WO2024007323A1 - 阵列天线和通信设备 - Google Patents

阵列天线和通信设备 Download PDF

Info

Publication number
WO2024007323A1
WO2024007323A1 PCT/CN2022/104696 CN2022104696W WO2024007323A1 WO 2024007323 A1 WO2024007323 A1 WO 2024007323A1 CN 2022104696 W CN2022104696 W CN 2022104696W WO 2024007323 A1 WO2024007323 A1 WO 2024007323A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeder
carbon oil
array antenna
layer
circuit board
Prior art date
Application number
PCT/CN2022/104696
Other languages
English (en)
French (fr)
Inventor
梁彬
张悦
王丽琳
丁宁
闫晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/104696 priority Critical patent/WO2024007323A1/zh
Publication of WO2024007323A1 publication Critical patent/WO2024007323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present application relates to the field of communication technology, and in particular, to an array antenna and communication equipment.
  • Irregularly arranged array antennas are a technical means to reduce array scanning grating lobes, reduce the number of channels, and increase gain.
  • the consistency of the pattern of each element is an important indicator to ensure characteristics such as array gain and pointing accuracy. Therefore, the way the non-radiating part and the dummy element part of the irregular array are processed is crucial to the array performance.
  • multiple dummy antennas can be set up around the array, and their loads and chips are also surface mounted using Surface Mounted Technology (SMT).
  • SMT Surface Mounted Technology
  • PCB Printed Circuit Board
  • Embodiments of the present application provide an array antenna and a communication device.
  • the array antenna and communication device of the embodiment of the present application can achieve unit pattern consistency similar to that of a regular array without affecting the radiation efficiency and scanning performance of the array antenna. features, and does not occupy the layout space of the printed circuit board.
  • inventions of the present application provide an array antenna for use in communication equipment.
  • the array antenna includes a plurality of radiating antenna units and a plurality of dummy element antennas.
  • the processing and implementation method is a multi-layer printed circuit board (PCB). ); the plurality of radiating antenna units are used for the radiation or reception of electromagnetic signals; the plurality of dummy antennas occupy positions in the array, but do not radiate signals; wherein, each of the dummy antennas includes carbon oil Buried resistor and feeder line, the feeder line is connected to the carbon oil buried resistor, and the carbon oil buried resistor and the feeder line are both arranged in the inner layer of the multi-layer printed circuit board.
  • PCB printed circuit board
  • a carbon oil buried resistor is connected to the feeder terminal of the dummy element antenna as a load match for the dummy element antenna. In this way, the radiation efficiency and scanning performance of the array antenna can be achieved without affecting the radiation efficiency and scanning performance of the array antenna. The same element pattern consistency as the regular array antenna, and the appearance encryption function can also be maintained.
  • the carbon oil buried resistor is arranged on the inner layer of the multi-layer printed circuit board, so that the layout space of the printed circuit board is not occupied.
  • the carbon oil embedded resistor and the feeder are arranged on the same layer of the multi-layer printed circuit board, or the carbon oil embedded resistor and the feeder are arranged on different layers of the printed circuit board. layer. This achieves the same element pattern consistency as a regular array antenna, while maintaining the appearance encryption function.
  • the shape and size of the dummy element antenna are the same as or similar to the shape and size of the radiating antenna unit.
  • the carbon oil buried resistor is made of carbon oil material with wave-absorbing properties. Based on this design, the dumb element antenna can have better wave absorption characteristics.
  • the multilayer printed circuit board includes a first metal layer, a first dielectric layer, a second metal layer, a second dielectric layer, a third metal layer, a third dielectric layer and A fourth dielectric layer; the carbon oil embedded resistor and the feeder in each of the dummy element antennas are arranged between the third dielectric layer and the fourth dielectric layer.
  • the carbon oil embedded resistor can be provided on the same layer of the multi-layer circuit board as a metal layer, and the thickness of the carbon oil embedded resistor is not greater than the thickness of the metal layer.
  • the array antenna further includes a power divider, the power divider includes an input end, a first output end and a second output end; the input end is connected to the radio frequency chip, and the third An output terminal is connected to the second output terminal through the carbon oil buried resistance.
  • the first output terminal and the second output terminal are respectively connected to one of the radiation antenna units.
  • the power splitter includes a main feeder, a first quarter-wavelength conversion line, a second quarter-wavelength conversion line, a first branch feeder, and a second branch feeder.
  • the first end of the main feeder is connected to the input port, and the second end of the main feeder is connected to the first end of the first quarter-wavelength conversion line and the second quarter-wavelength conversion line.
  • the first end of the wavelength conversion line, the second end of the first quarter-wavelength conversion line is connected to the first end of the first branch feeder, and the second end of the second quarter-wavelength conversion line is connected to The first end of the second branch feeder line, the second end of the first branch feeder line is connected to the first output port, and the second end of the second branch feeder line is connected to the second output port,
  • a carbon oil buried resistor is connected between the first end of the first branch feeder and the first end of the second branch feeder.
  • At least a part of the main feeder and the carbon oil buried resistance of the power splitter are located on the same layer of the multi-layer printed circuit board. At least a part of the first branch feeder and the carbon oil buried resistance of the power splitter are located on the same layer of the multi-layer printed circuit board. At least a part of the second branch feeder and the carbon oil buried resistance of the power splitter are located on the same layer of the multi-layer printed circuit board; at least a part of the first quarter-wavelength conversion line The carbon oil buried resistance of the power splitter is located in the same layer of the multi-layer printed circuit board; at least a part of the second quarter-wavelength conversion line is connected to the carbon oil of the power splitter. The oil buried resistors are located in the same layer of the multi-layer printed circuit board.
  • embodiments of the present application further provide a communication device, which includes the array antenna as described above.
  • the same unit pattern consistency as that of a regular array antenna can be achieved without affecting the radiation efficiency and scanning performance of the array antenna, and the appearance encryption function can also be maintained.
  • the carbon oil buried resistor is arranged on the inner layer of the multi-layer printed circuit board, so that the layout space of the printed circuit board is not occupied.
  • Figure 1a is a schematic structural diagram of a regular array antenna provided by an embodiment of the present application.
  • Figures 1b and 1c are schematic structural diagrams of an irregular array antenna provided by embodiments of the present application.
  • Figure 2 is a schematic structural diagram of an array antenna provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a dumb element antenna provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of S11 parameters corresponding to the array antenna according to the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a multi-layer printed circuit board provided by an embodiment of the present application.
  • Figure 6 is an application scenario diagram of the carbon oil embedded resistor according to the embodiment of the present application.
  • Figure 7 is another application scenario diagram of the carbon oil embedded resistor according to the embodiment of the present application.
  • Figure 8 is a schematic diagram of the carbon oil embedded resistor and feeder in a multi-layer printed circuit board according to the embodiment of the present application.
  • Figures 9a-9b are renderings of the unit pattern consistency without using carbon oil buried resistance as a load.
