WO2020199382A1 - 利用气体连续净化污水的方法和系统 - Google Patents

利用气体连续净化污水的方法和系统 Download PDF

Info

Publication number
WO2020199382A1
WO2020199382A1 PCT/CN2019/093384 CN2019093384W WO2020199382A1 WO 2020199382 A1 WO2020199382 A1 WO 2020199382A1 CN 2019093384 W CN2019093384 W CN 2019093384W WO 2020199382 A1 WO2020199382 A1 WO 2020199382A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
efficiency reactor
gas
venturi mixer
purified gas
Prior art date
Application number
PCT/CN2019/093384
Other languages
English (en)
French (fr)
Inventor
胥永
余磊
邓爱民
曾芳成
王召启
刘涛
余智艳
邓磊
彭宏道
Original Assignee
中国瑞林工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910250359.7A external-priority patent/CN111747501A/zh
Priority claimed from CN201910250367.1A external-priority patent/CN111747558A/zh
Priority claimed from CN201920424591.3U external-priority patent/CN209989175U/zh
Application filed by 中国瑞林工程技术股份有限公司 filed Critical 中国瑞林工程技术股份有限公司
Publication of WO2020199382A1 publication Critical patent/WO2020199382A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1294"Venturi" aeration means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention belongs to the field of sewage heavy metal treatment. Specifically, the present invention relates to a method and system for continuously purifying sewage using purified gas.
  • Na 2 S is used as a vulcanizing agent to remove copper and arsenic plasma waste liquid.
  • H 2 S is used instead of Na 2 S in recent years.
  • Traditional Na 2 S as a vulcanizing agent and H 2 S as a vulcanizing agent in recent years are mostly discontinuous vulcanization processes.
  • H 2 S is a highly toxic gas, in order to achieve the continuity of H 2 S as a vulcanizing agent to remove arsenic from waste liquid, simple equipment and simple process , Convenient operation and improvement of reaction efficiency, safety, and utilization of H 2 S have increasingly become research hotspots.
  • an object of the present invention is to propose a method and system for continuously purifying sewage by using purified gas.
  • the method and system can be used to achieve continuous treatment of waste liquid, and has the advantages of simple flow, convenient operation, high treatment efficiency and high safety. The advantages.
  • the present invention proposes a method for continuously purifying sewage using purified gas.
  • the method includes:
  • the sewage is transported to the high-efficiency reactor in two ways through the sewage transport pump, the first and second venturi mixers are respectively arranged on the two pipelines, and the static mixer is arranged on the main pipe after the two pipelines merge. Negative pressure is formed at the suction chamber of the first and second venturi mixers to inhale purified gas. After the first and second venturi mixer throat high-speed mixing reaction and the venturi diffuser decelerate and pressurize, enter the static mixer for further mixing reaction and enter the high-efficiency reactor. In the high-efficiency reactor, the purified gas and sewage are further fully reacted, and the reacted sewage continuously overflows and is sent to liquid-solid separation to obtain purified sewage.
  • the present invention cleverly uses the Venturi mixer to effectively mix the purified gas into the sewage.
  • the introduction of the purified gas by this method can be fully integrated into the sewage and react with heavy metals to produce precipitation, which can significantly improve the removal of heavy metals. effectiveness.
  • the method can realize continuous removal of heavy metal ions in sewage, has a simple process, simple equipment, and reduces costs.
  • the method for continuously purifying sewage using purified gas may also have the following additional technical features:
  • the method of the above-mentioned embodiment further includes: (4) extracting the liquid-solid mixture at the bottom of the high-efficiency reactor and returning it to the high-efficiency reactor, and at the same time arranging a second The three venturi mixer passes purified gas into the liquid-solid mixture. Therefore, by further extracting the liquid-solid mixture at the bottom of the high-efficiency reactor and returning it to the high-efficiency reactor, and setting a third venturi mixer on the returning pipe to further supplement the H 2 S gas, the heavy metal ions in the sewage are fully The sulfide precipitate formed by the reaction is removed.
  • the sewage is domestic production water, surface water, and acid sewage.
  • the purification gas is at least one selected from H 2 S, O 3 , CO 2 and air.
  • the sewage is acid sewage
  • the acid sewage contains heavy metals
  • the concentration of the heavy metals is As: 1-30g/L, Cu: 0.1-10g/L, Hg: 0.01-5g /L, Cd: 0.01-5g/L, Cr: 0.01-5g/L
  • the purification gas is selected from H 2 S gas.
  • step (2) the two-way sewage containing purified gas is mixed through a static mixer and then enters the high-efficiency reactor along the tangential direction of the side wall of the high-efficiency reactor, or is aligned The high-efficiency reactor is sprayed in the direction of the central axis.
  • step (3) further includes: causing the overflow product in the upper part of the high-efficiency reactor to continuously overflow into the intermediate tank, and then perform the liquid-solid separation after stirring.
  • it further comprises: (5) passing the purified gas overflowing from the top of the high-efficiency reactor and the intermediate tank into the first venturi mixer for recovery.
  • step (4) the liquid-solid mixture at the bottom of the high-efficiency reactor is drawn out and returned to the high-efficiency reactor along the tangential direction of the side wall of the high-efficiency reactor, or Aim at the direction of the central axis of the high-efficiency reactor and spray in.
  • the liquid-solid mixture is returned to the high-efficiency reactor through a plurality of circulating liquid inlets with different heights.
  • the present invention also provides a system for continuously purifying sewage using purified gas.
  • the system includes:
  • a sewage transfer pump which is connected to the sewage tank;
  • a static mixer, the static mixer and the sewage pump are connected by two pipelines;
  • the first Venturi mixer and the second Venturi mixer, the first Venturi mixer and the second Venturi mixer are respectively arranged on the two pipes, the first Venturi mixer and The second Venturi mixer has a purified gas suction port;
  • a high-efficiency reactor the high-efficiency reactor has a sewage inlet, an overflow outlet, a circulating liquid outlet, a circulating liquid inlet, and a purified gas outlet.
  • the sewage inlet is connected to the static mixer, and the overflow outlet is arranged to extend to The overflow pipe in the high-efficiency reactor;
  • a liquid-solid separation device which has a post-reaction sewage inlet, a precipitation outlet, and a purified sewage outlet, and the post-reaction sewage inlet is connected to the overflow outlet.
  • the sewage in the sewage tank is transported to the high-efficiency reactor in two ways through the sewage transport pump, and the first and second venturi mixers are respectively arranged on the two pipelines, and the main pipe is arranged on the combined pipeline.
  • a negative pressure is formed in the suction chamber of the first and second venturi mixers to suck the purified gas. After the first and second venturi mixer throat high-speed mixing reaction and the venturi diffuser decelerate and pressurize, enter the static mixer for further mixing reaction and enter the high-efficiency reactor.
  • the purified gas in the high-efficiency reactor further fully reacts with the heavy metals in the sewage, and the reacted sewage continuously overflows and is sent to the liquid-solid separation to obtain purified sewage. Therefore, the present invention cleverly uses the Venturi mixer to effectively mix the purified gas into the sewage.
  • the introduction of the purified gas by this method can be fully integrated into the sewage and react with the sewage such as heavy metal ions to produce precipitation, thereby significantly improving the purification efficiency .
  • the method can achieve continuous removal of heavy metal ions in sewage, for example, with simple process flow, simple equipment, and cost reduction.
  • system for continuously purifying sewage using purified gas may also have the following additional technical features:
  • the above-mentioned system further includes: a high-efficiency reactor circulation pump, the high-efficiency reactor circulation pump is arranged between the circulating fluid outlet and the circulating fluid inlet; a third venturi mixer, The third Venturi mixer is arranged between the high-efficiency reactor circulation pump and the circulating liquid inlet, and the third Venturi mixer is connected to a purified gas storage tank. Therefore, the liquid-solid mixture at the bottom of the high-efficiency reactor is further extracted and returned to the high-efficiency reactor, and a third venturi mixer is installed on the returning pipeline to further supplement the purified gas, so as to make the sewage such as heavy metal ions The precipitate formed by the full reaction is removed.
  • a high-efficiency reactor circulation pump is arranged between the circulating fluid outlet and the circulating fluid inlet
  • a third venturi mixer The third Venturi mixer is arranged between the high-efficiency reactor circulation pump and the circulating liquid inlet, and the third Venturi mixer is connected to a purified gas storage tank. Therefore, the liquid-solid mixture at the bottom of the high-
  • the system for continuously purifying sewage using purified gas in the above embodiments further includes: an intermediate tank, in which an agitator or a circulating pump is arranged, and the intermediate tank is arranged in the high-efficiency reaction Between the overflow outlet of the device and the liquid-solid separation device.
  • the first Venturi mixer is respectively connected with the top gas outlet of the intermediate tank and the purified gas outlet of the high efficiency reactor to recover the purified gas.
  • the circulating liquid inlet on the side wall of the high-efficiency reactor is arranged tangentially to the side wall of the high-efficiency reactor; or the circulating liquid inlet is along the diameter direction of the high-efficiency reactor Set up.
  • the circulating fluid inlet includes a plurality of circulating fluid inlets, and the multiple circulating fluid inlets are arranged on the side wall of the high-efficiency reactor at intervals along the height direction.
  • the circulating liquid inlet is lower than the liquid level in the high efficiency reactor.
  • the first Venturi mixer, the second Venturi mixer and the third Venturi mixer each have at least two purge gas suction ports.
  • Fig. 1 is a schematic structural diagram of a system for continuously purifying sewage using purified gas according to an embodiment of the present invention.
  • the present invention provides a method for continuously purifying sewage using purified gas.
  • the method includes:
  • the sewage is transported in two ways by the sewage pump, and a first venturi mixer and a second venturi mixer are respectively arranged on the pipelines of the two routes to pass purified gas into the sewage;
