WO2020198981A1 - 信号感知方法、信号发送方法以及装置 - Google Patents

信号感知方法、信号发送方法以及装置 Download PDF

Info

Publication number
WO2020198981A1
WO2020198981A1 PCT/CN2019/080540 CN2019080540W WO2020198981A1 WO 2020198981 A1 WO2020198981 A1 WO 2020198981A1 CN 2019080540 W CN2019080540 W CN 2019080540W WO 2020198981 A1 WO2020198981 A1 WO 2020198981A1
Authority
WO
WIPO (PCT)
Prior art keywords
side link
signal
information
resource
control information
Prior art date
Application number
PCT/CN2019/080540
Other languages
English (en)
French (fr)
Inventor
张健
纪鹏宇
李国荣
张磊
王昕�
Original Assignee
富士通株式会社
张健
纪鹏宇
李国荣
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 纪鹏宇, 李国荣, 张磊, 王昕� filed Critical 富士通株式会社
Priority to PCT/CN2019/080540 priority Critical patent/WO2020198981A1/zh
Publication of WO2020198981A1 publication Critical patent/WO2020198981A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiment of the present invention relates to the field of communication technology, and in particular to a signal sensing method, signal sending method and device.
  • V2X Vehicle to Everything
  • the sending device in V2X can communicate directly with the receiving device through a side link (SL, sidelink).
  • SL side link
  • the side link is a newly defined air interface for V2X (the air interface between V2X devices).
  • LTE V2X Long Term Evolution (LTE) V2X only supports broadcast services and periodic services, such as periodically broadcasting road safety information; and, LTE V2X does not support Hybrid Automatic Repeat reQuest (HARQ, Hybrid Automatic Repeat reQuest) confirmation information ( It is called HARQ-ACK) feedback and channel state information (CSI, Channel State Information) feedback.
  • HARQ Hybrid Automatic Repeat reQuest
  • CSI Channel State Information
  • New Radio (NR, New Radio) V2X is one of the current 5G NR research projects. Compared with LTE V2X, NR V2X needs to support many new scenarios and new services (such as remote driving, autonomous driving, and fleet driving, etc.). Higher technical indicators (high reliability, low latency, high data rate, etc.). In order to meet the needs of different scenarios and different services, in addition to broadcasting, NR V2X also needs to provide support for unicast and multicast; in addition to periodic services, NR V2X also needs to support non-periodic services, and NR V2X supports HARQ- ACK feedback and CSI feedback.
  • NR V2X supports HARQ- ACK feedback and CSI feedback.
  • NR V2X defines the physical side link control channel (PSCCH, Physical Sidelink Control Channel), the physical side link shared channel (PSSCH, Physical Sidelink Shared Channel), and the physical side link feedback channel (PSFCH, Physical Sidelink Feedback Channel), Used to carry control information, data information and feedback information, etc.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSFCH Physical Sidelink Feedback Channel
  • NR V2X also needs to support aperiodic services, HARQ-ACK feedback, and CSI feedback, how to perceive these signals is a problem that NR V2X needs to solve.
  • embodiments of the present invention provide a signal sensing method, signal sending method, and device.
  • a signal sensing method including:
  • the terminal device receives a resource reservation signal for indicating side link control information and/or side link data information
  • a signal sensing device including:
  • a signal receiving unit that receives a reserved signal for indicating resources of side link control information and/or side link data information
  • a resource determining unit that determines whether the resources of the side link control information and/or side link data information can be used as candidate resources for side link transmission according to the reservation signal.
  • a signal sending method including:
  • the terminal device generates a resource reservation signal for indicating side link control information and/or side link data information
  • a signal sending device including:
  • a signal generation unit that generates a reserved signal for indicating resources of side link control information and/or side link data information
  • a signal sending unit that sends the reservation signal.
  • a communication system including:
  • a first terminal device that generates and sends a resource reservation signal for indicating side link control information and/or side link data information
  • the second terminal device receives the reservation signal; and determines, according to the reservation signal, whether the resources of the side link control information and/or the side link data information can be used as candidate resources for side link transmission.
  • the terminal device receives a reservation signal for indicating resources of side link control information and/or side link data information; Whether the resources of the side link control information and/or side link data information can be used as candidate resources for side link transmission.
  • the terminal device can support the perception of signals such as aperiodic services, HARQ-ACK feedback, or CSI feedback, thereby improving spectrum efficiency and reducing or avoiding collisions or interference.
  • Figure 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a signal sensing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of reserved signals and PSCCH/PSSCH according to an embodiment of the present invention.
  • FIG. 4 is an example diagram of resource reuse according to an embodiment of the present invention.
  • FIG. 5 is an example diagram of a reserved signal carrying power offset according to an embodiment of the present invention.
  • FIG. 6 is an example diagram of the reserved signal carrying information about whether to feed back CSI according to an embodiment of the present invention.
  • FIG. 7 is an example diagram of CSI request and CSI feedback according to an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of reserved signals and PSCCH/PSSCH according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a signal sending method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a signal sensing device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a signal sending device according to an embodiment of the present invention.
  • Figure 12 is a schematic diagram of a network device according to an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of numelations, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term "communication network” or “wireless communication network” can refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G , New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 4G 4G
  • New Radio NR, New Radio
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femeto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femeto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, Vehicle-mounted communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side or “network device side” refers to a side of the network, which may be a certain base station, or may include one or more network devices as described above.
  • user side or “terminal side” or “terminal device side” refers to a side of a user or a terminal, which may be a certain UE, or may include one or more terminal devices as above.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention, which schematically illustrates a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and terminal devices 102 and 103.
  • FIG. 1 only takes two terminal devices and one network device as an example for description, but the embodiment of the present invention is not limited to this.
  • the network device 101 and the terminal devices 102 and 103 can perform existing services or service transfers that can be implemented in the future.
  • these services may include, but are not limited to: enhanced Mobile Broadband (eMBB), massive machine type communication (mMTC, massive Machine Type Communication), and high-reliability and low-latency communication (URLLC, Ultra-Reliable and Low). -Latency Communication), etc.
  • FIG. 1 shows that two terminal devices 102 and 103 are both within the coverage of the network device 101, but the present invention is not limited to this.
  • the two terminal devices 102 and 103 may not be within the coverage area of the network device 101, or one terminal device 102 is within the coverage area of the network device 101 and the other terminal device 103 is outside the coverage area of the network device 101.
  • side link transmission can be performed between the two terminal devices 102 and 103.
  • the two terminal devices 102 and 103 may both perform side link transmission within the coverage area of the network device 101 to implement V2X communication, or both may perform side link transmission outside the coverage area of the network device 101 to implement V2X communication.
  • one terminal device 102 is within the coverage area of the network device 101 and the other terminal device 103 is outside the coverage area of the network device 101 to perform side link transmission to implement V2X communication.
  • “configuration” can be used when the terminal device is in the coverage of the network.
  • the terminal device can receive configuration information sent by the network device or another terminal device.
  • the configuration information passes at least one of the following Information or signaling sending: system information (MIB/SIB), radio resource control (RRC, Radio Resource Control) signaling, downlink control information (DCI, Downlink Control Information) and side link control information (SCI, Sidelink Control Information) ).
  • SIB/SIB system information
  • RRC Radio Resource Control
  • DCI downlink control information
  • SCI Sidelink Control Information
  • Pre-configured or “pre-defined” can be used when the terminal device is out-of-coverage.
  • the terminal device is pre-configured (ie default configuration or factory configuration) or pre-defined (ie standard configuration) Perform V2X communication.
  • V2X is taken as an example to describe side link communication, but the present invention is not limited to this, and can also be applied to side link transmission scenarios other than V2X.
  • side link and “V2X” can be interchanged without causing confusion.
  • the embodiment of the present invention provides a signal sensing method, which is described from the side of the second terminal device.
  • the second terminal device receives the reserved signal sent by the first terminal device and performs signal sensing.
  • the second terminal device can perform side-link communication with the first terminal device or side-link communication with other terminal devices. .
  • FIG. 2 is a schematic diagram of a signal sensing method according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 The terminal device receives a resource reservation signal for indicating side link control information and/or side link data information.
  • Step 202 The terminal device determines, according to the reservation signal, whether the resources of the side link control information and/or the side link data information can be used as candidate resources for side link transmission.
  • the side link control information may be SCI carried in the PSCCH
  • the side link data information may be V2X data carried in the PSSCH.
  • side link control information and PSCCH can be interchanged
  • side link data information and "PSSCH” can be interchanged.
  • Figure 2 above only schematically illustrates the embodiment of the present invention, but the present invention is not limited thereto.
  • the order of execution between the various steps can be adjusted appropriately, and some other steps can be added or some steps can be reduced.
  • Those skilled in the art can make appropriate modifications based on the foregoing content, and are not limited to the description of the foregoing FIG. 2.
  • the reservation signal may also indicate at least one of the following information: the power offset between the reservation signal and the side link control information and/or side link data information ( offset), whether to feed back channel state information, whether to feed back confirmation information for hybrid automatic repeat request, and whether to schedule broadcast services; but the present invention is not limited to this.
  • the reserved signal can indicate any combination of the above information, and can also indicate other information, or Does not indicate any of the above information.
  • reserved signals it is possible to support the perception of aperiodic services, HARQ-ACK feedback and/or CSI feedback, thereby achieving the purpose of improving spectrum efficiency and reducing or avoiding collisions or interference.
  • the power offset (offset) between the reserved signal and the PSCCH and/or PSSCH signal it can be further determined when the resource can be used as a candidate resource for side link transmission, thereby improving resource utilization.
  • the terminal device can send a reservation signal (reservation signal) before sending the data signal through the PSSCH.
  • the reservation signal indicates the resource location of the PSCCH and/or PSSCH, and the reservation signal can be Received by multiple other terminal devices.
  • Fig. 3 is a schematic diagram of reserved signals and PSCCH/PSSCH in an embodiment of the present invention.
  • the terminal device receives the reserved signal, it can know that PSCCH and/or PSSCH transmission will occur at a certain resource location in the future, and therefore can avoid corresponding resources, thereby avoiding collision and interference.
  • non-overlapping resources can avoid collisions, blindly avoiding collisions actually reduces the resources available for terminal equipment to choose and use, which will make the system resources underutilized.
  • overlapping (or overlapping) resources can be used to achieve resource reuse, so as to improve system resource utilization and spectrum efficiency.
  • a certain terminal device knows that another terminal device uses a certain resource by demodulating the reserved signal, if the two terminal devices are far apart, it means that the interference between the terminal devices can be effective Isolation, that is, the mutual interference between terminal devices is small, then the terminal devices that perform sensing can still use this resource, that is, resource reuse, which can more fully utilize the resources, thereby improving the system spectrum efficiency.
  • Fig. 4 is an example diagram of resource reuse according to an embodiment of the present invention.
  • a pair of terminal devices UE1, UE2 performing V2X communication and another pair of terminal devices (UE3, UE4) performing V2X communication ) Is far away
  • UE 3 can determine (or determine) that the PSCCH/PSSCH sent by UE 1 is within an acceptable range by sensing the reserved signal sent by UE 1. Therefore, UE 3 can reuse this Part of the resources are used for PSCCH/PSSCH transmission.