  • Figures 9c-9d are renderings of unit pattern consistency according to the embodiment of the present application.
  • Figure 10a is a schematic structural diagram of a T-type power splitter.
  • Figure 10b is a schematic structural diagram of a Wilkinson power divider.
  • Figure 11 is a schematic structural diagram of a power splitter provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a power splitter provided by an embodiment of the present application.
  • Figures 13a-13c are the theoretical expectations, the direction diagrams of the Wilkinson power splitter and the T-type power splitter respectively.
  • Figure 14 is an application scenario diagram of the array antenna according to the embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • words such as “first” and “second” are only used to distinguish different objects and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
  • first application, second application, etc. are used to distinguish different applications, rather than to describe a specific order of applications.
  • Features defined as “first” and “second” may explicitly or implicitly include one or More of this feature.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the words “exemplary” or “such as” is intended to present the concept in a concrete manner.
  • Antenna is one of the most important front-end passive components of communication equipment. Antenna plays a very important role in the performance of communication products. With the rapid development of mobile communications and the large-scale application of 5G technology, base station antennas are increasingly used. Among them, large-scale array antennas are the current development trend of base station antennas.
  • array antennas may include regularly arranged array antennas and irregularly arranged array antennas.
  • a regularly arranged array antenna is shown in Figure 1a.
  • the array element spacing of the regularly arranged array antenna can be a fixed value.
  • an irregularly arranged array antenna is shown in Figure 1b.
  • the array element spacing of the irregularly arranged array antenna is not a fixed value and can be densely arranged.
  • an irregularly arranged array antenna is shown in Figure 1c. This irregularly arranged array antenna can select some units from the regular array to work, and the rest can be dummy elements that do not radiate.
  • the consistency of the pattern of each element is an important indicator to ensure characteristics such as array gain and pointing accuracy. Therefore, the way the non-radiating part and dummy part of the irregular array are processed is crucial to the performance of the array. .
  • dummy units are designed around the array, and their loads and chips are mounted using Surface Mounted Technology (Surface Mounted Technology,
  • the dummy element could be an open terminal or a shorted terminal.
  • the electromagnetic environment in which each radiating antenna unit is located is different, and its radiation pattern is greatly different, which leads to poor consistency of the unit pattern.
  • the dummy element can be processed by terminating the load on the inner layer of the feeder, which can ensure better consistency of the unit pattern.
  • the buried resistance in this scenario is implemented as resistive copper foil, that is, the metal of this layer changes from the original copper to a lossy conductor with square resistance, resulting in an increase in the feeder loss of the radiating antenna in the same layer. The efficiency of the antenna will be significantly reduced.
  • the embodiments of the present application provide an array antenna and a communication device.
  • the embodiments of the present application can achieve the same unit pattern consistency as a regular array antenna without affecting the radiation efficiency and scanning performance of the array antenna, and can also achieve Maintain appearance encryption functionality.
  • FIG. 2 is a schematic structural diagram of an array antenna 100 according to an embodiment of the present application.
  • the array antenna 100 may include multiple dummy element antennas 10 and multiple radiating antenna units 20 . It can be understood that the plurality of dummy element antennas 10 and the plurality of radiating antenna units 20 may be arranged in an array.
  • the array antenna 100 in this embodiment may be an irregular array. That is, the plurality of dummy element antennas 10 and the plurality of radiation antenna units 20 may be irregularly arranged in the array antenna. It can be understood that in other possible implementations, the array antenna 100 may be a regular array antenna. It should be noted that, compared with regular arrays, irregular arrays can have the actual effect of suppressing grating lobes.
  • a dummy antenna 10 is provided at the edge of the array of the array antenna 100 .
  • the radiation antenna unit 20 may be a patch.
  • each of the radiating antenna units 20 may be connected to a radio frequency chip (not shown in the figure) or a radio frequency component (not shown in the figure) through a microstrip line or a strip line.
  • the radiation antenna unit 20 may be a multi-layer structure radiation antenna.
  • the plurality of radiation antenna units 20 may be used for radiating or receiving electromagnetic signals.
  • every two radiating antenna units 20 may be connected to one radio frequency chip.
  • the radio frequency chip can radiate or receive electromagnetic signals through the radiation antenna unit 20 .
  • the multiple dummy antennas 10 may occupy positions in the array, but the multiple dummy antennas 10 do not radiate signals.
  • the dumb element antenna 10 is not connected to a radio frequency device.
  • the shape and size of the dummy antenna 10 may be the same as or similar to the radiating antenna unit 20 .
  • each of the dummy element antennas 10 includes a feeder 12 and a carbon oil embedded resistance 14 .
  • the feeder 12 may be a strip line feeder.
  • the carbon oil buried resistor 14 may be disposed in the inner layer of a printed circuit board (PCB).
  • PCB printed circuit board
  • the feeder 12 of the dummy antenna 10 may not be connected to a radio frequency chip or radio frequency component.
  • the feeder 12 of the dummy antenna 10 may be connected to the carbon oil embedded resistor 14 on the inner layer of the printed circuit board.
  • the carbon oil embedded resistance 14 can be used to match the load of the dummy element antenna 10 , that is, the carbon oil embedded resistance 14 can be used as a feeder terminal matching for the dummy element antenna 10 .
  • the feeder 12 of the dummy antenna 10 and the feeder of the radiation antenna unit 20 are arranged in the form of strip lines on the inner layer of the multi-layer printed circuit board, so that the array radiation characteristics will not be affected. It has appearance encryption function and does not affect the spatial layout of the printed circuit board. It can be understood that in one possible implementation, in one of the dummy element antennas 10 , the carbon oil embedded resistance 14 may be on the same layer as the feeder 12 .
  • the feeder 12 can be made of metal material.
  • the carbon oil embedded resistor 14 can be disposed on the same layer of a multi-layer printed circuit board as a metal layer (for example, the feeder 12 ), and the thickness of the carbon oil embedded resistor 14 is not greater than the thickness of the metal layer.
  • the carbon oil buried resistor 14 may not be on the same layer as the feeder 12 .
  • the carbon oil buried resistor 14 may also be connected to the feeder 12 through a through-layer hole (not shown in the figure).
  • the carbon oil embedded resistor 14 may be disposed within the dummy element antenna 10 , or may be disposed in other areas of the entire array antenna 100 .
  • the dummy element antenna 10 may include two carbon oil embedded resistors 14 , and the two carbon oil embedded resistors 14 may be respectively connected to the feeder 12 .
  • the carbon oil embedded resistor 14 may be grounded. In other embodiments, the carbon oil embedded resistor 14 may not be grounded.
  • the dummy antenna 10 will only absorb the energy of the radiation antenna unit 20 , so the dummy antenna 10 in the embodiment of the present application will not perform secondary Reflection, this can avoid the problem of distortion of the feed antenna pattern caused by the secondary radiation of the dummy antenna.
  • the irregular array antenna can have the same or similar unit pattern consistency as the regular array antenna without increasing the complexity of the PCB stack.
