WO2020201609A1 - Métodos para el reciclaje de nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos o polvo para procesos de impresión en 3d - Google Patents

Métodos para el reciclaje de nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos o polvo para procesos de impresión en 3d Download PDF

Info

Publication number
WO2020201609A1
WO2020201609A1 PCT/ES2020/070229 ES2020070229W WO2020201609A1 WO 2020201609 A1 WO2020201609 A1 WO 2020201609A1 ES 2020070229 W ES2020070229 W ES 2020070229W WO 2020201609 A1 WO2020201609 A1 WO 2020201609A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum bags
nylon
printing processes
filaments
stage
Prior art date
Application number
PCT/ES2020/070229
Other languages
English (en)
French (fr)
Inventor
Enrique GUINALDO FERNÁNDEZ
Tamara BLANCO VARELA
Guillermo HERNÁIZ LÓPEZ
José SÁNCHEZ GÓMEZ
Original Assignee
Airbus Operations, S.L.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations, S.L.U. filed Critical Airbus Operations, S.L.U.
Priority to US17/601,249 priority Critical patent/US20220184857A1/en
Priority to CN202080027443.3A priority patent/CN113692336A/zh
Publication of WO2020201609A1 publication Critical patent/WO2020201609A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/66Recycling the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/275Recovery or reuse of energy or materials
    • B29C48/277Recovery or reuse of energy or materials of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/042Mixing disintegrated particles or powders with other materials, e.g. with virgin materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92695Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9279Errors or malfunctioning, e.g. for quality control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7128Bags, sacks, sachets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to methods for recycling Nylon 6,6 plastic from vacuum bags to obtain filaments or powder for 3D printing of plastics, for example using Fused Filament Fabrication (FFF) printers. ”) And / or Selective Laser Sintering (SLS:“ Selective Laser Sintering ”) printers.
  • FFF Fused Filament Fabrication
  • SLS Selective Laser Sintering
  • FFF Fused Filament Manufacturing
  • SLS Selective Laser Sintering
  • Nylon 6.6 is used without being combined and with short fiber reinforcements for parts without structural requirements in aircraft manufactured by classical methods, for example, machining a round bar. In addition, it is used in the aeronautical industry for the design of prototypes and models, as well as for the manufacture of drilling templates.
  • 3D Printing also known as Additive Manufacturing
  • additive Manufacturing is a technology with great advantages for its application in the aeronautical field or in other fields, which is now being widely developed and explored to obtain its full potential.
  • plastics and 3D printing of reinforced plastics are making their way onto the market and also showing great potential for different applications (eg low load parts).
  • the object of the invention is to provide methods for recycling Nylon 6,6 plastic from vacuum bags (for example, those used in the production of aircraft parts) to obtain filaments or powder for 3D printing processes , so that the waste materials obtained in the production of composite parts can be reduced.
  • the invention provides a method for recycling plastic Nylon 6,6 from vacuum bags to obtain filaments for 3D Printing processes, comprising the following steps:
  • the vacuum bags are taken to a shredding machine where they are cut into smaller pieces, or
  • the vacuum bags are cut into sheets, the sheets are rolled up and then put into a set of extruder and cutter to obtain pellets,
  • the smaller pieces or pellets are introduced into an extruder, where they are melted, and the molten mixture is cooled and expelled through the extruder nozzle to produce the recycled filaments, and
  • the Invention also provides a method for recycling plastic Nylon 6,6 from vacuum bags to obtain powder for 3D Printing processes, comprising the following steps: - providing used Nylon 6,6 vacuum bags,
  • the vacuum bags are taken to a shredding machine where they are cut into dust particles.
  • the Invention has several advantages, related to the recycling of a material, which is supposed to be used only once, for an Alternative application / use (3D printing):
  • Figure 1A shows a schematic diagram of the method for recycling plastic Nylon 6,6 from vacuum bags to obtain unreinforced filaments for the 3D printing processes of the invention, in a first alternative.
  • Figure 1B shows a schematic diagram of the method for recycling plastic Nylon 6,6 from vacuum bags to obtain unreinforced filaments for the 3D printing processes of the invention, in a second alternative.
  • Figure 2 shows a schematic representation of a crushing machine of Figure 1A.
  • Figure 3 shows a schematic representation of an extruder of figure 1 A.
  • Figure 4 shows a schematic representation of a winder of figure 1 A or 1 B and the winding process.
  • Figure 5A shows a schematic diagram of the method for recycling plastic Nylon 6,6 from vacuum bags to obtain reinforced filaments for the 3D printing processes of the invention, in a first alternative.
  • Figure 5B shows a schematic diagram of the method for recycling plastic Nylon 6,6 from vacuum bags to obtain reinforced filaments for the 3D printing processes of the invention, in a second alternative.
  • Figure 6 shows a schematic diagram of the method for recycling plastic Nylon 6,6 from vacuum bags to obtain powder for the 3D printing processes of the invention.
  • the invention relates to methods for recycling plastic Nylon 6,6 from vacuum bags 2 (for example, those used in the production of aircraft parts) to obtain filaments 9 or powder for 3D printing processes, in particularly for the production of aircraft parts.
  • the 9 filaments are used for the Manufacture of Fused Filaments (FFF) and the powder for Selective Laser Sintering (SLS).
  • FFF Fused Filaments
  • SLS Selective Laser Sintering
  • the recycled filaments 9 can be obtained with or without reinforcement from production vacuum bags 2 and CFRP scraps.
