WO2020198992A1 - 一种假天线结构以及毫米波天线阵列 - Google Patents

一种假天线结构以及毫米波天线阵列 Download PDF

Info

Publication number
WO2020198992A1
WO2020198992A1 PCT/CN2019/080565 CN2019080565W WO2020198992A1 WO 2020198992 A1 WO2020198992 A1 WO 2020198992A1 CN 2019080565 W CN2019080565 W CN 2019080565W WO 2020198992 A1 WO2020198992 A1 WO 2020198992A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
fake
dummy
antenna array
millimeter wave
Prior art date
Application number
PCT/CN2019/080565
Other languages
English (en)
French (fr)
Inventor
唐哲
汤一君
蔡铭
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980010375.7A priority Critical patent/CN111771304A/zh
Priority to PCT/CN2019/080565 priority patent/WO2020198992A1/zh
Publication of WO2020198992A1 publication Critical patent/WO2020198992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Definitions

  • the present invention generally relates to the technical field of antenna structures, and more specifically to a false antenna structure and a millimeter wave antenna array.
  • millimeter wave radar can be miniaturized and integrated. With the same antenna diameter, millimeter wave radar can obtain a narrower antenna beam and higher antenna gain, which can improve the angle measurement of the radar. Resolution and angle measurement accuracy, and is conducive to anti-electronic interference, clutter interference and multipath reflection interference.
  • the present invention is proposed to solve at least one of the above-mentioned problems.
  • the present invention provides a fake antenna structure, which includes:
  • Multi-layer dielectric boards arranged in sequence from bottom to top;
  • the radiating unit is arranged on the dielectric board on the top layer and is used for radiating antenna signals;
  • the feeding unit is arranged in the multilayer dielectric board
  • the load structure is arranged on at least one layer of the dielectric plate at the bottom, and is matched and connected with the feed port of the feed unit, and the load structure is a microstrip to SIW transmission structure.
  • the present invention also provides a millimeter wave antenna array, the millimeter wave antenna array includes the above-mentioned dummy antenna structure.
  • the present invention provides a dummy antenna structure and a millimeter wave antenna array.
  • a load structure matched and connected to the feed port of the feed unit is provided in the dummy antenna structure, and the load structure is a microstrip to SIW transmission Structure, through the improvement, the false antenna structure and the millimeter wave antenna array have a good matching effect in the frequency band, and the radiation is small, the coverage frequency band is wide, and the large bandwidth requirement can be met.
  • Fig. 1 is a top view of the top layer of a dummy antenna structure according to an embodiment of the present invention
  • Fig. 2 is a top view of the bottom layer of a dummy antenna structure according to an embodiment of the present invention
  • 3A-3C are schematic cross-sectional structural diagrams of different layers of the load structure in the dummy antenna structure according to an embodiment of the present invention.
  • FIG. 4A shows the return loss of the antenna body port in the fake antenna structure according to an embodiment of the present invention
  • 4B is a port return loss of the load structure of the feed port in the fake antenna structure according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the layout of a millimeter wave antenna array according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the layout of a millimeter wave antenna array according to another embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the influence of the load of the false antenna feed port on the amplitude and phase consistency in the back-fed antenna back cavity environment.
  • FIG. 1 is a fake antenna structure according to an embodiment of the present invention.
  • Fig. 2 is a top view of the bottom layer of a dummy antenna structure according to an embodiment of the present invention;
  • Figs. 3A-3C are cross-sectional structural diagrams of different layers of a load structure in a dummy antenna structure according to an embodiment of the present invention.
  • the fake antenna structure includes:
  • Multi-layer dielectric boards arranged in sequence from bottom to top;
  • the radiating unit is arranged on the dielectric board on the top layer and is used for radiating antenna signals;
  • the feeding unit is arranged in the multilayer dielectric board
  • the load structure is arranged on the multi-layer said dielectric board at the bottom layer and is matched and connected with the feeding port of the feeding unit, and the load structure is a microstrip to SIW transmission structure.
  • the dummy antenna structure further includes multiple metal layers, and the dielectric plate is arranged between adjacent metal layers.
  • the fake antenna structure includes 8 metal layers.
  • the number of metal layers is not limited to this value, and can be set according to actual needs.
  • the The fake antenna structure includes 6 metal layers.
  • the fake antenna structure includes 8 metal layers as an example for detailed description. It should be noted that when the metal layer changes, other structures can be set by referring to the example of 8 metal layers when there is no conflict. , Of course, can be modified and modified.
  • the dummy antenna structure including 8 metal layers as an example.
  • the 8 metal layers are arranged in sequence, and a dielectric board is arranged between the adjacent metal layers, that is, 7 dielectric boards are arranged between the 8 metal layers, and the bottom and top layers are both metal layers.
  • the frame structure of the dummy antenna structure is constructed.
  • the medium plate includes a printing medium plate and an adhesive medium plate, wherein the metal layer is formed on two opposite sides of the printing medium plate by printing, and the adhesive medium plate is arranged on the opposite side. Between the adjacent printed media boards, the adhesive media boards and the printed media boards are alternately arranged and then pressed into one body to form a frame structure of a pseudo antenna structure.
