WO2020200223A1 - 无导线起搏器及无导线起搏器系统 - Google Patents

无导线起搏器及无导线起搏器系统 Download PDF

Info

Publication number
WO2020200223A1
WO2020200223A1 PCT/CN2020/082685 CN2020082685W WO2020200223A1 WO 2020200223 A1 WO2020200223 A1 WO 2020200223A1 CN 2020082685 W CN2020082685 W CN 2020082685W WO 2020200223 A1 WO2020200223 A1 WO 2020200223A1
Authority
WO
WIPO (PCT)
Prior art keywords
elbow
leadless pacemaker
crochet
sheath
shell
Prior art date
Application number
PCT/CN2020/082685
Other languages
English (en)
French (fr)
Inventor
王励
程志军
Original Assignee
创领心律管理医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 创领心律管理医疗器械(上海)有限公司 filed Critical 创领心律管理医疗器械(上海)有限公司
Priority to EP20785317.7A priority Critical patent/EP3950052A4/en
Priority to US17/600,839 priority patent/US20220184402A1/en
Publication of WO2020200223A1 publication Critical patent/WO2020200223A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • A61N1/0573Anchoring means; Means for fixing the head inside the heart chacterised by means penetrating the heart tissue, e.g. helix needle or hook
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37205Microstimulators, e.g. implantable through a cannula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37518Anchoring of the implants, e.g. fixation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37512Pacemakers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37516Intravascular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • A61N2001/058Fixing tools

