및 Si의 다량 함유로 인하여 로내 덴트에 의한 표면 결함이 발생하는 문제가 있었다.
(특허문헌 1) 한국 공개특허공보 제2004-0066935호
(특허문헌 2) 일본공개특허공보 제2010-090432호
본 발명의 일 측면에 따르면, 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조방법을 제공하고자 한다.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.
본 발명의 일 측면은,
중량%로, C: 0.05∼0.3%, Si: 0.01∼2.0%, Mn: 1.5∼3.0%, Al: 0.01∼0.1%, P: 0.001∼0.015%, S: 0.001∼0.01%, N: 0.001∼0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
하기 관계식 1로 정의되는 값은 0.6 이상 0.9 미만을 충족하고,
미세 조직으로서, 면적%로, 페라이트: 50% 이상, 잔부: 베이나이트 및 마르텐사이트를 포함하고,
깊이가 100㎛ 이상 및 단변 길이가 1㎜ 이상 중 하나 이상의 조건을 충족하는 표면 결함의 평균 개수는 10개/m2 미만인, 고강도 냉연강판을 제공한다.
[관계식 1]
C + (1.3×Si+Mn)/6 + (Cr+1.2×Mo)/5 + 100×B
(상기 관계식 1에 있어서, 상기 C, Si, Mn, Cr, Mo 및 B는 각 원소에 대한 중량% 평균 함량을 나타낸다. 또한, 상기 각 원소가 미첨가되는 경우에는 0을 대입한다.)
본 발명의 또 다른 일 측면은,
중량%로, C: 0.05∼0.3%, Si: 0.01∼2.0%, Mn: 1.5∼3.0%, Al: 0.01∼0.1%, P: 0.001∼0.015%, S: 0.001∼0.01%, N: 0.001∼0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1로 정의되는 값이 0.6 이상 0.9 미만을 충족하는 강 슬라브를 1100~1350℃로 재가열하는 단계;
상기 재가열된 강 슬라브를 850~1150℃에서 열간압연하는 단계;
상기 열간압연된 강판을 450~700℃까지 평균 냉각속도 10~70℃/s로 냉각하는 단계;
상기 냉각된 강판의 450~700℃에서 권취하는 단계;
상기 권취된 강판을 40~70%의 압하율로 냉간압연하는 단계; 및
상기 냉간압연된 강판을 740~900℃에서 연속 소둔하는 단계;
를 포함하고,
상기 권취하는 단계는 강판의 전체 폭을 기준으로, 폭방향으로 양단부의 표면 온도(Te)가 601~700℃를 충족하고, 중앙부의 표면 온도(Tc)가 450~600℃를 충족하도록 제어하는, 고강도 냉연강판의 제조방법을 제공한다.
[관계식 1]
C + (1.3×Si+Mn)/6 + (Cr+1.2×Mo)/5 + 100×B
(상기 관계식 1에 있어서, 상기 C, Si, Mn, Cr, Mo 및 B는 각 원소에 대한 중량% 평균 함량을 나타낸다. 이 때, 상기 각 원소가 미첨가되는 경우에는 0을 대입한다.)
본 발명의 일 측면에 따르면, 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법을 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 발명예 1 및 비교예 1로부터 얻어지는 각 냉연강판의 표면 결함을 일반 저배율 카메라로 촬영한 사진을 나타낸 것이다.
도 2는 본 발명에서 정의한 표면 결함을 고배율의 주사 전지 현미경(SEM)으로 촬영한 사진을 나타낸 것이다.
이하, 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있고, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
한편, 본 명세서에서 사용되는 용어는 특정 실시예를 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 예를 들어, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다. 또한, 명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것이 아니다.
종래 기술에서는 인장강도(TS) 780MPa 이상의 고강도이고 성형성이 우수하여 성형량이 많은 구조 부재에도 적용 가능하면서도, 표면 품질이 우수하고 재질 편차가 적은 냉연 강판에 대한 고급의 수요를 충족하는 기술은 개발되지 않은 실정이다.
이에, 본 발명자들은 종래 기술의 문제점을 해결하면서도, 전술한 특성을 모두 충족하는 냉연강판을 제공하고자 예의 검토를 행한 결과, 강판의 조성 및 제조조건을 최적화하고, 미세조직 및 표면 결함의 특성을 제어함으로써, 전술한 목적을 달성 가능함을 발견하고 본 발명을 완성하기에 이르렀다.
즉, 본 발명에 의하면, 780MPa 이상의 고강도이면서도, 인장강도와 연신율의 곱이 12,000MPa% 이상을 충족하여, 자동차 차체를 구성하는 부품들 중 안정적인 강도-연신율의 밸런스와 충격 흡수성이 요구되는 필러 등의 구조부재 부품에 적합하게 적용할 수 있는 고강도 냉연강판을 효과적으로 제공할 수 있다.
이하, 본 발명의 일 측면에 따른 표면 품질이 우수하고 재질 편차가 적은 고강도 강판에 대하여 자세히 설명한다.
본 발명의 일 측면에 따른 고강도 냉연강판은, 중량%로, C: 0.05∼0.3%, Si: 0.01∼2.0%, Mn: 1.5∼3.0%, Al: 0.01∼0.1%, P: 0.001∼0.015%, S: 0.001∼0.01%, N: 0.001∼0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함한다.
이하에서는 본 발명에 따른 냉연강판의 성분 첨가 이유와 함량 한정 이유에 대하여 구체적으로 설명한다. 이 때, 본 명세서에 있어서, 각 원소의 함량을 나타낼 때에는 특별히 달리 정하지 않는 한, 중량%를 나타낸다.
C: 0.05∼0.3%
상기 탄소(C)는 강을 강화시키는데 효과적인 마르텐사이트 조직을 확보하는 데 있어, 매우 중요한 성분이다. C의 첨가량이 증가하면, 마르텐사이트상 및 베이나이트상 분율이 증가하여 인장강도가 증가하게 된다. 따라서, 고강도 확보를 위해, 상기 C 함량의 하한은 0.05%로 제어한다. 하지만, C 함량이 증가하면, 2상역 소둔 시 오스테나이트 영역을 확장함으로써 경질상인 마르텐사이트상 및 베이나이트상 분율은 증가하고, 연질상인 페라이트상 분율은 감소하여 성형성이 열위하게 되며, 용접성도 열위해진다. 따라서, 상기 C 함량의 상한은 0.3%로 제어한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 C 함량의 하한은 0.06%일 수 있고, 혹은 상기 C 함량의 상한은 0.12%일 수 있다.