  • the metal layer is formed on a printed medium board by printing, and various functional circuits or components are formed in the metal layer, thereby integrating various functional circuits or components required in the fake antenna structure on the dielectric board , So as to realize the connection of various functional circuits or components of the fake antenna structure to realize specific functions.
  • an antenna body 10 is provided in the uppermost metal layer, as shown in FIG. 1, for radiating antenna signals.
  • a power feeding unit 20 is also provided in the uppermost metal layer for port matching with the load structure.
  • the dummy antenna body in the uppermost metal layer adopts the form of a series-fed microstrip array antenna, which is suitable for millimeter wave frequency bands.
  • the lowermost layer is the feed unit 20 of the dummy antenna body plus the feed section load Structure 30, the load structure is a microstrip to SIW transmission load structure.
  • the feeding unit 20 is not only formed in the topmost metal layer.
  • FIG. 1 only shows the structure of the topmost dielectric plate.
  • the feeding unit 20 can be formed in all metals. Layers and media boards can be set according to actual needs.
  • the dielectric board can be a PCB (Printed Circuit Board) substrate, a ceramic substrate, a pre-mold substrate, etc.
  • PCB Printed Circuit Board
  • the PCB is made of different components and a variety of complex process technologies, among which the structure of the PCB circuit board includes single-layer, double-layer, and multi-layer structures, and different hierarchical structures have different manufacturing methods. .
  • the printed circuit board is mainly composed of pads, vias, mounting holes, wires, components, connectors, filling, electrical boundaries, etc.
  • the common layer structures of printed circuit boards include single layer PCB, double layer PCB, and multi layer PCB.
  • the specific structure is as follows:
  • Single-layer board a circuit board with copper on one side and no copper on the other side. Usually components are placed on the side without copper, and the side with copper is mainly used for wiring and welding.
  • Double-layer board a circuit board with copper on both sides, usually called the top layer (Top Layer) on one side and the bottom layer (Bottom Layer) on the other side.
  • Top Layer a circuit board with copper on both sides
  • Bottom Layer a circuit board with copper on both sides
  • the top layer is used as the component placement surface
  • the bottom layer is used as the component welding surface.
  • Multilayer board A circuit board that contains multiple working layers. In addition to the top and bottom layers, it also contains several intermediate layers. Usually, the intermediate layer can be used as a wire layer, a signal layer, a power layer, and a ground layer. The layers are insulated from each other, and the connection between the layers is usually achieved through via holes.
  • the printed circuit board includes many types of working layers, such as a signal layer, a protective layer, a silk screen layer, an internal layer, etc., which will not be repeated here.
  • the substrate mentioned in this application can also be a ceramic substrate.
  • the ceramic substrate means that the copper foil is directly bonded to the surface of the alumina (Al 2 O 3 ) or aluminum nitride (AlN) ceramic substrate (single-sided) at high temperature. Or double-sided) special craft board.
  • the made ultra-thin composite substrate has excellent electrical insulation properties, high thermal conductivity, excellent solderability and high adhesion strength, and can be etched into various patterns like a PCB board, and has a large current carrying capacity. ability.
  • the corresponding 7-layer dielectric plates are arranged at intervals between the 8 metal layers.
  • the uppermost and lowermost dielectric plates are low-loss and high-frequency plates (commonly such as Rogers RO3003, Taconic NF-30). Etc.), the middle 5 layers are made of low-cost FR4 materials.
  • the metal layer may be various metal materials commonly used in the field, and is not limited to a certain one.
  • the metal layer is selected from the metal copper, which has a more mature printing process and is more commonly used.
  • the load structure selects the microstrip to SIW transmission load structure.
  • the load structure 30 is a multilayer structure, including 4 copper layers and three layers. In the dielectric board, gaps are opened on the middle two copper layers, so that energy can be transmitted between the layers, increasing the transmission loss path.
  • the dummy antenna structure includes 8 metal layers sequentially arranged from bottom to top, and the load structure is arranged in at least the first to third metal layers from the bottom, that is, the sixth layer from the top to the third metal layer. In the 8th floor.
  • the load structure is arranged in the first to fourth metal layers from the bottom, that is, the fifth to eighth layers from the top.
  • the following is an example of setting the load structure from the 5th layer to the 8th layer from the top.
  • the load structure includes metal vias, or metal vias and gaps provided on the dielectric plate and the metal layer, and the energy coupled by the load structure is transmitted through the metal vias and/or gaps and is transmitted. It is completely consumed in the process to improve the power ratio and phase difference of the fake antenna structure.
  • FIG. 3A shows the bottommost layer as shown in FIG. 3A, the eighth metal layer 301 from the top, wherein the load structure in the eighth metal layer is provided with a port connected to the feed unit.
  • Fig. 3B shows the penultimate metal layer, the seventh metal layer 302 from the top, and the eighth metal layer 301 and the seventh metal layer 302 are provided with a plurality of metal vias. Two rows of metal vias 3012 arranged at equal intervals are added to the double-sided copper-clad dielectric board to form a substrate integrated waveguide.
  • the metal vias 3012 are regularly arranged to form a metal via array.