  • Figure 4 is a simulation diagram of the wave absorption characteristics of the dummy element antenna 10 using the carbon oil buried resistance. It can be seen from Figure 4 that the return loss of the dummy element antenna 10 in the working frequency band is less than -20dB. It can be seen that using the carbon oil embedded resistor 14 in the dumb element antenna 10 can have a good wave absorption effect. It can be understood that in actual measurement, the dummy element antenna 10 can also have similar wave absorption characteristics to the simulation results.
  • the carbon oil embedded resistor 14 may be made of carbon oil material. Wherein, the carbon oil embedded resistance 14 may have wave absorbing properties. In the embodiment of the present application, the square resistivity of the carbon oil embedded resistor 14 may be between 1 and 5000 ⁇ /Square.
  • carbon oil can be processed from carbon powder (such as graphite) and epoxy resin. Therefore, if the carbon oil acts as a conductor, the carbon powder in the carbon oil can conduct electricity, and the conductivity of the carbon powder can be related to the particle size and content of the carbon powder. For example, the larger or more the particles of the toner are, the higher the conductivity of the toner is and the smaller the resistance is.
  • the carbon oil ink can be in a gel state, and the ink can be in a gel state after being stirred, that is, the carbon oil ink can be a thermosetting ink.
  • the sheet resistivity mentioned above may be the resistance characteristic parameter of carbon oil.
  • the resistance value measured after the square ink pattern is cured is the sheet resistivity of the carbon oil.
  • the square resistivity of the carbon oil buried resistor can be any value in the range of 1 to 5000 ⁇ /Square. It can be understood that in other implementation manners, the sheet resistivity of the carbon oil buried resistor 14 can also be any other value, which is not specifically limited in the embodiment of the present application.
  • the resistance value of the carbon oil embedded resistor 14 may be related to the shape and sheet resistivity of the carbon oil embedded resistor.
  • the thickness of the carbon oil embedded resistor 14 can be adjusted according to actual needs. In one possible implementation, the thickness of the carbon oil embedded resistor 14 may be less than or equal to the thickness of the metal layer where the carbon oil embedded resistor is located.
  • resistors can be placed on the surface of the printed circuit board.
  • the first resistor 31 may be disposed on the top layer of the printed circuit board 30
  • the second resistor 32 may be disposed on the bottom layer of the printed circuit board 30 .
  • a carbon oil silk screen printing process can be used in the inner layer of the printed circuit board. That is, in the embodiment of the present application, a carbon oil screen printing process can be used in the inner layer of the printed circuit board. Print a thin layer of carbon oil with square resistance characteristics (ie, carbon oil buried resistance).
  • the carbon oil embedded resistor 14 may have a certain pattern and thickness.
  • the carbon oil embedded resistor may be a trapezoid, a rectangle, a circle, or other irregular shapes. The embodiments of the present application do not limit this.
  • Both sides of the carbon oil embedded resistor 14 can be connected with metal patterns.
  • one side of the carbon oil embedded resistor 14 can be connected to a feeder line, and the other side of the carbon oil embedded resistor 14 can be connected to a ground wire.
  • the carbon oil buried resistor 14 is disposed in the inner layer of the printed circuit board.
  • One side of the carbon oil buried resistor can be connected to the feeder 12, and the other side of the carbon oil buried resistor can be connected to the ground.
  • Pad 16 One side of the carbon oil buried resistor can be connected to the feeder 12, and the other side of the carbon oil buried resistor can be connected to the ground. Pad 16.
  • the embodiment of the present application uses the carbon oil embedded resistor 14 as the load of the dummy element antenna, which can achieve the same or similar unit pattern as that of the regular array antenna without affecting the radiation efficiency and scanning performance of the array antenna. Consistency properties.
  • FIG. 8 is another schematic structural diagram of an array antenna 100 according to an embodiment of the present application.
  • the array antenna 100 may include a first metal layer 210, a first dielectric layer 220, a second metal layer 230, a second dielectric layer 240, a third metal layer 250 and a third dielectric layer 260 stacked in sequence.
  • the array antenna 100 may further include a fourth dielectric layer 270 .
  • the fourth dielectric layer 270 is disposed below the third dielectric layer 260 .
  • a thin layer of carbon oil can be printed on the surface of the fourth dielectric layer 270 through a carbon oil screen printing process, that is, the carbon oil embedded resistor 14 of the dummy element antenna 10 can be disposed on the fourth dielectric layer 270 superior.
  • the feeder 12 of the dummy antenna 10 may be disposed on the fourth dielectric layer 270 , and the feeder 12 is connected to the carbon oil buried resistor 14 .
  • the feed line 12 may be disposed in the inner layer of the printed circuit board 40 in the form of a strip line.
  • the carbon oil embedded resistor 14 and the feeder 12 of the dummy element antenna 10 may be disposed between the third dielectric layer 160 and the fourth dielectric layer 270 .
  • first metal layer 210 first dielectric layer 220, second metal layer 230, second dielectric layer 240, third metal layer 250, third dielectric layer 260 and fourth dielectric layer 270 may form multiple layers.
  • Printed circuit board 40 The sequentially stacked first metal layer 210, first dielectric layer 220, second metal layer 230, second dielectric layer 240, third metal layer 250, third dielectric layer 260 and fourth dielectric layer 270 may form multiple layers.
  • Printed circuit board 40 The sequentially stacked first metal layer 210, first dielectric layer 220, second metal layer 230, second dielectric layer 240, third metal layer 250, third dielectric layer 260 and fourth dielectric layer 270 may form multiple layers.
  • Printed circuit board 40 The sequentially stacked first metal layer 210, first dielectric layer 220, second metal layer 230, second dielectric layer 240, third metal layer 250, third dielectric layer 260 and fourth dielectric layer 270 may form multiple layers.
  • Printed circuit board 40 The sequentially stacked first metal layer 210, first dielectric layer 2
  • the above description only takes the arrangement of the carbon oil embedded resistance 14 and the feeder 12 of one dummy element antenna 10 as an example.
  • the carbon oil embedded resistance 14 of each of the dummy element antennas 10 can be arranged on a multi-layer printed circuit board. 40 in the inner layer.
  • the dummy element antenna 10 disposes the carbon oil embedded resistor 14 in the inner layer of the multilayer printed circuit board 40 , rather than disposing it on the surface layer of the printed circuit board. Therefore, the array antenna 100 of the embodiment of the present application can achieve unit pattern consistency characteristics similar to those of a regular array while ensuring the radiation efficiency and scanning performance of the array antenna, and does not occupy the space layout of the PCB.
  • the array antenna of the present application can realize the radio frequency load function by applying the carbon oil buried resistance process in the inner layer of the multi-layer printed circuit board.
  • Figure 9a is a schematic diagram of the amplitude of the traditional solution without using carbon oil buried resistance as a dummy load.
  • Figure 9b is a phase diagram of the traditional solution without using carbon oil buried resistance as a dummy element load.
  • Figure 9c is a schematic diagram of the amplitude of using a carbon oil buried resistor as a dummy element load according to the embodiment of the present application.
  • Figure 9d is a phase schematic diagram of the embodiment of the present application using a carbon oil buried resistor as a dummy element load.
  • both the T-shaped power divider and the Wilkinson power divider can be used in the array antenna, as shown in Figure 10a and Figure 10b
  • the T-type power splitter 110 may include an input port P1, an output port P2 and an output port P3.
  • the Wilkinson power splitter 120 may include an input port P4, an output port P5, and an output port P6.
  • the input port P4 can be connected to a radio frequency device, and the output port P5 and the output port P6 are connected through a resistor R1.
  • the Wilkinson power divider 120 in Figure 10b will be limited by the larger size of the resistor and cannot be applied. in the array antenna.
  • FIG. 11 is a schematic structural diagram of a power splitter 130 according to an embodiment of the present application.