  • the terminal device can measure the reserved signal during sensing, and obtain the strength information of the reserved signal through the measurement. And the strength information of the PSCCH/PSSCH can be further obtained according to the reserved signal strength information.
  • the terminal device may measure the strength of the reserved signal; according to the measured strength of the reserved signal, the reserved signal and the side link control information and/or side link Calculate the signal strength of the side link control information and/or side link data information; and calculate the signal strength of the side link control information and/or side link data information If it is less than or equal to the first threshold (pre-configured or pre-defined or configured through high-level signaling), the side link control information and/or side link data information resource is used as a candidate resource for side link transmission.
  • the first threshold pre-configured or pre-defined or configured through high-level signaling
  • the reserved signal indicates the resource location of the PSCCH and/or PSSCH reserved by it, and indicates the power offset of the reserved signal from the aforementioned PSCCH and/or PSSCH.
  • the terminal device measures the reserved signal, and obtains the strength information of the reserved signal through the measurement. After demodulating the reserved signal, the terminal device can obtain the offset, and further obtain the PSCCH and/or PSSCH strength information according to the offset and the strength information of the reserved signal.
  • the reserved signal indicates the resource location of the reserved PSCCH and/or PSSCH
  • the power offset between the reserved signal and PSCCH and/or PSSCH is pre-configured or predefined or configured by higher layer signaling .
  • the terminal device can obtain the strength information of the aforementioned reserved signal after measuring the reserved signal, and further obtain the strength information of the PSCCH and/or PSSCH according to the pre-configured or predefined or configured power offset.
  • the first threshold When the strength of PSCCH and/or PSSCH is greater than a certain threshold (the first threshold), it means that the interference is large, and the terminal device does not use PSCCH and/or PSSCH resources to avoid collision and interference; on the contrary, when PSCCH and/or When the strength of the PSSCH is less than or equal to the first threshold, it indicates that the interference is small and within a tolerable range, and the terminal device can reuse PSCCH and/or PSSCH resources for transmission, thereby improving resource utilization and spectrum efficiency. Even when the result is less than or equal to the threshold, it does not mean that this part of the resource will be used for side link transmission. This resource can be used as one of the candidate resources, and the terminal device will choose from several candidate resources for the side link. The transmitted resources.
  • the measurement of the reserved signal may include measurement of at least one of the following information: Reference Signal Received Power (RSRP, Reference Signal Received Power), Received Signal Strength Indication (RSSI, Received Signal Strength Indication), Reference Signal Received Quality (RSRQ) , Reference Signal Receiving Quality), Signal to Noise Ratio (SNR, Signal to Noise Ratio), and Signal to Interference and Noise Ratio (SINR, Signal to Interference plus Noise Ratio); but the present invention is not limited to this.
  • the measurement of the above-mentioned signals may all be the measurement of the physical layer L1 (layer 1).
  • the power offset may indicate the difference between the power of the reserved signal and the power of the side link control information and/or side link data information, or may also indicate the The ratio between the power of the reserved signal and the power of the side link control information and/or side link data information.
  • the power of the reserved signal may be different from the power of the PSCCH and/or PSSCH.
  • power boosting can be performed on the reserved signal, that is, the reserved signal uses higher power than the PSCCH and/or PSSCH associated with the reserved signal, thereby ensuring that the reserved signal can Are received more reliably.
  • the measurement result of the reserved signal cannot be directly applied to the PSCCH and/or PSSCH, so the reserved signal can indicate the power offset so that the device can estimate the strength of the PSCCH and/or PSSCH more accurately.
  • multiple second power offsets may be pre-configured or pre-defined or configured through higher layer signaling, and the reserved signal indicates one of the multiple second power offsets As the power offset.
  • N power offsets can be configured or pre-configured or predefined, and then the reserved signal uses ceil(log2(N)) bits to indicate that one of the offsets is actual use.
  • This configuration can be implemented by network equipment or other V2X terminal equipment through high-level signaling.
  • the high-level signaling can be radio resource control (RRC) signaling or broadcast signaling (such as SIB, MIB, etc.); the pre-configuration can be set by the factory achieve.
  • RRC radio resource control
  • the reserved signal may be a type of side link control information (SCI), which is carried by the PSCCH.
  • SCI side link control information
  • configuration or pre-configuration or pre-definition is referred to as (pre-)configuration for short.
  • the (pre-)configured offset set is ⁇ 0, ⁇ 1, ⁇ 2, ⁇ 3 ⁇
  • the reserved signal may use a 2-bit field to indicate a certain element in the set.
  • Fig. 5 is an example diagram of a reserved signal carrying a power offset according to an embodiment of the present invention.
  • the power offset may be defined as the difference between the power of the PSCCH and/or PSSCH and the power of the reserved signal.
  • the (pre-)configured offset set is ⁇ 0dB, 3dB ⁇ , and the reserved signal uses 1 bit to indicate 0dB or 3dB.
  • the power offset may also be defined as a scaling factor, which is used to represent the multiple relationship between the power of the PSCCH and/or PSSCH and the power of the reserved signal.
  • a first power offset may be pre-configured or pre-defined or configured through high-layer signaling as the power offset.
  • the power offset may be determined only by (pre-)configuration or predefined, for example, only a single offset is (pre-)configured, and there is no need to use bits in the reserved signal to indicate the power offset.
  • first threshold may be determined by (pre)configuration or predefinition, for example, a single first threshold may be (pre)configured; the first threshold may also be determined by both (pre)configuration and reserved signal, for example (pre)configuration A set of first thresholds, and then a certain first threshold in the set is further determined according to the reserved signal and/or other information.
  • the sensing process needs to consider the sensing of CSI feedback to avoid collision with CSI transmission. It may be indicated in the reservation signal whether to feed back CSI. Since the sensing terminal device only performs sensing by demodulating the reserved signal and does not need to demodulate the SCI associated with the reserved signal, the terminal device can know whether there is CSI feedback by demodulating the reserved signal, which can avoid CSI feedback collided.
  • CSI feedback is not required.
  • the reason why CSI feedback is not required here may be that CSI feedback is not currently triggered or requested, or that a certain terminal device is not enabled with the CSI feedback function.
  • the reservation signal may include a bit indicating whether to feed back channel state information.
  • the side link control information associated with the reservation signal may also include information for indicating channel state information. Multiple bits of request (CSI request).
  • Fig. 6 is an example diagram of the reserved signal carrying information about whether to feed back CSI according to an embodiment of the present invention.
  • the terminal device that performs sensing can know whether there is CSI feedback through the demodulation reserved signal, and the terminal device that needs to feed back CSI will demodulate the aforementioned SCI, and determine which CSI is fed back through the CSI request field in the SCI.
  • the multi-bit CSI request field can configure which CSI-RS configuration the terminal device performs CSI feedback based on and/or which combination of CSI is fed back. Setting the CSI request field to all zero bits means that no CSI feedback is triggered or requested.
  • the specific usage of the CSI request can follow the relevant content in the NR Rel-15 standard. For details, please refer to TS38.214.
  • FIG. 7 is an example diagram of CSI request and CSI feedback according to the embodiment of the present invention.
  • the relative position between the CSI feedback resource and the CSI request resource may be (pre)configured or predefined.
  • the above-mentioned relative position may be a time gap and/or a frequency gap.
  • the CSI request can be carried by the SCI, that is, indicated by a certain field in the SCI.
  • CSI feedback can be carried by PSSCH or PSFCH.
  • NR V2X defines resource pools.
  • the device can be configured with one or more resource pools.
  • Each resource pool contains the time-frequency resources that can be used for side link transmission and reception.
  • the above-mentioned CSI feedback resources are relative to the CSI requested resources.
  • the location can be (pre)configured or predefined on a resource pool by resource pool.
  • the terminal device when there is a reserved signal, the terminal device can know the resource location of the SCI and/or PSSCH associated with the reserved signal by demodulating the reserved signal, and can know whether there is CSI feedback.
  • CSI feedback for example, the corresponding bit in the reserved signal is set to "1"
  • the terminal device since the relative position of the CSI feedback and the CSI request (SCI and/or PSSCH resource) is (pre)configured or predefined, the terminal device can Accordingly, the resource location occupied by the CSI feedback is obtained, so that collision and interference can be avoided.
  • the reserved signal can also indicate the power offset between the reserved signal and the CSI feedback, and the terminal device can estimate the interference strength of the CSI feedback based on this, so as to determine whether the resource where the CSI feedback is located can be reused.
  • the data transmission on the PSSCH can be scheduled only through the SCI; the terminal device can determine whether there is CSI feedback according to the CSI request field in the SCI.
  • the terminal device can determine the resource where the CSI feedback is located according to the (pre)configured or predefined relative position.
  • the aforementioned SCI can also indicate the power offset between the SCI and/or PSSCH and the CSI feedback, and the terminal device can estimate the interference strength of the CSI feedback based on this, so as to determine whether the resource where the CSI feedback is located can be reused.
  • NR V2X supports blind retransmission, that is, the terminal device can initiate multiple repeated transmissions.
  • Each transmission includes the transmission of SCI and PSSCH.
  • SCI is used to trigger or request CSI feedback
  • the CSI request field in the SCI can be set to the same value, so that when a data receiving terminal device misses a certain SCI, it can still obtain CSI request information by receiving other SCIs.
  • the relative position between the CSI feedback and the CSI request is (pre-)configured or predefined, it can be clarified which CSI request or which SCI the relative position is relative to.
  • the (pre-)configured relative position in blind retransmission is always relative to the first CSI request or the first SCI. In this way, ambiguity can be eliminated, so that terminal devices have a consistent understanding of the definition of relative position.
  • the terminal device receives a certain SCI of blind retransmission, it can always locate the position of other SCI, so it can also know the position of the first SCI, and then obtain the resource of CSI feedback according to the (pre)configured relative position position. Regardless of whether the reserved signal is used, blind retransmission can be supported, so the above method can also be used.
  • NR V2X supports HARQ-ACK to enhance transmission reliability
  • the perception process needs to consider the perception of HARQ-ACK, so as to avoid collision with HARQ-ACK transmission.
  • HARQ-ACK can be determined through (pre)configuration, HARQ-ACK does not always exist, and its existence needs to be indicated so that other devices can perceive it.
  • the above-mentioned design idea of sensing CSI can be used.
  • 1 bit is used in the reserved signal to indicate whether HARQ-ACK needs to be fed back.
  • 1 bit can be used in the SCI to indicate whether HARQ-ACK needs to be fed back, and other terminal devices can decide whether to avoid using the resource where the HARQ-ACK is located by sensing the SCI.
  • the reason why there is no need to feed back HARQ-ACK here may be that the HARQ-ACK feedback function is not currently enabled.
  • the relative position between the HARQ-ACK feedback resource and the PSSCH resource associated with it may be (pre)configured or predefined.
  • the reserved signal or SCI can also indicate the power offset of the reserved signal or SCI/PSSCH and HARQ-ACK feedback, and the terminal device can estimate the interference strength of the HARQ-ACK feedback based on this, so as to determine whether the HARQ-ACK feedback can be reused Where the resource is located.
  • the relative position between the HARQ-ACK feedback resource and the PSSCH resource associated with it may be equal to the relative position between the CSI feedback and the CSI request.
  • the SCI schedules the PSSCH, and the SCI also triggers CSI feedback through the CSI request field.
  • the device receiving the PSSCH needs to feed back HARQ-ACK, it can feed back HARQ-ACK and CSI in the same time slot. Since the PSFCH carrying HARQ-ACK only uses a few symbols at the end of the slot, there is a waste of resources if only HARQ-ACK is fed back in a certain slot, so that the device can feed back HARQ-ACK and CSI at the same time, which can improve the utilization of the slot .
  • the reserved signal may indicate reserved PSCCH and/or PSSCH resources, and the reserved signal may be a kind of SCI.
  • the SCI can also be used to schedule the PSSCH of the broadcast service, that is, the broadcast service and the reserved signal use the same SCI format (SCI format), which can reduce the complexity of blind detection of the device.
