WO2020199377A1 - 一种安全通信的装置和方法 - Google Patents

一种安全通信的装置和方法 Download PDF

Info

Publication number
WO2020199377A1
WO2020199377A1 PCT/CN2019/092774 CN2019092774W WO2020199377A1 WO 2020199377 A1 WO2020199377 A1 WO 2020199377A1 CN 2019092774 W CN2019092774 W CN 2019092774W WO 2020199377 A1 WO2020199377 A1 WO 2020199377A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
detection
functional safety
data
communication
Prior art date
Application number
PCT/CN2019/092774
Other languages
English (en)
French (fr)
Inventor
陈山枝
苏国彬
许思远
Original Assignee
辰芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辰芯科技有限公司 filed Critical 辰芯科技有限公司
Publication of WO2020199377A1 publication Critical patent/WO2020199377A1/zh
Priority to US17/482,432 priority Critical patent/US11748188B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/079Root cause analysis, i.e. error or fault diagnosis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0709Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in a distributed system consisting of a plurality of standalone computer nodes, e.g. clusters, client-server systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/20Network architectures or network communication protocols for network security for managing network security; network security policies in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0763Error or fault detection not based on redundancy by bit configuration check, e.g. of formats or tags

Definitions

  • This application relates to the field of communication, and in particular to a device and method for secure communication of vehicle-mounted communication.
  • Figure 1 shows a schematic diagram of a communication system module in the prior art.
  • the connection interface 1 between the radio frequency device 10 and the baseband processor 11 includes a radio frequency and a baseband parallel port (Radio Front End Baseband Digital Parallel, RBDP), standard/non-standard Standard high-speed interface, etc.
  • the connection interface 2 between the baseband processor 12 and the application processor 13 includes the high-speed serial computer expansion bus standard (Peripheral Component Interconnect Express, PCIe), Universal Serial Bus (Universal Serial Bus, USB), and secure digital input Output (Secure Digital Input and Output, SDIO), etc.
  • PCIe Peripheral Component Interconnect Express
  • USB Universal Serial Bus
  • SDIO Secure Digital Input and Output
  • connection interface 3 between the navigation device 13 and the baseband processor 12 includes the second pulse interface, Universal Asynchronous Receiver/Transmitter (UART), wireless communication/Bluetooth
  • connection interface 4 between the device 14 and the application processor 12 includes PCIe, USB and SDIO.
  • data transmission between modules in the prior art communication system does not contain reliability information such as security attributes. If the security failure of a certain module can be obtained through additional communication between the modules, but before that The data of the communication may already be unreliable.
  • the functional safety settings in the communication chip design mainly focus on internal safety monitoring and fault detection alarms.
  • the central processing unit adopts a high fault tolerance mechanism, and faults can be traced back And correct it;
  • ECC Error Correcting Code
  • parity is used between nodes, and alarms or faults will be reported to the central processing unit;
  • external interfaces such as PCIe, high-performance embedded interconnect technology (Serial Rapid IO, SRIO), etc., use error retransmission mechanisms to improve the security of the physical path of data transmission, and cannot fully cover the reliability problems of their own devices.
  • the USB data has been transmitted to the second chip and used by the second chip, and when the first chip sends the alarm information At the time of publication, it is difficult for the entire system to trace back the location or time of the error.
  • the present application provides a device and method for secure communication to solve the problem that the current communication system cannot obtain the location of the security failure in real time, mark related data signals in real time, and process the information generated by the security failure unit in real time.
  • a detection method for secure communication includes the following steps: before data transmission, enter a self-check mode; detect error detection points to generate a detection state; collect the detection state, and enter an error processing mode; Judge whether there is an error in the detection status, if there is an error, the error will be masked.
  • a safety communication detection device including: a first detection module, including a first functional safety collection unit and a first functional safety sequence unit, which is arranged in a first element of the device under test; and a second detection module
  • the module includes a second functional safety collection unit and a second functional safety sequence unit, and is arranged on the second element of the device to be tested; wherein an error detection point is set between the first element and the second element, when the Before a component transmits data to the second component, the first detection module will enter the self-check mode to detect the error check point to generate a detection state, and the first functional safety collection unit collects the detection state and enters error processing Mode to determine whether an error occurs in the detection state, and if an error occurs, the error will be masked.
  • Figure 1 shows a schematic diagram of a communication system module in the prior art
  • FIG. 2 shows a schematic diagram of modules of the detection device for secure communication disclosed in this application