Si: 0.01~2.0%
상기 실리콘(Si)은 용강을 탈산시키고 고용 강화 효과가 있고, 조대한 탄화물 형성을 지연시켜서 성형성을 향상시키는 데에 유리한 원소이다. 그러나, 상기 Si 함량이 0.01% 미만이면, 전술한 효과가 적어 성형성을 향상시키기 어렵다. 반면, 상기 Si 함량이 2.0%를 초과하면, 열간압연 시 강판 표면에 Si에 의한 붉은 색 스케일이 심하게 형성된다. 이에 따라 표면 결함이 발생하거나, 소둔 공정 중 표면에 농화되어 미도금이 발생하게 된다. 뿐만 아니라, 표면 산화물의 형성으로 도금 밀착성도 열위하게 되어, 표면 품질이 매우 나빠지는 문제점이 있다. 따라서, 본 발명에 있어서, Si의 함량을 0.01~2.0%로 제어한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 Si 함량의 하한은 0.4%일 수 있고, 혹은 상기 Si 함량의 상한은 1.2%일 수 있다.
Mn: 1.5~3.0%
상기 망간(Mn)은 Si과 마찬가지로 강을 고용 강화시키는데 효과적인 원소로서, 경화능을 크게 증가시키는 원소이다. 다만, Mn 함량이 1.5% 미만이면, 첨가에 따른 전술한 효과를 얻을 수 없고, Mn 함량이 3.0%를 초과하면, 강화 효과가 크게 증가하고 연성이 감소하게 된다. 또한, 연주 공정에서 슬라브 주조 시 두께 중심부에서 편석부가 크게 발달되고, 열연 후 냉각 시에는 두께 방향으로의 미세 조직을 불균일하게 하고, MnS를 형성하여 신장 플랜지성 등의 성형성이 열위해진다. 따라서, 본 발명에 있어서, Mn의 함량을 1.5~3.0%로 제어한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 Mn 함량의 하한은 1.8%일 수 있고, 혹은 상기 Mn 함량의 상한은 2.6%일 수 있다.
Al: 0.01∼0.1%
상기 알루미늄(Al)은 주로 탈산을 위하여 첨가하는 성분이다. 상기 Al 함량이 0.01% 미만이면, 그 첨가 효과가 부족하다. 반면, 상기 Al 함량이 0.1%를 초과하면, 질소와 결합하여 AlN이 형성되어 연주 주조 시 슬라브에 코너 크랙이 발생하기 쉬우고, 개재물 형성에 의한 결함이 발생하기 쉽다. 따라서, 본 발명에 있어서, Al의 함량을 0.01~0.1%로 제어한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 Al 함량의 하한은 0.015%일 수 있고, 혹은 상기 Al 함량의 상한은 0.06%일 수 있다.
P: 0.001∼0.015%
상기 인(P)는 고용 강화 효과가 매우 큰 합금 원소로서 적은 함량으로도 큰 강화 효과를 얻을 수 있는 특징이 있다. 그러나, P를 과도하게 첨가하면, 입계 편석에 의한 취성이 발생하고, 성형 시 미세한 균열이 발생하기 쉽고 연성과 내충격 특성을 크게 악화시킨다. 또한, 도금 시 표면에 결함을 유발하는 문제도 있다. 따라서, P 함량의 상한을 0.015%로 제어한다. 한편, 상기 P 함량이 0.001% 미만이면, 이를 충족시키기 위해 제조비용이 과도하게 요구되어 경제적으로 불리할 뿐만 아니라, 확보되는 강도도 불충분해지므로, P 함량의 하한을 0.001% 이상으로 제어한다. 따라서, 본 발명에서는 상기 P 함량을 0.001~0.015%로 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 P 함량의 하한은 0.003%일 수 있고, 혹은 상기 P 함량의 상한은 0.012%일 수 있다.
S: 0.001∼0.01%
상기 황(S)는 강 중에 존재하는 불순물로서, S 함량이 0.01%를 초과하면, Mn 등과 결합하여 비금속 개재물을 형성하고, 이에 따라 강의 절단 가공 시 미세한 균열이 발생하기 쉽고 신장 플렌지성과 내충격성이 크게 악화되는 문제가 있다. 또한, 상기 S 함량을 0.001% 미만이 되도록 제조하기 위해서는, 제강 조업 시 시간이 많이 소요되어 생산성이 떨어지는 문제가 있다. 따라서, 본 발명에 있어서, S 함량을 0.001~0.01%로 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 S 함량의 하한은 0.002%일 수 있고, 혹은 상기 S 함량의 상한은 0.007%일 수 있다.
N: 0.001∼0.01%
상기 질소(N)는 C와 함께 대표적인 고용 강화 원소이고, Ti 및 Al 등 과 함께 조대한 석출물을 형성하는 데 기여한다. 일반적으로, N의 고용 강화 효과는 탄소보다 우수하지만, 강 중에 N의 양이 증가될수록 인성이 크게 떨어지는 문제점이 있다. 또한 N 함량을 0.001% 미만이 되도록 제조하기 위해서는, 제강 조업 시 시간이 많이 소요되어 생산성이 떨어지는 문제가 있다. 따라서, 본 발명에 있어서, N 함량을 0.001~0.01%로 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 N 함량의 하한은 0.002%일 수 있고, 상기 N 함량의 상한은 0.006%일 수 있다.
한편, 본 발명의 일 측면에 따르면, 특별히 한정하는 것은 아니나, 선택적으로, 상기 냉연강판은 중량%로, Cr: 1.0% 이하(0% 포함), Mo: 0.2% 이하 (0% 포함) 및 B: 0.005% 이하 (0% 포함) 중에서 선택된 1종 이상을 더 포함할 수 있다. 이하에서는 상기 선택적 첨가 원소의 첨가 이유 및 함량 한정 이유에 대하여 설명한다.
Cr: 1.0% 이하 (0% 포함)
크롬(Cr)은 강의 경화능을 향상시키고 고강도를 확보하기 위해 첨가되는 성분으로서, 마르텐사이트 형성에 매우 중요한 역할을 하는 원소이고, 강도 상승 대비 연신율 하락을 최소화시켜 고연성을 갖는 복합 조직강의 제조에도 유리하다. 따라서, 전술한 효과를 위해 상기 Cr을 선택적으로 첨가할 수 있다. 다만, 상기 Cr 함량이 1.0%를 초과하면, 전술한 효과가 포화될 뿐만 아니라, 과도한 열연 강도 증가로 냉간 압연성이 열화는 문제가 있다. 또한, 소둔 후 마르텐사이트 분율이 크게 증가하여 연신율 저하를 초래하는 문제가 있으므로, Cr 함량의 상한을 1.0% 이하로 제어한다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 Cr 함량의 하한은 0.01%일 수 있고, 혹은 상기 Cr 함량의 상한은 0.8%일 수 있다.