  • the eighth metal layer 301 and the seventh metal layer 302 are arranged There are two rows of metal vias 3012, the distance between the two rows of metal vias 3012 is 2-8mm, and the distance between adjacent vias is 0.2-1mm.
  • the structures of the seventh metal layer 302 from the top and the sixth metal layer from the top are shown in FIG. 3B.
  • a gap 3011 is also provided in the seventh metal layer 302 and the sixth metal layer.
  • the gap 3011 is a coupling gap, and its shape can be rectangular, of course, it can also be set to Other shapes.
  • Figure 3C shows the fifth metal layer 303 at the top.
  • a plurality of metal vias are provided in the fifth metal layer 303.
  • Two rows of equally spaced copper-clad dielectric plates are added
  • the metal via 3012 forms a substrate integrated waveguide.
  • a row of metal vias arranged at equal intervals is placed in the vertical direction at one end of the two rows of metal vias to form the short-circuit end of the substrate integrated waveguide.
  • the gap is formed by etching the copper-clad layer of the double-sided copper-clad dielectric board, and the coupling gap is located at the bottom of the short-circuit end of the substrate integrated waveguide.
  • the coupling gap 2 has a length of 10 mm and a width of 0.8 mm.
  • the end load design of the fake antenna adopts a non-radiating structure, which does not affect the radiation antenna pattern characteristics in the coplanar feed structure, and is suitable for the back cavity environment of the back-fed antenna structure , It has little effect on the amplitude and phase consistency of the antenna elements in the array. The above improvements can improve the amplitude and phase consistency of the antenna array elements.
  • the antenna body has a small return loss at 77.75GHz ⁇ 80.25GHz , Good matching;
  • the load structure of the feed port is at 77.75GHz ⁇ 80.25GHz with low return loss and good matching.
  • a millimeter wave antenna array is provided, and the millimeter wave antenna array at least includes the dummy antenna structure.
  • the bandwidth of the millimeter wave antenna array can be increased by 2.5 GHz. For example, it can work in the 2.5 GHz range of the 77.75 GHz to 80.25 GHz frequency band to satisfy point cloud radar The system requires large bandwidth. It can also improve the consistency of the pattern of the antenna array unit.
  • the millimeter wave antenna array includes:
  • a transmitting antenna array wherein the transmitting antenna array includes a transmitting antenna and the dummy antenna structure;
  • a receiving antenna array wherein the transmitting antenna array includes a receiving antenna and the dummy antenna structure.
  • the transmitting antenna and the receiving antenna can be conventional transmitting antennas and receiving antennas in the field, as long as the transmitting and receiving functions can be realized, which is not further limited here.
  • the left part is a transmitting antenna and a dummy antenna
  • the right part is a receiving antenna and a dummy antenna.
  • the whole is a three-transmit and four-receive structure.
  • the transmit antenna array includes 3 transmitting antennas and 3 dummy antenna structures arranged between any two transmitting antennas
  • the receiving antenna array includes 6 receiving antennas and 4 dummy antenna structures are arranged at the center of the 6 receiving antennas, Among them, the labels R1 to R4 correspond to 4 fake antennas, and T1 to T3 correspond to three fake antennas.
  • a plurality of antenna arrays are formed on the dielectric plate, and the dummy antenna structure in the antenna array is connected to the feed port as a load structure, wherein
  • the working antenna such as the transmitting antenna or the receiving antenna, is connected to the functional chip, for example, connected to the functional chip through a connecting wire.
  • the load structure in the dummy antenna structure can improve the consistency of the pattern of the antenna array unit.
  • the dummy antenna structure further includes an antenna adapting structure 40, and a cavity is formed between the first surface of the antenna adapting structure and the metal shell of the component mounted on the dummy antenna structure, and The second surface opposite to the first surface of the antenna adapting structure is used for mounting the dummy antenna structure on a movable platform.
  • the influence of the cavity-backed on the amplitude and phase consistency is explained.
  • the energy will be coupled to the adjacent antenna, such as the No. 4 antenna.
  • the antenna array No. 4 is transmitted to its port load, and multiple reflections are formed in the cavity through the feeder radiation or port load radiation, and the reflected energy excites other antennas, making the radiation pattern formed by the superposition of multiple antennas, and different antennas are coupled Different from the reflection path, the formed pattern is also different, resulting in poor amplitude and phase consistency.
  • the metal vias and slots of the load structure allow energy to be transmitted between layers, increasing the transmission loss path, The energy at the load end is completely consumed after being transmitted through the metal vias and slots, thereby avoiding the influence of adjacent antennas, making the working environment of each antenna consistent, and improving the consistency of the antenna array unit pattern amplitude.
  • the movable platform may be an unmanned aerial vehicle, unmanned aerial vehicle, self-driving car or ground remote control robot.
  • the movable platform includes a fuselage and a microwave rotating radar, and the microwave rotating radar is installed on the fuselage.
  • the microwave rotating radar includes the millimeter wave antenna array described above.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by their combination.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet websites, or provided on carrier signals, or provided in any other form.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种假天线结构以及毫米波天线阵列。所述假天线结构包括:从底部至顶部依次设置的多层介质板;辐射单元,设置于顶层的所述介质板上,用于辐射天线信号;馈电单元(20),设置于所述多层介质板中;负载结构(30),设置于底部的至少一层所述介质板上,与所述馈电单元(20)的馈电端口匹配连接,所述负载结构(30)为微带转SIW传输结构。通过所述改进使所述假天线结构和毫米波天线阵列的频带内良好的匹配效果,而且辐射小,在共面馈电结构中不影响天线单元辐射方向图,在背馈结构中不会造成背腔中的多次反射,对幅相一致性影响小。

