WO2020200110A1 - 一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法 - Google Patents

一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法 Download PDF

Info

Publication number
WO2020200110A1
WO2020200110A1 PCT/CN2020/081743 CN2020081743W WO2020200110A1 WO 2020200110 A1 WO2020200110 A1 WO 2020200110A1 CN 2020081743 W CN2020081743 W CN 2020081743W WO 2020200110 A1 WO2020200110 A1 WO 2020200110A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
aluminum
strength
welded
steel
Prior art date
Application number
PCT/CN2020/081743
Other languages
English (en)
French (fr)
Inventor
潘华
刘成杰
雷鸣
吴岳
孙中渠
蒋浩民
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US17/598,007 priority Critical patent/US20220168845A1/en
Priority to EP20785301.1A priority patent/EP3815837A4/en
Priority to KR1020217025700A priority patent/KR20210145725A/ko
Priority to JP2021551592A priority patent/JP7343603B2/ja
Publication of WO2020200110A1 publication Critical patent/WO2020200110A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/211Bonding by welding with interposition of special material to facilitate connection of the parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • B23K9/232Arc welding or cutting taking account of the properties of the materials to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Definitions

  • the invention relates to the manufacture of welded parts, in particular to a steel poorly welded part with aluminum or aluminum alloy coating and a manufacturing method thereof.
  • Common laser tailor-welded hot stamping products mainly include: A pillar, B pillar, middle channel and other safety structural parts. These hot stamping products have high strength, complex shape, good formability, high dimensional accuracy, small springback, strong difference, Features such as poor thickness. Among them, poor-strength B-pillar tailor-welded parts are a development trend of automotive materials.
  • the commonly used combination is tailor-welded by steel plates with a tensile strength of 1300MPa to 1700MPa after hot stamping and steel plates with a tensile strength of 400MPa to 700MPa after hot stamping.
  • the surface of the hot stamping steel has uncoated bare plates and coated steel plates.
  • the coated hot stamped steel plates have good corrosion resistance and high temperature oxidation resistance relative to the bare plates, and can save shot blasting or hot stamping after hot stamping Pickling treatment is getting more and more attention.
  • the most commonly used hot forming steels are aluminum or aluminum alloy coating hot stamping steel, but when this material is welded, the coating is melted into the molten pool by the welding heat, and forms brittle and hard intermetallic compounds (Fe 3 Al, Fe 2 Al 5. FeAl 3 ). During post-weld heat treatment, these intermetallic compounds will further grow, resulting in a significant decrease in the strength and ductility of the welded joint, which cannot meet the requirements of the car factory.
  • Cisoka patent CN101426612A discloses a method for manufacturing welding blanks containing only intermetallic compounds as pre-coatings using aluminum-silicon coated steel plates as raw materials. Specifically, it is to remove the aluminum alloy layer in the coating to prevent excessive aluminum from melting into the molten pool; to retain the intermetallic compound layer in the coating. Then the welding blank is welded and hot stamped. Although this patent has removed the alloy layer in the plating layer, it retains the intermetallic compound layer (the remaining thickness is 3 to 10 ⁇ m), and the plating elements will still be introduced into the weld. Improper control can easily reduce the performance of the weld. In addition, keep this A few micrometers of coating is difficult to implement stably, which increases production risks.
  • the purpose of the present invention is to provide a steel poorly welded component with aluminum or aluminum alloy coating and a manufacturing method thereof, which solves the problem of welding seams due to coating elements entering the weld when high-strength steel plates + low-strength steel plates are welded.
  • the tensile strength is less than the strength of the base material of low-strength steel, and the problem of weld fracture when parts are loaded.
  • the welded parts obtained by adopting the invention have a weld tensile strength greater than the tensile strength of the low-strength steel base material, and the elongation rate is greater than 4%, thereby meeting the application requirements of the different-strength tailor-welded parts in the field of automobile hot stamping.
  • a method for manufacturing a steel differentially welded component with aluminum or aluminum alloy coating which includes the following steps:
  • Two steel plates to be welded take a straight steel plate, the steel plate to be welded includes a substrate and at least one plating layer on the surface thereof, the plating layer includes an intermetallic compound alloy layer in contact with the substrate and a metal alloy layer thereon;
  • the coating of the welded area of the welded steel plate is not removed or thinned;
  • the two steel plates to be welded are high-strength steel plates and low-strength steel plates respectively, and the tensile strength of the high-strength steel plate after hot stamping is 1300MPa ⁇ 1700MPa;
  • the tensile strength of low-strength steel plate after hot stamping is 400MPa ⁇ 700MPa;
  • Laser wire filler welding or gas shielded welding is used to weld the two steel plates to be welded into one body; among them,
  • the laser wire filler welding process adopts a laser spot diameter of 1.2mm ⁇ 2.0mm, preferably 1.4mm ⁇ 2.0mm, a defocusing distance of -3 ⁇ 0mm, preferably -3mm ⁇ -1mm, a laser power control range of 4kW ⁇ 6kW, and welding speed control At 40mm/s ⁇ 120mm/s, preferably 60mm/s ⁇ 120mm/s; welding wire diameter is 0.8mm ⁇ 1.4mm, preferably 0.8mm ⁇ 1.2mm, wire feeding speed is 50mm/s ⁇ 100mm/s; using 99.99% High-purity argon gas is used as the shielding gas, and the flow rate is 10-25L/min.
  • the gas pipe and the welding direction are at 60-120 degrees to uniformly and stably deliver the shielding gas to the welding area.
  • the composition weight percentage of the matrix of the high-strength steel sheet is: C: 0.08-0.8%, Si: 0.05-1.0%, Mn: 0.1-5%, P ⁇ 0.3%, S ⁇ 0.1%, Al ⁇ 0.3 %, preferably 0.01 ⁇ 0.2%, more preferably 0.04 ⁇ 0.12%, Ti ⁇ 0.5%, preferably 0.01 ⁇ 0.4%, B: 0.0005 ⁇ 0.1%, Cr: 0.01 ⁇ 3%, the rest is Fe and unavoidable impurities;
  • the component weight percentage of the matrix of the low-strength steel sheet is: C: 0.03 to 0.1%, preferably 0.05 to 0.1%, Si: 0 to 0.3%, preferably 0.01 to 0.3%, more preferably 0.05 to 0.2%, Mn: 0.5-2.0%, preferably 0.5-1.5%, P ⁇ 0.1%, S ⁇ 0.05%, Al ⁇ 0.1%, preferably 0.02-0.08%, Cr: 0-0.1%, preferably 0.01-0.1%, more preferably 0.02 -0.1%, Ti: 0-0.05%, preferably 0.001-0.045%, the rest is Fe and unavoidable impurities.
  • the composition weight percentage of the matrix of the low-strength steel sheet is: C: 0.06 to 0.1%, Si: 0.06 to 0.2%, Mn: 0.5 to 1.5%, P ⁇ 0.1%, preferably P ⁇ 0.03%, S ⁇ 0.05%, preferably S ⁇ 0.005%, Al: 0.02-0.08%, Cr: 0.02-0.1%, Ti: 0.002-0.045%, the rest is Fe and unavoidable impurities.
  • the weight percentage of the matrix composition of the high-strength steel sheet is: C: 0.1-0.6%, Si: 0.07-0.7%, Mn: 0.3-4%, P ⁇ 0.2%, S ⁇ 0.08%, Al ⁇ 0.2% , Preferably 0.04-0.1%, Ti ⁇ 0.4%, preferably 0.01-0.3%, B: 0.0005-0.08%, Cr: 0.01-2%, preferably 0.1-1.0%, and the rest is Fe and unavoidable impurities.
  • the weight percentage of the matrix composition of the high-strength steel plate is: C: 0.15-0.5%, Si: 0.1-0.5%, Mn: 0.5-3%, P ⁇ 0.1%, S ⁇ 0.05%, Al ⁇ 0.1% , Preferably 0.04 to 0.09%, Ti ⁇ 0.2%, preferably 0.02 to 0.2%, B: 0.0005 to 0.08%, Cr: 0.01 to 1%, the rest is Fe and unavoidable impurities. More preferably, B: 0.003-0.08%, Cr: 0.1-0.8%.
  • the substrate thickness of the high-strength steel plate and the low-strength steel plate is 0.5 mm to 3 mm.
  • the coating layer is pure aluminum or aluminum alloy, wherein the composition weight ratio of the aluminum alloy is: Si: 5-11%, Fe: 0-4%, and the balance is Al.
  • welding wire with the following composition weight percentages is used: C 0.1 ⁇ 0.25%, Si 0.2 ⁇ 0.4%, Mn 1.2 ⁇ 2%, P ⁇ 0.03%, S ⁇ 0.006%, Al ⁇ 0.06%, Ti 0.02 ⁇ 0.08%, Cr 0.05 ⁇ 0.2%, the balance is Fe and unavoidable impurities; the diameter of welding wire is 0.8 ⁇ 1.4mm. Preferably, 0.03 ⁇ Al ⁇ 0.06%.
  • welding wire with the following composition weight percentages is used: C 0.1 ⁇ 0.15%, Si 0.2 ⁇ 0.4%, Mn 1.5 ⁇ 2%, P ⁇ 0.03%, S ⁇ 0.006%, Al ⁇ 0.06%, Ti 0.02 ⁇ 0.08%, Cr 0.05 ⁇ 0.2%, the balance is Fe and unavoidable impurities; the diameter of welding wire is 0.8 ⁇ 1.4mm. Preferably, 0.03 ⁇ Al ⁇ 0.04%.
  • the method further includes a hot stamping step after welding.
  • the hot stamping step includes: after welding, the blank is heat-treated at 900-960°C, preferably 930-950°C for 1 to 6 minutes, preferably 2 to 4 minutes, and then cooled, preferably water cooling for 5-20 seconds .
  • the gas shielded welding is MIG welding.
  • the welding current of MIG welding is 80-130A
  • the welding voltage is 17-25V
  • the welding speed is 300-800mm/min
  • the diameter of the welding wire is 0.8-1.4mm
  • the shielding gas is 60-90% argon+ 10-40% carbon dioxide gas
  • the flow rate is 10-25L/min
  • the air supply direction is at an angle of 60 degrees to 120 degrees with the welding direction.