Mo: 0.2% 이하 (0% 포함)
몰리브덴(Mo)는 펄라이트 형성을 억제하고, 경화능을 증가시키는 원소이다. 따라서, 전술한 효과를 확보하기 위해, 본 발명에서는 선택적으로 Mo을 첨가할 수 있다. 다만, Mo 함량이 0.2%를 초과하면, 강도의 향상 효과는 크게 증가하지 않은 반면, 연성이 악화되어 경제적으로도 불리해질 수 있다. 따라서, 상기 Mo의 함량은 0.2% 이하로 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 Mo 함량의 하한은 0.01%일 수 있고, 혹은 상기 Mo 함량의 상한은 0.1%일 수 있다.
B: 0.005% 이하 (0% 포함)
보론(B)은 강 중 고용 상태로 존재할 경우에 결정립계를 안정시켜 저온역에서의 강의 취성을 개선하는 효과가 있고, 강의 경화능을 크게 증가시킨다. 따라서, 전술한 효과를 위해 상기 B을 선택적으로 첨가할 수 있다. 다만, 상기 B의 상한이 0.005%를 초과하면, 소둔시 재결정을 지연시키며 표면에 산화물을 형성하여 도금성을 열위하게 한다. 따라서, 상기 B의 함량은 0.005% 이하로 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 B 함량의 하한은 0.0003%일 수 있고, 혹은 상기 B 함량의 상한은 0.0025%일 수 있다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료나 주위 환경 변수로 인해 의도하지 않은 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에, 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명의 일 측면에 따르면, 상기 고강도 냉연강판은, 하기 관계식 1로 정의되는 값은 0.6 이상 0.9 미만일 수 있고, 이를 충족함으로써 냉연강판의 재질 편차를 최소화하고, 표면 결함의 발생을 억제하여 목적하는 재질을 확보할 수 있다.
[관계식 1]
C + (1.3×Si+Mn)/6 + (Cr+1.2×Mo)/5 + 100×B
(상기 관계식 1에 있어서, 상기 C, Si, Mn, Cr, Mo 및 B는 각 원소에 대한 중량% 평균 함량을 나타낸다. 이 때, 상기 각 원소가 미첨가되는 경우에는 0을 대입한다.)
본 발명에 있어서, 상기 관계식 1은 본 발명의 조성에 의한 강재의 경화능(Hardenability)를 나타내는 식이고, 각 원소 앞의 계수는 해당 원소가 경화능에 기여하는 척도를 정량적으로 나타낸 것이다. 강재의 경화능이 크면 베이나이트상과 마르텐사이트상 같은 경질의 저온 변태상의 확보에 유리하여 강도 향상에 기여하고, 경화능이 낮을수록 페라이트 변태가 촉진되어 강도 확보에 불리하다.
특히, 본 발명에 있어서 목표로 하는 인장강도(TS) 780MPa 이상의 고강도를 확보하기 위해서는, 상기 관계식 1로부터 정의되는 값이 0.6 이상을 충족해야 한다. 반면, 상기 관계식 1로부터 정의되는 값이 0.9 이상이면 강도가 지나치게 높아져서 연신율이 악화되는 문제가 있다. 뿐만 아니라, 상기 관계식 1로부터 정의되는 값이 0.9 이상이면, 열간압연 직후 열연강판을 450~700℃까지 평균 냉각 속도 10~70℃/s로 냉각하는 단계에서 페라이트의 상변태가 크게 지연된다. 이에 따라, 이후 권취하는 단계에서 열연강판 내 베이나이트상 중 경도가 높은 하부 베이나이트상과 마르텐사이트상이 지나치게 많이 형성되어, 폭 방향으로의 위치에 따른 재질 편차가 심해지고 형상이 악화된다. 따라서, 본 발명에서는 상기 관계식 1로 정의되는 값이 0.6 이상 0.9 미만을 충족하도록 제어하는 것이 바람직하다. 한편, 전술한 효과를 보다 극대화하는 측면에서, 상기 관계식 1로부터 정의되는 값의 하한은 0.62일 수 있고, 혹은 상기 관계식 1로부터 정의되는 값의 상한은 0.84일 수 있다.
한편, 본 발명의 일 측면에 따르면, 상기 고강도 냉연강판은, 미세조직으로서, 면적%로, 페라이트: 50% 이상, 잔부: 베이나이트 및 마르텐사이트를 포함한다. 상기 미세조직 중에, 페라이트가 50% 미만이면, 연신율이 부족하여 성형성이 열위한 문제가 있다. 또한, 잔부는 베이나이트 및 마르텐사이트로서 50% 이하일 수 있다. 상기 베이나이트 및 마르텐사이트의 합계가 50%를 초과하면, 강도가 지나치게 높고 연신율이 부족한 문제가 있다.
혹은, 본 발명의 일 측면에 따르면, 특별히 한정하는 것은 아니나, 연신율 및 성형성의 개선 측면에서, 상기 고강도 냉연강판의 미세조직은, 면적%로, 페라이트: 50~85% 및 베이나이트와 마르텐사이트의 합계: 15~50%를 포함할 수 있다.
상기 고강도 냉연강판 중에, 페라이트가 85%를 초과하면 목표한 강도에 미달하는 문제가 생길 수 있고, 상기 베이나이트와 마르텐사이트의 합계가 15% 미만이면 목표한 강도에 미달하는 문제가 생길 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 고강도 냉연강판의 미세조직은, 보다 바람직하게, 면적%로, 페라이트: 66~75%를 포함할 수 있다.
또한, 본 발명의 일 측면에 따르면, 특별히 한정하는 것은 아니나, 상기 고강도 냉연강판의 미세조직은, 면적%로, 베이나이트: 3~7%를 포함할 수 있고, 및/또는 마르텐사이트: 19~31%를 포함할 수 있다. 상기 고강도 냉연강판 중에, 베이나이트가 3% 미만이면 목표한 강도에 미달하는 문제가 생길 수 있고, 7%를 초과하면 강도가 높으나 연신율이 낮은 문제가 생길 수 있다. 혹은, 상기 고강도 냉연강판 중에, 마르텐사이트가 19% 미만이면 목표한 강도에 미달하는 문제가 생길 수 있고, 31%를 초과하면 강도가 높으나 연신율이 낮은 문제가 생길 수 있다.
본 발명의 일 측면에 따르면, 상기 고강도 냉연강판은, 깊이가 100㎛ 이상 및 단변 길이가 1㎜ 이상 중 하나 이상의 조건을 충족하는 표면 결함의 평균 개수는 10개/m2 미만(0 개/m2 포함)이다. 상기 표면 결함의 평균 개수를 측정함에 있어서, '깊이가 100㎛ 이상'이거나, '단변 길이가 1㎜ 이상'이라는 조건은, 표면 결함의 평균 개수를 측정하기 위한 충족하기면 하면 충분한 판단 기준에 불과하다. 따라서, 본 명세서에 있어서, 전술한 깊이 및 단변 길이에 관한 각각의 상한 값은 특별히 한정하지 않는다.
