WO2020200102A1 - 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法 - Google Patents

一种磁性复合高压直流电缆半导电屏蔽层及其制备方法 Download PDF

Info

Publication number
WO2020200102A1
WO2020200102A1 PCT/CN2020/081708 CN2020081708W WO2020200102A1 WO 2020200102 A1 WO2020200102 A1 WO 2020200102A1 CN 2020081708 W CN2020081708 W CN 2020081708W WO 2020200102 A1 WO2020200102 A1 WO 2020200102A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
shielding layer
semi
powder
conductive shielding
Prior art date
Application number
PCT/CN2020/081708
Other languages
English (en)
French (fr)
Inventor
郝春成
陈乐然
雷清泉
魏艳慧
李国倡
辛萌
马莉莉
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2020200102A1 publication Critical patent/WO2020200102A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the invention relates to the field of electrical materials, in particular to a high-voltage direct current cable magnetic semi-conductive shielding layer and a preparation method thereof.
  • HVDC transmission has many advantages, such as low line cost, low line loss, no reactive power, convenient power connection, easy control and adjustment, and DC power systems have been practically applied in long-distance power transmission.
  • the application of DC cables in HVDC transmission systems has been relatively lagging behind.
  • the application of DC cables has developed rapidly.
  • DC high voltage cables are generally composed of conductive cores, semi-conductive shielding layers, insulating layers and other protective layers from the inside to the outside.
  • a few domestic cable companies have developed 320kV DC cables and used them in flexible DC transmission projects.
  • the insulating materials and semi-conductive shielding materials used in the manufacturing of the cables are completely dependent on imports and are currently monopolized by Borealis.
  • Insulating materials require high purity, minimal space charge accumulation, high DC breakdown voltage and reliability, good anti-pre-crosslinking characteristics, ultra-smooth processing surface, high insulation stability at high temperatures, and high Thermal conductivity and easier processing performance.
  • the requirement of minimum space charge accumulation is a problem that DC cables need to solve urgently, which is different from traditional AC cables, because the space charges that are easily accumulated in the insulation layer of DC high voltage cables can cause electric field distortion in the cable insulation layer to affect its insulation strength and accelerate insulation aging. This is also the main reason for the slow development of DC high voltage XLPE cables in the world.
  • the semiconductor shielding layer is an important part of the HVDC cable. It is used to achieve good contact between the conductor and the insulator, effectively improve the electric field distribution on the surface of the conductor, and reduce the carrier emission to the insulating layer to suppress the space charge in the insulating layer.
  • As the shielding layer of high-voltage DC cables semi-conductive composite materials are often used. Lower carrier emission under the condition of ultra-smooth interface is the basic requirement of a good shielding material. Therefore, how to reduce the emission of the shielding layer and reduce the accumulation of space charge in the insulating layer is the current research hotspot of HVDC cable materials. Therefore, studying the semiconducting layer, especially how to reduce the emission of the semiconducting layer in the high voltage DC cable, has important practical significance for studying the charge injection of the semiconducting layer to the insulating layer.
  • the utility model CN201320631268.6 discloses a high-voltage insulated busbar connection shielding layer structure, including a shielding layer covering the busbar connection of the conductive core connector, and the busbar connection shielding layer has an insulating layer, a conductive or semiconductive layer ,
  • the conductive or semiconductive layer of the shielding layer at the busbar connection includes an inner conductive or semiconductive layer and an outer conductive or semiconductive layer, the inner conductive or semiconductive layer is inside the insulating layer, and the outer conductive or semiconductive layer is in the insulating layer.
  • the two ends of the inner conductive or semi-conductive rubber layer are respectively provided with a ring of internal stress cones, the shielding layer of the bus bar connection and the shielding layer of the high-voltage insulated bus There is a ring of external stress cones between each, and the external conductive or semi-conductive rubber layer extends to the external stress cone.
  • the current semi-conductive shielding layer materials are mainly doped with space charge inhibitors to reduce carrier emission.
  • the existing semi-conductive shielding materials use space charge inhibitors mostly inorganic fillers, and the principle is mainly inorganic
  • the filler has the ability to attract and trap the source of carriers, so that the migration of carriers can be suppressed in the semi-conductive shielding layer. In order to achieve the suppression of space charge.
  • the high-voltage direct current semiconducting shielding layer prepared by this method cannot be widely used in practical applications, and the effect of suppressing space charges needs to be further improved.
  • the purpose of the present invention is to provide a high-voltage direct current cable magnetic semi-conductive shielding layer and its preparation method, mainly used for high-voltage direct current cables, the problem to be solved is to suppress the high-voltage direct current transmission process from a new perspective
  • the existing space charge problem can reduce the charge emission in the semi-conductive shielding layer.
  • the present invention provides a magnetic semi-conductive shielding layer of a high-voltage DC cable, the magnetic semi-conductive shielding layer is set as a magnetizable material, which is mainly applied to high-voltage DC cables to achieve the effect of suppressing the charge emission in the semi-conductive shielding layer;
  • magnetizable materials are generally permanent magnetic materials, but also include any other materials that can be magnetized except permanent magnetic materials;