Definitions

  • the present invention relates to the technical field of medical devices, in particular to a leadless pacemaker and a leadless pacemaker system.
  • pacemakers Since the advent of cardiac pacemakers in 1958, they have become the first-line treatment for bradyarrhythmias. After more than half a century of development and innovation, the pacemaker has evolved from the initial thoracotomy implanted with a single lead to pacing the ventricle, and gradually developed into a vein implanted with 2 to 3 leads to provide atrioventricular physiological pacing and even biventricular synchronization Pacing. Lead-related complications such as lead dislocation, thrombosis, tricuspid regurgitation, and infection not only affect the normal operation of the pacemaker, but also seriously endanger the patient's health and quality of life.
  • Wire removal has a certain degree of difficulty and risk, and it needs to be completed by a skilled doctor in a larger electrophysiological center. How to overcome the restraint of wires and complete the "wireless" revolution of pacemakers is a new field in the treatment of arrhythmia.
  • Existing leadless cardiac pacemakers may include a fixing mechanism that is separated from the pace electrode and whose diameter is equal to or smaller than the outer diameter of the pacemaker.
  • the fixation mechanism can allow the pacemaker to be inserted into the tissue after 2 or more rotations, so as to contact the tissue for fixation.
  • the aforementioned leadless pacemaker has the following defects:
  • the pacemaker body is a straight strip structure, and the head end is screwed into the myocardium of the apex of the right ventricle with a spiral electrode to achieve the purpose of fixation.
  • a leadless pacemaker must be fixed vertically to a certain implantation position, and relative to the narrower space, such as the position on the blood vessel wall or the ventricular septum, this type of leadless pacing has a longer length, if it is fixed vertically On the blood vessel wall or tissue, the blood vessel wall and ventricular septum cannot accommodate leadless pacemakers.
  • the spiral electrode is parallel and coaxial with the body of the leadless pacemaker, it is determined that this type of leadless pacemaker can only be fixed at a position where the spatial size is greater than the length of the leadless pacemaker. Therefore, the existing leadless pacemakers cannot be fixed in some narrow spaces, such as the blood vessel wall or the ventricular septum, and these narrow spaces may be the best pacing positions.
  • the existing leadless pacemaker cannot be implanted in some optimal pacing positions with relatively narrow space, resulting in poor pacing effect.
  • the purpose of the present invention is to provide a leadless pacemaker and a leadless pacemaker system, which can greatly broaden the scope of application to patients and benefit more patients.
  • the present invention provides a leadless pacemaker, including:
  • a pacemaker body including an elbow shell;
  • the fixing mechanism is arranged on the outer wall of the elbow shell;
  • the sensing electrode is arranged outside the elbow shell, and,
  • the pacing electrode is arranged outside the elbow shell and spaced from the sensing electrode.
  • the sensing electrode is arranged on the elbow shell and distributed along the circumference of the elbow shell to surround the outer wall of the elbow shell; or, the sensing electrode Set on the fixing mechanism.
  • the pacing electrode is arranged on the elbow shell and is distributed along the circumference of the elbow shell to surround the outer wall of the elbow shell; or, the pacing electrode
  • the pulsation electrode is arranged on the fixing mechanism.
  • the pacing electrode and the sensing electrode can be at the same height when the leadless pacemaker is delivered to a designated pacing position.
  • the fixing mechanism can be released and retracted relative to the elbow shell.
  • the fixing mechanism includes at least one crochet needle, the tail end of the crochet needle is fixed on the elbow housing; the head end of the crochet needle faces the head end of the elbow housing, and the crochet needle
  • the head end of the crochet hook has a gap with the outer periphery of the elbow shell in a free condition to release and expand relative to the elbow shell. When the head end of the hook is subjected to an external force, it moves closer to the elbow shell To be recovered relative to the elbow shell.
  • a crochet groove is provided on the outer wall of the elbow housing, the crochet groove is used to accommodate the at least one crochet needle, the tail end of each crochet needle is fixed in the crochet needle groove, and each crochet needle When the head end of the crochet needle receives an external force, it is received in the crochet groove along the crochet groove.
  • each of the crochet needles has a wire shape, a rod shape or a sheet shape.
  • the crochet needle is arranged on an outer wall of the elbow shell that is curved and convex.
  • one of the hook needles is provided with the pacing electrode or the sensing electrode, and both the pacing electrode and the sensing electrode are electrically connected to the electronic components inside the elbow housing.
  • the elbow housing includes a first elbow section and a second elbow section, the head end of the second elbow section is connected to the tail end of the first elbow section, and the second elbow section The tail end of the elbow section is tilted relative to the first elbow section, wherein the head end of the first elbow section is the head end of the elbow pipe shell, and the tail end of the second elbow section Is the tail end of the elbow shell.
  • the first elbow section is an arc-shaped elbow or a wave-shaped elbow
  • the second elbow section is an arc-shaped elbow or a wave-shaped elbow
  • the pipeline of the first elbow section The length is greater than the pipeline length of the second elbow section.
  • the radial cross section of the elbow shell is a polygonal or wavy closed curve.
  • the material of the elbow shell is an elastically deformable material.
  • a connecting mechanism is provided at the end of the elbow shell, and the connecting mechanism is used for connecting with a delivery device for delivering the leadless pacemaker.
  • the present invention also provides a leadless pacemaker system, including:
  • the leadless pacemaker according to the present invention is the leadless pacemaker according to the present invention.
  • the delivery device is detachably connected to the tail end of the pacemaker body of the leadless pacemaker, and is used to deliver the leadless pacemaker to a designated pacing position.
  • the delivery device includes a delivery sheath and a rotary sheath, the rotary sheath can be fitted into the delivery sheath, and the delivery sheath can move axially relative to the rotary sheath And circumferential rotation, the head end of the rotating sheath is detachably connected with the tail end of the pacemaker body of the leadless pacemaker.
  • the delivery sheath tube has a curved sheath structure with adjustable curvature.
  • the housing of the pacemaker body of the leadless pacemaker of the present invention is designed into a curved structure, it can be bent and implanted in a narrow space (even if the space size of the position is smaller than that of the present invention).
  • the length of the lead pacemaker therefore, it is suitable for some patients whose best pacing position is in a narrower space, which greatly broadens the scope of application to patients and benefits more patients.
  • the leadless pacemaker of the present invention can be implanted in various positions with a curved structure, and can be integrated with
  • the myocardial tissue or blood vessel wall tissue in the curved structure is more fit, which makes the effect of pacing and perception better, and at the same time, it can greatly broaden the scope of patients and benefit more patients.
  • the leadless pacemaker of the present invention can not only be implanted along the extension direction of the blood vessel, so that the pacing electrode and the sensing electrode are located at different heights of the blood vessel wall at the optimal implant position, which is suitable for some pacing electrodes and
  • the implantation requirements of patients with different heights of the sensing electrode on the blood vessel wall can also be implanted along the cross-sectional direction of the blood vessel, so that the pacing electrode and the sensing electrode can be located at the same height of the blood vessel wall, so that the pacing electrode and the sensing electrode are located at the same height.
  • the implantation requirements of the patient with the same height of the vessel wall can not only be implanted along the extension direction of the blood vessel, so that the pacing electrode and the sensing electrode are located at different heights of the blood vessel wall at the optimal implant position, which is suitable for some pacing electrodes and
  • the implantation requirements of patients with different heights of the sensing electrode on the blood vessel wall can also be implanted along the cross-
  • the elbow shell of the leadless pacemaker of the present invention is made of elastically deformable materials and has elastic deformation ability, it can be adaptively elastically deformed according to the size of the implanted position after implantation, thereby enabling The leadless pacemaker fully generates an interaction force with the human tissue at the implantation position, so that the leadless pacemaker of the present invention is firmly fixed and prevents accidental shedding and other problems.
  • the fixing mechanism of the leadless pacemaker of the present invention can be released, expanded and recovered relative to the elbow housing, the difficulty of implantation, fixing and recovery of the leadless pacemaker can be reduced.
  • the leadless pacemaker system of the present invention due to the leadless pacemaker of the present invention, can not only fix the leadless pacemaker in the atrium or ventricle, but also in the superior vena cava or inferior cavity Furthermore, the inner wall of the venous blood vessel can also be used to fix the leadless pacemaker at the atrioventricular septum through an adjustable delivery sheath, so that pacing at any position in the above-mentioned area can be realized, and it is suitable for a wide range of patients.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a leadless pacemaker according to an embodiment of the present invention.
  • Fig. 2 is a schematic side view of the structure of the leadless pacemaker shown in Fig. 1.
  • Fig. 3 is a schematic diagram of a part of the structure near the head end of the leadless pacemaker shown in Fig. 1.
  • Fig. 4 is a schematic structural diagram of a leadless pacemaker according to another embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a leadless pacemaker according to another embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a leadless pacemaker according to another embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a delivery device in a leadless pacemaker system according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the structure of the cooperation between the delivery device and the leadless pacemaker in the leadless pacemaker system according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the structure of the leadless pacemaker of the leadless pacemaker system assembled in the delivery device according to an embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of a guiding device in a leadless pacemaker system according to an embodiment of the present invention.
  • Fig. 11 is a structural schematic diagram of the guiding device in the leadless pacemaker system entering the heart according to an embodiment of the present invention.
  • Fig. 12 is a schematic view showing the structure of the leadless pacemaker implanted in the superior vena cava in the leadless pacemaker system according to an embodiment of the present invention.
  • the "tail end” of a component It refers to the end that enters the body or the end that is exposed outside the body when the component is implanted in the body.
  • the "axial direction of the elbow shell” mentioned in this article refers to the extension direction of the elbow shell
  • the "radial direction of the elbow shell” refers to the direction perpendicular to the extension direction of the elbow shell.
  • the cross section of the elbow shell is circular
  • the radial direction of the elbow shell is the diameter direction of the circle
  • “the circumferential direction of the elbow shell” is any position of the elbow shell The direction of the circumference.
  • an embodiment of the present invention provides a leadless pacemaker, including a pacemaker body, a fixing mechanism, a sensing electrode 11, a pacing electrode 13 and a connecting mechanism 4.
  • the pacemaker body includes an elbow shell with elastic deformation capability and electronic components (not shown) arranged in the elbow shell.
  • Electronic components are various electronic components required for the operation of leadless pacemakers, such as control components, wireless communication electronic components, battery components, and memory.
  • the control component includes a pulse generator and a processor.
  • the pulse generator is used to generate pulsed pacing signals.
  • the processor controls the delivery of pacing signals and other functions of the leadless pacemaker.
  • the battery assembly is used to provide power to the control assembly and storage.
  • the memory can be a register, etc., used to store data and related parameters.
  • the wireless communication electronic components are used for two-way wireless communication with external devices (such as programmers used by clinicians or other users in medical facilities, home monitors located in patients' homes, or handheld devices, etc.).
  • the external device can be used to set and obtain the parameters of the leadless pacemaker (including the parameters that characterize the working state of the leadless pacemaker and the parameters of the patient's heart sensed by the leadless pacemaker, etc.).
  • the elbow shell is a sealed shell made of materials with excellent biocompatibility, light weight and high elasticity, such as Nitinol and other memory alloys or other high elastic polymer materials to make it as light as possible.
  • the elastic recovery performance is high, and after implantation, the space deformation of the implantation position can be applied to enhance the fixation performance, and it can make the pacing electrode and the sensing electrode more fit the human tissue at the implantation position, and the pacing and sensing effect Better.
  • the elbow shell includes a first elbow section 12 and a second elbow section 17, the head end of the second elbow section 17 is connected to the tail end of the first elbow section 12, and the second elbow section
  • the tail end of the section 17 is tilted relative to the first elbow section 12, and the head end of the first elbow section 12 is the head end of the elbow shell, and the tail end of the second elbow section 17
  • the end is the tail end of the elbow shell, whereby the second elbow section 17 is used to provide the first elbow section 12 with a steering function, so that the first elbow section 12 can be smoothly deformed after being deformed by an external force.
  • the pacemaker body is smoothly delivered and recovered.
  • first elbow section 12 and the second elbow section 17 are both arc-shaped elbows, and the nozzle shapes of the first elbow section 12 and the second elbow section 17 (also can be said to be pipe
  • the cross-section or the radial cross-section perpendicular to its axial direction, that is, the cross-section of the first elbow section 12 and the cross-section of the second elbow section 17 in FIG. 1) are both circular, thereby making the first elbow section
  • the smooth transition between 12 and the second elbow section 17 further facilitates the smooth delivery and smooth recovery of the pacemaker body.
  • the pipe length of the first elbow section 12 is greater than that of the second elbow section 17, the tail end of the second elbow section 17 is tilted relative to the first elbow section 12, and the second elbow section 17 is the first
  • the elbow section 12 provides a steering guide function, which enables the first elbow section 12 to pass through the delivery sheath 21 as shown in Figures 7 to 9 after being deformed by an external force, so the second elbow section 17 is a pacemaker The key to whether the body can be transported and recovered smoothly.
  • the tilt angle of the tail end of the second elbow section 17 relative to the first elbow section 12 is 85 degrees to 95 degrees, for example, 90 degrees
  • the second elbow section 17 can make the first elbow section 12 After being released to the designated position, it is placed horizontally or approximately horizontally on the designated position.
  • the head end 121 of the first elbow section 12 is a dome, which can facilitate the advancement of the pacemaker body during the release process of the delivery sheath 21 as shown in FIGS. 7 to 9 and avoid the pacemaker body During the process of being released and deployed, it punctures the myocardial tissue or blood vessel tissue when it is pressed against the designated position, thereby avoiding the problem of cardiac perforation or blood vessel perforation.
  • the sensing electrode 11 is arranged on the head end 121 of the first elbow section 12, the pacing electrode 13 is arranged on the tail end of the first elbow section 12 or the tail end of the second elbow section 17, and the sensing electrodes 11 and The pacing electrodes 13 are all distributed along the circumferential direction of the first bend section 12, and the sensing electrode 11 surrounds the outer wall of the corresponding position of the head end 121 of the first bend section 12, and surrounds this position half or full, and pacing
  • the electrode 13 surrounds the outer wall of the corresponding position of the end of the first elbow section 12 or the end of the second elbow section 17, and semi-encloses or fully encloses the position, thereby realizing bipolar radial distribution sensing and pacing, Significantly increases the probability of patients using leadless pacemakers to obtain the best electrical parameters for pacing.
  • the length of the elbow shell (that is, the arc length of the first elbow section 12 and the arc length of the second elbow section 17 And) is greater than the linear distance between the head end of the first elbow section 12 and the tail end of the second elbow section 17, so the leadless pacemaker of this embodiment can be bent and implanted in a narrow space ( Even if the space size of this position is smaller than the length of the elbow shell), it is suitable for some patients whose best pacing position is in a narrow space.
  • first elbow section 12 and the second elbow section 17 of the elbow shell of this embodiment are both arc-shaped elbows, and the pacing electrode 13 and the sensing electrode 11 are along the axis of the first elbow section 12
  • the direction is arranged in a bipolar radial distribution, and the second elbow section 17 is tilted 90 degrees relative to the first elbow section 12. Therefore, when the leadless pacemaker of this embodiment is implanted in a curved position such as the superior vena cava , The leadless pacemaker can basically seamlessly and fully contact the tissue at this location and fit more closely. Therefore, the pacing electrode can send a pacing signal normally, and the sensing electrode can normally sense the tissue to obtain the sensing signal normally. And the effect of perception is better.
  • the pacemaker body can be distributed along the circumferential direction of the blood vessel wall of the superior vena cava, so that the pacing electrode 13 and the sensing electrode 11 are also distributed along the circumferential direction of the blood vessel wall of the superior vena cava relative to each other.
  • the pulsation electrode 13 and the sensing electrode 11 are relatively located at the same height of the blood vessel wall, so that the leadless pacemaker can be applied to patients who can be implanted in a curved structure such as the superior vena cava to obtain the best electrical parameters for pacing.
  • the leadless pacemaker of this embodiment can also be implanted in other similar implanted positions with curved structures, which can greatly broaden the scope of application to patients and benefit more patients.
  • the pacing signal cannot be sent normally, and its sensing electrode may not be able to sense the tissue normally and cannot obtain the sensing signal normally. That is, the existing straight line-free pacemaker cannot be applied to the implantation position of the curved structure. Pace with the best electrical parameters for patients with corresponding needs.
  • the fixing mechanism adopts a crochet fixing mechanism, including at least one crochet 15, each crochet 15 can be released and unfolded relative to the first elbow section 12 and recovered.
  • the curved convex outer wall of the first elbow section 12 of the elbow housing is provided with a crochet groove 16 for accommodating each crochet needle 15 and corresponding to each crochet needle 15 one by one.
  • the tail end can be fixed in the corresponding crochet groove 16 by welding or crimping, and the head end of the crochet needle 15 faces the head end 121 of the first elbow section 12.
  • the fixing mechanism of the crochet fixing mechanism is simple in structure, easy to manufacture, and small in space.
  • the operator can easily transmit the torque generated by the rotational movement of the delivery sheath of the delivery system to each crochet 15 to make each crochet 15 can penetrate into the tissue and fix, and then realize the fixation of the leadless pacemaker, and the crochet fixation mechanism occupies a small space, the focus is on the head end of the crochet, so it can not only fix the leadless pacemaker in the atrium or heart Indoors, the leadless pacemaker can also be fixed to the inner wall of the superior vena cava or inferior vena cava, and even the leadless pacemaker can be fixed to the atrium, the ventricular septum under the delivery of the adjustable curved delivery sheath, etc. position.
  • the crochet needle 15 is made of a material with excellent biocompatibility, light weight and high elasticity, such as a memory metal material such as Nitinol, to make it as light as possible, with high elastic recovery performance and a better fixing effect.