  • the sewage is transported to the high-efficiency reactor in two ways through the sewage transport pump, the first and second venturi mixers are respectively arranged on the two pipelines, and the static mixer is arranged on the main pipe after the two pipelines merge. Negative pressure is formed at the suction chamber of the first and second venturi mixers to inhale purified gas. After the first and second venturi mixer throat high-speed mixing reaction and the venturi diffuser decelerate and pressurize, enter the static mixer for further mixing reaction and enter the high-efficiency reactor. In the high-efficiency reactor, the purified gas and sewage are further fully reacted, and the reacted sewage continuously overflows and is sent to liquid-solid separation to obtain purified sewage.
  • the present invention cleverly uses the Venturi mixer to effectively mix the purified gas into the sewage.
  • the introduction of the purified gas by this method can be fully integrated into the sewage and react with the sewage such as heavy metal ions to produce precipitation, thereby significantly improving the purification. effectiveness.
  • the method can achieve continuous removal of heavy metal ions in sewage, for example, with simple process flow, simple equipment, and cost reduction.
  • the sewage treated by the above method of the present invention may be domestic production water, surface water, and acid sewage.
  • the purge gas used may be at least one selected from H 2 S, O 3 , and CO 2 .
  • CO 2 can be used to remove calcium in domestic production water to reduce the hardness of domestic production water
  • O 3 can be used to disinfect surface water
  • H 2 S can be used to remove heavy metal ions in acid sewage.
  • the sewage to be treated may be acid sewage containing heavy metals, and the concentration of heavy metals contained in the acid sewage may be As: 1-30g/L, Cu: 0.1-10g/L, Hg: 0.01- 5g/L, Cd: 0.01 ⁇ 5g/L, Cr: 0.01 ⁇ 5g/L.
  • the above-mentioned acid sewage may be waste acid containing heavy metal ions such as copper and arsenic from the flue gas purification process of the sulfuric acid system.
  • the purification gas used may be H 2 S gas. Therefore, the H 2 S gas can be used to fluidize the reaction with the heavy metals in the above acidic sewage, and the fluidized precipitation of the production is separated, thereby achieving the purpose of purification.
  • Step (1) First, the acidic sewage containing heavy metal ions is transported in two ways by the sewage pump, and the first venturi mixer and the second venturi mixer are installed on the two pipelines to transfer the acid sewage Into H 2 S gas.
  • the present invention uses acidic sewage with a certain pressure (>0.05Mpa) to pass through a Venturi mixer, and the heavy metals in the acidic sewage and H 2 S gas undergo a sulfurization reaction to form sulfurized precipitates and then be separated. Therefore, in the present invention, the method for introducing H 2 S gas into the acid sewage by using the Venturi mixer is to form a negative pressure in the closed Venturi mixer, so that the H 2 S gas and the acid sewage are fully mixed. Not only can the mixing efficiency of H 2 S gas be improved, but also H 2 S gas leakage can be effectively avoided.
  • H 2 S gas is a toxic gas
  • its leakage problem is a significant problem in the purification of gas in sewage treatment.
  • the current method of integrating H 2 S gas is to use a fan to blow H 2 S gas into the sewage.
  • the method uses power equipment to apply pressure to the sewage, so there is a great risk of leakage.
  • the present invention uses a Venturi mixer to mix H 2 S gas with sewage under a closed negative pressure condition, which can effectively avoid the possibility of leakage of H 2 S gas when passing through the fan power equipment, thereby significantly improving process safety.
  • the acid sewage is transported through two paths, and venturi mixers are installed on the two pipelines respectively, thereby effectively increasing the H 2 S gas mixing point, and significantly improving the H 2 S gas blending into the acid sewage effectiveness.
  • the present invention cleverly utilizes the Venturi mixer to achieve the mixing of H 2 S gas and sewage during the transportation of sour sewage, which not only improves the mixing efficiency of H 2 S gas, but also realizes the continuity of sour sewage. Treatment, which significantly improves the efficiency of acid sewage treatment.
  • the H 2 S gas is employed in the present invention is a high concentration of H 2 S gas, for example, a concentration of 70-100% by volume of H 2 S gas, and further improving gas into H 2 S Efficiency in acid sewage.
  • H 2 S gas and Venturi mixer 0.5-20 liters of H 2 S gas per liter of acid sewage can be finally incorporated, which can effectively remove heavy metals in the above acid sewage, especially effectively As in acid sewage.
  • the inventors also measured in advance by the As concentration in the acidic water, to control the amount of sour water in a concentration of H 2 S acid gas and sewage into the final H 2 S gas is passed through. In turn, it is avoided that excessive H 2 S gas is introduced, which will cause residual reaction and increase the burden on exhaust gas treatment.
  • Step (2) Second, the two paths of acidic sewage containing H 2 S gas are mixed through a static mixer and then enter a high-efficiency reactor for reaction, so as to generate sulfide precipitates.
  • the acidic sewage that has been transported through the two paths is mixed through a static mixer before entering the high-efficiency reactor, which can further increase the mixing degree of the acidic sewage and the H 2 S gas and increase the reaction efficiency of heavy metals.
  • step (2) the two paths of acidic sewage containing H 2 S gas are mixed through a static mixer and then enter the high efficiency reactor along the tangential direction of the side wall of the high efficiency reactor. Furthermore, the mixing degree of acidic sewage and H 2 S gas involved in the reaction can be further improved, and the problem of insufficient reaction caused by uneven gas-liquid mixing can be effectively reduced.
  • the H 2 S gas is fully mixed with the acid sewage in the Venturi mixer, the static mixer and the three nodes when it enters the high-efficiency reactor tangentially, thus effectively ensuring the H 2 S gas and the acid sewage
  • the full mixing of the acid sewage improves the removal rate of heavy metals in the acid sewage.
  • only one high-efficiency reactor is required to provide a reaction place and reaction time for acid sewage. Therefore, the method and equipment of the present invention are simple and the process is more concise.
  • Step (3) Finally, overflow the overflow product in the upper part of the high-efficiency reactor and perform liquid-solid separation, so as to obtain purified waste liquid.
  • step (3) further includes: causing the overflow product in the upper part of the high-efficiency reactor to continuously overflow into the intermediate tank and perform the liquid-solid separation after stirring.
  • the H 2 S gas dissolved in the acid sewage that has not yet reacted can be released as much as possible.
  • it further includes: passing the H 2 S gas overflowing from the top of the intermediate tank into the first Venturi mixer for recovery.
  • the negative pressure of the first venturi mixer can be used to effectively extract the H 2 S gas overflowing from the top of the intermediate tank as much as possible and return it to the previous reaction, thereby improving the H 2 S gas recovery and reuse while avoiding excessive The H 2 S gas is discharged at will.
  • Step (4) the above method also includes extracting the liquid-solid mixture at the bottom of the high-efficiency reactor and returning it to the high-efficiency reactor, and at the same time setting a third venturi mixer on the return pipeline to the liquid-solid mixture.
  • H 2 S gas is passed into the solid mixture. Therefore, a third venturi mixer is installed on the return pipeline, and the H 2 S gas is supplemented by the third venturi mixer, which can effectively increase the inhalation of H 2 S gas by the system, thereby increasing the copper and arsenic in the acid sewage Removal rate of equal heavy metal ions.
  • a form in which a circulating pump is arranged outside the high-efficiency reactor can be used, and the liquid-solid mixture is drawn from the bottom of the high-efficiency reactor and driven into the upper part of the high-efficiency reactor. Furthermore, the reaction medium is circulated and agitated, and the traditional method of setting a stirrer inside the high-efficiency reactor effectively avoids the possibility of leakage of highly toxic H 2 S gas.
  • the liquid-solid mixture at the bottom of the high-efficiency reactor is extracted and returned to the high-efficiency reactor along the tangential direction of the side wall of the high-efficiency reactor. Therefore, the liquid-solid mixture forms a swirling flow after entering the high-efficiency reactor. Or it can be sprayed in the direction of the central axis of the high-efficiency reactor, so that strong impact of water flow can occur. In turn, the mixing degree and reaction rate of the reaction medium in the high-efficiency reactor can be further improved, thereby increasing the removal rate of heavy metals.
  • the above-mentioned liquid-solid mixture can be returned to the high-efficiency reactor from a plurality of circulating liquid inlets with different heights.
  • the medium in the reactor forms a cross flow at different heights, and the mixing degree and reaction rate of the reaction medium in the reactor are improved.
  • the above method further includes:
  • Step (5) Pass the H 2 S gas overflowing from the top of the high-efficiency reactor into the first Venturi mixer for recovery.
  • the negative pressure of the first venturi mixer can be used to effectively extract the H 2 S gas overflowing from the top of the high-efficiency reactor as much as possible and return to the previous reaction, thereby improving the H 2 S gas recovery and reuse, while avoiding Excessive H 2 S gas is discharged at will.
  • the acid sewage is transported to the high-efficiency reactor in two ways, and the first venturi mixer and the second venturi mixer are respectively arranged on the two pipelines.
  • the first Venturi mixer is used to inhale H 2 S gas remaining at the top of the high-efficiency reactor and the intermediate tank
  • the second Venturi mixer is used to inhale fresh H 2 S gas.
  • the present invention also proposes a system for continuously purifying sewage using purified gas.
  • the system of the specific embodiment of the present invention will be described in detail below.
  • the system for continuously purifying sewage using purified gas includes: sewage tank 100, sewage pump 200, static mixer 300, first venturi mixer 400, second venturi mixer 500, and high efficiency
  • the sewage pump 200 is connected to the sewage tank 100; the static mixer 300 and the sewage pump 200 are connected by two pipes; the first venturi mixer 400 and the second venturi
  • the inner mixer 500 is respectively arranged on the two pipelines; the high-efficiency reactor 600 has a sewage inlet 610, an overflow outlet 620, a circulating liquid outlet 630, a circulating liquid inlet 640 and a purified gas outlet 650.
  • the high-efficiency reactor 600 is connected to the static mixer 300, and the overflow outlet 620 is provided with an overflow pipe 660 extending into the high-efficiency reactor 600;
  • the liquid-solid separation device 700 has a post-reaction sewage inlet 710 and a precipitation outlet (not shown) Out) and purified sewage outlet 720, the post-reaction sewage inlet 710 is connected to the overflow outlet 610;
  • the high-efficiency reactor circulation pump 800 is arranged between the circulating liquid outlet 620 and the circulating liquid inlet 630;