  • the permanent magnetic materials are usually alloy permanent magnetic materials, ferrite permanent magnetic materials and rare earth permanent magnetic materials;
  • the diameter of the magnetic powder in the semi-conductive shielding layer is not more than 2 ⁇ m.
  • the present invention provides a method for preparing a magnetic semi-conductive shielding layer of a high-voltage DC cable according to claim 1, which is characterized in that it specifically includes the following steps:
  • S4 Put the magnetizable semi-conductive shielding material prepared by S3 into a mold, and put the mold in a plate vulcanizer for hot-press cross-linking, and then cold-press out of the mold to obtain a magnetizable semi-conductive shielding layer;
  • S5 Use a magnetizer to apply a directional magnetic field along the horizontal direction of the magnetizable semi-conductive shielding layer obtained by S4 to obtain the magnetic semi-conductive shielding layer of the high voltage DC cable;
  • the modification of the magnetic powder in the S1 can be replaced by magnetic pulp
  • the magnetic powder in S1 is strontium ferrite powder or neodymium iron boron powder
  • the non-polar polymer copolymer in S2 is ethylene-vinyl acetate copolymer or low density polyethylene (LDPE);
  • the antioxidant in S2 is antioxidant 1010;
  • the cross-linking agent in S3 is dicumyl peroxide
  • the mass ratio of the mass of the magnetic powder to the total mass of the remaining materials in the semiconductive composite material is 0.01-2:1;
  • the surface modification of the magnetic powder needs to be performed with a coupling agent.
  • the magnetic pulp is prepared by mixing magnetic powder, dispersant, auxiliary agent and solvent material, and uniformly dispersing it by a ball mill;
  • the raw materials include the following components in parts by weight: low density polyethylene 40-50, elastomer 20-40, highly conductive carbon black 20-30, permanent magnet powder 0.1-100, antioxidant 0.3-0.5, cross-linking DCP 0.5-2, cross-linking assistant TAIC 0.5-2;
  • the mold in S4 hot-press cross-linking, the mold is first placed in a 105-120°C flat vulcanizer for melting and exhaust, and then hot-press cross-linking is performed at 170-180°C, the pressure is 10MPa;
  • the external magnetic field applied by the magnetizer described in S5 has a magnetic field strength of 1-2.5T and a duration of not less than 30 seconds.
  • the present invention has significant positive effects and innovations. It suppresses the charge emission behavior of the semi-conductive shielding layer from a new perspective, and the effect is obvious.
  • the proposed method has improved semi-conductive composite materials. Research and localization are of great significance.
  • Figure 1 is a schematic diagram of the simulation of the magnetic semiconducting shielding layer of the high-voltage DC cable suppressing the charge emission in the high-voltage DC cable.
  • step (4) Put the crude sample prepared in step (4) into a stainless steel mold lined with a polytetrafluoroethylene isolation film, preheat it with a plate vulcanizer at 120°C for 4 minutes, and then put it into a 180°C plate vulcanizer for hot pressing Cross-link for 8 minutes at a pressure of 10 MPa, and then cold-press and shape it on a flat vulcanizer at room temperature to obtain a sample of a magnetizable semi-conductive shielding layer for testing, and conduct a magnetic performance test;
  • step (4) Put the crude sample prepared in step (4) into a stainless steel mold lined with a polytetrafluoroethylene isolation film, preheat it with a plate vulcanizer at 120°C for 4 minutes, and then put it into a 180°C plate vulcanizer for hot pressing Cross-link for 8 minutes at a pressure of 10 MPa, and then cold-press and shape it on a flat vulcanizer at room temperature to obtain a sample of a magnetizable semi-conductive shielding layer for testing, and conduct a magnetic performance test;
  • Example 4 The 1g modified NdFeB powder in (4) of Example 4 was uniformly added to the mixture B prepared in step (2) to 50g modified NdFeB powder uniformly added to the prepared in step (2) In the mixture B, the rest is the same as in Example 4.
  • Example 4 The 1g modified NdFeB powder in (4) of Example 4 was uniformly added to the mixture B prepared in step (2) to 200g modified NdFeB powder uniformly added to the prepared in step (2) In the mixture B, the rest is the same as in Example 4.
  • Measurement of the magnetic properties of the magnetic semi-conductive shielding layer of high-voltage DC cables Use a vibrating sample magnetometer to measure the magnetic properties of the molded samples, thereby measuring the coercivity and residual magnetic induction of the magnetic composite semi-conductive shielding material.
  • the semiconducting sheet with a thickness of 1mm prepared by molding is first simulated the structure of high voltage DC cable, and the electroacoustic pulse method is used to test its suppression effect on space charge emission before magnetization Then, the semi-conducting sheet was oriented magnetized under an applied magnetic field intensity of 2T for 10 minutes, and the magnetized semi-conducting sheet was tested again for its inhibitory effect on space charge emission.
  • the main factor that determines the size of the residual magnetic induction is the nature and content of the magnetic powder. The greater the residual magnetic induction after the magnetic powder itself is magnetized, the semi-conductive shielding layer prepared is The greater the residual magnetic induction after magnetization.
  • the coercive force of the magnetic semi-conductive shielding layer of the high voltage DC cable directly depends on the type of magnetic powder, and has nothing to do with the content.
  • the magnetic semiconducting shielding layer of high voltage DC cable under other conditions being the same, its ability to suppress space charge usually depends on the residual magnetic induction intensity of the magnetic composite semiconducting layer, that is, the greater the residual magnetic induction intensity, the stronger the ability to inhibit space charge .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Communication Cables (AREA)

