WO2020199555A1 - 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用 - Google Patents

一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用 Download PDF

Info

Publication number
WO2020199555A1
WO2020199555A1 PCT/CN2019/111823 CN2019111823W WO2020199555A1 WO 2020199555 A1 WO2020199555 A1 WO 2020199555A1 CN 2019111823 W CN2019111823 W CN 2019111823W WO 2020199555 A1 WO2020199555 A1 WO 2020199555A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyoxyethylene ether
catalyst
preparation
alkylcyclohexanol
ethylene oxide
Prior art date
Application number
PCT/CN2019/111823
Other languages
English (en)
French (fr)
Inventor
夏咏梅
方云
胡学一
任琮琳
钱飞
胡益涛
孟新宇
Original Assignee
江南大学
泰兴市凌飞化学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学, 泰兴市凌飞化学科技有限公司 filed Critical 江南大学
Publication of WO2020199555A1 publication Critical patent/WO2020199555A1/zh
Priority to US17/113,309 priority Critical patent/US20210087334A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2648Alkali metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the invention relates to the preparation and application of an alkylcyclohexanol polyoxyethylene ether emulsifier, and belongs to the preparation and application field of nonionic surfactants.
  • alkylphenol polyoxyethylene ether (APEO n ) has been widely used in industrial and civil cleaning products due to its high efficiency and economy.
  • the annual consumption of APEO n in the world is 880 million pounds.
  • APEO n include nonylphenol ether (NPEO n), about 80% -85%, polyoxyethylene octylphenol ethers (OPEO n) of more than 15%, polyoxyethylene dodecylphenol ether ( DPEO n ) and dinonylphenol polyoxyethylene ether (DNPEO n ) each account for 1%.
  • NPEO n is low in price, stable in performance, and has good emulsification and wetting properties.
  • NCEO n alkylcyclohexanol polyoxyethylene ether
  • alkylcyclohexanol polyoxyethylene ether surfactant can be prepared by hydrogenating nonylphenol polyoxyethylene ether; it can also be prepared from alkylcyclohexanol by adding ethylene oxide.
  • the former requires the use of carcinogenic solvent dioxane as a solvent; the latter can avoid the use of dioxane, but the addition efficiency of ethylene oxide as a secondary alcohol of alkylcyclohexanol is very low.
  • Vinyl ether surfactants are not only low in reaction conversion rate (about 50%), but also difficult to separate from unreacted substances due to the high boiling point and multi-component of the high addition number products.
  • alkyl cyclohexanol polyoxyethylene ether with addition number of 1-3 (NCEO 1-3 , purchased from Jiangsu Lingfei Technology Co., Ltd.) as raw materials, and then we can add ethylene oxide from primary alcohols. , So as to achieve the purpose of synthesis.
  • the problem to be solved by the present invention is to provide a method for preparing an environmentally friendly surfactant with structure and performance similar to nonylphenol polyoxyethylene ether; namely, to provide a preparation method of alkylcyclohexanol polyoxyethylene ether emulsifier Method, through the analysis of its structure and emulsification performance, provide the structure and application basis of alkyl cyclohexanol polyoxyethylene ether as emulsifier.
  • the present invention provides a preparation method of alkyl cyclohexanol polyoxyethylene ether emulsifier, the purpose of which is to obtain a surface active agent similar in structure and performance to nonylphenol polyoxyethylene ether but environmentally friendly.
  • the structure of cyclohexanol polyoxyethylene ether emulsifier is shown in the following formula I:
  • the method is to use a basic catalyst to catalyze the ethoxylation reaction of alkyl cyclohexanol polyoxyethylene ether (NCEO 1-3 ) with addition number of 1-3, and alkyl ring with addition number of 1-3
  • NEO 1-3 alkyl cyclohexanol polyoxyethylene ether
  • the mass of the catalyst used is 0.1%-1.0% of the total mass of the reaction raw material NCEO 1-3 .
  • the method includes the following steps: mixing alkylcyclohexanol polyoxyethylene ether (NCEO 1-3 ) with an ethylene oxide addition number of 1-3, water, and a catalyst to prepare a catalyst suspension, Then put the alkylcyclohexanol polyoxyethylene ether with ethylene oxide addition number of 1-3 and the catalyst suspension in the addition kettle, stir and heat to the reaction temperature (90-140°C), and dehydrate under negative pressure to The water content in the reaction material is less than 0.1%, and then maintain the pressure in the addition kettle at 0.1-0.5Mpa, slowly add ethylene oxide into the addition kettle, and stir at the reaction temperature until the pressure in the addition kettle is not After the change, another 0.5-1h to complete the reaction; after the temperature in the addition kettle is cooled to room temperature, the materials in the addition kettle are neutralized with acetic acid to pH 6.5-7 and discharged.
  • NCEO 1-3 alkylcyclohexanol polyoxyethylene ether
  • the catalyst is a strongly basic catalyst.
  • the catalyst is one or two of KOH, NaOH, LiOH, K 2 CO 3 , Na 2 CO 3 , CH 3 OK or CH 3 ONa.
  • the catalyst suspension is one or two of KOH, NaOH, LiOH, K 2 CO 3 , Na 2 CO 3 , CH 3 OK or CH 3 ONa with a solvent and a low addition number alkyl ring A mixture of hexanol polyoxyethylene ether.
  • the preparation method of the catalyst suspension is: dissolving the catalyst in a solvent at room temperature so that the final mass concentration in the catalyst suspension is 15%-25%; and then changing the mass to 20%-50% of the catalyst mass Add NCEO 1-3 to it, stir vigorously to make it evenly dispersed.
  • the solvent is water.
  • the solvent is an aqueous ethanol solution with a volume fraction of 70%.
  • Non-ionic surfactant nonylphenol polyoxyethylene ether 10
  • NPEO 10 also known as TX-10 or NP-10
  • the present invention provides the preparation and application of an alkylcyclohexanol polyoxyethylene ether emulsifier. Its structure is as shown in formula I, and its structure does not contain nonylphenol; when n is 5-17, the products are all Has good non-ionic surfactant properties. The structure with corresponding performance can be selected according to actual needs, and it can replace NPEO n with similar performance but with tocotoxicity.
  • NCEO 7 and NCEO 9 are products with ethylene oxide addition numbers of 7 and 9, NCEO 7, NCEO 9, for example, NCEO 7.