본 발명에 있어서, 표면 결함은 홈 형상을 가진 결함을 의미하고, 구체적으로는 두께 방향으로 옴폭 페인 형태의 결함으로서 강판 표면을 육안으로 관찰하였을 때 확인 가능한 결함을 말한다. 또한, 상기 표면 결함의 깊이는, 냉연 강판에 대한 두께 방향 단면(즉, 단면 기준으로, 압연방향에 수직인 방향을 의미)을 기준으로, 홈 형상의 결함에 대한 두께 방향으로의 '최고 깊이'를 의미할 수 있다. 또한, 상기 표면 결함의 단변 길이는, 냉연 강판에 대한 표면을 기준으로, 상기 최고 깊이가 되는 지점을 지나는 최단 길이를 의미할 수 있다. 한편, 전술한 강판의 표면에 존재하는 홈 형상의 표면 결함을 관찰하고, 각 표면 결함에 대한 깊이와 단변 길이를 확인하기 위하여, 고배율의 주사 전자 현미경(SEM)을 이용하여 촬영한 사진을 도 2에 나타내었다.
본 발명자들은 종래 기술의 문제점을 해결하고, 목적하는 수준의 강도 및 성형성을 확보하면서도, 표면 결함 및 재질 편차를 최소화할 수 있는 냉연강판을 제공하고자 예의 연구를 거듭하였다.
그 결과, 전술한 깊이가 100㎛ 이상 및 단변 길이가 1㎜ 이상 중 하나 이상의 조건을 충족하는 표면 결함의 평균 개수를 10개/m2 미만으로 제어함으로써, 전술한 효과를 확보 가능함을 발견하였다. 즉, 본 발명에 있어서, 상기 표면 결함의 평균 개수가 10개/m2 이상이면, 표면 덴트가 발생하는 문제가 생길 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서 바람직하게는, 전술한 표면 결함의 평균 개수가 8개/m2 이하일 수 있다.
한편, 본 발명의 일 측면에 따르면, 본 발명자들은 강판 표면에 표면 결함이 존재하더라도, 재질 편차 등에 영향을 주지 않고, 목적하는 수준의 강도 및 성형성을 동시 확보 가능한 냉연 강판을 제공하고자 추가적인 연구를 거듭하였다. 그 결과, 본 발명에서 표면 결함이 존재하더라도 재질 편차 등에 영향을 주지 않는 수준의 표면 결함 특성을 추가적으로 발견하였다. 구체적으로, 본 발명에서 특별히 한정하는 것은 아니나, 상기 표면 결함의 최대 깊이는 500㎛ 이하를 충족할 수 있다. 이 때, 상기 표면 결함의 최대 깊이는, 강판의 표면에 존재하는 각 표면 결함들에 대한 깊이의 최대값을 의미할 수 있다.
한편, 본 발명의 일 측면에 따르면, 상기 냉연강판의 폭 방향으로, 양단부와, 중앙부의 항복강도(YS)의 차가 100MPa 이하일 수 있다. 상기 양단부와 중앙부의 항복강도의 차가 100MPa 이하를 충족함으로써, 폭 방향으로의 재질 편차가 저감된 강판을 제공할 수 있고, 폭 방향으로 재질이 균일한 효과가 있다. 이 때, 상기 '양단부'란, 냉연강판의 폭 방향으로 전체 폭(100%라 함)을 기준으로 양 말단에서부터 30% 구간(총합: 60%에 해당)을 말하고, 상기 '중앙부'란, 냉연강판의 폭 방향으로 전체 폭을 기준으로, 상기 양단부를 제외한 나머지 40% 구간을 의미할 수 있다.
한편, 본 발명의 일 측면에 따르면, 상기 냉연강판은 인장강도(TS)가 780MPa 이상일 수 있고, 바람직하게는 780MPa 이상 1180MPa 미만이고, 보다 바람직하게는 800MPa 이상 1100MPa 이하일 수 있다. 상기 냉연강판의 인장강도가 780MPa 미만이면 적용 부품에 필요한 목표 강도를 만족시키지 못하는 문제가 생길 수 있고, 1100MPa을 초과하면 부품 성형 중 크랙이 발생하거나 부품의 내충격 흡수성이 현저히 감소하는 문제가 생길 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 냉연강판은 항복강도(YS)가 380MPa 이상일 수 있고, 보다 바람직하게는 390MPa 이상 650MPa 이하일 수 있다. 상기 냉연강판의 항복강도가 380MPa 미만이면 부품의 내충돌성이 악화되는 문제가 생길 수 있고, 650MPa을 초과하면 성형성이 악화되는 문제가 생길 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 냉연강판은 인장강도와 연신율의 곱이 12,000 MPa% 이상(보다 바람직하게는, 12,000MPa% 이상 16,500MPa% 이하, 가장 바람직하게는 12,000MPa% 이상 16,200MPa% 이하)일 수 있다. 전술한 물성을 충족함으로써, 자동차 차체를 구성하는 부품 중 안정적인 강도-연신율 밸런스와 충격 흡수성이 요구되는 필러 등의 구조 부재 부품에 적합하게 적용 가능한 효과를 확보할 수 있다.
특별히 한정하는 것은 아니나, 선택적으로 상기 냉연강판은 표면에 형성된 도금층을 더 포함할 수 있다. 이 때, 상기 도금층은 후술하는 도금 공정에 의해 형성될 수 있다. 또한, 상기 도금층의 조성은 목적에 따라 다르게 적용 가능하므로, 본 명세서에서는 특별히 한정하지 않고, 일례로서 아연계 도금층 등을 들 수 있다.
이하, 본 발명의 일 측면에 따른 고강도 냉연강판의 제조방법을 상세히 설명한다. 다만, 본 발명에 따른 냉연강판의 제조방법이 반드시 이하의 제조방법에 의해 제조되어야 함을 의미하는 것은 아니다.
강 슬라브 재가열 단계
전술한 조성을 충족하는 강 슬라브를 1100~1350℃로 재가열한다. 상기 강 슬라브의 조성은 전술한 냉연강판의 조성과 동일하고, 이 때 강 슬라브에 있어서 각 성분의 첨가 이유 및 함량 한정 이유에 대해서는 전술한 냉연강판에 대한 설명을 동일하게 적용한다. 한편, 상기 강 슬라브의 재가열 온도가 1100℃ 미만이면, 슬라브의 중심부의 편석된 합금 원소가 잔존하고, 열간압연의 개시 온도가 너무 낮아 압연 부하가 심해지는 문제가 생긴다. 반면, 상기 강 슬라브의 재가열 온도가 1350℃를 초과하면, 오스테나이트 결정립의 조대화로 인해 강도가 저하되는 문제가 생긴다. 따라서, 본 발명에 있어서, 강 슬라브의 재가열 온도는 1100~1350℃로 제어하는 것이 바람직하다.