Description

一种假天线结构以及毫米波天线阵列
说明书
技术领域
本发明总地涉及天线结构技术领域,更具体地涉及一种假天线结构以及毫米波天线阵列。
背景技术
随着毫米波器件的发展,毫米波雷达可实现小型化、集成化,在天线口径相同的情况下,毫米波雷达可获得更窄的天线波束,更高的天线增益,可提高雷达的测角分辨率和测角精度,并且有利于抗电子干扰、杂波干扰和多径反射干扰。
在毫米波雷达系统中,阵列天线中各单元幅度相位一致性越好,测角精度越高,测角分辨力越好。各天线单元由于在阵列中所处电磁环境不同,各自方向图会存在差异,该问题在阵列设计中普遍存在。为了改善天线阵列的幅度相位一致性,经常需要用到假天线设计。假天线指不接激励端口,只用于给辐射天线提供均匀的电磁环境,使其方向图在阵列环境中产生的畸变较小,假天线设计质量的优劣将直接影响到天线阵列幅相一致性特性,高质量的假天线设计在毫米波雷达系统中尤为重要。目前很多假天线存在带宽窄的问题,不能满足大带宽需求。
因此需要对假天线的结构进行改进,以解决目前假天线存在上述问题。
发明内容
为了解决上述问题中的至少一个而提出了本发明。本发明提供一种假天线结构,所述假天线结构包括:
从底部至顶部依次设置的多层介质板;
辐射单元,设置于顶层的所述介质板上,用于辐射天线信号;
馈电单元,设置于所述多层介质板中;
负载结构,设置于底部的至少一层所述介质板上,与所述馈电单元的馈电端口匹配连接,所述负载结构为微带转SIW传输结构。
本发明还提供了一种毫米波天线阵列,所述毫米波天线阵列包括上述的假天线结构。
本发明提供了一种假天线结构以及毫米波天线阵列,在所述假天线结构中设置与所述馈电单元的馈电端口匹配连接的负载结构,并且所述负载结构为微带转SIW传输结构,通过所述改进使所述假天线结构和毫米波天线阵列的频带内良好的匹配效果,而且辐射小,覆盖频段宽,可满足大带宽需求。
附图说明
图1是根据本发明一实施例的假天线结构的顶层的俯视图;
图2是根据本发明一实施例的假天线结构的最底层的俯视图;
图3A-3C是根据本发明一实施例的假天线结构中负载结构不同层的切面结构示意图;
图4A是根据本发明一实施例的假天线结构中天线主体端口回波损耗;
图4B是根据本发明一实施例的假天线结构中馈电端口的负载结构端口回波损耗;
图5是根据本发明一实施例的毫米波天线阵列的布局示意图;
图6是根据本发明另一实施例的毫米波天线阵列的布局示意图;
图7为背馈天线背腔环境下假天线馈电端口负载对幅相一致性的影响示意。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明提出的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
为了解决目前存在的问题,本发明的实施例提供了一种假天线结构,下面结合附图对所述假天线结构进行详细的说明,其中,图1是根据本发明一实施例的假天线结构的顶层的俯视图;图2是根据本发明一实施例的假天线结构的最底层的俯视图;图3A-3C是根据本发明一实施例的假天线结构中负载结构不同层的切面结构示意图。
在本发明的一实施例中,所述假天线结构包括:
从底部至顶部依次设置的多层介质板;
辐射单元,设置于顶层的所述介质板上,用于辐射天线信号;
馈电单元,设置于所述多层介质板中;
负载结构,设置于底层的多层所述介质板上,与所述馈电单元的馈电端口匹配连接,所述负载结构为微带转SIW传输结构。
其中,在本发明的实施例中,所述假天线结构还包括多层金属层,所述介质板设置于相邻的金属层之间。
在一具体实施方式中,所述假天线结构包括8层金属层,当然所述金属层的数目并不局限于该数值,可以根据实际的需要进行设置,例如在另外一实施例中,所述假天线结构包括6层金属层。在后续的实施例中均以假天线结构包括8层金属层为例进行详细的说明,需要说明的是,当金属层变化时其他结构在不冲突时均可参照8层金属层的示例进行设置,当然可以进行变型和修改。
下面以所述假天线结构包括8层金属层为例进行说明。其中,所述8层金属层依次设置,并且在相邻的所述金属层之间设置介质板,即在8层金属层之间设置7层介质板,其中最底层和最顶层均为金属层,以此构成所述假天线结构的框架结构。
在一具体实施方式中,所述介质板包括印刷介质板和粘合介质板,其中,所述金属层通过印刷方式形成于印刷介质板的相对设置的两面,所述粘合介质板设置于相邻的所述印刷介质板之间,将所述粘合介质板与所述印刷介质板交替设置然后压合为一体,以形成假天线结构的框架结构。