  • a quality control stage is necessary. This control must be carried out periodically, including a visual inspection to detect any change in color, appearance, stiffness or flexibility that implies a modification of the degree of crystallinity, and / or concentration of resin residues, and a thermal analysis, such as Thermogravimetry (TMA ), to detect potential effects on different parameters, such as the percentage of weight loss.
  • TMA Thermogravimetry
  • a quality control can be carried out periodically at the end of the recycling process to check if the final product (filament) has the properties specified / necessary for the application.
  • the vacuum bags 2 Once the vacuum bags 2 have been used for the curing processes (Autoclave or Outside the Autoclave), and after being analyzed (if necessary), they are collected and can: a) Be taken to a shredder 1 where they are cut in smaller pieces 3 tiny (for example, 0.5x0.5cm) that lead to a faster melting due to their greater surface area. Different part sizes can be considered depending on the total weight of the material area of the vacuum bag 2.
  • This quality control stage comprises one or more of the following controls: - thermal analysis, such as Differential Scanning Calorimetry (DSC: “Differential Scanning
  • the smaller pieces 3 or the pellets are fed into an extruder 15 with a motor 8 in order to produce the filaments 9.
  • the smaller pieces 3 or the pellets pass through a hopper 4 and are melted in the central part of extruder 15 (barrel 5 and screw 6) at a temperature higher than the melting temperature of Nylon 6.6 (»273 ° C).
  • cut virgin Nylon 6,6 can also be added (eg, in a 50:50 ratio, or any other ratio) and melted together.
  • the molten mixture is expelled from the extruder 15 through the nozzle 7, which shapes the molten mixture into the intended filaments 9 (of 1.75-3 mm in diameter) due to the drop in temperature.
  • the amplitude of this stage depends on the number of vacuum bags 2 used that provide the small cut pieces 3 or the pellets and on the amount of virgin Nylon 6,6 needed in case of mixing.
  • the outside temperature or a cooler facilitate cooling and solidification just after the nozzle 7. Furthermore, the filaments 9 can also be dyed later.
  • the virgin Nylon 6,6 could also be added together with the vacuum bags 2 (for example, in a 50:50 ratio, or in any other ratio) to the same grinder 1 and then melted together.
  • the filaments 9 can be reinforced by adding different fibers such as carbon, glass or aramid or other reinforcements such as CNTs, graphene, carbon black, nanoparticles, etc.
  • recycled fibers for example, Recycled Short Fiber in Figures 5A and 5B
  • remains of fiber-reinforced plastics obtained during the production of aeronautical parts through a standard process of pyrolysis or solvolysis and also applying a crushing / cutting process to obtain staple fiber, which must also be fed into the extrusion process in combination with plastic, Nylon 6,6, smaller pieces 3 or pellets.
  • the reinforcement can be obtained in a preparation stage before the extrusion stage, in which the smaller pieces 3 or the pellets and the fiber reinforcements are fed into an extruder and cutter assembly for the preparation stage in order to obtain Smaller reinforced pieces or reinforced pellets to be used in the extrusion stage.
  • each coil 10 has to have about 270 meters of filament 9 wound on itself.
  • Figure 4 shows a schematic representation of a winder 16 with an intermediate pulley 1 1, a pulley 12, a motor 13 and a tension bearing 14, and the winding process.
  • TMA Thermogravimetry
  • the vacuum bags 2 are taken to a grinder 1 which, when cut, produces very small pieces (dust with 0.1 mm diameter particles).
  • the used vacuum bags 2 could also be mixed (in a 50:50 ratio, or in any other ratio) with virgin Nylon 6.6 to improve the quality of the material used, also providing dust particles with a diameter of 0.1 mm.
  • the recycled Nylon / Virgin Nylon 6.6 can also be mixed in the desired proportion with small pieces of carbon or Glass Fibers as well as with any other recycled reinforcements (obtained from CFRP remains by pyrolysis or solvolysis and cutting / grinding process to obtain powder) or not recycled.
  • a quality control of the powder is carried out after the crushing stage.
  • This quality control stage comprises one or more of the following controls: - thermal analysis, such as Differential Scanning Calorimetry (DSC), to detect changes in Vitreous Transition Temperature (Tg), melting temperature (Tm) or degree of crystallinity, and
  • DSC Differential Scanning Calorimetry
  • Mixing could be done at the same time within the same grinder 1 or each material could be cut in a different grinder and then the provided powders would be mixed (50:50).
  • Additive manufacturing using FFF technology with recycled 9 filaments seems to be a good option for unloaded applications with a low production rate or when high NRC investments are required. Additive manufacturing technology appears as a better option compared to other technologies (injection molding %) for these applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Artificial Filaments (AREA)
  • Air Bags (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Métodos para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) o polvo para procesos de impresión en 3D. El método de obtención de los filamentos (9) comprende las siguientes etapas: proporcionar bolsas de vacío (2) usadas de nylon 6,6, etapa de control de calidad para comprobar el estado de las bolsas de vacío (2) usadas, etapa para formar partes más pequeñas (piezas más pequeñas (3) o pelets) a partir de las bolsas de vacío usadas etapa de control de calidad para comprobar el estado de las piezas más pequeñas (3) o de los pelets, etapa de extrusión: las piezas más pequeñas (3) o los pelets se introducen en un extrusor (15), donde se funden, y la mezcla fundida se enfría y expulsa a través de la boquilla (7) del extrusor (15) para producir los filamentos reciclados (9), y etapa de bobinado: los filamentos reciclados (9) que salen del extrusor (15) se enrollan en bobinas (10).