  • the gravity of the leadless pacemaker is hardly increased, so as not to increase the pressure or tension of the gravity of the leadless pacemaker on the tissue at the implantation site.
  • the crochet needle 15 is in the shape of a wire, rod or sheet as a whole, which can extend outside the outer wall of the first elbow section 12 along the pipe extension direction of the first elbow section 12 (that is, the direction of the arc line), and can even be wound around the On the outer circumference of an elbow section 12, the crochet needle can be closely attached to the elbow shell in the retracted state, which is beneficial to the delivery of the leadless pacemaker, and also enables the crochet needle 15 to be fixed after being released and deployed.
  • the body tissue at the implanted position can generate enough supporting force to fix the pacemaker body firmly.
  • the width and length of the crochet groove 16 can completely accommodate the crochet needle 15, so that the crochet needle 15 is completely stored in the crochet needle groove 16, which facilitates the smooth delivery of the leadless pacemaker by the delivery system.
  • the gap D is 0.1mm-15mm, and the gap D can make the crochet needle 15 due to its head after the leadless pacemaker is released.
  • the end is no longer compressed by external force, and expands under the action of elastic restoring force, and then is fixed on the human tissue at the implantation position.
  • the specific value of the gap D can be determined according to the position where the leadless pacemaker needs to be implanted, that is to say, the leadless pacemaker can have a variety of options according to the size of the space to be implanted, and various types of The length, volume, and degree of bending of the elbow shell, the size and volume of the hook 15 and the gap between it and the outer wall of the elbow shell are not completely the same.
  • the head end of the crochet needle 15 can be stored in the crochet groove 16 along the track of the crochet needle 15 under the action of external force.
  • the rotational movement of the delivery sheath 21 as shown in Figures 7 to 9 can transmit torque to the crochet 15 to make the tip of the crochet 15
  • the needle tip 18 is inserted into the tissue and fixed. Not only can the leadless pacemaker be fixed in the atrium or ventricle, but also can be fixed on the inner wall of the superior vena cava or inferior vena cava.
  • the leadless pacemaker When transporting the delivery sheath of the leadless pacemaker When it is a sheath with adjustable curvature, the leadless pacemaker can also be fixed on the space between the atrium and the ventricle by the crochet 15.
  • the crochet needle 15 is provided on the curved convex outer wall of the first elbow section 12 (that is, the outer wall of the curved back).
  • the squeezing between the outer wall of the curved back of the first elbow section 12 and the tissue at the implantation site can be used. The pressure can enhance the reliability of fixing the crochet pin 15 and prevent the crochet pin from unhooking.
  • the crochet pin 15 can be designed to be long enough, so the crochet pin 15 can also be set in the elbow shell.
  • the outer wall is curved and concave.
  • the fixing mechanism includes two or more crochet needles 15, each crochet needle 15 is distributed in different positions of the first elbow section 12, so that the leadless pacemaker has multiple positions at the implantation position
  • the fixed point further enhances the stability of the fixation of the leadless pacemaker.
  • the leadless pacemaker when released to a designated position, it can be fixed on the tissue at the designated position (for example, the apex of the right heart) by the crochet 15. At this time, how many crochet needles 15 penetrate human tissues, and how many focus points the leadless pacemaker will have.
  • the fixing mechanism 14 adopting the crochet fixing mechanism has a simple structure and low cost, and it is easy to realize the release and fixing operation of the leadless pacemaker.
  • the cross section of the crochet 15 along the radial direction of the elbow housing is rectangular, which can increase the crochet and the tissue at the implantation position when the crochet is released and expanded Or the contact area of the blood vessel wall.
  • the cross section of the elbow housing along the radial direction of the elbow housing is also rectangular, which can increase the contact area between the elbow housing and the tissue or blood vessel wall at the implantation site.
  • the rectangular structure design of the hook 15 and the elbow shell can increase the contact area between the pacing electrode 13 and the sensing electrode 14 and the tissue at the implantation site, thereby optimizing pacing electrical parameters and improving pacing stability.
  • first elbow section 12 and the second elbow section 17 are not limited to arc-shaped elbows, but can also be other curved elbows, such as wave-shaped elbows and B-shaped elbows. Elbows, S-shaped elbows, etc.
  • the shape of the nozzles of the first elbow section 12 and the second elbow section 17 is not limited to circular, but can also be elliptical or polygonal (for example, the rectangle shown in Figure 5) , Wavy closed curve or other shapes, the cross-sectional shape of the crochet 15 is not limited to a circle, a rectangle, but also an ellipse, a triangle, and other polygons.
  • the pacemaker without a lead can achieve pacing, and the size is Reduced to be able to move through the delivery sheath through the vein to achieve heart or intravascular implantation.
  • the elbow shell and hook needle can fit as closely as possible to the human tissue at the implantation site. The invention is intended to include these technical solutions.
  • the selected leadless pacemaker has the first bend section 12 and the second bend section 17 It is a wave-shaped elbow, a B-shaped elbow or an S-shaped elbow, and its pipe section can be a polygonal or wavy closed curve, so that the elbow shell can fit the human tissue at the implantation position as much as possible, and increase the elbow
  • the overall shape of the crochet pin 15 is adapted to the shape of the outer wall of the corresponding elbow housing, so that the crochet pin closely fits in the process of delivering the leadless pacemaker
  • the pacemaker body can fit the body tissue at the position as much as possible, thereby achieving the best sensing and pacing effect.
  • the cross-sectional shape of the elbow shell is similar to the cross-sectional
  • the crochet groove 16 can also be omitted on the outer wall of the elbow housing, and a buckle structure is provided on the elbow housing, so that the crochet 15 can be recovered to the final position. It is clamped by the buckle structure to closely fit on the outer wall of the elbow shell. At this time, the hook 15 is equivalent to a structure protruding on the outer wall of the elbow shell, and it can also realize the similar technology in the above embodiment effect.
  • the fixing mechanism may also adopt any other suitable fixing mechanism, as long as the fixing mechanism can reliably fix the leadless pacemaker at a designated position in the human body.
  • the fixing mechanism of the leadless pacemaker does not penetrate into the human tissue but resists the human body On the tissue, it is firmly fixed by the squeezing force between the leadless pacemaker and the human tissue, and can ensure the effect of pacing and perception.
  • a connecting mechanism 14 is provided on the end of the second elbow section 17, and the connecting mechanism 14 is used to communicate with the delivery device of the leadless pacemaker (such as the rotating sheath in Figures 7 to 9). 22) Fixed connection.
  • the connecting mechanism 14 can be integrally formed with the second elbow section 17, or be fixed on the tail end of the second elbow section 17 by welding or screw tight connection.
  • the connecting mechanism 14 is a polygonal prism (for example, a hexagonal nut), and the conveying device used to deliver a leadless pacemaker has a polygonal blind hole adapted to the polygonal prism (shown as 221 in FIG. 7).
  • the connecting mechanism 14 may also be a nut with a blind hole, and the delivery device for delivering the leadless pacemaker has a bolt adapted to the nut; or the connecting mechanism 14 may also It is a threaded bolt, and the delivery device for delivering a leadless pacemaker has a holed nut adapted to the bolt.
  • the sensing electrode 11 and the pacing electrode 13 are both arranged on the elbow shell, but the technical solution of the present invention is not limited to this.
  • the sensing electrode 11 or the pacing electrode 13 can be arranged on the crochet stitches 15.
  • the sensing electrodes 11 and The pacing electrodes 13 can be separately arranged on different crochet pins 15; in this case, sensing electrodes or pacing electrodes can be set on the corresponding crochet pins 15 by means of mounting, embedding, etc.
  • the crochet needle 15 is made of a highly elastic memory alloy material, it has the ability to conduct electricity.
  • a crochet needle 15 itself can be used as a sensing electrode 11 or a pacing electrode 13, which can be connected to the elbow through a corresponding circuit
  • the electronic components inside the housing can realize the pacing or sensing function, and the crochet 15 is used as the electrode, which can save the cost of making extra electrodes and simplify the structure of the leadless pacemaker.
  • the leadless pacemaker can be turned into a lateral posture after being implanted. , So that the pacing electrode and the sensing electrode are distributed at the same height of the superior vena cava vessel wall, but the technical solution of the present invention is not limited to this.
  • the sheath 22 can also be rotated by controlling The pitch angle is so that the leadless pacemaker can still extend along the extension direction of the superior vena cava after being implanted, and the pacing electrodes and sensing electrodes are distributed on different heights of the superior vena cava vessel wall.
  • the second elbow section 17 of the leadless pacemaker can be designed to be tilted less than 45 degrees with respect to the first elbow section 12, or the second elbow section 17 can be omitted, and the lead-free starter After being implanted, the pacemaker can still be implanted in the same posture as a traditional straight leadless pacemaker.
  • the leadless pacemaker extends along the extension direction of the superior vena cava vessel, and its pacing electrodes and sensing electrodes Distributed at different heights of the superior vena cava vessel wall to meet the needs of ordinary patients.
  • the housing of the pacemaker body is designed as a curved tube structure, which can fit more closely to the myocardial tissue or blood vessel wall tissue in the curved structure.
  • the effect of stroke or perception is better; and the leadless pacemaker of the present invention, because the casing of the pacemaker body is designed as a curved tube structure with elastic deformation ability, it can not only be implanted in the position of the superior vena cava It can also be implanted in other places with curved structures, which can broaden the scope of application to patients to a large extent and benefit more patients.
  • the pacing electrodes and/or sensing electrodes are distributed along the radial direction (ie circumferential distribution) of the elbow housing of the pacemaker body.
  • the pacemaker body can be distributed along the circumferential direction of the blood vessel wall or the myocardium wall, and the pacing electrode and/or the sensing electrode are also distributed along the circumferential direction of the blood vessel wall or the myocardial wall, and the pacing electrode and the sensing electrode can be relatively located on the blood vessel wall or the myocardium
  • the same height of the wall can be applied to patients whose pacing electrode and sensing electrode are located at the same height relative to the blood vessel wall or myocardial wall as the best implant position.
  • the leadless pacemaker can be placed at the best implant position. Good electrical parameters for pacing patients.
  • an embodiment of the present invention also provides a wireless pacemaker system, including: a delivery device, a guiding device, and the leadless pacemaker of the present invention.
  • the delivery device is detachably connected to the tail end of the pacemaker body of the leadless pacemaker, and is used to deliver and adjust the leadless pacemaker to the best pacing position with the assistance of the guiding device ,
  • the guiding device is used to establish a path for the delivery device, so that the delivery device can reach the designated pacing position through the guiding device.
  • the coordinated use of the delivery device and the guide device can transport the leadless pacemaker to a designated position such as the heart or blood vessel for fixation during the operation, eliminating the side effects caused by the traditional lead wire.
  • the guiding device can guide the delivery device into the patient's body and reach the vicinity of the designated position.
  • the delivery device can deliver the leadless pacemaker into the patient and help the The position is adjusted so that the operator can easily find the best pacing position of the leadless pacemaker, thereby improving the pacing effect of the leadless pacemaker.
  • the specific structure of the leadless pacemaker in the wireless pacemaker system of this embodiment can refer to the above text.
  • the delivery device includes a delivery sheath 21 and a rotating sheath 22.
  • the delivery sheath 21 has a round tubular structure, and the head end of the rotating sheath 22 has a polygonal blind hole 221 adapted to the connecting mechanism 14 of the leadless pacemaker, which is used to cooperate with the outer polygonal surface of the connecting mechanism 14 to achieve leadless
  • the fixed connection and connection release of the pacemaker and the rotating sheath 22, that is, the head end of the rotating sheath 22 can be detachably connected with the tail end of the second elbow section 17 of the leadless pacemaker; the delivery sheath
  • the tube 21 can simultaneously move axially relative to the rotating sheath 22 (that is, it can move forward and backward relative to the rotating sheath 22) and rotate in the circumferential direction (that is, it can rotate relative to the rotating sheath 22).
  • the assembly process of the delivery device and the leadless pacemaker is as follows: the rotating sheath 22 is assembled into the delivery sheath 21, and the connecting mechanism 14 at the tail end of the leadless pacemaker is loaded into the head end of the delivery sheath 21 and extended into It is fixed in the polygonal blind hole 221 at the head end of the rotating sheath 22, so that the second elbow section 17 of the elbow housing of the leadless pacemaker enters the central hole of the delivery sheath 21 first, and then the rotating sheath 22 is maintained Without moving, push the delivery sheath 21 to move toward the head end 121 of the elbow housing along the axis of the rotating sheath 22. At this time, the elbow housing is elastically deformed and enters the center hole of the delivery sheath 21 as a whole. , The crochet needle 15 will be stored in the crochet groove 16 along the trajectory of the crochet groove 16. As shown in FIG. 9, the leadless pacemaker is deformed into a shape consistent with the shape of the center hole of the delivery sheath 21 as a whole.
  • the delivery sheath 22 is a curved sheath structure with adjustable curvature, and the curvature adjustment range is, for example, 0° ⁇ 180°, so that the curvature angle of the delivery sheath 22 can be adjusted to adapt to the spatial structure of the heart and blood vessels. It is beneficial to implant the leadless pacemaker into the atrium, ventricle, the inner wall of the superior vena cava, the inner wall of the inferior vena cava, the space between the atrium and the ventricle, etc., so as to realize the leadless pacemaker in these areas Implantation and pacing at any position within the
  • the guiding device includes an expansion sheath 31 and a guiding sheath 32, the expansion sheath 31 can be assembled into the guiding sheath 32, and in the guiding sheath 32 Make an axial movement.
  • the head end of the expansion sheath 31 has a tapered structure. After the expansion sheath 31 is assembled in the guiding sheath 32, the tapered structure of the head end of the expansion sheath 31 can extend from the head end of the guiding sheath 32 to expand Both the tail end of the sheath tube 31 and the tail end of the guiding sheath 32 can be provided with a socket (not shown).
  • the tapered structure of the head end of the expansion sheath 31 extends from the head end of the guiding sheath 32, it is expanded
  • the tube socket at the tail end of the sheath tube 31 abuts against the tube socket at the tail end of the guiding sheath 32 and can be further fixed together by threaded connection or catching connection.
  • the guiding sheath 32 can move axially along the expansion sheath 31 Therefore, the expansion sheath 31 can expand the size of the blood vessel during the advancement of the patient's blood vessel, and the guiding sheath 32 can smoothly enter the blood vessel.
  • the center of the expansion sheath 31 has a central hole for passing through the guide wire.
  • the tip of the guide wire can be fixed at a designated position (such as the superior vena cava) through puncture technology. Then, the expansion sheath 31 is placed in the guiding sheath 32, and the expansion sheath 31 is sleeved on the guide wire, so that the expansion sheath 31 moves along the guide wire to guide the guiding sheath 32 to the appropriate position.
  • a designated position such as the superior vena cava
  • the wireless pacemaker system of this embodiment also includes an external control electronic device, and the external control electronic device is wirelessly connected to the leadless pacemaker and two-way communication is used to set and obtain the parameters of the leadless pacemaker ( Including the parameters that characterize the working state of the leadless pacemaker and the parameters of the patient's heart sensed by the leadless pacemaker, etc.).
  • This embodiment also provides a method for using the aforementioned leadless pacing system, which includes the following processes:
  • the rotating sheath 22 is assembled into the delivery sheath 21, and then the connecting mechanism 14 at the end of the pacemaker body of the leadless pacemaker is installed in the delivery sheath 21, and the connecting mechanism 14 is matched with the polygonal blind hole 221 at the head end of the rotating sheath 22 to be fixedly connected, so that the second elbow section 17 of the elbow housing of the pacemaker body enters the central hole of the delivery sheath 21
  • the rotating sheath 22 keep the rotating sheath 22 still, push the delivery sheath 21 to move axially relative to the rotating sheath 22, so that it moves toward the head end of the pacemaker body (that is, the first end of the elbow housing)
  • the head 121) of the elbow section 12 moves.
  • the elbow shell is elastically deformed as a whole to enter the center hole of the delivery sheath 21, and at the same time, the hook 15 will follow the hook on the elbow shell.
  • the trajectory of the groove 16 is accommodated in the crochet groove 16.
  • a guide wire (not shown) is inserted into the patient’s superior vena cava 43 through the femoral vein (not shown) through the inferior vena cava 41 and the right atrium 42 of the heart 40; the expansion sheath 31 Place in the guiding sheath 32 until the head end of the expansion sheath 31 penetrates the head end of the guiding sheath 32, and the base (not shown) at the tail end of the expansion sheath 31 and the tail end of the guiding sheath 32
  • the tube sockets (not shown) are pressed together, and the tail ends of the dilatation sheath 31 and the guide sheath 32 are fixed together by the mechanism on the two sheath tube sockets, and the dilatation sheath 31 is put on the guide wire, and Under X-rays, the expansion sheath 31 is moved slowly along the guide wire to deliver the expansion sheath 31 and the guide sheath 32 from the femoral vein through the inferior vena cava 41 and then through the
  • the elbow housing is released from the delivery sheath 21 , And return to the original curved shape, as shown in Figure 8.
  • the tail end of the rotating sheath 22 is operated to make the pacing electrode 13 and the sensing electrode 11 abut the blood vessel wall of the superior vena cava 43 and pass through the outside
  • the device determines whether the electrical parameters of the pacing electrode 13 and the sensing electrode 11 are ideal. If the pacing and sensing electrical parameters are not ideal due to the poor position of the pacing sensing point, it can be corrected by the axial movement of the delivery sheath 21.
  • the lead pacemaker is retracted into the delivery sheath 21, and then the position of the leadless pacemaker is adjusted by the axial movement of the delivery sheath 21 and the rotation of the rotating sheath 22. After the adjustment is completed, the delivery sheath 21 will be removed again. The lead pacemaker is released, thereby adjusting the position of the sensing electrode and the pacing electrode in the heart, and testing the pacing and sensing electrical parameters through the external device again until the better or the best electrical parameters are obtained.
  • the tail end of the rotating sheath 22 can be rotated, so that the crochet 15 and the elbow shell rotate together, so that the needle tip 18 of the crochet 15 penetrates the inner wall of the superior vena cava 43 and is fixed, as shown in Figure 12 , So that the leadless pacemaker is in the best pacing position and fixed firmly.
  • the operator can also use the above embodiments to implant the leadless pacemaker into the atrium, the ventricle, the inner wall of the inferior vena cava, the septum between the atrium and the ventricle, and other designated locations, so the present invention also intends to include this technical solution Inside.
  • leadless pacemaker of the leadless pacemaker system of this embodiment can also be combined with other leadless pacemakers in the heart in a wired or wireless manner to realize true leadless dual-chamber and three-chamber pacing
  • the advanced technology of leadless pacemaker can benefit more patients.
  • the leadless pacemaker system of the present invention enables the leadless pacemaker to be implanted not only in the position of the superior vena cava, but also in other similar implant positions with curved structures. . In this way, the scope of applicable patients can be broadened to a large extent, and more patients can benefit.