  • NCEO 9 is almost close to NPEO 10 in terms of emulsification performance for several typical oil phases; NCEO 7 is even better than nonylphenol polyoxyethylene ether for emulsions with liquid paraffin and olive oil as the oil phase (10) Better emulsifying power; at the same time, the cloud point of NCEO 7 and NCEO 9 is close to or higher than NPEO 10 , which does not affect their solubility characteristics in aqueous solution. Therefore, NCEO 7 and NCEO 9 can replace nonylphenol polyoxyethylene ether (10) Use as an emulsifier.
  • the invention adopts the primary alcohol NCEO 1-3 addition ethylene oxide combined with the pre-dispersion of the catalyst, the catalyst suspension is used to effectively solve the mass transfer problem of the catalyst system, and the obtained product has low residual ethylene oxide and polyethylene glycol Low content.
  • Figure 1 is the infrared spectrum (IR) of nonylcyclohexanol polyoxyethylene ether (7) (NCEO 7 ).
  • Figure 2 is a mass spectrum (ESI-MS) of nonylcyclohexanol polyoxyethylene ether (7) (NCEO 7 ).
  • Determination of emulsifying power It is characterized by demulsifying time, the longer the emulsifying performance is.
  • plug the lid tightly maintain the same strength, vibrate up and down five times and let stand for 1 minute, then vibrate up and down five times and let stand for 1 minute, repeat five times.
  • Start the stopwatch immediately after the fifth vibration. At this time, the oil and water phases begin to separate.
  • the time required for the lower layer to separate 10 mL of the water phase is the demulsification time.
  • Cloud point determination According to GB/T 5559-2010 non-ionic surfactant cloud point test method, put a test tube containing 0.5% surfactant aqueous solution in a water bath to slowly warm up (or cool down), the solution just turned turbid ( The temperature corresponding to the temperature increase method) or the change from complete turbidity to clear (temperature reduction method) is the cloud point of the test sample.
  • the cloud point of NPEO 10 is 61.1°C.
  • Example 1 Catalytic preparation of polyoxyethylene nonylcyclohexanol ether with KOH catalyst suspension (7)
  • the product nonylcyclohexanol polyoxyethylene ether (7) has a cloud point of 62.5°C, a polyethylene glycol content of 1.1%, and a residual ethylene oxide of 7 ppm.
  • the infrared spectrogram is shown in Figure 1 of the specification, the mass spectrum is shown in Figure 2 and the emulsification performance is shown in Figure 3 of the specification.
  • Example 2 Catalytic preparation of nonyl cyclohexanol polyoxyethylene ether with KOH catalyst suspension (9)
  • the cloud point of the product nonylcyclohexanol polyoxyethylene ether (9) is 69.4°C, the polyethylene glycol content is 0.98%, and the residual ethylene oxide is 7.2 ppm.
  • the emulsifying properties of the product (denoted as NCEO 9 ) are shown in Figure 3 of the specification.
  • the product nonylcyclohexanol polyoxyethylene ether (9) has a cloud point of 72°C, a polyethylene glycol content of 16%, and a residual ethylene oxide of 120 ppm.
  • the emulsifying properties of the product (denoted as NCEO 9 (I)) are shown in Figure 3 of the specification.
  • nonylcyclohexanol polyoxyethylene ether Place 1kg of nonylcyclohexanol polyoxyethylene ether (1) in the addition kettle, add the above-mentioned KOH catalyst aqueous solution with stirring, heat to 100°C, dehydrate under negative pressure for 0.1h, and then maintain the system pressure at 0.3Mpa, reduce 1.3 Kg of ethylene oxide was slowly added to the addition kettle, stirred at constant temperature until the pressure in the addition kettle no longer changed for 0.5h, then the reaction was terminated; after the temperature in the addition kettle was cooled to room temperature, neutralize the contents of the addition kettle with acetic acid To pH6.5, discharge.
  • the product nonylcyclohexanol polyoxyethylene ether (9) has a cloud point of 75°C, a polyethylene glycol content of 20%, and an ethylene oxide residue of 7.0 ppm.
  • Example 3 Catalytic preparation of nonylcyclohexanol polyoxyethylene ether with CH 3 OK suspension (13)
  • the cloud point of the product nonylcyclohexanol polyoxyethylene ether (13) is 83.9°C
  • the polyethylene glycol content is 2.1%
  • the residual ethylene oxide is 6.3 ppm.
  • the emulsifying properties of the product (denoted as NCEO 13 ) are shown in Figure 3 of the specification.
  • Example 4 Catalytic preparation of nonylcyclohexanol polyoxyethylene ether with CH 3 OK suspension (7)
  • Example 5 Catalytic preparation of nonylcyclohexanol polyoxyethylene ether with NaHCO 3 suspension (7)
  • the reaction was repeated after increasing the amount of NaHCO 3 , the reaction temperature and the aging time.
  • nonylcyclohexanol polyoxyethylene ether (2) in the addition kettle, add the above-mentioned NaHCO 3 catalyst suspension under stirring, heat to 130°C, dehydrate under negative pressure for 1 hour, and then maintain the system pressure at 0.5Mpa. 0.70kg of ethylene oxide was slowly added to the addition kettle, and stirred at constant temperature until the pressure in the addition kettle no longer changed for 2h, then the reaction was terminated; after the temperature in the addition kettle was cooled to room temperature, neutralize the contents of the addition kettle with acetic acid To pH7, discharge.
  • the product nonylcyclohexanol polyoxyethylene ether (7) has a cloud point of 73.1°C, a polyethylene glycol content of 25.2%, and a residual ethylene oxide of 20 ppm.
  • Example 6 Example of preparing emulsion with nonylcyclohexanol polyoxyethylene ether surfactant and several typical oils
  • Figure 3 shows that the emulsification ability of nonylcyclohexanol polyoxyethylene ether (7) and (9) for several typical oils is close to that of NPEO 10 ; especially NCEO 7 has an emulsification ability for mineral oil and vegetable oil that exceeds NPEO. 10, on the emulsifying capacity of NPEO biodiesel consistent with 10, 10 may be used instead of NPEO emulsifiers such as oil emulsions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用,属于表面活性剂技术领域。用烷基环己醇聚氧乙烯醚(1-3)与环氧乙烷加成,以强碱悬浮液为催化剂,合成非离子表面活性剂烷基环己醇聚氧乙烯醚(5-17),产品均具有良好的非离子表面活性剂特性,产品中残留聚乙二醇低;其中n=7和9的产品如壬基环己醇聚氧乙烯醚(7)具有与壬基酚聚氧乙烯醚(10)相近的乳化性能,可替代壬基酚聚氧乙烯醚(10)作为乳化剂使用。