  • the third venturi mixer 900 is arranged between the high efficiency reactor circulation pump 800 and the circulating liquid inlet 630.
  • the first Venturi mixer 400 is connected to the purified gas outlet 640, and the second Venturi mixer 500 and the third Venturi mixer 900 are connected to the purified gas storage tank A respectively.
  • the sewage containing heavy metal ions is transported to the high-efficiency reactor in two ways through the sewage transport pump, and the first and second venturi mixers are respectively arranged on the two pipelines, and the main pipe is arranged on the combined pipeline.
  • a negative pressure is formed in the suction chamber of the first and second venturi mixers to suck the purified gas. After the first and second venturi mixer throat high-speed mixing reaction and the venturi diffuser decelerate and pressurize, enter the static mixer for further mixing reaction and enter the high-efficiency reactor.
  • the purified gas in the high-efficiency reactor further fully reacts with the heavy metals in the sewage, and the reacted sewage continuously overflows and is sent to liquid-solid separation to obtain purified sewage. Furthermore, by pumping out the liquid-solid mixture at the bottom of the high-efficiency reactor and returning it to the high-efficiency reactor, and setting a third venturi mixer on the return pipeline to further supplement the purified gas, the heavy metal ions in the sewage are fully reacted to form a sulfurized precipitate Is removed. Therefore, the present invention cleverly uses the Venturi mixer to effectively mix the purified gas into the sewage.
  • the purified gas introduced by this method can be fully integrated into the sewage and react with heavy metals to produce sulfide precipitation, thereby significantly improving the removal efficiency of heavy metals.
  • the method can achieve continuous removal of heavy metal ions in sewage, has a simple process, simple equipment, and lower costs.
  • the system for continuously purifying sewage using purified gas in the above embodiment of the present invention is applicable to the treatment of domestic production water, surface water, and acid sewage.
  • at least one selected from H 2 S, O 3 , CO 2 and air can be used as the purification gas.
  • CO 2 can be used to remove calcium in domestic production water to reduce the hardness of domestic production water
  • O 3 can be used to disinfect surface water
  • H 2 S can be used to remove heavy metal ions in acid sewage.
  • the above system is particularly suitable for the treatment of acidic sewage containing heavy metals, and uses hydrogen sulfide gas as the purification gas.
  • the concentration of heavy metals contained in the acid sewage can be As: 1-30g/L, Cu: 0.1-10g/L, Hg: 0.01-5g/L, Cd: 0.01-5g/L, Cr: 0.01-5g /L.
  • the above-mentioned acid sewage can be waste acid containing heavy metal ions such as copper and arsenic from the flue gas purification process of the sulfuric acid system. Therefore, the H 2 S gas can be used to fluidize the reaction with the heavy metals in the above acidic sewage, and the fluidized precipitation of the production is separated, thereby achieving the purpose of purification.
  • the system adopting the above-mentioned embodiment of the present invention uses hydrogen sulfide gas to treat acidic sewage containing heavy metal ions.
  • the system of the present invention adopts a Venturi mixer to pass H 2 S gas into the acid sewage by forming a negative pressure in the closed Venturi mixer, so that the H 2 S gas and the acid sewage are fully mixed. This not only improves the mixing efficiency of H 2 S gas, but also effectively avoids H 2 S gas leakage.
  • the above-mentioned system includes a sewage tank 100, a sewage transfer pump 200, a static mixer 300, a first Venturi mixer 400, a second Venturi mixer 500, and a high-efficiency reactor 600.
  • the sewage tank 100, the sewage transfer pump 200, the static mixer 300, and the high-efficiency reactor 600 are connected in sequence so that the sewage in the sewage tank 100 is finally transferred to the high-efficiency reactor 600, and the sewage transfer pump 200 to the static mixer 300 They are connected by two pipes; and the first Venturi mixer 400 and the second Venturi mixer 500 are respectively arranged on the two pipes.
  • two mound mixers are arranged on two pipelines, and the two mound mixers are used to pass purified gas into the sewage.
  • sewage with a certain pressure >0.05Mpa
  • a negative pressure is formed in the suction chamber of the Venturi mixer to inhale the purified gas and mix with the sewage.
  • the heavy metals in the sewage react with the purified gas. A precipitate is formed and then separated.
  • the method of the present invention using a Venturi mixer to pass H 2 S gas into the acidic sewage is better than the method of using a fan to blow H 2 S gas into the sour sewage , Effectively avoiding the possibility of H 2 S gas leakage when passing through the equipment.
  • the sewage is transported through two channels, and the first and second venturi mixers are respectively arranged on the two pipelines, thereby effectively increasing the mixing point of the purified gas, and significantly improving the efficiency of the purified gas in the sewage.
  • the present invention cleverly utilizes the Venturi mixer to achieve the mixing of purified gas and sewage during the transportation of sewage, which not only improves the mixing efficiency of purified gas, but also realizes the continuous treatment of sewage, thereby significantly improving The efficiency of sewage treatment.
  • the first Venturi mixer 400 and the second Venturi mixer 500 are used to pass the purified gas into the sewage, and further, the two-way sewage before entering the high-efficiency reactor 600 , Converged in the static mixer 300.
  • the mixing degree of sewage and purified gas is further improved, and the reaction efficiency of heavy metals is improved.
  • the sewage inlet 610 of the high-efficiency reactor 600 is connected to the static mixer 300. Specifically, the sewage inlet 610 is arranged so that the incoming sewage enters the high efficiency reactor along a tangential direction along the inner side wall of the high efficiency reactor 600. As a result, the mixing degree of sewage and purified gas can be further improved, and the problem of incomplete reactions such as heavy metals caused by uneven gas-liquid mixing is effectively reduced.
  • the purified gas is fully mixed with sewage in the Venturi mixer, the static mixer and the three nodes when it enters the high-efficiency reactor tangentially. Therefore, the complete mixing of the purified gas and the sewage is effectively ensured, and the The removal rate of heavy metals in sewage. Finally, only one high-efficiency reactor 600 is required to provide a reaction place and reaction time for sewage. Therefore, the system of the present invention has the advantages of simple equipment and a more concise process.
  • the overflow outlet 620 of the high-efficiency reactor 600 is connected to the post-reaction sewage inlet 710 of the liquid-solid separation device 700 so as to overflow the overflow products in the upper part of the high-efficiency reactor 600 and perform liquid-solid separation. In order to get purified sewage.
  • the above-mentioned system further includes: an intermediate tank 1000 in which a stirrer 1100 is arranged, and the intermediate tank 1000 is arranged at the overflow outlet 620 of the high-efficiency reactor and the liquid Between the solid separation device 700.
  • the top gas outlet of the intermediate tank 1000 is connected to the first venturi mixer, so that the purified gas overflowing from the top of the intermediate tank is passed into the first venturi mixer for recovery.
  • the negative pressure of the first Venturi mixer can be used to effectively extract the purified gas overflowing from the top of the intermediate tank as much as possible and return to the previous reaction, thereby improving the recovery and reuse of the purified gas, while avoiding excessive purification gas at will emission.
  • the aforementioned system further includes: a high-efficiency reactor circulation pump 800 and a third Venturi mixer 900.
  • the high-efficiency reactor circulating pump 800 is arranged between the circulating liquid outlet 620 and the circulating liquid inlet 630; the third Venturi mixer 900 is arranged between the high-efficiency reactor circulating pump 800 and the circulating liquid inlet 630 .
  • the liquid-solid mixture at the bottom of the high-efficiency reactor 600 is pumped out and returned to the high-efficiency reactor.
  • a third venturi mixer 900 is installed on the return pipeline to add purified gas to the liquid-solid mixture.
  • the system can effectively increase the inhalation of purified gas, thereby increasing the removal rate of heavy metal ions such as copper and arsenic in sewage.
  • the effect of cyclically stirring the reaction medium can also be achieved. This arrangement is more traditional than the traditional way of setting up a stirrer inside the high-efficiency reactor to effectively avoid There is a possibility of leakage of highly toxic purified gas.
  • the circulating liquid inlet 630 on the side wall of the high-efficiency reactor 600 and the side wall of the high-efficiency reactor 600 are arranged tangentially.
  • the returned liquid-solid mixture can return to the high-efficiency reactor along the tangential direction of the side wall of the high-efficiency reactor, and then form a swirling flow after entering the high-efficiency reactor, so as to further improve the efficiency of the reaction medium in the high-efficiency reactor. Mixing degree and reaction rate, thereby improving the removal rate of heavy metals.
  • the above-mentioned circulating liquid inlet 630 may include multiple, and the multiple circulating liquid inlets may be arranged on the side wall of the high-efficiency reactor 600 at intervals along the height direction. Furthermore, the above-mentioned liquid-solid mixture can be formed into cross-flow at different heights, and the mixing degree and reaction rate of the reaction medium in the reactor can be improved.
  • the above-mentioned circulating liquid inlet 630 is lower than the liquid level in the high-efficiency reactor. This can prevent the purified gas sucked in through the third Venturi mixer from being directly pumped away by the first Venturi mixer, thereby increasing the reaction time of this part of H 2 S and sewage.
  • the sewage is transported to the high-efficiency reactor in two ways, and the first venturi mixer and the second venturi mixer are respectively arranged on the two pipelines.
  • the first Venturi mixer is used to inhale the purified gas remaining at the top of the high-efficiency reactor and the intermediate tank
  • the second Venturi mixer is used to inhale fresh purified gas.
  • the problem of incompletely reacted purified gas recovery in the device can be effectively solved, and at the same time, the excess capacity can be used to pump in fresh purified gas for reaction.
  • fresh purified gas is added to the sewage again, thereby effectively ensuring the medium removal rate of the sewage.
  • adopting the system of the above-mentioned embodiment of the present invention can improve the removal rate of heavy metal ions such as copper and arsenic in sewage while ensuring safety, while achieving continuous removal of heavy metal ions such as copper and arsenic in sewage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