其中,所述金属层通过印刷形成于印刷介质板上,所述金属层中形成有各种功能电路或元件,从而将假天线结构中需要的各种功能电路或元件集成于所述介质板上,从而实现假天线结构的各种功能电路或元件的连接,实现特定的功能。
例如在所述最上层的金属层中设置天线主体10,如图1所示,用于辐射天线信号。并且在所述最上层的金属层中还设置有馈电单元20,以用于与负载结构进行端口匹配。最上层的金属层中的假天线主体,采用串馈微带阵列天线形式,适用于毫米波频段,其中,如图2所述的最底层为假天线主体的馈电单元20加馈电段负载结构30,负载结构为微带转SIW传输负载结构。
需要说明的是,所述馈电单元20并不仅仅形成于最顶层的金属层中,图1仅仅示出了最顶层介质板的结构,其中,所述馈电单元20可以形成于所有的金属层和介质板中,可以根据实际需要进行设置。
其中,所述介质板可以选用PCB(Printed Circuit Board,印制电路板)基板、陶瓷基板、预注塑(Pre-mold)基板等。
其中,所述PCB由不同的元器件和多种复杂的工艺技术处理等制作而成,其中PCB线路板的结构有单层、双层、多层结构,不同的层次结构其 制作方式是不同的。
可选地,印刷电路板主要由焊盘、过孔、安装孔、导线、元器件、接插件、填充、电气边界等组成。
进一步,印刷电路板常见的板层结构包括单层板(Single Layer PCB)、双层板(Double Layer PCB)和多层板(Multi Layer PCB)三种,其具体结构如下所述:
(1)单层板:即只有一面敷铜而另一面没有敷铜的电路板。通常元器件放置在没有敷铜的一面,敷铜的一面主要用于布线和焊接。
(2)双层板:即两个面都敷铜的电路板,通常称一面为顶层(Top Layer),另一面为底层(Bottom Layer)。一般将顶层作为放置元器件面,底层作为元器件焊接面。
(3)多层板:即包含多个工作层面的电路板,除了顶层和底层外还包含若干个中间层,通常中间层可作为导线层、信号层、电源层、接地层等。层与层之间相互绝缘,层与层的连接通常通过过孔来实现。
其中,印刷电路板包括许多类型的工作层面,如信号层、防护层、丝印层、内部层等,在此不再赘述。
此外,在本申请中所述基板还可以选用陶瓷基板,陶瓷基板是指铜箔在高温下直接键合到氧化铝(Al 2O 3)或氮化铝(AlN)陶瓷基片表面(单面或双面)上的特殊工艺板。所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像PCB板一样能刻蚀出各种图形,具有很大的载流能力。
在另外的实施例中,在8层金属层之间间隔设置了对应的7层介质板材,其中,最上层介质板和最下层介质板为低损耗高频板材(常见如RogersRO3003,Taconic NF-30等),中间5层为低成本的FR4材料。
其中,所述金属层可以为本领域常用的各种金属材料,并不据局限于某一种,在该实施例中,所述金属层选用印刷工艺更为成熟、更常用的金属铜。
在本发明的实施例中为了满足点云雷达系统大带宽要求,可以实现在77.75GHz~80.25GHz频段2.5GHz范围内工作,所述负载结构选用微带转SIW传输负载结构,SIW(Substrate integrated waveguide)为基片集成波导,其中, 所述SIW为微波传输线形式,其利用金属过孔在介质板上实现波导的场传播模式。
下面结合附图3A-3C是根据本发明一实施例的假天线结构中负载结构不同层的切面结构示意图,在一实施例中,负载结构30为多层机构,包括4层铜层,三层介质板,在中间两层铜层上开缝隙,使得能量可以在层间传输,增加传输损耗路径。
具体地,所述假天线结构包括从底部至顶部依次设置的8层金属层,所述负载结构设置于至少从底部起的第1至第3金属层中,即从顶部数的第6层到第8层中。在另外一实施例中,所述负载结构设置于从底部起的第1至第4金属层中,即从顶部数的第5层到第8层中。
下面以从顶部数的第5层到第8层设置所述负载结构为示例进行说明。
其中,所述负载结构包括设置于所述介质板和所述金属层上的金属过孔、或金属过孔和缝隙,负载结构耦合的能量通过所述金属过孔和/或缝隙传输并在传输过程中完全消耗,以改善所述假天线结构的功率比和相位差。
如图3A所示的最底层,从顶部数的第8层金属层301,其中,在所述第8层金属层中的负载结构中设置有与所述馈电单元相连接的端口。其中附图3B为倒数第二层金属层,从顶部数的第7层金属层302,另外在该第8层金属层301和第7层金属层302中设置有多个金属过孔,通过在双面覆铜的介质板中加入两排等间距排布的金属过孔3012,形成基片集成波导。