Description

一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用 技术领域
本发明涉及一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用,属于非离子表面活性剂的制备与应用领域。
背景技术
过去40年中,烷基酚聚氧乙烯醚(APEO n)由于其高效、经济被广泛应用于工业和民用清洁产品中,世界APEO n年耗量为8.8亿磅。APEO n中包括壬基酚聚氧乙烯醚(NPEO n),约占80%-85%、辛基酚聚氧乙烯醚(OPEO n)占15%以上、十二烷基酚聚氧乙烯醚(DPEO n)和二壬基酚聚氧乙烯醚(DNPEO n)各占1%。其中NPEO n价格低廉、性能稳定,具有良好的乳化和润湿性能,被广泛应用于纺织、造纸和家用洗化用品等各个领域中,特别是由于其优异的乳化性能,在农药乳剂(以生物柴油为油相)和金属切削液(以石油烃类为油相)中用量庞大。但由于NPEO n的生物降解性差、环境毒性大,十年前欧盟REACH限制了NPEO n在纺织品加工中的使用浓度。2011年我国环境保护部也将壬基酚列入《中国严格限制进出口的有毒化学品目录》。
因此,急切需要找到一种结构和性能与壬基酚聚氧乙烯醚类似但环境友好的表面活性剂。研究者一直在努力筛选,工业界所选过的产品有脂肪酸聚氧乙烯酯、脂肪醇聚氧乙烯醚(包括AEO和仲醇聚氧乙烯醚SAE)、烷基糖苷(APG)、脂肪酸聚氧乙烯甲醚(FMEE)和吐温(Tween)、司班(Span)系列表面活性剂,但是都很难达到和壬基酚聚氧乙烯醚类似的性能。
壬基酚聚氧乙烯醚的毒性主要来自于降解产物烷基酚,如果将酚变成环烷基,即用烷基环己醇聚氧乙烯醚(NCEO n)替代APEO n,那么由于NCEO n在环境中不会降解产生烷基酚类有毒产物,而环烷烃在环境中的降解速度高于芳烃,所以理论上NCEO n应具有比TX-10更高的降解速度。因此从结构上看NCEO n有希望在某些方面成为TX-10的绿色替代品。
烷基环己醇聚氧乙烯醚表面活性剂的合成路径可以是将壬基酚聚氧乙烯醚加氢制备;也可以从烷基环己醇加成环氧乙烷。前者需要用致癌溶剂二噁烷作溶剂;后者可以避免使用二噁烷,但是作为仲醇的烷基环己醇的环氧乙烷加成效率很低,在制备烷基环己醇聚氧乙烯醚表面活性剂时不仅反应转化率低(约50%),而且因为高加成数产品的高沸点和多组分,很难与未反应物分离。因此我们用加成数为1-3的烷基环己醇聚氧乙烯醚(NCEO 1-3,购自江苏凌飞科技有限公司)为原料,就可以从伯醇出发加成环氧乙烷,从而达到合成目的。
聚氧乙烯醚表面活性剂的应用性能与其疏水基的结构及亲水基上环氧乙烷加成数有很大 关系,但是没有现成公式可寻。目前还没有报道合成出各种具有表面活性的NCEO n产品,人们无从了解NCEO n的环氧乙烷加成数与性能之间的对应关系,自然也无从了解用NCEO n替代NPEO 10的可行性。
发明内容
[技术问题]
本发明要解决的问题是提供一种结构和性能与壬基酚聚氧乙烯醚类似但环境友好的表面活性剂的制备方法;即提供一种烷基环己醇聚氧乙烯醚乳化剂的制备方法,通过对其结构和乳化性能的解析,提供烷基环己醇聚氧乙烯醚作为乳化剂等的结构和应用依据。
[技术方案]
本发明提供了一种烷基环己醇聚氧乙烯醚乳化剂的制备方法,目的是得到一种结构和性能与壬基酚聚氧乙烯醚类似但环境友好的表面活性剂,所述烷基环己醇聚氧乙烯醚乳化剂的结构如下式Ⅰ所示:
Figure PCTCN2019111823-appb-000001
式Ⅰ中,碳链R为直链或支链烷基,其碳数为C 6-C 15,n=5-17;
所述方法是使用碱性催化剂催化加成数为1-3的烷基环己醇聚氧乙烯醚(NCEO 1-3)发生乙氧基化反应,加成数为1-3的烷基环己醇聚氧乙烯醚(NCEO 1-3)的结构式如式Ⅱ所示,
Figure PCTCN2019111823-appb-000002
式Ⅱ中,碳链R为直链或支链烷基,其碳数为C 6-C 15,n=1-3。
所述原料NCEO 1-3和环氧乙烷的摩尔比为n(NCEO 1-3):n(CH 2CH 2O)=1:(4-14);反应式如下:
Figure PCTCN2019111823-appb-000003
具体地,所用催化剂质量为反应原料NCEO 1-3总质量的0.1%-1.0%。
具体地,所述方法包括以下步骤:将环氧乙烷加成数为1-3的烷基环己醇聚氧乙烯醚(NCEO 1-3)、水、催化剂混合,制成催化剂悬浮液,然后将环氧乙烷加成数为1-3的烷基环己醇聚氧乙烯醚、催化剂悬浮液置于加成釜中,搅拌加热至反应温度(90-140℃),负压脱水至反应物料中的水含量低于0.1%,然后维持加成釜内的压力为0.1-0.5Mpa,将环 氧乙烷缓慢加入加成釜中,在反应温度下恒温搅拌至加成釜内压力不再变化后,再过0.5-1h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH6.5-7,出料。
更具体地,所述催化剂为强碱性催化剂。
更具体地,所述催化剂为KOH、NaOH、LiOH、K 2CO 3、Na 2CO 3、CH 3OK或CH 3ONa中的一种或两种。
更具体地,所述催化剂悬浮液为KOH、NaOH、LiOH、K 2CO 3、Na 2CO 3、CH 3OK或CH 3ONa中的一种或两种与溶剂及低加成数烷基环己醇聚氧乙烯醚的混合物。所述催化剂悬浮液的制备方法为:将催化剂在室温下溶于溶剂中,使其在催化剂悬浮液中的最终质量浓度为15%-25%;再将质量为催化剂质量20%-50%的NCEO 1-3加入其中,剧烈搅拌使之分散均匀即可。当催化剂为KOH、NaOH、LiOH、K 2CO 3和Na 2CO 3中的一种或两种时,所述溶剂为水。当催化剂为CH 3OK和CH 3ONa中的一种或两种时,所述溶剂为体积分数为70%的乙醇水溶液。
[有益效果]
非离子表面活性剂壬基酚聚氧乙烯醚(10),俗称NPEO 10又称TX-10或者NP-10是大宗民生性非离子表面活性剂,在农乳、机械加工乳液和纺织加工乳液中有巨大的用量;需要找到性能相近但不含酚结构的替代品。本发明提供了一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用,其结构如式Ⅰ所示,其结构中不含壬基酚;n取值为5-17时,产品均具有良好的非离子表面活性剂特性。可以结合实际需求选择所需相应性能的结构,可以替代性能相近但具有生育毒性的NPEO n
以壬基环己醇聚氧乙烯醚(7)和壬基环己醇聚氧乙烯醚(9),即环氧乙烷加成数为7和9的产品NCEO 7、NCEO 9为例,NCEO 7、NCEO 9在对几种典型油相的乳化性能方面,几乎都接近于NPEO 10;NCEO 7对以液体石蜡和橄榄油为油相的乳液甚至有比壬基酚聚氧乙烯醚(10)更好的乳化力;同时NCEO 7和NCEO 9的浊点接近或高于NPEO 10的,不影响其在水溶液中使用的溶解特性,因此,NCEO 7和NCEO 9可替代壬基酚聚氧乙烯醚(10)作为乳化剂使用。
本发明采用伯醇NCEO 1-3加成环氧乙烷结合催化剂预分散的方式,使用催化剂悬浮液有效解决催化剂体系的传质问题,所得产品的环氧乙烷残留量低,聚乙二醇含量低。
附图说明
图1是壬基环己醇聚氧乙烯醚(7)(NCEO 7)的红外光谱图(IR)。
图2是壬基环己醇聚氧乙烯醚(7)(NCEO 7)的质谱图(ESI-MS)。
图3是壬基环己醇聚氧乙烯醚NCEO n(n=7,9,11,13)的乳化性能(对照品是壬基酚聚氧乙烯醚NPEO 10)。
具体实施方式
以工业商品壬基酚聚氧乙烯醚NPEO n系列表面活性剂为性能对照品,合成并检测系列产品的乳化性能,提供烷基环己醇聚氧乙烯醚作为乳化剂的结构和应用依据。产品中游离聚乙二醇的含量依据GB 5560-2003中的Weibull法检测;负压脱水时,反应物料中的水份含量依据GB/T7380的卡尔费休法测定;产品中的环氧乙烷残留量依据GB/T16886.7-2001的气相色谱法检测。
乳化力的测定:用破乳时间表征,时间越长,乳化性能越好。以液体石蜡、生物柴油、二甲苯、橄榄油或二甲基硅油的一种为油相物质,取40mL 1g/L表面活性剂溶液于100mL具塞量筒内,再向具塞量筒中加入40mL油相物质,塞紧盖子,保持相同力度,上下振动五次静置1分钟,再上下振动五次静置1分钟,重复五次。第五次振动结束后立即开启秒表计时,此时油水两相开始分离,下层分出10mL水相时所需时间即为破乳时间。