  • the SCI can also indicate whether it is used for scheduling broadcast or used as a reserved signal. For example, there is a 1-bit field in the SCI for implementing the above-mentioned indication function.
  • the reserved signal and side link control information and/or side link data information may be frequency-division multiplexed, and the reserved signal occupies the entire time slot in the time domain, and in frequency Occupy part of the resource block (RB) or occupy one or more resource blocks.
  • Fig. 8 is another schematic diagram of reserved signals and PSCCH/PSSCH according to an embodiment of the present invention, and exemplarily shows a physical layer structure of reserved signals. As shown in Figure 8, because the reserved signal carries relatively few information bits, it occupies relatively small time-frequency resources. If the reserved signal shares a set of resources with other PSCCH/PSSCH, one PSCCH/PSSCH transmission Multiple reserved signal transmissions will be blocked.
  • the reserved signal can be frequency-division multiplexed with the PSCCH/PSSCH, and non-overlapping resources can be used with each other, so that preemption and blocking will not occur.
  • the reserved signal can be made to occupy the entire time slot (slot) in the time domain, otherwise the power level within a time slot may change, thereby affecting the accuracy of the automatic gain control (AGC) estimation of the equipment . Since the reserved signal carries fewer information bits, the reserved signal can occupy part of the RB in the frequency domain, that is, the sub-RB granularity is used in the frequency domain.
  • the terminal device receives a reservation signal for indicating the resources of the side link control information and/or the side link data information; and the terminal device determines the side link control according to the reservation signal Whether the resources of information and/or side link data information can be used as candidate resources for side link transmission.
  • the terminal device can support the perception of signals such as aperiodic services, HARQ-ACK feedback, or CSI feedback, thereby improving spectrum efficiency and reducing or avoiding collisions or interference.
  • the embodiment of the present invention provides a signal sending method, which is described from the side of the first terminal device.
  • the first terminal device sends a reservation signal to the second terminal device, and the second terminal device may perform signal sensing according to the reservation signal.
  • the second terminal device may perform side link communication with the first terminal device, or may perform side link communication with other terminal devices.
  • the content of this embodiment 2 that is the same as that of embodiment 1 will not be repeated.
  • FIG. 9 is a schematic diagram of a signal sending method according to an embodiment of the present invention. As shown in FIG. 9, the method includes:
  • Step 901 The terminal device generates a resource reservation signal for indicating side link control information and/or side link data information.
  • Step 902 Send the reservation signal.
  • FIG. 9 above only schematically illustrates the embodiment of the present invention, but the present invention is not limited thereto.
  • the order of execution between the various steps can be adjusted appropriately, and some other steps can be added or some steps can be reduced.
  • Those skilled in the art can make appropriate modifications based on the above content, and are not limited to the description of FIG. 9 above.
  • the reservation signal further indicates at least one of the following information: the power offset between the reservation signal and the side link control information and/or side link data information, and whether to feed back Channel state information, whether to feed back the confirmation information of the hybrid automatic repeat request, and whether to schedule the broadcast service.
  • the terminal device sends side link control information including a channel state information request; wherein the relative position between the resource requested by the channel state information and the resource for feeding back the channel state information is pre-configured or predefined, Or it can be configured through higher layer signaling.
  • the value of the channel state information request in the multiple side link control information for blind retransmission is configured to be the same; and one predetermined channel state information request (for example, the first channel state information request) among the multiple channel state information requests
  • the relative position between the resource of a channel state information request) and the resource for feeding back the channel state information is pre-configured or predefined, or configured through high-level signaling.
  • the terminal device sends the side link control information including the hybrid automatic repeat request; wherein, the relative position between the resource of the hybrid automatic repeat request confirmation information and the resource of the associated side link data information is fed back Pre-configured or predefined, or configured through higher layer signaling.
  • the value of the hybrid automatic repeat request in the multiple side link control information for blind retransmission is configured to be the same; and the multiple side link data associated with the hybrid automatic repeat request
  • the relative position between the resource of a predetermined side link data information (for example, the first side link data information) in the information and the resource that feeds back the hybrid automatic repeat request confirmation information is pre-configured or predefined, or through High-level signaling is configured.
  • the terminal device receives a reservation signal for indicating the resources of the side link control information and/or the side link data information; and the terminal device determines the side link control according to the reservation signal Whether the resources of information and/or side link data information can be used as candidate resources for side link transmission.
  • the terminal device can support the perception of signals such as aperiodic services, HARQ-ACK feedback, or CSI feedback, thereby improving spectrum efficiency and reducing or avoiding collisions or interference.
  • the embodiment of the present invention provides a signal sensing device.
  • the device may be, for example, a terminal device, or it may be one or some parts or components of the terminal device.
  • the content of this embodiment 3 that is the same as that of embodiment 1 will not be repeated.
  • FIG. 10 is a schematic diagram of a signal sensing device according to an embodiment of the present invention. As shown in FIG. 10, the signal sensing device 900 includes:
  • a signal receiving unit 1001 which receives a resource reservation signal for indicating side link control information and/or side link data information
  • the resource determining unit 1002 determines whether the resources of the side link control information and/or side link data information can be used as candidate resources for side link transmission according to the reservation signal.
  • the reservation signal further indicates at least one of the following information: the power offset between the reservation signal and the side link control information and/or side link data information, and whether to feed back Channel state information, whether to feed back the confirmation information of the hybrid automatic repeat request, and whether to schedule the broadcast service.
  • the signal sensing device 1000 may further include:
  • a measuring unit 1003 which measures the strength of the reserved signal
  • a calculation unit 1004 which calculates the side link according to the measured strength of the reserved signal and the power offset between the reserved signal and the side link control information and/or side link data information Signal strength of road control information and/or side link data information;
  • the resource determining unit 1002 may also be used for: when the signal strength of the side link control information and/or side link data information is less than or equal to a first threshold pre-configured or pre-defined or configured through higher layer signaling Next, the resources of the side link control information and/or side link data information are used as candidate resources for side link transmission.
  • the power offset indicates the difference between the power of the reservation signal and the power of the side link control information and/or side link data information, or indicates the reservation signal The ratio between the power of the side link control information and/or the power of the side link data information.
  • a first power offset is pre-configured or predefined or configured through high-layer signaling as the power offset.
  • multiple second power offsets are pre-configured or pre-defined or configured through higher layer signaling, and the reserved signal indicates one of the second power offsets as the Power offset.
  • the reservation signal includes a bit indicating whether to feed back channel state information.
  • the side link control information associated with the reservation signal further includes a plurality of bits for indicating a channel state information request.
  • the relative position between the resource requested by the channel state information and the resource for feeding back the channel state information is pre-configured or predefined, or configured through higher layer signaling.
  • the value of the channel state information request in the multiple side link control information for blind retransmission is configured to be the same; and the resource requested by one predetermined channel state information in the multiple channel state information requests is the same as
  • the relative positions between the resources for feeding back the channel state information are pre-configured or predefined, or configured through higher layer signaling.
  • the reservation signal includes a bit indicating whether to feed back the hybrid automatic repeat request confirmation information.
  • the relative position between the resource feeding back the hybrid automatic repeat request confirmation information and the resource of the associated side link data information is pre-configured or predefined, or configured through high-level signaling.
  • the value of the hybrid automatic repeat request in the multiple side link control information for blind retransmission is configured to be the same; and the multiple side link data associated with the hybrid automatic repeat request
  • the relative position between the resource of a predetermined side link data information in the information and the resource for feeding back the hybrid automatic repeat request confirmation information is pre-configured or predefined, or configured through high-level signaling.
  • the reservation signal includes a bit indicating whether to schedule a broadcast service.
  • the reserved signal is side link control information.
  • the reserved signal is frequency-division multiplexed with side link control information and/or side link data information, and the reserved signal occupies the entire time slot in the time domain and occupies the frequency Part of the resource block may occupy one or more resource blocks.
  • the strength of the reserved signal includes at least one of the following: reference signal received power, received signal strength indicator, reference signal received quality, signal-to-noise ratio, and signal-to-interference and noise ratio.
  • the signal sensing device 1000 may also include other components or modules.
  • the specific content of these components or modules reference may be made to related technologies.
  • FIG. 10 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of the present invention does not limit this.
  • the terminal device receives a reservation signal for indicating the resources of the side link control information and/or the side link data information; and the terminal device determines the side link control according to the reservation signal Whether the resources of information and/or side link data information can be used as candidate resources for side link transmission.
  • the terminal device can support the perception of signals such as aperiodic services, HARQ-ACK feedback, or CSI feedback, thereby improving spectrum efficiency and reducing or avoiding collisions or interference.
  • the embodiment of the present invention provides a signal sending device.
  • the device may be, for example, a terminal device, or it may be one or some parts or components of the terminal device.
  • the same content in this embodiment 4 and embodiment 2 will not be repeated.
  • FIG. 11 is a schematic diagram of a signal sending device according to an embodiment of the present invention. As shown in FIG. 11, the signal sending device 1100 includes:
  • a signal generating unit 1101 which generates a reserved signal for indicating resources of side link control information and/or side link data information;
  • the signal sending unit 1102 sends the reservation signal.
  • the reservation signal further indicates at least one of the following information: the power offset between the reservation signal and the side link control information and/or side link data information, and whether to feed back Channel state information, whether to feed back the confirmation information of the hybrid automatic repeat request, and whether to schedule the broadcast service.
  • the signal sending device 1100 may also include other components or modules, and for the specific content of these components or modules, reference may be made to related technologies.
  • FIG. 11 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection can be used.
  • the foregoing components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, and a receiver; the implementation of the present invention does not limit this.
  • the terminal device receives a reservation signal for indicating the resources of the side link control information and/or the side link data information; and the terminal device determines the side link control according to the reservation signal Whether the resources of information and/or side link data information can be used as candidate resources for side link transmission.
  • the terminal device can support the perception of signals such as aperiodic services, HARQ-ACK feedback, or CSI feedback, thereby improving spectrum efficiency and reducing or avoiding collisions or interference.
  • the embodiment of the present invention also provides a communication system, which can refer to FIG. 1, and the same content as the embodiment 1 to 4 will not be repeated.
  • the communication system 100 may include:
  • the first terminal device 102 generates and sends a resource reservation signal for indicating side link control information and/or side link data information;