Abstract

一种无导线起搏器及无导线起搏器系统,无导线起搏器的起搏器本体的壳体被设计成弯管结构,能够被弯曲地植入到空间狭窄的位置,且能与呈曲面结构的心肌组织或血管壁组织更贴合,使得起搏或感知的效果更好,这样,可以很大程度上拓宽适用患者的范围,使更多患者受益。

Description

无导线起搏器及无导线起搏器系统 技术领域
本发明涉及医疗器械技术领域,尤其涉及一种无导线起搏器及无导线起搏器系统。
背景技术
心脏起搏器自1958年问世以来,已成为缓慢性心律失常疾病的一线治疗手段。历经半个多世纪的发展与创新,起搏器由最初开胸植入单根导线起搏心室,逐步发展为经静脉植入2~3根导线以提供房室生理性起搏甚至双心室同步起搏。导线脱位、血栓形成、三尖瓣反流以及感染等导线相关并发症不仅影响起搏器的正常工作,而且严重危害患者的生命健康与生活质量。导线拔除具有一定的难度和风险,需要在较大的电生理中心并由技术熟练的医生完成。如何克服导线的束缚进而完成起搏器的“无线”革命,是目前心律失常治疗的新领域。
现有的无导线心脏起搏器可包括与起博电极分开的并且直径等于或小于起搏器外直径的固定机构。固定机构可允许起搏器经过2次或以上旋转插入组织中,以与组织接触从而固定。还有的无导线起搏器,该发明中有一个圆环状的结构位于无导线起搏器的近端,当无导线起搏器的远端固定机构失效时,该圆环状的结构可以让起搏器停留在右心室中,防止其进入血液循环系统后对患者带来伤害。
上述的无导线起搏器,具有以下缺陷:
起搏器本体均为直型条状结构,且其头端使用螺旋电极旋入到右室心尖部的心肌达到固定目的。这样的无导线起搏器必须垂直固定于某一植入位置,而相对于空间较为狭窄的位置,例如血管壁上或者室间隔部这些位置,这类无导线起搏长度较大,若垂直固定于血管壁或组织上,则血管壁和室间隔部这些位置无法容纳无导线起搏器。即由于螺旋电极与无导线起搏器本体平行且同轴,决定了此类无导线起搏器只能固定于空间尺寸大于无导线起搏器的长度的位置。因此,现有的无导线起搏器无法固定于一些空间较为狭窄的部 位,例如血管壁上或室间隔部,而这些空间较为狭窄的部位可能是最佳起搏位置。
因此,现有的无导线起搏器无法植入于一些空间较为狭窄的最佳起搏位置,导致起搏效果不好。
发明内容
本发明的目的在于提供一种无导线起搏器及无导线起搏器系统,能很大程度上拓宽适用患者的范围,使更多患者受益。
为了实现上述目的,本发明提供一种无导线起搏器,包括:
起搏器本体,所述起搏器本体包括弯管壳体;
固定机构,设置于所述弯管壳体的外壁上;
感知电极,设置于所述弯管壳体的外部,以及,
起搏电极,设置于所述弯管壳体的外部,且与所述感知电极间隔。
可选地,所述感知电极设置在所述弯管壳体上,并且沿所述弯管壳体的周向分布,以围绕在所述弯管壳体的外壁上;或者,所述感知电极设置在所述固定机构上。
可选地,所述起搏电极设置在所述弯管壳体上,并且沿所述弯管壳体的周向分布,以围绕在所述弯管壳体的外壁上;或者,所述起搏电极设置在所述固定机构上。
可选地,所述起搏电极和所述感知电极在所述无导线起搏器被输送到指定起搏位置时能处于同一高度。
可选地,所述固定机构能相对所述弯管壳体释放展开及回收。
可选地,所述固定机构包括至少一个钩针,所述钩针的尾端固定在所述弯管壳体上;所述钩针的头端朝向所述弯管壳体的头端,且所述钩针的头端在自由情况下与所述弯管壳体的外周具有间隙,以相对所述弯管壳体释放展开,所述钩针的头端受到外力的作用时,向所述弯管壳体靠拢以相对所述弯管壳体回收。
可选地,所述弯管壳体的外壁上设有钩针槽,所述钩针槽用于容纳所述 至少一个钩针,每个所述钩针的尾端固定在所述钩针槽内,每个所述钩针的头端受到外力的作用时,沿所述钩针槽被收纳于所述钩针槽内。
可选地,每个所述钩针呈丝状、杆状或片状。
可选地,所述钩针设置在所述弯管壳体的呈弯曲凸面的外壁上。
可选地,一个所述钩针上设有所述起搏电极或所述感知电极,所述起搏电极和所述感知电极均与所述弯管壳体内部的电子部件电连接。
可选地,所述弯管壳体包括第一弯管段和第二弯管段,所述第二弯管段的头端连接所述第一弯管段的尾端,且所述第二弯管段的尾端相对所述第一弯管段翘起,其中,所述第一弯管段的头端为所述弯管壳体的头端,所述第二弯管段的尾端为所述弯管壳体的尾端。
可选地,所述第一弯管段为弧形弯管或波浪形弯管,所述第二弯管段为弧形弯管或波浪形弯管,所述第一弯管段的管路长度大于所述第二弯管段的管路长度。
可选地,所述弯管壳体的径向截面为多边形或波浪形闭合曲线。
可选地,所述弯管壳体的材质为弹性形变材料。
可选地,所述弯管壳体的尾端设有连接机构,所述连接机构用于与输送所述无导线起搏器的输送装置连接。
基于同一发明构思,本发明还提供一种无导线起搏器系统,包括:
如本发明所述的无导线起搏器;以及,
输送装置,可拆卸式地与所述无导线起搏器的起搏器本体的尾端连接,用于将所述无导线起搏器输送到指定起搏位置。
可选地,所述输送装置包括输送鞘管和旋转鞘管,所述旋转鞘管能装配到所述输送鞘管中,且所述输送鞘管能相对于所述旋转鞘管作轴向移动和周向转动,所述旋转鞘管的头端可拆卸式地与所述无导线起搏器的起搏器本体的尾端连接。
可选地,所述输送鞘管为弯度可调的弯鞘结构。
与现有技术相比,本发明提供的技术方案具有以下有益效果:
1、由于本发明的无导线起搏器的起搏器本体的壳体被设计成弯曲形结 构,因此可以被弯曲地植入到空间狭窄的位置(即使该位置的空间尺寸小于本发明的无导线起搏器的长度),由此适用于一些其最佳起搏位置为空间较为狭窄的部位的患者,进而很大程度上拓宽适用患者的范围,使更多患者受益。
2、由于本发明的无导线起搏器的起搏器本体的壳体被设计成弯曲形结构,因此,本发明的无导线起搏器可植入各种呈曲面结构的位置,并且可以与呈曲面结构的心肌组织或血管壁组织更贴合,使得起搏和感知的效果更好,同时能很大程度上拓宽适用患者的范围,使更多患者受益。
3、本发明的无导线起搏器,不仅可以沿血管延伸方向植入,使得在最佳植入位置处起搏电极和感知电极位于血管壁的不同高度,以适用于一些需要起搏电极和感知电极在血管壁的不同高度的患者的植入需求,还可以沿血管的截面方向植入,使得起搏电极和感知电极能够位于血管壁的同一高度,以适用于起搏电极和感知电极位于血管壁的同一高度的患者的植入需求。
4、由于本发明的无导线起搏器的弯管壳体采用弹性形变材料制作,具有弹性变形能力,因此在植入后能够根据植入位置的空间大小进行适应性的弹性变形,从而能够使得无导线起搏器充分与植入位置的人体组织之间产生相互作用力,以使得本发明的无导线起搏器固定牢靠,防止出现意外脱落等问题。
5、由于本发明的无导线起搏器的固定机构能够相对弯管壳体释放展开和回收,因此能够降低无导线起搏器的植入固定以及回收的操作难度。
6、本发明的无导线起搏器系统,由于具有本发明的无导线起搏器,因此,不但可以将无导线起搏器固定在心房或心室内,还可以固定于上腔静脉或下腔静脉血管内壁,进一步地,还可以通过可调弯的输送鞘管将无导线起搏器固定于房室间隔部位,从而可实现上述区域内任何位置起搏,适用患者范围广。
附图说明
图1是本发明一实施例的无导线起搏器的立体结构示意图。
图2是图1所示的无导线起搏器的侧视结构示意图。
图3是图1所示的无导线起搏器的头端附近的部分结构示意图。
图4是本发明另一实施例的无导线起搏器的结构示意图。
图5是本发明又一实施例的无导线起搏器的结构示意图。
图6是本发明再一实施例的无导线起搏器的结构示意图。
图7是本发明一实施例的无导线起搏器系统中的输送装置的结构示意图。
图8是本发明一实施例的无导线起搏器系统中的输送装置和无导线起搏器配合的结构示意图。
图9是本发明一实施例的无导线起搏器系统的无导线起搏器装配到输送装置中的结构示意图。
图10是本发明一实施例的无导线起搏器系统中的导引装置的结构示意图。
图11是本发明一实施例的无导线起搏器系统中的导引装置进入到心脏中的结构示意图。
图12是本发明一实施例的无导线起搏器系统中的无导线起搏器植入到上腔静脉中的结构示意图。
其中,附图标记如下:
11-起搏电极;12-弯管壳体的第一弯管段;121-弯管壳体的头端;13-感知电极;14-连接机构;15-钩针;16-钩针槽;17-弯管壳体的第二弯管段;18-针尖结构;21-输送鞘管;22-旋转鞘管;221-盲孔;31-扩张鞘管;32-导引鞘管;40-心脏;41-下腔静脉;42-右心房;43-上腔静脉;D-间隙。
具体实施方式
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的技术方案作详细的说明,然而,本发明可以用不同的形式实现,不应只是局限在所述的实施例。需说明的是,附图均采用非常简化的形式且均使用非精准的比率,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,需要进一步说明的是,本发明中所提及的某部件的“头端”均是指在该部件被植入体内时最先进入体内的一端,相应地,某部件的“尾端”是指在该部件被植入体 内时最后进入体内的一端或者裸露在体外的一端。本文中所提及的“弯管壳体的轴向”为弯管壳体的管路延伸方向,“弯管壳体的径向”为垂直于所述弯管壳体的管路延伸方向的方向,当弯管壳体的截面为圆形时,弯管壳体的径向为所述圆形的直径方向;“弯管壳体的周向”为所述弯管壳体的任意位置处的周长方向。
请参考图1至图3,本发明一实施例提供一种无导线起搏器,包括起搏器本体、固定机构、感知电极11、起搏电极13和连接机构4。所述起搏器本体包括具有弹性变形能力的弯管壳体以及设置于所述弯管壳体中的电子部件(未图示)。电子部件为无导线起搏器工作运行所需的各种电子部件,如控制组件、无线通讯电子组件、电池组件以及存储器等。控制组件包括脉冲发生器和处理器,脉冲发生器用于产生脉冲式的起搏信号。处理器控制起搏信号的递送以及无导线起搏器的其他功能。电池组件用于将电力提供给控制组件以及存储器等。存储器可以是寄存器等,用于存储数据和相关参数等。无线通讯电子组件用于与外部设备(诸如由临床医生或其他用户在医疗设施中使用的程控器、位于患者家中的家庭监测器或者手持设备等)双向无线通信。外部设备可用于设置和获取无导线起搏器中的参数(包括表征无导线起搏器的工作状态的参数以及无导线起搏器感测的患者心脏的参数等)。
弯管壳体是密封的壳体,由生物相容性优良、轻质且高弹性可变形材料制成,如镍钛合金等记忆合金或其它高弹性高分子材料,以使其尽量轻质,弹性恢复性能高,且在植入后,能够适用植入位置的空间变形,以增强固定性能,并能够使得起搏电极和感知电极与植入位置的人体组织更贴合,起搏和感知效果更佳。弯管壳体包括第一弯管段12和第二弯管段17,所述第二弯管段17的头端连接所述第一弯管段12的尾端,且所述第二弯管段17的尾端相对所述第一弯管段12翘起,且所述第一弯管段12的头端为所述弯管壳体的头端,所述第二弯管段17的尾端为所述弯管壳体的尾端,由此利用第二弯管段17为第一弯管段12提供转向引导功能,进而能够使第一弯管段12在受外力作用变形后能顺利通过输送系统,以实现起搏器本体被顺利输送和顺利回收。