Description

Métodos para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos o polvo para procesos de impresión en 3D.
Campo de la invención
La invención se refiere a métodos para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos o polvo para la impresión en 3D de plásticos, por ejemplo utilizando impresoras de Fabricación de Filamentos Fundidos (FFF: “Fused Filament Fabrication”) y/o impresoras de Sinterización por Láser Selectiva (SLS:“Selective Láser Sintering”).
Con estos filamentos o polvo reciclados se pueden producir piezas aeronáuticas, voladoras o no, impresas en 3D. Como ejemplos de piezas no voladoras, se pueden incluir herramientas u otros elementos de fabricación.
Antecedentes de la invención
Hoy en día, los plásticos en bruto que son la base de los filamentos de Fabricación de Filamentos Fundidos (FFF) o el polvo para los procesos de Sinterización por Láser Selectiva (SLS) se obtienen a partir de materiales vírgenes. La misma situación se observa para los refuerzos de fibra: se obtienen a partir de los métodos clásicos de fabricación conocidos para las fibras en bruto.
Actualmente, no existe ningún proceso o procedimiento para el reciclaje de las bolsas de vacío que se utilice ampliamente para los procesos de curado de los materiales preimpregnados y/o los procesos de infusión basados en vacío como LRI, VARTM, RFI, etc.
Sin embargo, hay algunos métodos y procesos para el reciclaje de poliamidas. Como el Nylon 6,6, el material del que están hechas las bolsas de vacío, forma parte de la familia de las poliamidas, esto abre la posibilidad de encontrar una segunda vida para este material que se utiliza ampliamente en la industria de los materiales compuestos y puede ser reutilizado en otras aplicaciones. Hasta ahora, los métodos actuales de reciclaje de pollamldas llevan a cabo procesos de despollmerización y repolimerización, como se describe en los siguientes documentos de patentes:
- US 8366977 B2: Proceso de fabricación de hilo de poliamida reciclado. - US 2004/0249001 A1 : Proceso para la recuperación en solución de nylon de alta reactividad y de los artículos fabricados a partir de él.
- US 6187917 B1 : Proceso para la purificación de caprolactama obtenido a partir de la despollmerización de alfombras que contienen poliamlda.
- US 2004/0186190 A1 : Recuperación basada en disolventes y reciclaje de material de poliamlda.
En lo que respecta a las fibras de refuerzo recicladas, actualmente se están desarrollando procesos para obtener fibras a partir de procesos de fibra de carbono reforzada, como la pirólisis o la solvólisis. Estas actividades están adquiriendo más importancia debido al interés de varias industrias, como la del automóvil. Sin embargo, hasta ahora estos refuerzos no se han utilizado para reforzar los filamentos de fabricación aditiva, sino que se utilizan principalmente para componentes no muy cargados fabricados por moldeo de refuerzo de fibra corta.
Actualmente, el Nylon 6,6 se utiliza sin ser combinado y con refuerzos de fibra corta para piezas sin requisitos estructurales en aeronaves fabricadas por métodos clásicos, por ejemplo, mecanizando una barra redonda. Además, se utiliza en la industria aeronáutica para el diseño de prototipos y modelos, así como para la fabricación de plantillas para taladros.
Hoy en día, una de las principales cuestiones asociadas al Incremento de las piezas de material compuesto en aeronaves es la cantidad de restos (desechos) de material / residuos obtenidos en las plantas de producción, lo que afecta en gran medida al ciclo de vida de las piezas: - Materiales auxiliares / bolsas de vacío: durante los procesos de curado de las piezas (en autoclave o fuera de autoclave), se necesita una gran cantidad de bolsas de vacío, que se tiran una vez que se realizan los procesos de curado.
- Restos de materiales compuestos / plásticos reforzados con fibras (FRP): además, durante la producción de las piezas se obtienen toneladas de restos (desechos) de CFRP, que hoy en día se entierran en su mayoría.
De hecho, este problema podría ser mayor en el futuro con los cambios previstos en la normativa medioambiental, que podrían limitar el desperdicio de material. Por lo tanto, se necesitan soluciones lo antes posible para reducir y/o reciclar los desperdicios de material obtenidos en la producción de piezas de materiales compuestos.
Por otra parte, la Impresión en 3D (también conocida como Fabricación Aditiva) es una tecnología con grandes ventajas para su aplicación en el campo aeronáutico o en otros campos, que ahora se está desarrollando y explorando ampliamente para obtener todo el potencial de la misma. En particular, los plásticos y la impresión en 3D de plásticos reforzados están abriéndose camino en el mercado y mostrando también un gran potencial para diferentes aplicaciones (por ejemplo, piezas con poca carga).
Sumario de la invención
El objeto de la invención es proporcionar métodos para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (por ejemplo, las que se utilizan en la producción de piezas de aeronaves) para obtener filamentos o polvo para procesos de impresión en 3D, de manera que se puedan reducir los materiales de desecho obtenidos en la producción de piezas de materiales compuestos.
