WO2020142991A1 - 边链路资源复用和指示方法以及装置 - Google Patents

边链路资源复用和指示方法以及装置 Download PDF

Info

Publication number
WO2020142991A1
WO2020142991A1 PCT/CN2019/071196 CN2019071196W WO2020142991A1 WO 2020142991 A1 WO2020142991 A1 WO 2020142991A1 CN 2019071196 W CN2019071196 W CN 2019071196W WO 2020142991 A1 WO2020142991 A1 WO 2020142991A1
Authority
WO
WIPO (PCT)
Prior art keywords
side link
information
time slot
length
resource
Prior art date
Application number
PCT/CN2019/071196
Other languages
English (en)
French (fr)
Inventor
张健
纪鹏宇
李国荣
张磊
王昕�
Original Assignee
富士通株式会社
张健
纪鹏宇
李国荣
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 纪鹏宇, 李国荣, 张磊, 王昕� filed Critical 富士通株式会社
Priority to EP19908260.3A priority Critical patent/EP3910969A4/en
Priority to CN201980081676.9A priority patent/CN113243117B/zh
Priority to JP2021539035A priority patent/JP7448544B2/ja
Priority to PCT/CN2019/071196 priority patent/WO2020142991A1/zh
Priority to KR1020217020504A priority patent/KR102557859B1/ko
Publication of WO2020142991A1 publication Critical patent/WO2020142991A1/zh
Priority to US17/352,482 priority patent/US11968667B2/en
Priority to JP2023175591A priority patent/JP2023179649A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • Embodiments of the present invention relate to the field of communication technologies, and in particular, to a method and device for multiplexing and indicating side link resources.
  • V2X Vehicle to Everything
  • the sending device in V2X can directly communicate with the receiving device through a sidelink.
  • the side link is a newly defined air interface for V2X (air interface between V2X devices), and the side link can use the cellular network Uu link frequency resources can also use dedicated frequency resources.
  • the side link transmits control information through a physical side link control channel (PSCCH, Physical Sidelink Control Channel), and transmits data information through a physical side link shared channel (PSSCH, Physical Side Link Shared Channel).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Side Link Shared Channel
  • LTE Long-term evolution
  • V2X only supports broadcast services. For example, the sending device broadcasts road safety information to surrounding receiving devices. The broadcast service does not need to introduce feedback. Therefore, LTE V2X does not provide a hybrid automatic repeat request (HARQ, Hybrid (Automatic Repeat) reQuest) feedback and/or Channel State Information (CSI, Channel State Information) feedback support.
  • HARQ Hybrid (Automatic Repeat) reQuest
  • CSI Channel State Information
  • New Radio (NR, New Radio) V2X is one of the current Rel-16 standardization research projects. Compared with LTE V2X, NR V2X needs to support many new scenarios and new services (such as remote driving, autonomous driving and fleet driving, etc.), Need to meet higher technical indicators (high reliability, low latency, high data rate, etc.). To meet the needs of different scenarios and different services, in addition to broadcasting, NR V2X also needs to provide support for unicast and multicast.
  • HARQ feedback and/or CSI feedback are of great significance for unicast and multicast.
  • the sending device can decide whether to schedule retransmission based on the HARQ feedback result, so as to avoid the waste of resources caused by blind retransmission.
  • the sending device can also be based on CSI measurement and feedback results for link adaptation, such as selecting the modulation and coding scheme (MCS, Modulation and Coding) that best suits the current channel, precoding matrix indicator (PMI, Precoding Matrix Indicator), beam (beam), rank (rank), etc., thereby facilitating high data rate transmission.
  • MCS modulation and coding scheme
  • PMI Precoding Matrix Indicator
  • beam beam
  • rank rank
  • NR V2X currently defines a new physical channel, called physical sidelink feedback channel (PSFCH, Physical Sidelink Feedback Channel), used to carry HARQ feedback information and/or CSI (hereinafter collectively referred to as feedback information) .
  • PSFCH physical sidelink feedback channel
  • the PSFCH may not occupy the entire slot in the time domain, and the number of symbols occupied by the PSFCH (that is, the length of the PSFCH) may also vary with the overhead of feedback information.
  • PSFCH will bring interference or rapid changes in signal strength in units of less than the time length of the time slot, which will affect PSCCH and PSSCH multiplexed with PSFCH; these effects include: reducing automatic gain control (AGC, Automatic Gain Control) the accuracy of the estimation or increase the complexity of the AGC estimation; the symbol where the demodulation reference signal (DM-RS, De-ModulationReferenceSignal) is located collides with the AGC symbol, resulting in a decrease in channel estimation performance; the transmission power is at a time Rapid changes occur within the gap, thereby increasing the complexity of power control and adjustment.
  • AGC Automatic Gain Control
  • DM-RS De-ModulationReferenceSignal
  • embodiments of the present invention provide a method and apparatus for multiplexing and indicating side link resources.
  • a method for multiplexing side link resources including:
  • the second device receives length information indicating the length of the first part in a slot sent by the terminal device or the network device;
  • the second device sends and/or receives side link information with the first device according to the length information.
  • an apparatus for multiplexing side link resources including:
  • a receiving unit which receives length information indicating the length of the first part of a time slot sent by the terminal device or the network device;
  • a processing unit that sends and/or receives side link information with the first device according to the length information.
  • a method for indicating side link resources including:
  • the terminal device or the network device sends length information indicating the length of the first part in a time slot to the second device;
  • the length information is used by the second device to send and/or receive side link information with the first device.
  • an edge link resource indication device including:
  • a sending unit which sends length information indicating the length of the first part in a time slot to the second device
  • the length information is used by the second device to send and/or receive side link information with the first device.
  • a communication system including:
  • the first device which is in side link communication with the second device;
  • a second device that receives length information indicating the length of the first part in a time slot sent by the terminal device or the network device; and sends and/or receives side link information with the first device according to the length information.
  • the second device receives the length information indicating the length of the first part in a time slot sent by the terminal device or the network device; and the second device performs communication with the first device according to the length information Sidelink communication.
  • the second device can process the first part according to the length information, so that the performance of side link transmission (eg, the accuracy of AGC estimation) can be improved.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a method for multiplexing side link resources according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of side link resources according to an embodiment of the present invention.
  • FIG. 4 is another schematic diagram of a side link resource according to an embodiment of the invention.
  • FIG. 5 is another schematic diagram of side link resources according to an embodiment of the present invention.
  • FIG. 6 is another schematic diagram of a side link resource according to an embodiment of the invention.
  • FIG. 7 is another schematic diagram of a side link resource according to an embodiment of the present invention.
  • FIG. 8 is another schematic diagram of a side link resource according to an embodiment of the invention.
  • FIG. 9 is a schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • FIG. 10 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • FIG. 11 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • FIG. 12 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • FIG. 13 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • FIG. 14 is another schematic diagram of a side link resource according to an embodiment of the present invention.
  • 15 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • 16 is a schematic diagram of resource pool configuration according to an embodiment of the present invention.
  • FIG 17 is another schematic diagram of resource pool configuration according to an embodiment of the present invention.
  • 19 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • 20 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • 21 is another schematic diagram of a side link resource according to an embodiment of the present invention.
  • 22 is another schematic diagram of a side link resource according to an embodiment of the invention.
  • FIG. 23 is another schematic diagram of a side link resource according to an embodiment of the present invention.
  • FIG. 24 is another schematic diagram of a side link resource according to an embodiment of the invention.
  • 25 is another schematic diagram of resource pool configuration according to an embodiment of the present invention.
  • FIG. 26 is another schematic diagram of a side link resource according to an embodiment of the present invention.
  • 27 is a schematic diagram of an apparatus for multiplexing side link resources according to an embodiment of the present invention.
  • FIG. 28 is a schematic diagram of an apparatus for indicating side link resources according to an embodiment of the present invention.
  • 29 is a schematic diagram of a network device according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of a terminal device according to an embodiment of the present invention.
  • the terms “first”, “second”, etc. are used to distinguish different elements in terms of titles, but do not mean the spatial arrangement or chronological order of these elements, and these elements should not be used by these terms Restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that conforms to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), wideband code division multiple access (WCDMA, Wideband Code Division Multiple Access), high-speed message access (HSPA, High-Speed Packet Access) and so on.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced wideband code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • High-speed message access High-Speed Packet Access
  • the communication between devices in the communication system can be performed according to any stage of the communication protocol, for example, it can include but is not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G, and 5G , New Radio (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • 1G generation
  • 2G 2.5G
  • 2.75G 3G
  • 5G New Radio
  • NR, New Radio New Radio
  • Network device refers to, for example, a device that connects a terminal device to a communication network and provides services for the terminal device in a communication system.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), Evolved Node B (eNodeB or eNB) and 5G base station (gNB), etc., and may also include a remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low power node (such as femeto, pico, etc.).
  • NodeB or NB Node B
  • eNodeB or eNB Evolved Node B
  • gNB 5G base station
  • the term “base station” may include some or all of their functions, and each base station may provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device) refers to, for example, a device that accesses a communication network through a network device and receives network services.
  • the terminal equipment may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, and so on.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular), personal digital assistants (PDA, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • Cellular Cellular
  • PDA Personal Digital Assistant
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • the terminal device may also be a machine or device that performs monitoring or measurement.
  • the terminal device may include, but is not limited to: machine type communication (MTC, Machine Type Communication) terminal, Vehicle-mounted communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, and so on.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side or “network device side” refers to a side of the network, which may be a certain base station or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to the side of the user or terminal, which may be a certain UE or may include one or more terminal devices as above.
  • device can refer to either a network device or a terminal device.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention, and schematically illustrates a case where a terminal device and a network device are taken as an example.
  • the communication system 100 may include a network device 101 and terminal devices 102, 103.
  • FIG. 1 only uses two terminal devices and one network device as examples, but the embodiment of the present invention is not limited thereto.
  • the network device 101 and the terminal devices 102 and 103 may perform existing service or service transmission that can be implemented in the future.
  • these services may include, but are not limited to: enhanced mobile broadband (eMBB, enhanced Mobile Broadband), large-scale machine type communication (mMTC, massive Machine Type Communication), and highly reliable low-latency communication (URLLC, Ultra-Reliable and Low -Latency Communication), etc.
  • FIG. 1 shows that both terminal devices 102 and 103 are within the coverage of the network device 101, but the present invention is not limited to this. Neither terminal device 102, 103 may be within the coverage of the network device 101, or one terminal device 102 may be within the coverage of the network device 101 and the other terminal device 103 may be outside the coverage of the network device 101.
  • side link transmission can be performed between the two terminal devices 102 and 103.
  • both terminal devices 102 and 103 may perform side-link transmission within the coverage of the network device 101 to achieve V2X communication, or both may perform side-link transmission beyond the coverage of the network device 101 to achieve V2X
  • one terminal device 102 is within the coverage of the network device 101 and the other terminal device 103 performs side-chain transmission outside the coverage of the network device 101 to achieve V2X communication.
  • An embodiment of the present invention provides a side link resource multiplexing method, which will be described from the second device side.
  • the second device communicates with the first device on the side link; the first device and/or the second device may be terminal devices, but the present invention is not limited to this, for example, it may also be a roadside device or a network device.
  • the first device and the second device are terminal devices for example.
  • FIG. 2 is a schematic diagram of a method for multiplexing side link resources according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 the second device receives length information indicating the length of the first part in a time slot sent by the terminal device or the network device;
  • Step 202 The second device sends and/or receives side link information with the first device according to the length information.
  • the second device may perform automatic gain control on the first part according to the length information; however, the present invention is not limited to this, for example, other processing may be performed based on the length information.
  • the length information may include at least one of the following: the length of the physical side link feedback channel, the length of the slot corresponding to the format (Numerology), and the length of the mini-slot; but the invention does not Limited to this.
  • the side link information may include information carried by at least one of the following channels: physical side link control channel (PSCCH), physical side link shared channel (PSSCH), physical side link feedback Channel (PSFCH).
  • PSCCH physical side link control channel
  • PSSCH physical side link shared channel
  • PSFCH physical side link feedback Channel
  • the first symbol or symbols in the first part of the time slot carry information for AGC; and the previous symbol or symbols in the first part of the time slot serve as a guard interval ( Guard).
  • the time slot may further include at least one second part; and the first one or more symbols of the second part in the time slot carry information for AGC and/or as a guard interval.
  • the first part may be PSFCH
  • the second part may be PSCCH and/or PSSCH.
  • FIG. 3 is a schematic diagram of a side link resource according to an embodiment of the present invention, and provides an example of multiplexing PSCCH, PSSCH, and PSFCH in a time slot.
  • This multiplexing method is beneficial to meet the requirements of low-latency services.
  • UE1 can receive the PSCCH and PSSCH from UE2 in the time slot, and send HARQ feedback information to UE2 through the PSFCH in the same time slot. Since PSCCH and PSSCH are sent by UE2 and PSFCH is sent by UE1, AGC estimation needs to be performed independently.
  • AGC 1 symbol is used for AGC estimation of PSCCH and PSSCH
  • AGC 2 symbol is used for AGC estimation of PSFCH
  • the GUARD 2 symbol is used as a guard interval for receiving/transmitting conversion between PSCCH/PSSCH and PSFCH
  • the GUARD 1 symbol is used as a guard interval for receiving/transmitting conversion between time slots and time slots.
  • the AGC and GUARD in Figure 3 are located in different symbols.
  • the time slot structure shown in FIG. 3 is not limited to a scenario that supports a certain device to receive data information and send HARQ feedback information in the same time slot.
  • UE1 only needs to send feedback information to UE2 through PSFCH
  • UE3 only needs to send data information to UE4 through PSCCH/PSSCH
  • UE1 and UE3 can perform PSFCH as shown in FIG. 3 Multiplexing with PSCCH/PSSCH.
  • PSCCH/PSSCH and PSFCH sent to UE6 and UE7 can be multiplexed in the manner shown in FIG. 3 Within a time slot. Therefore, PSCCH, PSSCH, and PSFCH sent by different devices or sent to different devices can be multiplexed in the same time slot, thereby improving spectrum utilization.
  • FIG. 4 is another schematic diagram of a side link resource according to an embodiment of the present invention, and an example in this case is given, in which GUARD 1 and AGC 1 are located in the first symbol of the time slot, within the time of one symbol It can not only complete the reception/transmission conversion between time slots and time slots, but also complete the AGC estimation of PSCCH and PSSCH.