  • the power splitter 130 may include an input port P7, an output port P8 and an output port P9.
  • the power splitter 130 may also include a main feeder 131 , a quarter-wavelength conversion line 132 , a quarter-wavelength conversion line 133 , a branch feeder 134 and a branch feeder 135 .
  • the first end of the main feeder line 131 is connected to the input port P7, and the second end of the main feeder line 131 is connected to the first end of the quarter-wavelength conversion line 132 and the quarter-wavelength conversion line 132.
  • the first end of the conversion line 133, the second end of the quarter-wavelength conversion line 132 are connected to the first end of the branch feeder 134, and the second end of the branch feeder 134 is connected to the output port P8 .
  • the second end of the quarter-wavelength conversion line 133 is connected to the first end of the branch feeder line 135, and the second end of the branch feeder line 135 is connected to the output port P9.
  • the input port P7 of the power splitter 130 can be connected to the radio frequency chip 140.
  • the radio frequency chip 140 can output a signal to the input port P7 of the power splitter 130.
  • the output port P8 can be connected to the output port P9 through a carbon oil buried resistance 15.
  • the carbon oil buried resistance 15 is connected to the first end of the branch feeder 134 and the first end of the branch feeder 135. between one end.
  • the carbon oil embedded resistor 15 of the power splitter 130 may be disposed in the inner layer of the multilayer printed circuit board 40 .
  • the carbon oil buried resistance 15 between the output port P8 and the output port P9 functions as an isolation resistor.
  • At least a part of the main feeder 131 and the carbon oil buried resistor 15 may be in the same layer of the multilayer printed circuit board 40 , so At least a part of the branch feeder 134 may be in the same layer of the multi-layer printed circuit board 40 as the carbon oil embedded resistor 15, and at least a part of the branch feeder 135 may be in multiple layers as the carbon oil embedded resistor 15.
  • at least a part of the quarter-wavelength conversion line 132 may be in the same layer of the multi-layer printed circuit board 40 as the carbon oil buried resistor 15.
  • At least a part of the conversion line 133 may be in the same layer of the multilayer printed circuit board 40 as the carbon oil embedded resistor 15 .
  • the shape of the carbon oil embedded resistor can be a trapezoid, a rectangle, a circle or other irregular shapes, which is not limited in the embodiments of the present application.
  • the carbon oil buried resistor 15 is connected between the output port P8 and the output port P9, so that the input and output ports of the Wilkinson power divider 130 can have good
  • the matching and isolation characteristics ensure that the unit pattern of the array antenna will not be distorted due to mutual coupling.
  • the power divider 130 in the embodiment of the present application is not limited by a larger buried resistance load and can be applied to an array antenna.
  • the output port P8 of the power splitter 130 can be connected to one of the radiation antenna units 20, and the output port P9 of the power splitter 130 can be connected to one of the radiation antenna units 20.
  • the radio frequency chip 140 can radiate signals through two radiation antenna units 20 connected by the power splitter 130 .
  • the power divider 130 may be a Wilkinson power divider.
  • the array antenna 100 may include multiple power dividers. As shown in Figure 12, two power dividers are taken as an example for explanation. Figure 12 only shows the power divider 130 and the power divider 150, but this should not be used as a limitation.
  • One power splitter 130 can implement a 1-drive multi-architecture, for example, 1-drive 2, 1-drive 3, or 1-drive 4.
  • the input port P7 of the power splitter 130 can be connected to the radio frequency chip 140
  • the output port P9 of the power splitter 130 can be connected to a radiation antenna unit 20
  • the output port P8 of the power splitter 130 can be Connect to the input port P10 of the power splitter 150.
  • the input port P10 of the power splitter 150 is connected to the first end of the main feeder 131.
  • the second end of the main feeder 131 is connected to the quarter-wavelength conversion line. 132 and the first end of the quarter-wavelength conversion line 133, and the second end of the quarter-wavelength conversion line 132 is connected to the first end of the branch feeder 134.
  • the second end of the branch feeder 134 is connected to the output port P11, the second end of the quarter-wavelength conversion line 133 is connected to the first end of the branch feeder 135, and the second end of the branch feeder 135 is connected to the output port P11.
  • a carbon oil embedded resistor 15 is connected between the first end of the branch feeder 134 and the second end of the branch feeder 135 .
  • the output port P11 can be connected to a radiation antenna unit 20 , and the output port P12 can be connected to a radiation antenna unit 20 .
  • the output port P11 can be connected to the input port of another power splitter, and the output port P12 can be connected to a radiation antenna unit 20 .
  • the output port P11 and the output port P12 may be respectively connected to the input port of a power splitter.
  • the embodiments of the present application can implement a 1-drive multi-architecture.
  • the carbon oil embedded resistor 15 in this embodiment is made of the same material as the carbon oil embedded resistor 14 in the embodiment shown in FIGS. 3 and 6-8, that is, the carbon oil embedded resistor 15 and the carbon oil embedded resistor 15 are made of the same material.
  • the buried oil resistor 14 can be made of carbon oil material with wave-absorbing properties.
  • this application can realize the integration of a dumb element antenna or a radiating antenna unit into the inner layer of a multi-layer printed circuit board with multiple Wilkinson power dividers. device to replace the conventional T-type power splitter.
  • This application can make use of the good matching and isolation characteristics of the ports of the Wilkinson power splitter to ensure that the pattern of the units in the array is not distorted due to mutual coupling.
  • the power divider 130 can divide power with equal amplitude and phase, or can divide power with unequal amplitude or phase.
  • the T-shaped power splitter When the T-shaped power splitter is of unequal amplitude and in phase (that is, unbalanced combining), mismatch and crosstalk will occur at the splitter, and there will be obvious reflections. In addition, the dummy element will re-reflect the absorbed electromagnetic waves, thereby deteriorating the pattern of the radiation antenna unit.
  • Figure 13a is the theoretically expected pattern
  • Figure 13b is the pattern of the Wilkinson power divider using internal buried resistance
  • Figure 13c shows the direction diagram using a T-type power splitter.
  • the carbon oil buried resistance can not only meet the engineering implementation requirements of the inner power splitter during routing, but also ensure ideal radiation performance.
  • Figure 14 is an application scenario diagram of an array antenna provided by an embodiment of the present application.
  • the array antenna 100 can be applied to the base station 200.
  • the array antenna 100 can be applied in communication base stations in millimeter wave and sub-millimeter wave frequency bands. It can be understood that multiple base stations 200 can communicate with the satellite receiver 300.
  • the equivalent isotropic radiated power (EIRP) of the beam in the geosynchronous orbit satellite area is ⁇ 60dBm/200M/Beam.
  • the EIRP of traditional array design will be limited under the premise of meeting the above constraints, and the scanning range under large-spacing arrays will also be limited; using an irregular array layout can improve the array while meeting the above constraints.
  • Grating side lobe suppression improves the EIRP and scanning range of the array.
  • an embodiment of the present application also provides a communication device 400, which may include the array antenna 100 as described in the above embodiment. It can be understood that the communication device 400 may include but is not limited to: a base station or a gNB in a new radio (new radio, NR) system.
  • a base station or a gNB in a new radio (new radio, NR) system.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开一种阵列天线及通信设备,阵列天线包括多个辐射天线单元、多个哑元天线和印刷电路板。所述多个辐射天线单元用于电磁信号的辐射或接收。所述多个哑元天线排布于阵列中,所述多个哑元天线不辐射电磁信号或者不接收电磁信号。其中,每一所述哑元天线包括碳油埋阻和馈线,所述馈线与所述碳油埋阻相连,所述碳油埋阻和所述馈线均设置于多层印刷电路板的内层中。采用本申请的实施例,可以在不影响阵列天线辐射效率和扫描性能的条件下,实现和规则阵列天线相同或相近的单元方向图一致性特性。