La invención proporciona un método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos para procesos de Impresión en 3D, que comprende las siguientes etapas:
- proporcionar bolsas de vacío usadas de Nylon 6,6,
- etapa de control de calidad para comprobar el estado de las bolsas de vacío usadas, - etapa para formar partes más pequeñas a partir de las bolsas de vacío usadas:
- las bolsas de vacío se llevan a una máquina trituradora donde se cortan en piezas más pequeñas, o
- las bolsas de vacío se cortan en láminas, las láminas se enrollan y luego se Introducen en un conjunto de extrusor y cortador para obtener pelets,
- etapa de control de calidad para comprobar el estado de las piezas,
- etapa de extrusión: las piezas más pequeñas o los pelets se Introducen en un extrusor, donde se funden, y la mezcla fundida se enfría y se expulsa a través de la boquilla del extrusor para producir los filamentos reciclados, y
- etapa de bobinado: los filamentos reciclados que salen del extrusor se enrollan en bobinas.
La Invención también proporciona un método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío para obtener polvo para los procesos de Impresión en 3D, que comprende las siguientes etapas: - proporcionar bolsas de vacío usadas de Nylon 6,6,
- etapa de control de calidad para comprobar el estado de las bolsas de vacío usadas, y
- etapa de triturado: las bolsas de vacío se llevan a una máquina trituradora donde son cortadas en partículas de polvo.
La Invención presenta varias ventajas, relacionadas con el reciclaje de un material, que se supone que se utiliza una sola vez, para una aplicación/uso Innovador (impresión en 3D):
- Impacto ambiental positivo / evaluación del ciclo de vida: o El reciclaje del Nylon 6,6 de la bolsa de vacío permite que la bolsa sea reutilizada para un objetivo Innovador y completamente diferente al anterior. o Los refuerzos de plásticos reforzados con fibra pueden ser reutilizados introduciéndolos de nuevo en el ciclo de vida del producto en lugar de enterrarlos. o Hacer que los procesos de impresión en 3D sean más atractivos desde el punto de vista medioambiental / de evaluación del ciclo de vida. - Impacto positivo en la economía y en los costes: o Mitigar los costes de la compra de nuevos plásticos y refuerzos, de materias primas para los procesos de impresión 3D /para las piezas. o Mitigar los costes tanto económicos como de imagen de marca de la producción y tratamiento de residuos. o Ventas potenciales de un producto reciclado a otras industrias (fuera del campo aeroespacial).
Otras características y ventajas de la presente invención serán claras a partir de la siguiente descripción detallada de varias realizaciones ilustrativas de su objeto en relación con las figuras adjuntas. Breve descripción de los dibujos
La figura 1 A muestra un diagrama esquemático del método para el reciclaje del Nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos no reforzados para los procesos de impresión 3D de la invención, en una primera alternativa.
La Figura 1 B muestra un diagrama esquemático del método para el reciclaje del Nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos no reforzados para los procesos de impresión 3D de la invención, en una segunda alternativa.
La figura 2 muestra una representación esquemática de una máquina trituradora de la figura 1A.
La figura 3 muestra una representación esquemática de un extrusor de la figura 1 A. La figura 4 muestra una representación esquemática de una bobinadora de la figura 1 A o 1 B y del proceso de bobinado.
La figura 5A muestra un diagrama esquemático del método para el reciclaje del Nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos reforzados para los procesos de impresión 3D de la invención, en una primera alternativa.
La Figura 5B muestra un diagrama esquemático del método para el reciclaje del Nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos reforzados para los procesos de impresión 3D de la invención, en una segunda alternativa.
La Figura 6 muestra un diagrama esquemático del método para el reciclaje del Nylon 6,6 plástico a partir de bolsas de vacío para obtener polvo para los procesos de impresión 3D de la invención.
Descripción detallada de la invención
La invención se refiere a métodos para el reciclaje del Nylon 6,6 plástico a partir de bolsas de vacío 2 (por ejemplo, las utilizadas en la producción de piezas de aeronaves) para obtener filamentos 9 o polvo para procesos de impresión en 3D, en particular para la producción de piezas de aeronaves.
Los filamentos 9 se utilizan para la Fabricación de Filamentos Fundidos (FFF) y el polvo para la Sinterización Selectiva por Láser (SLS).
Al Fabricación de Filamentos. Los filamentos 9 reciclados pueden obtenerse con o sin refuerzo a partir de bolsas de vacío 2 de producción y restos de CFRP.
A continuación se describen el proceso / las etapas a seguir para el reciclaje de la bolsa de vacío 2 (Nylon 6,6), incluyendo la producción de filamentos para impresión en 3D:
Proporcionar bolsas de vacío 2 usadas de Nvlon 6.6. Etapa de control de calidad:
Para controlar si las bolsas de vacío 2 han sufrido algún tipo de problema, es necesario una etapa de control de calidad. Este control debe realizarse periódicamente, incluyendo una inspección visual para detectar cualquier cambio de color, apariencia, rigidez o flexibilidad que implique una modificación del grado de cristalinidad, y/o concentración de residuos de resina, y un análisis térmico, como la Termogravimetría (TMA), para detectar potenciales efectos en diferentes parámetros, como el porcentaje de pérdida de peso.
