WO2020202498A1 - 位置推定装置、位置推定システム、位置推定方法、および位置推定プログラム - Google Patents
位置推定装置、位置推定システム、位置推定方法、および位置推定プログラム Download PDFInfo
- Publication number
- WO2020202498A1 WO2020202498A1 PCT/JP2019/014804 JP2019014804W WO2020202498A1 WO 2020202498 A1 WO2020202498 A1 WO 2020202498A1 JP 2019014804 W JP2019014804 W JP 2019014804W WO 2020202498 A1 WO2020202498 A1 WO 2020202498A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curvature
- moving body
- vehicle
- information
- position estimation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/072—Curvature of the road
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
Definitions
- the present invention relates to a position estimation device, a position estimation system, a position estimation method, and a position estimation program.
- it relates to a position estimation device, a position estimation system, a position estimation method, and a position estimation program that estimate the relative positions of two objects.
- V2X is an abbreviation for Vehicle-to-everthing.
- Patent Document 1 as a method of determining the oncoming of a vehicle on a curve, the information of another vehicle is acquired, and the vehicle is described based on the information of the vehicle in front acquired by inter-vehicle communication or the like before the own vehicle enters the curve. Determine if there is an oncoming vehicle that may pass the own vehicle in the curve section.
- Patent Document 1 it is necessary to obtain in advance the information of the curve section to be entered by using the map information of the navigation system of the own vehicle. Therefore, it is not possible to determine the presence or absence of an oncoming vehicle in the absence of map information.
- the main object of the present invention is to improve the accuracy of determining the relative positions of two moving bodies.
- the position estimation device is a position estimation device that estimates the relative positions of the first moving body and the second moving body.
- the first moving body curvature which is the curvature of the first moving body, is calculated using the first moving body information including the position, orientation, and speed of the first moving body, and the second moving body.
- the second moving body curvature which is the curvature of the second moving body, is calculated using the second moving body information including the position, orientation, and speed, and the second moving body information and the first moving body are calculated.
- a curvature calculation unit that calculates the curvature between two mobiles, which is the curvature obtained from the relative positions of the first mobile and the second mobile using information.
- a curvature comparison unit that compares the curvature of the first moving body or the curvature of the second moving body with the position determination condition determined by using the curvature between the two moving bodies.
- the curvature of the first moving body or the curvature of the second moving body satisfies the position determination condition, the relative positions of the first moving body and the second moving body face each other in a curve. It is equipped with an estimation unit that is estimated to be in.
- the position estimation device According to the position estimation device according to the present invention, there is an effect of improving the determination accuracy of the relative positions of the two moving bodies.
- FIG. 1 The figure which shows the relative positional relationship handled in Embodiment 1.
- FIG. 1 The figure which shows the example which erroneously recognizes the facing judgment and the crossing judgment.
- a specific example of the position estimation process according to the first embodiment that is, the curve facing determination process.
- the flowchart which shows the operation of the position estimation system which concerns on Embodiment 1.
- Embodiment 1 First, an example of the relative positional relationship between the two vehicles and the misrecognition thereof, which are the premise of the present embodiment, will be described.
- FIG. 1 is a diagram showing a relative positional relationship handled in the present embodiment.
- the relative positional relationship between the own vehicle 301 and the other vehicle 302 includes a front-rear relationship of whether the other vehicle 302 is in front of or behind the own vehicle 301.
- the relative positional relationship includes a lane information-related facing relationship in which the vehicle is in the same lane as the own vehicle 301, in an adjacent lane, or in a lane further away from the own vehicle 301.
- the relative positional relationship includes a positional relationship indicating whether the vehicle is facing the same direction as the own vehicle 301, facing the opposite direction, or having an intersecting relationship.
- the own vehicle 301 is an example of the first moving body 31.
- the other vehicle 302 is an example of the second moving body 32.
- FIG. 2 is a diagram showing an example of erroneously recognizing the facing determination and the crossing determination.
- this method when the travel history of the own vehicle and the other vehicle does not overlap, or when the own vehicle and the other vehicle are in an intersecting relationship as a simple position, whether the intersection road is actually crossed or the oncoming road of the curve is determined. I can't tell if they are facing each other. Therefore, the accuracy of the relative position determination is lowered.
- FIG. 3 is a diagram showing a change in curvature from entry to exit of a curve.
- the method of predicting the radius of curvature of the own vehicle and other vehicles from the maneuvering amount such as the yaw rate and recognizing the danger area for the own vehicle in the curve region is greatly affected by the steering state such as road shape and steering wheel correction, or the state of sensor error. Therefore, it is difficult to make a stable curve facing determination. As shown in FIG. 3, even a curve set with a certain curvature does not change discontinuously from a straight line having a curvature of 0 to that curvature.
- a relaxation section in which the curvature gradually increases in the section from the straight line to the curve. Therefore, by simply using the radius of curvature of the own vehicle and other vehicles that are traveling, the range in which the oncoming determination works well is limited to a short section having a constant curvature in the curve.
- an aspect having an effect of preventing erroneous determination of relative position-to-position determination and improving the determination accuracy of the relative positional relationship between the two vehicles will be described even when traveling on a curve including a relaxation section.
- FIG. 4 is a functional configuration diagram of the position estimation system 500 according to the present embodiment.
- the position estimation system 500 is a system that estimates the relative position between the target body 300 and another moving body.
- the position estimation system 500 includes an in-vehicle sensor 101, a reception unit 102, a transmission unit 103, and a position estimation device 200 mounted on the target body 300.
- the target body 300 is a moving body such as a vehicle, a ship, or a flying body.
- the present embodiment can be applied as the target body 300 even if it is a human such as a pedestrian, a slow moving body such as a bicycle, a stroller, or a wheelchair, or a stationary object.
- the position estimation device 200 may be mounted on the target body 300 or may be separated from the target body 300.
- the position estimation system 500 may be referred to as a vehicle, an in-vehicle device, an in-vehicle device, or a control server.
- the target body 300 is the own vehicle 301. Further, another moving body is referred to as another vehicle 302. That is, the target body 300, which is the own vehicle 301, is an example of the first moving body 31. Further, the other vehicle 302, which is another moving body, is an example of the second moving body 32.
- the in-vehicle sensor 101 detects the vehicle information of the own vehicle.
- the in-vehicle sensor 101 is a device such as an in-vehicle ECU, GPS, speed sensor, acceleration sensor, azimuth sensor, and EPS.
- ECU is an abbreviation for Engine Control Unit.
- GPS is an abbreviation for Global positioning System.
- EPS is an abbreviation for Electric Power Steering.
- the in-vehicle sensor 101 is not limited to the above-mentioned device.
- the vehicle information indicates information such as position, speed, acceleration, azimuth, traveling direction, steering angle, brake control state, running history, yaw rate, and accuracy information of each data, but is not limited thereto.
- the position estimation device 200 is a computer.
- the position estimation device 200 includes a processor 910 and other hardware such as a storage device 920, an input / output interface 930, and a communication interface 950.
- the processor 910 is connected to other hardware via a signal line and controls these other hardware.
- the position estimation device 200 acquires the own vehicle information 501, which is the vehicle information of the own vehicle, from the in-vehicle sensor 101.
- the own vehicle information 501 is an example of the first mobile body information 51 including the position, azimuth, and speed of the first mobile body 31.
- the position estimation device 200 acquires other vehicle information 502, which is vehicle information of another vehicle, by communication such as vehicle-to-vehicle communication.
- the other vehicle information 502 is an example of the second moving body information 52 including the position, azimuth, and speed of the second moving body 32.
- the position estimation device 200 executes the curve facing determination of the own vehicle and the other vehicle by using the own vehicle information 501 and the other vehicle information 502.
- the curve facing determination is to determine whether or not the own vehicle and another vehicle are in a relative positional relationship facing each other on the curve.
- the position estimation device 200 includes own vehicle information detection unit 201, other vehicle information detection unit 202, curvature calculation unit 203, curvature comparison unit 204, and estimation unit 205 as functional elements.
- the function of the own vehicle information detection unit 201 is realized by, for example, the input / output interface 930.
- the own vehicle information detection unit 201 is an interface for converting the communication information acquired from the in-vehicle sensor 101 into the own vehicle information 501 and transmitting it to the processor 910.
- the own vehicle information detection unit 201 is an example of the first information acquisition unit 21 that acquires the first mobile body information 51 from the vehicle-mounted sensor 101 mounted on the first mobile body 31.
- the function of the other vehicle information detection unit 202 is realized by, for example, the communication interface 950.
- the other vehicle information detection unit 202 is an interface for receiving vehicle peripheral information received by inter-vehicle communication or the like and transmitting it to the processor 910 as other vehicle information 502.
- the other vehicle information detection unit 202 is an example of the second information acquisition unit 22 that receives the second mobile body information 52 transmitted from the second mobile body 32 by vehicle-to-vehicle communication.
- Communication of the communication interface 950, the receiving unit 102, and the transmitting unit 103 may use a communication protocol such as DSRC or IEEE802.11p dedicated to vehicle communication.
- a communication protocol such as DSRC or IEEE802.11p dedicated to vehicle communication.
- LTE® or mobile phone networks such as 4G and 5G may be used.
- a wireless LAN such as Bluetooth (registered trademark) and IEEE302.11a / b / c may be used.
- DSRC is an abbreviation for Distributed Short Range Communication.
- LTE (registered trademark) is an abbreviation for Long Term Evolution.
- LAN is an abbreviation for Local Area Network.
- the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 are realized by the processor 910.