Description

阵列天线和通信设备 技术领域
本申请涉及通信技术领域,尤其涉及一种阵列天线和通信设备。
背景技术
非规则排布的阵列天线是一种降低阵列扫描栅瓣、减少通道数和提升增益的技术手段。在阵列天线中,每个阵子方向图的一致性是确保阵列增益和指向精度等特性的重要指标,因此对非规则阵列的非辐射部分和哑元部分的处理方式,对阵列性能至关重要。
在一些场景下,为了提升规则阵列阵中单元的一致性,在阵列的四周可以设置多个哑元天线,其负载和芯片同样以表面贴装技术(Surface Mounted Technology,SMT)的方式表贴在印刷电路板(Printed Circuit Board,PCB)底层。然而,对于排布紧凑、哑元天线的数量多且在阵列内部的非规则阵列而言,没有充足的空间放置SMT负载,占用PCB的布局空间。
发明内容
本申请的实施例提供一种阵列天线和通信设备,本申请实施例的阵列天线和通信设备可以在不影响阵列天线辐射效率和扫描性能的情况下,实现和规则阵列相似的单元方向图一致性特性,还可以不占用印刷电路板的布局空间。
第一方面,本申请的实施例提供一种阵列天线,应用于通信设备中,所述阵列天线包括多个辐射天线单元、多个哑元天线,其加工实现方式为多层印刷电路板(PCB);所述多个辐射天线单元用于电磁信号的辐射或接收;所述多个哑元天线在阵列中占据位置,但不辐射信号;其中,其中,每一所述哑元天线包括碳油埋阻和馈线,所述馈线与所述碳油埋阻相连,所述碳油埋阻和所述馈线均设置于多层印刷电路板的内层中。
本申请的实施例中,通过在哑元天线的馈线端接碳油埋阻,以作为所述哑元天线的负载匹配,这样可以在不影响阵列天线辐射效率和扫描性能的情况下,实现了和规则阵列天线相同的单元方向图一致性,并且还可以保持外观加密功能。本申请实施例将碳油埋阻设置于多层印刷电路板的内层,这样不会占用印刷电路板的布局空间。
作为一种可选的实现方式,所述碳油埋阻与所述馈线设置于多层印刷电路板的同一层,或者所述碳油埋阻与所述馈线设置于所述印刷电路板的不同层。这样可以实现和规则阵列天线相同的单元方向图一致性,并且还可以保持外观加密功能。
作为一种可选的实现方式,所述哑元天线的形状和尺寸和所述辐射天线单 元的形状和尺寸相同或相似。
作为一种可选的实现方式,所述碳油埋阻由具有吸波特性的碳油材料制成。基于这样的设计,可以使得哑元天线具有较好的吸波特性。
作为一种可选的实现方式,所述多层印刷电路板包括依次层叠的第一金属层、第一介质层、第二金属层、第二介质层、第三金属层、第三介质层和第四介质层;每一所述哑元天线中的所述碳油埋阻和所述馈线均设置于所述第三介质层和所述第四介质层之间。通过将碳油埋阻设置在印刷电路板的内层中,不会影响印刷电路板的布局空间。
作为一种可选的实现方式,所述碳油埋阻设置可以与一金属层设置在多层电路板的同一层,且所述碳油埋阻的厚度不大于所述金属层的厚度。
作为一种可选的实现方式,所述阵列天线还包括功分器,所述功分器包括输入端、第一输出端和第二输出端;所述输入端连接于射频芯片,所述第一输出端通过所述碳油埋阻连接所述第二输出端。
作为一种可选的实现方式,所述第一输出端和所述第二输出端分别连接一个所述辐射天线单元。
作为一种可选的实现方式,所述功分器包括主路馈线、第一四分之一波长变换线、第二四分之一波长变换线、第一支路馈线和第二支路馈线,所述主路馈线的第一端连接所述输入端口,所述主路馈线的第二端连接所述第一四分之一波长变换线的第一端和所述第二四分之一波长变换线的第一端,所述第一四分之一波长变换线的第二端连接第一支路馈线的第一端,所述第二四分之一波长变换线的第二端连接所述第二支路馈线的第一端,所述第一支路馈线的第二端连接所述第一输出端口,所述第二支路馈线的第二端连接所述第二输出端口,所述第一支路馈线的第一端与所述第二支路馈线的第一端之间连接一个碳油埋阻。这样可以通过功分器的端口良好匹配和隔离的特性,确保阵中单元方向图不因相互耦合产生畸变。
作为一种可选的实现方式,所述主路馈线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中。所述第一支路馈线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中。所述第二支路馈线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中;所述第一四分之一波长变换线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中;所述第二四分之一波长变换线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中。
第二方面,本申请的实施例还提供一种通信设备,所述通信设备包括如上述所述的阵列天线。
采用本申请的实施例,可以在不影响阵列天线辐射效率和扫描性能的情况下,实现和规则阵列天线相同的单元方向图一致性,并且还可以保持外观加密功能。本申请实施例将碳油埋阻设置于多层印刷电路板的内层,这样不会占用印刷电路板的布局空间。
附图说明
图1a为本申请实施例提供的一种规则阵列天线的结构示意图。
图1b和1c为本申请实施例提供的一种非规则阵列天线的结构示意图。
图2为本申请实施例提供的一种阵列天线的结构示意图。
图3为本申请实施例提供的一种哑元天线的结构示意图。
图4为本申请实施例的阵列天线对应的S11参数示意图。
图5为本申请实施例提供的一种多层印刷电路板的结构示意图。
图6为本申请实施例的碳油埋阻的应用场景图。
图7为本申请实施例的碳油埋阻的另一应用场景图。
图8为本申请实施例的碳油埋阻和馈线在多层印刷电路板中的示意图。
图9a-9b为没有采用碳油埋阻作为负载的单元方向图一致性的效果图。
图9c-9d为本申请实施例的单元方向图一致性的效果图。
图10a为一种T型功分器的结构示意图。
图10b为一种威尔金森功分器的结构示意图。
图11为本申请实施例提供的一种功分器的结构示意图。
图12为本申请实施例提供的一种功分器的另一结构示意图。
图13a-13c分别为理论预期、威尔金森功分器和T型功分器的方向图。
图14为本申请实施例的阵列天线的应用场景图。
图15为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
本申请实施例中,“第一”、“第二”等词汇,仅用于区别不同的对象,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,第一应用、第二应用等是用于区别不同的应用,而不是用于描述应用的特定顺序,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。在本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
天线是通信设备最重要的前端无源器件之一,天线对于通信产品的性能有着非常重要的作用。随着移动通信的飞速发展以及5G技术大规模的应用,基站天线的应用也越来越广泛。其中,大规模的阵列天线是当前基站天线的发展趋势。
可以理解,阵列天线可以包括规则排布的阵列天线和非规则排布的阵列天线。举例说明,在一种场景下,如图1a所示为规则排布的阵列天线,该规则 排布的阵列天线的阵元间距可以为固定值。在另一种场景下,如图1b所示为非规则排布的阵列天线,该非规则排布的阵列天线的阵元间距不是固定值,并且可以呈现疏密排布。在另一种场景下,如图1c所示为非规则排布的阵列天线,该非规则排布的阵列天线可以从规则阵列中选择部分单元工作,其余部分可以为不辐射的哑元。
在阵列天线中,每个阵子方向图的一致性是确保阵列增益和指向精度等特性的重要指标,因此对非规则阵列的非辐射部分和哑元部分的处理方式,对阵列的性能至关重要。
在一种可能的场景中,为了提升规则阵列周边单元的一致性,在阵列的四周设计哑元,其负载和芯片以表面贴装技术(Surface Mounted Technology,
SMT)的方式表贴于印刷电路板(Printed circuit board,PCB)的底层。在这种场景下,对于排布紧凑且哑元数量多的非规则阵列而言,并没有充足的空间来设置SMT负载,这样将会占用PCB的布局空间。
在另一种可能的场景中,哑元可以为终端开路或者终端短路。然而,该场景下,每个辐射天线单元所处的电磁环境各不相同,其辐射方向图的差异较大,这样导致导致单元方向图一致性差。
在另一种可能的场景中,哑元的处理方式可以为馈线在内层端接负载,这样可以保证单元方向图具有较好的一致性。然而,该场景下的埋阻的实现方式为阻性铜箔,即该层的金属由原来的铜,变成了具有方阻的有耗电导体,导致同层中辐射天线的馈线损耗增加,天线的效率将会大幅下降。