  • FIG. 3 shows the UART sending data sequence diagram without error status
  • Figure 4 shows the timing diagram of UART transmitting data with error status
  • FIG. 5 shows a data sequence diagram of an error state and additional information added to the UART according to another embodiment of the present application
  • Figure 6 shows a timing diagram of PCIE transmitting data with an error state
  • FIG. 7 shows an error marking mechanism of the protocol handshake according to another embodiment of the present application.
  • Figure 8 shows a flow chart of a detection method for secure communication.
  • the present application discloses a safety communication detection system applied to a communication system.
  • the communication system 2 includes a radio frequency device 20, a baseband processor 21, an application processor 22, a navigation device 23, and a wireless communication device/blue Bud device 24, the detection system of the safety communication includes: a first detection module 201 includes a first functional safety collection unit 2011 and a first functional safety sequence unit 2012, and the first detection module 201 is disposed in the device under test (for example, the communication system 2) In the first component (for example, the radio frequency device 20).
  • the second detection module 202 includes a second functional safety sequence unit 2021 and a second functional safety collection unit 2022.
  • the second detection module 202 is provided in the second component (for example, the baseband processor) of the device under test (for example, the communication system 2) 21) In.
  • An error detection point 25 is set between the first component (e.g., radio frequency device 20) and the second component (e.g., baseband processor 21), so before the first component 20 transmits data to the second component 21 ,
  • the first detection module 201 will enter the self-check mode to detect the error check point to generate a detection state, the first functional safety collection unit 2012 collects the detection state, and enters the error processing mode, To determine whether an error occurs in the detection state, and if the error occurs, the error is masked.
  • the first functional safety sequence unit 2011, when the error is masked marks the error that has been masked.
  • the first functional safety sequence unit 2011 sends a flag signal to flag the error that has been masked, wherein the first functional safety sequence unit 2011 sets the flag signal to a high level to perform the masked error
  • the marking and first functional safety sequence unit 2011 marks the content in the data transmitted between the first element 20 and the second element 21, or the first functional safety sequence unit 2011 marks the first element 20 and the second element 21 The content of the data transmitted during the time is incorrectly marked.
  • the second component 21 receives the request signal, and returns a response signal, and transmits data and the masked error to the first component 20.
  • the first functional safety collection unit 2011 executes a command in the error processing mode to return the error processing mode to the self-check mode, so as to detect the error check point 25 again.
  • the second detection module 202 before the second component (for example, the baseband processor 21) transmits data to the first component (the radio frequency device 20), the second detection module 202 will enter the self-check mode, and the The error check point performs detection to generate a detection state.
  • the second functional safety collection unit 2022 collects the detection state and enters an error processing mode to determine whether an error has occurred in the detection state, and if any error occurs , Then shield the error.
  • the second functional safety sequence unit 2021 marks the error that has been masked when the error is masked. Furthermore, when the second functional safety sequence unit 2021 sends the flag signal, it marks the error that has been masked, and the second functional safety sequence unit 2021 sets the flag signal to a high level to detect the error that has been masked.
  • the marking and second functional safety sequence unit 2021 marks the contents of the data transmitted between the second element 21 and the first element 20, or the second functional safety sequence unit 2021 marks the second element 21 and the first element The contents of the data transmitted between 20 are marked with errors.
  • the first component 20 receives the request signal, and returns a response signal and transmits data and masked errors to the second component 21.
  • the second functional safety collection unit 2022 executes a command in the error processing mode to return the error processing mode to the self-checking mode, so as to detect the error checkpoint 25 again.
  • the detection system disclosed in this application also has multiple detection modules in multiple components to perform error shielding, its operation and handling of error shielding methods and the operation and processing of the above embodiments
  • the formula of error shielding is the same, so I won't repeat it here.
  • the detection device first enters the self-check mode, and detects one or more preset error check points 25 to generate one or more detections. status.
  • the first functional safety collection unit 2011 of the first detection module 201 in the radio frequency device 20 collects the detection status of the multiple error detection points 25, and enters the error processing mode to determine whether there is any detection status generated by the error detection point 25 An error occurs.