  • the steel poor-strength welded component with aluminum or aluminum alloy coating of the present invention is formed by butt welding of high-strength steel plate and low-strength steel plate, and the high-strength steel plate has a tensile strength of 1300 MPa to 1700 MPa after hot stamping;
  • the tensile strength of the low-strength steel plate after hot stamping is 400MPa ⁇ 700MPa;
  • the high-strength steel plate and the low-strength steel plate include a substrate and at least one pure aluminum or aluminum alloy coating on the surface; the coating includes an intermetallic compound alloy layer in contact with the substrate and a metal alloy layer thereon.
  • the composition weight percentage of the matrix of the high-strength steel sheet is: C: 0.08-0.8%, Si: 0.05-1.0%, Mn: 0.1-5%, P ⁇ 0.3%, S ⁇ 0.1%, Al ⁇ 0.3 %, Ti ⁇ 0.5%, B: 0.0005 ⁇ 0.1%, Cr: 0.01 ⁇ 3%, the rest is Fe and unavoidable impurities;
  • the component weight percentage of the matrix of the low-strength steel sheet is: C: 0.03 to 0.1%, preferably 0.05 to 0.1%, Si: 0 to 0.3%, preferably 0.01 to 0.3%, more preferably 0.05 to 0.2%, Mn: 0.5-2.0%, preferably 0.5-1.5%, P ⁇ 0.1%, S ⁇ 0.05%, Al ⁇ 0.1%, preferably 0.02-0.08%, Cr: 0-0.1%, preferably 0.01-0.1%, more preferably 0.02 -0.1%, Ti: 0-0.05%, preferably 0.001-0.045%, the rest is Fe and unavoidable impurities.
  • the weight percentage of the matrix composition of the high-strength steel sheet is: C: 0.1-0.6%, Si: 0.07-0.7%, Mn: 0.3-4%, P ⁇ 0.2%, S ⁇ 0.08%, Al ⁇ 0.2% , Ti ⁇ 0.4%, B: 0.0005 ⁇ 0.08%, Cr: 0.01 ⁇ 2%, the rest is Fe and unavoidable impurities.
  • the weight percentage of the matrix composition of the high-strength steel plate is: C: 0.15-0.5%, Si: 0.1-0.5%, Mn: 0.5-3%, P ⁇ 0.1%, S ⁇ 0.05%, Al ⁇ 0.1% , Ti ⁇ 0.2%, B: 0.0005 ⁇ 0.08%, Cr: 0.01 ⁇ 1%, the rest is Fe and unavoidable impurities. More preferably, B: 0.003 to 0.08%, Cr: 0.1 to 0.8%.
  • the substrate thickness of the high-strength steel plate and the low-strength steel plate is 0.5 mm to 3 mm.
  • the coating layer is pure aluminum or aluminum alloy, wherein the composition weight ratio of the aluminum alloy is: Si: 5-11%, Fe: 0-4%, and the balance is Al.
  • the tensile strength of the weld of the steel poorly welded component is greater than the strength of the low-strength steel base material, the fracture position of the welded joint under tensile load is the low-strength steel base material, and the welded joint elongation is greater than 4%.
  • the steel poorly welded part is an A-pillar, a B-pillar or a middle channel of an automobile.
  • the method for manufacturing a steel poorly welded component with aluminum or aluminum alloy coating according to the present invention includes the following steps:
  • the welding blank adopts the above-mentioned cold-rolled plate or steel plate with aluminum or aluminum alloy coating to ensure that the steel plate is flat, clean and free of oil and water stains;
  • the welding method used is laser welding or gas shielded welding
  • the laser spot diameter is 1.2mm ⁇ 2.0mm, preferably 1.4mm ⁇ 2.0mm, the defocus is -3 ⁇ 0mm, preferably -3mm ⁇ -1mm, the laser power control range is 4kW ⁇ 6kW, and the welding speed is controlled at 40mm/s ⁇ 120mm/s, preferably 60mm/s ⁇ 120mm/s; welding wire diameter is 0.8mm ⁇ 1.2mm, wire feeding speed is 50mm/s ⁇ 100mm/s; 99.99% high purity argon is used as shielding gas, flow rate is 10 ⁇ 25L/min, the gas pipe and the welding direction are at 60° ⁇ 120° to uniformly and stably deliver the shielding gas to the welding area; the gas shielded welding is MIG welding, preferably, the welding current of MIG welding is 80-130A, welding voltage 17-25V, welding speed 300-800mm/min, welding wire diameter 0.8 ⁇ 1.4mm, shielding gas 60 ⁇ 90% argon +10 ⁇ 40% carbon dioxide, flow rate is 10 ⁇ 25L /min, the air supply direction is at an angle of 60 degrees to
  • a welding wire used in the method for manufacturing a steel differentially welded component with aluminum or aluminum alloy coating according to the present invention and its composition weight percentage is: C 0.1 to 0.25%, Si 0.2 to 0.4%, Mn 1.2 ⁇ 2%, P ⁇ 0.03%, S ⁇ 0.006%, Al ⁇ 0.06%, Ti 0.02 ⁇ 0.08%, Cr 0.05 ⁇ 0.2%, the balance is Fe and unavoidable impurities; the diameter of welding wire is 0.8 ⁇ 1.4mm.
  • 0.03 ⁇ Al ⁇ 0.06% is 0.03 ⁇ Al ⁇ 0.06%.
  • the component weight percentage of the welding wire is: C 0.1 to 0.15%, Si 0.2 to 0.4%, Mn 1.5 to 2%, P ⁇ 0.03%, S ⁇ 0.006%, Al ⁇ 0.06%, preferably 0.03 ⁇ Al ⁇ 0.04%, Ti 0.02 ⁇ 0.08%, Cr 0.05 ⁇ 0.2%, the balance is Fe and unavoidable impurities; the diameter of the welding wire is 0.8 ⁇ 1.4mm.
  • Silicon is a deoxidizing element in the welding wire. It can prevent iron from combining with oxygen and reduce iron oxide in the molten pool; however, if silicon is used alone to deoxidize, the resulting silicon dioxide has a high melting point (about 1710°C), and the oxide The particles are small and difficult to float out of the molten pool, and it is easy to cause slag inclusion in the weld. Therefore, the weight percentage of silicon in the welding wire is controlled within the range of 0.2-0.4%.
  • Manganese (MnO.SiO 2 ), which has a low melting point (about 1270°C) and low density. It can condense into a large slag in the molten pool, which is good for floating and achieves a good deoxidation effect.
  • manganese also has a desulfurization function, and sulfide combined to produce manganese sulfide, which can reduce the tendency of hot cracks caused by sulfur. Considering all factors, the weight percentage of manganese in the welding wire is controlled between 1.2-2%.
  • Sulfur is easy to form iron sulfide in the molten pool and is distributed in the grain boundary in a network shape, thus significantly reducing the toughness of the weld. Therefore, the sulfur in the welding wire is harmful, and its content must be strictly controlled. Preferably, the S content is controlled to be less than 0.006%.
  • the strengthening effect of phosphorus in steel grades is second only to that of carbon, increasing the strength and hardness of steel.
  • Phosphorus can improve the corrosion resistance of steel, while the plasticity and toughness are significantly reduced, especially at low temperatures.
  • Phosphorus is harmful and its content must be strictly controlled.
  • the content of P is controlled to be less than or equal to 0.03%.
  • Chromium can increase the strength and hardness of steel, while plasticity and toughness are not greatly reduced. Chromium can increase the hardenability of steel and has a secondary hardening effect, which can increase the hardness and wear resistance of carbon steel without making the steel brittle. Chromium can expand the ⁇ phase region to improve the thermal strength of hardenability, reduce the high temperature range of the ⁇ phase region, promote the ⁇ phase transition, and inhibit the precipitation of high temperature ⁇ ferrite. Therefore, the weight percentage of chromium in the welding wire is controlled between 0.05-0.2%.
  • Titanium is also a strong deoxidizing element, and can form titanium nitride with nitrogen, which has a good nitrogen fixation effect and improves the ability of weld metal to resist nitrogen pores.
  • the weld structure can be refined. Therefore, the weight percentage of titanium in the welding wire is controlled between 0.02-0.08%.
  • the welding wire of the present invention containing Mn, Cr, Ti and other elements is delivered to the tailor-welded area to suppress the formation of high-temperature delta ferrite.
  • Manganese and chromium elements can expand the ⁇ phase zone to improve the thermal strength of hardenability, reduce the high temperature range of the ⁇ phase zone, promote the ⁇ phase transition, and inhibit the precipitation of high temperature ⁇ ferrite, thereby ensuring the weld High martensite conversion rate of the structure; titanium refines the weld structure, improves the weld strength after hot stamping, and ensures the mechanical properties of the welded joint.
  • the introduction of the welding wire will slightly increase the carbon equivalent of the welded joint, thereby ensuring the hardenability of the joint; in addition, the filling of the welding wire will further dilute the coating composition in the weld, which is beneficial to prevent the weld from producing iron and aluminum
  • the intermetallic compound and high-temperature ferrite phase ultimately ensure that the joint performance meets the requirements of the automotive industry.
  • the tensile strength of the weld seam of the part after hot forming is greater than the tensile strength of the base material of the low-strength steel, and the fracture position of the welded part occurs in the low-strength steel base material area when the welded part is loaded.
  • the present invention combines a welding wire containing Mn, Cr, Ti and other elements with a high-energy laser welding method, and by optimizing the welding process, the tensile strength of the welded joint of the obtained welded part after hot stamping is greater than that of the low-strength steel base material The strength and elongation are greater than 4%, so as to meet the application requirements of this kind of poorly welded parts in the field of automotive hot stamping.
  • At least one surface of the substrate surface of the steel plate to be welded according to the present invention is provided with a plating layer, which includes an intermetallic compound alloy layer in contact with the substrate and a metal alloy layer on it; in particular, the present invention