本申请的实施例提供一种阵列天线和通信设备,本申请的实施例可以在不影响阵列天线辐射效率和扫描性能的情况下,实现和规则阵列天线相同的单元方向图一致性,并且还可以保持外观加密功能。
请参阅图2,为本申请的一个实施例提供的阵列天线100的结构示意图。
所述阵列天线100可以包括多个哑元天线10和多个辐射天线单元20。可以理解,所述多个哑元天线10和所述多个辐射天线单元20可以排布成阵列。本实施例中的所述阵列天线100可以为非规则阵列。即所述多个哑元天线10和所述多个辐射天线单元20可以非规则的排布在阵列天线中。可以理解,在其他可能的实现方式中,所述阵列天线100可以为规则阵列天线。需要说明的是,非规则阵列相较于规则阵列而言,非规则阵列可以具有抑制栅瓣的实际效果。
可以理解,本实施例中,所述阵列天线100的阵列边缘位置设有哑元天线10。
本实施例中,所述辐射天线单元20可以为贴片。在具体的实现过程中,每一所述辐射天线单元20可以通过微带线或者带状线与射频芯片(图中未示出)或者射频组件(图中未示出)连接。在一些实施例中,所述辐射天线单元20可以为多层结构辐射天线。
可以理解,本实施例中,所述多个辐射天线单元20可以用于电磁信号的辐射或者接收。例如,每两个辐射天线单元20可以与一个射频芯片连接。射频芯片可以通过辐射天线单元20进行电磁信号的辐射或者接收。
本实施例中,所述多个哑元天线10可以在阵列中占据位置,但是所述多个哑元天线10不辐射信号。
作为一种可选的实现方式,所述哑元天线10不连接射频器件。
如图2所示,本实施例中,所述哑元天线10的形状和尺寸可以与所述辐射天线单元20相同或相似。
请参阅图3,为本申请的一个实施例提供的哑元天线10的结构示意图。可以理解,在所述阵列天线100中,每一个所述哑元天线10均包括馈线12和碳油埋阻14。其中,所述馈线12可以为带状线馈线。本实施例中,所述碳油埋阻14可以设置在印刷电路板(Printed Circuit Board,PCB)的内层中。可以理解,所述哑元天线10的馈线12可以不与射频芯片或者射频组件连接。所述哑元天线10的馈线12可以在印刷电路板的内层与所述碳油埋阻14连接。所述碳油埋阻14可以用于为所述哑元天线10匹配负载,即所述碳油埋阻14可以作为所述哑元天线10的馈线终端匹配。
本实施例中,所述哑元天线10的所述馈线12和所述辐射天线单元20的馈线以带状线的形式设置于多层印刷电路板的内层,这样不会影响阵列辐射特性,具有外观加密功能,并且还不会影响印刷电路板的空间布局。可以理解,在一种可能的实现方式中,在一个所述哑元天线10中,所述碳油埋阻14可以与所述馈线12在同一层。
可以理解,所述馈线12可以由金属材料制成。所述碳油埋阻14可以与一金属层(例如馈线12)设置在多层印刷电路板的同一层,且所述碳油埋阻14的厚度不大于所述金属层的厚度。
可以理解,所述碳油埋阻14可以与所述馈线12不在同一层。所述碳油埋阻14还可以通过穿层孔(图中未示出)与所述馈线12相连接。
所述碳油埋阻14可以设置在所述哑元天线10内,也可以设置在整个阵列天线100的其他区域。
作为一种可选的实现方式,如图3所示,所述哑元天线10可以包括两个碳油埋阻14,两个碳油埋阻14可以分别对应连接于馈线12。
可以理解,在一些实施例中,所述碳油埋阻14可以接地。在另一些实施例中,所述碳油埋阻14也可以不接地。
基于图2和图3所示出的实施例,所述哑元天线10只会吸收所述辐射天线单元20的能量,因此本申请实施例中的所述哑元天线10并不会进行二次反射,这样可以避免哑元天线的二次辐射对馈电天线方向图产生畸变的问题。
采用上述图2和图3所示出的实施例,可以在不增加PCB叠层复杂度的条件下,使得非规则阵列天线具有和规则阵列天线相同或相近的单元方向图一致性。
如图4所示,图4为所述哑元天线10采用所述碳油埋阻的吸波特性仿真图。从图4中可以看出,所述哑元天线10在工作频带内的回波损耗均小于-20dB。由此可见,在所述哑元天线10中采用所述碳油埋阻14可以具有良好的吸波效果。可以理解,在实际测量中,所述哑元天线10也可以和仿真结果具有相似的 吸波特性。
可以理解,在一些可能的实现方式中,所述碳油埋阻14可以由碳油材料制成。其中,所述碳油埋阻14可以具备吸波特性。本申请的实施例中,所述碳油埋阻14的方阻率可以在1~5000Ω/Square之间。
可以理解,在一些可能的场景下,碳油可以由碳粉(例如石墨)和环氧树脂加工而成。因此,若碳油在充当导体的场景下,碳油中的碳粉可以导电,并且该碳粉的导电率可以和碳粉的颗粒大小以及含量相关联。例如,碳粉的颗粒越大或者越多,碳粉的导电率则越高且电阻越小。举例说明,在常温情况下,碳油的油墨可以为凝胶状,并且该油墨在搅动后可以为流胶状,即该碳油的油墨可以为热固化型油墨。
其中,上述提及的方阻率可以为碳油的电阻特性参数。举例说明,在一定厚度情况下印制一个方形油墨图案,该方形油墨图案固化后所测的电阻值为该碳油的方阻率。本申请的实施例中,所述碳油埋阻的方阻率可以是1~5000Ω/Square中的任意值。可以理解,在其他的实现方式中,所述碳油埋阻14的方阻率还可以是其他的任意值,对此,本申请实施例不作具体限定。
所述碳油埋阻14的阻值可以与所述碳油埋阻的形状和方阻率相关。
可以理解,所述碳油埋阻14的厚度可以根据实际需要进行调节。在一个可能的实现方式中,所述碳油埋阻14的厚度可以小于或者等于该碳油埋阻所在金属层的厚度。
在一些可能的场景下,电阻可以设置在印刷电路板的表层。举例说明,如图5所示,第一电阻31可以设置在印刷电路板30的顶层,第二电阻32可以设置在印刷电路板30的底层。
可以理解,相较于图5所示出的场景,本申请的实施例中,可以在印刷电路板的内层中采用碳油丝印工艺,即本申请的实施例可以在印刷电路板的内层印制具有方阻特性的碳油薄层(即碳油埋阻)。
如图6所示,所述碳油埋阻14可以具有一定图案和厚度,举例说明,所述碳油埋阻可以为梯形、矩形、圆形,或其他不规则图形。本申请实施例对此不作限定。
所述碳油埋阻14的两侧可以与金属图案相连接。例如,所述碳油埋阻14的一侧可以连接馈线,所述碳油埋阻14的另一侧可以连接于接地线。
如图7所示,所述碳油埋阻14设置于印刷电路板的内层中,所述碳油埋阻的一侧可以连接馈线12,所述碳油埋阻的另一侧可以连接接地焊盘16。
相较于传统方案,本申请实施例将碳油埋阻14作为哑元天线的负载,可以在不影响阵列天线辐射效率和扫描性能的条件下,实现和规则阵列天线相同或相近的单元方向图一致性特性。
请参阅图8,为本申请的一个实施例提供的阵列天线100的另一结构示意图。
所述阵列天线100可以包括依次层叠的第一金属层210、第一介质层220、第二金属层230、第二介质层240、第三金属层250及第三介质层260。
可以理解,所述阵列天线100还可以包括第四介质层270。所述第四介质层270设置在所述第三介质层260的下方位置。
本实施例中,所述第四介质层270的表面可以通过碳油丝印工艺印制碳油薄层,即所述哑元天线10的碳油埋阻14可以设置在所述第四介质层270上。可以理解,本实施例中,所述哑元天线10的馈线12可以设置在所述第四介质层270上,并且该馈线12与该碳油埋阻14相连。其中,所述馈线12可以以带状线的形式设置于所述印刷电路板40的内层中。
所述哑元天线10的碳油埋阻14和馈线12可以设置在所述第三介质层160和所述第四介质层270之间。
其中,依次层叠的第一金属层210、第一介质层220、第二金属层230、第二介质层240、第三金属层250、第三介质层260和第四介质层270可以形成多层的印刷电路板40。
可以理解,上述仅以一个哑元天线10的碳油埋阻14和馈线12的设置方式为例说明,每一个所述哑元天线10的碳油埋阻14均可以设置在多层印刷电路板40的内层中。
基于本申请的上述实施例,所述哑元天线10将所述碳油埋阻14设置在多层印刷电路板40的内层中,并不是设置在印刷电路板的表层。因此,本申请实施例的阵列天线100可以在保证阵列天线的辐射效率和扫描性能的情况下,以及实现和规则阵列相似的单元方向图一致性特性,并且还不会占用PCB的空间布局。
本申请的阵列天线可以通过在多层印刷电路板的内层中应用碳油埋阻工艺,来实现射频负载功能。
请一并参阅图9a-9d,图9a为传统方案中没有采用碳油埋阻作为哑元负载的幅度示意图。图9b为传统方案中没有采用碳油埋阻作为哑元负载的相位示意图。图9c为本申请实施例采用碳油埋阻作为哑元负载的幅度示意图。图9d为本申请实施例采用碳油埋阻作为哑元负载的相位示意图。
可以看出,相较于传统方案,本申请实施例中采用碳油埋阻14作为哑元负载时,阵列方向图一致性的改善效果明显。