- the processor 910 compares the curvature of the own vehicle calculated from the own vehicle information 501, the curvature of the other vehicle calculated from the other vehicle information 502, and the curvature calculated from the own vehicle information 501 and the other vehicle information 502. Then, the processor 910 calculates the relative positional relationship between the own vehicle and the other vehicle based on the comparison result.
- the curvature calculation unit 203 uses the own vehicle information 501, which is the first moving body information 51, to obtain the own vehicle curvature (first moving body curvature), which is the curvature of the own vehicle 301, which is the first moving body 31. calculate. Further, the curvature calculation unit 203 uses the other vehicle information 502, which is the second moving body information 52, to obtain the other vehicle curvature (the second moving body curvature), which is the curvature of the other vehicle 302, which is the second moving body 32. ) Is calculated.
- the curvature calculation unit 203 uses the own vehicle information 501 and the other vehicle information 502 to obtain the curvature obtained from the relative positions of the own vehicle 301 and the other vehicle 302, which is the curvature between the two vehicles (curvature between the two moving bodies). Is calculated.
- the curvature calculation unit 203 determines the curvature of the own vehicle, the curvature of the other vehicle, and the curvature between the two vehicles when the relative positions of the own vehicle 301 and the other vehicle 302 are estimated positions facing the curve. calculate. The determination of whether or not the position is estimated to face the curve will be described later.
- the curvature comparison unit 204 compares the curvature of the own vehicle or the curvature of another vehicle with the position determination condition determined by using the curvature between two vehicles.
- the position determination condition is a condition for determining whether or not the relative position between the own vehicle 301 and the other vehicle 302 is a curve facing position facing the curve. Specific examples of the position determination conditions will be described later.
- the estimation unit 205 estimates that the relative position of the own vehicle and the other vehicle is at the position facing the curve.
- the estimation unit 205 calculates the relative positional relationship between the own vehicle and another vehicle from the comparison result of the curvature comparison unit 204.
- the storage device 920 stores a curvature parameter table 503 that holds curvature parameters for the processor 910 to compare curvatures. Further, the storage device 920 stores data necessary for performing the processing of the curvature calculation unit 203 and the curvature comparison unit 204. Specifically, the storage device 920 stores the own vehicle information 501, the other vehicle information 502, the speed threshold value 504, and the curvature threshold value 505.
- FIG. 5 is a diagram showing a hardware configuration of the position estimation system 500 according to the present embodiment.
- the position estimation device 200 includes a CPUa, a ROMb, a RAMc, a flash memory d, an external communication interface e, and a display interface f.
- CPU is an abbreviation for Central Processing Unit.
- ROM is an abbreviation for Read Only Memory.
- RAM is an abbreviation for Random Access Memory.
- the position estimation device 200 may be configured on the cloud space. In addition, these hardware are connected by a network.
- CPUa is hardware for executing processes such as data transfer, calculation, processing, control, and management as an instruction set described in a software program.
- the CPUa is composed of an arithmetic unit, a register for storing an instruction or information, and a peripheral circuit.
- the CPUa is used to execute the processes of the own vehicle information detection unit 201, the other vehicle information detection unit 202, the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205.
- the ROMb is a storage device that the processor 910 can directly access, and is a read-only memory. In the present embodiment, it is used as an area in which a position estimation program, parameters required for relative area determination, invariant data, and initial values are stored.
- the RAMc is a storage device that the processor 910 can directly access, and is a memory that can be written and read. In the present embodiment, it is used as a temporary storage area for executing the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205.
- the flash memory d is composed of an electronic medium that holds data and a drive device (also referred to as a drive or reader / writer) that reads and writes data.
- the flash memory d cannot be directly accessed by the CPU, and is sometimes called an auxiliary storage device.
- HDD or SSD In the present embodiment, it is used as a storage area for storing the detected vehicle information of the own vehicle and the vehicle information received from the surrounding vehicles.
- HDD is an abbreviation for Hard Disk Drive.
- SSD is an abbreviation for Solid State Drive.
- the storage device 920 is realized by a combination of a ROM b, a RAM c, and a flash memory d.
- the external communication interface e is a physical connector for input / output when communicating between information device hardware such as a GPS receiver or an external device.
- information device hardware such as a GPS receiver or an external device.
- Ethernet registered trademark
- CAN Controller Area Network
- RS232C Serial Bus
- USB Universal Serial Bus
- the storage g, the vehicle control ECUh, the GPSi, and the communication module j are connected to the external communication interface e.
- a part of the functions of the input / output interface 930 or the communication interface 950 is realized by the external communication interface e.
- the display interface f is a physical connector for connecting a device such as a car navigation system m, a liquid crystal display k, a touch panel L, or a speaker.
- a device such as a car navigation system m, a liquid crystal display k, a touch panel L, or a speaker.
- it is a connector such as DVI or D-SUB, but is not limited to this.
- the display interface f is used to notify the driver of a driving warning and an alarm.
- Some of the functions of the input / output interface 930 are realized by the display interface f.
- the processor 910 is a device that executes a position estimation program.
- the position estimation program is a program that realizes the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205.
- the position estimation program is read into processor 910 and executed by processor 910.
- the OS Operating System
- the processor 910 executes the position estimation program while executing the OS. It may be stored in the storage.
- the position estimation program and the OS stored in the storage are loaded into the ROM and executed by the processor 910. A part or all of the position estimation program may be incorporated in the OS.
- the position estimation device 200 may include a plurality of processors that replace the processor 910. These plurality of processors share the execution of the position estimation program.
- Each processor like the processor 910, is a device that executes a position estimation program.
- the "part" of each of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 may be read as “process”, “procedure”, or “process”. Further, the "process” of the curvature calculation process, the curvature comparison process, and the estimation process may be read as “program”, “program product”, or "computer-readable recording medium on which the program is recorded”.
- the position estimation program causes a computer to execute each process, each procedure or each process in which the "part" of each of the above parts is read as “process", “procedure” or “process”. Further, the position estimation method is a method performed by the position estimation device 200 executing a position estimation program.
- the position estimation program may be provided stored in a computer-readable recording medium or storage medium. In addition, the position estimation program may be provided as a program product.
- Curvature is defined by the change in azimuth ( ⁇ ) at a unit distance (L), as shown in (Equation 1).
- the curvature may be calculated by directly using the azimuth and the locus from the azimuth sensor and the position sensor. Alternatively, the azimuth information may be calculated from the trajectory information from the position sensor, and then the curvature may be calculated. Alternatively, it may be calculated from yaw rate information (degree / sec) and position information.
- the radius of curvature (R) expresses the degree of the curve as the radius of the arc of the curve, and the relationship with the radius of curvature CV is as shown in (Equation 2).
- the radius of curvature according to the relative position between the two vehicles is shown by (Equation 5) and (Equation 6).
- the advantage of this method is that the radius of curvature can be calculated regardless of the change in orientation, so that the radius of curvature can be calculated even if one of the vehicles is running in a straight section.
- the curvature obtained from the own vehicle information of the own vehicle alone will be referred to as the own vehicle curvature CV host .
- the curvature obtained from the other vehicle information of the other vehicle alone is referred to as the other vehicle curvature CV remote .
- the curvature obtained from the radius of curvature obtained from the two vehicles of the own vehicle and the other vehicle is defined as the curvature between the two vehicles CV'.
- FIG. 6 is an example of the own vehicle curvature CV host , the other vehicle curvature CV remote , and the two-vehicle curvature CV'according to the present embodiment.
- the curvature from a single vehicle is calculated.
- the own vehicle curvature obtained from the own vehicle independent information is obtained from the CV host
- the other vehicle curvature obtained from the other vehicle independent information is obtained from the CV remote
- the own vehicle and the other vehicle are obtained from two vehicles.
- Let the curvature between two vehicles be CV'. It is determined whether the CV host or CV remote corresponds to a certain curvature interval obtained from CV'.
- the fixed interval obtained from CV' may be CV' plus an arbitrary value, or may be multiplied by an arbitrary value. That is, it is (Equation 7) or (Equation 8).
- the own vehicle 301 and the other vehicle 302 are traveling on a curve in an opposite relationship.
- the own vehicle 301 is approaching the relaxation section of the curve.
- the other vehicle 302 has just reached a section having a constant curvature beyond the relaxation section on the opposite side. Since the other vehicle 302 has approached a section having a constant curvature, the curvature of the curve can be estimated from the orientation information (own vehicle information) of the own vehicle 301.
- the own vehicle 301 since the own vehicle 301 has just approached the relaxation section, the curvature is almost zero. Therefore, even if the curvatures of the two vehicles are compared, the values do not match within the permissible value and are not determined to be facing the curve.
- the curvature between the two vehicles calculated by the present embodiment does not become 0 even if one or both of them exist in the relaxation section or the straight section.
- the curvature CV'between two vehicles according to the present embodiment draws a gentle distribution with a constant curvature section as the top. Therefore, if the curvature between the two vehicles is used, it is possible to determine the curve facing each other with high accuracy even before the curve becomes a constant curvature.
- step S101 the curvature calculation unit 203 determines whether or not the own vehicle information 501 or the other vehicle information 502 has been updated via the own vehicle information detection unit 201 or the other vehicle information detection unit 202.
- the position estimation system 500 executes the position estimation process when the own vehicle information 501 or the other vehicle information 502 is updated. If the own vehicle information 501 or the other vehicle information 502 is not updated, the process proceeds to step S108.
- step S102 the curvature calculation unit 203 confirms whether the other vehicle 302 is in front of the own vehicle 301 and the azimuth difference is 90 degrees or more and 180 degrees or less based on the own vehicle information 501 and the other vehicle information 502. That is, the curvature calculation unit 203 determines whether or not the positional relationship between the own vehicle 301 and the other vehicle 302 is the “crossing” positional relationship in FIG. If the positional relationship between the own vehicle 301 and the other vehicle 302 is not "intersection", the curvature calculation unit 203 proceeds to step S108.