  • the first detection module 201 in the radio frequency device 20 will evaluate whether an error occurs in the detection state of the error detection point 25 between the baseband processor 21 and the radio frequency device 20.
  • the first functional safety collection unit 2012 And the second functional safety collection unit 2022 both receive the detection status generated by the error detection point 25 between the baseband processor 21 and the radio frequency device 20, and both indicate that an error has occurred, the first functional safety serial unit 2011 and the second functional The security sequence unit 2021 will be notified that there is an error in the data to be transmitted. Before data transmission between the baseband processor 21 and the radio frequency device 20, the first functional security sequence unit 2011 will shield the data and mark the data to be transmitted. The data is wrong data. If not, inform the first functional safety sequence unit 2011 that it is ready for data transmission. Similarly, the second functional safety collection unit 2022 of the second detection module 202 in the baseband processor 21 will also collect multiple error detection points 25 at the same time.
  • the method of marking wrong data in this application includes: (1) out-of-band error marking method; (2) in-band error marking method.
  • FIG 3 shows the data sequence diagram of the UART sending error-free status.
  • the start status bit sent by the transmission (TX) end is the security flag error status of this application
  • the signal can be set to low level to indicate that the data transmitted by the UART has no error, and the signal that marks the error state can remain low during the entire data signal transmission process until the stop bit of the data transmission End.
  • Figure 4 shows the timing diagram of UART transmitting data with error status.
  • the start status bit sent by the transmission (TX) end is the security flag error status of this application
  • the signal can be set to high level to indicate that the data transmitted by the UART has an error, and the signal that marks the error state can remain high during the entire data signal transmission process until the stop bit of the data transmission ends .
  • FIG. 5 shows a data sequence diagram of an error state and additional information added to the UART according to another embodiment of the present application.
  • the security identification number (ID) of the error check point can be added, and the receiving end can perform other optional operations based on the security ID, such as ignoring the data or using the data conditionally Wait.
  • the security ID can use high level, low level, or other combinations of levels to distinguish abnormal or normal signals. For example, use high level to indicate that the transmitted signal is normal and low. The level indicates that the transmitted signal is abnormal, or, conversely, the low level indicates that the signal is normal, and the high level indicates that the signal is abnormal.
  • in-band error marking method is suitable for interfaces with complex transmission frame structure. If the frame structure has unused reserved bits or reserved data segments, or can also allow the frame structure to be extended, then this method can be considered . In this way, the number of off-chip pins can be reduced.
  • Figure 6 shows a timing diagram of PCIE transmitting data with an error state. As shown in Figure 6, taking a PCIE transmission packet as an example, the marked reserved bits can be extended error marking. Of course, if this type of interface allows an increase in the number of external pins, the out-of-band error flag method can also be used.
  • Fig. 7 shows an error marking mechanism of the protocol handshake according to another embodiment of the present application.
  • the handshake signal request is generally initiated by the receiving end. Setting the level high indicates a handshake request (REQ).
  • REQ handshake request
  • additional signals can be added as commands or error IDs to add more operation options.
  • the sender detects the effective level of the request signal and sends out a handshake response signal (ACK) to indicate that the handshake request is received, and more operation options can be performed based on the additional information.
  • ACK handshake response signal
  • the level of the request signal is set to low, and the handshake interaction action ends.
  • FIG. 8 shows a flowchart of the method for detecting secure communication.
  • the present application discloses a detection method for safe communication that can be applied to a communication system.
  • the detection method for safe communication includes: before data transmission, enter the self-check mode (step s801); check the error detection point , To generate the detection status (step s802); collect the detection status, and enter the error processing mode (step s803); determine whether an error occurs in the detection status, and if an error occurs, mask the error (step s804).
  • the method for detecting secure communication further includes: marking the error that has been shielded.
  • the detection method of the present application sends a mark signal to mark the error that has been masked, wherein the mark signal is set to a high level to mark the error that has been masked, or The content of the transmitted data is incorrectly marked.
  • the detection method of the present application may further send a request signal, and when the request signal is received, a response signal is returned and the data and the masked error are transmitted.
  • the detection method of the present application executes a command in the error processing mode to return the error processing mode to the self-check mode, so as to detect the error check point again.