열간압연 단계
상기 재가열된 강 슬라브를 850~1150℃에서 열간압연한다. 상기 열간압연의 온도가 1150℃를 초과하면, 열연강판의 온도가 높아져 결정립 크기가 조대해지고 열연강판의 표면 품질이 악화된다. 상기 열간압연의 온도가 850℃미만이면, 지나친 재결정 지연에 의해 연신된 결정립의 발달로 인해, 압연 시 부하가 증가하고 양단부의 온도가 크게 감소하여 냉각 시 불균일한 미세조직이 형성되므로 재질편차가 증가하고 성형성도 악화된다.
열간압연 후, 냉각 단계
상기 열간압연된 강판을 450~700℃까지 평균 냉각속도 10~70℃/s(보다 바람직하게는, 20~50℃/s)로 냉각한다. 상기 열간압연된 강판의 냉각온도가 450℃ 미만이면 재질 편차가 악화하는 문제가 생기고, 700℃를 초과하면 재질 편차가 발생할 뿐만 아니라, 열연 내부 산화가 생겨 표면 결함 발생의 문제가 생긴다. 또한, 상기 평균 냉각속도가 10℃/s 미만이면, 기지조직의 결정립이 조대해지고 미세조직이 불균일해지는 문제가 생긴다. 또한, 평균 냉각속도가 70℃/s를 초과하면, 베이나이트상과 마르텐사이트상이 형성되기 쉬워져서, 냉간압연 시 부하가 증가하는 문제가 있다.
권취 단계
상기 냉각된 강판의 450~700℃에서 권취한다. 상기 권취 온도가 450℃ 미만으로 냉각하여 권취되면 강 중 베이나이트상과 마르텐사이트상이 불필요하게 형성되어 형상이 불균일하고 냉간압연시 압연부하가 크게 증가한다. 700℃를 초과하여 권취되면 페라이트 결정립이 커지고 조대한 펄라이트상이 형성되기 쉬워져 소둔 시 불균일한 미세조직이 형성되어 강의 성형성이 열위한 문제가 있다. 뿐만 아니라, 열연 산화물이 증가하여 소둔시 롤에 흡착되어 롤에 산화물이 집적하게 되고, 강판의 통판시에 강판과 롤의 마찰로 인하여 강판의 표면에 덴트 결함과 같은 표면 결함을 유발하는 문제가 발생한다. 또한 열연 산화물이 강판에 잔류하는 경우 강판의 도금 시에 도금품질 및 도금 밀착성의 열위를 초래한다.
통상적으로, 권취 이후, 권취된 강판(코일)의 폭 방향으로의 양단부는 주변 분위기 노출로 인해 냉각이 빠르게 진행되고, 폭 방향으로의 중앙부는 냉각이 느리게 진행된다. 이로 인해, 권취 단계에서부터 강판의 폭 방향으로 냉각 편차가 발생하고, 이로 인해 권취된 강판의 위치별로 미세조직에 차이가 발생하여 결국 열연강판에 대한 재질 편차가 발생하게 된다. 이러한 재질 편차가 큰 열연강판은 냉간압연을 수행하는 과정에서, 재질 편차가 심화될 뿐만 아니라, 열연강판에서 육안으로 관찰되지 않았던 홈 형상의 표면 결함이 냉간압연을 거친 후에 더 심화되어, 표면 결함이 크게 발생하는 문제가 생긴다. 즉, 재질 편차가 큰 열연강판은 냉간압연 시에 형상이 열위해질 뿐만 아니라, 최종 소둔재에서도 폭 방향으로의 위치 별로, 재질 편차를 유발하므로 본 발명자들은 전술한 문제를 해결하기 위해 예의 연구를 행한 결과, 권취 단계에서 양단부 및 중앙부의 온도를 다르게 제어하는 제조방법을 강구하기에 이르렀다.
구체적으로, 본 발명에서는, 강판의 폭 방향으로의 재칠 편차를 저감하고, 표면 결함을 억제하기 위한 방법으로서, 상기 권취 시, 강판의 전체 폭을 기준으로, 폭 방향으로 양단부의 표면 온도(Te)가 601~700℃를 충족하고, 중앙부의 표면 온도(Tc)가 450~600℃를 충족하도록 제어한다. 이 때, 상기 '강판의 폭 방향'이라 함은, 강판의 표면을 기준으로 강판의 이송 방향에 수직인 방향을 의미한다. 또한, 상기 양단부 및 중앙부에 대해서는, 전술한 설명을 동일하게 적용한다.
이 때, 상기 Te가 601℃ 미만이면, 양단부의 과냉에 의한 재질 편차가 심화되는 문제가 있고, 상기 Te가 700℃를 초과하면 중앙부의 열화에 의한 재질 편차 및 표면 결함이 심화되는 문제가 있다. 또한, 상기 Tc가 450℃ 미만이면, 중앙부와 양단부 사이의 온도 차가 심해져 재질 편차가 악화하는 문제가 있고, 상기 Tc가 600℃를 초과하면 중앙부의 온도가 너무 높아 재질 편차 및 표면 결함이 발생하는 문제가 있다.
이렇듯, 전술한 권취 단계에서, 강판의 폭 방향으로의 양단부의 표면 온도와 중앙부의 표면 온도를 다르게 제어하기 위해서는, 다양한 방법을 적용 가능하므로 이를 특별히 한정하지는 않는다. 예를 들어, 상기 권취 시, 강판의 양단부 및 중앙부의 온도를 다르게 제어하기 위하여, 권취 전 냉각 단계에서, 양단부에 주수되는 냉각수가 강판에 도달하기 전에 차단하거나, 주수되는 냉각수량를 다르게 제어할 수 있고, 혹은 2가지 방법을 병행할 수도 있다. 일례로서, 본 발명의 일 측면에 따르면, 상기 권취 전 냉각하는 단계에서, 강판의 전체 폭을 기준으로, 폭방향으로 양단부 상에 주입되는 냉각수의 주수량보다, 상기 양단부를 제외한 중앙부 상에 주입되는 냉각수의 주수량이 더 크도록 제어할 수 있다.