- step S103 the curvature calculation unit 203 determines whether or not the speed of the own vehicle is equal to or higher than the speed threshold value 504 based on the own vehicle information 501. If the speed of the own vehicle is not equal to or higher than the speed threshold value 504, the process proceeds to step S108.
- steps S102 and S103 the curvature calculation unit 203 determines whether or not the relative position between the own vehicle 301 and the other vehicle 302 is a curve facing estimated position that is estimated to face each other on a curve.
- step S104 the curvature calculation unit 203 calculates the own vehicle curvature CV host , the other vehicle curvature CV remote , and the two-vehicle curvature CV', and proceeds to step S105. These calculation methods are as described above.
- the curvature calculation unit 203 may determine whether the own vehicle curvature CV host is the curvature threshold value 505 or more, that is, the radius of curvature is equal to or less than a predetermined value. Then, when the curvature is small, the curvature calculation unit 203 may proceed to step S108 without performing the curve facing determination. As a result, it is possible to avoid using the curve facing determination in a place where a straight section continues.
- the curvature comparison unit 204 compares the own vehicle curvature CV host or the other vehicle curvature CV remote with the position determination condition determined by using the two-vehicle curvature CV'.
- the above-mentioned (Equation 7) or (Equation 8) is the position determination condition.
- the curvature comparison unit 204 includes, for example, the curvature of the own vehicle or the curvature of another vehicle from the value obtained by adding the first threshold value ⁇ to the curvature between two vehicles to the value obtained by adding the second threshold value ⁇ to the curvature between two vehicles. That is the position judgment condition.
- the curvature comparison unit 204 sets the curvature of the own vehicle or the curvature of another vehicle from a value obtained by multiplying the curvature between two vehicles by a third threshold value ⁇ to a value obtained by multiplying the curvature between two vehicles by a fourth threshold value ⁇ . It is a position determination condition that it is included.
- the first threshold value ⁇ , the second threshold value ⁇ , the third threshold value ⁇ , and the fourth threshold value ⁇ are set in the storage device 920 in advance.
- step S106 the curvature comparison unit 204 determines whether or not the curvature of the own vehicle or the curvature of another vehicle matches the position determination condition, which is the matching condition for facing the curve. Specifically, it is determined whether or not the curvature of the two vehicles satisfies (Equation 7) or (Equation 8). If the opposite matching conditions are met, the process proceeds to step S107. If the opposite matching conditions are not met, the process proceeds to step S108.
- step S107 the estimation unit 205 determines that the relative positions of the two vehicles are the positions facing the curve.
- step S108 the estimation unit 205 determines that the relative positions of the two vehicles are not opposite to the curve. Then, when the vehicle information of the own vehicle or another vehicle is updated, the process is restarted from the start of the flowchart.
- the purpose of this embodiment is to determine whether the vehicle faces a curve between the own vehicle and another vehicle.
- the target body is not limited to this. That is, it may be used to determine the relative positional relationship between another vehicle and another vehicle. Further, it is not limited to vehicles, but can also be used for humans such as pedestrians or stationary objects as described above.
- the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 are realized by software.
- the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 may be realized by hardware.
- FIG. 9 is a functional configuration diagram of the position estimation device 200 according to the modified example of the present embodiment.
- the position estimation device 100 includes an electronic circuit 909 instead of the processor 910.
- the electronic circuit 909 is a dedicated electronic circuit that realizes the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205.
- the electronic circuit 909 is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
- GA is an abbreviation for Gate Array.
- ASIC is an abbreviation for Application Specific Integrated Circuit.
- FPGA is an abbreviation for Field-Programmable Gate Array.
- the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 may be realized by one electronic circuit or may be distributed to a plurality of electronic circuits.
- some functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 may be realized by an electronic circuit, and the remaining functions may be realized by software.
- some or all the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 may be realized by the firmware.
- Each of the processor and the electronic circuit is also called a processing circuit. That is, in the position estimation device 100, the functions of the curvature calculation unit 203, the curvature comparison unit 204, and the estimation unit 205 are realized by the processing circuit.
- the curvature calculation unit calculates the curvature calculated from the positional relationship between the own vehicle and the other vehicle in addition to the curvature calculated from the own vehicle and the other vehicle alone.
- the curvature comparison unit determines whether or not the curvature calculated from the own vehicle and the other vehicle alone is within the permissible constant value or within a constant multiple with respect to the curvature calculated by the positional relationship between the own vehicle and the other vehicle. To judge. Therefore, according to the position estimation system according to the present embodiment, even if the object cannot be recognized by sensing, vehicle information is acquired by vehicle-to-vehicle communication or the like to reduce erroneous judgments of curve facing judgment and intersection judgment.
- the curvature is calculated from the information of the own vehicle and other vehicles, and the relative positional relationship between the own vehicle and the other vehicle is estimated by comparing them.
- the curvature estimation based on the azimuth change and the curvature estimation based on the positional relationship between the two vehicles are combined. Therefore, even if one of the vehicles stays in the relaxation section or the straight section when facing the curve, the relative positional relationship between the own vehicle and the target vehicle can be recognized with high accuracy. Therefore, it is possible to reduce erroneous determination when performing driving support and driving control.
- the curvature calculated from the azimuth change of the own vehicle or another vehicle and the curvature based on the positional relationship curvature between the two vehicles are used, and the curve facing determination is performed by comparing the combination thereof. ..
- the combination of the own vehicle and the other vehicle, the own vehicle and the two vehicles, and the combination of the other vehicle and the other vehicle are selected instead of one combination of the curvatures of the own vehicle and the other vehicle. It is possible. Therefore, it is possible to prevent detection omission due to the curve facing determination.
- the estimation error of the curve curvature estimation due to the relaxation section and the straight section is used. Not affected. Furthermore, it is not affected by instability of sensor information such as sensor error and steering wheel correction. Therefore, since the relative positional relationship between the own vehicle and the target vehicle when facing the curve can be recognized with high accuracy, it is possible to reduce erroneous determination when performing driving support and running control.
- each part of the position estimation system has been described as an independent functional block.
- the configuration of the position estimation system does not have to be the configuration as in the above-described embodiment.
- the functional block of the position estimation system may have any configuration as long as it can realize the functions described in the above-described embodiment.
- the position estimation device may be a system composed of a plurality of devices instead of one device.
- a plurality of parts may be combined and carried out.
- one part of this embodiment may be implemented.
- this embodiment may be implemented in any combination as a whole or partially. That is, in the first embodiment, it is possible to freely combine the respective embodiments, modify any component of each embodiment, or omit any component in each embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
曲率算出部(203)が、自車両情報(501)を用いて自車両曲率を算出する。また、曲率算出部(203)が、他車両情報(502)を用いて他車両曲率を算出する。曲率算出部(203)が、自車両情報(501)と他車両情報(502)とを用いて自車両と他車両との相対位置から求められる2車両間曲率を算出する。曲率比較部(204)が、自車両曲率または他車両曲率と、2車両間曲率を用いて定められた位置判定条件とを比較する。推定部(205)は、自車両曲率または他車両曲率が位置判定条件を満たす場合に、自車両と他車両との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する。
Description
本発明は、位置推定装置、位置推定システム、位置推定方法、および位置推定プログラムに関する。特に、2つの対象体の相対位置を推定する位置推定装置、位置推定システム、位置推定方法、および位置推定プログラムに関する。
V2Xといった通信手法によって、自車両と他移動体の相対位置が分かれば、運転時に見えていない、もしくは、センサで検知できていない移動体に関する情報が得られる。そのような情報は、自車両の安全な走行に関して有用な情報である。V2Xは、Vehicle-to-everythingの略語である。
特許文献1では、カーブにおける車両の対向判定を行う手法として、他の車両の情報を取得し、自車両がカーブに進入する前に、車車間通信などにより取得した前方車両情報を基に、該カーブ区間で自車両とすれ違う可能性のある対向車両の有無を判定する。しかし、特許文献1では自車両のナビゲーションシステムの地図情報を用いて進入するカーブ区間の情報を事前に入手する必要がある。このため、地図情報がない状態では、対向車両の有無を判定できない。
本発明は、主に、2つの移動体の相対位置の判定精度を向上させることを目的とする。
本発明に係る位置推定装置は、第1の移動体と第2の移動体の相対位置を推定する位置推定装置において、
前記第1の移動体の位置と方位と速度を含む第1の移動体情報を用いて前記第1の移動体の曲率である第1の移動体曲率を算出し、前記第2の移動体の位置と方位と速度を含む第2の移動体情報を用いて前記第2の移動体の曲率である第2の移動体曲率を算出し、前記第2の移動体情報と前記第1の移動体情報とを用いて前記第1の移動体と前記第2の移動体との相対位置から求められる曲率である2移動体間曲率を算出する曲率算出部と、
前記第1の移動体曲率または前記第2の移動体曲率と、前記2移動体間曲率を用いて定められた位置判定条件とを比較する曲率比較部と、
前記第1の移動体曲率または前記第2の移動体曲率が前記位置判定条件を満たす場合に、前記第1の移動体と前記第2の移動体との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する推定部とを備えた。
前記第1の移動体の位置と方位と速度を含む第1の移動体情報を用いて前記第1の移動体の曲率である第1の移動体曲率を算出し、前記第2の移動体の位置と方位と速度を含む第2の移動体情報を用いて前記第2の移動体の曲率である第2の移動体曲率を算出し、前記第2の移動体情報と前記第1の移動体情報とを用いて前記第1の移動体と前記第2の移動体との相対位置から求められる曲率である2移動体間曲率を算出する曲率算出部と、
前記第1の移動体曲率または前記第2の移動体曲率と、前記2移動体間曲率を用いて定められた位置判定条件とを比較する曲率比較部と、
前記第1の移動体曲率または前記第2の移動体曲率が前記位置判定条件を満たす場合に、前記第1の移動体と前記第2の移動体との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する推定部とを備えた。
本発明に係る位置推定装置によれば、2つの移動体の相対位置の判定精度を向上させるという効果を奏する。
以下、本実施の形態について、図を用いて説明する。各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。また、以下の図では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、実施の形態の説明において、上、下、左、右、前、後、表、裏といった向きあるいは位置が示されている場合がある。これらの表記は、説明の便宜上の記載であり、装置、器具、あるいは部品の配置、方向および向きを限定するものではない。
実施の形態1.