  • GUARD 2 and AGC 2 are located in the previous symbol of PSFCH, and can complete PSCCH in one symbol time
  • the reception/transmission conversion between /PSSCH and PSFCH can also complete the AGC estimation of PSFCH.
  • Figures 3 and 4 can be unified and abstracted.
  • FIG. 5 is another schematic diagram of the side link resource according to the embodiment of the present invention, omitting the AGC symbol and the guard interval.
  • the AGC and GUARD structures of FIG. 5 can use either of FIG. 3 or FIG. 4.
  • FIG. 5 does not have any restrictions on the relative positions of PSCCH/PSSCH and PSFCH in frequency, that is, PSCCH/PSSCH and PSFCH may completely overlap, partially overlap, or not overlap at all in frequency.
  • FIG. 6 is another schematic diagram of a side link resource according to an embodiment of the present invention, and shows a situation where PSCCH/PSSCH and PSFCH completely overlap in frequency
  • FIG. 7 is another schematic diagram of a side link resource according to an embodiment of the present invention. The case where PSCCH/PSSCH and PSFCH partially overlap in frequency is shown
  • FIG. 8 is another schematic diagram of a side link resource according to an embodiment of the present invention, showing the case where PSCCH/PSSCH and PSFCH do not coincide completely in frequency.
  • the feedback information of the Uu port is sent to a network device (such as a base station) through a physical uplink control channel (PUCCH, Physical Uplink Control Channel), and the number of symbols used by the PUCCH (that is, PUCCH length) is variable.
  • a network device such as a base station
  • PUCCH Physical Uplink Control Channel
  • the number of symbols used by the PUCCH that is, PUCCH length
  • the terminal device can flexibly select an appropriate PUCCH length according to the load of feedback information.
  • “Length” herein generally refers to the length of time, which can be measured by the number of symbols, for example.
  • OFDM Orthogonal Frequency Division Multiplex
  • SC-FDMA single-carrier frequency division multiplexing
  • DFT-s-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplex
  • symbols can be OFDM symbols or SC-FDMA symbols or DFT-s-OFDM symbols, etc., hereinafter referred to as symbols; but The invention is not limited to this.
  • NR V2X follows the idea of PUCCH, allowing the device to flexibly select the number of symbols used by PSFCH (ie, PSFCH length), it will cause the problem of inaccurate AGC estimation. More specifically, the flexible PSFCH length means that different devices can use different PSFCH lengths. These different lengths of PSFCH can cause the signal and/or interference strength of other devices undergoing data reception to change within a time slot.
  • the receiving device does not have the ability to grasp global information like a base station, and does not know the information of other devices multiplexed with itself, so the receiving device will not be able to accurately estimate AGC, thereby reducing the reliability of information transmission.
  • a terminal device For NR Rel-15, a terminal device only needs to know its own PUCCH length information. For NR V2X, it is necessary for a certain terminal device to know the PSFCH length of other terminal devices. The following describes this by analyzing the impact of interference changes on AGC.
  • FIG. 9 is a schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • UE1 sends PSCCH1 and PSSCH1 to UE2, and UE2 sends HARQ-ACK feedback information to UE1 through PSFCH2 in the same time slot.
  • V2X devices can be multiplexed in a set of overlapping time-frequency resources (share the same set of time-frequency resources, or perform frequency reuse)
  • UE3 can send PSCCH to UE4 within the same time-frequency resources as UE1 and UE2 With PSSCH3, for example, UE3 thinks that the entire time slot can be used to send information through sensing.
  • UE 4 receives interference from PSCCH 1/PSSCH 1 sent by UE 1 in time slot k and interference from PSFCH 2 sent by UE 2 in time slot 2 It is independent of each other, and the interference intensity may vary greatly.
  • UE1 ⁇ UE4 are driving in the same direction in a lane. Because UE2 is closer to UE4, part 2 of UE4 is subject to strong interference. Because UE2 and UE4 are blocked by UE2, Therefore, part 1 of UE 4 receives less interference. Although UE3 will perceive before sending information, because it is far away from UE4, it cannot accurately perceive the interference environment where UE4 is located, that is, hidden node problem, or UE3 judges that the time slot is available by sensing at the beginning of the time slot However, because part 2 of the time slot cannot be predicted to have strong interference, UE 3 may still send information in this time slot.
  • the traditional method is used to estimate the AGC based on the first symbol in the time slot, and the result is applied to the entire time slot, in the above case, the traditional method will cause the AGC estimation of Part 2 to be inaccurate, resulting in the data solution in the entire time slot Tune failed.
  • Part 1 and Part 2 of UE4 need to perform AGC estimation independently.
  • UE 4 itself may not need to send feedback information, that is, it does not need to know the PSFCH resource configuration information such as the PSFCH length, but in order to be able to perform independent AGC estimation of part 1 and part 2 in the time slot, UE 4 needs to know at least that it can PSFCH length information of other devices that cause interference.
  • FIG. 10 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • UE3 uses the entire time slot to send PSCCH3 and PSSCH3 to UE4. Since different devices can be multiplexed in a set of overlapping time-frequency resources, other UEs can send and receive data within the same time-frequency resource range (RB to m, RB, time slot k).
  • UE 2 sends feedback information such as HARQ feedback and/or CSI through PSFCH 2 in RB m to RB n and part 2 of time slot k
  • UE 1 can control side link control information (SCI, Sidelink) by sensing or by demodulation Control) knows that there are PSFCH transmissions in the frequency domain from RB to RB and part 2 of time slot k in the time domain, so UE 1 can send PSCCH 1 and PSSCH 1 in part 1 of time slot k.
  • SCI Sidelink control information
  • part 1 and part 2 of time slot k are subject to interference from different devices of UE 1 and UE 2, respectively. Therefore, part 1 and part 2 need to perform AGC estimation independently.
  • UE 4 itself may not need to send feedback information, in order to be able to perform independent AGC estimation for part 1 and part 2 in the time slot, UE 4 needs to know at least the PSFCH length information of other devices that can cause interference to itself.
  • FIG. 11 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • UE1 uses the entire time slot to send PSCCH1 and PSSCH1 to UE2.
  • Multiplexed with a set of overlapping time-frequency resources is a group of V2X devices that perform groupcast communication, namely Within RB to RB, UE 3 sends information to a group of devices from UE 4 to UE in a multicast manner.
  • multiple devices using the same PSFCH resource to send HARQ feedback information is a method that can efficiently use resources, which can avoid allocating dedicated PSFCH resources to each device, thereby greatly saving feedback resource overhead. It is possible to feed back only NACK without feeding back ACK. When multiple devices use the same resources to send NACK, the superimposed signals will produce a signal enhancement effect, which is conducive to the reliable reception of feedback information.
  • UE 4 to UE N receive multicast data in a certain time slot before time slot k, and send NACK in part 2 of time slot k. Due to the superposition of multiple UE signals, it may be possible for UE 2 time slot k The part 2 of the UE generates greater interference, so that the interference intensity of the part 1 and the part 2 of the UE 2 changes significantly. Therefore, the part 1 and the part 2 need to perform AGC estimation independently.
  • UE1 may not be able to know the existence of multicast feedback by blindly detecting the SCI of UE3 or by sensing, etc. due to hidden nodes, etc. Therefore, it cannot be avoided that UE2 is scheduled to receive data on the same time-frequency resource.
  • UE 2 itself may not need to send feedback information, in order to be able to perform independent AGC estimation of part 1 and part 2 in the time slot, UE 2 needs to know at least the PSFCH length information of other devices that can cause interference to itself.
  • the receiving device needs to know at least the PSFCH length information of other devices. Since multiple devices may be multiplexed with a certain receiving device in a set of overlapping time-frequency resources, the receiving device's knowledge of the PSFCH information of multiple devices will bring a large signaling overhead. In addition, flexible selection of the PSFCH length by multiple devices also increases the AGC symbol overhead and/or AGC estimation complexity of the receiving device.
  • FIG. 12 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • multiple devices UE1, UE2, etc.
  • multiple partial lengths eg, Part 2, Part 2'
  • UE4 will be subject to multiple different levels of interference in a time slot (part 1', part 2 and the remaining part of the time slot in Figure 12 are different interference)
  • multiple independent AGC estimations are required, which requires greater AGC symbol overhead and/or higher AGC estimation complexity.
  • Figures 9 to 12 are only given schematically as examples. For simplicity, Figures 9 to 12 assume that the number of resource blocks (RB, Resource) blocks occupied by PSCCH/PSSCH interfered with by PSFCH and the PSFCH used as interference source The number of occupied RBs is the same. In fact, the number of RBs of the two may also be different. As long as there are overlapping RBs in the frequency domain, the above interference analysis and the impact on the AGC are still valid, and are not listed one by one.
  • Figures 9 to 12 can be unified and abstracted.
  • FIG. 13 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • the PSCCH 1 and PSSCH 1 that a device wants to receive in a certain time slot, there may be information transmission and reception between other devices within the time-frequency resources that coincide with it (not necessarily completely coincide).
  • the information carried by these physical channels can come from different devices.
  • the interference of PSCCH1/1/PSSCH1 in a time slot will change, so only The traditional method of AGC estimation based on the first symbol in a time slot is no longer applicable.
  • the receiving device of PSCCH1/PSSCH1 needs to perform multiple AGC estimations in a time slot.
  • FIG. 14 is another schematic diagram of a side link resource according to an embodiment of the present invention.
  • PSSCH uses more RBs to transmit a larger size transport block (TB, Transport) Block, but in the time slot part 2 is subject to strong narrowband interference from the PSFCH, if only based on the first in the time slot
  • the AGC estimation of the symbol will affect the PSSCH demodulation and decoding performance of part 2 and further affect the demodulation and decoding performance of the TB in the entire time slot.
  • the change in the interference within the time slot is one cause of multiple AGC estimates.
  • Another cause may be a change in signal energy (or power).
  • FIG. 15 is another schematic diagram of multiple devices performing multiplexing of side link resources according to an embodiment of the present invention.
  • the physical channels or signals of PSCCH1/PSSCH1 and other devices such as PSCCH2/PSSCH2, PSFCH3, PSCCH4/PSSCH4, PSFCH5, etc.
  • the number of RBs occupied by these physical channels can be different )
  • Multiplexed in the frequency domain by frequency division multiplexing, and all of these physical channels fall within the receiving frequency range of the PSCCH1/PSSCH1 receiving device (for example, within the BWP of the receiving device).
  • the signal energy received by the receiving device in the time slot is the sum of all physical channels and/or signal energy of frequency division multiplexing. Since there are signals from different devices in the time slot, the energy of the time-domain signal received by the PSCCH1/1/PSSCH1 receiving device will change in the time slot, so the traditional AGC estimation is only based on the first symbol in the time slot The method is no longer applicable.
  • the receiving device of PSCCH1/PSSCH1 needs to perform multiple AGC estimations in a time slot.
  • the scenarios in FIGS. 9 to 12 can be easily extended to the frequency division multiplexing scenario shown in FIG. 15 to illustrate the change in signal energy in the time slot, and will not be repeated one by one.
  • the device Even if the device only needs to receive PSCCH and PSSCH like LTE V2X, or even if the device itself does not need to use PSFCH to send information, but because NR V2X introduces PSFCH, based on the previously analyzed PSFCH impact on AGC, the device still has It is necessary to perform multiple AGC estimations in one time slot. In order to perform multiple AGC estimations, the device needs to know the PSFCH length information of other devices. In order not to perform AGC estimation too many times, other devices can be restricted to have the same PSFCH length. When this condition is met, the device only performs AGC estimation at most twice in a time slot.
  • the at least two of the first part lengths are configured to be the same.
  • the PSFCH of these devices can be restricted to have the same PSFCH length.
  • the receiving device can perform AGC estimation at a determined position according to the PSFCH length, and only perform AGC estimation at most twice in a time slot.
  • the length information may be configured by at least one of the following signaling or information: radio resource control (RRC, Radio Resource Control) signaling, system information (SI, System) Information, side link control information (SCI, Sidelink Control Information), Downlink Control Information (DCI, Downlink Control Information).
  • RRC Radio Resource Control
  • SI System Information
  • SI System Information
  • SCI Sidelink Control Information
  • DCI Downlink Control Information
  • SCI can be used to notify the PSFCH length.
  • the SCI Cyclic Redundancy Check Code (CRC, Cyclic Redundancy Check) can be scrambled using a public identification.
  • the SCI may indicate at least one of the following: length of PSFCH, time slot where PSFCH is located, symbol where PSFCH is located, resource block where PSFCH is located, time slot where PSSCH is located, symbol where PSSCH is located, and resource block where PSSCH is located.
  • UE1 sends an SCI to UE2, and the CRC of the SCI is scrambled using a public identification (eg, public ID or public RNTI).
  • the public identification may also be a group-common ID or RNTI.
  • the SCI instructs the UE 2 in which time slot to send HARQ feedback and/or CSI and other information, and a field of the SCI is used to indicate the length of the PSFCH.
  • Specific implementations can use high-level signaling (such as RRC signaling) to configure several available PSFCH lengths,
  • the SCI indicates which PSFCH length is actually used, so the UE 2 knows in which time slot and how many symbols are used to send the PSFCH.
  • the PSFCH length in the SCI indicates the PSFCH length in the SCI, or the PSFCH length may also be indicated by indicating the PSFCH time-frequency resource.
  • the SCI indicates the time slot, the symbol and the RB where the PSFCH is located, so that UE 2 can also obtain the PSFCH length information from this.
  • the SCI's CRC is scrambled with a common identifier, other devices besides UE 2 can also demodulate the SCI to obtain the PSFCH length and the time slot information of the PSFCH, and perform additional based on the information in the time slot where the PSFCH appears AGC estimates.
  • indicating the PSFCH length through the SCI is also flexible enough to configure multiple PSFCHs sent in the same time slot to have the same length.
  • SCI1 sent by UE1 to UE2 instructs UE2 to send PSFCH1 in time slot k
  • UE3 sends SCI2 to UE4 instructs UE4 to send PSFCH2 in time slot k
  • SCI1 and SCI2 can indicate
  • For the same PSFCH length for UE 5 multiplexed with PSFCH 1 and PSFCH 2 in time slot k, it can avoid excessive AGC estimation when receiving multiplexed PSSCH.