  • the second terminal device 103 receives the reservation signal; and determines, according to the reservation signal, whether the resources of the side link control information and/or side link data information can be used as candidate resources for side link transmission.
  • the communication system 100 may further include:
  • the network device 101 provides services for the first terminal device 102 and/or the second terminal device 103.
  • the embodiment of the present invention also provides a network device, which may be a base station, for example, but the present invention is not limited to this, and may also be other network devices.
  • a network device which may be a base station, for example, but the present invention is not limited to this, and may also be other network devices.
  • FIG. 12 is a schematic diagram of the structure of a network device in an embodiment of the present invention.
  • the network device 1200 may include: a processor 1210 (for example, a central processing unit CPU) and a memory 1220; the memory 1220 is coupled to the processor 1210.
  • the memory 1220 can store various data; in addition, it also stores an information processing program 1230, and the program 1230 is executed under the control of the processor 1210.
  • the network device 1200 may further include: a transceiver 1240, an antenna 1250, etc.; wherein the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the network device 1200 does not necessarily include all the components shown in FIG. 12; in addition, the network device 1200 may also include components not shown in FIG. 12, and reference may be made to the prior art.
  • the embodiment of the present invention also provides a terminal device, but the present invention is not limited to this, and may also be other devices.
  • Fig. 13 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 1300 may include a processor 1310 and a memory 1320; the memory 1320 stores data and programs, and is coupled to the processor 1310. It is worth noting that this figure is exemplary; other types of structures can also be used to supplement or replace this structure to achieve telecommunication functions or other functions.
  • the processor 1310 may be configured to execute a program to implement the signal sensing method as described in Embodiment 1.
  • the processor 1310 may be configured to perform the following control: receive a reservation signal for indicating resources of side link control information and/or side link data information; and determine the side link according to the reservation signal Whether the resource of control information and/or side link data information can be used as a candidate resource for side link transmission.
  • the processor 1310 may be configured to execute a program to implement the signal sending method described in Embodiment 2.
  • the processor 1310 may be configured to perform the following control: generate and send a resource reservation signal for indicating side link control information and/or side link data information.
  • the terminal device 1300 may further include: a communication module 1330, an input unit 1340, a display 1350, and a power supply 1360. Among them, the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It is worth noting that the terminal device 1300 does not necessarily include all the components shown in FIG. 13, and the above-mentioned components are not required; in addition, the terminal device 1300 may also include components not shown in FIG. There is technology.
  • An embodiment of the present invention also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the signal sensing method described in Embodiment 1 or the signal sending method described in Embodiment 2. method.
  • An embodiment of the present invention also provides a storage medium storing a computer program, wherein the computer program enables a terminal device to execute the signal sensing method described in Embodiment 1 or the signal sending method described in Embodiment 2.
  • the above devices and methods of the present invention can be implemented by hardware, or by hardware combined with software.
  • the present invention relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • the present invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, and the like.
  • the method/device described in conjunction with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the drawings can be implemented as general-purpose processors, digital signal processors (DSPs) for performing the functions described in the present invention. ), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component or any appropriate combination thereof.
  • DSPs digital signal processors
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple micro-processing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a signal sensing method including:
  • the terminal device receives a resource reservation signal for indicating side link control information and/or side link data information
  • the terminal device determines, according to the reservation signal, whether the resources of the side link control information and/or the side link data information can be used as candidate resources for side link transmission.
  • Appendix 2 The method according to Appendix 1, wherein the reservation signal also indicates at least one of the following information: the reservation signal and the side link control information and/or side link data information The power offset between the two, whether to feed back the channel state information, whether to feed back the confirmation information of the hybrid automatic repeat request, whether to schedule the broadcast service
  • Appendix 3 The method according to Appendix 1 or 2, wherein the method further includes:
  • the power offset between the reserved signal and the side link control information and/or side link data information calculate the side link control information and/or Or the signal strength of the side link data information
  • the side link control information and/or the side link data information are used as candidate resources for side link transmission.
  • Supplement 4 The method according to any one of Supplements 1 to 3, wherein the power offset indicates the difference between the power of the reserved signal and the side link control information and/or side link data information.
  • Supplement 5 The method according to Supplements 1 to 4, wherein a first power offset is preconfigured or predefined or configured through higher layer signaling as the power offset.
  • Supplement 6 The method according to Supplements 1 to 4, wherein a plurality of second power offsets are pre-configured or predefined or configured through high-layer signaling, and the reserved signal is used in the plurality of second power offsets.
  • the shift indicates one of the second power offsets as the power offset.
  • Supplement 7 The method according to Supplement 2, wherein the reserved signal includes a bit indicating whether to feed back channel state information.
  • Appendix 8 The method according to Appendix 7, wherein the side link control information associated with the reserved signal further includes a plurality of bits for indicating a channel state information request.
  • Supplement 9 The method according to Supplement 8, wherein the relative position between the resource requested by the channel state information and the resource for feeding back the channel state information is pre-configured or predefined, or is controlled by higher layer signaling. Configuration.
  • Supplement 10 The method according to Supplement 8 or 9, wherein the value of the channel state information request in the multiple side link control information for blind retransmission is configured to be the same;
  • the relative position between the resource of a predetermined channel state information request (for example, the first channel state information request) and the resource that feeds back the channel state information among the plurality of channel state information requests is pre-configured or predefined, or through higher layers
  • the signaling is configured.
  • Supplement 11 The method according to any one of Supplements 7 to 10, wherein the reservation signal further indicates the following information: the power offset between the reservation signal and the signal that feeds back the channel state information .
  • Appendix 12 The method according to Appendix 11, wherein the method further includes:
  • the resource for feeding back the channel state information is used as a candidate resource for side link transmission.
  • Supplement 13 The method according to Supplement 2, wherein the reserved signal includes a bit indicating whether to feed back hybrid automatic repeat request confirmation information.
  • Supplement 14 The method according to Supplement 13, wherein the relative position between the resource feeding back the hybrid automatic repeat request confirmation information and the resource of the associated side link data information is pre-configured or predefined, Or it can be configured through higher layer signaling.
  • Supplement 15 The method according to Supplement 13, wherein the values of the hybrid automatic retransmission request in the multiple side link control information for blind retransmission are configured to be the same;
  • the resource of one predetermined side link data information (for example, the first side link data information) among the multiple side link data information associated with the hybrid automatic repeat request and the feedback of the hybrid automatic repeat request confirmation information
  • the relative position between the resources is pre-configured or predefined, or configured through high-level signaling.
  • Supplement 16 The method according to any one of Supplements 13 to 15, wherein the reservation signal further indicates the following information: between the reservation signal and the signal that feeds back the confirmation information of the hybrid automatic repeat request The power offset.
  • Appendix 17 The method according to Appendix 16, wherein the method further includes:
  • the signal for feeding back the confirmation information of the hybrid automatic repeat request is calculated Strength
  • the resource for feeding back the confirmation information of the hybrid automatic repeat request is used as Candidate resources for side link transmission.
  • Supplement 18 The method according to Supplement 2, wherein the reservation signal includes a bit indicating whether to schedule a broadcast service.
  • Supplement 19 The method according to any one of Supplements 1 to 18, wherein the reserved signal is side link control information.
  • Supplement 20 The method according to any one of Supplements 1 to 19, wherein the reserved signal is frequency division multiplexed with side link control information and/or side link data information, and the reservation The signal occupies the entire time slot in the time domain, and occupies part of the resource block (RB) or one or more resource blocks in the frequency.
  • the reserved signal is frequency division multiplexed with side link control information and/or side link data information, and the reservation The signal occupies the entire time slot in the time domain, and occupies part of the resource block (RB) or one or more resource blocks in the frequency.
  • Supplement 21 The method according to any one of Supplements 1 to 20, wherein the strength of the reserved signal includes at least one of the following: reference signal received power (RSRP), received signal strength indicator (RSSI), reference Signal reception quality (RSRQ), signal to noise ratio (SNR), signal to interference and noise ratio (SINR).
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSQ reference Signal reception quality
  • SNR signal to noise ratio
  • SINR signal to interference and noise ratio
  • a signal transmission method including:
  • the terminal device generates a resource reservation signal for indicating side link control information and/or side link data information
  • Supplement 23 The method according to any one of Supplements 1 to 20, wherein the reservation signal further indicates at least one of the following information: the reservation signal and the side link control information and/or The power offset between side link data information, whether to feed back channel state information, whether to feed back confirmation information of hybrid automatic repeat request, and whether to schedule broadcast services.
  • a signal transmission method including:
  • the terminal device sends side link control information including the channel state information request;
  • the relative position between the resource requested by the channel state information and the resource for feeding back the channel state information is pre-configured or predefined, or configured through high-level signaling.
  • Supplement 25 The method according to Supplement 24, wherein the value of the channel state information request in the multiple side link control information for blind retransmission is configured to be the same;
  • the relative position between the resource of a predetermined channel state information request (for example, the first channel state information request) and the resource that feeds back the channel state information among the plurality of channel state information requests is pre-configured or predefined, or through higher layers
  • the signaling is configured.
  • a signal transmission method including:
  • the terminal device sends side link control information including the hybrid automatic repeat request
  • the relative position between the resource of the feedback hybrid automatic repeat request confirmation information and the resource of the associated side link data information is pre-configured or predefined, or configured through high-level signaling.
  • Supplement 27 The method according to Supplement 26, wherein the values of the hybrid automatic retransmission request in the multiple side link control information for blind retransmission are configured to be the same;
  • the resource of one predetermined side link data information (for example, the first side link data information) among the multiple side link data information associated with the hybrid automatic repeat request and the feedback of the hybrid automatic repeat request confirmation information
  • the relative position between the resources is pre-configured or predefined, or configured through high-level signaling.
  • a terminal device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to execute the computer program to implement the signal as described in any one of Supplements 1 to 21 A sensing method, or a signal sending method as described in any one of Supplements 22 to 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号感知方法、信号发送方法以及装置。该方法包括:终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。由此,终端设备能够支持对非周期业务、HARQ-ACK反馈或CSI反馈等信号的感知,从而能够提高频谱效率,并减少或避免碰撞或干扰。