まず、本実施の形態の前提となる2車両の相対位置関係とその誤認識の例について説明する。
まず、本実施の形態の前提となる2車両の相対位置関係とその誤認識の例について説明する。
図1は、本実施の形態で扱う相対位置関係を示す図である。
図1に示すように、自車両301と他車両302との相対位置関係には、自車両301に対して他車両302が前方にいるか、もしくは後方にいるかの前後関係が含まれる。また、相対位置関係には、自車両301と同一車線、隣接車線、さらにそれ以上はなれた車線にいるかの車線情報関係対向関係が含まれる。また、相対位置関係には、自車両301と同一方向を向いているか、対向方向を向いているか、もしくは交差関係にあるかを示す位置関係が含まれる。
なお、本実施の形態において、自車両301は、第1の移動体31の例である。また、他車両302は、第2の移動体32の例である。
図1に示すように、自車両301と他車両302との相対位置関係には、自車両301に対して他車両302が前方にいるか、もしくは後方にいるかの前後関係が含まれる。また、相対位置関係には、自車両301と同一車線、隣接車線、さらにそれ以上はなれた車線にいるかの車線情報関係対向関係が含まれる。また、相対位置関係には、自車両301と同一方向を向いているか、対向方向を向いているか、もしくは交差関係にあるかを示す位置関係が含まれる。
なお、本実施の形態において、自車両301は、第1の移動体31の例である。また、他車両302は、第2の移動体32の例である。
図2は、対向判定と交差判定を誤認識する例を示す図である。
例えば、自車両および他車両の過去の走行履歴を用いて相対位置関係を求める手法がある。この手法では、自車両と他車両の走行履歴が重複しない時、自車両と他車両が単純な位置として交差関係にあるときに、実際に交差道路を交差しているのか、カーブの対向路を対向しているかの区別がつかない。そのため、相対位置判定の精度が低下する。
例えば、自車両および他車両の過去の走行履歴を用いて相対位置関係を求める手法がある。この手法では、自車両と他車両の走行履歴が重複しない時、自車両と他車両が単純な位置として交差関係にあるときに、実際に交差道路を交差しているのか、カーブの対向路を対向しているかの区別がつかない。そのため、相対位置判定の精度が低下する。
図3は、カーブ進入から退出までの間の曲率の変化を示す図である。
例えば、ヨーレートといった操縦量から、自車両および他車両の曲率半径を予測し、カーブ領域における自車両に対する危険領域を認識する手法がある。しかし、単独移動体から曲率半径を求める手法では、道路形状、ハンドル修正といった操舵状態、あるいはセンサ誤差の状況を大きく受ける。このため、安定したカーブ対向判定を行うことが難しい。
図3に示すように、ある曲率で設定されているカーブであっても、曲率0の直線から、その曲率に不連続に変化するのではない。実際は、直線からカーブに至る区間には緩和区間と呼ばれる曲率が段階的に増加する区間が存在する。そのため、単に走行中の自車両および他車両の曲率半径を用いるだけでは、その対向判定がうまく機能する範囲はカーブ中の曲率一定区間だけの短い区間に限定される。
本実施の形態では、緩和区間を含むカーブを走行する場合でも、相対位置間判定の誤判定を防止し、2車両の相対位置関係の判定精度を向上させる効果のある態様について説明する。
例えば、ヨーレートといった操縦量から、自車両および他車両の曲率半径を予測し、カーブ領域における自車両に対する危険領域を認識する手法がある。しかし、単独移動体から曲率半径を求める手法では、道路形状、ハンドル修正といった操舵状態、あるいはセンサ誤差の状況を大きく受ける。このため、安定したカーブ対向判定を行うことが難しい。
図3に示すように、ある曲率で設定されているカーブであっても、曲率0の直線から、その曲率に不連続に変化するのではない。実際は、直線からカーブに至る区間には緩和区間と呼ばれる曲率が段階的に増加する区間が存在する。そのため、単に走行中の自車両および他車両の曲率半径を用いるだけでは、その対向判定がうまく機能する範囲はカーブ中の曲率一定区間だけの短い区間に限定される。
本実施の形態では、緩和区間を含むカーブを走行する場合でも、相対位置間判定の誤判定を防止し、2車両の相対位置関係の判定精度を向上させる効果のある態様について説明する。
***構成および機能の説明***
図4は、本実施の形態に係る位置推定システム500の機能構成図である。
位置推定システム500は、対象体300と他の移動体との相対位置を推定するシステムである。位置推定システム500は、対象体300に搭載された車載センサ101、受信部102、送信部103、および位置推定装置200を備える。
対象体300は、具体的には、車両、船舶、あるいは飛行体といった移動体である。その他、歩行者などの人間、自転車、ベビーカー、あるいは車椅子といった速度の遅い移動体、および静止物であっても対象体300として本実施の形態を適用することができる。
また、位置推定装置200は、対象体300に搭載されていてもよいし、対象体300から分離されていてもよい。
位置推定システム500は、車両、車載装置、車載器、または管制サーバと表記する場合がある。
図4は、本実施の形態に係る位置推定システム500の機能構成図である。
位置推定システム500は、対象体300と他の移動体との相対位置を推定するシステムである。位置推定システム500は、対象体300に搭載された車載センサ101、受信部102、送信部103、および位置推定装置200を備える。
対象体300は、具体的には、車両、船舶、あるいは飛行体といった移動体である。その他、歩行者などの人間、自転車、ベビーカー、あるいは車椅子といった速度の遅い移動体、および静止物であっても対象体300として本実施の形態を適用することができる。
また、位置推定装置200は、対象体300に搭載されていてもよいし、対象体300から分離されていてもよい。
位置推定システム500は、車両、車載装置、車載器、または管制サーバと表記する場合がある。
本実施の形態では、対象体300を自車両301とする。また、他の移動体を他車両302とする。すなわち、自車両301である対象体300は、第1の移動体31の例である。また、他の移動体である他車両302は、第2の移動体32の例である。
車載センサ101は、自車両の車両情報を検知する。車載センサ101は、具体的には、車載ECU、GPS、速度センサ、加速度センサ、方位センサ、EPSといった機器である。ECUは、Engine Control Unitの略語である。GPSは、Global posisioning Systemの略語である。EPSは、Electric Power Steeringの略語である。なお、車載センサ101は、上記の機器に限定したものではない。また、車両情報とは、位置、速度、加速度、方位、進行方向、ステアリング角度、ブレーキ制御状態、走行履歴、ヨーレート、および各データの精度情報といった情報を示すが、これらに限定したものではない。
位置推定装置200は、コンピュータである。位置推定装置200は、プロセッサ910を備えるとともに、記憶装置920、入出力インタフェース930、および通信インタフェース950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
位置推定装置200は、車載センサ101から自車両の車両情報である自車両情報501を取得する。自車両情報501は、第1の移動体31の位置と方位と速度を含む第1の移動体情報51の例である。
また、位置推定装置200は、車車間通信といった通信により他車両の車両情報である他車両情報502を取得する。他車両情報502は、第2の移動体32の位置と方位と速度を含む第2の移動体情報52の例である。そして、位置推定装置200は、自車両情報501と他車両情報502とを用いて、自車両および他車両のカーブ対向判定を実行する。カーブ対向判定とは、自車両および他車両がカーブにおいて対向する相対位置関係にあるか否かを判定することである。
また、位置推定装置200は、車車間通信といった通信により他車両の車両情報である他車両情報502を取得する。他車両情報502は、第2の移動体32の位置と方位と速度を含む第2の移動体情報52の例である。そして、位置推定装置200は、自車両情報501と他車両情報502とを用いて、自車両および他車両のカーブ対向判定を実行する。カーブ対向判定とは、自車両および他車両がカーブにおいて対向する相対位置関係にあるか否かを判定することである。
位置推定装置200は、機能要素として、自車両情報検知部201、他車両情報検知部202、曲率算出部203、曲率比較部204、および推定部205を備える。
自車両情報検知部201の機能は、例えば、入出力インタフェース930により実現される。自車両情報検知部201は、車載センサ101から取得した通信情報を自車両情報501に変換し、プロセッサ910に送信するためのインタフェースである。自車両情報検知部201は、第1の移動体31に搭載された車載センサ101から第1の移動体情報51を取得する第1の情報取得部21の例である。
他車両情報検知部202の機能は、例えば、通信インタフェース950により実現される。他車両情報検知部202は、車車間通信などにより受信した車両周辺情報を受信し、他車両情報502としてプロセッサ910に送信するためのインタフェースである。他車両情報検知部202は、第2の移動体32から送信された第2の移動体情報52を、車車間通信により受信する第2の情報取得部22の例である。
通信インタフェース950、受信部102、および送信部103の通信は、車両通信専用のDSRC、IEEE802.11pといった通信プロトコルを用いてもよい。また、LTE(登録商標)、あるいは、4Gおよび5Gといった携帯電話網を用いてもよい。また、Bluetooth(登録商標)およびIEEE302.11a/b/cといった無線LANを用いてもよい。DSRCは、Dedicated Short RangeCommunicationの略語である。LTE(登録商標)は、Long Term Evolutionの略語である。LANは、Local Area Networkの略語である。
また、曲率算出部203、曲率比較部204、および推定部205の機能は、プロセッサ910により実現される。プロセッサ910は、自車両情報501から算出した自車両の曲率、他車両情報502から算出した他車両の曲率、および自車両情報501および他車両情報502から算出した曲率を比較する。そして、プロセッサ910は、比較結果により、自車両と他車両の相対位置関係を算出する。
曲率算出部203は、第1の移動体情報51である自車両情報501を用いて、第1の移動体31である自車両301の曲率である自車両曲率(第1の移動体曲率)を算出する。また、曲率算出部203は、第2の移動体情報52である他車両情報502を用いて、第2の移動体32である他車両302の曲率である他車両曲率(第2の移動体曲率)を算出する。そして、曲率算出部203は、自車両情報501と他車両情報502とを用いて、自車両301と他車両302との相対位置から求められる曲率である2車両間曲率(2移動体間曲率)を算出する。
なお、曲率算出部203は、自車両301と他車両302との相対位置がカーブで対向すると推定されるカーブ対向推定位置である場合に、自車両曲率と他車両曲率と2車両間曲率とを算出する。カーブ対向推定位置であるか否かの判定については後述する。