  • the process does not remove or thin the coating of the welding area of the parts to be welded.
  • the thickness of the substrate is 0.5mm-3mm, and the gap of 0.2mm-0.5mm is preset at the position to be spliced.
  • the welding equipment is used to weld the plated steel plate with the coating. The effect of the coating on the welding heat It enters the molten pool and is strongly agitated during the welding process to facilitate the homogenization of the composition;
  • the proportion of deposited metal (the weld metal formed after the welding wire is melted) in the weld is changed so that the concentration of aluminum in the weld is less than 10%;
  • the manganese, chromium and other elements in the welding wire increase the stability of austenite and improve the hardenability of the weld, thereby avoiding the formation of iron-aluminum intermetallic compounds and massive ferrite phases in the weld during the hot stamping process, realizing butt welding Control of the structure and size of the seam phase.
  • the steel poorly welded parts of the present invention are heat-treated to obtain a martensite microstructure, but due to the existence of the aluminum-containing coating, the aluminum coating will enter the weld after melting during welding, affecting the phase of the weld.
  • the quality of the welded joint depends on the proportion of the martensite structure in the weld structure and the shape of the ferrite. For this reason, it is necessary to reduce the precipitation of ferrite in the weld structure, especially to avoid massive ferrite Body formation.
  • the present invention suppresses the formation of high temperature ⁇ ferrite by using welding wires containing Mn, Cr, Ti and other elements.
  • Mn and Cr have elements that expand the ⁇ phase region and improve the hardenability and thermal strength, reducing the ⁇ phase
  • the high temperature of the zone exists in the temperature range, which promotes the ⁇ phase transformation, inhibits the precipitation of high temperature ⁇ ferrite, increases the stability of austenite, and improves the hardenability of the weld. Titanium refines the weld structure, improves the weld strength after hot stamping, and ensures the mechanical properties of the welded joint.
  • the present invention eliminates the need to remove or thin the plating layer of the welded parts before welding and/or during the welding process in the prior art, so there is no need to configure a plating pretreatment production line, thereby saving equipment investment.
  • the coating pretreatment method of the present invention can increase the production efficiency by at least 20%.
  • the welding parts are directly welded without removing or thinning the plating layer of the welded parts, which ensures the tensile strength, elongation and corrosion resistance of the welded joint after hot stamping.
  • the tensile strength is greater than the strength of the base material of low-strength steel, the fracture position of the welded joint under tensile load is the base material, and the joint elongation is greater than 4%.
  • Fig. 1 is a tensile curve of a welded joint according to an embodiment of the present invention
  • Figure 3 is a metallographic diagram of a welded joint in Example 1 of the present invention.
  • Figure 4 is a metallographic diagram of a welded joint in Example 2 of the present invention.
  • Fig. 5 is a metallographic diagram of a welded joint in Example 3 of the present invention.
  • Fig. 6 is a hardness distribution diagram of a welded joint in Example 1 of the present invention.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding wire developed by the invention has a laser power of 4.5kW, a spot diameter of 2mm, a defocusing of -2mm, a welding speed of 80mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 70mm/s.
  • the composition of the welding wire is shown in the table 3.
  • the blank is heated at 930 degrees for 4 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4, and the tensile curve of the welded joint is shown in Fig. 1. See Figure 2, the metallographic phase of the joint is shown in Figure 3, and the hardness of the joint is shown in Figure 6.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the prefabricated butt gap before welding is 0.4mm.
  • the welding wire developed by the invention has a laser power of 4.5kW, a spot diameter of 2mm, a defocusing of -3m, a welding speed of 80mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 80mm/s.
  • the composition of the welding wire is shown in the table 3.
  • the blank is heated at 930 degrees for 4 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4; the tensile curve of the welded joint is shown in Figure 1, and the fractured part See Figure 2 and Figure 4 for the metallographic structure of the connector.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the prefabricated butt gap before welding is 0.25mm.
  • the welding wire developed by the invention has a laser power of 4kW, a spot diameter of 2mm, a defocusing distance of -1mm, a welding speed of 60mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 60mm/s.
  • the composition of the welding wire is shown in Table 3. .
  • the blank is heated at 930 degrees for 4 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4; the tensile curve of the welded joint is shown in Figure 1, and the fractured part See Figure 2 and Figure 5 for the metallographic structure of the connector.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding wire developed by the invention has a laser power of 4.5kW, a spot diameter of 2mm, a defocusing of -2mm, a welding speed of 80mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 70mm/s.
  • the composition of the welding wire is shown in the table 3.
  • the blank is heated at 950°C for 3 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding wire developed by the invention has a laser power of 4.5kW, a spot diameter of 1.4mm, a defocusing of -1mm, a welding speed of 75mm/s, a welding wire diameter of 1.0mm, and a wire feeding speed of 100mm/s.
  • the composition of the welding wire is shown in table 3.
  • the blank is then heated at 950°C for 3 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4.
  • the welding wire developed by the invention has a laser power of 5.5kW, a spot diameter of 1.4mm, a defocusing of -2mm, a welding speed of 120mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 70mm/s.
  • the composition of the welding wire is shown in table 3.
  • the blank is heated at 950°C for 3 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding wire developed by the invention has a laser power of 4.5kW, a spot diameter of 2mm, a defocusing of -2mm, a welding speed of 100mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 50mm/s.
  • the composition of the welding wire is shown in the table 3.
  • the blank is heated at 950°C for 3 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding wire developed by the invention has a laser power of 4.5kW, a spot diameter of 2.0mm, a defocusing of -1mm, a welding speed of 80mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 80mm/s.
  • the composition of the welding wire is shown in table 3.
  • the blank was heated at 950°C for 3 minutes, and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding wire developed by the invention has a laser power of 5kW, a spot diameter of 2mm, a defocusing of -1mm, a welding speed of 120mm/s, a welding wire diameter of 1.2mm, and a wire feeding speed of 50mm/s.
  • the composition of the welding wire is shown in Table 3. .
  • the blank is heated at 950°C for 2.5 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding wire developed by the invention has a laser power of 4.5kW, a spot diameter of 1.4mm, a defocus of -1mm, a welding speed of 80mm/s, a welding wire diameter of 1.0mm, and a wire feeding speed of 100mm/s.
  • the composition of the welding wire is shown in table 3.
  • the blank is heated at 950°C for 4 minutes and cooled in a water-passing mold for 10 seconds.
  • the mechanical properties of the welded joint are shown in Table 4.
  • the chemical composition of the plates is shown in Table 1 and Table 2.
  • the steel plate is straight and clean, free of oil and water stains.
  • the edges to be welded of the high-strength and low-strength blanks are prepared by laser cutting; the pre-fabricated butt gap before welding is 0.3mm.
  • the welding current is 120A
  • the welding voltage is 22V
  • the welding speed is 500mm/min
  • the gap between the splicing plates is 0.5mm
  • the diameter of the welding wire is 1.0mm
  • the shielding gas is 80% argon + 20% carbon dioxide.
  • the gas flow rate is 15L/min; the gas supply direction is at a 90 degree angle to the welding direction.
  • Table 1 Composition of high-strength steel plate in weight percentage (wt%)
  • Example C Si Mn P S Al Ti B Cr 1 0.15 0.10 2.90 0.059 0.038 0.09 0.090 0.0031 0.15 2 0.25 0.23 1.19 0.015 0.001 0.04 0.030 0.0040 0.27 3 0.49 0.50 2.51 0.024 0.04 0.08 0.027 0.0052 0.51 4 0.39 0.36 3.00 0.044 0.03 0.07 0.05 0.0062 0.71 5 0.50 0.48 0.50 0.081 0.02 0.05 0.20 0.0071 0.20 6 0.15 0.10 2.90 0.059 0.038 0.09 0.090 0.0031 0.15 7 0.25 0.23 1.19 0.015 0.001 0.04 0.030 0.0040 0.27 8 0.49 0.50 2.51 0.024 0.04 0.08 0.027 0.0052 0.51 9 0.39 0.36 3.00 0.044 0.03 0.07 0.05 0.0062 0.71 10 0.50 0.48 0.50 0.081 0.02 0.05 0.20 0.0071 0.20
  • the nominal width of the sample is 12.5mm, the original gauge length is 50mm, and the tensile strength and elongation are tested;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)
  • Coating With Molten Metal (AREA)