  • UE5 only needs to perform AGC estimation twice.
  • this method can be used in a two-stage SCI (2-stage SCI).
  • the two-step SCI divides the information carried by one SCI originally sent to UE 1 into two parts, which are carried by two SCIs.
  • SCI1 can carry any of the above-mentioned information for indicating the length of the PSFCH, and can also carry the time-frequency resource information of the PSSCH (such as the time slot, the symbol, and the RB of the PSSCH).
  • the CRC of SCI1 is scrambled by the public identifier SCI 2 carries MCS and other information for demodulation and decoding.
  • the CRC of SCI 2 is scrambled using a device-specific (UE-specific) identifier (such as C-RNTI).
  • SCI1 can be received by UE2, so UE2 can avoid the PSFCH and/or PSSCH resources indicated by SCI1, thereby avoiding interference; and UE1 can receive two SCIs to achieve complete data Information reception and demodulation. Since the information such as the PSFCH length and the time slot where the PSFCH is located is carried in the SCI 1, when the UE 2 receives the SCI 1, it can also perform additional AGC estimation based on the PSFCH length information in the time slot where the PSFCH appears.
  • the above length information may be carried in resource reservation signaling.
  • SCI1 is used as resource reservation signaling to indicate that a certain time-frequency resource will be reserved for PSCCH2 and/or PSSCH2 transmission.
  • SCI1 can also indicate the PSFCH length information in any of the above forms, and the CRC of SCI1 Scrambling is performed using a common identifier, so SCI1 can be received by multiple UEs, so that these UEs can avoid transmission on resources reserved by SCI1, and can also perform more accurate AGC estimation based on the PSFCH length indicated by SCI1.
  • PSCCH2 can further carry SCI2, SCI2 is used to schedule PSSCH2, SCI2 can use the same format as the conventional SCI, indicating the time-frequency resources and MCS where PSSCH2 is located, and CRC2 of SCI2 can use device-specific Identify the scrambling, so that the receiving UE of PSCCH2 and PSSCH2 can realize the correct reception of control and data information.
  • the length information is configured or pre-configured or pre-defined to be related to one or a group of time-frequency resources; the time-frequency resources include one or more time slots in the time domain, and the frequency domain Contains one or more resource blocks.
  • the time-frequency resources may be configured by at least one of the following: radio resource control (RRC) signaling, system information, side link control information, and downlink control information.
  • RRC radio resource control
  • the time-frequency resource may include at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • a PSFCH length can be configured or pre-configured for each resource pool.
  • Resource pools are configured on a device-by-device basis, and a certain device can be configured with multiple resource pools, so “configuration or pre-configuration for each resource pool” in the invention is actually “configuration or pre-configuration for each resource pool of each device” A simple saying of "configuration".
  • the resource pool is composed of several time slots in the time domain and several RBs in the frequency domain.
  • the resource pool can be a sending resource pool or a receiving resource pool. For simplicity, they will be referred to as resource pools for short.
  • NR V2X will configure one or more resource pools for data transmission and reception for the device, so the PSFCH length can be configured in units of the above resource pools. Or, when configuring a certain PSFCH length, it indicates which existing resource pool the PSFCH length is associated with.
  • Configuring or pre-configuring a PSFCH length for a resource pool can have two meanings:
  • the PSFCH length of the first resource pool may affect the AGC of the first resource pool
  • the length of the PSFCH from other resource pools, when receiving in the first resource pool, the device may perform additional AGC estimation according to the PSFCH length of the first resource pool.
  • the device needs to send and receive PSFCH in the first resource pool (for example, the first resource pool is used for unicast services.
  • PSSCH can be multiplexed with PSFCH in any of the above-mentioned ways. There are no PSFCH time slots, and the entire time slot can be used for PSSCH transmission and reception.
  • the PSFCH length of the first resource pool refers to the PSFCH length required by the device to perform PSFCH transmission and reception in the first resource pool, and also refers to the possible The length of the PSFCH from other resource pools affected by the AGC of a resource pool.
  • the device receives in the first resource pool, it does not necessarily need to receive the PSFCH in every time slot.
  • the device needs to receive the PSFCH in the time slot according to The PSFCH length of the first resource pool realizes the reception of the PSFCH.
  • the device can perform additional AGC estimation according to the PSFCH length of the first resource pool in the time slot that does not need to receive the PSFCH but needs to receive the PSSCH.
  • Configuring the PSFCH length for the resource pool also includes reconfiguring the PSFCH length as needed. For example, when a resource pool requires a longer PSFCH length, a new PSFCH length can be reconfigured for the resource pool through RRC signaling.
  • the resource pool definition and configuration method can follow the LTE V2X resource pool definition and configuration method.
  • “configuration” can be used when the device is in a coverage area, and the device can receive network configuration information, for example, through at least system information (MIB/SIB), RRC signaling, DCI signaling, and SCI signaling.
  • MIB/SIB system information
  • pre-configuration can be used when the device is out of network coverage (out-of-coverage).
  • the device performs V2X communication according to the pre-configuration (that is, the default configuration or the factory configuration or the configuration specified by the standard).
  • the word “configuration” is used in the following, including the above two implementation methods of "configuration” and "pre-configuration”.
  • a resource pool may not be configured with the PSFCH length or the PSFCH length is zero, indicating that the AGC estimation in the resource pool does not need to consider the influence of the PSFCH. Since a device can be configured with multiple resource pools, some resource pools can be used for multiplexing with other devices. For example, the devices mentioned above are multiplexed in a set of overlapping time-frequency resources, or frequency between devices. Multiplexing, for simplicity, can be referred to as "multiplexing" hereinafter.
  • the AGC estimation of UE1 does not need to consider the impact of PSFCH, that is, the LTE V2X principle can be used, and the AGC estimation is only based on the first symbol in the time slot ;
  • the base station or other devices can determine that the resource pool is negligibly affected by PSFCH, for example, the power of PSFCH is much less than the useful signal power of UE1
  • the PSFCH length may not be configured or the PSFCH length may be configured to be zero.
  • AGC estimation can be performed according to the configured PSFCH length of the resource pool.
  • the resource pools of all other devices multiplexed with UE1 can be configured to have the same PSFCH length, so that UE1 can only perform at most in a time slot
  • Two AGC estimates for example, different resource pools can have different PSFCH lengths, which can support and accommodate different feedback overhead; for example, multiple resource pools belonging to the same device can also be configured to have the same PSFCH length, thus The device can receive information from multiple resource pools, and also only perform AGC estimation at most twice in a time slot.
  • resource pool i and resource pool j belong to UE1, and coexist in the BWP of UE1 in a time division multiplexing manner.
  • this BWP if resource pool j is not multiplexed with PSFCH, or the interference or signal changes caused by PSFCH are negligible, you can configure the PSFCH length of resource pool j to zero, or do not configure PSFCH for resource pool j
  • the length, that is, resource pool j may not need to consider the impact of PSFCH on AGC.
  • the resource pool i is multiplexed with the PSFCH, or the first device needs to receive or send feedback information through the PSFCH in the resource pool i, so the resource pool i can be configured with an appropriate PSFCH length, that is, the resource pool i needs to be considered The impact of PSFCH on AGC.
  • FIG. 17 is another schematic diagram of resource pool configuration according to an embodiment of the present invention, and shows an example of multiplexing resource pools of different devices within a BWP.
  • the PSFCH of resource pool l The length is configured to be the same as the PSFCH length of the resource pool i.
  • the resource pool r of the UE 3 forms frequency division multiplexing with the resource pool i and the resource pool l, so the PSFCH lengths of the resource pools r, i and l are configured to be the same.
  • the resource pool configuration of different devices shown in FIG. 17 may include at least the following cases.
  • a situation may be that the resource pools i, j, r, and l are all resource pools configured for UE1, UE2, and UE3, that is, three UEs share these four resource pools.
  • resource pool i is sent to UE1, and only resource pool 1 has PSFCH sent by UE2. Since both are located in the BWP of UE1, the AGC of UE1 when receiving It is estimated that it will be affected by the PSFCH of UE2.
  • a situation may be that only resource pools i and j are resource pools configured for UE 1, and resource pools l and r are resource pools configured for UE 2 and UE 3, respectively, because the number of resource pools for one UE It is configurable.
  • UE1's BWP can be configured with up to four resource pools including i, j, r, and l, but currently UE1 is only configured with two resource pools, namely resource pools i and j, and The resource pools l and r that are not used by UE1 are configured for use by UE2, UE3, and other devices.
  • resource pools l and r are not configured for UE1, the resource pools l and r are still located in the BWP of UE1 Within, UE1's AGC estimate during reception will still be affected by PSFCH from resource pools l and r.
  • FIG. 18 is another schematic diagram of resource pool configuration according to an embodiment of the present invention.
  • resource pool i and resource pool j belonging to UE1 coexist in the BWP of UE1 in a frequency division multiplexing manner.
  • both resource pools i and j require PSFCH length configuration
  • by configuring the same PSFCH length for resource pool i and resource pool j it is possible to reduce the number of AGC estimates for UE1 in one time slot of resource pool i to a maximum of two.
  • the PSFCH length of the resource pool l can be configured as Same as resource pools i and j.
  • the PSFCH length can be used as one of the parameters of the resource pool, for example, when configuring the resource pool together with the time domain and frequency domain position of the resource pool; the PSFCH length can also be configured independently of the resource pool, And by indicating which resource pool the PSFCH length acts on, the association and corresponding relationship between the PSFCH length and the resource pool is established.
  • the specific implementation mode adopted may include at least one of system information (MIB/SIB), RRC signaling, DCI signaling, SCI signaling, and pre-configuration.
  • MIB/SIB system information
  • RRC signaling Radio Resource Control
  • DCI signaling DCI signaling
  • SCI signaling SCI signaling
  • FIG. 19 is another schematic diagram of multiple devices performing side-link resource multiplexing according to an embodiment of the present invention. Compared with FIG. 13, PSFCH lengths of different resource pools of different devices that overlap in time-frequency resources are the same.
  • FIG. 20 is another schematic diagram of multiple devices performing side-link resource multiplexing according to an embodiment of the present invention. Compared with FIG. 15, PSFCH lengths of different resource pools of different devices with frequency division multiplexing are the same.
  • the PSFCH length can be semi-statically configured for each resource pool using RRC signaling and/or system information, or dynamically configured using SCI signaling and/or DCI signaling, where the dynamically configured PSFCH length can be overridden Write (override) the semi-statically configured PSFCH length, that is, when the two are inconsistent, the dynamically configured PSFCH length shall prevail.
  • the first PSFCH length is configured for a resource pool through RRC signaling, but the SCI signaling indicates that a certain time slot has a second PSFCH length.
  • the PSFCH length in the time slot is the second PSFCH length, that is, SCI
  • the instructions shall prevail.
  • the semi-static configuration makes it easier to align multiple PSFCH lengths in a time slot, and the dynamic configuration can adjust the PSFCH length more flexibly and accurately according to load or coverage requirements.
  • the combination of the two can support PSFCH multiplexing more efficiently.
  • a PSFCH length may be configured or pre-configured for a group of time-frequency resources.
  • the difference from the above configuration of the PSFCH in units of resource pools is that the set of time-frequency resources here is configured independently of the existing transmission/reception resource pools.
  • the same configuration method as the resource pool can be used, for example, according to the method described in section 14.1.5 of TS 36.213, and the "subframe" is replaced with "slot”.
  • the scope of PSFCH length is its associated set of time-frequency resources. Since a group of time-frequency resources is configured independently of the resource pool, this group of time-frequency resources may be different from the existing resource pool or the same as the existing resource pool.
  • each BWP may be configured or pre-configured with a PSFCH length, and each BWP has a PSFCH length.
  • each carrier or component carrier can be configured or pre-configured with one PSFCH length, and each carrier has one PSFCH length.
  • the length information is predefined.
  • the standard specifies the length of PSFCH, which has a fixed length.
  • the PSFCH length configuration with BWP or carrier as the granularity it can be easily extended from the PSFCH length configuration of the resource pool.
  • the PSFCH length of the BWP or carrier may not be configured or configured as zero, and the PSFCH length may be used as BWP or One of the parameters of the carrier can be configured, or it can be configured independently, and so on, without repeating them one by one.
  • the indicated length information is not limited to the PSFCH length, but can also be extended to other scenarios.
  • FIG. 21 is another schematic diagram of a side link resource according to an embodiment of the present invention.
  • the time slot length is different. Since the two time slots of UE 2 (slot 1 and slot 2) may not be sent at the same time, or different devices in slot 1 and slot 2 send, so the reception power of UE 1 in a time slot may also occur Changes, and therefore multiple AGC estimates are required.
  • the length of the time slot of numerology 2 can be notified to UE 1 as a type of length information, so that UE 1 can perform more accurate AGC estimation.
  • FIG. 22 is another schematic diagram of the side link resources according to an embodiment of the present invention.
  • UE 1 and UE 2 use the same numerology, UE 2 uses mini-slots (or mini-slots, mini-slots). Slot or non-slot) transmission, due to the different granularity of information transmission in the time domain, will also cause a result similar to FIG. 21.
  • the length of the mini-slot may be notified to UE1 as a type of length information, so that UE1 can perform more accurate AGC estimation.
  • time slot lengths of different numerology may have other multiple multiple relationships, and the lengths of the time slots and mini-slots may also have other multiple multiple relationships, which are not enumerated.
  • UE 2 can use a different numerology from UE 1 and use mini slots at the same time.
  • any method for configuring the length of the PSFCH described above can be used, which will not be repeated here.
  • the second device receives the length information indicating the length of the first part in a time slot sent by the terminal device or the network device; and the second device performs side link communication with the first device according to the length information. Thereby, the second device can process the first part according to the length information, so that the performance of side link transmission (eg, the accuracy of AGC estimation) can be improved.
  • the performance of side link transmission eg, the accuracy of AGC estimation
  • Embodiment 2 provides a method for multiplexing side link resources.
  • Embodiment 2 may be implemented separately or in combination with Embodiment 1.
  • the content of the second embodiment is the same as that of the first embodiment.