本实施例中,第一弯管段12和第二弯管段17均为圆弧形弯管,且第一弯管段12和第二弯管段17的管口形状(也可以说是管道截面或者与其的轴向垂直的径向截面,即图1中第一弯管段12的横截面和第二弯管段17的横截面)均是圆形的,由此使得第一弯管段12和第二弯管段17之间圆滑地过渡,进一步有利于实现起搏器本体的顺利输送和顺利回收。第一弯管段12的管路长度大于第二弯管段17的管路长度,第二弯管段17的尾端相对第一弯管段12翘起,第二弯管段17为第一弯管段12提供转向引导功能,能够使第一弯管段12在受外力作用变形后能顺利通过如图7至9中的输送鞘管21,所以第二弯管段17是实现起搏器本体能否被顺利输送和顺利回收的关键。当第二弯管段17的尾端相对第一弯管段12的翘起角度为85度~95度,例如为90度时,所述第二弯管段17能使得第一弯管段12在被释放到指定位置后横放或近似横放在所述指定位置上。此外,第一弯管段12的头端121为球顶,可以有利于起搏器本体在被如图7至9中的输送鞘管21释放过程中的向前推进,并避免起搏器本体被释放展开的过程中抵在指定位置的心肌组织或血管组织时刺破组织,进而避免心穿孔或血管穿孔的问题。
感知电极11设置于第一弯管段12的头端121上,起搏电极13设置于第一弯管段12的尾端上或第二弯管段17的尾端上,且感知电极11和起搏电极13均沿第一弯管段12的周向分布,感知电极11围绕第一弯管段12的头端121的相应位置的外壁上,对该位置进行半包围或全包围,起搏电极13围绕第一弯管段12的尾端或第二弯管段17的尾端的相应位置的外壁上,对该位置进行半包围或全包围,从而实现双极径向分布感知和起搏,大幅增加了使用无导线起搏器患者获得最佳电学参数起搏的机率。
由于第一弯管段12和第二弯管段17均为圆弧形弯管,弯管壳体的长度(即第一弯管段12的弧长和第二弯管段17的弧长之和)大于第一弯管段12的头端和第二弯管段17的尾端之间的直线距离,因此本实施例的无导线起搏器可以被弯曲地植入到空间狭窄的位置(即使该位置的空间尺寸小于弯管壳体的长度),由此适用于一些其最佳起搏位置为空间较为狭窄的部位的患者。
而且,由于本实施例的弯管壳体的第一弯管段12和第二弯管段17均为 圆弧形弯管,且起搏电极13、感知电极11沿第一弯管段12轴线方向呈双极径向分布排列,第二弯管段17相对第一弯管段12翘起90度,因此,当本实施例的无导线起搏器植入到例如上腔静脉等曲面位置时,无导线起搏器能与该位置的组织基本上无缝隙且充分接触而更贴合,因此,起搏电极能正常发送起搏信号,感知电极能正常感知组织以正常获得感知信号,起搏和感知的效果更好。更重要的是,起搏器本体可以沿上腔静脉的血管壁的周向分布,使得起搏电极13和感知电极11也相对彼此沿上腔静脉的血管壁的周向分布,此时,起搏电极13和感知电极11相对位于血管壁的同一高度,这样可以使无导线起搏器能适用于植入在上腔静脉这类曲面结构可获得最佳电学参数起搏的患者。同理,本实施例的无导线起搏器还可以植入在其它类似的植入位置为曲面结构的位置处,这样可以很大程度上拓宽适用患者的范围,使更多患者受益。这完全是现有的直条状的无导线起搏器无法达到的效果,因为现有的直条状的无导线起搏器在植入到上腔静脉的时候,其起搏器本体延伸方向只能沿上腔静脉血管的延伸方向,这样其起搏电极与感知电极分布在上腔静脉血管壁的不同高度,无法适用于上述起搏电极和感知电极相对位于血管壁的同一高度的最佳植入位置的患者;此外,当现有的直条状的无导线起搏器植入到为曲面结构的位置处时,其与组织表面可能存在空隙,不会充分接触,其起搏电极可能不能正常发送起搏信号,其感知电极可能不能正常感知组织而不能正常获得感知信号,即,现有的这种直条状的无导线起搏器不能适用于呈曲面结构的植入位置,无法对相应需求的患者实现最佳电学参数起搏。
本实施例中,固定机构采用钩针固定机制,包括至少一个钩针15,各个钩针15能相对第一弯管段12释放展开以及回收。具体地,所述弯管壳体的第一弯管段12的呈弯曲凸面的外壁上设有用于容纳各个钩针15且与各个所述钩针15一一对应的钩针槽16,所述钩针15的尾端可以通过焊接或压接的方式固定在相应的钩针槽16内,钩针15的头端朝向第一弯管段12的头端121。该钩针固定机制的固定机构,结构简单,容易制作且占用空间小,且在植入过程中,操作者容易将输送系统的输送鞘管旋转运动产生的扭矩传递到各个 钩针15上,使各个钩针15能刺入组织内并固定,进而实现无导线起搏器的固定,且该钩针固定机制占用空间小,着力点在钩针的头端,因此不但可以将无导线起搏器固定在心房或心室内,还可以将无导线起搏器固定于上腔静脉或下腔静脉的血管内壁,更甚至于在可调弯输送鞘管的输送下将无导线起搏器固定于心房、心室间隔部位等位置。
钩针15由生物相容性优良、轻质且高弹性的材料制成,例如是镍钛合金等记忆金属材料,以使其尽量轻质,弹性恢复性能高且起到较好的固定作用,同时几乎不会增加无导线起搏器的重力,以尽量不增加无导线起搏器的重力对植入位置组织的压力或拉力。钩针15整体上呈丝状、杆状或片状,其能够沿第一弯管段12管道延伸方向(即圆弧线方向)在第一弯管段12的外壁外延伸,甚至可以盘绕在第一弯管段12的外周上,由此,使得钩针在回收状态下能紧密贴合弯管壳体,利于无导线起搏器的输送,而且还使得在钩针15被释放展开后,能够固定在植入位置的人体组织上并能产生足够的支撑力来将起搏器本体固定牢靠。钩针槽16的槽宽及长度可以完全容纳钩针15,以使得钩针15被完全收纳到钩针槽16中,有利于无导线起搏器被输送系统顺利输送。
钩针15的头端在自由情况下与第一弯管段12的外周具有间隙D,间隙D为0.1mm~15mm,该间隙D能够在无导线起搏器被释放后,使得钩针15因其头端不再受到外力压迫,并在弹性恢复力作用下展开,进而固定在植入位置的人体组织上。间隙D的具体值可以根据无导线起搏器需要植入的位置来决定,也就是说,无导线起搏器可以根据待植入的位置的空间大小具有多种选型,各种选型中弯管壳体的长度、体积、弯曲程度以及钩针15的大小、体积及其与弯管壳体的外壁之间的间隙不完全相同。
钩针15的头端在受到外力的作用下,能使得所述钩针15沿钩针槽16的轨迹被收纳于钩针槽16内。在无导线起搏器通过如图7至9中的输送鞘管21输送时,如图7至9中的输送鞘管21的旋转运动可以将扭矩传递到钩针15上,使钩针15头端上的针尖18刺入组织内并固定,不但可以将无导线起搏器固定在心房或心室内,还可以固定于上腔静脉或下腔静脉血管内壁,当输 送无导线起搏器的输送鞘管为弯度可调的鞘管时,无导线起搏器还可以被钩针15固定于心房和心室的间隔部位。其中,钩针15设置在第一弯管段12的呈弯曲凸面的外壁(即弯背的外壁)上,可以利用第一弯管段12的弯背的外壁与植入位置的组织之间的挤压力,增强钩针15固定的可靠性,防止钩针脱钩,当然,当弯管壳体的管道足够长时,钩针15也能设计的足够长,由此钩针15也可以设置在弯管壳体的呈弯曲凹面的外壁上。
请参考图4,优选地,固定机构包括两个或两个以上的钩针15,各个钩针15分布在第一弯管段12的不同位置,使得无导线起搏器在植入位置处有多处固定点,进一步增强无导线起搏器固定的稳固性。也就是说,当无导线起搏器被释放到一指定位置时,可以通过钩针15固定在指定位置(例如右心尖)的组织上。此时,有多少根钩针15刺入到人体组织上,该无导线起搏器就会具有多少个着力点。进一步地,还能使得所有钩针15的长度相同,具有的间隙D相等,从而能够在无导线起搏器被释放后,各个钩针15能够产生相等的作用力,使得无导线起搏器固定更加牢靠,避免无导线起搏器发生不必要的倾斜。当然在本发明的其他实施例中,也允许所有钩针15的长度不均一、间隙D不等,以适配指定位置的曲面结构,使得无导线起搏器固定牢靠。此外,需要说明的是,采用钩针固定机制的固定机构14,结构简单,成本低,容易实现无导线起搏器的释放和固定操作。
请参考图5,进一步优选地,钩针15沿所述弯管壳体的径向的截面(简称为钩针15的截面)为长方形,可以在钩针被释放展开时增加钩针与植入位置处的组织或血管壁的接触面积。弯管壳体沿所述弯管壳体的径向的截面(简称为弯管壳体的截面)也为长方形,可以增加弯管壳体与植入位置处的组织或血管壁的接触面积。钩针15和弯管壳体的这种长方形结构设计,可以增加起搏电极13和感知电极14与植入位置的组织的接触面积,从而优化起搏电学参数及提高起搏稳定性能。
当然,在本发明的其他实施例中,第一弯管段12和第二弯管段17不仅仅限于圆弧形弯管,还可以是其他曲线形弯管,例如波浪形弯管、乙字形弯管、S形弯管等等,第一弯管段12和第二弯管段17的管口形状也不仅仅限于 圆形,还可以是椭圆形、多边形(例如图5所示的矩形)、波浪形封闭曲线或其它形状,钩针15的截面形状也不仅仅限于圆形、长方形,还可以是椭圆形、三角形等多边形,只要无导线起搏器能够实现起搏作用,且在尺寸上被减小,以能够经由穿过静脉的输送鞘管移动,以实现心脏或血管内植入,且在植入后,弯管壳体和钩针能与植入位置的人体组织尽可能贴合,本发明便意图包含这些技术方案在内。例如有的患者其血管或者心脏内部存在畸形,而且无导线起搏器需要植入到该畸形位置时,选择的无导线起搏器,其第一弯管段12和第二弯管段17可以为波浪形弯管、乙字形弯管或S形弯管,其管道截面可以是多边形或波浪形封闭曲线,以使得弯管壳体能与植入位置的人体组织尽可能贴合,并增加弯管壳体与植入位置处的人体组织的接触面积,钩针15整体上的形状与其对应的弯管壳体的外壁形状适配,以使得在输送无导线起搏器过程中,钩针紧密贴合在弯管壳体的外壁上,且该无导线起搏器在植入到该畸形位置后,起搏器本体能尽可能贴合该位置的人体组织,进而达到最佳感测和起搏效果。其中较佳地,弯管壳体的截面形状和钩针15的截面形状相似,以使得钩针15在回收到最终位置时,能够紧密贴合在弯管壳体的外壁上。
需要说明的是,在本发明的其他实施例中,弯管壳体的外壁上也可以省略钩针槽16,并在弯管壳体上设置卡扣结构,使得钩针15在回收到最终位置时能够被该卡扣结构卡住,以紧密贴合在弯管壳体的外壁上,此时钩针15相当于是凸设在弯管壳体的外壁上的结构,也能够实现上述实施例中相似的技术效果。此外,应当理解的是,在本发明的其他实施例中,固定机构也可以采用其他任意合适的固定机制,只要固定机构能够使得无导线起搏器被可靠地固定在人体内的指定位置处,不会出现固定不牢、心房穿孔以及起搏不良和感知不良等重大问题即可,例如在一些实施例中,无导线起搏器的固定机构不会刺入人体组织中而是抵持在人体组织上,并依靠无导线起搏器和人体组织之间的挤压力而固定牢靠,且能够保证起搏和感知的效果。