Además, se puede realizar periódicamente un control de calidad al final del proceso de reciclado para comprobar si el producto final (filamento) tiene las propiedades especificadas / necesarias para la aplicación.
Etapa para formar partes más pequeñas a partir de las bolsas de vacío usadas:
Una vez que las bolsas de vacío 2 han sido utilizadas para los procesos de curado (Autoclave o Fuera del Autoclave), y después de ser analizadas (si es necesario), se recogen y pueden: a) Llevarse a un triturador 1 donde se cortan en piezas más pequeñas 3 diminutas (por ejemplo, de 0,5x0,5cm) que llevan a una fusión más rápida debido a su mayor área superficial. Se pueden considerar diferentes tamaños de pieza dependiendo del peso total del área del material de la bolsa de vacío 2.
Este proceso es casi inmediato, por lo tanto, como las bolsas de vacío 2 entran en el triturador 1 , las pequeñas piezas 3 cortadas salen del triturador 1 en un proceso continuo. Por lo tanto, la amplitud de esta etapa depende del número de bolsas de vacío 2 usadas y en caso de mezclarse, de la cantidad de Nylon virgen 6,6 que sigue el mismo procedimiento, o: b) Cortarse en láminas, luego se enrollan las láminas y se introducen en un conjunto de extrusor y cortador para obtener pelets.
Como se ha indicado, el proceso de adición de material virgen no es obligatorio, pero ayuda a mejorar la calidad del material reutilizado. Etapa de control de calidad
Se realiza un control de calidad de las piezas más pequeñas 3 o de los pelets después de la etapa anterior. Esta etapa de control de calidad comprende uno o más de los siguientes controles: - análisis térmico, como la Calorimetría Diferencial de Barrido (DSC:“Differential Scanning
Calorimetry”), para detectar cambios en la Temperatura de Transición Vitrea (Tg), la temperatura de fusión (Tm) o el alcance.de cristalinidad, y
- análisis de peso molecular, como la Cromatografía de Permeación en Gel (GPC:“Gel Permeation Chromatography”). Etapa de extrusión:
Las piezas más pequeñas 3 o los pelets se introducen en un extrusor 15 con un motor 8 con el fin de producir los filamentos 9. Para ello, las piezas más pequeñas 3 o los pelets pasan por una tolva 4 y se funden en la parte central del extrusor 15 (barril 5 y tornillo 6) a una temperatura superior a la temperatura de fusión del Nylon 6,6 (»273 ºC). Como se indica, el Nylon 6,6 virgen cortado también puede ser añadido (por ejemplo, en una proporción de 50:50, o en cualquier otra proporción) y fundido conjuntamente. Finalmente, la mezcla fundida es expulsada del extrusor 15 por la boquilla 7, que da forma a la mezcla fundida en los filamentos previstos 9 (de 1 ,75-3 mm de diámetro) debido a la caída de temperatura. En cuanto a la primera etapa, la amplitud de esta etapa depende del número de bolsas de vacío 2 usadas que proporcionan las piezas pequeñas cortadas 3 o los pelets y de la cantidad de Nylon 6,6 virgen necesario en caso de mezcla.
La temperatura exterior o un enfriador facilitan el enfriamiento y la solidificación justo después de la boquilla 7. Además, los filamentos 9 también pueden ser teñidos más tarde.
En la primera etapa, el Nylon 6,6 virgen también podría ser añadido junto con las bolsas de vacío 2 (por ejemplo, en una proporción de 50:50, o en cualquier otra proporción) al mismo triturador 1 y luego fundirse juntos. Como se ha mencionado, los filamentos 9 pueden reforzarse añadiendo diferentes fibras como de carbono, vidrio o aramida u otros refuerzos como CNTs, grafeno, negro de carbono, nanopartículas, etc. Para esta propuesta es relevante la introducción de fibras recicladas (por ejemplo, Fibra Corta Reciclada (“Recycled Short Fibre”) en las figuras 5A y 5B) provenientes de restos de plásticos reforzados con fibras obtenidos durante la producción de piezas aeronáuticas, a través de un proceso estándar de pirólisis o solvólisis y aplicando también un proceso de triturado/corte para obtener fibra cortada, que debe ser alimentada también en el proceso de extrusión en combinación con el plástico, Nylon 6,6, piezas más pequeñas 3 o los pelets. El refuerzo puede obtenerse en una etapa de preparación antes de la etapa de extrusión, en la que las piezas más pequeñas 3 o los pelets y los refuerzos de fibra se introducen en un conjunto de extrusor y cortador para la etapa de preparación a fin de obtener piezas más pequeñas reforzadas o pelets reforzados que se utilizarán en la etapa de extrusión.
Las pruebas realizadas añadiendo diferentes porcentajes de fibra en peso se llevaron a cabo satisfactoriamente, y se preparan pruebas del 30% y 40%.
Etapa de bobinado:
A medida que los filamentos 9 de Nylon 6,6 reciclados salen del extrusor 15 reforzados o no reforzados, se enrollan en bobinas 10 mediante un proceso de bobinado. Para ser colocados en el dispositivo de impresión 3D, cada bobina 10 tiene que tener alrededor de 270 metros de filamento 9 enrollado sobre sí misma.
La figura 4 muestra una representación esquemática de una bobinadora 16 con una polea intermedia 1 1 , una polea 12, un motor 13 y un rodamiento de tensión 14, y el proceso de bobinado.