Description

信号感知方法、信号发送方法以及装置 技术领域
本发明实施例涉及通信技术领域,特别涉及一种信号感知方法、信号发送方法以及装置。
背景技术
V2X(Vehicle to Everything)是一种车辆通信技术,能够实现车辆与车辆、车辆与路侧设备以及车辆与行人之间的信息交互。V2X中的发送设备可以通过边链路(SL,sidelink)与接收设备直接进行通信。有别于蜂窝网络的Uu链路(网络设备与用户设备之间的空中接口),边链路是为V2X新定义的空中接口(V2X设备之间的空中接口)。
长期演进(LTE,Long Term Evolution)V2X仅支持广播业务和周期性业务,例如周期性地广播道路安全信息;并且,LTE V2X不支持混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)确认信息(称为HARQ-ACK)的反馈和信道状态信息(CSI,Channel State Information)的反馈。
新无线(NR,New Radio)V2X是目前5G NR的研究项目之一,相比于LTE V2X,NR V2X需要支持诸多新场景和新业务(例如远程驾驶、自动驾驶和车队行驶等),需要满足更高的技术指标(高可靠、低时延、高数据速率等)。为满足不同场景和不同业务的需求,除广播外,NR V2X还需要提供对单播和组播的支持;除周期性业务外,NR V2X也需要支持非周期性业务,并且NR V2X支持HARQ-ACK的反馈和CSI的反馈。
目前NR V2X定义了物理边链路控制信道(PSCCH,Physical Sidelink Control Channel),物理边链路共享信道(PSSCH,Physical Sidelink Shared Channel)和物理边链路反馈信道(PSFCH,Physical Sidelink Feedback Channel),用于承载控制信息、数据信息和反馈信息等。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现:由于NR V2X也需要支持非周期性业务、HARQ-ACK的反馈和CSI的反馈等,如何感知这些信号是NR V2X需要解决的问题。
针对上述问题的至少之一,本发明实施例提供一种信号感知方法、信号发送方法以及装置。
根据本发明实施例的第一个方面,提供一种信号感知方法,包括:
终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
根据本发明实施例的第二个方面,提供一种信号感知装置,包括:
信号接收单元,其接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
资源确定单元,其根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
根据本发明实施例的第三个方面,提供一种信号发送方法,包括:
终端设备生成用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
发送所述预留信号。
根据本发明实施例的第四个方面,提供一种信号发送装置,包括:
信号生成单元,其生成用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
信号发送单元,其发送所述预留信号。
根据本发明实施例的第五个方面,提供一种通信系统,包括:
第一终端设备,其生成并发送用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
第二终端设备,其接收所述预留信号;以及根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
本发明实施例的有益效果之一在于:终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。由此,终端设备能够支持对非周期业务、HARQ-ACK反馈或CSI反馈等信号的感知,从而能够提高频谱效率,并减少或避免碰撞或干扰。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例的通信系统的一示意图;
图2是本发明实施例的信号感知方法的一示意图;
图3是本发明实施例的预留信号和PSCCH/PSSCH的一示意图;
图4是本发明实施例的一种资源重用的示例图;
图5是本发明实施例的预留信号携带功率偏移的一示例图;
图6是本发明实施例的预留信号携带是否需要反馈CSI的信息的一示例图;
图7是本发明实施例的CSI请求和CSI反馈的一示例图;
图8是本发明实施例的预留信号和PSCCH/PSSCH的另一示意图;
图9是本发明实施例的信号发送方法的一示意图;
图10是本发明实施例的信号感知装置的一示意图;
图11是本发明实施例的信号发送装置的一示意图;
图12是本发明实施例的网络设备的一示意图;
图13是本发明实施例的终端设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服 务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。
以下通过示例对本发明实施例的场景进行说明,但本发明不限于此。
图1是本发明实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本发明实施例不限于此。
在本发明实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本发明不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
在本发明实施例中,两个终端设备102、103之间可以进行边链路传输。例如,两个终端设备102、103可以都在网络设备101的覆盖范围之内进行边链路传输以实现V2X通信,也可以都在网络设备101的覆盖范围之外进行边链路传输以实现V2X通信,还可以一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外进行边链路传输以实现V2X通信。
本发明实施例中,“配置”可以用于终端设备在网络覆盖范围内(in coverage)情形,终端设备可以接收网络设备或另一终端设备发送的配置信息,例如该配置信息通过如下至少之一的信息或信令发送:系统信息(MIB/SIB)、无线资源控制(RRC,Radio Resource Control)信令、下行控制信息(DCI,Downlink Control Information)和边链路控制信息(SCI,Sidelink Control Information)。“预配置”或“预定义”可用于终端设备不在网络覆盖范围内(out-of-coverage)情形,终端设备根据预配置(即默认配置或出厂配置)或预定义(即标准规定的配置)进行V2X通信。
在本发明实施例中,以V2X为例对边链路通信进行说明,但本发明不限于此,还可以适用于V2X以外的边链路传输场景。在以下的说明中,在不引起混淆的情况下,“边链路”和“V2X”可以互换。
实施例1
本发明实施例提供一种信号感知方法,从第二终端设备侧进行说明。其中该第二终端设备接收第一终端设备发送的预留信号并进行信号感知,该第二终端设备可以与该第一终端设备进行边链路通信,也可以与其他终端设备进行边链路通信。
图2是本发明实施例的信号感知方法的一示意图,如图2所示,所述方法包括:
步骤201,终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
步骤202,所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
在本发明实施例中,边链路控制信息可以是承载在PSCCH中的SCI,边链路数据信息可以是承载在PSSCH中的V2X数据。在以下的说明中,在不引起混淆的情况下,“边链路控制信息”和“PSCCH”可以互换,“边链路数据信息”和“PSSCH”可以互换。
值得注意的是,以上附图2仅对本发明实施例进行了示意性说明,但本发明不限于此。例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图2的记载。
在本发明实施例中,所述预留信号还可以指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移(offset)、是否反馈信道状态信息、是否反馈混合自动重传请求确认信息、是否调度广播业务;但本发明不限于此,例如预留信号可以指示如上信息的任意组合,还可以指示其他信息,或者不指示上述的任意信息。
由此,通过使用预留信号,可以支持对非周期业务、HARQ-ACK反馈和/或CSI反馈的感知,从而达到提高频谱效率,并减少或避免碰撞或干扰的目的。通过指示预留信号与PSCCH和/或PSSCH的信号的功率偏移(offset),可以进一步确定资源何时可以作为边链路传输的候选资源,从而提高资源的利用率。
与周期业务不同,非周期业务是突发的,无法根据之前业务数据预测未来业务数据。为实现对非周期业务的感知,终端设备可以在通过PSSCH发送数据信号之前先发送一个预留信号(reservation signal),该预留信号指示PSCCH和/或PSSCH的资源位置,并且该预留信号可以被其他多个终端设备接收。
图3是本发明实施例的预留信号和PSCCH/PSSCH的一示意图。当终端设备接收到该预留信号后,可以知晓在未来某一资源位置将会发生PSCCH和/或PSSCH传输,因此可以避开相应的资源,从而避免碰撞和干扰。
虽然使用不重叠的资源可以避免碰撞,但一味地避免碰撞实际上减少了可供终端 设备选择和使用的资源,这将使得系统资源得不到充分的利用。在某些条件下,可以使用重叠(或重合)的资源来实现资源重用,从而获得系统资源利用率和频谱效率的提升。
例如,虽然某一终端设备通过解调该预留信号得知有另一终端设备使用了某一资源,但如果这两个终端设备之间相距较远,意味着终端设备间的干扰能够得到有效隔离,即终端设备间相互干扰较小,那么进行感知的终端设备仍然可以使用这一资源,即进行资源重用,这样可以更加充分地对资源进行利用,从而提高系统频谱效率。
图4是本发明实施例的一种资源重用的示例图,如图4所示,进行V2X通信的一对终端设备(UE 1,UE2)与进行V2X通信的另一对终端设备(UE3,UE4)相距较远,UE 3通过对UE 1发送的预留信号进行感知,可以确定(或判断)UE 1发送的PSCCH/PSSCH对自己造成的干扰在可以接受的范围内,因此UE 3可以重用这部分资源进行PSCCH/PSSCH的发送。
为实现上述资源重用,终端设备在进行感知时可以对预留信号进行测量,通过该测量获得该预留信号的强度信息。并可以进一步根据预留信号强度信息获得PSCCH/PSSCH的强度信息。
在一个实施例中,终端设备可以对所述预留信号的强度进行测量;根据测量出的所述预留信号的强度、所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移,计算所述边链路控制信息和/或边链路数据信息的信号强度;以及在所述边链路控制信息和/或边链路数据信息的信号强度小于或等于第一阈值(预配置或预定义或通过高层信令配置)的情况下,将所述边链路控制信息和/或边链路数据信息的资源作为边链路传输的候选资源。
例如,预留信号指示其预留的PSCCH和/或PSSCH的资源位置,并且指示预留信号与上述PSCCH和/或PSSCH的功率偏移量。终端设备对预留信号进行测量,通过该测量获得该预留信号的强度信息。终端设备解调预留信号后,可以获得上述偏移量,并进一步根据偏移量和上述预留信号的强度信息获得PSCCH和/或PSSCH的强度信息。
再例如,预留信号指示其预留的PSCCH和/或PSSCH的资源位置,并且所述预留信号与PSCCH和/或PSSCH之间的功率偏移被预配置或预定义或被高层信令配置。终端设备对该预留信号测量后可以获得上述预留信号的强度信息,并在此基础上进一 步根据预配置的或预定义的或配置的功率偏移获得PSCCH和/或PSSCH的强度信息。
当PSCCH和/或PSSCH的强度大于某一阈值(第一阈值)时,说明干扰较大,则终端设备不使用PSCCH和/或PSSCH的资源,从而避免碰撞和干扰;反之,当PSCCH和/或PSSCH的强度小于等于该第一阈值时,说明干扰较小并在可容忍范围内,则终端设备可以重用PSCCH和/或PSSCH的资源进行传输,从而提高资源利用率和频谱效率。即使当结果小于等于阈值时,也并不意味着这部分资源一定会被用于边链路传输,该资源可以作为候选资源之一,终端设备会在若干候选资源中选择最终用于边链路传输的资源。
对预留信号的测量可以包括对以下至少一种信息进行的测量:参考信号接收功率(RSRP,Reference Signal Received Power)、接收信号强度指示(RSSI,Received Signal Strength Indication)、参考信号接收质量(RSRQ,Reference Signal Receiving Quality)、信噪比(SNR,Signal to Noise Ratio)、信干噪比(SINR,Signal to Interference plus Noise Ratio);但本发明不限于此。此外,上述信号的测量均可以为物理层L1(layer 1)的测量。
在一个实施例中,所述功率偏移可以指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的差值,或者也可以指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的比值。
例如,预留信号的功率与PSCCH和/或PSSCH的功率可能不同。作为一种信令,可以对预留信号进行功率提升(power boosting),即该预留信号使用比与该预留信号关联的PSCCH和/或PSSCH更高的功率,从而保证该预留信号能够被更加可靠地接收。由于功率不同,不能将预留信号的测量结果直接应用于PSCCH和/或PSSCH,因此预留信号可以对功率偏移进行指示,以便设备能够对PSCCH和/或PSSCH的强度进行更加准确的估计。
在一个实施例中,可以预配置或预定义或通过高层信令配置多个第二功率偏移,所述预留信号在所述多个第二功率偏移中指示其中一个第二功率偏移作为所述功率偏移。