Abstract

本申请公开了一种安全通信的检测方法,包括:进行数据传输之前,进入自检模式;对错误检测点进行检测,以产生检测状态;收集检测状态,并进入错误处理模式;判断检测状态中是否有错误发生,若有错误发生,则对错误进行屏蔽。本申请通过安全通信的检测方法,除了可解决影像烙印的问题外,更可减少使用非易失性(flash)存储器,并进一步可缩小积体电路的尺寸与功能的利用。

Description

一种安全通信的装置和方法 技术领域
本申请涉及通信领域,尤其涉及一种用于车载通信的安全通信的装置和方法。
背景技术
图1显示现有技术的通信系统模块示意图,如图1所示,射频装置10和基带处理器11间的连接接口1包括射频与基带并口(Radio Front End Baseband Digital Parallel,RBDP),标准/非标准高速接口等,基带处理器12与应用处理器13的连接接口2包括高速串行计算机扩展总线标准(Peripheral Component Interconnect Express,PCIe),通用串行总线(Universal Serial Bus,USB),安全数字输入输出(Secure Digital Input and Output,SDIO)等,导航装置13与基带处理器12间的连接接口3包括秒脉冲接口,通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART),无线通信/蓝芽装置14与应用处理器12间的连接接口4包括PCIe、USB与SDIO。通常数据在现有技术的通信系统中的各模块间的传输不包含有安全属性等可靠性信息,若某个模块的安全性故障可以通过模块间的额外通信来获取,但在此之前所进行的通信的数据可能已经是不可靠的了。
在现有车辆规定的通信系统,关於通信芯片设计中的功能安全设定,主要集中在内部的安全监测和故障检出告警,例如:(1)中央处理器采用高容错机制,出现故障可以回溯并纠正;(2)内部数据传输时,节点到节点间采用错误检查和纠正(Error Correcting Code,ECC)或奇偶校验方式,告警或故障会上报到中央处理器;(3)外部接口,如PCIe、高性能嵌入式互连技术(Serial Rapid IO,SRIO)等,采用出错重传机制提高数据传输的物理通路的安全,对自身器件出现的可靠性问题不能完全覆盖。
但上述的解决方式存在不少问题及风险,例如:(1)在车用电子系统中,存在使用多处理器通信及多芯片间通信的场景,局部发生安全性问题则无法及时在系统内实时传递;(2)在不同芯片间,数据的发送并没有标注标记(例如,被标注为安全的数据,还是被标注为非安全的数据);(3)一旦发生安全告警,芯片内部的主中央处理器,虽然可通过芯片间的通信告知其他协同芯片,但是传递的异常数据有可能会被其他芯片作为正确的数据使用,如两芯片间采用USB接口通信,当第一芯片通过USB传递数据给第二芯片时,发生安全告警,告警信息传递到第一芯片的中央处理器被识别和处理时,USB数据已经传递到了第二芯片,并被第二芯片使用,而当第一芯片将告警信息发布时,整个系统很难回溯错误发生位置或时间点等问题。
发明内容
本申请提供一种安全通信的装置和方法,以解决目前通信系统无法实时获取安全失效位置,并实时标记相关的数据信号,以及即时处理安全失效单元产生的信息的问题
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种安全通信的检测方法,包括以下步骤:进行数据传输之前,进入自检模式;对错误检测点进行检测,以产生检测状态;收集检测状态,并进入错误处理模式;判断检测状态中是否有错误发生,若有错误发生,则对错误进行屏蔽。
第二方面,提供了一种安全通信的检测装置,包括:第一检测模块,包括第一功能安全收集单元及第一功能安全序列单元,设置于待测装置的第一元件中;第二检测模块,包括第二功能安全收集单元及第二功能安全序列单元,设置于待测装置的第二元件;其中,所述第一元件和所述第二元件间之设置有错误检测点,当第一元件对所述第二元件进行数据传输之前,第一检测模块将会进入自检模式,对错误检查点进行检测,以产生检测状态,第一功能安全收集 单元收集检测状态,并进入错误处理模式,以判断检测状态中是否有错误发生,若有错误发生,则对错误进行屏蔽。