Abstract

一种带铝或者铝合金镀层的钢制差强焊接部件,该钢制差强焊接部件由高强钢板与低强钢板对焊而成,高强钢板和低强钢板包括基体及其表面上至少一个为纯铝或者铝合金镀层;高强钢板基体成分重量百分比为:C 0.08~0.8%,Si 0.05~1.0%,Mn 0.1~5%,P<0.3%,S<0.1%,Al<0.3%,Ti<0.5%,B 0.0005~0.1%,Cr 0.01~3%,其余为Fe及不可避免杂质;低强钢板基体成分重量百分比为:C 0.03~0.1%,Si 0~0.3%,Mn 0.5~2.0%,P<0.1%,S<0.05%,Al<0.1%,Cr 0~0.1%,Ti 0~0.05%,其余为Fe及不可避免杂质。该焊接部件焊缝热冲压后抗拉强度大于低强钢母材抗拉强度,延伸率大于4%,满足焊接部件在汽车热冲压领域的应用要求。还涉及一种带铝或者铝合金镀层的钢制差强焊接部件的制造方法、该方法制备得到的带铝或者铝合金镀层的钢制差强焊接部件及用于该方法的焊丝。

Description

一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法 技术领域
本发明涉及焊接部件制造,具体涉及一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法。
背景技术
在当今社会汽车越来越普及,随保有量不断的攀升,汽车的尾气排放与环境污染的矛盾越来越受到关注。减轻汽车重量可以降低油耗,减少尾气的排放,因此高强减薄成为汽车行业用材的一种发展趋势;其中,热冲压是实现零部件高强化的一种常用方式,它是通过热处理和高温成形相结合的方式来实现产品高强度;激光拼焊板热冲压,可以在减重的同时减少车身零件数量、提高制造精度。
常见的激光拼焊热冲压产品主要有:A柱、B柱、中通道等安全结构件,这些热冲压产品具有强度高、形状复杂、成形性好、尺寸精度高、回弹小、差强、差厚等特点。其中差强B柱拼焊件是汽车用材的一种发展趋势,常用组合由热冲压后其抗拉强度1300MPa~1700MPa的钢板与热冲压后其抗拉强度400MPa~700MPa的钢板拼焊而成。热冲压用钢表面状态有无镀层的裸板和带镀层的钢板,由于带镀层的热冲压钢板相对于裸板耐蚀性及抗高温氧化性好,且可以省掉热冲压后的喷丸或酸洗处理,正越来越受到重视。最常用的热成形钢有铝或者铝合金镀层热冲压钢,但这种材料焊接时镀层受焊接热作用熔化进入熔池,与铁形成脆而硬的金属间化合物(Fe 3Al、Fe 2Al 5、FeAl 3),在焊后热处理时,这些金属间化合物会进一步长大,致使焊接接头的强度、延性大幅下降,达不到车厂的使用要求。
中国专利CN101426612A公开了一种以铝硅镀层钢板为原料制造只含金属间化合物为预涂层的焊接坯件制造方法。具体为去除镀层中的铝合金层,避免过多的铝熔入熔池;保留镀层中的金属间化合物层。然后对所述焊接坯件进行焊接、热冲压。该专利尽管已去除镀层中的合金层,但因保留了金属 间化合物层(保留厚度为3至10μm),仍会向焊缝导入镀层元素,控制不当易降低焊缝性能;别外,保留这几个微米的镀层,稳定实施的难度也非常高,增加了生产风险。
发明内容
本发明的目的在于提供一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法,解决高强钢板+低强钢板焊接时,因镀层元素进入焊缝,致使热冲压后的焊缝抗拉强度小于低强钢的母材强度,部件承载时焊缝断裂的问题。采用本发明获得的焊接部件其焊缝抗拉强度大于低强钢母材抗拉强度,延伸率大于4%,从而满足该种差强拼焊部件在汽车热冲压领域的应用要求。
为达到上述目的,本发明的技术方案是:
一种带铝或者铝合金镀层的钢制差强焊接部件的制造方法,其包括如下步骤:
1)钢板焊前准备
两块待焊接钢板,取平直钢板,所述待焊接钢板包括基体及其表面上至少一个镀层,该镀层包括与基体接触的金属间化合物合金层及其上的金属合金层;对所述待焊接钢板待焊区的镀层不做去除或减薄处理;该两块待焊接钢板分别为高强钢板、低强钢板,所述的高强钢板经热冲压后抗拉强度为1300MPa~1700MPa;所述的低强钢板经热冲压后抗拉强度为400MPa~700MPa;
2)预置对接间隙
将两块待焊接钢板的对接间隙预置为0.2~0.5mm;
3)焊接
采用激光填丝焊或气体保护焊,将两块待焊接钢板焊接为一体;其中,
激光填丝焊工艺采用激光光斑直径为1.2mm~2.0mm、优选1.4mm~2.0mm,离焦量为-3~0mm、优选-3mm~-1mm,激光功率控制范围4kW~6kW,焊接速度控制在40mm/s~120mm/s、优选60mm/s~120mm/s;焊丝直径为0.8mm~1.4mm、优选0.8mm~1.2mm,送丝速度为50mm/s~100mm/s;采用99.99%的高纯氩气作为保护气体,流量为10~25L/min,送气管与焊接方向呈60度~120度将保护 气体均匀稳定的送到焊接区。
优选的,所述的高强钢板的基体的成分重量百分比为:C:0.08~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P<0.3%,S<0.1%,Al<0.3%、优选0.01~0.2%、更优选0.04~0.12%,Ti<0.5%、优选0.01~0.4%,B:0.0005~0.1%,Cr:0.01~3%,其余为Fe及不可避免杂质;
优选的,所述的低强钢板的基体的成分重量百分比为:C:0.03~0.1%、优选0.05~0.1%,Si:0~0.3%、优选0.01~0.3%、更优选0.05~0.2%,Mn:0.5~2.0%、优选0.5~1.5%,P<0.1%,S<0.05%,Al<0.1%、优选0.02~0.08%,Cr:0~0.1%、优选0.01~0.1%、更优选0.02-0.1%,Ti:0~0.05%、优选0.001~0.045%,其余为Fe及不可避免杂质。优选地,所述低强钢板的基体的成分重量百分比为:C:0.06~0.1%,Si:0.06~0.2%,Mn:0.5~1.5%,P<0.1%、优选P<0.03%,S<0.05%、优选S<0.005%,Al:0.02~0.08%,Cr:0.02-0.1%,Ti:0.002~0.045%,其余为Fe及不可避免杂质。
优选的,所述的高强钢板的基体成分重量百分比为:C:0.1~0.6%,Si:0.07~0.7%,Mn:0.3~4%,P<0.2%,S<0.08%,Al<0.2%、优选0.04~0.1%,Ti<0.4%、优选0.01~0.3%,B:0.0005~0.08%,Cr:0.01~2%、优选0.1~1.0%,其余为Fe及不可避免杂质。
优选的,所述的高强钢板的基体成分重量百分比为:C:0.15~0.5%,Si:0.1~0.5%,Mn:0.5~3%,P<0.1%,S<0.05%,Al<0.1%、优选0.04~0.09%,Ti≤0.2%、优选0.02~0.2%,B:0.0005~0.08%,Cr:0.01~1%,其余为Fe及不可避免杂质。进一步优选地,B:0.003~0.08%,Cr:0.1-0.8%。
优选的,所述的高强钢板和低强钢板的基体厚度为0.5mm~3mm。
优选的,所述镀层是纯铝或铝合金,其中,铝合金的成分重量比为:Si:5-11%,Fe:0-4%,余量为Al。
优选的,使用成分重量百分比如下所示的焊丝进行焊接:C 0.1~0.25%,Si 0.2~0.4%,Mn 1.2~2%,P≤0.03%,S<0.006%,Al<0.06%,Ti 0.02~0.08%,Cr 0.05~0.2%,余量为Fe和不可避免杂质;焊丝直径为0.8~1.4mm。优选地,0.03≤Al<0.06%。
优选的,使用成分重量百分比如下所示的焊丝进行焊接:C 0.1~0.15%,Si 0.2~0.4%,Mn 1.5~2%,P≤0.03%,S<0.006%,Al<0.06%,Ti 0.02~0.08%, Cr 0.05~0.2%,余量为Fe和不可避免杂质;焊丝直径为0.8~1.4mm。优选地,0.03≤Al<0.04%。
优选的,所述方法还包括焊接后的热冲压步骤。优选地,所述热冲压步骤包括:焊接后,坯件于900~960℃、优选930~950℃保温1~6分钟、优选2~4分钟的加热处理,然后冷却,优选水冷5~20秒。
优选的,所述气体保护焊为熔化极气体保护焊。优选的,熔化极气体保护焊的焊接电流为80-130A,焊接电压为17-25V,焊接速度为300-800mm/min,焊丝直径为0.8~1.4mm,保护气体为60~90%氩气+10~40%二氧化碳气体,流量为10~25L/min,送气方向与焊接方向呈60度~120度角。
本发明所述的带铝或者铝合金镀层的钢制差强焊接部件,其由高强钢板与低强钢板对焊而成,所述的高强钢板经热冲压后抗拉强度1300MPa~1700MPa;所述的低强钢板经热冲压后抗拉强度400MPa~700MPa;其中,
所述高强钢板和低强钢板包括基体及其表面上至少一个纯铝或者铝合金镀层;所述镀层包括与所述基体接触的金属间化合物合金层及其上的金属合金层。
优选的,所述的高强钢板的基体的成分重量百分比为:C:0.08~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P<0.3%,S<0.1%,Al<0.3%,Ti<0.5%,B:0.0005~0.1%,Cr:0.01~3%,其余为Fe及不可避免杂质;
优选的,所述的低强钢板的基体的成分重量百分比为:C:0.03~0.1%、优选0.05~0.1%,Si:0~0.3%、优选0.01~0.3%、更优选0.05~0.2%,Mn:0.5~2.0%、优选0.5~1.5%,P<0.1%,S<0.05%,Al<0.1%、优选0.02~0.08%,Cr:0~0.1%、优选0.01~0.1%、更优选0.02-0.1%,Ti:0~0.05%、优选0.001~0.045%,其余为Fe及不可避免杂质。
优选的,所述的高强钢板的基体成分重量百分比为:C:0.1~0.6%,Si:0.07~0.7%,Mn:0.3~4%,P<0.2%,S<0.08%,Al<0.2%,Ti<0.4%,B:0.0005~0.08%,Cr:0.01~2%,其余为Fe及不可避免杂质。
优选的,所述的高强钢板的基体成分重量百分比为:C:0.15~0.5%,Si:0.1~0.5%,Mn:0.5~3%,P<0.1%,S<0.05%,Al<0.1%,Ti≤0.2%,B:0.0005~0.08%,Cr:0.01~1%,其余为Fe及不可避免杂质。进一步优选地,B:0.003~ 0.08%,Cr:0.1-0.8%。