在一种可能的应用场景下,例如,当天线的馈线位于印刷电路板的表层时,T型功分器和威尔金森功分器均可以应用于阵列天线中,如图10a和图10b所示,T型功分器110可以包括输入端口P1、输出端口P2和输出端口P3。所述威尔金森功分器120可以包括输入端口P4、输出端口P5和输出端口P6。其中,输入端口P4可以连接射频器件,所述输出端口P5和所述输出端口P6之间通过电阻R1相连。
在另一种可能的应用场景中,例如,当天线的馈线位于印刷电路板的内层时,图10b中的威尔金森功分器120将会受限于尺寸较大的电阻而无法适用于阵列天线中。
请参阅图11,为本申请的一个实施例提供的功分器130的结构示意图。
本实施例中,所述功分器130可以包括输入端口P7、输出端口P8和输出 端口P9。
所述功分器130还可以包括主路馈线131、四分之一波长变换线132、四分之一波长变换线133、支路馈线134和支路馈线135。所述主路馈线131的第一端连接所述输入端口P7,所述主路馈线131的第二端连接所述四分之一波长变换线132的第一端和所述四分之一波长变换线133的第一端,所述四分之一波长变换线132的第二端连接所述支路馈线134的第一端,所述支路馈线134的第二端连接所述输出端口P8。所述四分之一波长变换线133的第二端连接所述支路馈线135的第一端,所述支路馈线135的第二端连接所述输出端口P9。
可以理解,所述功分器130的输入端口P7可以连接射频芯片140,在一种场景下,所述射频芯片140可以输出信号给所述功分器130的输入端口P7。所述输出端口P8可以通过碳油埋阻15与所述输出端口P9相连,具体地,所述碳油埋阻15连接于所述支路馈线134的第一端和所述支路馈线135第一端之间。其中,所述功分器130的碳油埋阻15可以设置在多层印刷电路板40的内层中。所述输出端口P8与所述输出端口P9之间的碳油埋阻15的作用为隔离电阻。
在一种可选的实现方式中,在所述功分器130中,所述主路馈线131的至少一部分可以与所述碳油埋阻15处于多层印刷电路板40的同一层中,所述支路馈线134的至少一部分可以与所述碳油埋阻15处于多层印刷电路板40的同一层中,所述支路馈线135的至少一部分可以与所述碳油埋阻15处于多层印刷电路板40的同一层中,所述四分之一波长变换线132的至少一部分可以与所述碳油埋阻15处于多层印刷电路板40的同一层中,所述四分之一波长变换线133的至少一部分可以与所述碳油埋阻15处于多层印刷电路板40的同一层中。
可以理解,碳油埋阻的形状可以为梯形、矩形、圆形或其他不规则图形,本申请实施例对此不作限定。
基于本申请的上述实施例,在所述输出端口P8和所述输出端口P9之间连接所述碳油埋阻15,因此可以使得所述威尔金森功分器130的输入和输出端口具有良好的匹配和隔离特性,确保阵列天线的单元方向图不会因相互耦合而产生畸变。
相较于传统方案,本申请的实施例中的所述功分器130不会受限于尺寸较大的埋阻负载,可以适用于阵列天线中。
本实施例中,如图11所示,所述功分器130的输出端口P8可以连接一个所述辐射天线单元20,所述功分器130的输出端口P9可以连接一个所述辐射天线单元20。在一种场景下,所述射频芯片140可以通过功分器130连接的两个辐射天线单元20辐射信号出去。其中,所述功分器130可以为威尔金森功分器。
可以理解,在一些可能的实现方式中,所述阵列天线100可以包括多个功分器。如图12所示,以两个功分器为例进行说明,图12中仅示出功分器130和功分器150,但不应以此为限制。一个所述功分器130可以实现1驱多架构、例如,1驱2、1驱3或者1驱4等。举例说明,所述功分器130的输入端口P7可以连接所述射频芯片140,所述功分器130的输出端口P9可以连接一个辐射天 线单元20,所述功分器130的输出端P8可以连接功分器150的输入端口P10,所述功分器150的输入端口P10连接主路馈线131的第一端,所述主路馈线131的第二端连接所述四分之一波长变换线132的第一端和所述四分之一波长变换线133的第一端,所述四分之一波长变换线132的第二端连接所述支路馈线134的第一端,所述支路馈线134的第二端连接输出端口P11,所述四分之一波长变换线133的第二端连接所述支路馈线135的第一端,所述支路馈线135的第二端连接输出端口P12。所述支路馈线134的第一端和所述支路馈线135的第二端之间连接一个碳油埋阻15。
在一种场景下,所述输出端口P11可以连接一个辐射天线单元20,所述输出端口P12可以连接一个辐射天线单元20。或者,在另一些场景下,所述输出端口P11可以连接另一个功分器的输入端口,所述输出端口P12可以连接一个辐射天线单元20。或者,在另一些场景下,所述输出端口P11和所述输出端口P12可以分别连接一个功分器的输入端口。依次类推,本申请的实施例可以实现1驱多架构。
可以理解,本实施例中的碳油埋阻15与上述图3和图6-8所示实施例中的碳油埋阻14的制作材料相同,即所述碳油埋阻15和所述碳油埋阻14均可以由具有吸波特性的碳油材料制成。
基于上述图11和图12示出的实施例,通过使用碳油埋阻工艺,本申请可以实现哑元天线或辐射天线单元在多层印刷电路板的内层集成1驱多威尔金森功分器来取代常规的T型功分器。本申请可以利用威尔金森功分器的端口良好匹配和隔离的特性,确保阵中单元方向图不因相互耦合产生畸变。
可以理解,所述功分器130可以等幅同相功分,也可为不等幅或不等相功分。
以下将介绍T型功分器的散射特性及不同条件输入输出特性。
总口输入时:a=[1 0 0] T;分口平衡输入时:a=[0 1 1] T;分口非平衡输入时:a=[0 1 0] T;分口非平衡输入时:a=[0 1 e j50°] T;总口匹配,分口等幅同向输出:
Figure PCTCN2022104696-appb-000001
分口匹配,总口无耗输出:
Figure PCTCN2022104696-appb-000002
分口失配,总口有耗输出:
Figure PCTCN2022104696-appb-000003
分口失配,总口有耗输出:|b|=[0.91 0.3 0.3] T
以下将介绍威尔金森功分器的散射特性及不同条件输入输出特性。
总口输入时:a=[1 0 0] T;分口平衡输入时:a=[0 1 1] T;分口非平衡输入时:a=[0 1 0] T;分口非平衡输入时:a=[0 1 e j50°] T;总口匹配,分口 等幅同向输出:
Figure PCTCN2022104696-appb-000004
分口匹配,总口无耗输出:
Figure PCTCN2022104696-appb-000005
分口失配,总口有耗输出:
Figure PCTCN2022104696-appb-000006
分口失配,总口有耗输出:|b|=[0.91 0 0] T
当所述T型功分器为不等幅同相(即非平衡合路)时,分口出现失配和串扰,并且将会存在明显的反射。此外,哑元单元将会二次反射吸收来的电磁波,进而将会恶化辐射天线单元的方向图。
对于威尔金森功分器而言,即使在非平衡状态下,依然可以实现分口匹配和隔离,因此可以具有良好的哑元吸收效果。
图13a为理论预期中的方向图,图13b为采用内层埋阻的威尔金森功分器的方向图。图13c为采用T型功分器的方向图。
从图13a和图13b可以看出,与图13a示出的理论预期中的方向图相比,采用本申请实施例中的碳油埋阻实现的威尔金森功分器所示出的方向图,与图13a示出的理论预期中的方向图非常相近,然而图13c示出的T型功分器的方向图严重畸变。
由此,碳油埋阻既可以满足内层功分器在走线时的工程实现需求,还可以保证较为理想的辐射性能。
请参阅图14,图14为本申请的一个实施例提供的阵列天线的应用场景图。
如图14所示,在一种可能的场景下,所述阵列天线100可以应用于基站200中。示例性的,所述阵列天线100可以应用于毫米波及亚毫米波频段的通信基站中。可以理解,多个基站200可以与卫星接收机300进行通信。
可以理解,在一种约束条件下,同步轨道卫星区域波束的等效全向辐射功率(Equivalent Isotropic Radiated Power,EIRP)<60dBm/200M/Beam。
传统的阵列设计在满足上述约束前提下的EIRP将会受限,并且大间距组阵下的扫描范围也将会受限;而采用非规则阵列的布局,可以在满足上述约束条件下,提升阵列栅副瓣抑制,提升阵列的EIRP以及扫描范围。
请参阅图15,本申请的实施例还提供一种通信设备400,所述通信设备400可以包括如上述实施例中描述的阵列天线100。可以理解,所述通信设备400可以包括但不限于:基站或新无线(new radio,NR)系统中的gNB。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围之内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围之内。