浊点测定:参照GB/T 5559-2010中非离子表面活性剂浊点试验方法,将装有0.5%表面活性剂水溶液的试管置于水浴锅中缓慢升温(或降温),溶液刚变浑浊(升温法)或由完全浑浊变澄清(降温法)所对应的温度即为该测试样的浊点。NPEO 10的浊点为61.1℃。
下面以壬基环己醇聚氧乙烯醚的合成和应用为例。
实施例一:用KOH催化剂悬浮液催化制备壬基环己醇聚氧乙烯醚(7)
将5g KOH在室温下溶于15mL水中,再将2g壬基环己醇聚氧乙烯醚(1)加入其中,剧烈搅拌使之分散均匀,得到KOH催化剂悬浮液。
将1kg壬基环己醇聚氧乙烯醚(1)置于加成釜中,搅拌下加入上述KOH催化剂悬浮液,加热至90℃,负压脱水0.2h,然后维持体系压力为0.3Mpa,将0.98kg环氧乙烷(摩尔比NCEO 1:EO=1:6)缓慢加入加成釜中,恒温搅拌至加成釜内压力不再变化后0.5h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH7,出料。产品壬基环己醇聚氧乙烯醚(7)的浊点为62.5℃,聚乙二醇含量为1.1%,环氧乙烷残留为7ppm。红外光谱图见说明书附图1,质谱图见附图2,乳化性能见说明书附图3。
实施例二:用KOH催化剂悬浮液催化制备壬基环己醇聚氧乙烯醚(9)
将6g KOH在室温下溶于15mL水中,再将3g壬基环己醇聚氧乙烯醚(1)加入其中,剧烈搅拌使之分散均匀,得到KOH催化剂悬浮液。
将1kg壬基环己醇聚氧乙烯醚(1)置于加成釜中,搅拌下加入上述KOH催化剂悬浮 液,加热至100℃,负压脱水0.2h,然后维持体系压力为0.3Mpa,将1.3kg环氧乙烷(摩尔比NCEO 1:EO=1:8)缓慢加入加成釜中,恒温搅拌至加成釜内压力不再变化后0.5h,结束反应;待加成釜内温度冷却至室温后,用适量乙酸中和加成釜内物料至pH6.5,出料。产品壬基环己醇聚氧乙烯醚(9)的浊点为69.4℃,聚乙二醇含量为0.98%,环氧乙烷残留为7.2ppm。产品(记为NCEO 9)的乳化性能见说明书附图3。
对照例:用KOH粉末催化制备壬基环己醇聚氧乙烯醚(9)
将1kg壬基环己醇聚氧乙烯醚(1)置于加成釜中,搅拌下加入6g KOH,加热至100℃,负压脱水0.1h,然后维持体系压力为0.3Mpa,将1.3kg环氧乙烷缓慢加入加成釜中,恒温搅拌至加成釜内压力不再变化后0.5h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH6.5,出料。产品壬基环己醇聚氧乙烯醚(9)的浊点为72℃,聚乙二醇含量为16%,环氧乙烷残留为120ppm。产品(记为NCEO 9(I))的乳化性能见说明书附图3。
对照例:用KOH水溶液催化制备壬基环己醇聚氧乙烯醚(9)
将6g KOH在室温下溶于15mL水中,搅拌得到KOH催化剂水溶液。
将1kg壬基环己醇聚氧乙烯醚(1)置于加成釜中,搅拌下加入上述KOH催化剂水溶液,加热至100℃,负压脱水0.1h,然后维持体系压力为0.3Mpa,将1.3kg环氧乙烷缓慢加入加成釜中,恒温搅拌至加成釜内压力不再变化后0.5h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH6.5,出料。产品壬基环己醇聚氧乙烯醚(9)的浊点为75℃,聚乙二醇含量为20%,环氧乙烷残留为7.0ppm。
实施例三:用CH 3OK悬浮液催化制备壬基环己醇聚氧乙烯醚(13)
将6g CH 3OK在室温下溶于15mL70%的乙醇水溶液中,再将1g壬基环己醇聚氧乙烯醚(3)加入其中,剧烈搅拌使之分散均匀,得到CH 3OK催化剂悬浮液。
将1kg壬基环己醇聚氧乙烯醚(3)置于加成釜中,搅拌下加入上述KOH催化剂悬浮液,加热至140℃,负压脱水0.2h,然后维持体系压力为0.4Mpa,将1.23kg(摩尔比NCEO 3:EO=1:10)环氧乙烷缓慢加入加成釜中,140℃下搅拌至加成釜内压力不再变化后1h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH6.5,出料。产品壬基环己醇聚氧乙烯醚(13)的浊点为83.9℃,聚乙二醇含量为2.1%,环氧乙烷残留为6.3ppm。产品(记为NCEO 13)的乳化性能见说明书附图3。