优选的,所述的高强钢板和低强钢板的基体厚度为0.5mm~3mm。
优选的,所述镀层是纯铝或铝合金,其中,铝合金的成分重量比为:Si:5-11%,Fe:0-4%,余量为Al。
优选的,所述钢制差强焊接部件的焊缝抗拉强度大于低强钢母材强度,焊接接头受拉伸载荷的断裂位置为低强钢母材,焊接接头延伸率大于4%。
优选的,所述钢制差强焊接部是汽车的A柱、B柱或中通道。
在一些实施方案中,本发明所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法包括如下步骤:
1)钢板焊前准备
焊接坯料采用上述成分的冷轧板或带铝或者铝合金镀层的钢板,保证钢板平直、表面清洁,无油污、水渍;
2)焊接预制对接间隙
将两块待焊边的焊接钢板焊缝对接间隙保持0.2~0.5mm;
3)激光焊工艺
采用的焊接方法为激光焊填丝焊或气体保护焊;
采用激光光斑直径为1.2mm~2.0mm、优选1.4mm~2.0mm,离焦量为-3~0mm、优选-3mm~-1mm,激光功率控制范围4kW~6kW,焊接速度控制在40mm/s~120mm/s、优选60mm/s~120mm/s;焊丝直径为0.8mm~1.2mm,送丝速度为50mm/s~100mm/s;采用99.99%的高纯氩气作为保护气体,流量为10~25L/min,送气管与焊接方向呈60度~120度将保护气体均匀稳定的送到焊接区;所述气体保护焊为熔化极气体保护焊,优选的,熔化极气体保护焊的焊接电流为80-130A,焊接电压为17-25V,焊接速度为300-800mm/min,焊丝直径为0.8~1.4mm,保护气体为60~90%氩气+10~40%二氧化碳气体,流量为10~25L/min,送气方向与焊接方向呈60度~120度角。
又,一种用于本发明所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法的焊丝,其成分重量百分比为:C 0.1~0.25%,Si 0.2~0.4%,Mn 1.2~2%,P≤0.03%,S<0.006%,Al<0.06%,Ti 0.02~0.08%,Cr 0.05~0.2%,余量为Fe和不可避免杂质;焊丝直径为0.8~1.4mm。优选地,0.03≤Al< 0.06%。优选的,所述焊丝的成分重量百分比为:C 0.1~0.15%,Si 0.2~0.4%,Mn 1.5~2%,P≤0.03%,S<0.006%,Al<0.06%、优选地0.03≤Al<0.04%,Ti 0.02~0.08%,Cr 0.05~0.2%,余量为Fe和不可避免杂质;焊丝直径为0.8~1.4mm。
在本发明所述焊接用的焊丝的成分设计中:
硅是焊丝中的脱氧元素,它可以防止铁与氧结合,并可在熔池中还原氧化铁;然而如果单独使用硅脱氧,生成的二氧化硅熔点高(约1710℃),且该氧化物颗粒细小,难从熔池中浮出,易造成焊缝夹渣,因此本焊丝中硅的重量百分比控制在0.2-0.4%范围内。
锰是重要的淬透性元素,对焊缝的韧性有很大影响,它也是脱氧元素,但脱氧能力比硅略差,单独用锰脱氧,生成的氧化锰密度较大,不易从熔池中浮出;因此本焊丝采用硅锰联合脱氧,使脱氧产物为复合硅酸盐。
(MnO.SiO 2),其熔点低(约为1270℃)且密度小,在熔池中能凝聚成大块熔渣,有利于上浮,达到良好的脱氧效果。另外,锰还具有脱硫功能,与硫化合生成硫化锰,可降低硫引起的热裂纹倾向。综合各方面的因素,锰在本焊丝中的重量百分比控制在1.2-2%之间。
硫在熔池中易形成硫化铁,并呈网状分布在晶粒边界,因而显著地降低焊缝韧性,因此焊丝中的硫是有害的,要严格控制其含量。优选地,控制S含量小于0.006%。
磷在钢种的强化作用仅次于碳,使钢的强度和硬度增加,磷能提高钢的抗腐蚀性能,而塑性和韧性显著降低,特别是在低温时影响更为严重,因此焊丝中的磷是有害的,要严格控制其含量。优选地,控制P含量小于等于0.03%。
铬能提高钢的强度和硬度而塑性和韧性降低不大。铬能增加钢的淬透性并有二次硬化作用,可提高碳钢的硬度和耐磨性而不使钢变脆。铬元素能扩大γ相区提高淬透性各热强性,减小δ相区高温存在温度区间,促进δ→γ相变的进行,抑制高温δ铁素体的析出。因此,在本焊丝中的铬的重量百分比控制在0.05-0.2%之间。
钛也是一种强烈的脱氧元素,且能与氮生成氮化钛,具有良好的固氮作用,提高焊缝金属抗氮气孔的能力。钛在焊缝组织中含量适当时,可使焊缝 组织得到细化。因此,在本焊丝中钛的重量百分比分别控制在0.02-0.08%之间。
在焊接带预置焊接间隙的镀层板时,向拼焊区输送本发明含Mn、Cr、Ti等元素的焊丝,来抑制高温δ铁素体的形成。锰、铬元素能扩大γ相区提高淬透性各热强性,减小δ相区高温存在温度区间,促进δ→γ相变的进行,抑制高温δ铁素体的析出,从而保证焊缝组织的高马氏体转化率;钛使焊缝组织得到细化,热冲压后提高了焊缝强度,确保了焊接接头的力学性能。
根据国际焊接学会推荐的碳当量公式:
CE=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15(%)
焊丝的引入会使焊接接头的碳当量略有升高,从而保证了接头的淬透性;另外,焊丝的填入使焊缝中的镀层成分进一步被稀释,从而有利于预防焊缝生产铁铝金属间化合物及高温铁素体相,最终保证了接头性能符合汽车行业的要求。
采用本发明方法焊接,热成形后部件焊缝的抗拉强度大于低强钢的母材抗拉强度,焊接部件承载时断裂部位发生在低强钢母材区。
本发明通过一种含Mn、Cr、Ti等元素的焊丝和高能激光焊方法相结合,通过优化焊接工艺,获得的焊接部件热冲压后其焊缝的抗拉强度大于低强钢母材抗拉强度,延伸率大于4%,从而满足该种差强焊接部件在汽车热冲压领域的应用要求。
在本发明所述带铝或铝合金镀层的钢制差强焊接部件的制造方法中:
1、本发明所述待焊接钢板的基体表面至少一个面上设有镀层,该镀层包括与基体接触的金属间化合物合金层及其上的金属合金层;特别是,本发明在焊前、焊接过程对待焊接部件待焊区的镀层不做去除或减薄处理。
2、焊接前确保待焊接钢板表面清洁,基板厚度为0.5mm-3mm,待拼接部位预置0.2mm-0.5mm的间隙,利用焊接设备对带镀层的钢板进行拼焊,镀层在焊接热的作用下进入熔池并在焊接的过程中被强烈的搅动,便于成分均匀化;
另外,通过控制送丝速度40mm/s~120mm/s,改变焊缝中熔敷金属(焊丝熔化后形成的焊缝金属)的比例,使焊缝中熔入的铝元素浓度小于10%;同时,焊丝中的锰、铬等元素增加奥氏体的稳定性,提高焊缝的淬透性,从 而规避热冲压过程中焊缝生成铁铝金属间化合物及块状铁素体相,实现对焊缝相结构及尺寸的调控。
3、本发明所述钢制差强焊接部件经过热处理得到微观组织为马氏体的组织结构,但由于含铝镀层的存在,在焊接时铝镀层熔化后会进入焊缝,影响焊缝的相变及组织构成;焊接接头的质量优劣取决于焊缝组织中马氏体组织所占比例及铁素体的形态,为此需要减少焊缝组织中铁素体的析出,尤其避免块状铁素体的形成。
本发明通过采用含Mn、Cr、Ti等元素的焊丝,来抑制高温δ铁素体的形成,Mn、Cr元素具有扩大γ相区提高淬透性和热强性的元素,减小了δ相区高温存在温度区间,促进δ→γ相变的进行,抑制了高温δ铁素体的析出,增加奥氏体的稳定性,提高焊缝的淬透性。钛使焊缝组织得到细化,热冲压后提高了焊缝强度,确保了焊接接头的力学性能。
4、本发明摒弃了现有技术在焊前和/或焊接过程中需要对焊接部件的镀层做去除或减薄处理,因而不需要配置镀层预处理产线,从而节省设备投资。
另外,现有技术不论采用哪种方式来去除或减薄镀层,生产速度都会降低,本发明镀层预处理方法,生产效率至少可以提升20%以上。
通过本发明的填丝焊方法,在不对焊接部件的镀层进行去除或减薄的情况下直接焊接,保证了热冲压后焊接接头的抗拉强度、延伸率及耐蚀性,焊缝热冲压后抗拉强度大于低强钢母材强度,焊接接头受拉伸载荷的断裂位置为母材,接头延伸率大于4%。
附图说明
图1为本发明实施例焊接接头拉伸曲线;
图2为本发明实施例焊接接头拉伸断裂后的试样;
图3为本发明实施例1焊接接头金相图;
图4为本发明实施例2焊接接头金相图;
图5为本发明实施例3焊接接头金相图;
图6为本发明实施例1焊接接头硬度分布图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
实施例1
采用高强铝硅镀热成型钢(t=1.75mm)与低强铝硅镀层热成型钢(t=1.8mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为4.5kW,光斑直径为2mm,离焦量为-2mm,焊接速度为80mm/s,焊丝直径为1.2mm,送丝速度为70mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈120度角。采用上述焊接工艺拼焊后,坯件再经过930度保温4分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4,焊接接头拉伸曲线见图1,断裂部位见图2,接头金相见图3,接头硬度见图6。
实施例2
焊接采用高强铝硅镀热成型钢(t=1.8mm)与低强铝硅镀层热成型钢(t=1.8mm)拼接,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.4mm。采用本发明开发的焊丝,激光功率为4.5kW,光斑直径为2mm,离焦量为-3m,焊接速度为80mm/s,焊丝直径为1.2mm,送丝速度为80mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈60度角。采用上述焊接工艺拼焊后,坯件再经过930度保温4分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4;焊接接头拉伸曲线见图1,断裂部位见图2,接头金相见图4。
实施例3