一种利用净化气体连续净化污水的方法和系统,其中,方法包括:(1)利用污水输送泵(200)连续将污水分两路进行输送,且在所述两路管道上分别设置第一文丘里混合器(400)和第二文丘里混合器(500)以便向所述污水中通入净化气体;(2)将两路含有净化气体的污水经过静态混合器(300)混合后进入高效反应器(600)内进行反应,以便生成沉淀物;(3)使得所述高效反应器(600)内的溢流产物不断溢出并进行液固分离,以便得到净化污水。

Description

利用气体连续净化污水的方法和系统 技术领域
本发明属于污水重金属处理领域,具体而言,本发明涉及利用净化气体连续净化污水的方法和系统。
背景技术
21世纪以来,我国冶炼及化工等工业快速发展,产生的污染物随之增多,生产过程中产生的含铜、砷等重金属离子废液就是其中一大污染源。传统上采用Na 2S作为硫化剂对含铜、砷等离子废液进行脱除处理。为了减少钠离子在系统内富集,近年来越来越多的用H 2S代替Na 2S。传统Na 2S作为硫化剂和近年来H 2S作为硫化剂对废液的处理绝大部分是间断硫化反应过程。个别实现连续硫化的工程,其流程装置都太复杂,成本高等缺点,并且H 2S是高毒气体,为实现H 2S作为硫化剂对废液硫化脱砷的连续性、设备简单、流程简洁、操作方便和提高反应效率、安全性以及H 2S的利用率越来越成为研究热点。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出利用净化气体连续净化污水的方法和系统,采用该方法和系统可以实现废液的连续化处理,且具有流程简洁、操作方便、处理效率高和安全性高的优点。
根据本发明的一个方面,本发明提出了一种利用净化气体连续净化污水的方法,根据本发明的实施例,该方法包括:
(1)利用废液输送泵连续将污水分两路进行输送,且在所述两路管道上分别设置第一文丘里混合器和第二文丘里混合器以便向所述污水中通入净化气体;
(2)将两路含有净化气体的污水经过静态混合器混合后进入高效反应器内进行反应,以便生成沉淀物;
(3)使得所述高效反应器内的溢流产物不断溢出并进行液固分离,以便得到净化废液。
由此,本发明通过污水输送泵将污水分两路输送至高效反应器,在两路管道上分别设置第一和第二文丘里混合器,在两路汇合后的总管上设置静态混合器,通过第一和第二文丘 里混合器吸入腔处形成负压吸入净化气体。经过第一和第二文丘里混合器喉管高速混合反应和文丘里扩散管减速增压进入静态混合器进一步混合反应后进入高效反应器。在高效反应器内净化气体与污水进一步充分反应,反应后的污水不断地溢流出并送至液固分离,获得净化污水。因此,本发明巧妙地利用文丘里混合器有效地向污水中混入净化气体,通过该方法引入净化气体能够充分地融入污水中并与重金属等发生反应产生沉淀,进而可以显著提高重金属等的脱除效率。而且该方法可以实现污水中重金属离子等连续脱除,流程简洁,设备简单,降低成本。
另外,根据本发明上述实施例的利用净化气体连续净化污水的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,上述实施例的方法进一步包括:(4)将所述高效反应器内底部的液固混合物抽出并返回至所述高效反应器内,同时在返回管道上设置第三文丘里混合器向所述液固混合物中通入净化气体。由此,通过进一步地将高效反应器底部的液固混合物抽出并返回至高效反应器内,并返回的管道上通过设置第三文丘里混合器进一步补充H 2S气体,使污水中重金属离子充分反应形成硫化沉淀被去除。
在本发明的一些实施例中,所述污水为生活生产水、地表水、酸性污水。
在本发明的一些实施例中,所述净化气体为选自H 2S、O 3、CO 2和空气中的至少一种。
在本发明的一些实施例中,所述污水为酸性污水,所述酸性污水中含有重金属,且重金属的浓度为As:1~30g/L,Cu:0.1~10g/L,Hg:0.01~5g/L,Cd:0.01~5g/L,Cr:0.01~5g/L,所述净化气体为选自H 2S气体。
在本发明的一些实施例中,步骤(2)中,将两路的含有净化气体的污水经过静态混合器混合后沿所述高效反应器侧壁的切线方向进入高效反应器内,或者对准所述高效反应器的中心轴方向喷入。
在本发明的一些实施例中,步骤(3)中进一步包括:使得所述高效反应器内上部的溢流产物不断溢出进入中间槽经过搅拌后再进行所述液固分离。
在本发明的一些实施例中,进一步包括:(5)将所述高效反应器和所述中间槽顶部溢出的净化气体通入第一文丘里混合器内进行回收。
在本发明的一些实施例中,步骤(4)中,将所述高效反应器内底部的液固混合物抽出并沿所述高效反应器侧壁的切线方向返回至所述高效反应器内,或者对准所述高效反应器 的中心轴方向喷入。
在本发明的一些实施例中,将所述液固混合物由多个不同高度的循环液入口返回至所述高效反应器内。
根据本发明的第二方面,本发明还提出了一种利用净化气体连续净化污水的系统,根据本发明的实施例,该系统包括:
污水槽;
污水输送泵,所述污水输送泵与所述污水槽相连;
静态混合器,所述静态混合器与所述污水输送泵通过两条管道相连;
第一文丘里混合器和第二文丘里混合器,所述第一文丘里混合器和所述第二文丘里混合器分别设置在所述两条管道上,所述第一文丘里混合器和所述第二文丘里混合器的具有净化气体吸入口;
高效反应器,所述高效反应器具有污水入口、溢流出口、循环液出口、循环液入口和净化气体出口,所述污水入口与所述静态混合器相连,所述溢流出口内设置延伸至所述高效反应器内的溢流管;
液固分离装置,所述液固分离装置具有反应后污水入口、沉淀出口和净化污水出口,所述反应后污水入口与所述溢流出口相连。
由此,本发明通过污水输送泵将污水槽内的污水分两路输送至高效反应器,在两路管道上分别设置第一和第二文丘里混合器,在两路汇合后的总管上设置静态混合器,通过第一和第二文丘里混合器吸入腔处形成负压吸入净化气体。经过第一和第二文丘里混合器喉管高速混合反应和文丘里扩散管减速增压进入静态混合器进一步混合反应后进入高效反应器。在高效反应器内净化气体与污水中的例如重金属进一步充分反应,反应后的污水不断地溢流出并送至液固分离,获得净化污水。因此,本发明巧妙地利用文丘里混合器有效地向污水中混入净化气体,通过该方法引入净化气体能够充分地融入污水中并与污水中例如重金属离子发生反应产生沉淀,进而可以显著提高净化效率。而且该方法可以实现例如污水中重金属离子连续脱除,流程简洁,设备简单,降低成本。
另外,根据本发明上述实施例的利用净化气体连续净化污水的系统还可以具有如下附加的技术特征:
在本发明的一些实施例中,上述系统进一步包括:高效反应器循环泵,所述高效反应器 循环泵设置在所述循环液出口与所述循环液入口之间;第三文丘里混合器,所述第三文丘里混合器设置在所述高效反应器循环泵与所述循环液入口之间,所述第三文丘里混合器与净化气体储罐相连。由此,进一步地通过将高效反应器底部的液固混合物抽出并返回至高效反应器内,并返回的管道上通过设置第三文丘里混合器进一步补充净化气体,使污水中的例如重金属离子等充分反应形成沉淀被去除。
在本发明的一些实施例中,上述实施例的利用净化气体连续净化污水的系统进一步包括:中间槽,所述中间槽内设置有搅拌器或者循环泵,所述中间槽设置在所述高效反应器溢流出口与所述液固分离装置之间。
在本发明的一些实施例中,所述第一文丘里混合器分别与所述中间槽的顶部气体出口和所述高效反应器的净化气体出口相连,以便回收净化气体。
在本发明的一些实施例中,位于所述高效反应器侧壁上的循环液入口与所述高效反应器侧壁呈切线设置;或者所述循环液入口沿着所述高效反应器的直径方向设置。
在本发明的一些实施例中,所述循环液入口包括多个,所述多个循环液入口沿高度方向间隔设置在所述高效反应器侧壁上。
在本发明的一些实施例中,所述循环液入口低于所述高效反应器内的液位高度。