  • the second device transmits and/or receives sidelink information with the first device in a time slot; wherein, the time slot includes at least a first part and a second part; the time slot The first part in is configured with a first demodulation reference signal; and the second part in the time slot is configured with a second demodulation reference signal.
  • FIG. 23 is another schematic diagram of the side link resource according to the embodiment of the present invention
  • FIG. 24 is another schematic diagram of the side link resource according to the embodiment of the present invention.
  • the PSSCH and PSFCH at the back of the time slot are multiplexed.
  • the multiplexing here can be frequency division multiplexing or multiplexing in a set of overlapping time-frequency resources , PSSCH is interfered by PSFCH.
  • the PSSCH at the back of the time slot and the PSSCH at the front of the time slot need to be independently AGC estimated, so even if the PSSCH is sent in a time slot, the front PSSCH and the rear PSSCH in the time slot need to be independent AGC estimated symbol.
  • the AGC 2 symbol before the PSSCH at the back of the slot in FIG. 23 and the GUARD 2 & AGC 2 symbol before the PSSCH at the back of the slot in FIG. 24 can be used as the AGC estimation symbol for the PSSCH.
  • the position of the DM-RS used for PSSCH demodulation will depend on the length of the entire time slot.
  • the specific DM-RS position please refer to the standard Section 6.4.1.1 of TS 38.211f30.
  • the DM-RS configuration that reuses NR may cause the DM-RS symbol to collide with the AGC symbol, that is, a certain DM-RS symbol is located at the AGC symbol position of the rear PSSCH, for example, the DM-RS is located at the AGC 2 symbol in FIG. 23 or The GUARD 2 & AGC 2 symbols in Figure 24.
  • the collision of the DM-RS symbol with the AGC symbol is likely to occur. Since the AGC symbol cannot be used for demodulation, the DM-RS located at the AGC symbol position cannot be used, thus causing loss of channel estimation performance.
  • the DM-RS position is not determined according to the entire time slot length, but according to the symbol length occupied by the front PSSCH and the rear PSSCH in the time slot (excluding protection Interval and AGC symbol) independently determine the positions of the two parts of the DM-RS before and after, that is, the DM-RS is independently configured for the front PSSCH and the rear PSSCH.
  • DM-RS configuration #1 is used to determine the front
  • DM-RS configuration #2 is used to determine the DM-RS symbol position of the rear PSSCH, which depends on Number of symbols occupied by the rear PSSCH (excluding guard interval and AGC symbols).
  • the specific configuration method of the DM-RS location is not limited. For example, the method of TS 38.211f30 section 6.4.1.1 can be used. In short, the DM-RS symbol is not located in the guard interval and AGC symbol position in the time slot.
  • the first demodulation reference signal and/or the second demodulation reference signal are configured or pre-configured or predefined to be related to one or a group of time-frequency resources; the time-frequency resources are at The time domain contains one or more time slots, and the frequency domain contains one or more resource blocks.
  • the time-frequency resource is configured by at least one of the following: radio resource control (RRC) signaling, system information (SI), side link control information (SCI), and downlink control information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • the time-frequency resource includes at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • the resource pool can use multiple independent DM-RS configurations in a time slot, such as shown in FIG. 23 or FIG. 24; for a PSFCH length that is not configured Or a resource pool with a PSFCH length of zero.
  • the resource pool can use a DM-RS configuration within a time slot, for example, the NR-Rel-15 DM-RS configuration method is used.
  • FIG. 25 is another schematic diagram of resource pool configuration according to an embodiment of the present invention. As shown in FIG. 25, for resource pool i, two independent DM-RS configurations can be configured, and for resource pool j, one DM-RS can be configured. Configuration. By configuring two independent DM-RSs, the accuracy of the side channel channel estimation can be improved.
  • Embodiment 3 provides a method for multiplexing side link resources.
  • Embodiment 3 can be implemented separately, or in combination with Embodiment 1, or in combination with Embodiment 2, or in combination with Embodiment 1. , 2 are combined to implement.
  • the content of the third embodiment that is the same as that of the first and second embodiments is not repeated here.
  • the second device sends and/or receives sidelink information with the first device in a time slot; where, when at least two types of transmission power are required in the time slot, use The maximum transmission power of the at least two types of transmission power is used as the transmission power of the time slot.
  • FIG. 26 is another schematic diagram of side link resources according to an embodiment of the present invention. As shown in FIG. 26, for example, for UE 1, it may need to send PSCCH and PSSCH to UE 2 in a certain time slot, and pass in the time slot
  • the PSFCH sends feedback information to UE3, that is, UE1 supports two unicast sessions with UE2 and UE3.
  • Power control is of great significance for unicast. Through power control, it can meet its own business needs while avoiding interference with other devices. However, since the destination devices of PSCCH/PSSCH and PSFCH located in the same time slot are different, for example, the distance between UE1 and UE2 is much smaller than the distance between UE1 and UE3, the transmission power determined by power control is also possible different.
  • the transmission power of PSCCH/PSSCH is Pm
  • the transmission power of PSFCH is Pn
  • the specific process of determining the final transmission power through power control can be referred to section 7 of TS 38.213, and will not be repeated here. Therefore, UE1 needs to adjust the power within a time slot, that is, the power adjustment at the symbol level, which is analogous to the power adjustment at the slot level (or subframe level) of NR Rel-15, such dynamic power adjustment (symbol level) Power adjustment) will increase the complexity of the hardware implementation of the device and increase the requirements for the device capabilities.
  • Pmin min ⁇ Pm,Pn ⁇ of Pm and Pn
  • the adjusted transmission power P is higher than the original power value Pmin determined by the power control, and the receiving device of Pmin does not know the actual transmission power. Adjustments.
  • the at least two types of transmission power include a first transmission power that is the maximum transmission power and a second transmission power that is less than the maximum transmission power.
  • information related to the second transmission power is transmitted using a phase modulation method.
  • a phase modulation method For example, side link control information (SCI) may be used to indicate the phase modulation scheme.
  • SCI side link control information
  • UE1 can use the phase modulation method (such as QPSK and other modulation methods) to send information to it, accordingly the code rate needs to be adjusted according to the phase modulation method, and the actual use in SCI
  • the modulation and coding method is notified to the receiving device of Pmin. Since the power does not affect the demodulation performance of the phase modulation symbol, the device receiving the phase modulation symbol (corresponding to the power Pmin) can still receive the demodulation correctly.
  • the power adjustment is transparent to the device .
  • At least one of the following signaling or information may be used to send the first transmit power to the receiving device of the second transmit power: radio resource control (RRC) signaling, system information (SI) , Sidelink Control Information (SCI), Downlink Control Information (DCI).
  • RRC radio resource control
  • SI system information
  • SI Sidelink Control Information
  • DCI Downlink Control Information
  • At least one of the following signaling or information may also be used to send the difference or ratio between the first transmission power and the second transmission power to the receiving device of the second transmission power : Radio Resource Control (RRC) signaling, system information (SI), side link control information (SCI), downlink control information (DCI).
  • RRC Radio Resource Control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • the UE 1 may also notify the receiving device of Pmin of the adjusted power P through signaling (for example, SCI).
  • An embodiment of the present invention provides a method for indicating a side link resource, in which a terminal device or a network device instructs a second device.
  • the terminal device may be the first device that performs side link communication with the second device, or may be other terminal devices, and the present invention is not limited thereto.
  • the terminal device or the network device sends length information indicating the length of the first part of a time slot to the second device; wherein, the length information is used by the second device to communicate with the first device Sidelink information transmission and/or reception.
  • the length information is used by the second device to perform AGC on the first part.
  • the length information includes at least one of the following: the length of a physical side link feedback channel, the length of a slot corresponding to a standard (Numerology), and the length of a mini-slot.
  • the side link information includes information carried by at least one of the following channels: a physical side link control channel, a physical side link shared channel, and a physical side link feedback channel.
  • the at least two of the first part lengths are configured to be the same.
  • the length information is configured by at least one of the following: radio resource control (RRC) signaling, system information (SI), side link control information (SCI), and downlink control information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • the cyclic redundancy check code (CRC) of the side link control information is scrambled using a common identifier.
  • the side link control information indicates at least one of the following: the length of the physical side link feedback channel, the time slot where the physical side link feedback channel is located, the symbol where the physical side link feedback channel is located, and the physical side chain The resource block where the channel feedback channel is located, the time slot where the physical side link shared channel is located, the symbol where the physical side link shared channel is located, and the resource block where the physical side link shared channel is located.
  • the length information is configured or pre-configured or pre-defined to be related to one or a group of time-frequency resources; the time-frequency resources include one or more time slots in the time domain, and the frequency domain Contains one or more resource blocks.
  • the time-frequency resources are configured by at least one of the following: radio resource control (RRC) signaling, system information, side link control information, and downlink control information.
  • RRC radio resource control
  • the time-frequency resource includes at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • BWP partial bandwidth
  • the length information is predefined.
  • the first one or more symbols of the first part in the time slot carry information for the automatic gain control.
  • the first symbol or symbols in the first part of the time slot serve as a guard interval.
  • the previous symbol of the first part in the time slot carries information for the automatic gain control and serves as a guard interval.
  • the time slot further includes at least one second part; and the first one or more symbols of the second part in the time slot carry information and/or functions for the automatic gain control Guard interval.
  • the second part is a physical side link control channel and/or a physical side link shared channel.
  • the first part of the time slot is configured with a first demodulation reference signal; and the other part of the time slot is configured with at least a second demodulation reference signal.
  • the first demodulation reference signal and/or the second demodulation reference signal are configured or pre-configured or predefined to be related to one or a group of time-frequency resources; the time-frequency resources are at The time domain contains one or more time slots, and the frequency domain contains one or more resource blocks.
  • the time-frequency resource is configured by at least one of the following: radio resource control (RRC) signaling, system information (SI), side link control information (SCI), and downlink control information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • the time-frequency resource includes at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • BWP partial bandwidth
  • the maximum transmission power of the at least two types of transmission power is used as the transmission power of the time slot.
  • the second device receives the length information indicating the length of the first part in a time slot sent by the terminal device or the network device; and the second device performs side link communication with the first device according to the length information. Thereby, the second device can process the first part according to the length information, so that the performance of side link transmission (eg, the accuracy of AGC estimation) can be improved.
  • the performance of side link transmission eg, the accuracy of AGC estimation
  • the first part in the time slot is configured with a first demodulation reference signal; and the second part in the time slot is configured with a second demodulation reference signal.
  • An embodiment of the present invention provides an apparatus for multiplexing side link resources.
  • the apparatus may be, for example, a terminal device, or may be one or some components or components configured on the terminal device.
  • the present invention is not limited to this, for example, it may be a roadside device or a network device, or may be one or some components or components configured on the roadside device or the network device.
  • the contents of this Embodiment 5 that are the same as those of Embodiments 1 to 3 will not be repeated.
  • FIG. 27 is a schematic diagram of a side-link resource multiplexing device according to an embodiment of the present invention. As shown in FIG. 27, the side-link resource multiplexing device 2700 includes:
  • a receiving unit 2701 which receives length information indicating the length of the first part of a time slot sent by the terminal device or the network device;
  • a processing unit 2702 which sends and/or receives side link information with the first device according to the length information.
  • the processing unit is further configured to perform automatic gain control on the first part according to the length information.
  • the length information includes at least one of the following: the length of the physical side link feedback channel, the length of the time slot corresponding to the standard, and the length of the small time slot.
  • the side link information includes information carried by at least one of the following channels: a physical side link control channel, a physical side link shared channel, and a physical side link feedback channel.
  • the at least two of the first part lengths are configured to be the same.
  • the length information is configured by at least one of the following: radio resource control signaling, system information, side link control information, and downlink control information.
  • the cyclic redundancy check code of the side link control information is scrambled using a common identifier; the side link control information indicates at least one of the following: length of the physical side link feedback channel, physical The time slot where the side link feedback channel is located, the symbol where the physical side link feedback channel is located, the resource block where the physical side link feedback channel is located, the time slot where the physical side link shared channel is located, the symbol where the physical side link shared channel is located, and the physical side chain The resource block where the shared channel is located.
  • the length information is configured or pre-configured or pre-defined to be related to one or a group of time-frequency resources; the time-frequency resources include one or more time slots in the time domain, and the frequency domain Contains one or more resource blocks.
  • the time-frequency resources are configured by at least one of the following: radio resource control signaling, system information, side link control information, and downlink control information.
  • the time-frequency resource includes at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth, a carrier, and a component carrier.
  • the length information is predefined.
  • the first symbol or symbols in the first part of the time slot carry information for automatic gain control; and the previous symbol or symbols in the first part of the time slot serve as protection interval.
  • the time slot further includes at least a second part; and the first one or more symbols of the second part in the time slot carry information for automatic gain control and/or as a guard interval .
  • the first part of the time slot is configured with a first demodulation reference signal; and the other part of the time slot is configured with at least a second demodulation reference signal.
  • the first demodulation reference signal and/or the second demodulation reference signal are configured or pre-configured or predefined to be related to one or a group of time-frequency resources; the time-frequency resources are at The time domain contains one or more time slots, and the frequency domain contains one or more resource blocks.
  • the time-frequency resources are configured by at least one of the following: radio resource control signaling, system information, side link control information, and downlink control information.
  • the time-frequency resource includes at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth, a carrier, and a component carrier.
  • the maximum transmission power of the at least two types of transmission power is used as the transmission power of the time slot.
  • the side link resource multiplexing device 2700 may further include other components or modules. For specific contents of these components or modules, reference may be made to related technologies.
  • FIG. 27 only exemplarily shows the connection relationship or signal direction between various components or modules, but those skilled in the art should understand that various related technologies such as bus connection can be used.
  • the above-mentioned various components or modules can be realized by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of the present invention does not limit this.
  • the second device receives the length information indicating the length of the first part in a time slot sent by the terminal device or the network device; and the second device performs side link communication with the first device according to the length information. Thereby, the second device can process the first part according to the length information, so that the performance of side link transmission (eg, the accuracy of AGC estimation) can be improved.
  • the performance of side link transmission eg, the accuracy of AGC estimation
  • the first part in the time slot is configured with a first demodulation reference signal; and the second part in the time slot is configured with a second demodulation reference signal.
  • An embodiment of the present invention provides a side link resource indication device.