实施例四:用CH 3OK悬浮液催化制备壬基环己醇聚氧乙烯醚(7)
将4g CH 3OK在室温下溶于12mL70%的乙醇水溶液中,再将1g壬基环己醇聚氧乙烯醚(2)加入其中,剧烈搅拌使之分散均匀,得到CH 3OK催化剂悬浮液。
将1kg壬基环己醇聚氧乙烯醚(2)置于加成釜中,搅拌下加入上述KOH催化剂悬浮液,加热至90℃,负压脱水0.2h,然后维持体系压力为0.3Mpa,将0.70kg环氧乙烷缓慢加入加成釜中,恒温搅拌至加成釜内压力不再变化后0.5h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH7,出料。产品壬基环己醇聚氧乙烯醚(7)的浊点为63.5℃,聚乙二醇含量为2.6%,环氧乙烷残留为2.3ppm。
实施例五:用NaHCO 3悬浮液催化制备壬基环己醇聚氧乙烯醚(7)
将5g NaHCO 3在室温下溶于15mL水中,再将2g壬基环己醇聚氧乙烯醚(2)加入其中,剧烈搅拌使之分散均匀,得到NaHCO 3催化剂悬浮液。
将1kg壬基环己醇聚氧乙烯醚(2)置于加成釜中,搅拌下加入上述NaHCO 3催化剂悬浮液,加热至90℃,负压脱水0.2h,然后维持体系压力为0.3Mpa,将0.70kg环氧乙烷缓慢加入加成釜中,恒温搅拌至加成釜内压力不再变化后0.5h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH7,出料。产品壬基环己醇聚氧乙烯醚(7)的浊点为69℃,聚乙二醇含量为28.2%,环氧乙烷残留为26ppm。
在以上同样反应条件下,分别用Na 2CO 3和NaOH悬浮液催化制备壬基环己醇聚氧乙烯醚(7);所得产品壬基环己醇聚氧乙烯醚(7)的浊点分别为63℃、62.6℃,聚乙二醇含量分别为1.2%、1.0%,环氧乙烷残留分别为8ppm、5ppm。
同样反应条件下,NaHCO 3不能有效催化反应,副产物聚乙二醇和残余环氧乙烷含量较高;这有可能是NaHCO 3碱性较弱的原因,也可能需要增加弱碱的用量。不过由实施例5可以看出,即便如此,由于采用了悬浮液催化,产品中残余环氧乙烷含量仍然比实施例2中对照例的碱粉催化效果好。
以下对照例中,提高NaHCO 3的用量、反应温度和老化时间后重复反应。
对照例:在实施例五的基础上提高NaHCO 3的用量、反应温度和老化时间,用NaHCO 3悬浮液催化制备壬基环己醇聚氧乙烯醚(7)
将10g NaHCO 3在室温下溶于30mL水中,再将4g壬基环己醇聚氧乙烯醚(2)加入其中,剧烈搅拌使之分散均匀,得到NaHCO 3催化剂悬浮液。
将1kg壬基环己醇聚氧乙烯醚(2)置于加成釜中,搅拌下加入上述NaHCO 3催化剂悬浮液,加热至130℃,负压脱水1h,然后维持体系压力为0.5Mpa,将0.70kg环氧乙烷 缓慢加入加成釜中,恒温搅拌至加成釜内压力不再变化后2h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH7,出料。产品壬基环己醇聚氧乙烯醚(7)的浊点为73.1℃,聚乙二醇含量为25.2%,环氧乙烷残留为20ppm。
可见,即便提高NaHCO 3的用量、反应温度和老化时间,用NaHCO 3悬浮液仍然不能较好地催化制备壬基环己醇聚氧乙烯醚。因此也不是NaHCO 3用量的问题,原因有待研究。
实施例六:用壬基环己醇聚氧乙烯醚表面活性剂和几种典型油品制备乳状液的示例
以液体石蜡、生物柴油、二甲苯、橄榄油和二甲基硅油为油,0.1%的壬基环己醇聚氧乙烯醚表面活性剂为乳化剂,其乳化能力即所得乳状液的稳定性能见说明书附图3。
图3表明壬基环己醇聚氧乙烯醚(7)和(9)对几种典型油品的乳化能力与NPEO 10的接近;特别是NCEO 7,对矿物油和植物油的乳化能力超出了NPEO 10的,对生物柴油的乳化能力与NPEO 10的一致,可以用来替代NPEO 10作为这些油品乳状液的乳化剂。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (9)