なお、曲率算出部203は、自車両301と他車両302との相対位置がカーブで対向すると推定されるカーブ対向推定位置である場合に、自車両曲率と他車両曲率と2車両間曲率とを算出する。カーブ対向推定位置であるか否かの判定については後述する。
曲率比較部204は、自車両曲率または他車両曲率と、2車両間曲率を用いて定められた位置判定条件とを比較する。位置判定条件とは、自車両301と他車両302との相対位置がカーブで対向するカーブ対向位置であるか否かを判定するための条件である。位置判定条件の具体例については後述する。
推定部205は、自車両曲率または他車両曲率が、位置判定条件を満たす場合に、自車両と他車両との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する。推定部205は、曲率比較部204の比較結果から、自車両および他車両の相対的な位置関係を算出する。
記憶装置920には、プロセッサ910が曲率を比較するための曲率パラメータを保持する曲率パラメータテーブル503が記憶される。また、記憶装置920には、曲率算出部203および曲率比較部204の処理を実施するために必要なデータが記憶される。具体的には、記憶装置920には、自車両情報501、他車両情報502、速度閾値504、および曲率閾値505が記憶される。
図5は、本実施の形態に係る位置推定システム500のハードウェア構成を示す図である。
図5に示すように、位置推定装置200は、CPUa、ROMb、RAMc、フラッシュメモリd、外部通信インタフェースe、表示インタフェースfで構成される。しかし、これに限定したものではなく、位置推定装置200を、異なるハードウェア構成により実現してもよい。CPUは、Central Processing Unitの略語である。ROMは、Read Only Memoryの略語である。RAMは、Random Access Memoryの略語である。また、位置推定装置200は、クラウド空間上に構成されていてもよい。また、これらのハードウェアはネットワークで接続される。
図5に示すように、位置推定装置200は、CPUa、ROMb、RAMc、フラッシュメモリd、外部通信インタフェースe、表示インタフェースfで構成される。しかし、これに限定したものではなく、位置推定装置200を、異なるハードウェア構成により実現してもよい。CPUは、Central Processing Unitの略語である。ROMは、Read Only Memoryの略語である。RAMは、Random Access Memoryの略語である。また、位置推定装置200は、クラウド空間上に構成されていてもよい。また、これらのハードウェアはネットワークで接続される。
CPUaは、ソフトウェアプログラムに記述された命令セットとして、データの転送、計算、加工、制御、管理といった処理を実行するためのハードウェアである。CPUaは、演算装置、命令あるいは情報を格納するレジスタ、および周辺回路で構成される。本実施の形態では、CPUaは、自車両情報検知部201、他車両情報検知部202、曲率算出部203、曲率比較部204、推定部205の処理を実行するために利用される。
ROMbは、プロセッサ910が直接アクセスすることのできる記憶装置であり、読み出し専用のメモリである。本実施の形態では、位置推定プログラム、相対エリア判定に必要なパラメータ、不変なデータおよび初期値が格納される領域として利用される。
RAMcは、プロセッサ910が直接アクセスすることのできる記憶装置であり、書き込みおよび読み出しが可能なメモリである。本実施の形態では、曲率算出部203、曲率比較部204、推定部205を実行するための一時的な記憶領域として利用される。
フラッシュメモリdは、データを保持する電子媒体と読み書きを行う駆動装置(ドライブ、またはリーダ/ライタともいう)で構成される。フラッシュメモリdは、CPUが直接アクセスできないものであり、補助記憶装置と呼ぶこともある。例えば、HDDあるいはSSDである。本実施の形態では、検知した自車両の車両情報、周辺車両から受信した車両情報を格納するための記憶領域として利用される。HDDは、Hard Disk Driveの略語である。SSDは、Solid State Driveの略語である。記憶装置920は、ROMb、RAMc、およびフラッシュメモリdの組み合わせにより実現される。
RAMcは、プロセッサ910が直接アクセスすることのできる記憶装置であり、書き込みおよび読み出しが可能なメモリである。本実施の形態では、曲率算出部203、曲率比較部204、推定部205を実行するための一時的な記憶領域として利用される。
フラッシュメモリdは、データを保持する電子媒体と読み書きを行う駆動装置(ドライブ、またはリーダ/ライタともいう)で構成される。フラッシュメモリdは、CPUが直接アクセスできないものであり、補助記憶装置と呼ぶこともある。例えば、HDDあるいはSSDである。本実施の形態では、検知した自車両の車両情報、周辺車両から受信した車両情報を格納するための記憶領域として利用される。HDDは、Hard Disk Driveの略語である。SSDは、Solid State Driveの略語である。記憶装置920は、ROMb、RAMc、およびフラッシュメモリdの組み合わせにより実現される。
外部通信インタフェースeは、GPS受信機あるいは外部装置といった情報機器ハードウェア間の通信を行う際の入出力を行うための物理的なコネクタである。例えば、Ethernet(登録商標)、CAN(Controller Area Network)、RS232C、USBなどである。しかし、これらに限定したものではない。例えば、外部通信インタフェースeには、ストレージg、車両制御ECUh、GPSi、通信モジュールjが接続される。入出力インタフェース930あるいは通信インタフェース950の機能の一部は外部通信インタフェースeで実現される。
表示器インタフェースfは、カーナビゲーションシステムm、液晶ディスプレイk、タッチパネルL、あるいはスピーカといった機器を接続するための物理的なコネクタである。例えば、DVI、あるいはD-SUBといったコネクタであるが、これに限定したものではない。本実施の形態では、表示器インタフェースfは、ドライバに対して運転の注意喚起および警報を通知するために利用される。入出力インタフェース930の機能の一部は表示器インタフェースfで実現される。
プロセッサ910は、位置推定プログラムを実行する装置である。位置推定プログラムは、曲率算出部203、曲率比較部204、および推定部205の機能を実現するプログラムである。
位置推定プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。ROMには、位置推定プログラムだけでなく、OS(Operating System)も記憶されている。プロセッサ910は、OSを実行しながら、位置推定プログラムを実行する。ストレージに記憶されていてもよい。ストレージに記憶されている位置推定プログラムおよびOSは、ROMにロードされ、プロセッサ910によって実行される。なお、位置推定プログラムの一部または全部がOSに組み込まれていてもよい。
位置推定プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。ROMには、位置推定プログラムだけでなく、OS(Operating System)も記憶されている。プロセッサ910は、OSを実行しながら、位置推定プログラムを実行する。ストレージに記憶されていてもよい。ストレージに記憶されている位置推定プログラムおよびOSは、ROMにロードされ、プロセッサ910によって実行される。なお、位置推定プログラムの一部または全部がOSに組み込まれていてもよい。
位置推定装置200は、プロセッサ910を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、位置推定プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ910と同じように、位置推定プログラムを実行する装置である。
曲率算出部203、曲率比較部204、および推定部205の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えてもよい。また曲率算出処理、曲率比較処理、および推定処理の「処理」を「プログラム」、「プログラムプロダクト」または「プログラムを記録したコンピュータ読取可能な記録媒体」に読み替えてもよい。
位置推定プログラムは、上記の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程を、コンピュータに実行させる。また、位置推定方法は、位置推定装置200が位置推定プログラムを実行することにより行われる方法である。
位置推定プログラムは、コンピュータ読取可能な記録媒体または記憶媒体に格納されて提供されてもよい。また、位置推定プログラムは、プログラムプロダクトとして提供されてもよい。
位置推定プログラムは、上記の各部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程を、コンピュータに実行させる。また、位置推定方法は、位置推定装置200が位置推定プログラムを実行することにより行われる方法である。
位置推定プログラムは、コンピュータ読取可能な記録媒体または記憶媒体に格納されて提供されてもよい。また、位置推定プログラムは、プログラムプロダクトとして提供されてもよい。
***処理概要の説明***
<単一車両からの曲率算出の処理>
まず、単一の車両情報に基づいて、カーブ走行中の曲率を算出する処理について説明する。曲率(CV)は、(式1)に示すように、単位距離(L)における方位(θ)の変化によって定義される。
(式1)CV=dθ/dL
曲率の単位としては主に(degree/m)が用いられるが、これに限定されることはない。本実施の形態では、説明のためにこの単位を用いる。曲率の算出は、方位センサおよび位置センサから方位と軌跡を直接用いて算出してもよい。あるいは、位置センサからの軌跡情報から方位情報を算出し、その後に曲率を算出してもよい。あるいは、ヨーレート情報(degree/sec)と位置情報から算出してもよい。
<単一車両からの曲率算出の処理>
まず、単一の車両情報に基づいて、カーブ走行中の曲率を算出する処理について説明する。曲率(CV)は、(式1)に示すように、単位距離(L)における方位(θ)の変化によって定義される。
(式1)CV=dθ/dL
曲率の単位としては主に(degree/m)が用いられるが、これに限定されることはない。本実施の形態では、説明のためにこの単位を用いる。曲率の算出は、方位センサおよび位置センサから方位と軌跡を直接用いて算出してもよい。あるいは、位置センサからの軌跡情報から方位情報を算出し、その後に曲率を算出してもよい。あるいは、ヨーレート情報(degree/sec)と位置情報から算出してもよい。
曲率半径(R)は、カーブの程度をそのカーブの円弧の半径として表したものであり、曲率CVとの関係は(式2)の通りである。
(式2)R=1/(CV*360)
(式2)R=1/(CV*360)
<単一車両の曲率同士を比較した場合のカーブ対向判定処理>
自車両および他車両の曲率を比較し、ある許容値範囲で一致している場合かどうかを判定する。自車両単独の自車両情報から得られた曲率をCVhost、他車両単独の他車両情報から得られた曲率をCVremoteとした場合に、以下の(式3)もしくは(式4)を用いる。