  • the apparatus may be, for example, a terminal device or a network device, or may be one or some components or components configured on the terminal device or the network device.
  • the present invention is not limited to this, for example, it may be a roadside device, or may be one or some components or components disposed on the roadside device. The contents of the sixth embodiment and the fourth embodiment are not repeated here.
  • FIG. 28 is a schematic diagram of an edge link resource indication device according to an embodiment of the present invention. As shown in FIG. 28, the edge link resource indication device 2800 includes:
  • a sending unit 2801 which sends length information indicating the length of the first part in a time slot to the second device; wherein, the length information is used by the second device to send and transmit side link information with the first device /Or receive.
  • the side link resource indication device 2800 may further include other components or modules. For specific contents of these components or modules, reference may be made to related technologies.
  • FIG. 28 only exemplarily shows the connection relationship or signal direction between various components or modules, but it should be clear to those skilled in the art that various related technologies such as bus connection may be used.
  • the above-mentioned various components or modules may be implemented by hardware facilities such as processors, memories, transmitters, receivers, etc.; the implementation of the present invention does not limit this.
  • the second device receives length information indicating the length of the first part of a time slot sent by the terminal device or the network device; and the second device performs side link communication with the first device according to the length information. Thereby, the second device can process the first part according to the length information, so that the performance of side link transmission (eg, the accuracy of AGC estimation) can be improved.
  • the performance of side link transmission eg, the accuracy of AGC estimation
  • the first part in the time slot is configured with a first demodulation reference signal; and the second part in the time slot is configured with a second demodulation reference signal.
  • an embodiment of the present invention also provides a communication system.
  • the communication system 100 may include:
  • the first device 102 which performs side link communication with the second device 103;
  • a second device 103 which receives length information indicating the length of a first part in a time slot sent by a terminal device or a network device; and sends and/or receives side link information with the first device 102 according to the length information .
  • the communication system 100 may further include:
  • the network device 101 which provides services for the first device 102 and/or the second device 103. For example, the network device 101 sends length information indicating the length of the first part in a time slot to the second device 103.
  • An embodiment of the present invention further provides a network device, which may be, for example, a base station, but the present invention is not limited to this, and may also be other network devices.
  • a network device which may be, for example, a base station, but the present invention is not limited to this, and may also be other network devices.
  • FIG. 29 is a schematic diagram of a network device according to an embodiment of the present invention.
  • the network device 2900 may include: a processor 2910 (for example, a central processing unit CPU) and a memory 2920; the memory 2920 is coupled to the processor 2910.
  • the memory 2920 can store various data; in addition, a program 2930 for information processing is stored, and the program 2930 is executed under the control of the processor 2910.
  • the processor 2910 may be configured to execute a program to implement the side link resource indication method as described in Embodiment 4.
  • the processor 2910 may be configured to perform the following control: send length information indicating the length of the first part in a time slot to the second device; wherein the length information is used by the second device to communicate with the first device Send and/or receive sidelink information.
  • the network device 2900 may further include: a transceiver 2940, an antenna 2950, and the like; wherein, the functions of the above components are similar to those in the prior art, and will not be repeated here. It is worth noting that the network device 2900 does not necessarily include all the components shown in FIG. 29; in addition, the network device 2900 may also include components not shown in FIG. 29, and reference may be made to the prior art.
  • An embodiment of the present invention further provides a terminal device, but the present invention is not limited to this, and may also be other devices.
  • the terminal device 3000 may include a processor 3010 and a memory 3020; the memory 3020 stores data and programs, and is coupled to the processor 3010. It is worth noting that the figure is exemplary; other types of structures can also be used to supplement or replace the structure to achieve telecommunications functions or other functions.
  • the processor 3010 may be configured to execute a program to implement the side link resource multiplexing method as described in Embodiment 1.
  • the processor 3010 may be configured to perform the following control: receiving length information indicating the length of the first part in a time slot sent by the terminal device or the network device; and transmitting side link information with the first device according to the length information And/or receive.
  • the processor 3010 may be configured to execute a program to implement the side link resource multiplexing method as described in Embodiment 2.
  • the processor 3010 may be configured to perform the following control: send and/or receive sidelink information with the first device within a time slot; wherein the time slot includes at least a first part and a second part; The first part in the time slot is configured with a first demodulation reference signal; and the second part in the time slot is configured with a second demodulation reference signal.
  • the processor 3010 may be configured to execute a program to implement the side link resource multiplexing method as described in Embodiment 3.
  • the processor 3010 may be configured to perform the following control: send and/or receive sidelink information with the first device in a time slot; wherein, at least two cases of transmission power are required in the time slot Next, the maximum transmission power of the at least two types of transmission power is used as the transmission power of the time slot.
  • the terminal device 3000 may further include: a communication module 3030, an input unit 3040, a display 3050, and a power supply 3060. Among them, the functions of the above components are similar to those in the prior art, and will not be repeated here. It is worth noting that the terminal device 3000 does not necessarily include all the components shown in FIG. 30, and the above-mentioned components are not necessary; in addition, the terminal device 3000 may also include components not shown in FIG. 30. Have technology.
  • An embodiment of the present invention also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the side link resource multiplexing method or embodiment described in Embodiments 1 to 3. 4. The method for multiplexing side link resources.
  • An embodiment of the present invention also provides a storage medium storing a computer program, wherein the computer program causes the terminal device to execute the side link resource multiplexing method described in Embodiments 1 to 3 or the side link described in Embodiment 4. Resource indication method.
  • An embodiment of the present invention also provides a computer program, wherein, when the program is executed in a network device, the program causes the network device to execute the method or embodiment for multiplexing side link resources described in Embodiments 1 to 3. 4. The method for multiplexing side link resources.
  • An embodiment of the present invention also provides a storage medium storing a computer program, wherein the computer program causes a network device to execute the side link resource multiplexing method described in Embodiments 1 to 3 or the side link described in Embodiment 4. Resource indication method.
  • the above device and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to such a computer-readable program which, when executed by a logic component, can enable the logic component to implement the above-described device or constituent component, or enable the logic component to implement the various methods described above Or steps.
  • the invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and so on.
  • the method/apparatus described in conjunction with the embodiments of the present invention may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figures may correspond to each software module of the computer program flow or each hardware module.
  • These software modules can respectively correspond to the steps shown in the figure.
  • These hardware modules can be realized by solidifying these software modules using, for example, a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module may be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • the functional blocks described in the drawings and/or one or more combinations of the functional blocks it can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in the present invention ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described in the drawings and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, multiple microprocessing Processor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • Appendix 1 A method for multiplexing side link resources, including:
  • the second device receives length information indicating the length of the first part in a slot sent by the terminal device or the network device;
  • the second device sends and/or receives side link information with the first device according to the length information.
  • Appendix 2 The method according to Appendix 1, wherein:
  • the second device performs automatic gain control on the first part according to the length information.
  • Appendix 3 The method according to Appendix 1 or 2, wherein the length information includes at least one of the following: the length of a physical side link feedback channel, the length of a slot corresponding to a standard (Numerology), and a mini-slot (mini -slot) length.
  • Appendix 4 The method according to any one of Appendixes 1 to 3, wherein the side link information includes information carried by at least one of the following channels: physical side link control channel, physical side link sharing Channel, physical side link feedback channel.
  • Appendix 5 The method according to any one of Appendixes 1 to 4, wherein when at least two of the first part lengths are within a time range that coincides with the one time slot in time, the at least The two first part lengths are configured to be the same.
  • Appendix 6 The method according to any one of Appendixes 1 to 5, wherein the length information is configured by at least one of: radio resource control (RRC) signaling, system information (SI), side link control Information (SCI), Downlink Control Information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control Information
  • DCI Downlink Control Information
  • Appendix 7 The method according to Appendix 6, wherein the cyclic redundancy check code (CRC) of the side link control information is scrambled using a common identification.
  • CRC cyclic redundancy check code
  • Appendix 8 The method according to Appendix 7, wherein the side link control information indicates at least one of the following: length of the physical side link feedback channel, time slot where the physical side link feedback channel is located, and physical side chain The symbol where the channel feedback channel is located, the resource block where the physical side link feedback channel is located, the time slot where the physical side link shared channel is located, the symbol where the physical side link shared channel is located, and the resource block where the physical side link shared channel is located.
  • Appendix 9 The method according to Appendix 6, wherein when the first length information configured by the side link control information (SCI) and/or the downlink control information (DCI) in a certain time slot is When the radio resource control (RRC) signaling and/or the second length information configured by the system information (SI) are different, the length information of the time slot is determined as the first length information.
  • RRC radio resource control
  • Appendix 10 The method according to any one of Appendixes 1 to 9, wherein the length information is configured or pre-configured or predefined to be related to one or a group of time-frequency resources; the time-frequency resources are at The domain contains one or more time slots, and the frequency domain contains one or more resource blocks.
  • Appendix 11 The method according to Appendix 10, wherein the time-frequency resource is configured by at least one of: radio resource control (RRC) signaling, system information, side link control information, and downlink control information.
  • RRC radio resource control
  • Appendix 12 The method according to Appendix 10 or 11, wherein the time-frequency resources include at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • the time-frequency resources include at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • Appendix 13 The method according to any one of Appendixes 1 to 5, wherein the length information is predefined.
  • Appendix 14 The method according to any one of Appendixes 1 to 13, wherein the first one or more symbols of the first part in the time slot carry information for the automatic gain control.
  • Appendix 15 The method according to Appendix 14, wherein the first symbol or symbols of the first part in the time slot serve as a guard interval.
  • Appendix 16 The method according to any one of Appendixes 1 to 13, wherein the previous symbol of the first part in the time slot carries information for the automatic gain control and serves as a guard interval.
  • Appendix 17 The method according to any one of Appendixes 1 to 16, wherein the time slot further includes at least one second part; and one or more previous symbols of the second part in the time slot Carrying information for the automatic gain control and/or as a guard interval.
  • Appendix 18 The method according to Appendix 17, wherein the second part is a physical side link control channel and/or a physical side link shared channel.
  • Appendix 19 The method according to any one of Appendixes 1 to 18, wherein the first part in the time slot is configured with a first demodulation reference signal; and the other part in the time slot is At least a second demodulation reference signal is configured.
  • Appendix 20 The method according to Appendix 19, wherein the first demodulation reference signal and/or the second demodulation reference signal are configured or pre-configured or pre-defined with one or a set of time-frequency Resources are related; the time-frequency resources include one or more time slots in the time domain and one or more resource blocks in the frequency domain.
  • Appendix 21 The method according to Appendix 20, wherein the time-frequency resources are configured by at least one of the following: radio resource control (RRC) signaling, system information (SI), side link control information (SCI) 3. Downlink Control Information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI Downlink Control Information
  • Appendix 22 The method according to Appendix 20 or 21, wherein the time-frequency resources include at least one of the following: a reception resource pool, a transmission resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • the time-frequency resources include at least one of the following: a reception resource pool, a transmission resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • Appendix 23 The method according to any one of Appendixes 1 to 22, wherein
  • the maximum transmission power among the at least two types of transmission power is used as the transmission power of the time slot.
  • Appendix 24 The method according to Appendix 23, wherein the at least two types of transmission power include a first transmission power that is the maximum transmission power and a second transmission power that is less than the maximum transmission power.
  • Appendix 25 The method according to Appendix 24, wherein, for the second transmission power, a phase modulation method is used to transmit information related to the second transmission power.
  • Appendix 26 The method according to Appendix 25, wherein the phase modulation method is indicated using side link control information (SCI).
  • SCI side link control information
  • Appendix 27 The method according to Appendix 24, wherein the first transmission power is sent to the second transmission power receiving device using at least one of the following signaling or information: Radio Resource Control (RRC) Signaling, system information (SI), side link control information (SCI), downlink control information (DCI).
  • RRC Radio Resource Control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • Appendix 28 The method according to Appendix 24, wherein the difference or the ratio between the first transmission power and the second transmission power is sent to the signal using at least one of the following signaling or information
  • the receiving device of the second transmission power radio resource control (RRC) signaling, system information (SI), side link control information (SCI), and downlink control information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • Appendix 29 A method for multiplexing side link resources, including:
  • the second device sends and/or receives side link information with the first device within a time slot
  • the time slot includes at least a first part and a second part; the first part in the time slot is configured with a first demodulation reference signal; and the second part in the time slot is configured with The second demodulation reference signal.
  • Appendix 30 The method according to Appendix 29, wherein the first demodulation reference signal and/or the second demodulation reference signal are configured or pre-configured or predefined with one or a set of time-frequency Resources are related; the time-frequency resources include one or more time slots in the time domain and one or more resource blocks in the frequency domain.
  • Appendix 31 The method according to Appendix 30, wherein the time-frequency resource is configured by at least one of the following: radio resource control (RRC) signaling, system information (SI), side link control information (SCI) 3. Downlink Control Information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI Downlink Control Information
  • Appendix 32 The method according to Appendix 30 or 31, wherein the time-frequency resources include at least one of the following: a reception resource pool, a transmission resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • the time-frequency resources include at least one of the following: a reception resource pool, a transmission resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • Appendix 33 A method for multiplexing side link resources, including:
  • the second device sends and/or receives side link information with the first device within a time slot
  • the maximum transmission power among the at least two types of transmission power is used as the transmission power of the time slot.
  • Appendix 34 The method according to Appendix 33, wherein the at least two types of transmission power include a first transmission power that is the maximum transmission power and a second transmission power that is less than the maximum transmission power.
  • Appendix 35 The method according to Appendix 34, wherein, for the second transmission power, information related to the second transmission power is transmitted using a phase modulation method.
  • Appendix 36 The method according to Appendix 35, wherein the phase modulation method is indicated using side link control information (SCI).
  • SCI side link control information
  • Appendix 37 The method according to Appendix 34, wherein the first transmission power is sent to the second transmission power receiving device using at least one of the following signaling or information: Radio Resource Control (RRC) Signaling, system information (SI), side link control information (SCI), downlink control information (DCI).
  • RRC Radio Resource Control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • Appendix 38 The method according to Appendix 34, wherein the difference or the ratio between the first transmission power and the second transmission power is sent to the signal using at least one of the following signaling or information
  • the receiving device of the second transmission power radio resource control (RRC) signaling, system information (SI), side link control information (SCI), and downlink control information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI downlink control information
  • a method for indicating side link resources including:
  • the terminal device or the network device sends length information indicating the length of the first part in a time slot to the second device;
  • the length information is used by the second device to send and/or receive side link information with the first device.