또한, 본 발명의 일 측면에 따르면, 특별히 한정하는 것은 아니나, 추가적으로 재질 편차를 저감하고 표면 결함을 억제하는 효과를 보다 향상시키는 측면에서, 상기 권취하는 단계는 상기 양단부의 표면 온도와 중앙부의 표면 온도의 차(Te-Tc)를 150℃ 이하로 할 수 있다. 이 때, 상기 Te-Tc의 값이 150℃를 초과하면 폭 방향 재질 편차가 악화하는 문제가 생길 수 있다. 다만, 상기 Te-Tc로부터 계산되는 온도 편차는 적으면 적을수록 바람직하므로 그 하한은 별도로 한정하지 않을수 있고, 바람직하게는 0℃일 수 있다. 한편, 보다 바람직하게는 상기 Te-Tc의 값의 하한은 50℃일 수 있고, 상기 Te-Tc의 값의 상한은 90℃일 수 있다.
보열 커버 내 유지 단계
전술한 권취 단계 이후, 선택적으로, 보열 커버 내로 이동시켜 400~500℃ 범위에서 6시간 이상 유지할 수 있다. 권취 단계 이후, 보열 커버 내에서 장시간 유지함으로써, 강판의 폭 방향으로의 양단부 및 중앙부의 온도가 각각 601~700℃ 및 450~600℃ 범위의 온도에서 강판이 장시간 유지되면, 코일 전장으로 양단부 및 중앙부에 베이나이트 조직이 다량 균일하게 형성되어 형상품질이 우수하고, 냉간압연 시 압연부하가 적고 균일한 두께를 갖는 냉연강판을 제조할 수 있다.
보열 커버 내 유지 단계에서, 강판의 표면 온도를 400~500℃로 조절할 수 있다. 이 때, 보열 커버 내 유지 단계에서, 강판의 표면 온도가 400℃ 미만이면 전술한 효과를 확보할 수 없고, 500℃를 초과하면 국부적으로 조대한 탄화물이 형성되고 열연 산화물이 증가하여 강의 성형성과 표면 품질이 악화될 수 있다.
또한, 상기 보열 커버 내 유지 시간이 6시간 미만이면 재질 편차가 발생하는 문제가 생길 수 있고, 상기 보열 커버 내 유지 시간이 상한은 특별히 한정하지 않으나, 일례로서 8시간 이하일 수 있다.
추가적으로, 전술한 효과를 보다 향상시키는 측면에서, 상기 권취된 강판은 권취 직후 90분 이내에 상기 보열 커버 내로 수납될 수 있고, 상기 보열 커버 내로 수납되기 전의 시간이 90분을 초과하면, 과도한 공냉으로 인해 폭 방향으로의 중앙부에 과냉이 발생하여 450~600℃의 범위를 충족하지 못할 수 있다. 혹은, 상기 보열 커버 내 유지 단계 이후에 추가적으로, 상온까지 공냉 또는 수냉을 실시할 수 있다.
냉간압연 단계
상기 권취된 강판을 40~70%의 냉간 압하율로 냉간압연을 실시한다. 상기 냉간 압하율이 40% 미만이면 목표로 하는 두께를 확보하기 어려울 뿐만 아니라 강판의 형상교정이 어려운 반면, 70%를 초과하게 되면 강판 에지(edge)부의 크랙이 발생할 가능성이 높고 냉간압연 부하를 가져오는 문제점이 있다. 따라서 본 발명에서는 상기 냉간압하율을 40~70%로 제한하는 것이 바람직하다.
소둔 단계
상기 냉간압연된 강판을 740~900℃에서 연속 소둔한다. 상기 소둔 온도가 740℃ 미만이면, 미재결정이 되어 강도 및 연신율이 미달하는 문제가 생길 수 있고, 소둔 온도가 900℃를 초과하면, 표면 산화물이 발생하는 문제가 생길 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서, 보다 바람직하게 상기 소둔 온도는 750~850℃로 할 수 있다.
추가로, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 연속 소둔하는 단계 이후, 선택적으로 650~700℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 단계; 상기 1차 냉각하는 단계 이후, Ms-100℃ 내지 Ms+100℃까지 11~20℃/초의 냉각속도로 2차 냉각하는 단계;를 더 포함할 수 있다. 또한, 상기 2차 냉각하는 단계 이후에, 선택적으로 온도를 일정하게 유지하면서 과시효시키는 단계를 더 포함할 수 있다. 상기 1차 냉각 단계; 2차 냉각 단계 및 과시효 단계의 조건을 충족함으로써, 강도 및 연신율을 보다 향상시킬 수 있다. 이 때, 상기 Ms는 소둔 후 강판의 냉각 시 마르텐사이트가 생성되는 시작 온도를 의미하고, 하기 관계식 2로부터 구할 수 있다.
[관계식 2]
Ms = 539-423×C-30.4×Mn-12.1×Cr-17.7×Ni-7.5×Mo
(상기 관계식 2에 있어서, 상기 C, Mn, Cr, Ni, Mo는 각 원소에 대한 중량% 평균 함량을 나타낸다. 또한, 상기 각 원소가 미첨가되는 경우에는 0을 대입한다.)
또한, 본 발명의 일 측면에 따르면, 선택적으로, 냉연강판을 도금(바람직하게는, 용융 아연 도금)하는 단계를 더 포함할 수 있고, 상기 도금을 수행함으로써 도금 강판을 얻을 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허 청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
하기 표 1의 조성을 충족하는 강 슬라브를 1200℃에서 재가열하고, 900℃에서 열간압연한 후, 450~700℃까지 20~50℃/s의 냉각 속도로 냉각한 후 권취하였다. 이 때, 상기 권취 시에는 강판의 폭 방향으로의 전체 폭을 기준으로, 양 말단에서부터 30% 구간의 양단부의 강판 표면 온도(Te)와, 나머지 40%의 중앙부의 강판 표면 온도(Tc)가 하기 표 2에 기재된 열연 조건을 충족하도록, 강판의 폭방향으로 양단부 상에 주입되는 냉각수의 주수량보다, 상기 양단부를 제외한 중앙부 상에 주입되는 냉각수의 주수량이 더 크게 제어하였다. 또한, 상기 권취된 열연강판을 보열 커버 내로 이동시켜서, 하기 표 2에 기재된 보열 커버 조건으로서, 커버 내로의 장입 전후 평균 온도 및 유지 시간을 충족하도록 제어하였다. 이어서, 열연강판에 냉간 압하율 50%로 냉간압연하고, 800℃에서 연속 소둔을 수행한 후, 670℃까지 평균 냉각 속도 8℃/s로 1차 냉각한 후, Ms+100℃까지 평균 냉각 속도 12℃/s로 2차 냉각함으로써, 냉연강판을 얻었다.