(式3)CVremote+α<CVhost<CVremote+β
(式4)CVremote*α<CVhost<CVremote*β
自車両および他車両の曲率を比較し、ある許容値範囲で一致している場合かどうかを判定する。自車両単独の自車両情報から得られた曲率をCVhost、他車両単独の他車両情報から得られた曲率をCVremoteとした場合に、以下の(式3)もしくは(式4)を用いる。
(式3)CVremote+α<CVhost<CVremote+β
(式4)CVremote*α<CVhost<CVremote*β
ただしこの方式の場合、上述したように自車両、他車両、もしくはその両方が曲率一定区間以外を走行している場合、曲率を低く見積もってしまう。これは原理的に避けられないことであり、この問題を解決するための下記の曲率算出方式<2車両からの曲率算出の処理>を用いる。
<2車両間の相対位置からの曲率算出の処理>
2車両間の相対位置からの曲率半径の算出は、例えば、SAEJ2945/1(2016-05)p.92のPH_EstimatedRの算出式(式5)および(式6)を適用する。
このとき、PH_ActualChorlLength:弦長、REarthMeridian:経線における地球半径、lat:緯度、long:経度、ΔΦ:方位角度差とする。曲率は、曲率半径を用いて、上記の換算式(式2)により算出する。
2車両間の相対位置からの曲率半径の算出は、例えば、SAEJ2945/1(2016-05)p.92のPH_EstimatedRの算出式(式5)および(式6)を適用する。
このとき、PH_ActualChorlLength:弦長、REarthMeridian:経線における地球半径、lat:緯度、long:経度、ΔΦ:方位角度差とする。曲率は、曲率半径を用いて、上記の換算式(式2)により算出する。
(式5)PH_ActualChorlLength=REarthMeridian*cos-1[cos(lat1)cos(lat2)cos(long1-long2)+sin(lat1)sin(lat2)]
(式6)PH_EstimatedR=PH_ActualChorlLength/(2*sin(ΔΦ/2))
(式6)PH_EstimatedR=PH_ActualChorlLength/(2*sin(ΔΦ/2))
(式5)および(式6)により2車両間の相対位置による曲率半径を示す。この方法の利点は方位変化によらず曲率、もしくは曲率半径を算出できるため、一方の車両が直線区間を走っていたとしても曲率半径を算出できる点である。
以下において、自車両単独の自車両情報から得られた曲率を自車両曲率CVhostとする。他車両単独の他車両情報から得られた曲率を他車両曲率CVremoteとする。さらに、自車両および他車両の2車両から求められた曲率半径から得られた曲率を2車両間曲率CV’とする。
<曲率の比較>
図6は、本実施の形態に係る自車両曲率CVhost、他車両曲率をCVremote、および2車両間曲率CV’の例である。
まず単一車両からの曲率を算出する。図6に示すように、自車両単独情報から得られた自車両曲率をCVhost、他車両単独情報から得られた他車両曲率をCVremote、さらに自車両および他車両の2車両から得られた2車両間曲率をCV’とする。CVhostもしくはCVremoteが、CV’から得られたある一定の曲率区間に相当するかを判定する。CV’から得られる一定区間とは、CV’に任意の値を加えたものでもよいし、任意の値を乗じたものでもよい。すなわち(式7)あるいは(式8)である。
図6は、本実施の形態に係る自車両曲率CVhost、他車両曲率をCVremote、および2車両間曲率CV’の例である。
まず単一車両からの曲率を算出する。図6に示すように、自車両単独情報から得られた自車両曲率をCVhost、他車両単独情報から得られた他車両曲率をCVremote、さらに自車両および他車両の2車両から得られた2車両間曲率をCV’とする。CVhostもしくはCVremoteが、CV’から得られたある一定の曲率区間に相当するかを判定する。CV’から得られる一定区間とは、CV’に任意の値を加えたものでもよいし、任意の値を乗じたものでもよい。すなわち(式7)あるいは(式8)である。
(式7)CV’+α<CVhost<CV’+β
(式8)CV’*γ<CVhost<CV’*σ
(式8)CV’*γ<CVhost<CV’*σ
具体的には、(式8)の乗算を採用し、γ=0.5,σ=1.5とする。上記では、自車両曲率CVhostの値を用いたがCVremoteの値を採用してもよい。これにより、自車両が直線区間あるいは緩和区間を走行中であり、方位変化からの曲率推定では実際の曲率一定区間より低く見積もられてしまう場合でも、2車両の位置関係による曲率推定を用いることによってその影響を低減することができるという効果がある。α、β、γ、σは、第1の閾値、第2の閾値、第3の閾値、および第4の閾値の例である。
次に、図7を用いて、本実施の形態の位置推定処理、すなわちカーブ対向判定処理の具体例について説明する。
自車両301および他車両302がカーブを対向関係で走行している。自車両301はカーブの緩和区間に差し掛かったところである。また、他車両302は反対側の緩和区間を越えて曲率一定区間に差し掛かったところである。他車両302は曲率一定区間に差し掛かったため、カーブの曲率を自車両301の方位情報(自車両情報)により推定することができている。ただし、自車両301は緩和区間に差し掛かったところであるため、曲率はほとんど0である。そのため、2車両の曲率を比較してもその値は許容値内で一致せずにカーブ対向であると判定されない。
自車両301および他車両302がカーブを対向関係で走行している。自車両301はカーブの緩和区間に差し掛かったところである。また、他車両302は反対側の緩和区間を越えて曲率一定区間に差し掛かったところである。他車両302は曲率一定区間に差し掛かったため、カーブの曲率を自車両301の方位情報(自車両情報)により推定することができている。ただし、自車両301は緩和区間に差し掛かったところであるため、曲率はほとんど0である。そのため、2車両の曲率を比較してもその値は許容値内で一致せずにカーブ対向であると判定されない。
しかし、本実施の形態により算出された2車両間曲率は、一方または両方が緩和区間あるいは直線区間に存在したとしても0にはならない。図7のグラフの1点鎖線に示すように、本実施の形態に係る2車両間曲率CV’は、曲率一定区間を頂上としたなだらかな分布を描く。そのため、この2車両間曲率を用いれば、カーブが一定曲率になる手前からでも高精度なカーブ対向判定が可能になる。
***動作の説明***
図8を用いて、本実施の形態に係る位置推定システム500の動作について説明する。
ステップS101において、曲率算出部203は、自車両情報検知部201あるいは他車両情報検知部202を介して、自車両情報501あるいは他車両情報502が更新されたか否かを判定する。位置推定システム500は、自車両情報501あるいは他車両情報502が更新されたときに位置推定処理を実行する。自車両情報501あるいは他車両情報502が更新されていなければ、処理はステップS108に進む。
図8を用いて、本実施の形態に係る位置推定システム500の動作について説明する。
ステップS101において、曲率算出部203は、自車両情報検知部201あるいは他車両情報検知部202を介して、自車両情報501あるいは他車両情報502が更新されたか否かを判定する。位置推定システム500は、自車両情報501あるいは他車両情報502が更新されたときに位置推定処理を実行する。自車両情報501あるいは他車両情報502が更新されていなければ、処理はステップS108に進む。
ステップS102において、曲率算出部203は、自車両情報501および他車両情報502に基づいて、他車両302が自車両301の前方かつ方位差が90度以上180度以内であるかどうかを確認する。すなわち、曲率算出部203は、自車両301と他車両302の位置関係が図1における「交差」の位置関係になっているか否かを判定する。曲率算出部203は、自車両301と他車両302の位置関係が「交差」となっていなければ、処理はステップS108に進む。
ステップS103において、曲率算出部203は、自車両情報501に基づいて、自車両の速度が速度閾値504以上か否かを判定する。自車両の速度が速度閾値504以上でなければ、処理はステップS108に進む。
ステップS102とステップS103において、曲率算出部203は、自車両301と他車両302との相対位置がカーブで対向すると推定されるカーブ対向推定位置であるか否かを判定している。
ステップS102とステップS103において、曲率算出部203は、自車両301と他車両302との相対位置がカーブで対向すると推定されるカーブ対向推定位置であるか否かを判定している。
ステップS104において、曲率算出部203は、自車両曲率CVhost、他車両曲率CVremote、および2車両間曲率CV’を算出し、ステップS105に進む。これらの算出方法は上述した通りである。
なお、ここで、曲率算出部203は、自車両曲率CVhostが曲率閾値505以上であるか、すなわち所定値以下の曲率半径であるかを判定してもよい。そして、曲率が小さい場合には、曲率算出部203はカーブ対向判定を行わずに、処理をステップS108に進めてもよい。これにより、直線区間が続くようなところではカーブ対向判定を使わないようにすることができる。
ステップS105において、曲率比較部204は、自車両曲率CVhostまたは他車両曲率CVremoteと、2車両間曲率CV’を用いて定められた位置判定条件とを比較する。具体的には、上述した(式7)あるいは(式8)が位置判定条件となる。曲率比較部204は、例えば、自車両曲率または他車両曲率が、2車両間曲率に第1の閾値αを加算した値から2車両間曲率に第2の閾値βを加算した値までに含まれることを位置判定条件とする。また、曲率比較部204は、例えば、自車両曲率または他車両曲率が、2車両間曲率に第3の閾値γを乗算した値から2車両間曲率に第4の閾値σを乗算した値までに含まれることを位置判定条件とする。
なお、第1の閾値α、第2の閾値β、第3の閾値γ、および第4の閾値σは、予め記憶装置920に設定されている。
なお、第1の閾値α、第2の閾値β、第3の閾値γ、および第4の閾値σは、予め記憶装置920に設定されている。
ステップS106において、曲率比較部204は、自車両曲率または他車両曲率が、カーブ対向の合致条件である位置判定条件に合致するか否かを判定する。具体的には、2車両の曲率が(式7)あるいは(式8)を満たすか否かを判定する。対向の合致条件に合致する場合、処理はステップS107に進む。対向の合致条件に合致しない場合、処理はステップS108に進む。
ステップS107において、推定部205は、2車両の相対位置をカーブ対向位置と判定する。
ステップS108において、推定部205は、2車両の相対位置をカーブ対向位置ではないと判定する。
そして、自車両または他車両の車両情報が更新された場合、フローチャートのスタートから処理を再開する。
ステップS108において、推定部205は、2車両の相対位置をカーブ対向位置ではないと判定する。
そして、自車両または他車両の車両情報が更新された場合、フローチャートのスタートから処理を再開する。
***他の構成***
<変形例1>