Abstract

本发明涉及一种高压直流电缆磁性半导电屏蔽层及其制备方法,属于电工材料领域,本发明的高压直流电缆磁性半导电屏蔽层为磁性复合材料,其制备方法为,首先将磁性材料以粉体或浆液的形式添加至复合材料中制备得到磁性复合高压直流电缆半导电屏蔽料,再使用热压交联的方法制备出高压直流电缆磁性半导电屏蔽层,最后对所得半导电屏蔽层进行定向磁化,既得高压直流电缆磁性半导电屏蔽层。本发明主要用于高压直流电缆,实现抑制半导电屏蔽层中电荷的发射作用。

Description

一种磁性复合高压直流电缆半导电屏蔽层及其制备方法 技术领域
本发明涉及电工材料领域,具体涉及一种高压直流电缆磁性半导电屏蔽层及其制备方法。
背景技术
高压直流输电有许多优点,线路成本低、线路损耗小、没有无功功率、电力连接方便、容易控制和调节,在长距离输电中直流电力系统已经得到实际应用。直流电缆在高压直流输电系统的应用一直相对滞后,在柔性直流输电技术发展后,直流电缆工程应用快速发展。直流高压电缆由内到外一般由导电线芯、半导电屏蔽层、绝缘层及其它保护层组成。国内少数电缆公司研制出320kV直流电缆,并应用于柔性直流输电工程,但是制造电缆所用的绝缘料和半导电屏蔽料完全依赖进口,目前主要被北欧化工垄断。绝缘料要求很高的纯净度、最小的空间电荷积累、较高的直流击穿电压和可靠性、良好的抗预交联特性、具有超光滑的加工表面、高温下的绝缘稳定性、高的导热率以及更简便的加工性能。其中要求具有最小的空间电荷积累是直流电缆区别传统交流电缆急需解决的问题,因为直流高压电缆绝缘层中容易积聚的空间电荷可以造成电缆绝缘层内电场畸变影响其绝缘强度以及加速绝缘的老化,这也是目前国际上直流高压交联聚乙烯电缆发展较慢的主要原因。
半导体屏蔽层是高压直流电缆的重要组成部分,用于实现导体与绝缘体之间的良好接触,有效改善导体表面的电场分布,降低向绝缘层载流子发射从而抑制绝缘层中空间电荷。作为高压直流电缆的屏蔽层,往往使用半导电的复合材料,在具有超光滑界面条件下较低的载流子发射是优良屏蔽料的基本要求。因此围绕如何降低屏蔽层的发射、减少绝缘层中空间电荷的积累是目前高压直流电缆料的研究热点。因此研究半导电层,尤其是如何降低高压直流电缆中半导电层的发射问题,对于研究半导电层对绝缘层的电荷注入具有重要的现实意义。
如实用新型CN201320631268.6公开了一种高压绝缘母线连接的屏蔽层结构,包括包覆在导电芯连接件的母线连接处屏蔽层,所述母线连接处屏蔽层具有绝缘层、导电或半导电层,所述母线连接处屏蔽层的导电或半导电层包括内导电或半导电层和外导电或半导电层,内导电或半导电层在绝缘层内侧,所述外导电或半导电层在绝缘层外侧、并延伸到高压绝缘母线的屏蔽层的外侧,所述内导电或半导电橡胶层的二端分别设有一圈内应力锥,所述母线连接处屏蔽层与高压绝缘母线的屏蔽层之间各设有一圈外应力锥,所述外导电或半导电橡胶 层延伸至外应力锥处,该实用新型优化了高压绝缘母线连接的屏蔽层结构,使电容式屏蔽层的结构简单、绝缘性能好。
目前的半导电屏蔽层材料主要是向其中掺杂空间电荷抑制剂而达到降低载流子发射的目的,现有半导电屏蔽料所使用的空间电荷抑制剂多为无机填料,其原理主要是无机填料具有吸引和捕获载流子源的能力,从而在半导电屏蔽层中就能抑制载流子的迁移。以达到对空间电荷的抑制。但是利用该方法所制备出的高压直流半导电屏蔽层尚不能广泛应用于实际应用中,且抑制空间电荷的效果也有待进一步提高。
发明内容
针对上述问题,本发明的目的在于提供一种高压直流电缆磁性半导电屏蔽层及其制备方法,主要用于高压直流电缆,要解决的问题是从一种新的角度来抑制高压直流输电过程中所存在空间电荷问题,实现降低半导电屏蔽层中电荷发射的作用。
首先,本发明提供一种高压直流电缆磁性半导电屏蔽层,磁性半导电屏蔽层设置为可磁化材料,主要应用于高压直流电缆,实现抑制半导电屏蔽层中电荷发射的作用;