例如,可以配置或预配置(pre-configure)或预定义N个功率偏移(第二功率偏移),然后预留信号使用ceil(log2(N))个比特来指示其中某一个偏移被实际使用。该配置可以由网络设备或其他V2X终端设备通过高层信令方式实现,高层信令可以是无 线资源控制(RRC)信令或广播信令(如SIB、MIB等);该预配置可以由出厂设置实现。
预留信号可以是一种边链路控制信息(SCI),由PSCCH承载。以下将配置或预配置或预定义简称为(预)配置((pre-)configuration)。例如(预)配置偏移量集合为{0,Δ1,Δ2,Δ3},预留信号可以使用2比特的一个字段(field)对集合中的某一元素进行指示。
图5是本发明实施例的预留信号携带功率偏移的一示例图。功率偏移可以被定义为PSCCH和/或PSSCH的功率与预留信号的功率的差值。例如(预)配置偏移量集合为{0dB,3dB},预留信号使用1比特指示0dB或3dB。该功率偏移也可以被定义为一个缩放因子(scaling factor),用来表示PSCCH和/或PSSCH的功率与预留信号的功率的倍数关系。
再例如,可以预配置或预定义或通过高层信令配置一个第一功率偏移作为所述功率偏移。功率偏移可以仅由(预)配置或预定义决定,例如仅(预)配置单个偏移量,此时预留信号中无需使用比特对功率偏移进行指示。
此外,上述第一阈值可以通过(预)配置或预定义确定,例如可以(预)配置单个第一阈值;第一阈值也可以由(预)配置和预留信号共同确定,例如(预)配置一个第一阈值的集合,再进一步根据预留信号和/或其他信息确定该集合中的某一个第一阈值。
在另一个实施例中,由于NR V2X支持终端设备反馈CSI给另一终端设备,从而实现链路自适应,感知过程需要考虑对CSI反馈的感知,从而避免与CSI传输发生碰撞。可以在预留信号中指示是否需要反馈CSI。由于进行感知的终端设备仅通过解调预留信号进行感知,而不需要解调与预留信号关联的SCI,因此终端设备通过解调预留信号即可知晓是否存在CSI反馈,从而能够避免与CSI反馈发生碰撞。
例如,在预留信号中使用1比特指示是否需要反馈CSI,“1”表示需要反馈CSI,“0”表示不需要反馈CSI。这里不需要反馈CSI的原因可以是当前没有触发或请求CSI反馈,也可以是某一终端设备没有被使能CSI反馈功能。
在一个实施例中,所述预留信号可以包括有指示是否反馈信道状态信息的一个比特,此外,与所述预留信号关联的所述边链路控制信息中还包括有用于指示信道状态信息请求(CSI request)的多个比特。
图6是本发明实施例的预留信号携带是否需要反馈CSI的信息的一示例图。进行感知的终端设备可以通过该解调预留信号知晓是否存在CSI反馈,而需要反馈CSI的终端设备会解调上述SCI,通过SCI中的CSI请求字段确定反馈哪种CSI。
多比特CSI请求字段可以配置终端设备基于哪种CSI-RS配置进行CSI反馈和/或反馈哪种组合的CSI,CSI请求字段置为全零比特则意味着没有触发或请求CSI反馈。CSI请求的具体用法可以沿用NR Rel-15标准中的相关内容,具体可以参见TS38.214。
图7是本发明实施例的CSI请求和CSI反馈的一示例图。为便于进行感知的终端设备知晓CSI反馈所占用的时频资源,CSI反馈的资源与CSI请求的资源之间的相对位置可以是(预)配置或预定义的。上述相对位置可以是时间间隔(time gap)和/或频率间隔。如前所述,CSI请求可以由SCI携带,即由SCI中的某一字段指示。CSI反馈可以由PSSCH或PSFCH承载。
NR V2X定义了资源池,设备可以被配置一个或多个资源池,每个资源池包含了边链路收发所能使用的时频资源,上述CSI反馈的资源与CSI请求的资源之间的相对位置可以逐个资源池进行(预)配置或预定义。
例如,在存在预留信号的情况下,终端设备通过解调预留信号可以知晓与该预留信号关联的SCI和/或PSSCH的资源位置,并且可以知晓是否存在CSI反馈。当存在CSI反馈时(例如预留信号中的对应比特置“1”),由于CSI反馈与CSI请求(SCI和/或PSSCH资源)的相对位置是(预)配置或预定义的,终端设备可以据此获得CSI反馈所占用的资源位置,从而可以避免碰撞和干扰。另外,预留信号也可以指示预留信号与CSI反馈的功率偏移,终端设备可以据此估计CSI反馈的干扰强度,从而决定是否可以重用CSI反馈所在的资源。
又例如,在不存在预留信号的情况下,可以仅通过SCI调度PSSCH上的数据传输;终端设备可以根据SCI中的CSI请求字段判断是否存在CSI反馈,当CSI请求字段非零时(即存在CSI反馈),终端设备可以根据(预)配置或预定义的相对位置确定CSI反馈所在资源。另外,上述SCI也可以指示SCI和/或PSSCH与CSI反馈的功率偏移,终端设备可以据此估计CSI反馈的干扰强度,从而决定是否可以重用CSI反馈所在的资源。
由于NR V2X支持盲重传(blind retransmission),即终端设备可以发起多次重复 传输,每次传输都包括SCI和PSSCH的发送,当SCI用于触发或请求CSI反馈时,盲重传中的所有SCI中的CSI请求字段可以设置相同的取值,以便数据接收的终端设备漏检某个SCI时,其仍然能够通过接收其他SCI而获得CSI请求信息。
当(预)配置或预定义CSI反馈与CSI请求之间的相对位置时,可以明确该相对位置是相对于哪一个CSI请求或哪一个SCI。例如,可以定义盲重传情况下(预)配置的相对位置总是相对于第一个CSI请求或第一个SCI。这样可以消除歧义,使得终端设备间对相对位置的定义有一致的理解。当终端设备接收到盲重传的某一个SCI时,总能够定位到其他SCI的位置,因此也能知晓第一个SCI的位置,再根据(预)配置的相对位置即可获得CSI反馈的资源位置。无论是否使用预留信号,都可以支持盲重传,因此也都可以使用上述方法。
在另一个实施例中,由于NR V2X支持HARQ-ACK以增强传输可靠性,感知过程需要考虑对HARQ-ACK的感知,从而避免与HARQ-ACK传输发生碰撞。由于可以通过(预)配置决定是否使能HARQ-ACK,因此HARQ-ACK并非始终存在,需要对其存在性进行指示,以便于其他设备能够感知。可以沿用上述感知CSI的设计思路。
例如,在预留信号中使用1比特指示是否需要反馈HARQ-ACK。又例如,在不使用预留信号的情况下,可以在SCI中使用1比特指示是否需要反馈HARQ-ACK,其他终端设备可以通过对SCI的感知决定是否避免使用HARQ-ACK所在的资源。这里不需要反馈HARQ-ACK的原因可以是当前没有使能HARQ-ACK反馈功能。
类似地,为了便于进行感知的终端设备知晓HARQ-ACK反馈所占用的时频资源,HARQ-ACK反馈资源和与之关联的PSSCH资源之间的相对位置可以是(预)配置或预定义的。另外,预留信号或SCI也可以指示预留信号或SCI/PSSCH与HARQ-ACK反馈的功率偏移,终端设备可以据此估计HARQ-ACK反馈的干扰强度,从而决定是否可以重用HARQ-ACK反馈所在的资源。
HARQ-ACK反馈资源和与之关联的PSSCH资源之间的相对位置可以等于CSI反馈与CSI请求之间的相对位置。例如SCI调度PSSCH,同时SCI也通过CSI请求字段触发CSI反馈,当接收PSSCH的设备需要反馈HARQ-ACK时,可以在相同的时隙反馈HARQ-ACK和CSI。由于承载HARQ-ACK的PSFCH仅使用时隙尾部的若干符号,在某个时隙仅反馈HARQ-ACK会存在资源浪费,令设备同时反馈HARQ- ACK和CSI,可以提高对该时隙的利用率。
与CSI情况类似地,盲重传中的所有SCI中指示是否需要反馈HARQ-ACK的字段可以设置相同的取值,当(预)配置HARQ-ACK反馈与PSSCH之间的相对位置时,可以定义该相对位置总是相对于第一次PSSCH传输。
如上所述,预留信号可以指示预留的PSCCH和/或PSSCH资源,预留信号可以是一种SCI。该SCI还可以用来调度广播业务的PSSCH,即广播业务和预留信号使用相同的SCI格式(SCI format),这可以减少设备的盲检复杂度。此时,该SCI还可以指示其是用来调度广播,还是用作预留信号使用,例如SCI中有1比特字段用于实现上述指示功能。
在一个实施例中,所述预留信号与边链路控制信息和/或边链路数据信息可以进行频分复用,并且所述预留信号在时域上占用整个时隙,在频率上占用部分的资源块(RB)或占用一个或多个资源块。
图8是本发明实施例的预留信号与PSCCH/PSSCH的另一示意图,示例性示出了预留信号的物理层结构。如图8所示,由于预留信号携带的信息比特相对较少,其所占时频资源也相对较小,如果令预留信号与其他PSCCH/PSSCH共用一组资源,则一个PSCCH/PSSCH传输将会阻塞(block)多个预留信号传输。
因此,可以使预留信号与PSCCH/PSSCH进行频分复用,彼此使用不重叠的资源,从而不会发生抢占和阻塞。此外,可以令预留信号占满时域上整个时隙(slot),否则可能会使一个时隙内部的功率水平发生变化,从而影响设备自动增益控制(AGC,Automatic Gain Control)估计的准确性。由于预留信号承载的信息比特较少,预留信号在频域上可以占部分RB,即在频域上使用sub-RB粒度。
以上各个实施例仅对本发明实施例进行了示例性说明,但本发明不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。由此,终端设备能够支持对非周期业务、HARQ-ACK反馈或CSI反馈等信号的感知,从而能够提高频谱效率,并减少或避免碰撞或干扰。
实施例2
本发明实施例提供一种信号发送方法,从第一终端设备侧进行说明。该第一终端设备向第二终端设备发送预留信号,该第二终端设备可以根据该预留信号进行信号感知。该第二终端设备可以与该第一终端设备进行边链路通信,也可以与其他终端设备进行边链路通信。本实施例2与实施例1相同的内容不再赘述。
图9是本发明实施例的信号发送方法的一示意图,如图9所示,该方法包括:
步骤901,终端设备生成用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
步骤902,发送所述预留信号。
值得注意的是,以上附图9仅对本发明实施例进行了示意性说明,但本发明不限于此。例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图9的记载。
在一个实施例中,所述预留信号还指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移、是否反馈信道状态信息、是否反馈混合自动重传请求确认信息、是否调度广播业务。
在一个实施例中,终端设备发送包括信道状态信息请求的边链路控制信息;其中,所述信道状态信息请求的资源与反馈信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
在一个实施例中,进行盲重传的多个边链路控制信息中的信道状态信息请求的取值被配置为相同;并且多个信道状态信息请求中的一个预定信道状态信息请求(例如第一个信道状态信息请求)的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
在一个实施例中,终端设备发送包括混合自动重传请求的边链路控制信息;其中,反馈混合自动重传请求确认信息的资源与相关联的边链路数据信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
在一个实施例中,进行盲重传的多个边链路控制信息中的混合自动重传请求的取值被配置为相同;并且与所述混合自动重传请求关联的多个边链路数据信息中的一个 预定边链路数据信息(例如第一个边链路数据信息)的资源与反馈所述混合自动重传请求确认信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
以上各个实施例仅对本发明实施例进行了示例性说明,但本发明不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。由此,终端设备能够支持对非周期业务、HARQ-ACK反馈或CSI反馈等信号的感知,从而能够提高频谱效率,并减少或避免碰撞或干扰。
实施例3
本发明实施例提供一种信号感知装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。本实施例3与实施例1相同的内容不再赘述。
图10是本发明实施例的信号感知装置的一示意图,如图10所示,信号感知装置900包括:
信号接收单元1001,其接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
资源确定单元1002,其根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
在一个实施例中,所述预留信号还指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移、是否反馈信道状态信息、是否反馈混合自动重传请求确认信息、是否调度广播业务。
在一个实施例中,如图10所示,信号感知装置1000还可以包括:
测量单元1003,其对所述预留信号的强度进行测量;以及
计算单元1004,其根据测量出的所述预留信号的强度、所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移,计算所述边链路控制信息和/或边链路数据信息的信号强度;
所述资源确定单元1002还可以用于:在所述边链路控制信息和/或边链路数据信息的信号强度小于或等于预配置或预定义或通过高层信令配置的第一阈值的情况下,将所述边链路控制信息和/或边链路数据信息的资源作为边链路传输的候选资源。
在一个实施例中,所述功率偏移指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的差值,或者指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的比值。
在一个实施例中,预配置或预定义或通过高层信令配置一个第一功率偏移作为所述功率偏移。或者,预配置或预定义或通过高层信令配置多个第二功率偏移,所述预留信号在所述多个第二功率偏移中指示其中一个所述第二功率偏移作为所述功率偏移。
在一个实施例中,所述预留信号包括有指示是否反馈信道状态信息的一个比特。
在一个实施例中,与所述预留信号关联的所述边链路控制信息中还包括有用于指示信道状态信息请求的多个比特。
在一个实施例中,所述信道状态信息请求的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