  1. 一种烷基环己醇聚氧乙烯醚乳化剂的制备方法,其特征在于,所述烷基环己醇聚氧乙烯醚乳化剂具有如下式Ⅰ所示的结构:
    Figure PCTCN2019111823-appb-100001
    其中,R为直链或支链烷基,其碳数为C 6-C 15,n=5-17;
    所述制备方法是使用碱性催化剂催化加成数为1-3的烷基环己醇聚氧乙烯醚发生乙氧基化反应,加成数为1-3的烷基环己醇聚氧乙烯醚的结构式如式Ⅱ所示,
    Figure PCTCN2019111823-appb-100002
    式Ⅱ中,R为直链或支链烷基,其碳数为C 6-C 15,n=1-3;
    所述烷基环己醇聚氧乙烯醚乳化剂通过以下制备方法获得:
    将环氧乙烷加成数为1-3的烷基环己醇聚氧乙烯醚与水、催化剂混合,制成催化剂悬浮液,然后将环氧乙烷加成数为1-3的烷基环己醇聚氧乙烯醚、催化剂悬浮液置于加成釜中,搅拌加热至反应温度,负压脱水至含水量低于0.1%,然后维持体系压力为0.1-0.5Mpa,将环氧乙烷缓慢加入加成釜中,控制反应温度恒定并继续搅拌至加成釜内压力不再变化后0.5-1h,结束反应;待加成釜内温度冷却至室温后,用乙酸中和加成釜内物料至pH6.5-7,出料。
  2. 根据权利要求1所述的一种烷基环己醇聚氧乙烯醚乳化剂的制备,其特征在于,原料NCEO 1-3和环氧乙烷的摩尔比为1:(4-14)。
  3. 根据权利要求1所述的一种烷基环己醇聚氧乙烯醚乳化剂的制备,其特征在于,所述碱性催化剂是KOH、NaOH、LiOH、K 2CO 3、Na 2CO 3、CH 3OK或CH 3ONa中的一种或多种。
  4. 根据权利要求1所述的一种烷基环己醇聚氧乙烯醚乳化剂的制备,其特征在于,所述催化剂悬浮液为含有环氧乙烷加成数为1-3的烷基环己醇聚氧乙烯醚,以及碱性催化剂的分散体系,所述碱性催化剂是KOH、NaOH、LiOH、K 2CO 3、Na 2CO 3、CH 3OK或CH 3ONa中的一种或两种。
  5. 根据权利要求1或4所述的一种烷基环己醇聚氧乙烯醚乳化剂的制备,其特征在于,所述催化剂悬浮液的制备方法为:将催化剂在室温下溶于溶剂中,使其在催化剂悬浮液中的最终质量浓度为15%-25%;再将质量为催化剂质量20%-50%的NCEO 1-3加入其中,剧烈搅拌使之分散均匀即可。
  6. 根据权利要求5所述的一种烷基环己醇聚氧乙烯醚乳化剂的制备,其特征在于,当催化剂为KOH、NaOH、LiOH、K 2CO 3和Na 2CO 3中的一种或两种时,所述溶剂为水;当催化剂为CH 3OK和CH 3ONa中的一种或两种时,所述溶剂为70%的乙醇水溶液。
  7. 根据权利要求1所述的一种烷基环己醇聚氧乙烯醚乳化剂的制备,其特征在于,所用催化剂以干基计算的质量为NCEO 1-3总质量的0.1%-1.0%。
  8. 根据权利要求1-7任一所述方法制备得到的烷基环己醇聚氧乙烯醚乳化剂。
  9. 权利要求8所述的烷基环己醇聚氧乙烯醚乳化剂的应用,其特征在于,用于制备水包油型乳状液、用作分散剂和润湿剂;进一步地,所述水包油型乳状液的油相包括液体石蜡、生物柴油、二甲苯、动物油脂、植物油或二甲基硅油。
PCT/CN2019/111823 2019-04-04 2019-10-18 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用 WO2020199555A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/113,309 US20210087334A1 (en) 2019-04-04 2020-12-07 Preparation of Alkylcyclohexanol Polyoxyethylene Ether Emulsifier and Application Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910270939.2 2019-04-04
CN201910270939.2A CN109966988B (zh) 2019-04-04 2019-04-04 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/113,309 Continuation US20210087334A1 (en) 2019-04-04 2020-12-07 Preparation of Alkylcyclohexanol Polyoxyethylene Ether Emulsifier and Application Thereof