其中,可磁化的材料一般为永磁性材料,但也包括除永磁材料以外的其他任何可被磁化的材料;
所述的永磁性材料通常为合金永磁材料、铁氧体永磁材料和稀土永磁材料;
所述的半导电屏蔽层中的磁性粉体直径不大于2μm。
其次,本发明提供一种如权利要求1所述的高压直流电缆磁性半导电屏蔽层的制备方法,其特征在于,具体包括如下步骤:
S1:将磁性粉体改性来作为可磁化半导电屏蔽层的磁性粉体来源;
S2:将非极性高分子共聚物、高导电炭黑和抗氧剂等按照顺序熔融共混,制得半导电屏蔽料的初始原料;
S3:在S2所制备的初始原料中加入交联剂以及S1中改性的磁粉,再次进行熔融共混,即可制得可磁化半导电屏蔽料;
S4:将S3制备得到的可磁化半导电屏蔽料放入模具中,并把模具放入平板硫化机内进行热压交联,随后冷压出模,获得可磁化半导电屏蔽层;
S5:使用充磁机沿S4获得的可磁化半导电屏蔽层水平方向施加定向磁场,即得高压直流电缆磁性半导电屏蔽层;
具体地:所述S1中磁性粉体改性可用磁浆替代;
所述S1中磁性粉体为锶铁氧体粉末或钕铁硼粉末;
所述S2中非极性高分子共聚物为乙烯-醋酸乙烯共聚物或低密度聚乙烯(LDPE);
所述S2中抗氧剂为抗氧剂1010;
所述S3中交联剂为过氧化二异丙苯;
所述磁性粉体质量与半导电复合材料中其余材料总质量的质量比为0.01-2:1;
其中,在将磁性粉体加入半导电复合材料前,需使用偶联剂对磁性粉体进行表面改性。
其中,磁浆是将磁性粉末、分散剂、助剂和溶剂材料进行混合,经球磨机均匀分散制备而成;
其中,原料按重量份数包括以下组分:低密度聚乙烯40-50,弹性体20-40,高导电碳黑20-30,永磁体粉末0.1-100,抗氧剂0.3-0.5,交联剂DCP 0.5-2,交联助剂TAIC 0.5-2;
其中,S4中热压交联,将模具首先置于105-120℃平板硫化机中进行熔融排气,之后在170-180℃下进行热压交联,压力为10MPa;
其中,S5所述的充磁机所施加的外加磁场,其磁场强度为1-2.5T,持续时间不低于30秒。
本发明与现有技术相比,具有显著的积极效果和创新性,从一种新的角度抑制了半导电屏蔽层电荷的发射行为,且效果明显,该方法的提出对半导电复合材料的深入研究及国产化具有重要意义。
附图说明
图1为模拟高压直流电缆磁性半导电屏蔽层在高压直流电缆中抑制电荷发射原理图。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1
(1)称取1克直径大小为1μm左右的锶铁氧体粉末,将其分散于乙醇和硅烷偶联剂K550的混合溶液中改性2h,之后使用离心机对该溶液进行离心5min,转速3000rpm并将离心得到的改性后的锶铁氧体粉末放入50℃真空干燥箱中烘干,制得产物A。
(2)先将45.0克低密度聚乙烯(LDPE)粒子加入115℃的双辊混炼机中,转速为60rpm,之后加入25.0克高导电炭黑和0.5克抗氧剂1010,熔融共混6分钟,制得混合物B;
(3)将30.0克乙烯-醋酸乙烯共聚物加入步骤(1)制得的混合物A中,熔融共混3分钟;
(4)将1.0克交联剂过氧化二异丙苯(DCP)、1克交联助剂TAIC及5g改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中,熔融共混4分钟后迅速从混合器中取出物料并冷却至室温,得含锶铁氧体的半导电屏蔽料粗样品;
(5)将步骤(4)制得的粗样品放入垫有聚四氟乙烯隔离膜的不锈钢模具内,用平板硫化机在120℃下预热4min,之后放入180℃平板硫化机热压交联8min,压力为10MPa,之后在室温下的平板硫化机上冷压定型,获得测试用可磁化半导电屏蔽层样品,并对其进行磁性能测试;