本実施の形態では、自車両と他車両との間におけるカーブ対向判定を行うことを目的とした。しかし、対象体はこれに限定されるものではない。すなわち他車両と他車両の相対位置関係を判定する用途であってもよい。また車両に限定されるだけでなく、上述したように歩行者といった人間あるいは静止物に対しても用いることができる。
<変形例1>
本実施の形態では、自車両と他車両との間におけるカーブ対向判定を行うことを目的とした。しかし、対象体はこれに限定されるものではない。すなわち他車両と他車両の相対位置関係を判定する用途であってもよい。また車両に限定されるだけでなく、上述したように歩行者といった人間あるいは静止物に対しても用いることができる。
<変形例2>
本実施の形態では、曲率算出部203、曲率比較部204、および推定部205の機能がソフトウェアで実現される。変形例として、曲率算出部203、曲率比較部204、および推定部205の機能がハードウェアで実現されてもよい。
本実施の形態では、曲率算出部203、曲率比較部204、および推定部205の機能がソフトウェアで実現される。変形例として、曲率算出部203、曲率比較部204、および推定部205の機能がハードウェアで実現されてもよい。
図9は、本実施の形態の変形例に係る位置推定装置200の機能構成図である。
位置推定装置100は、プロセッサ910に替えて電子回路909を備える。
電子回路909は、曲率算出部203、曲率比較部204、および推定部205の機能を実現する専用の電子回路である。
電子回路909は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。
位置推定装置100は、プロセッサ910に替えて電子回路909を備える。
電子回路909は、曲率算出部203、曲率比較部204、および推定部205の機能を実現する専用の電子回路である。
電子回路909は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。
曲率算出部203、曲率比較部204、および推定部205の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。
別の変形例として、曲率算出部203、曲率比較部204、および推定部205の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
また、別の変形例として、曲率算出部203、曲率比較部204、および推定部205の一部あるいはすべての機能が、ファームウェアで実現されていてもよい。
別の変形例として、曲率算出部203、曲率比較部204、および推定部205の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
また、別の変形例として、曲率算出部203、曲率比較部204、および推定部205の一部あるいはすべての機能が、ファームウェアで実現されていてもよい。
プロセッサと電子回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、位置推定装置100において、曲率算出部203、曲率比較部204、および推定部205の機能は、プロセッシングサーキットリにより実現される。
***本実施の形態の効果の説明***
本実施の形態に係る位置推定システムでは、曲率算出部は、自車両および他車両単独から算出される曲率に加え、自車両と他車両の位置関係により計算される曲率を算出する。曲率比較部は、自車両および他車両単独から算出された曲率が、自車両と他車両の位置関係により算出される曲率に対して許容される定数値以内、もしくは定数倍以内であるか否かを判定する。よって、本実施の形態に係る位置推定システムによれば、センシングで認識できない対象物であっても、車車間通信などによって車両情報を取得して、カーブ対向判定と交差判定の誤判定を低減することができる。したがって、運転支援および走行制御を行う際の誤判定を低減することができる。このように、本実施の形態に係る位置推定システムによれば、緩和区間を含むカーブを走行する場合、相対位置間判定の誤判定を防止し、車両相対位置関係の判定精度を向上させることができる。
本実施の形態に係る位置推定システムでは、曲率算出部は、自車両および他車両単独から算出される曲率に加え、自車両と他車両の位置関係により計算される曲率を算出する。曲率比較部は、自車両および他車両単独から算出された曲率が、自車両と他車両の位置関係により算出される曲率に対して許容される定数値以内、もしくは定数倍以内であるか否かを判定する。よって、本実施の形態に係る位置推定システムによれば、センシングで認識できない対象物であっても、車車間通信などによって車両情報を取得して、カーブ対向判定と交差判定の誤判定を低減することができる。したがって、運転支援および走行制御を行う際の誤判定を低減することができる。このように、本実施の形態に係る位置推定システムによれば、緩和区間を含むカーブを走行する場合、相対位置間判定の誤判定を防止し、車両相対位置関係の判定精度を向上させることができる。
本実施の形態に係る位置推定システムでは、自車両および他車両情報から曲率を算出し、それらを比較することによって自車両と他車両の相対位置関係を推定する。このように、本実施の形態に係る位置推定システムでは、方位変化による曲率推定と2車間の位置関係による曲率推定を組み合わせる。このため、カーブ対向において一方の車両が緩和区間あるいは直線区間に留まっていても、自車両と対象車両との相対位置関係を精度高く認識できる。よって、運転支援および走行制御を行う際の誤判定を低減することができる。
本実施の形態に係る位置推定システムでは、自車両もしくは他車両の方位変化より算出される曲率と、2車間の位置関係曲率による曲率を用い、それらの組み合わせを比較することによりカーブ対向判定を行う。このように、本実施の形態に係る位置推定システムでは、自車両と他車両の曲率の組み合わせ1通りではなく、自車両と他車両、自車両と2車、他車両と2車の組み合わせが選択可能である。よって、カーブ対向判定による検出漏れを防ぐことができる。
以上のように、本実施の形態に係る位置推定システムでは、2車の相対位置関係から算出した曲率をカーブ対向の判定に用いるため、緩和区間および直線区間に起因するカーブ曲率推定の見積もり誤差の影響を受けない。さらにセンサ誤差およびハンドル修正などのセンサ情報の不安定さの影響も受けない。そのため、カーブ対向における自車両と対象車両との相対位置関係を精度高く認識できるので、運転支援および走行制御を行う際の誤判定を低減することができる。
以上の実施の形態1では、位置推定システムの各部を独立した機能ブロックとして説明した。しかし、位置推定システムの構成は、上述した実施の形態のような構成でなくてもよい。位置推定システムの機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。また、位置推定装置は、1つの装置でなく、複数の装置から構成されたシステムでもよい。
また、実施の形態1のうち、複数の部分を組み合わせて実施しても構わない。あるいは、この実施の形態のうち、1つの部分を実施しても構わない。その他、この実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
すなわち、実施の形態1では、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
また、実施の形態1のうち、複数の部分を組み合わせて実施しても構わない。あるいは、この実施の形態のうち、1つの部分を実施しても構わない。その他、この実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
すなわち、実施の形態1では、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
なお、上述した実施の形態は、本質的に好ましい例示であって、本発明の範囲、本発明の適用物の範囲、および本発明の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。
21 第1の情報取得部、22 第2の情報取得部、31 第1の移動体、32 第2の移動体、51 第1の移動体情報、52 第2の移動体情報、100 位置推定装置、101 車載センサ、102 受信部、103 送信部、200 位置推定装置、201 自車両情報検知部、202 他車両情報検知部、203 曲率算出部、204 曲率比較部、205 推定部、300 対象体、301 自車両、302 他車両、500 位置推定システム、501 自車両情報、502 他車両情報、503 曲率パラメータテーブル、504 速度閾値、505 曲率閾値、909 電子回路、910 プロセッサ、920 記憶装置、930 入出力インタフェース、950 通信インタフェース。
Claims (8)
- 第1の移動体と第2の移動体の相対位置を推定する位置推定装置において、
前記第1の移動体の位置と方位と速度を含む第1の移動体情報を用いて前記第1の移動体の曲率である第1の移動体曲率を算出し、前記第2の移動体の位置と方位と速度を含む第2の移動体情報を用いて前記第2の移動体の曲率である第2の移動体曲率を算出し、前記第2の移動体情報と前記第1の移動体情報とを用いて前記第1の移動体と前記第2の移動体との相対位置から求められる曲率である2移動体間曲率を算出する曲率算出部と、
前記第1の移動体曲率または前記第2の移動体曲率と、前記2移動体間曲率を用いて定められた位置判定条件とを比較する曲率比較部と、
前記第1の移動体曲率または前記第2の移動体曲率が前記位置判定条件を満たす場合に、前記第1の移動体と前記第2の移動体との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する推定部と
を備えた位置推定装置。 - 前記位置推定装置は、
前記第1の移動体に搭載された車載センサから前記第1の移動体情報を取得する第1の情報取得部と、
前記第2の移動体から送信された前記第2の移動体情報を、車車間通信により受信する第2の情報取得部と
を備え、
前記曲率算出部は、
前記第1の情報取得部により取得された前記第1の移動体情報と、前記第2の情報取得部により取得された前記第2の移動体情報とを用いて、前記第1の移動体曲率と前記第2の移動体曲率と前記2移動体間曲率とを算出する請求項1に記載の位置推定装置。 - 前記曲率算出部は、
前記第1の移動体と前記第2の移動体との相対位置がカーブで対向すると推定されるカーブ対向推定位置である場合に、前記第1の移動体曲率と前記第2の移動体曲率と前記2移動体間曲率とを算出する請求項1または請求項2に記載の位置推定装置。 - 前記曲率比較部は、
前記第1の移動体曲率または前記第2の移動体曲率が、前記2移動体間曲率に第1の曲率閾値を加算した値から前記2移動体間曲率に第2の曲率閾値を加算した値までに含まれることを前記位置判定条件とする請求項1から請求項3のいずれか1項に記載の位置推定装置。 - 前記曲率比較部は、
前記第1の移動体曲率または前記第2の移動体曲率が、前記2移動体間曲率に第3の曲率閾値を乗算した値から前記2移動体間曲率に第4の曲率閾値を乗算した値までに含まれることを前記位置判定条件とする請求項1から請求項3のいずれか1項に記載の位置推定装置。 - 車載センサを搭載した第1の移動体と、前記第1の移動体と第2の移動体の相対位置を推定する位置推定装置とを備えた位置推定システムにおいて、
前記位置推定装置は、