B) Fabricación del polvo (figura 6): Las siguientes etapas describen el proceso utilizado para reciclar el material de la bolsa de vacío 2 (Nylon 6,6) como material en polvo para impresión en 3D:
Proporcionar bolsas de vacío 2 usadas de Nvlon 6.6. Etapa de control de calidad:
Para controlar si las bolsas de vacío 2 han sufrido algún tipo de problema, es necesaria una etapa de control de calidad. Este control debe realizarse periódicamente, incluyendo: inspección visual para detectar cualquier cambio de color, apariencia, rigidez o flexibilidad que implique modificación del grado de cristalinidad, y/o concentración de residuos de resina, y análisis térmico, como la Termogravimetría (TMA), para detectar potenciales efectos en diferentes parámetros, como el porcentaje de pérdida de peso.
Además, se puede realizar periódicamente un control de calidad al final del proceso de reciclaje para comprobar si el producto final (polvo) tiene las propiedades especificadas. Etapa de triturado:
Después de los procesos de curado y de ser analizadas (si es necesario), las bolsas de vacío 2 se llevan a un triturador 1 que al cortarlas produce piezas muy pequeñas (polvo con partículas de 0,1 mm de diámetro).
Las bolsas de vacío 2 usadas también podrían mezclarse (en una proporción de 50:50, o en cualquier otra proporción) con Nylon 6,6 virgen para mejorar la calidad del material usado, proporcionando también partículas de polvo con un diámetro de 0,1 mm.
Además, durante esta etapa el Nylon reciclado/Nylon virgen 6,6 también puede mezclarse en la proporción deseada con pequeñas piezas de carbono o Fibras de Vidrio así como con otros refuerzos cualesquiera, reciclados (obtenidos a partir de restos de CFRP mediante pirólisis o solvólisis y proceso de corte/triturado para obtener polvo) o no reciclados.
Etapa de control de calidad
Se realiza un control de calidad del polvo después de la etapa de triturado. Esta etapa de control de calidad comprende uno o más de los siguientes controles: - análisis térmico, como la Calorimetría Diferencial de Barrido (DSC), para detectar cambios en la Temperatura de Transición Vitrea (Tg), la temperatura de fusión (Tm) o el grado de cristalinidad, y
- análisis de peso molecular, como la Cromatografía de Permeación en Gel (GPC). El polvo resultante está listo para ser usado en impresoras 3D SLS.
La mezcla podría realizarse al mismo tiempo dentro del mismo triturador 1 o cada material podría ser cortado en un triturador diferente y entonces los polvos proporcionados se mezclarían (50:50).
La fabricación aditiva mediante la tecnología FFF con filamentos 9 reciclados parece ser una buena opción para aplicaciones no cargadas con una tasa de producción baja o cuando se requieren altas inversiones de NRC. La tecnología de fabricación aditiva aparece como una mejor opción frente a otras tecnologías (moldeo por inyección...) para estas aplicaciones.
Aunque la presente invención se ha descrito totalmente en relación con realizaciones preferidas, es evidente que pueden introducirse modificaciones dentro de su alcance, no considerando este limitado por estas realizaciones, sino por el contenido de las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1 Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de Impresión 3D, que comprende las siguientes etapas:
- proporcionar bolsas de vacío (2) de Nylon 6,6 usadas, - etapa de control de calidad para comprobar el estado de las bolsas de vacío (2) usadas,
- etapa para formar partes más pequeñas a partir de las bolsas de vacío usadas:
- las bolsas de vacío (2) se llevan a una máquina trituradora (1) donde se cortan en piezas más pequeñas (3), o
- las bolsas de vacío (2) se cortan en láminas, las láminas se enrollan y luego se Introducen en un conjunto de extrusor y cortador para obtener pelets,
- etapa de control de calidad para comprobar el estado de las piezas más pequeñas (3) o de los pelets,
- etapa de extrusión: las piezas más pequeñas (3) o los pelets se Introducen en un extrusor (15), donde se funden, y el material fundido se enfría y se expulsa a través de la boquilla (7) del extrusor (15) para producir los filamentos reciclados (9), y
- etapa de bobinado: los filamentos reciclados (9) que salen del extrusor (15) se enrollan en bobinas (10).
2.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de Impresión 3D, según la reivindicación 1 , que adicionalmente comprende una etapa de formación antes de la etapa de extrusión, en la que las piezas más pequeñas (3) o los pelets y los refuerzos de fibra se Introducen en un conjunto de extrusor y cortador para la etapa de formación para obtener piezas más pequeñas reforzadas o pelets reforzados para ser usados en la etapa de extrusión.
3.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de impresión 3D, según la reivindicación 1 , que además comprende la adición de refuerzos de fibra en el extrusor (15) para obtener filamentos reforzados (9).
4.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de impresión 3D, según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente la adición de un aditivo antihidrólisis en el conjunto de extrusor y cortador para evitar la absorción de humedad en la etapa de formación de partes más pequeñas para obtener pelets.