(6)沿可磁化半导电屏蔽层水平方向施加定向磁场,磁场强度为2T,持续时间10min,即可得高压直流电缆磁性半导电屏蔽层。
实施例2
将实施例1的(4)中1克改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中改为50g改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中,其余与实施1相同。
实施例3
将实施例1的(4)中1克改性后的锶铁氧体粉末均匀加入(2)制得的混合物B中改为200克改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中,其余与实施1相同。
实施例4
(1)称取1克的直径大小为1μm左右的钕铁硼粉末,将其分散于乙醇和硅烷偶联剂KH550的混合溶液中改性2h,之后使用离心机对该溶液进行离心5min,并将离心得到的改性后的钕铁硼粉末放入50摄氏度真空干燥箱中烘干,制得产物A;
(2)先将45.0克低密度聚乙烯(LDPE)粒子加入115℃的双辊混炼机中,转速为60rpm,之后加入25.0克高导电炭黑和0.5克抗氧剂1010,熔融共混6分钟,制得混合物B;
(3)将30.0克乙烯-醋酸乙烯共聚物加入(1)制得的混合物A中,熔融共混3分钟;
(4)将1.0克交联剂过氧化二异丙苯(DCP)、1克交联助剂TAIC及1g改性后的钕铁硼粉末均匀加入(2)制得的混合物B中,熔融共混4分钟,迅速从混合器中取出物料并冷却至室温,得粗样品;
(5)将步骤(4)制得的粗样品放入垫有聚四氟乙烯隔离膜的不锈钢模具内,用平板硫化机在120℃下预热4min,之后放入180℃平板硫化机热压交联8min,压力为10MPa,之后在室温下的平板硫化机上冷压定型,获得测试用可磁化半导电屏蔽层样品,并对其进行磁性能测试;
(6)沿可磁化半导电屏蔽层水平方向施加定向磁场,磁场强度为2T,持续时间10min,即可得高压直流电缆磁性半导电屏蔽层。
实施例5
将实施例4的(4)中1g改性后的钕铁硼粉末均匀加入步骤(2)制得的混合物B中改为50g改性 后的钕铁硼粉末均匀加入步骤(2)制得的混合物B中,其余与实施例4相同。
实施例6
将实施例4的(4)中1g改性后的钕铁硼粉末均匀加入步骤(2)制得的混合物B中改为200g改性后的钕铁硼粉末均匀加入步骤(2)制得的混合物B中,其余与实施例4相同。
实验例1
高压直流电缆磁性半导电屏蔽层磁性能的测定:使用振动样品磁强计对模压制备的样品进行磁性能的测定,从而测出磁性复合半导电屏蔽料矫顽力大小和剩余磁感应强度大小。
高压直流电缆磁性半导电屏蔽层磁化前后空间电荷发射的测定:将模压制备的厚为1mm的半导电片首先模拟高压直流电缆结构,使用电声脉冲法测试其磁化前对空间电荷发射的抑制效果,随后对半导电片在2T的外加磁场强度下进行定向磁化,持续10min,再次测试磁化后的半导电片对空间电荷发射的抑制效果。
本实验例通过A、B、C、D档位来评价,其中A+为最好,D-为最差,结果如表1所示:
表1
表1
Figure PCTCN2020081708-appb-000001
在高压直流电缆磁性半导电屏蔽层中,决定其剩余磁感应强度大小的主要因素是磁性粉体的性质及含量,磁性粉体本身磁化后剩余磁感应强度越大,其制备出的半导电屏蔽层经磁化后所具有的剩余磁感应强度就越大。
高压直流电缆磁性半导电屏蔽层矫顽力的大小则直接取决于磁性粉体的种类,与含量无关。
高压直流电缆磁性半导电屏蔽层,在其他条件相同的情况下,其抑制空间电荷的能力通常取决于磁性复合半导电层的剩余磁感应强度大小,即剩余磁感应强度越大,抑制空间电荷能力越强。
显然,本发明上述实施例仅仅是为清楚地说明本发明所做的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