前記車載センサから、前記第1の移動体の位置と方位と速度を含む第1の移動体情報を取得する第1の情報取得部と、
前記第2の移動体の位置と方位と速度を含む第2の移動体情報を、車車間通信により前記第1の移動体から受信する第2の情報取得部と、
前記第1の移動体情報を用いて前記第1の移動体の曲率である第1の移動体曲率を算出し、前記第2の移動体情報を用いて前記第2の移動体の曲率である第2の移動体曲率を算出し、前記第2の移動体情報と前記第1の移動体情報とを用いて前記第1の移動体と前記第2の移動体との相対位置から求められる曲率である2移動体間曲率を算出する曲率算出部と、
前記第1の移動体曲率または前記第2の移動体曲率と、前記2移動体間曲率を用いて定められた位置判定条件とを比較する曲率比較部と、
前記第1の移動体曲率または前記第2の移動体曲率が前記位置判定条件を満たす場合に、前記第1の移動体と前記第2の移動体との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する推定部と
を備えた位置推定システム。 - 第1の移動体と第2の移動体の相対位置を推定する位置推定装置の位置推定方法において、
曲率算出部が、前記第1の移動体の位置と方位と速度を含む第1の移動体情報を用いて前記第1の移動体の曲率である第1の移動体曲率を算出し、前記第2の移動体の位置と方位と速度を含む第2の移動体情報を用いて前記第2の移動体の曲率である第2の移動体曲率を算出し、前記第2の移動体情報と前記第1の移動体情報とを用いて前記第1の移動体と前記第2の移動体との相対位置から求められる曲率である2移動体間曲率を算出し、
曲率比較部が、前記第1の移動体曲率または前記第2の移動体曲率と、前記2移動体間曲率を用いて定められた位置判定条件とを比較し、
推定部が、前記第1の移動体曲率または前記第2の移動体曲率が前記位置判定条件を満たす場合に、前記第1の移動体と前記第2の移動体との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する位置推定方法。 - 第1の移動体と第2の移動体の相対位置を推定する位置推定プログラムにおいて、
前記第1の移動体の位置と方位と速度を含む第1の移動体情報を用いて前記第1の移動体の曲率である第1の移動体曲率を算出し、前記第2の移動体の位置と方位と速度を含む第2の移動体情報を用いて前記第2の移動体の曲率である第2の移動体曲率を算出し、前記第2の移動体情報と前記第1の移動体情報とを用いて前記第1の移動体と前記第2の移動体との相対位置から求められる曲率である2移動体間曲率を算出する曲率算出処理と、
前記第1の移動体曲率または前記第2の移動体曲率と、前記2移動体間曲率を用いて定められた位置判定条件とを比較する曲率比較処理と、
前記第1の移動体曲率または前記第2の移動体曲率が前記位置判定条件を満たす場合に、前記第1の移動体と前記第2の移動体との相対位置がカーブにおいて対向するカーブ対向位置にあると推定する推定処理と
をコンピュータに実行させる位置推定プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/014804 WO2020202498A1 (ja) | 2019-04-03 | 2019-04-03 | 位置推定装置、位置推定システム、位置推定方法、および位置推定プログラム |
JP2019550869A JP6647465B1 (ja) | 2019-04-03 | 2019-04-03 | 位置推定装置、位置推定システム、位置推定方法、および位置推定プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/014804 WO2020202498A1 (ja) | 2019-04-03 | 2019-04-03 | 位置推定装置、位置推定システム、位置推定方法、および位置推定プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202498A1 true WO2020202498A1 (ja) | 2020-10-08 |
Family
ID=69568121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014804 WO2020202498A1 (ja) | 2019-04-03 | 2019-04-03 | 位置推定装置、位置推定システム、位置推定方法、および位置推定プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6647465B1 (ja) |
WO (1) | WO2020202498A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015214284A (ja) * | 2014-05-12 | 2015-12-03 | 株式会社デンソー | 運転支援装置 |
JP2017091502A (ja) * | 2015-11-11 | 2017-05-25 | 株式会社デンソー | 運転支援装置 |
JP2017111575A (ja) * | 2015-12-15 | 2017-06-22 | 株式会社デンソー | 運転支援装置 |
JP2019001298A (ja) * | 2017-06-15 | 2019-01-10 | 株式会社Subaru | 衝突判定装置 |
-
2019
- 2019-04-03 JP JP2019550869A patent/JP6647465B1/ja active Active
- 2019-04-03 WO PCT/JP2019/014804 patent/WO2020202498A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015214284A (ja) * | 2014-05-12 | 2015-12-03 | 株式会社デンソー | 運転支援装置 |
JP2017091502A (ja) * | 2015-11-11 | 2017-05-25 | 株式会社デンソー | 運転支援装置 |
JP2017111575A (ja) * | 2015-12-15 | 2017-06-22 | 株式会社デンソー | 運転支援装置 |
JP2019001298A (ja) * | 2017-06-15 | 2019-01-10 | 株式会社Subaru | 衝突判定装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020202498A1 (ja) | 2021-04-30 |
JP6647465B1 (ja) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109669451B (zh) | 自主驾驶支持设备及方法 | |
CN108255171B (zh) | 用于提高自主驾驶车辆的稳定性的方法和系统 | |
JP5152244B2 (ja) | 追従対象車特定装置 | |
US10953873B2 (en) | Extension to safety protocols for autonomous vehicle operation | |
CN110723151B (zh) | 智能驾驶系统初始化方法和装置 | |
WO2018176313A1 (en) | Deceleration curb-based direction checking and lane keeping system for autonomous driving vehicles | |
CN111238520A (zh) | 变道路径规划方法、装置、电子设备和计算机可读介质 | |
WO2018066133A1 (ja) | 車両判定方法、走行経路補正方法、車両判定装置、及び走行経路補正装置 | |
JP2019096177A (ja) | 車群制御装置 | |
JP2015021858A (ja) | 車両位置補正装置 | |
US12012125B2 (en) | Communicating faults to an isolated safety region of a system on a chip | |
US11364922B2 (en) | Driving assistance device, driving assistance method, and computer readable medium | |
KR20200123308A (ko) | 카메라 신호 모니터링 장치 및 방법 | |
US20240300537A1 (en) | Communicating faults to an isolated safety region of a system on a chip | |
WO2016158786A1 (ja) | 衝突回避装置及び衝突回避システム | |
US11803668B2 (en) | Isolating a region of a system on a chip for safety critical operations | |
US11573856B1 (en) | Transmitting data between regions of varying safety integrity levels in a system on a chip | |
US20210206392A1 (en) | Method and device for operating an automated vehicle | |
WO2020202498A1 (ja) | 位置推定装置、位置推定システム、位置推定方法、および位置推定プログラム | |
US20230020415A1 (en) | Vehicle control system, vehicle integrated control device, electronic control device, network communication device, vehicle control method and computer readable medium | |
WO2023009559A1 (en) | Isolating a region of a system on a chip for safety critical operations | |
US20240190475A1 (en) | Travel area determination device and travel area determination method | |
CN114523978B (zh) | 一种后方道路模型生成方法及装置 | |
KR20220153708A (ko) | 제어기를 제어하는 방법 및 이를 위한 차량용 통합제어기 | |
WO2019220590A1 (ja) | 運転支援装置、運転支援方法、運転支援プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019550869 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19923283 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19923283 Country of ref document: EP Kind code of ref document: A1 |