  • Appendix 40 The method according to Appendix 39, wherein
  • the length information is used by the second device to perform automatic gain control on the first part.
  • Appendix 41 The method according to Appendix 39 or 40, wherein the length information includes at least one of the following: the length of a physical side link feedback channel, the length of a slot corresponding to a standard (Numerology), and a mini-slot (mini -slot) length.
  • Supplement 42 The method according to any one of supplements 39 to 41, wherein the side link information includes information carried by at least one of the following channels: physical side link control channel, physical side link sharing Channel, physical side link feedback channel.
  • Appendix 43 The method according to any one of Appendixes 39 to 42, wherein when at least two of the first part lengths are within a time range that coincides with the one time slot in time, the at least The two first part lengths are configured to be the same.
  • Supplement 44 The method according to any one of supplements 39 to 44, wherein the length information is configured by at least one of the following: radio resource control (RRC) signaling, system information (SI), side link control Information (SCI), Downlink Control Information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control Information
  • DCI Downlink Control Information
  • Appendix 45 The method according to Appendix 44, wherein the cyclic redundancy check code (CRC) of the side link control information is scrambled using a common identification.
  • CRC cyclic redundancy check code
  • Appendix 46 The method according to Appendix 45, wherein the side link control information indicates at least one of the following: length of the physical side link feedback channel, time slot where the physical side link feedback channel is located, and physical side chain The symbol where the channel feedback channel is located, the resource block where the physical side link feedback channel is located, the time slot where the physical side link shared channel is located, the symbol where the physical side link shared channel is located, and the resource block where the physical side link shared channel is located.
  • Appendix 47 The method according to Appendix 44, wherein when the first length information configured by the side link control information (SCI) and/or the downlink control information (DCI) in a certain time slot is When the radio resource control (RRC) signaling and/or the second length information configured by the system information (SI) are different, the length information of the time slot is determined as the first length information.
  • RRC radio resource control
  • Supplement 48 The method according to any one of supplements 39 to 47, wherein the length information is configured or pre-configured or predefined to be related to one or a group of time-frequency resources; the time-frequency resources are at The domain contains one or more time slots, and the frequency domain contains one or more resource blocks.
  • Appendix 49 The method according to Appendix 48, wherein the time-frequency resources are configured by at least one of the following: radio resource control (RRC) signaling, system information, side link control information, and downlink control information.
  • RRC radio resource control
  • Appendix 50 The method according to Appendix 48 or 49, wherein the time-frequency resources include at least one of the following: a reception resource pool, a transmission resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • the time-frequency resources include at least one of the following: a reception resource pool, a transmission resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • Appendix 51 The method according to any one of Appendixes 39 to 44, wherein the length information is predefined.
  • Supplement 52 The method according to any one of supplements 39 to 51, wherein the first one or more symbols of the first part in the time slot carry information for the automatic gain control.
  • Appendix 53 The method according to Appendix 52, wherein the first one or more symbols of the first part in the time slot serve as a guard interval.
  • Supplement 54 The method according to any one of supplements 39 to 51, wherein the previous symbol of the first part in the time slot carries information for the automatic gain control and serves as a guard interval.
  • Supplement 55 The method according to any one of supplements 39 to 54, wherein the time slot further includes at least one second part; and one or more previous symbols of the second part in the time slot Carrying information for the automatic gain control and/or as a guard interval.
  • Appendix 56 The method according to Appendix 55, wherein the second part is a physical side link control channel and/or a physical side link shared channel.
  • Supplement 57 The method according to any one of supplements 39 to 56, wherein the first part in the time slot is configured with a first demodulation reference signal; and other parts in the time slot are At least a second demodulation reference signal is configured.
  • Appendix 58 The method according to Appendix 57, wherein the first demodulation reference signal and/or the second demodulation reference signal are configured or pre-configured or predefined to be associated with one or a set of time-frequency Resources are related; the time-frequency resources include one or more time slots in the time domain and one or more resource blocks in the frequency domain.
  • Appendix 59 The method according to Appendix 58, wherein the time-frequency resources are configured by at least one of the following: radio resource control (RRC) signaling, system information (SI), side link control information (SCI) 3. Downlink Control Information (DCI).
  • RRC radio resource control
  • SI system information
  • SCI side link control information
  • DCI Downlink Control Information
  • Appendix 60 The method according to Appendix 58 or 59, wherein the time-frequency resources include at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • the time-frequency resources include at least one of the following: a receiving resource pool, a sending resource pool, a partial bandwidth (BWP), a carrier, and a component carrier.
  • Appendix 61 The method according to any one of Appendix 39 to 60, wherein
  • the maximum transmission power among the at least two types of transmission power is used as the transmission power of the time slot.
  • Appendix 62 A terminal device, including a memory and a processor, the memory stores a computer program, the processor is configured to execute the computer program to implement the resource according to any one of Appendix 1 to 33 Multiplexing method, or the resource indication method as described in any one of appendices 34 to 61.
  • Appendix 63 A network device, including a memory and a processor, the memory stores a computer program, the processor is configured to execute the computer program to implement the resource according to any one of Appendix 34 to 61 Instructions method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施例提供一种边链路资源复用和指示方法以及装置。所述方法包括:第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及所述第二设备根据所述长度信息与第一设备进行边链路信息的发送和/或接收。由此,所述第二设备能够根据所述长度信息对所述第一部分进行处理,从而能够提高边链路传输的性能。

Description

边链路资源复用和指示方法以及装置 技术领域
本发明实施例涉及通信技术领域,特别涉及一种边链路资源复用和指示方法以及装置。
背景技术
V2X(Vehicle to Everything)是一种车辆通信技术,能够实现车辆与车辆、车辆与路侧设备以及车辆与行人之间的信息交互。V2X中的发送设备可以通过边链路(sidelink)与接收设备直接进行通信。有别于蜂窝网络的Uu链路(网络设备与用户设备之间的空中接口),边链路是为V2X新定义的空中接口(V2X设备之间的空中接口),边链路可以使用蜂窝网络Uu链路的频率资源,也可以使用专用的频率资源。
边链路通过物理边链路控制信道(PSCCH,Physical Sidelink Control Channel)传输控制信息,通过物理边链路共享信道(PSSCH,Physical Sidelink Shared Channel)传输数据信息。长期演进(LTE,Long Term Evolution)V2X仅支持广播业务,例如发送设备将道路安全信息广播给周围的接收设备,广播业务不需要引入反馈,因此LTE V2X没有提供对混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest)反馈和/或信道状态信息(CSI,Channel State Information)反馈的支持。