请参考图1至图3,第二弯管段17的尾端上设有连接机构14,连接机构14用于与输送无导线起搏器的输送装置(如图7至9中的旋转鞘管22)固定 连接。连接机构14可以与第二弯管段17一体成型,或者通过焊接或螺纹密接等方式固定在第二弯管段17的尾端上。本实施例中,连接机构14为多边形棱柱(例如是六角螺母),用于输送无导线起搏器的输送装置具有适配于所述多边形棱柱的多边形盲孔(如图7中的221所示),通过这种多边形棱柱和多边形盲孔配合的方式,可以简化后续将无导线起搏器固定在输送装置上或者从输送装置上释放的难度,尤其是无需旋转鞘管转动一周即可将无导线起搏器固定在输送装置上或者从输送装置上释放,从而降低了植入操作失败的风险。在本发明的其他实施例中,连接机构14还可以是带有盲孔的螺母,用于输送无导线起搏器的输送装置具有适配于所述螺母的螺栓;或者,连接机构14还可以是带有螺纹的螺栓,用于输送无导线起搏器的输送装置具有适配于所述螺栓的带孔螺母。
上述实施例中,感知电极11和起搏电极13均设置于弯管壳体上,但本发明的技术方案并不仅仅限定于此。例如,请参考图6,当钩针15的数量仅为一个时,感知电极11或起搏电极13可以设置在钩针15上,当钩针15的数量为两个或两个以上时,感知电极11和起搏电极13可以分开设置在不同的钩针15上;这种情况下,可以通过贴装、嵌入等手段在相应的钩针15上设置感知电极或起搏电极。再例如,当钩针15采用高弹性记忆合金材料制成时,其本身具有导电能力,因此,一个钩针15本身可以被用作一个感知电极11或起搏电极13,可以通过相应的电路连接弯管壳体内部的电子部件,以实现起搏或感知功能,同时利用钩针15作为电极,可以省去额外制作电极的成本,简化无导线起搏器的结构。
此外,需要说明的是,上述实施例中,由于第二弯管段17相对第一弯管段12翘起85度~95度,因此无导线起搏器在被植入后可以转为横向姿势,使得起搏电极与感知电极分布在上腔静脉血管壁的同一高度,但是本发明的技术方案并不仅仅限定于此,在本发明的其他一个实施例中,也可以通过控制旋转鞘管22的俯仰角度,来使得无导线起搏器可以在被植入后,依旧沿上腔静脉血管的延伸方向延伸,起搏电极与感知电极分布在上腔静脉血管壁的不同高度上。在本发明的其他另一个实施例中,可以设计无导线起搏器的第二 弯管段17相对第一弯管段12翘起45度以下,或者省略第二弯管段17,无导线起搏器在被植入后,仍旧可以像传统的直条状的无导线起搏器的植入姿势一样,无导线起搏器沿上腔静脉血管的延伸方向延伸,其起搏电极与感知电极分布在上腔静脉血管壁的不同高度,以适用于普通患者的需求。
综上所述,本发明的无导线起搏器,其起搏器本体的壳体被设计成弯曲形状的弯管结构,能够与呈曲面结构的心肌组织或血管壁组织更贴合,因此起搏或感知的效果更好;而且本发明的无导线起搏器,由于其起搏器本体的壳体被设计成具有弹性变形能力的弯管结构,因此不仅可植入在上腔静脉的位置,还可以植入在其它为曲面结构的位置处,这样,可以很大程度上拓宽适用患者的范围,使更多患者受益。进一步地,起搏电极和/或感知电极沿起搏器本体的弯管壳体的径向分布(即周向分布),当无导线起搏器在植入例如上腔静脉等位置后时,起搏器本体可以沿血管壁或心肌壁的周向分布,起搏电极和/或感知电极也呈沿血管壁或心肌壁的周向分布,起搏电极和感知电极能相对位于血管壁或心肌壁的同一高度,由此可以适用于上述起搏电极和感知电极相对位于血管壁或心肌壁的同一高度为最佳植入位置的患者,可以使无导线起搏器在该植入位置以最佳电学参数起搏患者。
请参考图1至12,本发明一实施例还提供一种无线起搏器系统,包括:输送装置、导引装置以及本发明的无导线起搏器。输送装置可拆卸式地与所述无导线起搏器的起搏器本体的尾端连接,用于在导引装置的辅助作用下,将无导线起搏器输送并调节到最佳起搏位置,导引装置用于为所述输送装置建立通路,使所述输送装置能通过所述导引装置到达所述指定起搏位置。输送装置和导引装置的配合使用,在手术过程中将所述无导线起搏器输送至心脏或血管等指定位置处固定,消除了传统电极导线带来的副作用。并且在无导线起搏器植入过程中,导引装置可以引导输送装置进入患者体内并到达指定位置附近,输送装置能够将无导线起搏器送入到患者体内并对无导线起搏器的位置进行调节,使操作者能够便捷地找到无导线起搏器的最佳起搏位置,从而提高无导线起搏器的起搏效果。
本实施例的无线起搏器系统中的无导线起搏器的具体结构可以参考上 文。
请参考图7、图8和图9,本实施例中,所述输送装置包括输送鞘管21和旋转鞘管22。输送鞘管21为圆管状结构,旋转鞘管22的头端具有适配于无导线起搏器的连接机构14的多边形盲孔221,用于与连接机构14的外周多边形表面配合,实现无导线起搏器和旋转鞘管22的固定连接以及连接释放,即旋转鞘管22的头端能可拆卸式地与所述无导线起搏器的第二弯管段17的尾端连接;输送鞘管21可相对于旋转鞘管22同时作轴向移动(即能够相对旋转鞘管22前进后退)和周向转动(即能够相对旋转鞘管22旋转)。
输送装置和无导线起搏器的装配过程如下:旋转鞘管22装配到输送鞘管21中,无导线起搏器的尾端的连接机构14装载到输送鞘管21的头端中,并伸入到旋转鞘管22头端的多边形盲孔221中固定,进而使无导线起搏器的弯管壳体的第二弯管段17先进入输送鞘管21的中心孔内,然后保持旋转鞘管22不动,推动输送鞘管21沿旋转鞘管22轴向往弯管壳体的头端121移动,此时,弯管壳体发生弹性变形而整体进入到输送鞘管21的中心孔内,同时,钩针15便会顺着钩针槽16的轨迹被收纳到钩针槽16内,如图9所示,无导线起搏器整体上变形为与输送鞘管21的中心孔形状一致的形状。
优选地,输送鞘管22为弯度可调的弯鞘结构,弯度调节范围例如为0°~180°,由此可以通过输送鞘管22的弯曲角度的调整,适应心脏和血管内部的空间结构,有益于将无导线起搏器植入到心房、心室、上腔静脉血管内壁、下腔静脉血管内壁、心房与心室的间隔部位等多种不同的区域,以实现无导线起搏器在这些区域内任何位置的植入和起搏。
请参考图10,所述导引装置包括扩张鞘管31和导引鞘管32,所述扩张鞘管31能装配到所述导引鞘管32中,并在所述导引鞘管32中作轴向运动。扩张鞘管31的头端为锥形结构,扩张鞘管31装配在导引鞘管32中后,扩张鞘管31头端的锥形结构能够从导引鞘管32的头端中伸出,扩张鞘管31尾端和导引鞘管32尾端均可以设有管座(未图示),当扩张鞘管31头端的锥形结构从导引鞘管32的头端中伸出后,扩张鞘管31尾端的管座抵在导引鞘管32的尾端的管座上并可以进一步通过螺纹连接或抓捕连接的方式固定在一起, 导引鞘管32能够沿扩张鞘管31轴向移动,从而使得扩张鞘管31能够在患者的血管内前进的过程中扩张血管的大小,并使导引鞘管32能够顺利进入到血管中。扩张鞘管31的中心具有用于穿过导丝的中心孔,在需要植入无导线起搏器时,可以先通过穿刺技术将导丝的头端固定在指定位置(例如上腔静脉)的组织上,然后,将扩张鞘管31置于导引鞘管32中,将扩张鞘管31套在导丝上,以使得扩张鞘管31沿导丝移动,以引导导引鞘管32到达合适位置。
此外,本实施例的无线起搏器系统还包括外部的控制电子设备,外部的控制电子设备与无导线起搏器无线连接并双向通信,用于设置和获取无导线起搏器中的参数(包括表征无导线起搏器的工作状态的参数以及无导线起搏器感测的患者心脏的参数等)。
请参考图1至图12,本实施例还提供一种上述的无导线起搏系统的使用方法,包括以下过程:
首先,请参考图8,在植入前,先将旋转鞘管22装配到输送鞘管21中,再将无导线起搏器的起搏器本体的尾端的连接机构14装入到输送鞘管21内,并使连接机构14与旋转鞘管22头端的多边形盲孔221配合以固定连接,从而使起搏器本体的弯管壳体的第二弯管段17进入输送鞘管21的中心孔内;然后,请参考图9,保持旋转鞘管22不动,推动输送鞘管21相对旋转鞘管22轴向移动,使之往起搏器本体的头端(即弯管壳体的第一弯管段12的头端121)移动,此时,弯管壳体整体上发生弹性变形而进入到输送鞘管21的中心孔内,同时,钩针15便会顺着弯管壳体上的钩针槽16的轨迹被收纳到钩针槽16内。
然后,请参考图11,通过股静脉(未图示),经下腔静脉41、心脏40的右心房42向患者的上腔静脉43穿入导丝(未图示);将扩张鞘管31置于导引鞘管32内,直至扩张鞘管31的头端穿出导引鞘管32的头端,且扩张鞘管31尾端的管座(未图示)和导引鞘管32尾端的管座(未图示)抵在一起,通过两鞘管管座上的机构使扩张鞘管31和导引鞘管32的尾端固定在一起,将扩张鞘管31套在导丝上,并在X光下使得扩张鞘管31沿着导丝缓慢移动,以将扩张鞘管31、导引鞘管32从股静脉经下腔静脉41再经过右心房42递送 到上腔静脉43中的合适位置。之后,松开导引鞘管32和扩张鞘管31的管座之间的连接,进而撤去扩张鞘管31和导丝,并保留导引鞘管32在原位。
接着,请继续参考图9和图11,将图9状态下的无导线起搏器及输送鞘管21的头端一同插入到导引鞘管31的尾端,并保持导引鞘管31不动,沿导引鞘管31的轴向一起推送输送鞘管21和旋转鞘管22,使得弯管壳体的头端121到达导引鞘管31的头端,然后,将保持旋转鞘管22和导引鞘管31不动,使得输送鞘管21沿旋转鞘管22的轴向退回到如图7和图8所示的位置,此时,弯管壳体从输送鞘管21中释放出来,并恢复到原有的弯曲形状,如图8所示,之后,再操作旋转鞘管22的尾端,使起搏电极13和感知电极11与上腔静脉43的血管壁贴靠并通过外部设备判断起搏电极13和感知电极11的电学参数是否理想,如果是由于起搏感知点位置不佳导致的起搏、感知电学参数不理想,可以通过输送鞘管21的轴向移动再将无导线起搏器收回到输送鞘管21中,继而通过输送鞘管21的轴向移动和旋转鞘管22的旋转调整无导线起搏器的位置,调整完后再次回撤输送鞘管21将无导线起搏器释放,由此调整感知电极、起搏电极在心脏内的位置,并再次通过外部设备测试起搏、感知电学参数,直到获得较佳或最佳的电学参数为止。如参数符合要求,则可以转动旋转鞘管22的尾端,使得钩针15和弯管壳体一起转动,使钩针15的针尖18刺入上腔静脉43的血管内壁并固定,如图12所示,以使得无导线起搏器处于最佳起搏位置并固定牢靠。
请继续参考图12,植入完成后,松开旋转鞘管22和连接机构14的连接,并将输送鞘管21、旋转鞘管22、导引鞘管32等除无导线起搏器以外的所有部件从人体内撤出,留下无导线起搏器被固定在上腔静脉43内。
同理,操作者也可采用上述实施方式将无导线起搏器植入到心房、心室、下腔静脉血管内壁、心房与心室的间隔部位等其他指定位置,故本发明也意图包含该技术方案在内。
此外,本实施例的无导线起搏器系统的无导线起搏器还可通过有线或无线的方式与心脏内的其他的无导线起搏器结合,实现真正的无导线双腔、三腔起搏,使无导线起搏器这一先进技术能够让更多病人受益。
综上所述,本发明的无导线起搏器系统,能够使得无导线起搏器不仅可植入在上腔静脉的位置,还可以植入在其它类似的植入位置为曲面结构的位置处。这样,可以很大程度上拓宽适用患者的范围,使更多患者受益。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (18)