  1. 一种高压直流电缆磁性半导电屏蔽层,其特征在于,磁性半导电屏蔽层设置为可磁化材料。
  2. 根据权利要求1所述的高压直流电缆磁性半导电屏蔽层,其中,可磁化材料一般为永磁性材料,但也包括除永磁材料以外的其他任何可被磁化的材料;
    所述的永磁性材料通常为合金永磁材料、铁氧体永磁材料和稀土永磁材料。
  3. 根据权利要求1-2任意一项所述的高压直流电缆磁性半导电屏蔽层,其特征在于,所述的半导电屏蔽层中的磁性粉体直径不大于2μm。
  4. 一种如权利要求1所述的高压直流电缆磁性半导电屏蔽层的制备方法,其特征在于,具体包括如下步骤:
    S1:将磁性粉体改性来作为可磁化半导电屏蔽层的磁性粉体来源;
    S2:将高分子聚合物、高导电炭黑和抗氧剂等按照顺序熔融共混,制得半导电屏蔽料的初始原料;
    S3:在S2所制备的初始原料中加入交联剂以及S1中改性的磁粉,再次进行熔融共混,即可制得可磁化半导电屏蔽料;
    S4:将S3制备得到的可磁化半导电屏蔽料放入模具中,并把模具放入平板硫化机内进行热压交联,随后冷压出模,获得可磁化半导电屏蔽层;
    S5:使用充磁机沿S4获得的可磁化半导电屏蔽层水平方向施加定向磁场,即得高压直流电缆磁性半导电屏蔽层。
  5. 一种如权利要求4所述的制备方法,具体地:
    所述S1中磁性粉体改性用磁浆替代;
    所述S3中改性的磁粉用磁浆替代;
    所述S1中磁性粉体为锶铁氧体粉末;
    所述S2中非极性高分子共聚物为乙烯-醋酸乙烯共聚物或低密度聚乙烯(LDPE);
    所述S2中抗氧剂为抗氧剂1010;
    所述S3中交联剂为过氧化二异丙苯。
  6. 一种如权利要求4所述的制备方法,具体地:
    所述S1中磁性粉体为钕铁硼粉末。
  7. 根据权利要求4-6所述的制备方法,其特征在于,所述磁性粉体质量与半导电复合材料中其余材料总质量的质量比为0.01-2:1。
  8. 根据权利要求4-6所述的制备方法,其中在将磁性粉体加入半导电复合材料前,需使用偶 联剂对磁性粉体进行表面改性。
  9. 根据权利要求4-6所述的制备方法,其中磁浆是将磁性粉末、分散剂、助剂和溶剂材料进行混合,均匀分散制备而成。
  10. 根据权利要求4-6所述的制备方法,具体地:
    其中,原料按重量份数包括以下组分:低密度聚乙烯40-50,弹性体20-40,高导电碳黑20-30,永磁体粉末0.1-100,抗氧剂0.3-0.5,交联剂DCP 0.5-2,交联助剂TAIC 0.5-2;
    其中,S4中热压交联,将模具首先置于105-120℃平板硫化机中进行熔融排气,之后在170-180℃下进行热压交联,压力为10MPa;
    其中,S5所述的充磁机所施加的外加磁场,其磁场强度为1-2.5T,持续时间不低于30秒。
PCT/CN2020/081708 2019-04-01 2020-03-27 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法 WO2020200102A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910256973.4A CN110078990A (zh) 2019-04-01 2019-04-01 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
CN201910256973.4 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020200102A1 true WO2020200102A1 (zh) 2020-10-08