其中,所述金属过孔3012规则排列,以形成金属过孔阵列,例如在一具体实施方式中,如图3A所示,在所述第8层金属层301和第7层金属层302中设置两排金属过孔3012,两排金属过孔3012间距为2-8mm,相邻过孔间距为0.2-1mm。
其中,从顶部数的第7层金属层302和顶部数的第6层金属层的结构均如图3B所示,在第7层金属层302和第6层金属层中除了设置所述金属过孔之外,在所述第7层金属层302和第6层金属层中还设置有缝隙3011,其中,所述缝隙3011为耦合缝隙,其形状可以为矩形,当然也可以根据实际需要设置为其他形状。
其中,附图3C为顶部数的第5层金属层303,在第5层金属层303中设 置有多个金属过孔,通过在双面覆铜的介质板中加入两排等间距排布的金属过孔3012,形成基片集成波导。
具体地,在两排金属过孔的一端的垂直方向上放置一排等间距排布的金属过孔,形成基片集成波导的短路端。缝隙通过刻蚀双面覆铜介质板的覆铜层形成,耦合缝隙位于基片集成波导的短路端的底部,耦合缝隙2的长度为10mm,宽度为0.8mm。
通过在所述金属层和介质板中设置所述金属过孔和在中间两层铜层上开缝隙,使得能量可以在层间传输,增加传输损耗路径,以使负载端的能量经金属过孔和缝隙传输之后完全消耗,从而避免对辐射单元造成影响,该假天线末端负载设计采用非辐射结构,在共面馈电结构中不影响辐射天线方向图特性,适用于背馈天线结构的背腔环境,对阵列中天线单元幅相一致性影响小,通过上述改进可以改善天线阵列单元方向图幅相一致性,如图4A和4B所示可以看出天线主体在77.75GHz~80.25GHz回波损耗小,匹配好;馈电端口负载结构在77.75GHz~80.25GHz回波损耗小,匹配好。
在本发明的另外一实施例中,提供了一种毫米波天线阵列,所述毫米波天线阵列至少包括所述的假天线结构。在所述毫米波天线阵列中通过设置所述假天线结构,可以使该毫米波天线阵列的带宽增加值2.5GHz,例如可以实现在77.75GHz~80.25GHz频段2.5GHz范围内工作,满足点云雷达系统大带宽要求。还可以改善天线阵列单元方向图幅相一致性。
在本发明的一示例中,所述毫米波天线阵列包括:
发射天线阵列,其中发射天线阵列包括发射天线和所述假天线结构;
接收天线阵列,其中发射天线阵列包括接收天线和所述假天线结构。
其中,发射天线和接收天线可以选用本领域常规的发射天线和接收天线,只要能够实现发射和接收功能即可,在此不再进一步限定。
在本发明的一具体实施方式中,如图5所示,左侧部分为发射天线和假天线,右侧部分为接收天线和假天线,整体为三发四收结构,所述发射天线阵列包括3个发射天线以及在任意两个发射天线之间设置3个所述假天线结构,所述接收天线阵列包括6个接收天线以及在6个接收天线的中心位置设置4个所述假天线结构,其中,标注R1~R4为对应4根假天线,T1~T3为对 应三根假天线。
在另外一实施方式中,如图6所示,在所述介质板上形成有多个天线阵列,在所述天线阵列中所述假天线结构中与馈电端口连接的为负载结构,其中与工作天线,例如发射天线或接收天线连接的为功能芯片,例如通过连接线与功能芯片连接。其中,所述假天线结构中的负载结构可以改善天线阵列单元方向图幅相一致性。
进一步,如图7所示,所述假天线结构还包括天线适配结构40,所述天线适配结构的第一表面与所述假天线结构所安装元件的金属壳之间形成空腔,与所述天线适配结构的第一表面相对设置的第二表面用于将所述假天线结构安装于可移动平台上。
如图7所示,为背腔对幅相一致性影响说明,在背馈有背腔情况下,在1号天线被激励时,能量会耦合到相邻天线上,比如4号天线,能量经4号天线阵面传输到其端口负载上,经过馈线辐射或端口负载辐射在腔内形成多次反射,反射能量激励起其他天线,使得辐射方向图为多个天线辐射叠加形成,不同的天线耦合和反射路径不同,形成的方向图也不同,造成幅相一致性很差,当设置假天线结构时,负载结构的金属过孔和缝隙使得能量可以在层间传输,增加传输损耗路径,以使负载端的能量经金属过孔和缝隙传输之后完全消耗,从而避免相邻的天线造成影响,使每个天线的工作环境一致,从而改善天线阵列单元方向图幅相一致性。
可选地,所述可移动平台可以为无人飞行器、无人机、自动驾驶汽车或地面遥控机器人。