  1. 一种无导线起搏器,其特征在于,包括:
    起搏器本体,所述起搏器本体包括弯管壳体;
    固定机构,设置于所述弯管壳体的外壁上;
    感知电极,设置于所述弯管壳体的外部,以及,
    起搏电极,设置于所述弯管壳体的外部,且与所述感知电极间隔。
  2. 如权利要求1所述的无导线起搏器,其特征在于,所述感知电极设置在所述弯管壳体上,并且沿所述弯管壳体的周向分布,以围绕在所述弯管壳体的外壁上;或者,所述感知电极设置在所述固定机构上。
  3. 如权利要求1所述的无导线起搏器,其特征在于,所述起搏电极设置在所述弯管壳体上,并且沿所述弯管壳体的周向分布,以围绕在所述弯管壳体的外壁上;或者,所述起搏电极设置在所述固定机构上。
  4. 如权利要求1-3中任一项所述的无导线起搏器,其特征在于,所述起搏电极和所述感知电极在所述无导线起搏器被输送到指定起搏位置时能处于同一高度。
  5. 如权利要求1所述的无导线起搏器,其特征在于,所述固定机构能相对所述弯管壳体释放展开及回收。
  6. 如权利要求5所述的无导线起搏器,其特征在于,所述固定机构包括至少一个钩针,所述钩针的尾端固定在所述弯管壳体上;所述钩针的头端朝向所述弯管壳体的头端,且所述钩针的头端在自由情况下与所述弯管壳体的外周具有间隙,以相对所述弯管壳体释放展开,所述钩针的头端受到外力的作用时,向所述弯管壳体靠拢以相对所述弯管壳体回收。
  7. 如权利要求6所述的无导线起搏器,其特征在于,所述弯管壳体的外壁上设有钩针槽,所述钩针槽用于容纳所述至少一个钩针,每个所述钩针的尾端固定在所述钩针槽内,每个所述钩针的头端受到外力的作用时,沿所述钩针槽被收纳于所述钩针槽内。
  8. 如权利要求6或7所述的无导线起搏器,其特征在于,每个所述钩针 呈丝状、杆状或片状。
  9. 如权利要求6或7所述的无导线起搏器,其特征在于,所述钩针设置在所述弯管壳体的呈弯曲凸面的外壁上。
  10. 如权利要求6或7所述的无导线起搏器,其特征在于,一个所述钩针上设有所述起搏电极或所述感知电极,所述起搏电极和所述感知电极均与所述弯管壳体内部的电子部件电连接。
  11. 如权利要求1所述的无导线起搏器,其特征在于,所述弯管壳体包括第一弯管段和第二弯管段,所述第二弯管段的头端连接所述第一弯管段的尾端,且所述第二弯管段的尾端相对所述第一弯管段翘起,其中,所述第一弯管段的头端为所述弯管壳体的头端,所述第二弯管段的尾端为所述弯管壳体的尾端。
  12. 如权利要求11所述的无导线起搏器,其特征在于,所述第一弯管段为弧形弯管或波浪形弯管,所述第二弯管段为弧形弯管或波浪形弯管,所述第一弯管段的管路长度大于所述第二弯管段的管路长度。
  13. 如权利要求1所述的无导线起搏器,其特征在于,所述弯管壳体的径向截面为多边形或波浪形闭合曲线。
  14. 如权利要求1所述的无导线起搏器,其特征在于,所述弯管壳体的材质为弹性形变材料。
  15. 如权利要求1所述的无导线起搏器,其特征在于,所述弯管壳体的尾端设有连接机构,所述连接机构用于与输送所述无导线起搏器的输送装置连接。
  16. 一种无导线起搏器系统,其特征在于,包括:
    如权利要求1至15中任一项所述的无导线起搏器;以及,
    输送装置,可拆卸式地与所述无导线起搏器的起搏器本体的尾端连接,用于将所述无导线起搏器输送到指定起搏位置。
  17. 如权利要求16所述的无导线起搏器系统,其特征在于,所述输送装置包括输送鞘管和旋转鞘管,所述旋转鞘管能装配到所述输送鞘管中,且所述输送鞘管能相对于所述旋转鞘管作轴向移动和周向转动,所述旋转鞘管的 头端可拆卸式地与所述无导线起搏器的起搏器本体的尾端连接。
  18. 如权利要求17所述的无导线起搏器系统,其特征在于,所述输送鞘管为弯度可调的弯鞘结构。
PCT/CN2020/082685 2019-04-02 2020-04-01 无导线起搏器及无导线起搏器系统 WO2020200223A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20785317.7A EP3950052A4 (en) 2019-04-02 2020-04-01 WIRELESS PACEMAKER AND WIRELESS PACEMAKER SYSTEM
US17/600,839 US20220184402A1 (en) 2019-04-02 2020-04-01 Leadless pacemaker and leadless pacemaker system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910262708.7A CN109793989B (zh) 2019-04-02 2019-04-02 无导线起搏器及无导线起搏器系统
CN201910262708.7 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020200223A1 true WO2020200223A1 (zh) 2020-10-08