新无线(NR,New Radio)V2X是目前Rel-16标准化的研究项目之一,相比于LTE V2X,NR V2X需要支持诸多新场景和新业务(例如远程驾驶、自动驾驶和车队行驶等),需要满足更高的技术指标(高可靠、低时延、高数据速率等)。为满足不同场景和不同业务的需求,除广播外,NR V2X还需要提供对单播和组播的支持。
与广播不同,HARQ反馈和/或CSI反馈对于单播和组播具有重要意义,发送设备可以基于HARQ反馈结果决定是否调度重传,从而可以避免盲重传造成的资源浪费,发送设备也可以基于CSI测量和反馈结果进行链路自适应,例如选择最能适应当前信道的调制和编码方案(MCS,Modulation and Coding Scheme)、预编码矩阵指示(PMI,Precoding Matrix Indicator)、波束(beam)、秩(rank)等,从而有利于实现高数据速率传输。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
发明人发现:目前NR V2X定义了一种新的物理信道,称为物理边链路反馈信道(PSFCH,Physical Sidelink Feedback Channel),用于承载HARQ反馈信息和/或CSI(以下统称为反馈信息)。PSFCH可能在时域上并不占满整个时隙(slot),PSFCH所占的符号数目(即PSFCH长度)也可能随反馈信息的开销发生变化。
因此PSFCH会带来以小于时隙的时间长度为单位的干扰或信号强度的快速变化,这会对与PSFCH复用的PSCCH和PSSCH产生影响;这些影响包括:降低自动增益控制(AGC,Automatic Gain Control)估计的准确性或者增加AGC估计的复杂度;解调参考信号(DM-RS,De-Modulation Reference Signal)所在的符号与AGC符号产生碰撞,从而导致信道估计性能下降;发送功率在一个时隙内发生快速变化,从而增加功率控制和调整的复杂度。NR V2X中PSFCH、PSCCH和PSSCH的复用需要对上述问题进行解决。
针对上述问题的至少之一,本发明实施例提供一种边链路资源复用和指示方法以及装置。
根据本发明实施例的第一个方面,提供一种边链路资源复用方法,包括:
第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及
所述第二设备根据所述长度信息与第一设备进行边链路信息的发送和/或接收。
根据本发明实施例的第二个方面,提供一种边链路资源复用装置,包括:
接收单元,其接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及
处理单元,其根据所述长度信息与第一设备进行边链路信息的发送和/或接收。
根据本发明实施例的第三个方面,提供一种边链路资源指示方法,包括:
终端设备或者网络设备向第二设备发送用于指示一个时隙中第一部分长度的长度信息;
其中,所述长度信息被所述第二设备用于与第一设备进行边链路信息的发送和/ 或接收。
根据本发明实施例的第四个方面,提供一种边链路资源指示装置,包括:
发送单元,其向第二设备发送用于指示一个时隙中第一部分长度的长度信息;
其中,所述长度信息被所述第二设备用于与第一设备进行边链路信息的发送和/或接收。
根据本发明实施例的第五个方面,提供一种通信系统,包括:
第一设备,其与第二设备进行边链路通信;以及
第二设备,其接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及根据所述长度信息与所述第一设备进行边链路信息的发送和/或接收。
本发明实施例的有益效果之一在于:第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及所述第二设备根据所述长度信息与第一设备进行边链路通信。由此,所述第二设备能够根据所述长度信息对所述第一部分进行处理,从而能够提高边链路传输的性能(例如提高AGC估计的准确性)。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本发明实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例的通信系统的示意图;
图2是本发明实施例的边链路资源复用方法的示意图;
图3是本发明实施例的边链路资源的示意图;
图4是本发明实施例的边链路资源的另一示意图;
图5是本发明实施例的边链路资源的另一示意图;
图6是本发明实施例的边链路资源的另一示意图;
图7是本发明实施例的边链路资源的另一示意图;
图8是本发明实施例的边链路资源的另一示意图;
图9是本发明实施例的多个设备进行边链路资源复用的示意图;
图10是本发明实施例的多个设备进行边链路资源复用的另一示意图;
图11是本发明实施例的多个设备进行边链路资源复用的另一示意图;
图12是本发明实施例的多个设备进行边链路资源复用的另一示意图;
图13是本发明实施例的多个设备进行边链路资源复用的另一示意图;
图14是本发明实施例的边链路资源的另一示意图;
图15是本发明实施例的多个设备进行边链路资源复用的另一示意图;
图16是本发明实施例的资源池配置的示意图;
图17是本发明实施例的资源池配置的另一示意图;
图18是本发明实施例的资源池配置的另一示意图;
图19是本发明实施例的多个设备进行边链路资源复用的另一示意图;
图20是本发明实施例的多个设备进行边链路资源复用的另一示意图;
图21是本发明实施例的边链路资源的另一示意图;
图22是本发明实施例的边链路资源的另一示意图;
图23是本发明实施例的边链路资源的另一示意图;
图24是本发明实施例的边链路资源的另一示意图;
图25是本发明实施例的资源池配置的另一示意图;
图26是本发明实施例的边链路资源的另一示意图;
图27是本发明实施例的边链路资源复用装置的示意图;
图28是本发明实施例的边链路资源指示装置的示意图;
图29是本发明实施例的网络设备的示意图;
图30是本发明实施例的终端设备的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本发明实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本发明实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本发明实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本发明实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio  Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本发明实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
以下通过示例对本发明实施例的场景进行说明,但本发明不限于此。
图1是本发明实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102、103。为简单起见,图1仅以两个终端设备和一个网络设备为例进行说明,但本发明实施例不限于此。
在本发明实施例中,网络设备101和终端设备102、103之间可以进行现有的业务或者未来可实施的业务传输。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine  Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
值得注意的是,图1示出了两个终端设备102、103均处于网络设备101的覆盖范围内,但本发明不限于此。两个终端设备102、103可以均不在网络设备101的覆盖范围内,或者一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外。
在本发明实施例中,两个终端设备102、103之间可以进行边链路传输。例如,两个终端设备102、103可以都在网络设备101的覆盖范围之内进行边链路传输以实现V2X通信,也可以都在网络设备101的覆盖范围之外进行边链路传输以实现V2X通信,还可以一个终端设备102在网络设备101的覆盖范围之内而另一个终端设备103在网络设备101的覆盖范围之外进行边链路传输以实现V2X通信。
本发明实施例将以边链路和V2X为例进行说明,但本发明不限于此。
实施例1
本发明实施例提供一种边链路资源复用方法,从第二设备侧进行说明。其中该第二设备与第一设备进行边链路通信;第一设备和/或第二设备可以是终端设备,但本发明不限于此,例如也可以是路侧设备或者网络设备,以下以第一设备和第二设备均是终端设备为例进行说明。
图2是本发明实施例的边链路资源复用方法的一示意图,如图2所示,所述方法包括:
步骤201,第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及
步骤202,所述第二设备根据所述长度信息与第一设备进行边链路信息的发送和/或接收。
在一个实施例中,所述第二设备可以根据所述长度信息对所述第一部分进行自动增益控制;但本发明不限于此,例如还可以根据该长度信息进行其他处理。
值得注意的是,以上附图2仅对本发明实施例进行了示意性说明,但本发明不限于此。例如可以适当地调整各个步骤之间的执行顺序,此外还可以增加其他的一些步骤或者减少其中的某些步骤。本领域的技术人员可以根据上述内容进行适当地变型, 而不仅限于上述附图2的记载。
在一个实施例中,所述长度信息可以包括如下至少之一:物理边链路反馈信道的长度、制式(Numerology)对应的时隙长度、小时隙(mini-slot)的长度;但本发明不限于此。
在一个实施例中,所述边链路信息可以包括如下至少之一的信道所携带的信息:物理边链路控制信道(PSCCH)、物理边链路共享信道(PSSCH)、物理边链路反馈信道(PSFCH)。
在一个实施例中,所述时隙中所述第一部分的前一个或多个符号承载用于AGC的信息;并且所述时隙中所述第一部分的前一个或多个符号作为保护间隔(Guard)。所述时隙还可以至少包括一个第二部分;以及所述时隙中所述第二部分的前一个或多个符号承载用于AGC的信息和/或作为保护间隔。例如,所述第一部分可以为PSFCH,所述第二部分可以为PSCCH和/或PSSCH。
图3是本发明实施例的边链路资源的一示意图,给出一种PSCCH、PSSCH和PSFCH在一个时隙内复用的示例。这种复用方式有利于满足低时延业务需求,例如UE 1可以在该时隙内接收来自UE 2的PSCCH和PSSCH,并在同一时隙内通过PSFCH向UE 2发送HARQ反馈信息。由于PSCCH和PSSCH由UE 2发送,PSFCH由UE 1发送,因此需要分别独立地进行AGC估计。
例如,图3所示,AGC 1符号用于PSCCH和PSSCH的AGC估计,AGC 2符号用于PSFCH的AGC估计。GUARD 2符号用作PSCCH/PSSCH和PSFCH之间的接收/发送转换的保护间隔,GUARD 1符号用作时隙与时隙之间的接收/发送转换的保护间隔。图3中的AGC和GUARD位于不同的符号内。图3所示的时隙结构并不局限于支持某一设备在同一时隙内接收数据信息并发送HARQ反馈信息这一种场景。
例如,在某一时隙内,UE 1仅需要通过PSFCH向UE 2发送反馈信息,UE 3仅需要通过PSCCH/PSSCH向UE 4发送数据信息,则UE 1和UE 3可以按照图3的方式进行PSFCH和PSCCH/PSSCH的复用。
又例如,在某一时隙内,UE 5需要向UE 6发送数据信息,并需要向UE 7发送反馈信息,则发送给UE 6和UE 7的PSCCH/PSSCH和PSFCH可以按照图3方式复用在一个时隙内。因此,不同设备发送的或发送给不同设备的PSCCH、PSSCH和PSFCH都可以复用在同一时隙内,从而提高频谱利用率。
随着设备处理能力的提高,也可能在1个符号内完成接收/发送转换和AGC估计,即图3中的GUARD和AGC可以位于1个符号内。
图4是本发明实施例的边链路资源的另一示意图,给出了这种情况下的一个示例,其中GUARD 1和AGC 1位于时隙的第一个符号内,在一个符号的时间内既可以完成时隙与时隙之间的接收/发送转换,又可以完成对PSCCH和PSSCH的AGC估计,GUARD 2和AGC 2位于PSFCH的前一个符号内,在一个符号的时间内既可以完成PSCCH/PSSCH和PSFCH之间的接收/发送转换,又可以完成对PSFCH的AGC估计。
为简单起见,可以将图3和图4进行统一抽象。
图5是本发明实施例的边链路资源的另一示意图,省略了AGC符号和保护间隔,实际上图5的AGC和GUARD结构可以沿用图3或图4的任何一种。此外,图5对PSCCH/PSSCH和PSFCH在频率上的相对位置没有任何限制,即PSCCH/PSSCH和PSFCH在频率上可以完全重合、部分重合或完全不重合。
图6是本发明实施例的边链路资源的另一示意图,示出了PSCCH/PSSCH和PSFCH在频率上完全重合的情况;图7是本发明实施例的边链路资源的另一示意图,示出了PSCCH/PSSCH和PSFCH在频率上部分重合的情况;图8是本发明实施例的边链路资源的另一示意图,示出了PSCCH/PSSCH和PSFCH在频率上完全不重合的情况。
NR Rel-15中,Uu口的反馈信息通过物理上行控制信道(PUCCH,Physical Uplink Control Channel)发送给网络设备(例如基站),PUCCH所使用的符号数目(即PUCCH长度)是可变的。例如,终端设备可以根据反馈信息的负载情况灵活地选择合适的PUCCH长度。
本文中的“长度”一般指时间长度,例如可以以符号的数目来衡量。本发明实施例例如可使用正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)、单载波频分复用(SC-FDMA,Single-Carrier Frequency Division Multiple Access)或离散傅里叶变换扩展正交频分复用(DFT-s-OFDM,Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplex)等波形,因此上述符号可以为OFDM符号或SC-FDMA符号或DFT-s-OFDM符号等,以下简称为符号;但本发明不限于此。
NR V2X如果沿用PUCCH的思路,允许设备灵活地选择PSFCH所使用的符号数目(即PSFCH长度),则会产生AGC估计不准的问题。更具体地,灵活的PSFCH 长度意味着不同设备可以使用不同的PSFCH长度,这些不同长度的PSFCH会使其他正在进行数据接收的设备的信号和/或干扰强度在一个时隙内发生变化,又由于接收设备不具有像基站那样掌握全局信息的能力,不知道与自己复用的其他设备的信息,因此该接收设备将无法准确地进行AGC估计,从而使信息传输的可靠性降低。
对于NR Rel-15,某终端设备仅需要知晓自己的PUCCH长度信息。对于NR V2X,某一终端设备有必要知晓其他终端设备的PSFCH长度。以下通过分析干扰变化对AGC的影响,对此进行了说明。
图9是本发明实施例的多个设备进行边链路资源复用的一示意图。如图9所示,例如UE 1向UE 2发送PSCCH 1和PSSCH 1,UE 2在同一时隙内通过PSFCH 2向UE 1发送HARQ-ACK反馈信息。由于V2X设备可以复用在一组重叠的时频资源内(共享同一组时频资源,或者进行频率重用),UE 3可以在与UE 1和UE 2相同的时频资源内向UE 4发送PSCCH 3和PSSCH 3,例如UE 3通过感知(sensing)认为整个时隙可用于发送信息。UE 3与UE 4之间不一定需要交互反馈信息,即可以不存在PSFCH。UE 4作为接收设备,在时隙k的部分1受到UE 1发送的PSCCH 1/PSSCH 1的干扰,在时隙k的部分2受到UE 2发送的PSFCH 2的干扰,这两部分所受的干扰是彼此独立的,干扰强度可能有很大差别。
例如,UE 1~UE 4在一条车道内沿同一方向行驶,由于UE 2距离UE 4较近,因此UE 4的部分2受到较强干扰,由于UE 1与UE 4之间存在UE 2的阻挡,因此UE 4的部分1受到的干扰较小。尽管UE 3在发送信息之前会进行感知,但由于其距离UE 4较远,无法准确感知UE 4所处的干扰环境,即隐藏节点问题,或者UE 3在时隙开始通过感知判断该时隙可用,但由于其无法预测时隙的部分2会出现较强的干扰,因此UE 3仍可能在该时隙发送信息。
如果使用传统方法基于时隙内第一个符号进行AGC估计,并将结果应用于整个时隙,在上述情况,传统方法将导致部分2的AGC估计不准确,从而导致整个时隙内的数据解调失败。
为解决这一问题,UE 4的部分1和部分2需要独立进行AGC估计。UE 4自身可能并不需要发送反馈信息,即不需要知晓PSFCH长度等PSFCH资源配置信息,但为了能够对时隙内的部分1和部分2进行独立的AGC估计,UE 4至少需要知晓能够对自己造成干扰的其他设备的PSFCH长度信息。
图10是本发明实施例的多个设备进行边链路资源复用的另一示意图。如图10所示,UE 3使用整个时隙向UE 4发送PSCCH 3和PSSCH 3。由于不同设备可以复用在一组重叠的时频资源内,其他UE可以在相同的时频资源范围内(RB m到RB n,时隙k)进行数据收发。
例如,UE 2在RB m到RB n内和时隙k的部分2通过PSFCH 2发送HARQ反馈和/或CSI等反馈信息,UE 1能够通过感知或通过解调边链路控制信息(SCI,Sidelink Control Information)知晓在频域上RB m到RB n内和时域上时隙k的部分2有PSFCH传输,因此UE 1可以在时隙k的部分1发送PSCCH 1和PSSCH 1。
对于UE 4的接收,其在时隙k的部分1和部分2分别受到来自UE 1和UE 2不同设备的干扰,因此部分1和部分2需要独立进行AGC估计。尽管UE 4自身可能并不需要发送反馈信息,但为了能够对时隙内的部分1和部分2进行独立的AGC估计,UE 4至少需要知晓能够对自己造成干扰的其他设备的PSFCH长度信息。
图11是本发明实施例的多个设备进行边链路资源复用的另一示意图。如图11所示,UE 1使用整个时隙向UE 2发送PSCCH 1和PSSCH 1,与其复用在一组重叠的时频资源内的是一组进行组播(groupcast)通信的V2X设备,即在RB m到RB n内,UE 3以组播方式向UE 4到UE N一组设备发送信息。
对于组播的HARQ反馈,多个设备使用相同的PSFCH资源发送HARQ反馈信息是一种能够高效利用资源的方法,可以避免为每一个设备分配专用的PSFCH资源,从而大大节省反馈资源开销,同时设备可以仅反馈NACK而不反馈ACK。当多个设备使用相同资源发送NACK时,叠加在一起的信号会产生一种信号增强的效果,有利于反馈信息的可靠接收。