5.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de impresión 3D, según las reivindicaciones 2 o 3, en el que los refuerzos de fibra son fibras vírgenes.
6.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de impresión 3D, según la reivindicación 2, en el que los refuerzos de fibra son fibras recicladas obtenidas a partir de restos de plásticos reforzados con fibra obtenidos durante la producción de piezas de aeronaves.
7.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de impresión 3D, según la reivindicación 4, en el que las fibras recicladas se obtienen mediante un proceso de pirólisis o solvólisis seguido de un proceso de triturado o corte para obtener fibra cortada.
8.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de impresión 3D, según cualquiera de las reivindicaciones anteriores, que además comprende la adición de Nylon 6,6 virgen en la etapa para formar partes más pequeñas a partir de bolsas de vacío usadas y/o en el extrusor (15).
9.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener filamentos (9) para procesos de impresión 3D, según cualquiera de las reivindicaciones anteriores, en el que la etapa de control de calidad para comprobar el estado de las bolsas de vacío (2) usadas comprende uno o más de los siguientes controles: - inspección visual para detectar cualquier cambio de color, apariencia, rigidez o flexibilidad que implique una modificación del grado de cristalinidad y/o concentración de residuos de resina, y
- análisis térmico, como la termogravimetría, para detectar el porcentaje de pérdida de peso, y la etapa de control de calidad para comprobar el estado de las piezas cortadas (3) antes de la etapa de extrusión comprende uno o más de los siguientes controles:
- análisis térmico, como la Calorimetría Diferencial de Barrido, para detectar cambios en la Temperatura de Transición Vitrea, la temperatura de fusión o el alcance de cristalinidad, y - análisis de peso molecular, como la Cromatografía de Permeación de Gel.
10.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de Impresión 3D, que comprende las siguientes etapas:
- proporcionar bolsas de vacío (2) de Nylon 6,6 usadas,
- etapa de control de calidad para comprobar el estado de las bolsas de vacío (2) usadas, y
- etapa de triturado: las bolsas de vacío (2) se llevan a una máquina trituradora (1 ) donde se cortan en partículas de polvo.
11.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de impresión 3D, según la reivindicación 8, que además comprende la adición de refuerzos de fibra en la máquina trituradora (1 ).
12.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de impresión 3D, según la reivindicación 9, en el que los refuerzos de fibra son de carbono o de fibra de vidrio.
13.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de impresión 3D, según la reivindicación 9 o 10, en el que los refuerzos de fibra son fibras vírgenes.
14.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de impresión 3D, según la reivindicación 9, en el que los refuerzos de fibra son fibras recicladas obtenidas a partir de restos de plásticos reforzados con fibra obtenidos durante la producción de piezas de aeronaves.
15.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de impresión 3D, según la reivindicación 12, en el que las fibras recicladas se obtienen mediante un proceso de pirólisis o solvólisis seguido de un proceso de triturado o corte para obtener polvo.
16.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de impresión 3D, según cualquiera de las reivindicaciones 8 a 13, que además comprende la adición de Nylon 6,6 virgen en el triturador (1).
17.- Método para el reciclaje de Nylon 6,6 plástico a partir de bolsas de vacío (2) para obtener polvo para procesos de impresión 3D, según cualquiera de las reivindicaciones 8 a 14, en el que la etapa de control de calidad para comprobar el estado de las bolsas de vacío (2) usadas comprende uno o más de los siguientes controles:
- inspección visual para detectar cualquier cambio de color, apariencia, rigidez o flexibilidad que implique una modificación del grado de cristalinidad y/o concentración de residuos de resina, y
- análisis térmico, como la Termogravimetría, para detectar el porcentaje de pérdida de peso, y la etapa de control de calidad para comprobar el estado del polvo comprende uno o más de los siguientes controles:
- análisis térmico, como la Calorimetría Diferencial de Barrido, para detectar cambios en la Temperatura de Transición Vitrea, la temperatura de fusión o el alcance de cristalinidad, y - análisis de peso molecular, como la Cromatografía de Permeación de gel.
PCT/ES2020/070229 2019-04-05 2020-04-06 Métodos para el reciclaje de nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos o polvo para procesos de impresión en 3d WO2020201609A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/601,249 US20220184857A1 (en) 2019-04-05 2020-04-06 Methods for recycling plastic nylon 6,6 from vacuum bags to obtain filaments or powder for 3d printing processes
CN202080027443.3A CN113692336A (zh) 2019-04-05 2020-04-06 从真空袋回收尼龙6,6塑料以获得用于3d打印工艺的长丝或粉末的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19382254.1 2019-04-05
EP19382254.1A EP3718724B1 (en) 2019-04-05 2019-04-05 Method for recycling plastic nylon 6,6 from vacuum bags to obtain filaments for 3d printing processes