在本发明的一些实施例中,所述第一文丘里混合器、所述第二文丘里混合器和所述第三文丘里混合器均具有至少两个净化气体吸入口。
附图说明
图1是根据本发明一个实施例的利用净化气体连续净化污水的系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
根据本发明的一个方面,本发明提出了一种利用净化气体连续净化污水的方法,根据本发明的具体实施例,该方法包括:
(1)通过污水输送泵将污水分两路进行输送,且在所述两路的管道上分别设置第一文 丘里混合器和第二文丘里混合器以便向所述污水中通入净化气体;
(2)将两路的含有净化气体的污水经过静态混合器混合后进入高效反应器内进行反应,以便生成沉淀物;
(3)使得所述高效反应器内上部的溢流产物不断溢出并进行液固分离,以便得到净化污水。
由此,本发明通过污水输送泵将污水分两路输送至高效反应器,在两路管道上分别设置第一和第二文丘里混合器,在两路汇合后的总管上设置静态混合器,通过第一和第二文丘里混合器吸入腔处形成负压吸入净化气体。经过第一和第二文丘里混合器喉管高速混合反应和文丘里扩散管减速增压进入静态混合器进一步混合反应后进入高效反应器。在高效反应器内净化气体与污水进一步充分反应,反应后的污水不断地溢流出并送至液固分离,获得净化污水。因此,本发明巧妙地利用文丘里混合器有效地向污水中混入净化气体,通过该方法引入净化气体能够充分地融入污水中并与污水内例如重金属离子等发生反应产生沉淀,进而可以显著提高净化效率。而且该方法可以实现例如污水中重金属离子连续脱除,流程简洁,设备简单,降低成本。
下面对本发明具体实施例的利用净化气体连续净化污水的方法进行详细描述。
本发明的上述方法处理的污水可以为所述污水为生活生产水、地表水、酸性污水。采用的净化气体可以为选自H 2S、O 3、CO 2中的至少一种。例如,可以利用CO 2除去生活生产水中的钙,降低生活生产水硬度;可以利用O 3对地表水进行消毒;可以利用H 2S除去酸性污水中的重金属离子。
根据本发明的具体实施例,待处理的污水可以为含有重金属的酸性污水,酸性污水中含有的重金属的浓度可以为As:1~30g/L,Cu:0.1~10g/L,Hg:0.01~5g/L,Cd:0.01~5g/L,Cr:0.01~5g/L。具体地,上述酸性污水可以是来自硫酸系统烟气净化工序的含铜、砷等重金属离子废酸。为此,采用的净化气体可以为H 2S气体。由此,利用H 2S气体可以与上述酸性污水中重金属发生流化反应,生产流化沉淀被分离出来,进而达到净化的目的。
为了方便理解本发明上述实施例的净化方法,下面以H 2S气体净化含有重金属的酸性污水为例进行举例说明。
步骤(1):首先,通过污水输送泵将含重金属离子的酸性污水分两路进行输送,且在两路的管道上分别设置第一文丘里混合器和第二文丘里混合器以便向酸性污水中通入H 2S气 体。具体地,本发明是利用一定压力(>0.05Mpa)的酸性污水通过文丘里混合器,酸性污水中重金属与H 2S气体发生硫化反应生成硫化沉淀进而被分离出来。因此,本发明采用文丘里混合器向酸性污水中通入H 2S气体的方法是在密闭的文丘里混合器形成负压,使得H 2S气体与酸性污水得到充分混合。不仅可以提高H 2S气体的混入效率,同时还可以有效避免H 2S气体泄露。
由于H 2S气体是有毒气体,其泄露问题是目前净化气体处理污水中存在的显著问题,而目前现有的H 2S气体的融入方法是利用风机向污水中吹入H 2S气体,该方法采用动力设备向污水中施加压力,因此存在很大的泄露风险。而本发明采用文丘里混合器,在密闭的负压条件下使得H 2S气体与污水混合,能够有效避免了H 2S气体通过风机动力设备时存在泄漏的可能,进而显著提高工艺安全性。
另外,本发明通过将酸性污水通过两路进行输送,并分别在两路管道上设置文丘里混合器,进而有效增加了H 2S气体混入点,显著提高了H 2S气体融入酸性污水中的效率。另外,本发明巧妙地利用了文丘里混合器在酸性污水的输送过程中实现H 2S气体与污水的混合,进而不仅提高了H 2S气体的混入效率,同时还实现了酸性污水的连续化处理,进而显著提高了酸性污水的处理效率。
根据本发明的具体实施例,本发明采用的H 2S气体为高浓度的H 2S气体,例如可以是浓度为70-100体积%的H 2S气体,进而可以提高H 2S气体的融入酸性污水中效率。另外,通过采用上述H 2S气体和文丘里混合器可以使得最终每升酸性污水中融入0.5-20升的H 2S气体,进而可以有效地去除上述酸性污水中的重金属,尤其可以有效地除去酸性污水中的As。发明人还通过预先测定酸性污水中As浓度,控制向酸性污水中通入H 2S气体的浓度和最终酸性污水中融入的H 2S气体的量。进而避免通入过多的H 2S气体,造成反应剩余,增加给尾气处理负担。
步骤(2):其次,将两路的含有H 2S气体的酸性污水经过静态混合器混合后进入高效反应器内进行反应,以便生成硫化沉淀物。上述经过两路输送的酸性污水在进入高效反应器前经过静态混合器进行混合,由此可以进一步提高酸性污水和H 2S气体混合度,提高重金属的反应效率。
根据本发明的具体实施例,在步骤(2)中,将两路的含有H 2S气体的酸性污水经过静态混合器混合后沿高效反应器侧壁的切线方向进入高效反应器内。进而可以进一步提高参 与反应的酸性污水和H 2S气体混合度,有效的减少了气液混合不均致反应不充分的问题。
因此,H 2S气体在文丘里混合器内、静态混合器内以及切向进入高效反应器时的三个节点处均与酸性污水进行了充分混合,因此有效保证了H 2S气体与酸性污水的充分混合,提高了酸性污水中重金属的去除率。最后,仅需设置一台高效反应器为酸性污水提供反应场所和反应时间,因此,本发明的方法设备简单、流程更加简洁化。
步骤(3):最后,使得所述高效反应器内上部的溢流产物溢出并进行液固分离,以便得到净化废液。
根据本发明的具体实施例,在步骤(3)中进一步包括:使得所述高效反应器内上部的溢流产物不断溢出进入中间槽经过搅拌后再进行所述液固分离。由此可以使得溶解在酸性污水中还未反应的H 2S气体尽量释放出来。而且根据本发明的具体实施例,进一步包括:将上述中间槽顶部溢出的H 2S气体通入第一文丘里混合器内进行回收。具体地,可以利用第一文丘里混合器的抽负压,有效地把中间槽顶部溢出的H 2S气体尽量抽吸出来并返回前面反应,进而提高H 2S气体回收再利用,同时避免过量的H 2S气体随意排放。
步骤(4):另外,上述方法还包括将所述高效反应器内底部的液固混合物抽出并返回至所述高效反应器内,同时在返回管道上设置第三文丘里混合器向所述液固混合物中通入H 2S气体。由此在返回管道上设置了第三文丘里混合器,通过第三文丘里混合器补充H 2S气体,可以有效的提高系统对H 2S气体的吸入量,从而提高酸性污水中铜、砷等重金属离子的脱除率。
具体地,可以采用高效反应器外设置循环泵的形式,从高效反应器底部抽出液固混合物并打入高效反应器内的上部。进而达到循环搅动反应介质,较传统地在高效反应器内部设置搅拌器的方式有效避免了出现高毒H 2S气体泄露的可能。
根据本发明的具体实施例,该步骤中,将所述高效反应器内底部的液固混合物抽出并沿所述高效反应器侧壁的切线方向返回至所述高效反应器内。由此液固混合物在进入高效反应器内后形成旋流。或者对准所述高效反应器的中心轴方向喷入,由此可以出现水流的强力撞击。进而可以进一步提高高效反应器内反应介质的混合度和反应率,进而提高重金属的去除率。
根据本发明的具体实施例,进一步地,可以将上述液固混合物由多个不同高度的循环液入口返回至所述高效反应器内。从而使反应器内介质在不同高度形成错流,提高反应器内 反应介质的混合度和反应率。
根据本发明的具体实施例,上述方法进一步包括:
步骤(5):将上述高效反应器顶部溢出的H 2S气体通入第一文丘里混合器内进行回收。具体地,可以利用第一文丘里混合器的抽负压,有效地把高效反应器顶部溢出的H 2S气体尽量抽吸出来并返回前面反应,进而提高H 2S气体回收再利用,同时避免过量的H 2S气体随意排放。
因此,本发明通过将酸性污水分两路输送至高效反应器,在两路管道上分别设置第一文丘里混合器和第二文丘里混合器。其中,第一文丘里混合器用于吸入高效反应器和中间槽顶部残留的H 2S气体,第二文丘里混合器用于吸入新鲜H 2S气体。进而可以有效的解决装置中未完全反应的H 2S气体再利用的问题,同时,把多余的能力用于抽入新鲜H 2S气体用于反应。
根据本发明的第二方面,本发明还提出利用净化气体连续净化污水的系统。下面对本发明具体实施例的系统进行详细描述。
根据本发明的具体实施例,该利用净化气体连续净化污水的系统包括:污水槽100、污水输送泵200、静态混合器300、第一文丘里混合器400、第二文丘里混合器500、高效反应器600、液固分离装置700、高效反应器循环泵800、第三文丘里混合器900。其中,所述污水输送泵200与所述污水槽100相连;所述静态混合器300与所述污水输送泵200通过两条管道相连;所述第一文丘里混合器400和所述第二文丘里混合器500分别设置在所述两条管道上;所述高效反应器600具有污水入口610、溢流出口620、循环液出口630、循环液入口640和净化气体出口650,所述高效反应器600与所述静态混合器300相连,所述溢流出口620内设置延伸至高效反应器600内的溢流管660;所述液固分离装置700具有反应后污水入口710、沉淀出口(未示出)和净化污水出口720,所述反应后污水入口710与所述溢流出口610相连;所述高效反应器循环泵800设置在所述循环液出口620与所述循环液入口630之间;所述第三文丘里混合器900设置在所述高效反应器循环泵800与所述循环液入口630之间。其中,所述第一文丘里混合器400与所述净化气体出口640相连,所述第二文丘里混合器500和所述第三文丘里混合器900分别与净化气体储罐A相连。
由此,本发明通过污水输送泵将含重金属离子的污水分两路输送至高效反应器,在两路管道上分别设置第一和第二文丘里混合器,在两路汇合后的总管上设置静态混合器,通过 第一和第二文丘里混合器吸入腔处形成负压吸入净化气体。经过第一和第二文丘里混合器喉管高速混合反应和文丘里扩散管减速增压进入静态混合器进一步混合反应后进入高效反应器。在高效反应器内净化气体与污水中的重金属进一步充分反应,反应后的污水不断地溢流出并送至液固分离,获得净化污水。进一步地,通过将高效反应器底部的液固混合物抽出并返回至高效反应器内,并返回的管道上通过设置第三文丘里混合器进一步补充净化气体,使污水中重金属离子充分反应形成硫化沉淀被去除。因此,本发明巧妙地利用文丘里混合器有效地向污水中混入净化气体,通过该方法引入净化气体能够充分地融入污水中并与重金属发生反应产生硫化沉淀,进而可以显著提高重金属的脱除效率。而且该方法可以实现污水中重金属离子连续脱除,流程简洁,设备简单,降低成本。
下面对本发明具体实施例的利用净化气体连续净化污水的系统进行详细描述。
本发明上述实施例的利用净化气体连续净化污水的系统,可适用于生活生产水、地表水、酸性污水的处理。具体可以选自H 2S、O 3、CO 2和空气中的至少一种作为净化气体。例如,可以利用CO 2除去生活生产水中的钙,降低生活生产水硬度;可以利用O 3对地表水进行消毒;可以利用H 2S除去酸性污水中的重金属离子。
根据本发明的具体实施例,上述系统尤其适用于含有重金属的酸性污水的处理,并且采用硫化氢气体作为净化气体。具体地,酸性污水中含有的重金属的浓度可以为As:1~30g/L,Cu:0.1~10g/L,Hg:0.01~5g/L,Cd:0.01~5g/L,Cr:0.01~5g/L。上述酸性污水可以是来自硫酸系统烟气净化工序的含铜、砷等重金属离子废酸。由此,利用H 2S气体可以与上述酸性污水中重金属发生流化反应,生产流化沉淀被分离出来,进而达到净化的目的。
采用本发明上述实施例的系统利用硫化氢气体对含有重金属离子的酸性污水进行处理。具体地,本发明的系统采用文丘里混合器向酸性污水中通入H 2S气体的方法是在密闭的文丘里混合器形成负压,使得H 2S气体与酸性污水得到充分混合。由此不仅可以提高H 2S气体的混入效率,同时还可以有效避免H 2S气体泄露。
为了方便理解本发明上述实施例的净化系统,下面以H 2S气体净化含有重金属的酸性污水为例进行举例说明。
根据本发明的具体实施例,首先,上述系统包括污水槽100、污水输送泵200、静态混合器300、第一文丘里混合器400、第二文丘里混合器500和高效反应器600。其中,污水槽100、污水输送泵200、静态混合器300和高效反应器600依次相连,以便将污水槽100 内的污水最终输送至高效反应器600内,在污水输送泵200至静态混合器300之间通过两条管道相连;而第一文丘里混合器400和所述第二文丘里混合器500分别设置在所述两条管道上。本发明正是通过在两条管道上设置两个丘里混合器,利用两个丘里混合器向污水中通入净化气体。具体地,是利用一定压力(>0.05Mpa)的污水通过文丘里混合器,并在文丘里混合器的吸入腔内形成负压从而吸入净化气体与污水混合,污水中重金属等与净化气体发生反应生成沉淀进而被分离出来。例如,采用硫化氢气体净化含有重金属离子的酸性污水为例,本发明采用文丘里混合器向酸性污水中通入H 2S气体的方法较利用风机向酸性污水中吹入H 2S气体的方法,有效避免了H 2S气体通过设备时存在泄漏的可能。
另外,本发明通过将污水通过两路进行输送,并分别在两路管道上设置第一和第二文丘里混合器,进而有效增加了净化气体混入点,显著提高了净化气体融入污水中的效率。另外,本发明巧妙地利用了文丘里混合器在污水的输送过程中实现净化气体与污水的混合,进而不仅提高了净化气体的混入效率,同时还实现了污水的连续化处理,进而显著提高了污水的处理效率。
根据本发明的具体实施例,进一步地,利用第一文丘里混合器400和第二文丘里混合器500将污水中通入了净化气体,并进一步地两路的污水在进入高效反应器600之前,在静态混合器300进行了汇合。由此进一步提高了污水和净化气体的混合度,提高了重金属的反应效率。
根据本发明的具体实施例,高效反应器600的污水入口610与静态混合器300相连。具体地,污水入口610被设置成使得进入的污水沿沿高效反应器600的内侧壁的切线方向进入高效反应器内。由此可以进一步提高污水和净化气体混合度,有效的减少了气液混合不均致重金属等反应不完全的问题。
因此,净化气体在文丘里混合器内、静态混合器内以及切向进入高效反应器时的三个节点处均与污水进行了充分混合,因此有效保证了净化气体与污水的充分混合,提高了污水中重金属的去除率。最后,仅需设置一台高效反应器600为污水提供反应场所和反应时间,因此,本发明的系统具有设备简单、流程更加简洁化的优点。
根据本发明的具体实施例,高效反应器600的溢流出口620与液固分离装置700的反应后污水入口710相连,以便将高效反应器600内上部的溢流产物溢出并进行液固分离,以便得到净化污水。
根据本发明的具体实施例,上述系统中进一步包括:中间槽1000,所述中间槽1000内设置有搅拌器1100,所述中间槽设置1000在所述高效反应器溢流出口620与所述液固分离装置700之间。
由此可以对即将过滤出重金属硫化沉淀之前的污水进行搅拌,从而可以使得溶解在污水中还未反应的净化气体尽量释放出来。而且根据本发明的具体实施例,该中间槽1000的顶部气体出口与第一文丘里混合器相连,以便将上述中间槽顶部溢出的净化气体通入第一文丘里混合器内进行回收。具体地,可以利用第一文丘里混合器的抽负压,有效地把中间槽顶部溢出的净化气体尽量抽吸出来并返回前面反应,进而提高净化气体回收再利用,同时避免过量的净化气体随意排放。