焊接采用高强铝硅镀热成型钢(t=1.5mm)与低强铝硅镀层热成型钢(t=1.5mm)拼接,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式 进行边部准备;焊前预制对接间隙为0.25mm。采用本发明开发的焊丝,激光功率为4kW,光斑直径为2mm,离焦量为-1mm,焊接速度为60mm/s,焊丝直径为1.2mm,送丝速度为60mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈120度角。采用上述焊接工艺拼焊后,坯件再经过930度保温4分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4;焊接接头拉伸曲线见图1,断裂部位见图2,接头金相见图5。
实施例4
采用高强无镀层热成型钢(t=1.4mm)与低强铝硅镀层热成型钢(t=1.8mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为4.5kW,光斑直径为2mm,离焦量为-2mm,焊接速度为80mm/s,焊丝直径为1.2mm,送丝速度为70mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈90度角。采用上述焊接工艺拼焊后,坯件再经过950度保温3分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
实施例5
采用高强铝硅镀层热成型钢(t=1.2mm)与低强无镀层热成型钢(t=1.4mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为4.5kW,光斑直径为1.4mm,离焦量为-1mm,焊接速度为75mm/s,焊丝直径为1.0mm,送丝速度为100mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈90度角。采用上述焊接工艺拼焊后,坯件再经过950度保温3分钟的加热处处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
实施例6
采用高强铝硅镀层热成型钢(t=1.75mm)与低强铝硅镀层热成型钢(t=1.4mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为5.5kW,光斑直径为1.4mm,离焦量为-2mm,焊接速度为120mm/s,焊丝直径为1.2mm,送丝速度为70mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈90度角。采用上述焊接工艺拼焊后,坯件再经过950度保温3分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
实施例7
采用高强无镀层热成型钢(t=1.8mm)与低强铝硅镀层热成型钢(t=1.4mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为4.5kW,光斑直径为2mm,离焦量为-2mm,焊接速度为100mm/s,焊丝直径为1.2mm,送丝速度为50mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈90度角。采用上述焊接工艺拼焊后,坯件再经过950度保温3分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
实施例8
采用高强铝硅镀层热成型钢(t=1.5mm)与低强铝硅镀层热成型钢(t=1.4mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为4.5kW,光斑直径为2.0mm,离焦量为-1mm,焊接速度为80mm/s,焊丝直径为1.2mm,送丝速度为80mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈90度角。采用上述 焊接工艺拼焊后,坯件再经过950度保温3分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
实施例9
采用高强无镀层热成型钢(t=1.4mm)与低强铝硅镀层热成型钢(t=1.2mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为5kW,光斑直径为2mm,离焦量为-1mm,焊接速度为120mm/s,焊丝直径为1.2mm,送丝速度为50mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈90度角。采用上述焊接工艺拼焊后,坯件再经过950度保温2.5分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
实施例10
采用高强铝硅镀层热成型钢(t=1.2mm)与低强铝硅镀层热成型钢(t=1.8mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用本发明开发的焊丝,激光功率为4.5kW,光斑直径为1.4mm,离焦量为-1mm,焊接速度为80mm/s,焊丝直径为1.0mm,送丝速度为100mm/s,焊丝成分见表3。用高纯氩气作为保护气体,气体流量为15L/min,送气方向与焊接方向呈90度角。采用上述焊接工艺拼焊后,坯件再经过950度保温4分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
实施例11
采用与实施例10相同的高强铝硅镀层热成型钢(t=1.2mm)与低强铝硅镀层热成型钢(t=1.8mm)拼焊,板材的化学成分见表1与表2。钢板平直,表面清洁,无油污、水渍等污染物。将高强、低强两块坯料的待焊边采用激光切割的方式进行边部准备;焊前预制对接间隙为0.3mm。采用实施例10使 用的焊丝,焊接电流为120A,焊接电压为22V,焊接速度500mm/min,拼接板间隙预留0.5mm,焊丝直径1.0mm,保护气体为80%氩气+20%二氧化碳气体,气体流量为15L/min;送气方向与焊接方向呈90度角。采用上述焊接工艺拼焊后,坯件再经过950度保温4分钟的加热处理,在通水模具中冷却10秒中,焊接接头力学性能见表4。
表1:高强钢板成分         重量百分比(wt%)
实施例 C Si Mn P S Al Ti B Cr
1 0.15 0.10 2.90 0.059 0.038 0.09 0.090 0.0031 0.15
2 0.25 0.23 1.19 0.015 0.001 0.04 0.030 0.0040 0.27
3 0.49 0.50 2.51 0.024 0.04 0.08 0.027 0.0052 0.51
4 0.39 0.36 3.00 0.044 0.03 0.07 0.05 0.0062 0.71
5 0.50 0.48 0.50 0.081 0.02 0.05 0.20 0.0071 0.20
6 0.15 0.10 2.90 0.059 0.038 0.09 0.090 0.0031 0.15
7 0.25 0.23 1.19 0.015 0.001 0.04 0.030 0.0040 0.27
8 0.49 0.50 2.51 0.024 0.04 0.08 0.027 0.0052 0.51
9 0.39 0.36 3.00 0.044 0.03 0.07 0.05 0.0062 0.71
10 0.50 0.48 0.50 0.081 0.02 0.05 0.20 0.0071 0.20
表2:低强钢板成分        重量百分比(wt%)
实施例 C Si Mn P S Al Cr Ti
1 0.073 0.079 1.42 0.011 0.0018 0.031 0.076 0.002
2 0.06 0.199 0.76 0.015 0.004 0.046 0.028 0.004
3 0.065 0.185 0.81 0.024 0.005 0.071 0.051 0.007
4 0.095 0.065 0.5 0.01 0.001 0.053 0.095 0.045
5 0.073 0.079 1.42 0.011 0.0018 0.031 0.076 0.002
6 0.06 0.199 0.76 0.015 0.004 0.046 0.028 0.004
7 0.065 0.185 0.81 0.024 0.005 0.071 0.051 0.007
8 0.095 0.065 0.5 0.01 0.001 0.053 0.095 0.045
9 0.06 0.199 0.76 0.015 0.004 0.046 0.028 0.004
10 0.065 0.185 0.81 0.024 0.005 0.071 0.051 0.007
表3:焊丝成分         重量百分比(wt%)
实施例 C Si Mn P S Al Cr Ti
1 0.22 0.25 1.24 0.0087 0.002 0.0454 0.169 0.028
2 0.15 0.35 1.87 0.008 0.0018 0.0367 0.105 0.075
3 0.18 0.39 1.53 0.024 0.0010 0.057 0.082 0.051
4 0.12 0.29 1.67 0.03 0.0012 0.045 0.189 0.067
5 0.19 0.21 1.78 0.0062 0.005 0.030 0.052 0.058
6 0.22 0.25 1.24 0.0087 0.002 0.0454 0.169 0.028
7 0.15 0.35 1.87 0.008 0.0018 0.0367 0.105 0.075
8 0.18 0.39 1.53 0.024 0.0010 0.057 0.082 0.051
9 0.12 0.29 1.67 0.03 0.0012 0.045 0.189 0.067
10 0.19 0.21 1.78 0.0062 0.005 0.030 0.052 0.058
表4:拼焊板热冲压后的力学性能
Figure PCTCN2020081743-appb-000001
Figure PCTCN2020081743-appb-000002
*采用标准拉伸试样,试样标称宽度为12.5mm,原始标距为50mm,测试抗拉强度及延伸率;
**耐蚀性试验按DIN50021、DIN50017、DIN50014标准执行。