Publications (1)

Publication Number Publication Date
WO2020201609A1 true WO2020201609A1 (es) 2020-10-08

Family

ID=66323798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070229 WO2020201609A1 (es) 2019-04-05 2020-04-06 Métodos para el reciclaje de nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos o polvo para procesos de impresión en 3d

Country Status (5)

Country Link
US (1) US20220184857A1 (es)
EP (1) EP3718724B1 (es)
CN (1) CN113692336A (es)
ES (1) ES2949328T3 (es)
WO (1) WO2020201609A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210402650A1 (en) * 2020-06-30 2021-12-30 Fibrecycle Materials Corp. Method of manufacturing feedstock from recycled-fibers
JP2023062429A (ja) * 2021-10-21 2023-05-08 株式会社日立製作所 製造方法、製造支援方法およびシステム
IT202200000095A1 (it) * 2022-01-14 2023-07-14 Pielleitalia S R L Procedimento di fabbricazione e materiale per fabbricazione additiva
CN115044194B (zh) * 2022-07-10 2024-04-26 江苏中江材料技术研究院有限公司 3d打印废旧尼龙渔网再生材料及其制备方法
CN115214140B (zh) * 2022-07-22 2023-06-23 贵州省冶金化工研究所 一种选择性激光打印用粉末的高回收率使用方法
CN115416251A (zh) * 2022-09-15 2022-12-02 海安县恒业制丝有限公司 一种尼龙6长丝制备用挤压机及其制丝工艺
CN115922968B (zh) * 2022-12-16 2023-11-14 无锡纯宇环保制品有限公司 一种环保型服装包装袋生产设备的废料回收再利用结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129813A (en) * 1991-02-11 1992-07-14 Shepherd G Maury Embossed vacuum bag, methods for producing and using said bag
US6187917B1 (en) 1997-09-03 2001-02-13 Alliedsignal Inc. Process for the purification of caprolactam obtained from the depolymerization of polyamide-containing carpet
JP3303610B2 (ja) * 1995-07-12 2002-07-22 カルソニックカンセイ株式会社 ガラス繊維強化ポリアミドの再生方法
US20040053047A1 (en) * 2002-09-17 2004-03-18 Jackson Craig A. Colorable filaments from polymer blend
US20040186190A1 (en) 2000-06-08 2004-09-23 Mckinnon Michael Stephen Solvent-based recovery and recycle of polyamide material
US20040249001A1 (en) 2003-06-06 2004-12-09 Christian Leboeuf Process for the solution recovery of nylon with high reactivity and articles made therefrom
US8366977B2 (en) 2008-11-13 2013-02-05 Nilit Ltd. Process of making recycled polyamide yarn
EP3012078A1 (en) * 2014-10-21 2016-04-27 Enye Tech, S.A. Method for producing a supply obtained from the recycling of plastic material of industrial and post-consumer residues, to be used by 3d printers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566348B2 (ja) * 1994-09-20 2004-09-15 アイン・エンジニアリング株式会社 廃棄樹脂成形品の回収・造粒方法及び装置並びに前記回収樹脂材料を用いた木質合成板の製造方法。
CN104672757B (zh) * 2015-03-02 2018-02-16 苏州容坤半导体科技有限公司 一种轴向热收缩率小于0.5%的3d打印线材、制备工艺方法及制造装置
TW201821535A (zh) * 2016-07-29 2018-06-16 巴斯夫歐洲公司 用於雷射燒結粉末之包含增強劑的聚醯胺摻合物
FR3056435B1 (fr) * 2016-09-26 2019-05-31 Armor Methode de production d'un materiau densifie a partir d'un film complexe, installation de production et utilisation.
KR102050362B1 (ko) * 2017-05-22 2019-12-02 재단법인 한국탄소융합기술원 탄소섬유를 이용한 3d 프린터용 고분자 복합재 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129813A (en) * 1991-02-11 1992-07-14 Shepherd G Maury Embossed vacuum bag, methods for producing and using said bag
JP3303610B2 (ja) * 1995-07-12 2002-07-22 カルソニックカンセイ株式会社 ガラス繊維強化ポリアミドの再生方法
US6187917B1 (en) 1997-09-03 2001-02-13 Alliedsignal Inc. Process for the purification of caprolactam obtained from the depolymerization of polyamide-containing carpet
US20040186190A1 (en) 2000-06-08 2004-09-23 Mckinnon Michael Stephen Solvent-based recovery and recycle of polyamide material
US20040053047A1 (en) * 2002-09-17 2004-03-18 Jackson Craig A. Colorable filaments from polymer blend
US20040249001A1 (en) 2003-06-06 2004-12-09 Christian Leboeuf Process for the solution recovery of nylon with high reactivity and articles made therefrom
US8366977B2 (en) 2008-11-13 2013-02-05 Nilit Ltd. Process of making recycled polyamide yarn
EP3012078A1 (en) * 2014-10-21 2016-04-27 Enye Tech, S.A. Method for producing a supply obtained from the recycling of plastic material of industrial and post-consumer residues, to be used by 3d printers

Also Published As

Publication number Publication date
ES2949328T3 (es) 2023-09-27
CN113692336A (zh) 2021-11-23
EP3718724A1 (en) 2020-10-07
EP3718724B1 (en) 2023-05-31
US20220184857A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020201609A1 (es) Métodos para el reciclaje de nylon 6,6 plástico a partir de bolsas de vacío para obtener filamentos o polvo para procesos de impresión en 3d
Zhang et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review
Mishra et al. FDM-based additive manufacturing of recycled thermoplastics and associated composites
Bhattacharyya et al. Synthetic polymer-polymer composites
ES2604602T3 (es) Reciclaje de artículos grandes reforzados con fibra con materiales estabilizantes termoplásticos
US20210402730A1 (en) Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs
CN111497180B (zh) 纤维增强型模塑料、以及形成和使用该纤维增强型模塑料的方法
US20140230634A1 (en) Reinforced fiber/resin fiber composite, and method for manufacturing same
Middleton Composites: manufacture and application
Pimenta et al. Recycling of carbon fibers
Marsh Prepregs—raw material for high-performance composites
Ghabezi et al. Manufacture of composite filament for 3D printing from short glass fibres and recycled high-density polypropylene
Reynolds et al. An introduction to composites recycling
Zhang et al. Thermal degradation and performance evolution mechanism of fully recyclable 3D printed continuous fiber self-reinforced composites
CN111491985A (zh) 热塑性复合材料及其制备方法、由其制成的复合结构以及制备复合结构的方法
Kanhere et al. Carbon and glass fiber reinforced thermoplastic matrix composites
Hassanin et al. Date palm fiber composite fabrication techniques
Dul et al. Bicomponent melt-spinning of filaments for material extrusion 3D printing
KR102720333B1 (ko) 열가소성 복합체 물질, 이의 제조 방법, 이로 제조된 복합체 구조물, 및 복합체 구조물의 제조 방법
US12043725B1 (en) Process to recycle and produce pet/carbon fiber composites
Pannu et al. Green composites and their manufacturing techniques-a review
Milwich Pultrusion of braids
KR101787277B1 (ko) 재활용 pet와 abs를 이용한 복합소재 제조방법
KR101221286B1 (ko) 복합시트의 제조방법
KR101995386B1 (ko) 비산 대응 복합재료

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20726173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20726173

Country of ref document: EP

Kind code of ref document: A1