Family

ID=66563327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082685 WO2020200223A1 (zh) 2019-04-02 2020-04-01 无导线起搏器及无导线起搏器系统

Country Status (4)

Country Link
US (1) US20220184402A1 (zh)
EP (1) EP3950052A4 (zh)
CN (1) CN109793989B (zh)
WO (1) WO2020200223A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109793989B (zh) * 2019-04-02 2021-08-13 创领心律管理医疗器械(上海)有限公司 无导线起搏器及无导线起搏器系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082828A1 (en) * 2007-09-20 2009-03-26 Alan Ostroff Leadless Cardiac Pacemaker with Secondary Fixation Capability
CN107233665A (zh) * 2017-08-01 2017-10-10 郭成军 心腔内植入物及其固定方法
CN107583187A (zh) * 2017-09-25 2018-01-16 创领心律管理医疗器械(上海)有限公司 无导线起搏器系统及其使用方法
CN108079437A (zh) * 2016-11-21 2018-05-29 创领心律管理医疗器械(上海)有限公司 心脏起搏装置及其固定方法与输送系统
CN109793989A (zh) * 2019-04-02 2019-05-24 创领心律管理医疗器械(上海)有限公司 无导线起搏器及无导线起搏器系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943936A (en) * 1970-09-21 1976-03-16 Rasor Associates, Inc. Self powered pacers and stimulators
US4112953A (en) * 1977-03-11 1978-09-12 Medcor, Inc. Pacer stimulator with improved lead connector
US7039465B2 (en) * 2000-09-18 2006-05-02 Cameron Health, Inc. Ceramics and/or other material insulated shell for active and non-active S-ICD can
US9668690B1 (en) * 2001-05-01 2017-06-06 Intrapace, Inc. Submucosal gastric implant device and method
US7532933B2 (en) * 2004-10-20 2009-05-12 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US7840281B2 (en) * 2006-07-21 2010-11-23 Boston Scientific Scimed, Inc. Delivery of cardiac stimulation devices
US10500394B1 (en) * 2011-10-11 2019-12-10 A-Hamid Hakki Pacemaker system equipped with a flexible intercostal generator
US9216293B2 (en) * 2011-11-17 2015-12-22 Medtronic, Inc. Delivery system assemblies for implantable medical devices
US20130324825A1 (en) * 2012-06-05 2013-12-05 Alan Ostroff Leadless Pacemaker with Multiple Electrodes
US9433368B2 (en) * 2013-08-23 2016-09-06 Cardiac Pacemakers, Inc. Leadless pacemaker with tripolar electrode
US9526891B2 (en) * 2015-04-24 2016-12-27 Medtronic, Inc. Intracardiac medical device
US11229798B2 (en) * 2017-03-10 2022-01-25 Cardiac Pacemakers, Inc. Fixation for leadless cardiac devices
JP6888112B2 (ja) * 2017-03-20 2021-06-16 カーディアック ペースメイカーズ, インコーポレイテッド 心不整脈を治療するためのリードレスペーシング装置
NL2019577B1 (en) * 2017-09-19 2019-03-28 Cardiac Pacemakers Inc Stimulation/sensing electrode fixation device and electrical lead
CN108434600B (zh) * 2018-02-26 2021-11-02 郭成军 心腔内植入物、心脏起搏器、植入装置
EP3946556A1 (en) * 2019-03-29 2022-02-09 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090082828A1 (en) * 2007-09-20 2009-03-26 Alan Ostroff Leadless Cardiac Pacemaker with Secondary Fixation Capability
CN108079437A (zh) * 2016-11-21 2018-05-29 创领心律管理医疗器械(上海)有限公司 心脏起搏装置及其固定方法与输送系统
CN107233665A (zh) * 2017-08-01 2017-10-10 郭成军 心腔内植入物及其固定方法
CN107583187A (zh) * 2017-09-25 2018-01-16 创领心律管理医疗器械(上海)有限公司 无导线起搏器系统及其使用方法
CN109793989A (zh) * 2019-04-02 2019-05-24 创领心律管理医疗器械(上海)有限公司 无导线起搏器及无导线起搏器系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950052A4 *

Also Published As

Publication number Publication date
EP3950052A1 (en) 2022-02-09
CN109793989B (zh) 2021-08-13
EP3950052A4 (en) 2022-06-15
US20220184402A1 (en) 2022-06-16
CN109793989A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
JP5777628B2 (ja) 事前成形バイアスを有する医療リード線
EP2833966B1 (en) Tethered implantable medical device deployment
US6882886B1 (en) Vessel electrode line
US9833625B2 (en) Implantable medical device delivery with inner and outer sheaths
US9854982B2 (en) Implantable medical device deployment within a vessel
US9339197B2 (en) Intravascular implantable medical device introduction
CN109568793B (zh) 无导线起搏器及无导线起搏系统
US20130253346A1 (en) Pass-through implantable medical device delivery catheter with removeable distal tip
US20130253345A1 (en) Implantable medical device delivery catheter with tether
US20120109002A1 (en) Medical device fixation attachment mechanism
US20220110679A1 (en) Atrial septostomy device
EP3727578A1 (en) Implantable medical device for vascular deployment
CN109498995B (zh) 用于可植入心脏设备的附接装置
CN111556774A (zh) 用于血管部署的可植入医疗装置
CN108079437B (zh) 心脏起搏装置及其固定方法与输送系统
US8401643B2 (en) Implantable medical sensor and anchoring system
CN111686373B (zh) 具有同轴固定元件的生物刺激器
WO2019057213A1 (zh) 起搏固定系统、无导线起搏器系统及其使用方法
CN109621199B (zh) 电极导线
US11147976B2 (en) Lateral fixation for cardiac pacing lead
WO2020200223A1 (zh) 无导线起搏器及无导线起搏器系统
CN109498983B (zh) 无导线起搏器
CN109793988A (zh) 医疗装置及其医疗设备的固定机构
US20130231727A1 (en) Lead with bioabsorbable metallic fixation structure
JP5688469B2 (ja) 植え込み型医療用電気リード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020785317

Country of ref document: EP

Effective date: 20211102