在本申请中,通过安全通信的检测方法和装置,解决了通信系统模块间由于功能安全失效的迟滞性带来的安全故障扩散问题,使得数据的安全性和实时性大幅提高,并且通过合理的安全失效检查点设置,可以快速准确地确认故障位置并评估故障对系统安全性的影响。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1显示现有技术的通信系统模块示意图;
图2显示本申请所揭露安全通信的检测装置的模块示意图;
图3显示UART发送无错误状态的数据时序图;
图4显示UART传送有错误状态的数据时序图;
图5显示根据本申请另一实施例为UART传送有错误状态并附加了额外信息的数据时序图;
图6显示PCIE传送有错误状态的数据时序图;
图7显示根据本申请又一实施例的协议握手的错误标注机制;
图8显示安全通信的检测方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图2所示,本申请揭露一种安全通信的检测系统,应用於通信系统,此 通信系统2包括射频装置20、基带处理器21、应用处理器22、导航装置23以及无线通信装置/蓝芽装置24,本安全通信的检测系统包括:第一检测模块201包括第一功能安全收集单元2011及第一功能安全序列单元2012,第一检测模块201设置于待测装置(例如通讯系统2)的第一元件中(例,射频装置20)。第二检测模块202包括第二功能安全序列单元2021和第二功能安全收集单元2022,第二检测模块202设置于所述待测装置(例如通讯系统2)的第二元件(例,基带处理器21)中。第一元件(例,射频装置20)和第二元件(例,基带处理器21)间之设置有错误检测点25,故当所述第一元件20对所述第二元件21进行数据传输之前,所述第一检测模块201将会进入自检模式,对所述错误检查点进行检测,以产生检测状态,所述第一功能安全收集单元2012收集所述检测状态,并进入错误处理模式,以判断所述检测状态中是否有错误发生,若有所述错误发生,则对所述错误进行屏蔽。此外,第一功能安全序列单元2011在所述错误被屏蔽时,对已被屏蔽的所述错误进行标记。再者,第一功能安全序列单元2011发送标记信号,以对已被屏蔽的所述错误进行标记,其中,第一功能序列单元2011将标记信号设置为高电平,以对已被蔽错误进行标记和第一功能安全序列单元2011对第一元件20与第二元件21间所传输的数据中的内容进行标记,或者是,第一功能安全序列单元2011对第一元件20与第二元件21间所传输的数据中的内容进行错误标记。
另外,第一元件20发送请求信号时,第二元件21接收到请求信号,会回传应答信号,并传输数据以及被屏蔽的错误予第一元件20。第一功能安全收集单元2011在所述错误处理模式时,执行一命令,以让所述错误处理模式重新回到自检模式,以重新对所述错误检查点25进行检测。
於本申请另一实施例,当第二元件(例基带处理器21)对第一元件(射频装置20)进行数据传输之前,所述第二检测模块202将会进入自检模式,对所述错误检查点进行检测,以产生检测状态,所述第二功能安全收集单元2022收集所述检测状态,并进入错误处理模式,以判断所述检测状态中是否有错误发生, 若有所述错误发生,则对所述错误进行屏蔽。
此外,第二功能安全序列单元2021在所述错误被屏蔽时,对已被屏蔽的所述错误进行标记。再者,第二功能安全序列单元2021发送标记信号时,以对已被屏蔽的所述错误进行标记,其中,第二功能序列单元2021将标记信号设置为高电平,以对已被蔽错误进行标记和第二功能安全序列单元2021对第二元件21与第一元件20间所传输的数据中的内容进行标记,或者是,第二功能安全序列单元2021对第二元件21与第一元件20间所传输的数据中的内容进行错误标记。
另外,第二元件21发送请求信号时,第一元件20接收到请求信号,会回传应答信号并传输数据以及被屏蔽的错误予第二元件21。第二功能安全收集单元2022在所述错误处理模式时,执行一命令,以让所述错误处理模式重新回到自检模式,以重新对所述错误检查点25进行检测。
本申请所揭露的检测系统,除了上述所揭露外,亦於多个各元件内,设置多个检测模块,以进行对错误屏蔽,其运作及处理错误屏蔽的方式和上述实施例的运作及处理错误屏蔽的的式相同,故於此不再赘述。