Family

ID=67413956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081708 WO2020200102A1 (zh) 2019-04-01 2020-03-27 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法

Country Status (2)

Country Link
CN (1) CN110078990A (zh)
WO (1) WO2020200102A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078990A (zh) * 2019-04-01 2019-08-02 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
CN109991522A (zh) * 2019-04-12 2019-07-09 青岛科技大学 一种评估半导电屏蔽材料发射性能的测试装置及评估方法
CN113567769B (zh) * 2021-07-15 2022-11-25 南京信息工程大学 基于电荷注入特性表征的直流电缆半导电屏蔽材料选用方法
CN115286855A (zh) * 2022-07-15 2022-11-04 青岛科技大学 一种高压直流半导电屏蔽材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480578A (en) * 1977-12-09 1979-06-27 Furukawa Electric Co Ltd:The Making of power cable
WO2010108472A1 (de) * 2009-03-21 2010-09-30 Ralf Bauhaus Kabel
CN103709478A (zh) * 2013-12-17 2014-04-09 无锡江南电缆有限公司 一种高压直流电缆半导电聚烯烃屏蔽材料
CN103980599A (zh) * 2014-05-30 2014-08-13 江苏德威新材料股份有限公司 一种高压直流电缆用半导电屏蔽材料及其制备方法
CN107325383A (zh) * 2017-08-29 2017-11-07 德阳力久云智知识产权运营有限公司 一种电缆复合屏蔽材料及其制备方法
CN107481792A (zh) * 2017-08-29 2017-12-15 德阳力久云智知识产权运营有限公司 一种屏蔽电缆
CN110078990A (zh) * 2019-04-01 2019-08-02 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985571B (zh) * 2015-07-05 2018-03-23 青岛科技大学 一种弱化正温度系数效应的半导电屏蔽料及其制备方法
CN106883505B (zh) * 2017-04-10 2019-05-28 青岛科技大学 一种柔性半导电屏蔽料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480578A (en) * 1977-12-09 1979-06-27 Furukawa Electric Co Ltd:The Making of power cable
WO2010108472A1 (de) * 2009-03-21 2010-09-30 Ralf Bauhaus Kabel
CN103709478A (zh) * 2013-12-17 2014-04-09 无锡江南电缆有限公司 一种高压直流电缆半导电聚烯烃屏蔽材料
CN103980599A (zh) * 2014-05-30 2014-08-13 江苏德威新材料股份有限公司 一种高压直流电缆用半导电屏蔽材料及其制备方法
CN107325383A (zh) * 2017-08-29 2017-11-07 德阳力久云智知识产权运营有限公司 一种电缆复合屏蔽材料及其制备方法
CN107481792A (zh) * 2017-08-29 2017-12-15 德阳力久云智知识产权运营有限公司 一种屏蔽电缆
CN110078990A (zh) * 2019-04-01 2019-08-02 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法

Also Published As

Publication number Publication date
CN110078990A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020200102A1 (zh) 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
WO2020207312A1 (zh) 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
CN107266863B (zh) 非线性电导率环氧树脂复合绝缘材料及其制备方法
Teng et al. Improved electrical resistivity-temperature characteristics of insulating epoxy composites filled with polydopamine-coated ceramic particles with positive temperature coefficient
Han et al. Electrical tree in HTV silicone rubber with temperature gradient under repetitive pulse voltage
Zhang et al. Non‐linear electrical conductivity of ethylene‐propylene‐diene monomer‐based composite dielectrics by tuning inorganic fillers
CN109265791B (zh) 一种高压直流电缆绝缘材料及其制备方法
Sun et al. Self‐adaptive electrostatic discharge performance of ZnO microvaristors doped silicone rubber composites
He et al. Space charge accumulation mechanism near the stress cone of cable accessories under electrical-thermal aging
CN114790324B (zh) 一种提升氧化铝/环氧树脂复合材料击穿强度的方法
Xin et al. Simulation calculation of thermal stress distribution of composite interface in operation of high voltage cable joint under electro-thermal coupling.
CN109232816A (zh) 抑制空间电荷聚丙烯接枝改性的直流电缆材料及制备方法
Li et al. Supersmooth semiconductive shielding materials use for XLPE HVDC cables
Varghese et al. Investigating the characteristics of amino silane functionalized alumina nanoparticles doped epoxy nanocomposite for high-voltage insulation
Li et al. Dispersion of Carbon Blacks and Their Influence on the Properties of Semiconductive Materials use for High-voltage Power Cables
CN109438807B (zh) 一种绝缘材料及其制备方法和应用
Li et al. Research on the electric field intensity distribution of high-voltage cable terminal improved by non-linear material
Teng et al. The Influence of Positive Temperature Coefficient Material on the DC Electric Field within Epoxy Composites
Huang et al. Main insulation optimization of DC wall bushing based on field grading material
Zhao et al. Filler size effect on tuning electrical, mechanical, and thermal properties of field grading composites
Teng et al. Effect of Positive Temperature Coefficient Materials on the AC Breakdown Strength and Dielectric Properties of Epoxy Composites
Wei et al. Effect of SrFe 12 O 19 Orientation in the Inner Semiconductive Layer on Charge Accumulation Characteristics of HVDC Cable
Wang The latest technologies Study for HVAC/DC cable insulation material
Li et al. Breakdown Performance of Compound Structure of Semi-conductive Layer and Insulating Layer for Submarine Cable
Wang et al. Incorporation of nanodiamond into an epoxy polymer network with high thermal conductivity for electrical insulations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781788

Country of ref document: EP

Kind code of ref document: A1