Claims (15)

  1. 一种带铝或者铝合金镀层的钢制差强焊接部件的制造方法,其特征是:包括如下步骤:
    1)钢板焊前准备
    两块待焊接钢板,取平直钢板,所述待焊接钢板包括基体及其表面上至少一个镀层,该镀层包括与基体接触的金属间化合物合金层及其上的金属合金层;对所述待焊接钢板待焊区的镀层不做去除或减薄处理;该两块待焊接钢板分别为高强钢板、低强钢板,所述的高强钢板经热冲压后抗拉强度为1300MPa~1700MPa;所述的低强钢板经热冲压后抗拉强度为400MPa~700MPa;
    2)预置对接间隙
    将两块待焊接钢板的对接间隙预置为0.2~0.5mm;
    3)焊接
    采用激光填丝焊或气体保护焊,将两块待焊接钢板焊接为一体;其中,激光填丝焊采用激光光斑直径为1.2mm~2.0mm,离焦量为-3~0mm,激光功率控制范围4kW~6kW,焊接速度控制在40mm/s~120mm/s;焊丝直径为0.8mm~1.4mm,送丝速度为50mm/s~100mm/s;采用99.99%的高纯氩气作为保护气体,流量为10~25L/min,送气管与焊接方向呈60度~120度将保护气体均匀稳定的送到焊接区;
    所述气体保护焊优选为熔化极气体保护焊;优选的,熔化极气体保护焊的焊接电流为110-130A,焊接电压为18-25V,焊接速度为300-800mm/min,焊丝直径为0.8~1.4mm,保护气体为60~80%氩气+20~40%二氧化碳气体,流量为10~25L/min,送气方向与焊接方向呈60度~120度角。
  2. 如权利要求1所述的带铝或铝合金镀层的钢制差强焊接部件的制造方法,其特征在于,所述的高强钢板的基体的成分重量百分比为:C:0.08~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P<0.3%,S<0.1%,Al<0.3%,Ti<0.5%,B:0.0005~0.1%,Cr:0.01~3%,其余为Fe及不可避免杂质。
  3. 如权利要求1所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法,其特征在于,所述高强钢板的基体成分重量百分比为:C:0.1~0.6%, Si:0.07~0.7%,Mn:0.3~4%,P<0.2%,S<0.08%,Al<0.2%,Ti<0.4%,B:0.0005~0.08%,Cr:0.01~2%,其余为Fe及不可避免杂质。
  4. 如权利要求1所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法,其特征在于,所述高强钢板的基体成分重量百分比为:C:0.15~0.5%,Si:0.1~0.5%,Mn:0.5~3%,P<0.1%,S<0.05%,Al<0.1%,Ti<0.2%,B:0.0005~0.08%,Cr:0.01~1%,其余为Fe及不可避免杂质。
  5. 如权利要求1所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法,其特征在于,所述低强钢板的基体的成分重量百分比为:C:0.03~0.1%,Si:0~0.3%,Mn:0.5~2.0%,P<0.03%,S<0.01%,Al<0.1%,Cr:0~0.1%,Ti:0~0.05%,其余为Fe及不可避免杂质。
  6. 如权利要求1所述的带铝或铝合金镀层的钢制差强焊接部件的制造方法,其特征在于,所述镀层是纯铝或铝合金,其中,铝合金的成分重量比为:Si:5-11%,Fe:0-4%,余量为Al。
  7. 如权利要求1所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法,其特征在于,所述高强钢板、低强钢板的基体厚度为0.5mm~3mm。
  8. 如权利要求1所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法,其特征在于,所述焊丝的成分重量百分比为:C 0.1~0.25%,Si 0.2~0.4%,Mn 1.2~2%,P<0.03%,S<0.006%,Al<0.06%,Ti 0.02~0.08%,Cr 0.05~0.2%,余量为Fe和不可避免杂质;焊丝直径为0.8-1.4mm。
  9. 采用权利要求1-8中任一项所述的方法制备得到的带铝或者铝合金镀层的钢制差强焊接部件。
  10. 一种带铝或者铝合金镀层的钢制差强焊接部件,其特征在于,其由高强钢板与低强钢板对焊而成,所述的高强钢板经热冲压后抗拉强度为1300MPa~1700MPa;所述的低强钢板经热冲压后抗拉强度为400MPa~700MPa;其中,所述高强钢板和低强钢板包括基体及其表面上至少一个为纯铝或者铝合金镀层;所述镀层包括与所述基体接触的金属间化合物合金层及其上的金属合金层;所述的高强钢板的基体的成分重量百分比为:C:0.08~0.8%,Si:0.05~1.0%,Mn:0.1~5%,P<0.3%,S<0.1%,Al<0.3%,Ti<0.5%,B:0.0005~0.1%,Cr:0.01~3%,其余为Fe及不可避免杂质;所述的低强钢板的基体的成分重量百分比为:C:0.03~0.1%, Si:0~0.3%,Mn:0.5~2.0%,P<0.03%,S<0.01%,Al<0.1%,Cr:0~0.1%,Ti:0~0.05%,其余为Fe及不可避免杂质;且用于焊接所述高强钢板和所述低强钢板的焊丝的成分重量百分比为:C 0.1~0.25%,Si 0.2~0.4%,Mn 1.2~2%,P<0.03%,S<0.006%,Al<0.06%,Ti 0.02~0.08%,Cr 0.05~0.2%,余量为Fe和不可避免杂质,焊丝直径为0.8-1.4mm。
  11. 如权利要求10所述的带铝或者铝合金镀层的钢制差强焊接部件,其特征在于,所述钢制差强焊接部件的焊缝抗拉强度大于低强钢母材强度,焊接接头受拉伸载荷的断裂位置为低强钢母材,焊接接头延伸率大于4%。
  12. 如权利要求10所述的带铝或者铝合金镀层的钢制差强焊接部件,其特征在于,所述的高强钢板的基体成分重量百分比为:C:0.1~0.6%,Si:0.07~0.7%,Mn:0.3~4%,P<0.2%,S<0.08%,Al<0.2%、优选0.04~0.1%,Ti<0.4%、优选0.01~0.3%,B:0.0005~0.08%,Cr:0.01~2%、优选0.1~1.0%,其余为Fe及不可避免杂质,更优选为:C:0.15~0.5%,Si:0.1~0.5%,Mn:0.5~3%,P<0.1%,S<0.05%,Al<0.1%、优选0.04~0.09%,Ti≤0.2%、优选0.02~0.2%,B:0.0005~0.08%、优选0.003~0.08%,Cr:0.01~1%、优选0.1-0.8%,其余为Fe及不可避免杂质。
  13. 如权利要求10所述的带铝或者铝合金镀层的钢制差强焊接部件,其特征在于,所述低强钢板的基体的成分重量百分比为:C:0.06~0.1%,Si:0.06~0.2%,Mn:0.5~1.5%,P<0.1%、优选P<0.03%,S<0.05%、优选S<0.005%,Al:0.02~0.08%,Cr:0.02-0.1%,Ti:0.002~0.045%,其余为Fe及不可避免杂质。
  14. 如权利要求9-11中任一项所述的带铝或者铝合金镀层的钢制差强焊接部件,其特征在于,所述钢制差强焊接部是汽车的A柱、B柱或中通道。
  15. 一种用于如权利要求1所述的带铝或者铝合金镀层的钢制差强焊接部件的制造方法的焊丝,其特征是:所述焊丝的成分重量百分比为:C 0.1~0.25%,Si 0.2~0.4%,Mn 1.2~2%,P<0.03%,S<0.006%,Al<0.06%,Ti 0.02~0.08%,Cr 0.05~0.2%,余量为Fe和不可避免杂质;焊丝直径为0.8-1.4mm。
PCT/CN2020/081743 2019-03-29 2020-03-27 一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法 WO2020200110A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/598,007 US20220168845A1 (en) 2019-03-29 2020-03-27 Different-strength steel welding component with aluminum or aluminum-alloy plating and method for manufacturing same
EP20785301.1A EP3815837A4 (en) 2019-03-29 2020-03-27 DIFFERENT STRENGTH STEEL WELDING COMPONENT WITH ALUMINUM OR ALUMINUM ALLOY PLATING AND METHOD OF MANUFACTURING THEREOF
KR1020217025700A KR20210145725A (ko) 2019-03-29 2020-03-27 알루미늄 또는 알루미늄 합금 도금층을 지닌 강제 차등강도 용접부재 및 그의 제조방법
JP2021551592A JP7343603B2 (ja) 2019-03-29 2020-03-27 アルミニウム又はアルミニウム合金メッキ層付きの鋼製の強度に差がある溶接部品及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910249188.6 2019-03-29
CN201910249188.6A CN111215751B (zh) 2019-03-29 2019-03-29 一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法

Publications (1)

Publication Number Publication Date
WO2020200110A1 true WO2020200110A1 (zh) 2020-10-08

Family

ID=70830513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081743 WO2020200110A1 (zh) 2019-03-29 2020-03-27 一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法

Country Status (6)

Country Link
US (1) US20220168845A1 (zh)
EP (1) EP3815837A4 (zh)
JP (1) JP7343603B2 (zh)
KR (1) KR20210145725A (zh)
CN (1) CN111215751B (zh)
WO (1) WO2020200110A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215649B1 (ja) * 2021-09-15 2023-01-31 Jfeスチール株式会社 Si含有鋼板のレーザ溶接方法
WO2023042636A1 (ja) * 2021-09-15 2023-03-23 Jfeスチール株式会社 Si含有鋼板のレーザ溶接方法
CN116810153A (zh) * 2023-08-23 2023-09-29 华安钢宝利高新汽车板加工(沈阳)有限公司 汽车门环焊渣自清洁式激光拼焊系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112404129B (zh) * 2020-10-27 2023-05-02 苏州大学 一种热轧汽车用钢板的焊接方法
CN112455024B (zh) * 2021-02-03 2021-04-27 育材堂(苏州)材料科技有限公司 激光拼焊预镀层钢板及其热冲压成形构件
CN114959441A (zh) * 2021-02-26 2022-08-30 宝山钢铁股份有限公司 一种热冲压钢板、热冲压部件及其制造方法
CN113118630A (zh) * 2021-04-21 2021-07-16 攀钢集团攀枝花钢铁研究院有限公司 差厚度激光拼焊板的制备方法
CN113118629A (zh) * 2021-04-21 2021-07-16 攀钢集团攀枝花钢铁研究院有限公司 差强度激光拼焊板的制备方法
CN113523573B (zh) * 2021-06-21 2023-05-09 甘肃酒钢集团宏兴钢铁股份有限公司 一种高碳马氏体不锈钢热轧卷板焊接方法
CN113500292A (zh) * 2021-07-28 2021-10-15 攀钢集团研究院有限公司 一种含钒双相钢激光拼焊板的生产方法
CN115722795A (zh) * 2021-08-25 2023-03-03 宝山钢铁股份有限公司 一种钢制薄壁拼焊件的制造方法及使用该拼焊件制备的热冲压部件