이렇게 얻어진 각 냉연강판에 대하여, 발명예 및 비교예의 미세조직, 기계적 성질 및 표면에서 관찰한 단위 면적당 표면 결함의 평균 개수(개/m2)를 측정하여 하기 표 3~5에 나타내었다. 이 때, YS, TS 및 El은 각각 0.2% off-set 항복강도, 인장강도, 및 파괴연신율을 의미하고, JIS5호 규격 시험편을 압연방향의 직각 방향으로 중앙부와 양단부에서 각각 시편 채취하여 시험한 결과을 나타낸 것이다. 또한, 전술한 미세조직은 주사 전자 현미경(FE-SEM)을 활용하였고, 3,000~5,000배율에서 관찰한 사진으로 면적%를 측정한 결과이다. 또한, 표면 결함의 평균 개수는 제조된 강판의 표면을 육안으로 관찰하여, 깊이가 100㎛ 이상 및 단변 길이가 1㎜ 이상 중 하나 이상의 조건을 충족하는 표면 결함의 평균 개수를 측정한 것이다. 특히, 상기 표면 결함에 대한 최대 깊이를 본 명세서에서 설명한 방법과 동일하게 측정하였다. 또한, 냉연강판의 폭 방향으로의 중앙부 및 양단부에서 채취된 시편에 대하여, 전술한 것과 동일한 방법으로 항복강도를 측정하였고, 이들에 대한 폭방향으로의 재질 편차를 측정하여 하기 표 4 및 5에 나타내었다.
[표 1]
Figure PCTKR2022014012-appb-img-000001
[표 2]
Figure PCTKR2022014012-appb-img-000002
[표 3]
Figure PCTKR2022014012-appb-img-000003
[표 4]
Figure PCTKR2022014012-appb-img-000004
[표 5]
Figure PCTKR2022014012-appb-img-000005
상기 표 1~5의 실험 결과로부터 확인할 수 있듯이, 본 발명의 조성 및 제조 조건을 충족하는 발명예 1~6의 경우, 780MPa 이상의 인장강도(TS)를 확보 가능하면서도, 재질 편차 및 표면 결함을 억제한 냉연강판을 얻을 수 있었다. 이 때, 본원 발명예 1~6으로부터 얻어지는 냉연강판에서 측정되는 표면 결함의 최대 깊이는 500㎛ 이하를 충족함을 확인하였다.
반면, 본 발명의 조성 및 제조 조건 중 하나 이상을 충족하지 못하는 비교예 1~16의 경우, 재질 편차가 열위하거나, 표면 결함이 발생하거나, 및/또는 본 발명에서 목적하는 물성을 확보하기 어려웠다.
특히, 상기 비교강 1은 Si 첨가량이 2.0%를 초과하고, 관계식 1을 만족하지 못하였다. 따라서, 상기 비교강 1을 사용한 비교예 13 및 14의 경우, 본 발명에서 제시하는 제조 조건을 충족하여 재질 편차는 양호하더라도, 소둔로 내 Si 산화물 집적에 의한 덴트 문제가 발생하여, 제품 표면 결함의 평균 개수가 목표치를 초과하는 문제가 있었다.
또한, 상기 비교강 2는 합금 첨가량이 적어 관계식 1을 만족하지 못하였다. 따라서, 상기 비교강 2를 사용한 비교예 15 및 16의 경우, 본 발명에서 제시하는 제조 조건을 충족하여 표면 결함 및 재질편차가 양호하더라도, 인장강도가 780MPa 미만으로 목표 재질을 만족하지 못하였다.
또한, 비교예 1, 5, 9의 경우, 폭 방향으로의 양단부 및 중앙부의 온도가 본발명에서 제시하는 온도보다 높게 제조한 예를 나타내고, 상기 비교예 4, 8, 12의 경우, 보열 커버의 온도가 기준 온도를 초과한 예를 나타낸다. 이에 따라, 상기 비교예들에서는, 열연 산화물이 과다하게 생성되고, 해당 산화물에 기인하여 최종 강판의 표면 결함이 다량 발생하였다.
또한, 비교예 2, 6, 10의 경우, 폭 방향으로의 양단부 및 중앙부의 온도가 본 발명에서 제시하는 온도보다 낮고, 해당 양단부의 표면 온도와 중앙부의 표면 온도의 차(Te-Tc)가 150℃를 초과한 예를 나타내고, 상기 비교예 3, 7, 11의 경우, 보열 커버를 적용하지 않는 예를 나타낸다. 이에 따라, 상기 비교예들에서는, 목표로 하는 소둔 강판의 재질을 확보할 수 있고, 표면 결함의 평균 개수는 양호하였으나, 소둔 강판의 폭방향 항복강도의 편차가 목표 값인 100MPa를 초과하는 문제가 있었다.

Claims (13)

  1. 중량%로, C: 0.05∼0.3%, Si: 0.01∼2.0%, Mn: 1.5∼3.0%, Al: 0.01∼0.1%, P: 0.001∼0.015%, S: 0.001∼0.01%, N: 0.001∼0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    하기 관계식 1로 정의되는 값은 0.6 이상 0.9 미만을 충족하고,
    미세 조직으로서, 면적%로, 페라이트: 50% 이상, 잔부: 베이나이트 및 마르텐사이트를 포함하고,
    깊이가 100㎛ 이상 및 단변 길이가 1㎜ 이상 중 하나 이상의 조건을 충족하는 표면 결함의 평균 개수는 10개/m2 미만인, 고강도 냉연강판.
    [관계식 1]
    C + (1.3×Si+Mn)/6 + (Cr+1.2×Mo)/5 + 100×B
    (상기 관계식 1에 있어서, 상기 C, Si, Mn, Cr, Mo 및 B는 각 원소에 대한 중량% 평균 함량을 나타낸다. 또한, 상기 각 원소가 미첨가되는 경우에는 0을 대입한다.)
  2. 청구항 1에 있어서,
    상기 미세 조직은, 면적%로, 페라이트: 50~85% 및 베이나이트와 마르텐사이트의 합계: 15~50%를 포함하는, 고강도 냉연강판.
  3. 청구항 1에 있어서,
    상기 미세 조직은, 면적%로, 페라이트: 66~75%를 포함하는, 고강도 냉연강판.
  4. 청구항 3에 있어서,
    상기 미세 조직은, 면적%로, 베이나이트: 3~7%를 포함하는, 고강도 냉연강판.
  5. 청구항 3에 있어서,
    상기 미세 조직은, 면적%로, 마르텐사이트: 19~31%를 포함하는, 고강도 냉연강판.
  6. 청구항 1에 있어서,
    중량%로, Cr: 1.0% 이하(0% 포함), Mo: 0.2% 이하 (0% 포함) 및 B: 0.005% 이하 (0% 포함) 중에서 선택된 1종 이상을 더 포함하는, 고강도 냉연강판.