进一步而言,当基带处理器21和射频装置20进行数据传输交换时,检测装置会先进入自检模式,对预设的一或多个错误检查点25进行检测,以产生一或多个检测状态。接著,射频装置20内第一检测模块201的第一功能安全收集单元2011收集多个错误检测点25的检测状态,并进入错误处理模式,以判断错误检查点25所产生的检测状态中是否有错误发生,换而言之,射频装置20内的第一检测模块201会评估基带处理器21和射频装置20间的错误检测点25的检测状态是否有错误发生,若第一功能安全收集单元2012和第二功能安全收集单元2022都收到基带处理器21和射频装置20间的错误检测点25所产生的检测状态,都指示出有错误发生,则第一功能安全序列单元2011和第二功能安全序列单元2021则都会被告知要准备传输的数据有错误发生,则基带处理器21和射频装置20间进行数据传输之前,第一功能安全序列单元 2011将会对数据进行屏蔽并标注准备传输的数据是错误的数据。若无,则通知第一功能安全序列单元2011可准备进行数据传输,同样地,基带处理器21内第二检测模块202的第二功能安全收集单元2022亦会同时收集多个错误检测点25的检测状态,并评估基带处理器21和射频装置20间的错误检测点25的检测状态是否有错误发生,若无,则亦告知第二功能安全序列单元2021可准备进行数据传输,当第一功能安全序列单元2011和第二功能安全序列单元2021同时准备好进行数据传输时,则基带处理器21和射频装置20间则会进行数据传输。
於本实例,本申请对错误的数据标注的方式有:(1)带外错误标记方式;(2)带内错误标记方式。
所谓带外错误标记方式,适用於接口协议简单的串行信号,并考虑外加标记信号的方式。图3显示UART发送无错误状态的数据时序图,如图3所示,以UART协义为例,在UART协议下,由传送(TX)端发送的开始状态位,本申请的安全标记错误状态的信号可设置为低电平,以表示UART所传送出的数据并无错误,且标记错误状态的信号可在整个数据信号的发送过程中,一直保持为低电平,直至数据发送的停止位结束。图4显示UART传送有错误状态的数据时序图,如图4所示,以UART协义为例,在UART协议下,由传送(TX)端发送的开始状态位,本申请的安全标记错误状态的信号可设置为高电平,以表示UART所传送出的数据有错误,且标记错误状态的信号可在整个数据信号的发送过程中,一直保持为高电平,直至数据发送的停止位结束。
图5显示根据本申请另一实施例为UART传送有错误状态并附加了额外信息的数据时序图。於本实施例,如果想对具体错误点的信息进行传递,可以采用更多的带外信号。如图5所示,图中在相应的数据传输过程中,可以附加错误检查点的安全识别号(ID),接收端依据安全ID可以进行其他可选的操作如忽略该数据或有条件使用数据等。详而言之,根据实际需求,安全ID可用高电平、低电平或其他多种电平组合来区分信号异常或正常状态,例如,用高电平 来表示所传输的信号为正常,低电平来表示所传输的信号为异常,或是,反过来用低电平来表示信号正常,高电平来表示信号异常。
所谓带内错误标记方式,适用於对于具有复杂传输帧结构的接口,如果帧结构还有未使用的保留位或保留数据段,或还可以允许对帧结构进行扩展,那么可以考虑采用这种方式。使用这种方式,可以减少片外管脚数量。图6显示PCIE传送有错误状态的数据时序图。如图6所示,以PCIE一个传输包为例,标注的保留位可以进行扩展错误标记。当然,这类接口若对外部管脚数量允许增加,也可以使用带外错误标记方式。
於本申请又一实施例,考虑到系统有需要在运行过程中对错误的等级再配置的可能性,需要考虑从错误标注状态回到错误处理状态的机制。图7显示根据本申请又一实施例的协议握手的错误标注机制。如图7所示,握手信号请求一般由接收端发起,将电平置高表示握手请求(REQ),同时可以附加额外的信号做为命令或错误ID等信息增加更多的操作选择。发送端检测请求信号有效电平发出握手应答信号(ACK)表示接收到握手请求,并可根据附加信息进行更多操作选择。接收端检查到应答信号的有效电平后置请求信号的电平为低,至此握手交互动作结束。
本申请提供一种安全通信的检测方法,图8显示安全通信的检测方法的流程图。如图8所示,本申请揭露一种安全通信的检测方法可应用於通信系统,此安全通信的检测方法包括:进行数据传输之前,进入自检模式(步骤s801);对错误检测点进行检测,以产生检测状态(步骤s802);收集检测状态,并进入错误处理模式(步骤s803);判断检测状态中是否有错误发生,若有错误发生,则对错误进行屏蔽(步骤s804)。