根据本发明的具体实施例,上述系统还包括:高效反应器循环泵800和第三文丘里混合器900。高效反应器循环泵800设置在循环液出口620与所述循环液入口630之间;所述第三文丘里混合器900设置在所述高效反应器循环泵800与所述循环液入口630之间。
由此,通过在高效反应器600外设置高效反应器循环泵800和第三文丘里混合器900,经高效反应器600内底部的液固混合物抽出并返回至所述高效反应器内,同时在返回管道上设置第三文丘里混合器900向液固混合物中补入净化气体。进而可以有效地提高系统对净化气体的吸入量,从而提高污水中铜、砷等重金属离子的脱除率。另外,通过将高效反应器底部抽出液固混合物并打入高效反应器内的上部,还可以达到循环搅动反应介质的效果,该设置较传统地在高效反应器内部设置搅拌器的方式有效避免了出现高毒净化气体泄露的可能。
另外,根据本发明的具体实施例,位于高效反应器600侧壁上的循环液入口630与高效反应器600的侧壁呈切线设置。进而使得返回的液固混合物可沿所述高效反应器侧壁的切线方向返回至所述高效反应器内,进而在进入高效反应器内后形成旋流,以便进一步提高高效反应器内反应介质的混合度和反应率,进而提高重金属的去除率。
根据本发明的具体实施例,上述循环液入口630可以包括多个,而多个循环液入口可沿高度方向间隔设置在高效反应器600的侧壁上。进而可以将上述液固混合物在不同高度形成错流,提高反应器内反应介质的混合度和反应率。
根据本发明的具体实施例,上述循环液入口630低于所述高效反应器内的液位高度。由此可以避免通过第三文丘里混合器吸入的净化气体直接被第一文丘里混合器抽走,从而增 加了这部分H 2S和污水的反应时间。
因此,本发明通过将污水分两路输送至高效反应器,在两路管道上分别设置第一文丘里混合器和第二文丘里混合器。其中,第一文丘里混合器用于吸入高效反应器和中间槽顶部残留的净化气体,第二文丘里混合器用于吸入新鲜净化气体。进而可以有效的解决装置中未完全反应的净化气体回收问题,同时,把多余的能力用于抽入新鲜净化气体用于反应。另外,利用高效反应器内底部液固混合物的循环,再次向污水中补入新鲜净化气体,进而有效保证了污水中等的脱除率。因此,采用本发明上述实施例的系统可以在确保安全的情况下,提高污水中铜、砷等重金属离子的脱除率,同时实现对污水中铜、砷等重金属离子连续化脱除。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 利用净化气体连续净化污水的方法,其特征在于,包括:
    (1)利用污水输送泵连续将污水分两路进行输送,且在所述两路管道上分别设置第一文丘里混合器和第二文丘里混合器以便向所述污水中通入净化气体;
    (2)将两路含有净化气体的污水经过静态混合器混合后进入高效反应器内进行反应,以便生成沉淀物;
    (3)使得所述高效反应器内的溢流产物不断溢出并进行液固分离,以便得到净化污水。
  2. 根据权利要求1所述的方法,其特征在于,进一步包括:
    (4)将所述高效反应器内底部的液固混合物抽出并返回至所述高效反应器内,同时在返回管道上设置第三文丘里混合器向所述液固混合物中通入净化气体。
  3. 根据权利要求2所述的方法,其特征在于,所述污水为生活生产水、地表水、酸性污水;
    任选地,所述净化气体为选自H 2S、O 3、CO 2和空气中的至少一种。
  4. 根据权利要求3所述的方法,其特征在于,所述污水为酸性污水,所述酸性污水中含有重金属,且所述重金属的浓度为As:1~30g/L,Cu:0.1~10g/L,Hg:0.01~5g/L,Cd:0.01~5g/L,Cr:0.01~5g/L,所述净化气体为H 2S气体。
  5. 根据权利要求4所述的方法,其特征在于,步骤(2)中,将两路含有净化气体的废液经过静态混合器混合后沿所述高效反应器侧壁的切线方向进入高效反应器内,或者对准所述高效反应器的中心轴方向喷入。
  6. 根据权利要求5所述的方法,其特征在于,步骤(3)中进一步包括:
    使得所述高效反应器内上部的溢流产物不断溢出进入中间槽经过搅拌后再进行所述液固分离。
  7. 根据权利要求6所述的方法,其特征在于,进一步包括:(5)将所述高效反应器和所述中间槽顶部溢出的净化气体通入所述第一文丘里混合器内进行回收。
  8. 根据权利要求2或7所述的方法,其特征在于,步骤(4)中,将所述高效反应器内底部的液固混合物抽出并沿所述高效反应器侧壁的切线方向返回至所述高效反应器内,或者对准所述高效反应器的中心轴方向喷入。
  9. 根据权利要求8所述的方法,其特征在于,将所述液固混合物由多个不同高度的循环液入口返回至所述高效反应器内。
  10. 一种利用气体连续净化污水的系统,其特征在于,包括:
    污水槽;
    污水输送泵,所述污水输送泵与所述污水槽相连;
    静态混合器,所述静态混合器与所述污水输送泵通过两条管道相连;
    第一文丘里混合器和第二文丘里混合器,所述第一文丘里混合器和所述第二文丘里混合器分别设置在所述两条管道上,所述第一文丘里混合器和所述第二文丘里混合器的具有净化气体吸入口;
    高效反应器,所述高效反应器具有污水入口、溢流出口、循环液出口、循环液入口和净化气体出口,所述污水入口与所述静态混合器相连,所述溢流出口内设置延伸至所述高效反应器内的溢流管;
    液固分离装置,所述液固分离装置具有反应后污水入口、沉淀出口和净化污水出口,所述反应后污水入口与所述溢流出口相连。
  11. 根据权利要求10所述的系统,其特征在于,进一步包括:
    高效反应器循环泵,所述高效反应器循环泵设置在所述循环液出口与所述循环液入口之间;
    第三文丘里混合器,所述第三文丘里混合器设置在所述高效反应器循环泵与所述循环液入口之间,所述第三文丘里混合器与净化气体储罐相连。
  12. 根据权利要求11所述的系统,其特征在于,进一步包括:
    中间槽,所述中间槽内设置有搅拌器或者循环泵,所述中间槽设置在所述高效反应器溢流出口与所述液固分离装置之间,
    任选地,所述第一文丘里混合器分别与所述中间槽的顶部气体出口和所述高效反应器的净化气体出口相连,以便回收净化气体。
  13. 根据权利要求12所述的系统,其特征在于,位于所述高效反应器侧壁上的循环液入口与所述高效反应器侧壁呈切线设置;或者所述循环液入口沿着所述高效反应器的直径方向设置;
    任选地,所述循环液入口包括多个,所述多个循环液入口沿高度方向间隔设置在所述高 效反应器侧壁上,
    任选地,所述循环液入口低于所述高效反应器内的液位高度。
  14. 根据权利要求10所述的系统,其特征在于,所述第一文丘里混合器、所述第二文丘里混合器和所述第三文丘里混合器均具有至少两个净化气体吸入口。
PCT/CN2019/093384 2019-03-29 2019-06-27 利用气体连续净化污水的方法和系统 WO2020199382A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910250367.1 2019-03-29
CN201910250359.7A CN111747501A (zh) 2019-03-29 2019-03-29 利用气体连续净化污水的方法和系统
CN201910250359.7 2019-03-29
CN201910250367.1A CN111747558A (zh) 2019-03-29 2019-03-29 利用气体连续净化污水的系统
CN201920424591.3 2019-03-29
CN201920424591.3U CN209989175U (zh) 2019-03-29 2019-03-29 利用气体连续净化污水的系统