在一个实施例中,进行盲重传的多个边链路控制信息中的信道状态信息请求的取值被配置为相同;并且多个信道状态信息请求中的一个预定信道状态信息请求的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
在一个实施例中,所述预留信号包括有指示是否反馈混合自动重传请求确认信息的一个比特。
在一个实施例中,反馈所述混合自动重传请求确认信息的资源与相关联的边链路数据信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
在一个实施例中,进行盲重传的多个边链路控制信息中的混合自动重传请求的取值被配置为相同;并且与所述混合自动重传请求关联的多个边链路数据信息中的一个预定边链路数据信息的资源与反馈所述混合自动重传请求确认信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
在一个实施例中,所述预留信号包括有指示是否调度广播业务的一个比特。
在一个实施例中,所述预留信号为边链路控制信息。
在一个实施例中,所述预留信号与边链路控制信息和/或边链路数据信息进行频分复用,并且所述预留信号在时域上占用整个时隙,在频率上占用部分的资源块或占用一个或多个资源块。
在一个实施例中,所述预留信号的强度包括如下至少之一:参考信号接收功率、接收信号强度指示、参考信号接收质量、信噪比、信干噪比。
值得注意的是,以上仅对与本发明相关的各部件或模块进行了说明,但本发明不限于此。信号感知装置1000还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图10中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本发明实施并不对此进行限制。
由上述实施例可知,终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。由此,终端设备能够支持对非周期业务、HARQ-ACK反馈或CSI反馈等信号的感知,从而能够提高频谱效率,并减少或避免碰撞或干扰。
实施例4
本发明实施例提供一种信号发送装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。本实施例4与实施例2相同的内容不再赘述。
图11是本发明实施例的信号发送装置的一示意图,如图11所示,信号发送装置1100包括:
信号生成单元1101,其生成用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
信号发送单元1102,其发送所述预留信号。
在一个实施例中,所述预留信号还指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移、是否反馈信道状态信息、 是否反馈混合自动重传请求确认信息、是否调度广播业务。
值得注意的是,以上仅对与本发明相关的各部件或模块进行了说明,但本发明不限于此。信号发送装置1100还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图11中仅示例性示出各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本发明实施并不对此进行限制。
由上述实施例可知,终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。由此,终端设备能够支持对非周期业务、HARQ-ACK反馈或CSI反馈等信号的感知,从而能够提高频谱效率,并减少或避免碰撞或干扰。
实施例5
本发明实施例还提供一种通信系统,可以参考图1,与实施例1至4相同的内容不再赘述。在本实施例中,通信系统100可以包括:
第一终端设备102,其生成并发送用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
第二终端设备103,其接收所述预留信号;以及根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
如图1所示,通信系统100还可以包括:
网络设备101,其为第一终端设备102和/或第二终端设备103提供服务。
本发明实施例还提供一种网络设备,例如可以是基站,但本发明不限于此,还可以是其他的网络设备。
图12是本发明实施例的网络设备的构成示意图。如图12所示,网络设备1200可以包括:处理器1210(例如中央处理器CPU)和存储器1220;存储器1220耦合到处理器1210。其中该存储器1220可存储各种数据;此外还存储信息处理的程序1230,并且在处理器1210的控制下执行该程序1230。
此外,如图12所示,网络设备1200还可以包括:收发机1240和天线1250等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1200也并不是必须要包括图12中所示的所有部件;此外,网络设备1200还可以包括图12中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种终端设备,但本发明不限于此,还可以是其他的设备。
图13是本发明实施例的终端设备的示意图。如图13所示,该终端设备1300可以包括处理器1310和存储器1320;存储器1320存储有数据和程序,并耦合到处理器1310。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器1310可以被配置为执行程序而实现如实施例1所述的信号感知方法。例如处理器1310可以被配置为进行如下的控制:接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
再例如,处理器1310可以被配置为执行程序而实现如实施例2所述的信号发送方法。例如处理器1310可以被配置为进行如下的控制:生成及发送用于指示边链路控制信息和/或边链路数据信息的资源的预留信号。
如图13所示,该终端设备1300还可以包括:通信模块1330、输入单元1340、显示器1350、电源1360。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1300也并不是必须要包括图13中所示的所有部件,上述部件并不是必需的;此外,终端设备1300还可以包括图13中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行实施例1所述的信号感知方法或实施例2所述的信号发送方法。
本发明实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行实施例1所述的信号感知方法或实施例2所述的信号发送方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现 上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种信号感知方法,包括:
终端设备接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信 号;以及
所述终端设备根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
附记2、根据附记1所述的方法,其中,所述预留信号还指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移、是否反馈信道状态信息、是否反馈混合自动重传请求确认信息、是否调度广播业务
附记3、根据附记1或2所述的方法,其中,所述方法还包括:
所述终端设备对所述预留信号的强度进行测量;
根据测量出的所述预留信号的强度、所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移,计算所述边链路控制信息和/或边链路数据信息的信号强度;以及
在所述边链路控制信息和/或边链路数据信息的信号强度小于或等于预配置或预定义或通过高层信令配置的第一阈值的情况下,将所述边链路控制信息和/或边链路数据信息的资源作为边链路传输的候选资源。
附记4、根据附记1至3任一项所述的方法,其中,所述功率偏移指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的差值,或者指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的比值。
附记5、根据附记1至4所述的方法,其中,预配置或预定义或通过高层信令配置一个第一功率偏移作为所述功率偏移。
附记6、根据附记1至4所述的方法,其中,预配置或预定义或通过高层信令配置多个第二功率偏移,所述预留信号在所述多个第二功率偏移中指示其中一个所述第二功率偏移作为所述功率偏移。
附记7、根据附记2所述的方法,其中,所述预留信号包括有指示是否反馈信道状态信息的一个比特。
附记8、根据附记7所述的方法,其中,与所述预留信号关联的所述边链路控制信息中还包括有用于指示信道状态信息请求的多个比特。
附记9、根据附记8所述的方法,其中,所述信道状态信息请求的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配 置。
附记10、根据附记8或9所述的方法,其中,进行盲重传的多个边链路控制信息中的信道状态信息请求的取值被配置为相同;并且
多个信道状态信息请求中的一个预定信道状态信息请求(例如第一个信道状态信息请求)的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
附记11、根据附记7至10任一项所述的方法,其中,所述预留信号还指示如下信息:所述预留信号与反馈所述信道状态信息的信号之间的功率偏移。
附记12、根据附记11所述的方法,其中,所述方法还包括:
所述终端设备对所述预留信号的强度进行测量;
根据测量出的所述预留信号的强度、所述预留信号与反馈所述信道状态信息的信号之间的功率偏移,计算反馈所述信道状态信息的信号强度;以及
在反馈所述信道状态信息的信号强度小于或等于预配置或预定义或通过高层信令配置的第二阈值的情况下,将反馈所述信道状态信息的资源作为边链路传输的候选资源。
附记13、根据附记2所述的方法,其中,所述预留信号包括有指示是否反馈混合自动重传请求确认信息的一个比特。
附记14、根据附记13所述的方法,其中,反馈所述混合自动重传请求确认信息的资源与相关联的边链路数据信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
附记15、根据附记13所述的方法,其中,进行盲重传的多个边链路控制信息中的混合自动重传请求的取值被配置为相同;并且
与所述混合自动重传请求关联的多个边链路数据信息中的一个预定边链路数据信息(例如第一个边链路数据信息)的资源与反馈所述混合自动重传请求确认信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
附记16、根据附记13至15任一项所述的方法,其中,所述预留信号还指示如下信息:所述预留信号与反馈所述混合自动重传请求确认信息的信号之间的功率偏移。
附记17、根据附记16所述的方法,其中,所述方法还包括:
所述终端设备对所述预留信号的强度进行测量;
根据测量出的所述预留信号的强度、所述预留信号与反馈所述混合自动重传请求确认信息的信号之间的功率偏移,计算反馈所述混合自动重传请求确认信息的信号强度;以及
在反馈所述混合自动重传请求确认信息的信号强度小于或等于预配置或预定义或通过高层信令配置的第三阈值的情况下,将反馈所述混合自动重传请求确认信息的资源作为边链路传输的候选资源。
附记18、根据附记2所述的方法,其中,所述预留信号包括有指示是否调度广播业务的一个比特。
附记19、根据附记1至18任一项所述的方法,其中,所述预留信号为边链路控制信息。
附记20、根据附记1至19任一项所述的方法,其中,所述预留信号与边链路控制信息和/或边链路数据信息进行频分复用,并且所述预留信号在时域上占用整个时隙,在频率上占用部分的资源块(RB)或占用一个或多个资源块。
附记21、根据附记1至20任一项所述的方法,其中,所述预留信号的强度包括如下至少之一:参考信号接收功率(RSRP)、接收信号强度指示(RSSI)、参考信号接收质量(RSRQ)、信噪比(SNR)、信干噪比(SINR)。
附记22、一种信号发送方法,包括:
终端设备生成用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
发送所述预留信号。
附记23、根据附记1至20任一项所述的方法,其中,所述预留信号还指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移、是否反馈信道状态信息、是否反馈混合自动重传请求确认信息、是否调度广播业务。
附记24、一种信号发送方法,包括:
终端设备发送包括信道状态信息请求的边链路控制信息;
其中,所述信道状态信息请求的资源与反馈信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
附记25、根据附记24所述的方法,其中,进行盲重传的多个边链路控制信息中的信道状态信息请求的取值被配置为相同;并且
多个信道状态信息请求中的一个预定信道状态信息请求(例如第一个信道状态信息请求)的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
附记26、一种信号发送方法,包括:
终端设备发送包括混合自动重传请求的边链路控制信息;
其中,反馈混合自动重传请求确认信息的资源与相关联的边链路数据信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
附记27、根据附记26所述的方法,其中,进行盲重传的多个边链路控制信息中的混合自动重传请求的取值被配置为相同;并且
与所述混合自动重传请求关联的多个边链路数据信息中的一个预定边链路数据信息(例如第一个边链路数据信息)的资源与反馈所述混合自动重传请求确认信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
附记28、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至21任一项所述的信号感知方法,或者如附记22至27任一项所述的信号发送方法。