Claims (10)

  1. 一种阵列天线,应用于通信设备中,其特征在于,所述阵列天线包括多个辐射天线单元和多个哑元天线;
    所述多个辐射天线单元用于电磁信号的辐射或接收;
    所述多个哑元天线排布于阵列中,所述多个哑元天线不辐射电磁信号或者不接收电磁信号;
    其中,每一所述哑元天线包括碳油埋阻和馈线,所述馈线与所述碳油埋阻相连,所述碳油埋阻和所述馈线均设置于多层印刷电路板的内层中。
  2. 根据权利要求1所述的阵列天线,其特征在于,
    所述碳油埋阻与所述馈线均设置于所述多层印刷电路板的同一层;或者所述碳油埋阻与所述馈线设置于所述多层印刷电路板的不同层。
  3. 根据权利要求1或2所述的阵列天线,其特征在于,
    所述哑元天线的形状和尺寸和所述辐射天线单元的形状和尺寸相同或相似。
  4. 根据权利要求1-3任意一项所述的阵列天线,其特征在于,
    所述碳油埋阻由具有吸波特性的碳油材料制成。
  5. 根据权利要求1-4任意一项所述的阵列天线,其特征在于,
    所述多层印刷电路板包括依次层叠的第一金属层、第一介质层、第二金属层、第二介质层、第三金属层、第三介质层和第四介质层;
    每一所述哑元天线中的所述碳油埋阻和所述馈线均设置于所述第三介质层和所述第四介质层之间。
  6. 根据权利要求1所述的阵列天线,其特征在于,
    所述阵列天线还包括功分器;
    所述功分器的输入端连接于射频芯片,所述功分器的第一输出端通过所述碳油埋阻连接所述功分器的第二输出端。
  7. 根据权利要求6所述的阵列天线,其特征在于,
    所述第一输出端和所述第二输出端均分别连接一个所述辐射天线单元。
  8. 根据权利要求6所述的阵列天线,其特征在于,
    所述功分器包括主路馈线、第一四分之一波长变换线、第二四分之一波长变换线、第一支路馈线和第二支路馈线,所述主路馈线的第一端连接所述输入端口,所述主路馈线的第二端连接所述第一四分之一波长变换线的第一端和所述第二四分之一波长变换线的第一端,所述第一四分之一波长变换线的第二端连接第一支路馈线的第一端,所述第二四分之一波长变换线的第二端连接所述第二支路馈线的第一端,所述第一支路馈线的第二端连接所述第一输出端口,所述第二支路馈线的第二端连接所述第二输出端口,所述第一支路馈线的第一端与所述第二支路馈线的第一端之间连接一个碳油埋阻。
  9. 根据权利要求8所述的阵列天线,其特征在于,
    所述主路馈线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中;
    所述第一支路馈线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中;
    所述第二支路馈线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中;
    所述第一四分之一波长变换线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中;
    所述第二四分之一波长变换线的至少一部分与所述功分器的所述碳油埋阻位于所述多层印刷电路板的同一层中。
  10. 一种通信设备,其特征在于,所述通信设备包括如权利要求1-9任意一项所述的阵列天线。
PCT/CN2022/104696 2022-07-08 2022-07-08 阵列天线和通信设备 WO2024007323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104696 WO2024007323A1 (zh) 2022-07-08 2022-07-08 阵列天线和通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/104696 WO2024007323A1 (zh) 2022-07-08 2022-07-08 阵列天线和通信设备

Publications (1)

Publication Number Publication Date
WO2024007323A1 true WO2024007323A1 (zh) 2024-01-11

Family

ID=89454627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104696 WO2024007323A1 (zh) 2022-07-08 2022-07-08 阵列天线和通信设备

Country Status (1)

Country Link
WO (1) WO2024007323A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431175A (zh) * 2007-11-06 2009-05-13 台达电子工业股份有限公司 无线通信装置
US20180191082A1 (en) * 2016-12-29 2018-07-05 Facebook, Inc. Wideband antenna array on laminated printed circuit board
CN111771304A (zh) * 2019-03-29 2020-10-13 深圳市大疆创新科技有限公司 一种假天线结构以及毫米波天线阵列
CN112313836A (zh) * 2019-11-22 2021-02-02 深圳市大疆创新科技有限公司 毫米波天线、天线组件、毫米波雷达系统和可移动平台
CN113036454A (zh) * 2021-03-11 2021-06-25 中国科学院空天信息创新研究院 一种基于天线哑元的mimo阵列天线波束优化装置及方法
CN113437535A (zh) * 2021-08-30 2021-09-24 南京隼眼电子科技有限公司 天线阵列、天线系统以及电子设备
CN114006165A (zh) * 2021-10-25 2022-02-01 南京航空航天大学 一种使用电阻片拓展带宽的超宽带紧耦合天线阵列
US20220158361A1 (en) * 2018-12-28 2022-05-19 Samsung Electronics Co., Ltd. Antenna module and electronic device comprising same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431175A (zh) * 2007-11-06 2009-05-13 台达电子工业股份有限公司 无线通信装置
US20180191082A1 (en) * 2016-12-29 2018-07-05 Facebook, Inc. Wideband antenna array on laminated printed circuit board
US20220158361A1 (en) * 2018-12-28 2022-05-19 Samsung Electronics Co., Ltd. Antenna module and electronic device comprising same
CN111771304A (zh) * 2019-03-29 2020-10-13 深圳市大疆创新科技有限公司 一种假天线结构以及毫米波天线阵列
CN112313836A (zh) * 2019-11-22 2021-02-02 深圳市大疆创新科技有限公司 毫米波天线、天线组件、毫米波雷达系统和可移动平台
CN113036454A (zh) * 2021-03-11 2021-06-25 中国科学院空天信息创新研究院 一种基于天线哑元的mimo阵列天线波束优化装置及方法
CN113437535A (zh) * 2021-08-30 2021-09-24 南京隼眼电子科技有限公司 天线阵列、天线系统以及电子设备
CN114006165A (zh) * 2021-10-25 2022-02-01 南京航空航天大学 一种使用电阻片拓展带宽的超宽带紧耦合天线阵列

Similar Documents

Publication Publication Date Title
Zhong et al. Dual-linear polarized phased array with 9: 1 bandwidth and 60° scanning off broadside
US11545761B2 (en) Dual-band cross-polarized 5G mm-wave phased array antenna
US10320088B1 (en) Balanced wideband impedance transformer
EP2984709B1 (en) Array antenna and related techniques
CN101246997B (zh) 宽带阵列天线的馈电网络
CN108199137B (zh) 一种平面紧耦合双极性超宽带相控阵天线
SE1930346A1 (en) ULTRA WIDEBAND CIRCULAR POLARIZED RADIATION ELEMENT WITH INTEGRATED FEEDING
CN112751184B (zh) 一种具有高辐射效率和低散射特性的相控阵天线
Lee et al. End-fire Vivaldi antenna array with wide fan-beam for 5G mobile handsets
Ali et al. Dual-band millimeter-wave microstrip patch array antenna for 5G smartphones
CN206727219U (zh) 一种圆极化阵列天线及通信设备
CN207517872U (zh) 一种宽带圆极化缝隙天线
CN213845512U (zh) 基于人工磁导体的宽带圆极化天线
CN100470929C (zh) 低旁瓣双频暨宽频平面型端射天线
EP4266502A1 (en) Antenna structure, electronic device and wireless network system
Johnson et al. Optimized differential TCDA (D-TCDA) with novel differential feed structure
WO2024007323A1 (zh) 阵列天线和通信设备
Johnson et al. Wideband dipole array with balanced wideband impedance transformer (bwit)
CN115084872B (zh) 一种超宽带宽扫描角紧耦合相控阵天线
Madni et al. A compact metamaterial based high isolation MIMO antenna for 5.8 GHz WLAN applications
CN108777362A (zh) 抗金属的高增益圆极化卫星接收天线
US11557823B2 (en) Antenna component
Boutayeb et al. 28GHz dual polarized beam steering antenna with substrate integrated frequency selective structure
CN111262003B (zh) 天线封装模组和电子设备
Sudo et al. 28 GHz antenna-array-integrated module with built-in filters in LTCC substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949904

Country of ref document: EP

Kind code of ref document: A1