Publications (1)

Publication Number Publication Date
WO2020199382A1 true WO2020199382A1 (zh) 2020-10-08

Family

ID=72664488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093384 WO2020199382A1 (zh) 2019-03-29 2019-06-27 利用气体连续净化污水的方法和系统

Country Status (2)

Country Link
CL (1) CL2021002436A1 (zh)
WO (1) WO2020199382A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689154A (en) * 1985-11-15 1987-08-25 Occidental Chemical Corporation Process for removing phosphorus from industrial waste water
CN1285807A (zh) * 1998-01-10 2001-02-28 拜尔公司 从水相介质中去除重金属离子的方法
CN1415559A (zh) * 2002-12-16 2003-05-07 中国地质科学院水文地质环境地质研究所 饮用天然矿泉水预沉工艺
CN1587093A (zh) * 2004-07-06 2005-03-02 马韵升 尾气二氧化碳在废水处理过程中的有效使用
CN101333026A (zh) * 2008-07-29 2008-12-31 中国科学院海洋研究所 一种地下海水超标铁锰的去除方法与装置
CN102531146A (zh) * 2011-11-23 2012-07-04 深圳市宇力科技有限公司 一种组合式水力空化降解废水有机物装置
WO2016046016A1 (en) * 2014-09-26 2016-03-31 Odor Control Europe Ab Arrangement for treatment of waste water
CN107445288A (zh) * 2017-09-26 2017-12-08 江苏阿拉丁环保科技有限公司 一种污水臭氧氧化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689154A (en) * 1985-11-15 1987-08-25 Occidental Chemical Corporation Process for removing phosphorus from industrial waste water
CN1285807A (zh) * 1998-01-10 2001-02-28 拜尔公司 从水相介质中去除重金属离子的方法
CN1415559A (zh) * 2002-12-16 2003-05-07 中国地质科学院水文地质环境地质研究所 饮用天然矿泉水预沉工艺
CN1587093A (zh) * 2004-07-06 2005-03-02 马韵升 尾气二氧化碳在废水处理过程中的有效使用
CN101333026A (zh) * 2008-07-29 2008-12-31 中国科学院海洋研究所 一种地下海水超标铁锰的去除方法与装置
CN102531146A (zh) * 2011-11-23 2012-07-04 深圳市宇力科技有限公司 一种组合式水力空化降解废水有机物装置
WO2016046016A1 (en) * 2014-09-26 2016-03-31 Odor Control Europe Ab Arrangement for treatment of waste water
CN107445288A (zh) * 2017-09-26 2017-12-08 江苏阿拉丁环保科技有限公司 一种污水臭氧氧化装置

Also Published As

Publication number Publication date
CL2021002436A1 (es) 2022-04-18

Similar Documents

Publication Publication Date Title
CN209989175U (zh) 利用气体连续净化污水的系统
CN106927558A (zh) 一种臭氧多级利用的多相流气浮装置及处理方法
CN104787981A (zh) 一种dmto装置低bc比废水的深度处理方法及处理装置
CN110272113A (zh) 一种内循环臭氧催化氧化污水处理装置
CN206345720U (zh) 硝化反硝化一体化生物反应器
CN205635031U (zh) 一种催化湿式氧化处理装置
WO2020199382A1 (zh) 利用气体连续净化污水的方法和系统
CN111747558A (zh) 利用气体连续净化污水的系统
CN111747501A (zh) 利用气体连续净化污水的方法和系统
CN105692951B (zh) 一种铁泥循环利用的废水铁炭还原处理方法及其装置
CN205999108U (zh) 一种用于污水深度处理的氧化塔
CN209081624U (zh) 一种微电解联合催化氧化的污水处理系统
CN108483617A (zh) 一种臭氧氧化装置
CN204569678U (zh) 一种dmto装置低bc比废水的深度处理装置
CN106396187A (zh) 一种含氰废水处理和回用的方法
CN207748999U (zh) 废水处理装置
CN206109103U (zh) Fenton流态化废水处理装置
CN214075875U (zh) 一种二氧化硫废气排放净化系统
CN207375800U (zh) 一种铁碳微电解反应装置
CN113546510A (zh) 硫磺回收设备的尾气治理系统
CN112299635A (zh) 一种化学抛光废液的净化处理的方式
CN206521300U (zh) 一种可在线回收铁催化剂的光助芬顿废水处理装置
CN206828242U (zh) 一种高难度废水深度处理装置
CN211198882U (zh) 一种铜冶炼废水再生处理装置
WO2019127270A1 (zh) 臭氧氧化与气浮一体化污水处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923527

Country of ref document: EP

Kind code of ref document: A1