  7. 청구항 1에 있어서,
    인장강도가 780MPa 이상이고, 항복강도가 380MPa 이상인, 고강도 냉연강판.
  8. 청구항 1에 있어서,
    인장강도와 연신율의 곱이 12,000 MPa% 이상인, 고강도 냉연강판.
  9. 청구항 1에 있어서,
    상기 냉연강판의 폭방향으로, 양단부와 중앙부의 항복강도의 차이가 100MPa 이하, 고강도 냉연강판.
  10. 중량%로, C: 0.05∼0.3%, Si: 0.01∼2.0%, Mn: 1.5∼3.0%, Al: 0.01∼0.1%, P: 0.001∼0.015%, S: 0.001∼0.01%, N: 0.001∼0.01%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식 1로 정의되는 값이 0.6 이상 0.9 미만을 충족하는 강 슬라브를 1100~1350℃로 재가열하는 단계;
    상기 재가열된 강 슬라브를 850~1150℃에서 열간압연하는 단계;
    상기 열간압연된 강판을 450~700℃까지 평균 냉각속도 10~70℃/s로 냉각하는 단계;
    상기 냉각된 강판의 450~700℃에서 권취하는 단계;
    상기 권취된 강판을 40~70%의 압하율로 냉간압연하는 단계; 및
    상기 냉간압연된 강판을 740~900℃에서 연속 소둔하는 단계;
    를 포함하고,
    상기 권취하는 단계는 강판의 전체 폭을 기준으로, 폭방향으로 양단부의 표면 온도(Te)가 601~700℃를 충족하고, 중앙부의 표면 온도(Tc)가 450~600℃를 충족하도록 제어하는, 고강도 냉연강판의 제조방법.
    [관계식 1]
    C + (1.3×Si+Mn)/6 + (Cr+1.2×Mo)/5 + 100×B
    (상기 관계식 1에 있어서, 상기 C, Si, Mn, Cr, Mo 및 B는 각 원소에 대한 중량% 평균 함량을 나타낸다. 또한, 상기 각 원소가 미첨가되는 경우에는 0을 대입한다.)
  11. 청구항 10에 있어서,
    상기 권취하는 단계 이후, 상기 권취된 강판을 보열 커버 내로 이동시켜 400~500℃ 범위에서 6시간 이상 유지하는 단계;를 더 포함하는, 고강도 냉연강판의 제조방법.
  12. 청구항 10에 있어서,
    상기 권취하는 단계는 상기 양단부의 표면 온도와 중앙부의 표면 온도의 차(Te-Tc)가 150℃ 이하를 충족하도록 제어하는, 고강도 냉연강판의 제조방법.
  13. 청구항 10에 있어서,
    상기 냉각하는 단계는, 강판의 전체 폭을 기준으로, 폭방향으로 양단부 상에 주입되는 냉각수의 주수량보다, 상기 양단부를 제외한 중앙부 상에 주입되는 냉각수의 주수량이 더 크도록 제어하는, 고강도 냉연강판의 제조방법.
PCT/KR2022/014012 2021-09-24 2022-09-20 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법 WO2023048448A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280063315.3A CN118019871A (zh) 2021-09-24 2022-09-20 表面质量优异且材质偏差少的高强度冷轧钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0126115 2021-09-24
KR1020210126115A KR20230043352A (ko) 2021-09-24 2021-09-24 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2023048448A1 true WO2023048448A1 (ko) 2023-03-30

Family

ID=85720915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014012 WO2023048448A1 (ko) 2021-09-24 2022-09-20 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법

Country Status (3)

Country Link
KR (1) KR20230043352A (ko)
CN (1) CN118019871A (ko)
WO (1) WO2023048448A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040066935A (ko) 2002-06-25 2004-07-27 제이에프이 스틸 가부시키가이샤 고강도 냉연강판 및 그 제조 방법
JP2010090432A (ja) 2008-10-08 2010-04-22 Jfe Steel Corp 延性に優れる超高強度冷延鋼板およびその製造方法
KR20140102309A (ko) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 냉연 강판 및 그 제조 방법
KR20200101980A (ko) * 2018-01-31 2020-08-28 제이에프이 스틸 가부시키가이샤 고강도 냉연강판, 고강도 도금강판 및 그것들의 제조방법
WO2020203159A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 鋼板及びその製造方法
JP2021063253A (ja) * 2019-10-11 2021-04-22 Jfeスチール株式会社 高強度熱延鋼板及びその製造方法
KR20210080044A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 강도 및 단면 감소율 편차가 균일한 선재 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040066935A (ko) 2002-06-25 2004-07-27 제이에프이 스틸 가부시키가이샤 고강도 냉연강판 및 그 제조 방법
JP2010090432A (ja) 2008-10-08 2010-04-22 Jfe Steel Corp 延性に優れる超高強度冷延鋼板およびその製造方法
KR20140102309A (ko) * 2012-01-13 2014-08-21 신닛테츠스미킨 카부시키카이샤 냉연 강판 및 그 제조 방법
KR20200101980A (ko) * 2018-01-31 2020-08-28 제이에프이 스틸 가부시키가이샤 고강도 냉연강판, 고강도 도금강판 및 그것들의 제조방법
WO2020203159A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 鋼板及びその製造方法
JP2021063253A (ja) * 2019-10-11 2021-04-22 Jfeスチール株式会社 高強度熱延鋼板及びその製造方法
KR20210080044A (ko) * 2019-12-20 2021-06-30 주식회사 포스코 강도 및 단면 감소율 편차가 균일한 선재 및 그 제조방법

Also Published As

Publication number Publication date
KR20230043352A (ko) 2023-03-31
CN118019871A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2016098964A1 (ko) 재질 불균일이 작고 성형성이 우수한 고강도 냉연강판, 용융아연도금강판, 및 그 제조 방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2016098963A1 (ko) 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2010074370A1 (ko) 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법
WO2017155263A1 (ko) 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2018080133A1 (ko) 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
WO2016105115A1 (ko) 표면품질, 도금밀착성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2011105652A1 (ko) 도금성이 우수한 고강도 강판 및 그 제조 방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2019004662A1 (ko) 액상금속취화 균열 저항성이 우수한 강판 및 그 제조방법
WO2022124609A1 (ko) 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2019124781A1 (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2023048448A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2021091140A1 (ko) 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법
WO2023048449A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2023048450A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2017111518A1 (ko) 가공성이 우수한 열연도금강판 및 그 제조방법
WO2024136317A1 (ko) 냉연강판 및 그 제조방법
WO2023224200A1 (ko) 용접성이 우수한 초고강도 아연도금강판 및 그 제조방법
WO2014157823A1 (ko) 강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18693982

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022873153

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022873153

Country of ref document: EP

Effective date: 20240424