可移动平台包括机身和微波旋转雷达,微波旋转雷达安装在机身上。微波旋转雷达包含上述毫米波天线阵列。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方 案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种假天线结构,其特征在于,所述假天线结构包括:
    从底部至顶部依次设置的多层介质板;
    辐射单元,设置于顶层的所述介质板上,用于辐射天线信号;
    馈电单元,设置于所述多层介质板中;
    负载结构,设置于底部的至少一层所述介质板上,与所述馈电单元的馈电端口匹配连接,所述负载结构为微带转SIW传输结构。
  2. 根据权利要求1所述的假天线结构,其特征在于,所述辐射单元包括天线主体,用于辐射天线信号。
  3. 根据权利要求2所述的假天线结构,其特征在于,所述天线主体为串馈微带阵列天线。
  4. 根据权利要求1所述的假天线结构,其特征在于,所述假天线结构还包括:
    多层金属层,所述介质板设置于相邻的金属层之间。
  5. 根据权利要求4所述的假天线结构,其特征在于,所述介质板包括印刷介质板和粘合介质板,其中,所述金属层通过印刷方式形成于所述印刷介质板的相对设置的两面,所述粘合介质板设置于相邻的所述印刷介质板之间。
  6. 根据权利要求5所述的假天线结构,其特征在于,所述假天线结构包括从底部至顶部依次设置的8层金属层,所述负载结构设置于至少从底部起的第1至第3金属层中。
  7. 根据权利要求6所述的假天线结构,其特征在于,所述负载结构设置于从底部起的第1至第4金属层中。
  8. 根据权利要求6所述的假天线结构,其特征在于,所述负载结构包括设置于所述介质板和所述金属层上的金属过孔、或金属过孔和缝隙,负载结构耦合的能量通过所述金属过孔和/或缝隙传输并在传输过程中完全消耗,以改善所述假天线结构的功率比和相位差。
  9. 根据权利要求8所述的假天线结构,其特征在于,至少在从底部起的 第2和第3金属层中设置缝隙,和/或至少在从底部起的第1至第3金属层中设置金属过孔。
  10. 根据权利要求1所述的假天线结构,其特征在于,所述假天线结构还包括天线适配结构,所述天线适配结构的第一表面与所述假天线结构所安装元件的金属壳之间形成空腔,与所述天线适配结构的第一表面相对设置的第二表面用于将所述假天线结构安装于可移动平台上。
  11. 一种毫米波天线阵列,其特征在于,所述毫米波天线阵列包括权利要求1至10之一所述的假天线结构。
  12. 根据权利要求11所述的毫米波天线阵列,其特征在于,所述毫米波天线阵列包括:
    发射天线阵列,其中发射天线阵列包括发射天线和所述假天线结构。
  13. 根据权利要求12所述的毫米波天线阵列,其特征在于,所述毫米波天线阵列包括:
    接收天线阵列,其中发射天线阵列包括接收天线和所述假天线结构。
  14. 根据权利要求13所述的毫米波天线阵列,其特征在于,所述发射天线阵列包括3个发射天线以及在任意两个发射天线之间设置3个所述假天线结构。
  15. 根据权利要求13所述的毫米波天线阵列,其特征在于,所述接收天线阵列包括6个接收天线以及在6个接收天线的中间位置设置4个所述假天线结构。
  16. 根据权利要求13所述的毫米波天线阵列,其特征在于,所述发射天线和所述接收天线的馈电单元的末端均与功能芯片电连接。
  17. 根据权利要求11所述的毫米波天线阵列,其特征在于,所述毫米波天线阵列的工作频率为77.75GHz~80.25GHz。
PCT/CN2019/080565 2019-03-29 2019-03-29 一种假天线结构以及毫米波天线阵列 WO2020198992A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980010375.7A CN111771304A (zh) 2019-03-29 2019-03-29 一种假天线结构以及毫米波天线阵列
PCT/CN2019/080565 WO2020198992A1 (zh) 2019-03-29 2019-03-29 一种假天线结构以及毫米波天线阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080565 WO2020198992A1 (zh) 2019-03-29 2019-03-29 一种假天线结构以及毫米波天线阵列