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200813A1 (en) * 2001-10-09 2004-10-14 Philippe Alips Method and device for overlapping welding of two coated metal sheets with a beam of high energy density
JP2008105057A (ja) 2006-10-25 2008-05-08 Kobe Steel Ltd ガスシールドアーク溶接用ソリッドワイヤ
CN101426612A (zh) 2006-04-19 2009-05-06 安赛乐米塔尔法国公司 由滚轧的涂镀板制造具有良好机械特性的焊接部件的方法
US20140076470A1 (en) 2011-05-12 2014-03-20 Kangying Zhu Method for the production of very high strength martensitic steel and sheet or part thus obtained
US20150030382A1 (en) 2011-07-26 2015-01-29 Arcelormittal Investigacion Y Desarrollo, S.L. Hot-formed previously welded steel part with very high mechanical resistance and production method
US20150034615A1 (en) * 2013-08-05 2015-02-05 Trumpf Laser-Und Systemtechnik Gmbh Laser decoating of coated metal sheets
CN105163895A (zh) * 2013-12-12 2015-12-16 自动工程公司 用于结合两个坯件的方法以及坯件以及得到的产品
CN106334875A (zh) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制焊接部件及其制造方法
CN106687248A (zh) * 2014-09-17 2017-05-17 麦格纳国际公司 通过添加合金元素对涂覆钢板进行激光焊接的方法
CN106794671A (zh) * 2014-10-02 2017-05-31 蒂森克虏伯钢铁欧洲股份公司 多层扁钢产品及由其制造的部件
US20180326538A1 (en) 2015-09-21 2018-11-15 Wisco Tailored Blanks Gmbh Laser Welding Method for Producing a Semi-Finished Sheet Metal Product Made of Hardenable Steel and Comprising a Coating Based on Aluminium or Aluminium-Silicon
CN108838541A (zh) * 2018-09-14 2018-11-20 苏州大学 一种汽车用冷轧钢板的激光焊接方法及其焊接接头

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205449B2 (ja) * 1993-12-17 2001-09-04 新日本製鐵株式会社 レーザー溶接用フィラワイヤ
JP5316670B1 (ja) 2012-04-17 2013-10-16 新日鐵住金株式会社 ホットスタンプ用のテーラードブランクとその製造方法
JP5316664B2 (ja) 2012-03-28 2013-10-16 新日鐵住金株式会社 ホットスタンプ用のテーラードブランク
KR101448473B1 (ko) * 2012-12-03 2014-10-10 현대하이스코 주식회사 테일러 웰디드 블랭크, 그 제조방법 및 이를 이용한 핫스탬핑 부품
JP6056450B2 (ja) 2012-12-19 2017-01-11 新日鐵住金株式会社 ホットスタンプ用溶融Alめっき鋼板およびその製造方法、ならびにホットスタンプ製品
KR101562987B1 (ko) * 2013-12-12 2015-10-23 주식회사 포스코 필러 와이어, 이를 사용하는 열간성형강의 용접방법 및 강판 제조방법
KR101714121B1 (ko) * 2014-11-21 2017-03-09 현대자동차주식회사 테일러 웰디드 블랭크 제조방법
CN106736013A (zh) * 2016-11-28 2017-05-31 安徽飞弧焊业股份有限公司 一种低合金高强钢焊接用涂层焊丝及制备方法
CN108213711A (zh) * 2018-01-12 2018-06-29 上海交通大学 一种用激光填丝焊工艺制造铝硅镀层热成形钢拼焊板的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040200813A1 (en) * 2001-10-09 2004-10-14 Philippe Alips Method and device for overlapping welding of two coated metal sheets with a beam of high energy density
CN101426612A (zh) 2006-04-19 2009-05-06 安赛乐米塔尔法国公司 由滚轧的涂镀板制造具有良好机械特性的焊接部件的方法
JP2008105057A (ja) 2006-10-25 2008-05-08 Kobe Steel Ltd ガスシールドアーク溶接用ソリッドワイヤ
US20140076470A1 (en) 2011-05-12 2014-03-20 Kangying Zhu Method for the production of very high strength martensitic steel and sheet or part thus obtained
US20150030382A1 (en) 2011-07-26 2015-01-29 Arcelormittal Investigacion Y Desarrollo, S.L. Hot-formed previously welded steel part with very high mechanical resistance and production method
US20150034615A1 (en) * 2013-08-05 2015-02-05 Trumpf Laser-Und Systemtechnik Gmbh Laser decoating of coated metal sheets
CN105163895A (zh) * 2013-12-12 2015-12-16 自动工程公司 用于结合两个坯件的方法以及坯件以及得到的产品
CN106687248A (zh) * 2014-09-17 2017-05-17 麦格纳国际公司 通过添加合金元素对涂覆钢板进行激光焊接的方法
CN106794671A (zh) * 2014-10-02 2017-05-31 蒂森克虏伯钢铁欧洲股份公司 多层扁钢产品及由其制造的部件
US20180326538A1 (en) 2015-09-21 2018-11-15 Wisco Tailored Blanks Gmbh Laser Welding Method for Producing a Semi-Finished Sheet Metal Product Made of Hardenable Steel and Comprising a Coating Based on Aluminium or Aluminium-Silicon
CN106334875A (zh) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制焊接部件及其制造方法
CN108838541A (zh) * 2018-09-14 2018-11-20 苏州大学 一种汽车用冷轧钢板的激光焊接方法及其焊接接头

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHARTI A.: "Laser welding", BULLETIN OF MATERIALS SCIENCE, vol. 11, no. 2-3, 1 November 1988 (1988-11-01), pages 191 - 212, XP055834053
NICKLAS EAGER: "TWB requirements in hot forming steels", MASTER’S THESIS IN MATERIALS ENGINEERING, 2018, CHALMERS UNIVERSITY OF TECHNOLOGY, XP055835689, Retrieved from the Internet <URL:https://odr.chalmers.se/bitstream/20.500.12380/255158/1/255158.pdf>
SUDER W. J.; WILLIAMS S. W.: "Investigation of the effects of basic laser material interaction parameters in laser welding", JOURNAL OF LASER APPLICATIONS, LASER INSTITUTE OF AMERICA, US, vol. 24, no. 3, 1 August 2012 (2012-08-01), US, pages 32009 - 032009-10, XP012163045, ISSN: 1042-346X, DOI: 10.2351/1.4728136

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7215649B1 (ja) * 2021-09-15 2023-01-31 Jfeスチール株式会社 Si含有鋼板のレーザ溶接方法
WO2023042636A1 (ja) * 2021-09-15 2023-03-23 Jfeスチール株式会社 Si含有鋼板のレーザ溶接方法
CN116810153A (zh) * 2023-08-23 2023-09-29 华安钢宝利高新汽车板加工(沈阳)有限公司 汽车门环焊渣自清洁式激光拼焊系统
CN116810153B (zh) * 2023-08-23 2023-11-07 华安钢宝利高新汽车板加工(沈阳)有限公司 汽车门环焊渣自清洁式激光拼焊系统

Also Published As

Publication number Publication date
JP7343603B2 (ja) 2023-09-12
KR20210145725A (ko) 2021-12-02
EP3815837A4 (en) 2022-08-03
EP3815837A1 (en) 2021-05-05
US20220168845A1 (en) 2022-06-02
JP2022522761A (ja) 2022-04-20
CN111215751A (zh) 2020-06-02
CN111215751B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2020200110A1 (zh) 一种带铝或者铝合金镀层的钢制差强焊接部件及其制造方法
WO2020199852A1 (zh) 带铝或铝合金镀层的钢制薄壁焊接等强部件的制造方法
EP3473740B1 (en) Automobile member having resistance weld
ES2784014T3 (es) Chapa de acero de alta resistencia revestida por inmersión en caliente para uso en el conformado por prensado, excelente en tenacidad a baja temperatura y método de producción de la misma
TWI479030B (zh) A melt-plated high strength steel sheet for extrusion processing with excellent low temperature toughness and corrosion resistance and its manufacturing method
CN112743228B (zh) 激光焊接接头及汽车用骨架零件
WO2020212781A1 (en) A method for resistance spot welding of zinc-coated high strength steels
JP2003231941A (ja) 溶接後の成形性に優れ、溶接熱影響部の軟化しにくい引張強さが780MPa以上の高強度熱延鋼板、高強度冷延鋼板および高強度表面処理鋼板
WO2022249650A1 (ja) 自動車用部材およびその抵抗スポット溶接方法
JP6373550B2 (ja) ガスシールドアーク溶接方法
TW201402833A (zh) 熔接性優異之高強度冷軋鋼板及其製造方法
WO2015141674A1 (ja) テーラードブランク用フェライト系ステンレス鋼板、成形性に優れたテーラードブランク材及びその製造方法
EP4332251A1 (en) Steel welded member
JP2000015353A (ja) プレス成形性に優れた溶接接合金属板およびその製造方法
KR101309921B1 (ko) 스피닝 가공성이 우수한 용접강관 및 그 제조방법
WO2023143290A1 (zh) 一种耐硫酸铝腐蚀的高强度管道及其制造方法
JP7473009B2 (ja) 抵抗スポット溶接継手およびその抵抗スポット溶接方法
EP4306254A1 (en) Arc-welded joint and arc-welding method
RU2250272C1 (ru) Ферритная нержавеющая сталь
WO2022107580A1 (ja) スポット溶接用めっき鋼板、接合部材、及び自動車用部材、並びに接合部材の製造方法
CN116511716A (zh) 一种1500MPa铝硅热成形钢激光拼焊方法
WO2020202474A1 (ja) 鋼板、テーラードブランク、熱間プレス成形品、鋼管、及び中空状焼入れ成形品
JPH0726346A (ja) 高密度エネルギービーム溶接後の成形性に優れた極低炭素冷延鋼板および該冷延鋼板を原板とした表面処理鋼板
CN115055799A (zh) 一种1000MPa级高成形性汽车用钢的连接方法
TW201615891A (zh) 鍍敷鋼板及燃料箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020785301

Country of ref document: EP

Effective date: 20210126

ENP Entry into the national phase

Ref document number: 2021551592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE