CN110078990A - 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法 - Google Patents

一种磁性复合高压直流电缆半导电屏蔽层及其制备方法 Download PDF

Info

Publication number
CN110078990A
CN110078990A CN201910256973.4A CN201910256973A CN110078990A CN 110078990 A CN110078990 A CN 110078990A CN 201910256973 A CN201910256973 A CN 201910256973A CN 110078990 A CN110078990 A CN 110078990A
Authority
CN
China
Prior art keywords
shielding layer
semiconductive
magnetic
direct current
semiconductive shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910256973.4A
Other languages
English (en)
Inventor
郝春成
陈乐然
雷清泉
魏艳慧
李国倡
辛萌
马莉莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201910256973.4A priority Critical patent/CN110078990A/zh
Publication of CN110078990A publication Critical patent/CN110078990A/zh
Priority to PCT/CN2020/081708 priority patent/WO2020200102A1/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明涉及一种高压直流电缆磁性半导电屏蔽层及其制备方法,属于电工材料领域,本发明的高压直流电缆磁性半导电屏蔽层为磁性复合材料,其制备方法为,首先将磁性材料以粉体或浆液的形式添加至复合材料中制备得到磁性复合高压直流电缆半导电屏蔽料,再使用热压交联的方法制备出高压直流电缆磁性半导电屏蔽层,最后对所得半导电屏蔽层进行定向磁化,既得高压直流电缆磁性半导电屏蔽层。本发明主要用于高压直流电缆,实现抑制半导电屏蔽层中电荷的发射作用。

Description

一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
技术领域
本发明涉及电工材料领域,具体涉及一种高压直流电缆磁性半导电屏蔽层及其制备方法。
背景技术
高压直流输电有许多优点,线路成本低、线路损耗小、没有无功功率、电力连接方便、容易控制和调节,在长距离输电中直流电力系统已经得到实际应用。直流电缆在高压直流输电系统的应用一直相对滞后,在柔性直流输电技术发展后,直流电缆工程应用快速发展。直流高压电缆由内到外一般由导电线芯、半导电屏蔽层、绝缘层及其它保护层组成。国内少数电缆公司研制出320kV直流电缆,并应用于柔性直流输电工程,但是制造电缆所用的绝缘料和半导电屏蔽料完全依赖进口,目前主要被北欧化工垄断。绝缘料要求很高的纯净度、最小的空间电荷积累、较高的直流击穿电压和可靠性、良好的抗预交联特性、具有超光滑的加工表面、高温下的绝缘稳定性、高的导热率以及更简便的加工性能。其中要求具有最小的空间电荷积累是直流电缆区别传统交流电缆急需解决的问题,因为直流高压电缆绝缘层中容易积聚的空间电荷可以造成电缆绝缘层内电场畸变影响其绝缘强度以及加速绝缘的老化,这也是目前国际上直流高压交联聚乙烯电缆发展较慢的主要原因。
半导体屏蔽层是高压直流电缆的重要组成部分,用于实现导体与绝缘体之间的良好接触,有效改善导体表面的电场分布,降低向绝缘层载流子发射从而抑制绝缘层中空间电荷。作为高压直流电缆的屏蔽层,往往使用半导电的复合材料,在具有超光滑界面条件下较低的载流子发射是优良屏蔽料的基本要求。因此围绕如何降低屏蔽层的发射、减少绝缘层中空间电荷的积累是目前高压直流电缆料的研究热点。因此研究半导电层,尤其是如何降低高压直流电缆中半导电层的发射问题,对于研究半导电层对绝缘层的电荷注入具有重要的现实意义。
如实用新型CN201320631268.6公开了一种高压绝缘母线连接的屏蔽层结构,包括包覆在导电芯连接件的母线连接处屏蔽层,所述母线连接处屏蔽层具有绝缘层、导电或半导电层,所述母线连接处屏蔽层的导电或半导电层包括内导电或半导电层和外导电或半导电层,内导电或半导电层在绝缘层内侧,所述外导电或半导电层在绝缘层外侧、并延伸到高压绝缘母线的屏蔽层的外侧,所述内导电或半导电橡胶层的二端分别设有一圈内应力锥,所述母线连接处屏蔽层与高压绝缘母线的屏蔽层之间各设有一圈外应力锥,所述外导电或半导电橡胶层延伸至外应力锥处,该实用新型优化了高压绝缘母线连接的屏蔽层结构,使电容式屏蔽层的结构简单、绝缘性能好。
目前的半导电屏蔽层材料主要是向其中掺杂空间电荷抑制剂而达到降低载流子发射的目的,现有半导电屏蔽料所使用的空间电荷抑制剂多为无机填料,其原理主要是无机填料具有吸引和捕获载流子源的能力,从而在半导电屏蔽层中就能抑制载流子的迁移。以达到对空间电荷的抑制。但是利用该方法所制备出的高压直流半导电屏蔽层尚不能广泛应用于实际应用中,且抑制空间电荷的效果也有待进一步提高。
发明内容
针对上述问题,本发明的目的在于提供一种高压直流电缆磁性半导电屏蔽层及其制备方法,主要用于高压直流电缆,要解决的问题是从一种新的角度来抑制高压直流输电过程中所存在空间电荷问题,实现降低半导电屏蔽层中电荷发射的作用。
首先,本发明提供一种高压直流电缆磁性半导电屏蔽层,磁性半导电屏蔽层设置为可磁化材料,主要应用于高压直流电缆,实现抑制半导电屏蔽层中电荷发射的作用;
其中,可磁化的材料一般为永磁性材料,但也包括除永磁材料以外的其他任何可被磁化的材料;
所述的永磁性材料通常为合金永磁材料、铁氧体永磁材料和稀土永磁材料;
所述的半导电屏蔽层中的磁性粉体直径不大于2μm。
其次,本发明提供一种如权利要求1所述的高压直流电缆磁性半导电屏蔽层的制备方法,其特征在于,具体包括如下步骤:
S1:将磁性粉体改性来作为可磁化半导电屏蔽层的磁性粉体来源;
S2:将非极性高分子共聚物、高导电炭黑和抗氧剂等按照顺序熔融共混,制得半导电屏蔽料的初始原料;
S3:在S2所制备的初始原料中加入交联剂以及S1中改性的磁粉,再次进行熔融共混,即可制得可磁化半导电屏蔽料;
S4:将S3制备得到的可磁化半导电屏蔽料放入模具中,并把模具放入平板硫化机内进行热压交联,随后冷压出模,获得可磁化半导电屏蔽层;
S5:使用充磁机沿S4获得的可磁化半导电屏蔽层水平方向施加定向磁场,即得高压直流电缆磁性半导电屏蔽层;
具体地:所述S1中磁性粉体改性可用磁浆替代;
所述S1中磁性粉体为锶铁氧体粉末或钕铁硼粉末;
所述S2中非极性高分子共聚物为乙烯-醋酸乙烯共聚物或低密度聚乙烯(LDPE);
所述S2中抗氧剂为抗氧剂1010;
所述S3中交联剂为过氧化二异丙苯;
所述磁性粉体质量与半导电复合材料中其余材料总质量的质量比为0.01-2:1;
其中,在将磁性粉体加入半导电复合材料前,需使用偶联剂对磁性粉体进行表面改性。
其中,磁浆是将磁性粉末、分散剂、助剂和溶剂材料进行混合,经球磨机均匀分散制备而成;
其中,原料按重量份数包括以下组分:低密度聚乙烯40-50,弹性体20-40,高导电碳黑20-30,永磁体粉末0.1-100,抗氧剂0.3-0.5,交联剂DCP 0.5-2,交联助剂TAIC 0.5-2;
其中,S4中热压交联,将模具首先置于105-120℃平板硫化机中进行熔融排气,之后在170-180℃下进行热压交联,压力为10MPa;
其中,S5所述的充磁机所施加的外加磁场,其磁场强度为1-2.5T,持续时间不低于30秒。
本发明与现有技术相比,具有显著的积极效果和创新性,从一种新的角度抑制了半导电屏蔽层电荷的发射行为,且效果明显,该方法的提出对半导电复合材料的深入研究及国产化具有重要意义。
附图说明
图1为模拟高压直流电缆磁性半导电屏蔽层在高压直流电缆中抑制电荷发射原理图。
具体实施方式
下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1
(1)称取1克直径大小为1μm左右的锶铁氧体粉末,将其分散于乙醇和硅烷偶联剂K550的混合溶液中改性2h,之后使用离心机对该溶液进行离心5min,转速3000rpm并将离心得到的改性后的锶铁氧体粉末放入50℃真空干燥箱中烘干,制得产物A。
(2)先将45.0克低密度聚乙烯(LDPE)粒子加入115℃的双辊混炼机中,转速为60rpm,之后加入25.0克高导电炭黑和0.5克抗氧剂1010,熔融共混6分钟,制得混合物B;
(3)将30.0克乙烯-醋酸乙烯共聚物加入步骤(1)制得的混合物A中,熔融共混3分钟;
(4)将1.0克交联剂过氧化二异丙苯(DCP)、1克交联助剂TAIC及5g改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中,熔融共混4分钟后迅速从混合器中取出物料并冷却至室温,得含锶铁氧体的半导电屏蔽料粗样品;
(5)将步骤(4)制得的粗样品放入垫有聚四氟乙烯隔离膜的不锈钢模具内,用平板硫化机在120℃下预热4min,之后放入180℃平板硫化机热压交联8min,压力为10MPa, 之后在室温下的平板硫化机上冷压定型,获得测试用可磁化半导电屏蔽层样品,并对其进行磁性能测试;
(6)沿可磁化半导电屏蔽层水平方向施加定向磁场,磁场强度为2T,持续时间10min,即可得高压直流电缆磁性半导电屏蔽层。
实施例2
将实施例1的(4)中1克改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中改为50g改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中,其余与实施1相同。
实施例3
将实施例1的(4)中1克改性后的锶铁氧体粉末均匀加入(2)制得的混合物B中改为200克改性后的锶铁氧体粉末均匀加入步骤(2)制得的混合物B中,其余与实施1相同。
实施例4
(1)称取1克的直径大小为1μm左右的钕铁硼粉末,将其分散于乙醇和硅烷偶联剂KH550的混合溶液中改性2h,之后使用离心机对该溶液进行离心5min,并将离心得到的改性后的钕铁硼粉末放入50摄氏度真空干燥箱中烘干,制得产物A;
(2)先将45.0克低密度聚乙烯(LDPE)粒子加入115℃的双辊混炼机中,转速为60rpm,之后加入25.0 克高导电炭黑和0.5克抗氧剂1010,熔融共混6分钟,制得混合物B;
(3)将30.0克乙烯-醋酸乙烯共聚物加入(1)制得的混合物A中,熔融共混3分钟;
(4)将1.0克交联剂过氧化二异丙苯(DCP)、1克交联助剂TAIC及1g改性后的钕铁硼粉末均匀加入(2)制得的混合物B中,熔融共混4分钟,迅速从混合器中取出物料并冷却至室温,得粗样品;
(5)将步骤(4)制得的粗样品放入垫有聚四氟乙烯隔离膜的不锈钢模具内,用平板硫化机在120℃下预热4min,之后放入180℃平板硫化机热压交联8min,压力为10MPa, 之后在室温下的平板硫化机上冷压定型,获得测试用可磁化半导电屏蔽层样品,并对其进行磁性能测试;
(6)沿可磁化半导电屏蔽层水平方向施加定向磁场,磁场强度为2T,持续时间10min,即可得高压直流电缆磁性半导电屏蔽层。
实施例5
将实施例4的(4)中1g改性后的钕铁硼粉末均匀加入步骤(2)制得的混合物B中改为50g改性后的钕铁硼粉末均匀加入步骤(2)制得的混合物B中,其余与实施例4相同。
实施例6
将实施例4的(4)中1g改性后的钕铁硼粉末均匀加入步骤(2) 制得的混合物B中改为200g改性后的钕铁硼粉末均匀加入步骤(2) 制得的混合物B中,其余与实施例4相同。
实验例1
高压直流电缆磁性半导电屏蔽层磁性能的测定:使用振动样品磁强计对模压制备的样品进行磁性能的测定,从而测出磁性复合半导电屏蔽料矫顽力大小和剩余磁感应强度大小。
高压直流电缆磁性半导电屏蔽层磁化前后空间电荷发射的测定:将模压制备的厚为1mm的半导电片首先模拟高压直流电缆结构,使用电声脉冲法测试其磁化前对空间电荷发射的抑制效果,随后对半导电片在2T的外加磁场强度下进行定向磁化,持续10min,再次测试磁化后的半导电片对空间电荷发射的抑制效果。
本实验例通过A、B、C、D档位来评价,其中A+为最好,D-为最差,结果如表1所示:
表1
在高压直流电缆磁性半导电屏蔽层中,决定其剩余磁感应强度大小的主要因素是磁性粉体的性质及含量,磁性粉体本身磁化后剩余磁感应强度越大,其制备出的半导电屏蔽层经磁化后所具有的剩余磁感应强度就越大。
高压直流电缆磁性半导电屏蔽层矫顽力的大小则直接取决于磁性粉体的种类,与含量无关。
高压直流电缆磁性半导电屏蔽层,在其他条件相同的情况下,其抑制空间电荷的能力通常取决于磁性复合半导电层的剩余磁感应强度大小,即剩余磁感应强度越大,抑制空间电荷能力越强。
显然,本发明上述实施例仅仅是为清楚地说明本发明所做的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

1.一种高压直流电缆磁性半导电屏蔽层,其特征在于,磁性半导电屏蔽层设置为可磁化材料。
2.根据权利要求1所述的高压直流电缆磁性半导电屏蔽层,其中,可磁化材料一般为永磁性材料,但也包括除永磁材料以外的其他任何可被磁化的材料;
所述的永磁性材料通常为合金永磁材料、铁氧体永磁材料和稀土永磁材料。
3.根据权利要求1-2任意一项所述的高压直流电缆磁性半导电屏蔽层,其特征在于,所述的半导电屏蔽层中的磁性粉体直径不大于2μm。
4.一种如权利要求1所述的高压直流电缆磁性半导电屏蔽层的制备方法,其特征在于,具体包括如下步骤:
S1:将磁性粉体改性来作为可磁化半导电屏蔽层的磁性粉体来源;
S2:将高分子聚合物、高导电炭黑和抗氧剂等按照顺序熔融共混,制得半导电屏蔽料的初始原料;
S3:在S2所制备的初始原料中加入交联剂以及S1中改性的磁粉,再次进行熔融共混,即可制得可磁化半导电屏蔽料;
S4:将S3制备得到的可磁化半导电屏蔽料放入模具中,并把模具放入平板硫化机内进行热压交联,随后冷压出模,获得可磁化半导电屏蔽层;
S5:使用充磁机沿S4获得的可磁化半导电屏蔽层水平方向施加定向磁场,即得高压直流电缆磁性半导电屏蔽层。
5.一种如权利要求4所述的制备方法,具体地:
所述S1中磁性粉体改性用磁浆替代;
所述S3中改性的磁粉用磁浆替代;
所述S1中磁性粉体为锶铁氧体粉末;
所述S2中非极性高分子共聚物为乙烯-醋酸乙烯共聚物或低密度聚乙烯(LDPE);
所述S2中抗氧剂为抗氧剂1010;
所述S3中交联剂为过氧化二异丙苯。
6.一种如权利要求4所述的制备方法,具体地:
所述S1中磁性粉体为钕铁硼粉末。
7.根据权利要求4-6所述的制备方法,其特征在于,所述磁性粉体质量与半导电复合材料中其余材料总质量的质量比为0.01-2:1。
8.根据权利要求4-6所述的制备方法,其中在将磁性粉体加入半导电复合材料前,需使用偶联剂对磁性粉体进行表面改性。
9.根据权利要求4-6所述的制备方法,其中磁浆是将磁性粉末、分散剂、助剂和溶剂材料进行混合,均匀分散制备而成。
10.根据权利要求4-6所述的制备方法,具体地:
其中,原料按重量份数包括以下组分:低密度聚乙烯40-50,弹性体20-40,高导电碳黑20-30,永磁体粉末0.1-100,抗氧剂0.3-0.5,交联剂DCP 0.5-2,交联助剂TAIC 0.5-2;
其中,S4中热压交联,将模具首先置于105-120℃平板硫化机中进行熔融排气,之后在170-180℃下进行热压交联,压力为10MPa;
其中,S5所述的充磁机所施加的外加磁场,其磁场强度为1-2.5T,持续时间不低于30秒。
CN201910256973.4A 2019-04-01 2019-04-01 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法 Pending CN110078990A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910256973.4A CN110078990A (zh) 2019-04-01 2019-04-01 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
PCT/CN2020/081708 WO2020200102A1 (zh) 2019-04-01 2020-03-27 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910256973.4A CN110078990A (zh) 2019-04-01 2019-04-01 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法

Publications (1)

Publication Number Publication Date
CN110078990A true CN110078990A (zh) 2019-08-02

Family

ID=67413956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910256973.4A Pending CN110078990A (zh) 2019-04-01 2019-04-01 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法

Country Status (2)

Country Link
CN (1) CN110078990A (zh)
WO (1) WO2020200102A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200102A1 (zh) * 2019-04-01 2020-10-08 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
WO2020207312A1 (zh) * 2019-04-12 2020-10-15 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
CN113567769A (zh) * 2021-07-15 2021-10-29 南京信息工程大学 基于电荷注入特性表征的直流电缆半导电屏蔽材料选用方法
CN115286855A (zh) * 2022-07-15 2022-11-04 青岛科技大学 一种高压直流半导电屏蔽材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985571A (zh) * 2015-07-05 2016-10-05 青岛科技大学 一种弱化正温度系数效应的半导电屏蔽料及其制备方法
CN106883505A (zh) * 2017-04-10 2017-06-23 青岛科技大学 一种柔性半导电屏蔽料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952493B2 (ja) * 1977-12-09 1984-12-20 古河電気工業株式会社 電力ケ−ブルの製造方法
DE102009041067A1 (de) * 2009-03-21 2010-09-30 Ralf Bauhaus Kabel
CN103709478A (zh) * 2013-12-17 2014-04-09 无锡江南电缆有限公司 一种高压直流电缆半导电聚烯烃屏蔽材料
CN103980599B (zh) * 2014-05-30 2016-03-02 江苏德威新材料股份有限公司 一种高压直流电缆用半导电屏蔽材料及其制备方法
CN107325383A (zh) * 2017-08-29 2017-11-07 德阳力久云智知识产权运营有限公司 一种电缆复合屏蔽材料及其制备方法
CN107481792A (zh) * 2017-08-29 2017-12-15 德阳力久云智知识产权运营有限公司 一种屏蔽电缆
CN110078990A (zh) * 2019-04-01 2019-08-02 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985571A (zh) * 2015-07-05 2016-10-05 青岛科技大学 一种弱化正温度系数效应的半导电屏蔽料及其制备方法
CN106883505A (zh) * 2017-04-10 2017-06-23 青岛科技大学 一种柔性半导电屏蔽料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周文: ""CNFs-Fe3O4/聚乙烯纳米复合材料的电性能研究"", 《青岛科技大学研究生学位论文》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200102A1 (zh) * 2019-04-01 2020-10-08 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
WO2020207312A1 (zh) * 2019-04-12 2020-10-15 青岛科技大学 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
CN113567769A (zh) * 2021-07-15 2021-10-29 南京信息工程大学 基于电荷注入特性表征的直流电缆半导电屏蔽材料选用方法
CN113567769B (zh) * 2021-07-15 2022-11-25 南京信息工程大学 基于电荷注入特性表征的直流电缆半导电屏蔽材料选用方法
CN115286855A (zh) * 2022-07-15 2022-11-04 青岛科技大学 一种高压直流半导电屏蔽材料及其制备方法

Also Published As

Publication number Publication date
WO2020200102A1 (zh) 2020-10-08

Similar Documents

Publication Publication Date Title
CN110078990A (zh) 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
US10045440B1 (en) Magnetically enhanced electrical signal conduction apparatus and methods
WO2020207312A1 (zh) 一种磁性复合高压直流电缆半导电屏蔽层及其制备方法
US6403697B1 (en) Carbon black, method for its preparation and its applications
US20180145554A1 (en) Resistance Covering For A Corona Shield Of An Electric Machine
Han et al. Electrical tree in HTV silicone rubber with temperature gradient under repetitive pulse voltage
Du et al. Improved electric field distribution within bushing insulation by EP/GO nanocomposites with reduced temperature coefficient of conductivity
Sun et al. Self‐adaptive electrostatic discharge performance of ZnO microvaristors doped silicone rubber composites
Yuan et al. Non‐linearly conductive ZnO microvaristors/epoxy resin composite prepared by wet winding with polyester fibre cloth
Choi et al. Finite-element analysis for surface discharge due to interfacial polarization at the oil-nanocomposite interface
He et al. Space charge accumulation mechanism near the stress cone of cable accessories under electrical-thermal aging
Schmerling et al. Investigations of modified nonlinear electrical materials for end corona protection in large rotating machines
OuYang et al. Investigation of electrical properties of ZnO@ Ag/EPDM composites
CN109438807B (zh) 一种绝缘材料及其制备方法和应用
An et al. Research on effect of modified semi conductive material on the space charge behaviour in XLPE
Wang et al. Incorporation of nanodiamond into an epoxy polymer network with high thermal conductivity for electrical insulations
Li et al. Research on the electric field intensity distribution of high-voltage cable terminal improved by non-linear material
Hikita Innovative Functional Insulating Materials Development for Advanced Electric Power Apparatuses Outline of NEDO Project
US11855501B2 (en) Nanostructured insulation for electric machines
Abou-Dakka et al. Space charge evolution in XLPE and EPR under high uniform electric fields
CN107481792A (zh) 一种屏蔽电缆
Liu et al. Charge injection characteristics and charge migration mechanism of magnetic particle-modified EBA-based semi-conductive shielding layers
Ohki et al. Two methods for improving electrochemical migration resistance of printed wiring boards
Duan et al. Comparisons of Electrical Properties of Polycarbonate and Epoxy Resin under Electrical-Thermal Aging
KR100854420B1 (ko) 전력케이블용 반도전 시트의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190802

WD01 Invention patent application deemed withdrawn after publication