此外,於本实施例,安全通信的检测方法还包括:对已被屏蔽的所述错误进行标记。另外,本申请的检测方法发送一标记信号,以对已被屏蔽的所述错误进行标记,其中,将所述标信号设置为高电平,以对已被蔽所述错误进行标记,或对所传输的所述数据的内容进行错误标记。本申请的检测方法另可发送 请求信号,当接收到所述请求信号时,回传应答信号并传输所述数据以及被屏蔽的所述错误。本申请的检测方法在所述错误处理模式时,执行一命令,以让所述错误处理模式重新回到自检模式,以重新对所述错误检查点进行检测。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种安全通信的检测方法,其特征在于,所述安全通信的检测方法包括以下步骤:
    进行数据传输之前,进入自检模式;
    对所述错误检测点进行检测,以产生检测状态;
    收集所述检测状态,并进入错误处理模式;以及
    判断所述检测状态中是否有错误发生,若有所述错误发生,则对所述错误进行屏蔽。
  2. 如权利要求1所述的安全通信的检测方法,还包括以下步骤:对已被屏蔽的所述错误进行标记。
  3. 如权利要求2所述的安全通信的检测方法,其特征在于,发送一标记信号,以对已被屏蔽的所述错误进行标记,其中,将所述标信号设置为高电平,以对已被蔽所述错误进行标记,或对所传输的所述数据的内容进行错误标记。
  4. 如权利要求2所述的检测方法,其特征在于,发送请求信号,当接收到所述请求信号时,回传应答信号并传输所述数据以及被屏蔽的所述错误。
  5. 如权利要求1所述的检测方法,其特征在于,在所述错误处理模式时,执行一命令,以让所述错误处理模式重新回到自检模式,以重新对所述错误检查点进行检测。
  6. 一种安全通信的检测装置,其特征在于,所述安全通信的检测装置包括:
    第一检测模块,包括第一功能安全收集单元及第一功能安全序列单元,设置于一待测装置的第一元件中;以及
    第二检测模块,包括第二功能安全收集单元及第二功能安全序列单元,设置于所述待测装置的第二元件;
    其中,所述第一元件和所述第二元件间之设置有错误检测点,当所述第一元件对所述第二元件进行数据传输之前,所述第一检测模块将会进入自检模式,对所述错误检查点进行检测,以产生检测状态,所述第一功能安全收集单元收集所述检测状态,并进入错误处理模式,以判断所述检测状态中是否有错误发生,若有所述错误发生,则对所述错误进行屏蔽。
  7. 如权利要求6所述的安全通信的检测装置,其特征在于,所述第一功能安全序列单元将在所述错误被屏蔽御,对已被屏蔽的所述错误进行标记。
  8. 如权利要求7所述的安全通信的检测装置,其特征在于,所述第一功能安全序列单元发送一标记信号,以对已被屏蔽的所述错误进行标记,其中,所述第一功能序列单元将所述标记信号设置为高电平,以对已被蔽所述错误进行标记和所述第一功能安全序列单元对所述第一元件与所述第二元件间所传输的所述数据中的内容进行标记,或所述第一功能安全序列单元对所述第一元件与所述第二元件间所传输的所述数据中的内容进行错误标记。
  9. 如权利要求7所述的安全通信的检测装置,其特征在于,所述第一元件发送请求信号时,所述第二元件接收到所述请求信号,回传应答信号并传输所述数据以及被屏蔽的所述错误予所述第一元件。
  10. 如权利要求7所述的安全通信的检测装置,其特征在于,所述第一功能安全收集单元在所述错误处理模式时,执行一命令,以让所述错误处理模式重新回到自检模式,以重新对所述错误检查点进行检测。
PCT/CN2019/092774 2019-04-02 2019-06-25 一种安全通信的装置和方法 WO2020199377A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/482,432 US11748188B2 (en) 2019-04-02 2021-09-23 Secure communication apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910261422.7 2019-04-02
CN201910261422.7A CN109962828B (zh) 2019-04-02 2019-04-02 一种安全通信的装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/482,432 Continuation US11748188B2 (en) 2019-04-02 2021-09-23 Secure communication apparatus and method