Publications (1)

Publication Number Publication Date
WO2020199555A1 true WO2020199555A1 (zh) 2020-10-08

Family

ID=67083080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111823 WO2020199555A1 (zh) 2019-04-04 2019-10-18 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用

Country Status (3)

Country Link
US (1) US20210087334A1 (zh)
CN (1) CN109966988B (zh)
WO (1) WO2020199555A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109966988B (zh) * 2019-04-04 2020-09-04 江南大学 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用
CN114752054A (zh) * 2021-01-08 2022-07-15 联泓(江苏)新材料研究院有限公司 一种烷基环己醇聚氧烷基醚及其制备方法和应用
CN114480009B (zh) * 2022-03-25 2022-09-16 广东高景太阳能科技有限公司 一种薄片细线化大尺寸太阳能级硅片用切割液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417947A1 (de) * 1994-05-21 1995-11-23 Stefan Dr Rer Nat Geyer Tenside, ihre Herstellung und Verwendung
CN1237579A (zh) * 1998-03-23 1999-12-08 三井化学株式会社 烷基环己醇烯化氧加合物及其制备方法
JP2000109444A (ja) * 1998-10-02 2000-04-18 Mitsui Chemicals Inc オクチルシクロヘキサノールアルキレンオキサイド付加物、その製造方法および用途
CN106946663A (zh) * 2017-04-06 2017-07-14 广州印田新材料有限公司 环氧化合物一步法制备醇醚的合成方法
CN108976105A (zh) * 2018-07-09 2018-12-11 江苏凌飞科技股份有限公司 一种低分子量壬基环己醇聚氧乙烯醚的制备方法
CN109966988A (zh) * 2019-04-04 2019-07-05 江南大学 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111146A (en) * 1997-09-03 2000-08-29 Rayborn; Randy L. Alkyl cyclohexanol alkoxylates and method for making same
CN101690877B (zh) * 2009-08-10 2012-05-09 常熟耐素生物材料科技有限公司 十五烷基酚聚氧乙烯醚强生物降解表面活性剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417947A1 (de) * 1994-05-21 1995-11-23 Stefan Dr Rer Nat Geyer Tenside, ihre Herstellung und Verwendung
CN1237579A (zh) * 1998-03-23 1999-12-08 三井化学株式会社 烷基环己醇烯化氧加合物及其制备方法
JP2000109444A (ja) * 1998-10-02 2000-04-18 Mitsui Chemicals Inc オクチルシクロヘキサノールアルキレンオキサイド付加物、その製造方法および用途
CN106946663A (zh) * 2017-04-06 2017-07-14 广州印田新材料有限公司 环氧化合物一步法制备醇醚的合成方法
CN108976105A (zh) * 2018-07-09 2018-12-11 江苏凌飞科技股份有限公司 一种低分子量壬基环己醇聚氧乙烯醚的制备方法
CN109966988A (zh) * 2019-04-04 2019-07-05 江南大学 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用

Also Published As

Publication number Publication date
US20210087334A1 (en) 2021-03-25
CN109966988B (zh) 2020-09-04
CN109966988A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020199555A1 (zh) 一种烷基环己醇聚氧乙烯醚乳化剂的制备及应用
CN101906338B (zh) 一种环保型乳化燃料及其制备方法
DE69606543T2 (de) Formulierungen die als tenside verzweigte alkoholethersulfate enthalten
CN103145568A (zh) 一种腰果酚阳离子型季铵盐及其制备方法
CN101602941A (zh) 一种广谱原油防蜡降凝剂
CN105154201A (zh) 一种半合成乳化切削液、及其稀释液的生产工艺
CA1294512C (en) Process for the transportation of viscous oils
Li et al. Synergistic effect and performance characterization of an efficient environmental-friendly Camellia oleifera saponins based foamed cleaning agents
CN102517178A (zh) 二苯乙烯联苯类荧光增白剂的制备方法
CN110105542B (zh) 一种双亲油基改性双酚a型环氧树脂表面活性剂及其制备方法与应用
CN101235267B (zh) 一种非均相水分蒸发抑制剂的制备方法
CN107312104B (zh) 一种凤眼莲多糖制备烷基多苷的方法
CN106669535B (zh) 一种基于含羟基基团的双子表面活性剂的粘弹体系
CN106085577A (zh) 一种医疗器械水溶性润滑剂及其制备方法
CN104531244B (zh) 一种微乳化生物柴油
CA3027105A1 (en) Pumpable and/or flowable biopolymer suspension
CN107022386A (zh) 一种环保节能柴油添加剂
CN102206519A (zh) 一种含生物质组分的微乳化柴油及其制备方法
JPS6094126A (ja) 非イオン界面活性剤
CN115417764B (zh) 一种蓖麻酸醇醚羧酸及其合成方法
CN109897684A (zh) 微爆型燃油乳化剂
CN103534329A (zh) 烷基聚烷氧基硫酸盐的高浓缩可流动盐
CN108935449A (zh) 纳米联苯菊酯水乳剂及其制备方法、田间飞防施药的用途
CN115044419B (zh) 一种发动机积碳清洗剂及其制备方法
CN115074102B (zh) 高含蜡普通稠油油藏驱油用降黏剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922892

Country of ref document: EP

Kind code of ref document: A1