Claims (20)

  1. 一种信号感知装置,包括:
    信号接收单元,其接收用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
    资源确定单元,其根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
  2. 根据权利要求1所述的装置,其中,所述预留信号还指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移、是否反馈信道状态信息、是否反馈混合自动重传请求确认信息、是否调度广播业务。
  3. 根据权利要求1所述的装置,其中,所述装置还包括:
    测量单元,其对所述预留信号的强度进行测量;以及
    计算单元,其根据测量出的所述预留信号的强度、所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移,计算所述边链路控制信息和/或边链路数据信息的信号强度;
    所述资源确定单元还用于:在所述边链路控制信息和/或边链路数据信息的信号强度小于或等于预配置或预定义或通过高层信令配置的第一阈值的情况下,将所述边链路控制信息和/或边链路数据信息的资源作为边链路传输的候选资源。
  4. 根据权利要求2所述的装置,其中,所述功率偏移指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的差值,或者指示所述预留信号的功率与所述边链路控制信息和/或边链路数据信息的功率之间的比值。
  5. 根据权利要求2所述的装置,其中,预配置或预定义或通过高层信令配置一个第一功率偏移作为所述功率偏移。
  6. 根据权利要求2所述的装置,其中,预配置或预定义或通过高层信令配置多个第二功率偏移,所述预留信号在所述多个第二功率偏移中指示其中一个所述第二功率偏移作为所述功率偏移。
  7. 根据权利要求2所述的装置,其中,所述预留信号包括有指示是否反馈信道状态信息的一个比特。
  8. 根据权利要求7所述的装置,其中,与所述预留信号关联的所述边链路控制 信息中还包括有用于指示信道状态信息请求的多个比特。
  9. 根据权利要求8所述的装置,其中,所述信道状态信息请求的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
  10. 根据权利要求8所述的装置,其中,进行盲重传的多个边链路控制信息中的信道状态信息请求的取值被配置为相同;并且
    多个信道状态信息请求中的一个预定信道状态信息请求的资源与反馈所述信道状态信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
  11. 根据权利要求2所述的装置,其中,所述预留信号包括有指示是否反馈混合自动重传请求确认信息的一个比特。
  12. 根据权利要求11所述的装置,其中,反馈所述混合自动重传请求确认信息的资源与相关联的边链路数据信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
  13. 根据权利要求11所述的装置,其中,进行盲重传的多个边链路控制信息中的混合自动重传请求的取值被配置为相同;并且
    与所述混合自动重传请求关联的多个边链路数据信息中的一个预定边链路数据信息的资源与反馈所述混合自动重传请求确认信息的资源之间的相对位置被预配置或预定义,或者通过高层信令被配置。
  14. 根据权利要求2所述的装置,其中,所述预留信号包括有指示是否调度广播业务的一个比特。
  15. 根据权利要求1所述的装置,其中,所述预留信号为边链路控制信息。
  16. 根据权利要求1所述的装置,其中,所述预留信号与边链路控制信息和/或边链路数据信息进行频分复用,并且所述预留信号在时域上占用整个时隙,在频率上占用部分的资源块或占用一个或多个资源块。
  17. 根据权利要求1所述的装置,其中,所述预留信号的强度包括如下至少之一:参考信号接收功率、接收信号强度指示、参考信号接收质量、信噪比、信干噪比。
  18. 一种信号发送装置,包括:
    信号生成单元,其生成用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
    信号发送单元,其发送所述预留信号。
  19. 根据权利要求18所述的装置,其中,所述预留信号还指示如下至少之一的信息:所述预留信号与所述边链路控制信息和/或边链路数据信息之间的功率偏移、是否反馈信道状态信息、是否反馈混合自动重传请求确认信息、是否调度广播业务。
  20. 一种通信系统,包括:
    第一终端设备,其生成并发送用于指示边链路控制信息和/或边链路数据信息的资源的预留信号;以及
    第二终端设备,其接收所述预留信号;以及根据所述预留信号确定所述边链路控制信息和/或边链路数据信息的资源是否能够作为边链路传输的候选资源。
PCT/CN2019/080540 2019-03-29 2019-03-29 信号感知方法、信号发送方法以及装置 WO2020198981A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080540 WO2020198981A1 (zh) 2019-03-29 2019-03-29 信号感知方法、信号发送方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080540 WO2020198981A1 (zh) 2019-03-29 2019-03-29 信号感知方法、信号发送方法以及装置

Publications (1)

Publication Number Publication Date
WO2020198981A1 true WO2020198981A1 (zh) 2020-10-08

Family

ID=72664827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080540 WO2020198981A1 (zh) 2019-03-29 2019-03-29 信号感知方法、信号发送方法以及装置

Country Status (1)

Country Link
WO (1) WO2020198981A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337970A (zh) * 2021-12-31 2022-04-12 中国信息通信研究院 一种边链路信息传输方法和设备
US11381292B2 (en) * 2019-04-03 2022-07-05 FG Innovation Company Limited Method and apparatus for sidelink CSI acquisition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180234973A1 (en) * 2017-02-10 2018-08-16 Lg Electronics Inc. Method and apparatus for calculating channel occupancy ratio in wireless communication system
CN108702758A (zh) * 2017-01-11 2018-10-23 华为技术有限公司 资源选择方法及终端
CN109417777A (zh) * 2016-09-10 2019-03-01 Lg电子株式会社 在无线通信系统中在选择时段中选择排除与在感测时段期间执行了传输的子帧有关的子帧之外的子帧的方法以及使用该方法的终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417777A (zh) * 2016-09-10 2019-03-01 Lg电子株式会社 在无线通信系统中在选择时段中选择排除与在感测时段期间执行了传输的子帧有关的子帧之外的子帧的方法以及使用该方法的终端
CN108702758A (zh) * 2017-01-11 2018-10-23 华为技术有限公司 资源选择方法及终端
US20180234973A1 (en) * 2017-02-10 2018-08-16 Lg Electronics Inc. Method and apparatus for calculating channel occupancy ratio in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Sidelink Resource Allocation Schemes for NR V2X Communication.", 3GPP TSG RAN WG1 AD-HOC MEETING 1901, R1-1900483., 12 January 2019 (2019-01-12), XP051576091, DOI: 20191210162226A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11381292B2 (en) * 2019-04-03 2022-07-05 FG Innovation Company Limited Method and apparatus for sidelink CSI acquisition
CN114337970A (zh) * 2021-12-31 2022-04-12 中国信息通信研究院 一种边链路信息传输方法和设备
CN114337970B (zh) * 2021-12-31 2023-10-13 中国信息通信研究院 一种边链路信息传输方法和设备

Similar Documents

Publication Publication Date Title
US11805486B2 (en) Method and apparatus for controlling transmission power in wireless communication system
WO2020142991A1 (zh) 边链路资源复用和指示方法以及装置
WO2019028759A1 (zh) 设备对设备通信的方法和终端设备
US11044680B2 (en) Power control enhancement for random access
WO2020061921A1 (zh) 参考信号的发送和接收方法以及装置
CN111601374B (zh) 功率控制方法和设备
WO2022077384A1 (zh) 资源选择方法以及装置
WO2018126448A1 (zh) 基于动态时分双工的传输装置、方法以及通信系统
TW202017401A (zh) 一種通訊方法、終端設備和網路設備
WO2020198981A1 (zh) 信号感知方法、信号发送方法以及装置
WO2021203347A1 (zh) 边链路发送和接收方法以及装置
WO2022027500A1 (zh) 信息发送方法,资源确定方法以及装置
WO2022205387A1 (zh) 边链路资源的重选方法及装置
WO2021226971A1 (zh) 数据发送方法,资源配置方法以及装置
WO2018029525A1 (en) Method and device for congestion control
WO2021163851A1 (zh) 随机接入参数的调整方法、装置、设备及存储介质
WO2022027510A1 (zh) 资源指示和资源选择方法以及装置
CN112703684A (zh) 信号发送方法、天线面板信息的指示方法、装置和系统
WO2022082670A1 (zh) 边链路资源选择方法以及装置
US11546835B2 (en) Channel occupancy management of new radio sidelink in a star topology of user equipment
WO2022077376A1 (zh) 资源选择和资源指示方法及装置
WO2021138762A1 (zh) 通知发送时间信息的方法以及装置
WO2023010422A1 (zh) 边链路协作信息的指示和接收装置以及方法
WO2023077365A1 (zh) 边链路资源的排除装置以及方法
WO2024026896A1 (zh) 信息处理方法、信息发送方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922993

Country of ref document: EP

Kind code of ref document: A1