Publications (1)

Publication Number Publication Date
WO2020199377A1 true WO2020199377A1 (zh) 2020-10-08

Family

ID=67025537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092774 WO2020199377A1 (zh) 2019-04-02 2019-06-25 一种安全通信的装置和方法

Country Status (3)

Country Link
US (1) US11748188B2 (zh)
CN (1) CN109962828B (zh)
WO (1) WO2020199377A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107526677A (zh) * 2016-06-22 2017-12-29 上海中兴软件有限责任公司 一种软件错误现场定位及处理的方法及装置
CN104614663B (zh) * 2015-01-27 2018-01-09 徐自远 电路故障检测系统及方法
US20180034912A1 (en) * 2012-01-09 2018-02-01 May Patents Ltd. System and method for server based control
CN109150648A (zh) * 2018-05-30 2019-01-04 太仓鸿策拓达科技咨询有限公司 自检测网络安全系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331318C (zh) * 2002-08-19 2007-08-08 上海贝尔有限公司 一种用于通信系统的基于自陷保护与调试装置
JP3914945B2 (ja) * 2004-11-17 2007-05-16 Necアクセステクニカ株式会社 モデム装置およびリンク切断抑制方法
WO2006061034A2 (de) * 2004-12-07 2006-06-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum erstellen von fehlereinträgen
JP5176813B2 (ja) * 2008-09-19 2013-04-03 日本電気株式会社 冷却ファンの故障診断システム、故障診断装置、故障診断方法、故障診断プログラムおよび冷却装置
JP5724549B2 (ja) * 2011-03-31 2015-05-27 富士通株式会社 携帯端末装置及び自己診断方法
JP5573885B2 (ja) * 2012-04-27 2014-08-20 横河電機株式会社 自己診断回路
EP2851820B1 (en) * 2013-09-20 2020-09-02 Fujitsu Limited Measurement data processing method and apparatus
CN104865717B (zh) * 2015-06-11 2017-09-19 武汉精测电子技术股份有限公司 Mipi模组点屏测试中自适应错误处理方法
CN107433962B (zh) * 2016-06-18 2023-05-05 西藏谦诚信息科技有限公司 一种用于轨道交通故障监控与智能预警的方法和系统
CN108600040B (zh) * 2018-03-16 2022-03-15 国电南瑞科技股份有限公司 一种基于高可用检测节点的分布式系统节点故障检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180034912A1 (en) * 2012-01-09 2018-02-01 May Patents Ltd. System and method for server based control
CN104614663B (zh) * 2015-01-27 2018-01-09 徐自远 电路故障检测系统及方法
CN107526677A (zh) * 2016-06-22 2017-12-29 上海中兴软件有限责任公司 一种软件错误现场定位及处理的方法及装置
CN109150648A (zh) * 2018-05-30 2019-01-04 太仓鸿策拓达科技咨询有限公司 自检测网络安全系统

Also Published As

Publication number Publication date
US11748188B2 (en) 2023-09-05
US20220012114A1 (en) 2022-01-13
CN109962828A (zh) 2019-07-02
CN109962828B (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
US8140922B2 (en) Method for correlating an error message from a PCI express endpoint
US7010639B2 (en) Inter integrated circuit bus router for preventing communication to an unauthorized port
US7240130B2 (en) Method of transmitting data through an 12C router
US11620175B2 (en) Method and apparatus for disconnecting link between PCIe device and host
US7082488B2 (en) System and method for presence detect and reset of a device coupled to an inter-integrated circuit router
US7502992B2 (en) Method and apparatus for detecting presence of errors in data transmitted between components in a data storage system using an I2C protocol
US7630304B2 (en) Method of overflow recovery of I2C packets on an I2C router
US20100103826A1 (en) Redundant acknowledgment in loopback entry
CN103270497A (zh) 实时错误恢复的方法和系统
US7398345B2 (en) Inter-integrated circuit bus router for providing increased security
US11815984B2 (en) Error handling in an interconnect
JP3920280B2 (ja) I2cルータを通じたデータ送信方法
WO2020199377A1 (zh) 一种安全通信的装置和方法
US20070226549A1 (en) Apparatus for detecting errors in a communication system
US20040255193A1 (en) Inter integrated circuit router error management system and method
CN115694729A (zh) 数据处理方法及系统、存储介质和电子设备
TW201810059A (zh) 主控元件以及資料傳輸方法
US20040255195A1 (en) System and method for analysis of inter-integrated circuit router
CN113835940B (zh) 一种设置串行中断模式的方法、系统、设备和存储介质
CN114531371A (zh) 总线监测网络、片上系统以及总线管理方法
CN117294627A (zh) 流控验证方法、装置、芯片测试设备和可读存储介质
Added et al. Device Errata for the MPC8548E PowerQUICC™ III Processor
Errata MPC8641 Chip Errata
CN106708672A (zh) 一种pcie回环自检测的方法
JPH0338928A (ja) 光インタフェイスケーブルのh/w接続チェック方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922502

Country of ref document: EP

Kind code of ref document: A1