Publications (1)

Publication Number Publication Date
WO2020198992A1 true WO2020198992A1 (zh) 2020-10-08

Family

ID=72664410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080565 WO2020198992A1 (zh) 2019-03-29 2019-03-29 一种假天线结构以及毫米波天线阵列

Country Status (2)

Country Link
CN (1) CN111771304A (zh)
WO (1) WO2020198992A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571900B (zh) * 2021-07-30 2024-04-12 海信集团控股股份有限公司 一种馈电结构、毫米波天线及汽车
WO2024007323A1 (zh) * 2022-07-08 2024-01-11 华为技术有限公司 阵列天线和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825089A (zh) * 2014-02-28 2014-05-28 电子科技大学 近场聚焦平面阵列天线
CN106229686A (zh) * 2016-08-31 2016-12-14 上海捷士太通讯技术有限公司 一种宽带圆极化微带天线
CN106972244A (zh) * 2017-02-28 2017-07-21 惠州硕贝德无线科技股份有限公司 一种车载雷达阵列天线
CN108649325A (zh) * 2018-03-20 2018-10-12 北京邮电大学 一种宽带高增益毫米波介质谐振天线阵列
US20180316098A1 (en) * 2017-05-01 2018-11-01 Intel Corporation Antenna package for large-scale millimeter wave phased arrays

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087288B1 (ko) * 2009-03-31 2011-11-29 한국항공대학교산학협력단 위성통신용 원형 편파 안테나
WO2017044168A2 (en) * 2015-06-16 2017-03-16 King Abdulaziz City Of Science And Technology Efficient planar phased array antenna assembly
CN108494430B (zh) * 2018-03-21 2020-10-09 北京理工雷科雷达技术研究院有限公司 一种小型化毫米波射频前端
CN110098468A (zh) * 2019-04-09 2019-08-06 惠州市德赛西威智能交通技术研究院有限公司 一种三发四收宽波束天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825089A (zh) * 2014-02-28 2014-05-28 电子科技大学 近场聚焦平面阵列天线
CN106229686A (zh) * 2016-08-31 2016-12-14 上海捷士太通讯技术有限公司 一种宽带圆极化微带天线
CN106972244A (zh) * 2017-02-28 2017-07-21 惠州硕贝德无线科技股份有限公司 一种车载雷达阵列天线
US20180316098A1 (en) * 2017-05-01 2018-11-01 Intel Corporation Antenna package for large-scale millimeter wave phased arrays
CN108649325A (zh) * 2018-03-20 2018-10-12 北京邮电大学 一种宽带高增益毫米波介质谐振天线阵列

Also Published As

Publication number Publication date
CN111771304A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
US9865928B2 (en) Dual-polarized antenna
EP3252870B1 (en) Antenna module
US20130076570A1 (en) Rf module
WO2023185843A1 (zh) 波导天线组件、雷达、终端和波导天线组件的制备方法
JP3996879B2 (ja) 誘電体導波管とマイクロストリップ線路の結合構造およびこの結合構造を具備するフィルタ基板
WO2020198992A1 (zh) 一种假天线结构以及毫米波天线阵列
CN111262025A (zh) 集成基片间隙波导波束扫描漏波天线
WO2021097850A1 (zh) 毫米波天线、天线组件、毫米波雷达系统和可移动平台
JP7002406B2 (ja) アレイアンテナ基板および通信モジュール
JP4404797B2 (ja) 配線基板
JP6867274B2 (ja) アレイアンテナ基板および通信モジュール
JP2004153415A (ja) 高周波線路−導波管変換器
CN111478033B (zh) 一种齿轮型缝隙常规isgw漏波天线阵列
CN116093596B (zh) 毫米波宽带封装天线
CN110957574A (zh) 一种带状线馈电的宽带毫米波天线单元
JP6035673B2 (ja) 電磁結合構造を有する多層伝送線路板及びアンテナモジュール
CN115458938A (zh) 探头天线及其探头
KR20100005616A (ko) 손실 개선을 위한 rf 전송 선로
JP2006279199A (ja) 高周波線路−導波管変換器
JP2007060714A (ja) 高周波線路−導波管変換器
CN110867645A (zh) 微带阵列天线
JP2020010314A (ja) アンテナ基板および通信モジュール
CN220604985U (zh) 背馈毫米波基片集成波导缝隙阵列天线结构及雷达设备
JP2002325004A (ja) 高周波用配線基板
CN210607608U (zh) 辐射单元结构及微带阵列天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923210

Country of ref document: EP

Kind code of ref document: A1