然而,上述方法在增强了反馈信号的同时,也增强了对其他设备的干扰。例如图11所示,UE 4到UE N在时隙k之前的某个时隙接收组播数据,在时隙k的部分2发送NACK,由于多个UE信号叠加,可能对UE 2时隙k的部分2产生更大的干扰,从而使UE 2的部分1和部分2的干扰强度发生显著变化,因此部分1和部分2需要独立进行AGC估计。
这里,UE 1可能由于隐藏节点等原因,无法通过盲检UE 3的SCI或通过感知等方式获知组播反馈的存在,因此不能避免在相同的时频资源上调度UE 2进行数据接收。尽管UE 2自身可能并不需要发送反馈信息,但为了能够对时隙内的部分1和部 分2进行独立的AGC估计,UE 2至少需要知晓能够对自己造成干扰的其他设备的PSFCH长度信息。
由上述可知,接收设备至少需要知晓其他设备的PSFCH长度信息。由于可能有多个设备与某一接收设备复用在一组重叠的时频资源内,接收设备获知多个设备的PSFCH信息将带来较大信令开销。此外,多个设备灵活选择PSFCH长度也会增加接收设备的AGC符号开销和/或AGC估计复杂度。
图12是本发明实施例的多个设备进行边链路资源复用的另一示意图。如图12所示,当多个设备(UE 1、UE 2等)具有不同的PSFCH长度时,会在某接收设备(UE4)处形成多个部分长度(例如部分2、部分2’),则UE 4在一个时隙内会受到多种不同程度的干扰(图12中部分1’、部分2和时隙内剩余部分受到的干扰不同),需要进行多次独立的AGC估计,从而需要更大的AGC符号开销和/或更高的AGC估计复杂度。
图9至图12仅作为示例示意性地给出,为简单起见,图9至图12假设被PSFCH干扰的PSCCH/PSSCH所占的资源块(RB,Resource Block)数目与作为干扰源的PSFCH所占的RB数目相同,实际上二者的RB数目也可以不同,只要在频域上存在重叠的RB,上述干扰分析以及对AGC的影响仍然成立,不一一列举。
为简单起见,可以将图9至图12进行统一抽象。
图13是本发明实施例的多个设备进行边链路资源复用的另一示意图。如图13所示,对于某一设备想要在某一时隙内接收的PSCCH 1和PSSCH 1,在与其重合(不一定完全重合)的时频资源内可能会存在其他设备间的信息收发。例如,PSCCH2/PSSCH 2、PSFCH 3、PSCCH 4/PSSCH 4、PSFCH 5等,这些物理信道承载的信息可以来自不同的设备,PSCCH 1/PSSCH 1在一个时隙内的干扰会发生变化,因此仅基于时隙内第一个符号进行AGC估计的传统方法不再适用,PSCCH 1/PSSCH 1的接收设备需要在一个时隙内进行多次AGC估计。
图14是本发明实施例的边链路资源的另一示意图。例如图14所示,PSSCH使用较多RB传输一个较大尺寸的传输块(TB,Transport Block),但在时隙的部分2受到来自PSFCH的窄带强干扰,如果仅基于时隙内第一个符号进行AGC估计,则部分2的PSSCH解调译码性能会受到影响,进而影响整个时隙内的TB的解调译码性能。
时隙内干扰发生变化是导致多次AGC估计的一种原因,另一种原因可以是信号能量(或功率)发生变化。
图15是本发明实施例的多个设备进行边链路资源复用的另一示意图。如图15所示,PSCCH 1/PSSCH 1与其他设备的物理信道或信号(例如PSCCH 2/PSSCH 2、PSFCH 3、PSCCH 4/PSSCH 4、PSFCH 5等,这些物理信道所占的RB数可以不同)以频分复用方式在频域上复用,并且这些物理信道全部落在PSCCH 1/PSSCH 1接收设备的接收频率范围内(例如该接收设备的BWP内)。
该接收设备在时隙内所接收到的信号能量是频分复用的所有物理信道和/或信号能量之和。由于时隙内存在来自不同设备的信号,因此PSCCH 1/PSSCH 1接收设备接收到的时域信号的能量会在时隙内发生变化,因此仅基于时隙内第一个符号进行AGC估计的传统方法不再适用,PSCCH 1/PSSCH 1的接收设备需要在一个时隙内进行多次AGC估计。图9至图12的场景可以容易地扩展到图15所示的频分复用场景,用以说明时隙内信号能量发生变化,不再一一赘述。
通过上述分析,即使设备像LTE V2X时一样仅需要接收PSCCH和PSSCH,或者即使设备本身不需要使用PSFCH发送信息,但由于NR V2X引入了PSFCH,基于之前分析的PSFCH对AGC的影响,设备仍有在一个时隙内进行多次AGC估计的必要。为了进行多次AGC估计,设备需要知道其他设备的PSFCH长度信息。为了不进行过多次数的AGC估计,可以限制其他设备具有相同的PSFCH长度,在满足该条件时,设备在一个时隙内最多只进行两次AGC估计。
在一个实施例中,当在与所述一个时隙在时间上重合的时间范围内具有至少两个所述第一部分长度时,所述至少两个所述第一部分长度被配置为相同。
例如,对于使用相同时频资源(例如部分带宽BWP、资源池resource pool、载波carrier等)的设备,如果需要发送PSFCH,可以限制这些设备的PSFCH具有相同的PSFCH长度。这样,接收设备可以根据PSFCH长度,在确定的位置进行AGC估计,在一个时隙内最多只进行两次AGC估计。
在一个实施例中,所述长度信息可以由如下信令或信息的至少之一配置:无线资源控制(RRC,Radio Resource Control)信令、系统信息(SI,System Information)、边链路控制信息(SCI,Sidelink Control Information)、下行控制信息(DCI,Downlink Control Information)。
例如,可以使用SCI来通知PSFCH长度。所述SCI的循环冗余校验码(CRC,Cyclic Redundancy Check)可以使用公共标识进行加扰。所述SCI可以指示如下至少之一:PSFCH的长度、PSFCH所在时隙、PSFCH所在符号、PSFCH所在资源块、PSSCH所在时隙、PSSCH所在符号、PSSCH所在资源块。
例如,UE 1发送SCI给UE 2,该SCI的CRC使用公共标识(例如公共ID或公共RNTI)加扰,上述公共标识也可以是组(group-common)ID或RNTI。SCI指示UE 2在哪个时隙发送HARQ反馈和/或CSI等信息,并且SCI的一个字段用于指示PSFCH长度,具体实施方式可以使用高层信令(例如RRC信令)配置若干可用的PSFCH长度,SCI指示其中哪一种PSFCH长度被实际使用,因此UE 2知道在哪个时隙、使用多少个符号发送PSFCH。
以上在SCI中直接指示了PSFCH长度,也可以通过指示PSFCH时频资源来指示PSFCH长度。例如,SCI指示PSFCH所在时隙、所在符号和所在RB,从而UE 2也能够由此获得PSFCH长度信息。此外,由于上述SCI的CRC使用公共标识加扰,除UE 2外的其他设备也可以解调该SCI,从而获得PSFCH长度和PSFCH所在时隙信息,并根据该信息在PSFCH出现的时隙进行额外的AGC估计。
考虑如下场景,其中UE 2发送的PSFCH会与UE 3接收的PSSCH复用,从而影响UE 3的AGC,但由于UE 3也可以解调上述携带了PSFCH信息的SCI,因此UE 3也可以获得PSFCH长度信息,因此UE 3可以基于PSFCH长度信息进行额外的AGC估计。
另外,通过SCI指示PSFCH长度也具有足够的灵活性来将在同一个时隙内发送的多个PSFCH配置为具有相同的长度。例如,UE 1发送给UE 2的SCI 1指示UE 2在时隙k发送PSFCH 1,UE 3发送给UE 4的SCI 2指示UE 4在时隙k发送PSFCH 2,则SCI 1和SCI 2可以指示相同的PSFCH长度,对于在时隙k内与PSFCH 1和PSFCH2复用的UE 5,其在接收复用的PSSCH时,可以避免进行过多次数的AGC估计。在本示例下,UE 5只需进行两次AGC估计。
例如,该方法可在两步SCI(2-stage SCI)中使用。两步SCI将原本发送给UE 1的一个SCI承载的信息分成两部分,由两个SCI承载。例如SCI 1除了可以承载上述任何一种用于指示PSFCH长度的信息,还可以承载PSSCH所在时频资源信息(例如PSSCH所在时隙、所在符号和所在RB),SCI 1的CRC使用公共标识加扰;SCI 2承 载MCS等用于解调译码的信息,SCI 2的CRC使用设备专用(UE-specific)标识(例如C-RNTI)加扰。
由于使用公共标识加扰,SCI 1可以被UE 2接收,因此UE 2可以避开SCI 1指示的PSFCH和/或PSSCH资源,从而避免干扰;而UE 1可以接收两个SCI,从而实现完整的数据信息接收和解调。由于PSFCH长度和PSFCH所在时隙等信息被承载在SCI 1中,当UE 2接收到SCI 1后,也能够根据PSFCH长度信息在PSFCH出现的时隙进行额外的AGC估计。
例如,上述长度信息可以在资源预留信令中承载。SCI 1作为资源预留信令,用于指示某时频资源将被预留给PSCCH 2和/或PSSCH 2传输,此外SCI 1也可以以上述任何一种形式指示PSFCH长度信息,SCI 1的CRC使用公共标识加扰,因此SCI 1可以被多个UE接收,从而这些UE可以避免在被SCI 1预留的资源上进行传输,另外也可以基于SCI 1指示的PSFCH长度进行更加准确的AGC估计。可选地,PSCCH2可以进一步承载SCI 2,SCI 2用于调度PSSCH 2,SCI 2可以使用与常规SCI相同的格式,指示PSSCH 2所在时频资源和MCS等信息,SCI 2的CRC可以使用设备专用标识加扰,从而PSCCH2和PSSCH 2的接收UE可以实现对控制和数据信息的正确接收。
在一个实施例中,所述长度信息被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
在一个实施例中,所述时频资源可以由如下至少之一配置:无线资源控制(RRC)信令、系统信息、边链路控制信息、下行控制信息。所述时频资源可以包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
例如,可以为每个资源池配置或预配置一个PSFCH长度。资源池是逐个设备配置的,并且某一个设备可以被配置多个资源池,因此发明中“为每个资源池配置或预配置”实际上是“为每个设备的每个资源池配置或预配置”的一种简单说法。资源池由时域上若干时隙和频域上若干RB组成。资源池可以是发送资源池,也可以是接收资源池。为简单起见,后面均简称为资源池。NR V2X会为设备配置用于数据发送和接收的一个或多个资源池,因此PSFCH长度可以以上述资源池为单位进行配置。或者在配置某个PSFCH长度时,指示该PSFCH长度与哪个现有资源池相关联。
为某一个资源池配置或预配置一个PSFCH长度可以有两种含义:
假设设备在第一资源池内不需要进行PSFCH收发(例如第一资源池仅用于广播业务,而广播业务无需PSFCH),则第一资源池的PSFCH长度指可能对第一资源池的AGC造成影响的来自其他资源池的PSFCH的长度,设备在第一资源池内进行接收时,可以根据第一资源池的PSFCH长度进行额外的AGC估计。
假设设备在第一资源池内需要进行PSFCH收发(例如第一资源池用于单播业务,在某些存在PSFCH的时隙,PSSCH可以与PSFCH使用前面所述的任何一种方式复用,在某些不存在PSFCH的时隙,整个时隙均可用于PSSCH收发),此时第一资源池的PSFCH长度既指设备在第一资源池内进行PSFCH收发所需使用的PSFCH长度,又指可能对第一资源池的AGC造成影响的来自其他资源池的PSFCH的长度,设备在第一资源池内进行接收时,不一定在每个时隙内都需要接收PSFCH,设备在需要接收PSFCH的时隙内根据第一资源池的PSFCH长度实现对PSFCH的接收,设备在不需要接收PSFCH但需要接收PSSCH的时隙内可以根据第一资源池的PSFCH长度进行额外的AGC估计。
为资源池配置PSFCH长度也包括可以根据需要对PSFCH长度进行重配,例如当某一资源池需要更长的PSFCH长度时,可以通过RRC信令为该资源池重新配置一个新的PSFCH长度。
资源池的定义和配置方法可以沿用LTE V2X的资源池定义和配置方法,具体可参见TS 36.213的14.1.5小节,并将其中的“子帧”替换为“时隙”。这里“配置”可以用于设备在网络覆盖范围内(in coverage)情形,设备可以接收网络配置信息,例如通过系统信息(MIB/SIB)、RRC信令、DCI信令和SCI信令中的至少一种;“预配置”可用于设备不在网络覆盖范围内(out-of-coverage)情形,设备根据预配置(即默认配置或出厂配置或标准规定的配置)进行V2X通信。为简单起见,后面均使用“配置”一词,包括了上述“配置”和“预配置”两种实现方式。
某个资源池也可以不配置PSFCH长度或者配置PSFCH长度为零,表示该资源池内AGC估计不需要考虑PSFCH的影响。由于设备可以被配置多个资源池,有的资源池的时频资源可以用于与其他设备复用,例如前面所述的设备复用在一组重叠的时频资源内,或设备间进行频分复用,简单起见,后面可以统一称为“复用”。
例如,当UE 1的某一资源池没有复用需要使用PSFCH的其他设备时,UE 1的 AGC估计无需考虑PSFCH影响,即可以沿用LTE V2X原则,仅基于时隙内第一个符号进行AGC估计;或者即使UE 1的某一资源池复用了需要使用PSFCH的其他设备,但基站或其他设备能够判断该资源池受PSFCH的影响可以忽略不计,例如PSFCH的功率远小于UE 1的有用信号功率,此时也可以不配置PSFCH长度或配置PSFCH长度为零。否则,当UE 1的某一资源池复用了需要使用PSFCH的其他设备时,UE 1需要考虑PSFCH对AGC的影响,例如可以根据该资源池被配置的PSFCH长度进行AGC估计。
按照资源池进行PSFCH长度配置提供了配置的灵活性,例如,所有与UE 1复用的其他设备的资源池可以被配置为具有相同的PSFCH长度,从而UE 1在一个时隙内可以最多只进行两次AGC估计;例如,不同资源池可以有不同的PSFCH长度,从而能够支持和容纳不同的反馈开销;又例如,属于同一设备的多个资源池也可以被配置为具有相同的PSFCH长度,从而设备可以从多个资源池接收信息,并且同样在一个时隙内最多只进行两次AGC估计。
图16是本发明实施例的资源池配置的一示意图。例如图16所示,资源池i和资源池j属于UE 1,并且以时分复用方式共存于UE 1的BWP内。在该BWP内,如果资源池j没有与PSFCH进行复用,或者由PSFCH造成的干扰或信号变化可以忽略不计,则可以将资源池j的PSFCH长度配置为零,或者不为资源池j配置PSFCH长度,即资源池j可以不需要考虑PSFCH对AGC的影响。在该BWP内,资源池i与PSFCH进行复用,或者第一设备需要在资源池i内通过PSFCH接收或发送反馈信息,因此可以为资源池i配置合适的PSFCH长度,即资源池i需要考虑PSFCH对AGC的影响。
图17是本发明实施例的资源池配置的另一示意图,给出了不同设备的资源池在BWP内复用的一个示例。对于属于UE 2的某一个资源池l,如果该资源池与UE 1的资源池i形成频分复用(或者与资源池i在时频资源上有重合),则可以将资源池l的PSFCH长度配置为与资源池i的PSFCH长度相同,通过对齐PSFCH长度,可以将UE 1在资源池i的一个时隙内的AGC估计次数降低为最大两次。同理,UE 3的资源池r与资源池i和资源池l形成频分复用,因此将资源池r、i和l的PSFCH长度配置为相同。
图17所示的不同设备的资源池配置至少可以包括以下情况。
例如,一种情况可以是资源池i、j、r、l都是配置给UE 1、UE 2和UE 3的资源池,即三个UE共享这四个资源池。在某个时隙,假设仅资源池i内有信息发送给UE1,并且仅资源池l内存在UE 2发送的PSFCH,由于二者均位于UE 1的BWP内,所以UE 1在接收时的AGC估计会受到UE 2的PSFCH的影响。
例如,一种情况可以是仅资源池i、j是配置给UE 1的资源池,而资源池l、r分别是配置给UE 2和UE 3的资源池,这是因为一个UE的资源池数目是可配的,例如UE 1的BWP内最多可以被配置包括i、j、r、l一共四个资源池,但当前UE 1只被配置了两个资源池,即资源池i、j,而未被UE 1使用的资源池l、r被配置给UE 2、UE 3等其他设备使用,虽然资源池l、r没有被配置给UE 1,但由于资源池l、r仍位于UE 1的BWP内,UE 1在接收时的AGC估计仍然会受到来自资源池l、r的PSFCH的影响。
图18是本发明实施例的资源池配置的另一示意图。例如图18所示,属于UE 1的资源池i和资源池j以频分复用方式共存于UE 1的BWP内。假设资源池i和j均需要PSFCH长度配置,通过为资源池i和资源池j配置相同的PSFCH长度,可以将UE 1在资源池i的一个时隙内的AGC估计次数降低为最大两次。对于某一个资源池l,如果该资源池l与资源池i和j形成频分复用,或者与资源池i和j在时频资源上有重合,则可以将资源池l的PSFCH长度配置为与资源池i和j相同。
对于上述PSFCH长度配置,PSFCH长度可以作为资源池的参数之一,例如连同资源池的时域、频域位置等参数,在配置资源池时进行配置;PSFCH长度也可以独立于资源池进行配置,并通过指示该PSFCH长度作用于哪个资源池,建立起PSFCH长度与资源池的关联和对应关系。对于上述配置,其采用的具体实施方式可以包括系统信息(MIB/SIB)、RRC信令、DCI信令和SCI信令和预配置中的至少一种。每个资源池可以独立被配置或关联一个PSFCH长度,每个资源池可以有一个PSFCH长度。
图19是本发明实施例的多个设备进行边链路资源复用的另一示意图,与图13相比,在时频资源上有重叠的不同设备的不同资源池的PSFCH长度均相同。图20是本发明实施例的多个设备进行边链路资源复用的另一示意图,与图15相比,频分复用的不同设备的不同资源池的PSFCH长度均相同。
例如,可以既使用RRC信令和/或系统信息为每个资源池半静态地配置PSFCH长度,也可以使用SCI信令和/或DCI信令动态配置PSFCH长度,其中动态配置的 PSFCH长度可以覆写(override)半静态配置的PSFCH长度,即当二者不一致时,以动态配置的PSFCH长度为准。
例如,通过RRC信令为某一资源池配置了第一PSFCH长度,但SCI信令指示某一时隙具有第二PSFCH长度,此时该时隙内的PSFCH长度为第二PSFCH长度,即以SCI指示为准。半静态配置更易于实现时隙内多个PSFCH长度的对齐,动态配置可以根据负载或覆盖(coverage)需求更灵活、准确地调整PSFCH长度,二者结合可以更加高效地支持PSFCH复用。
再例如,可以为一组时频资源配置或预配置一个PSFCH长度。与上述以资源池为单位配置PSFCH的不同之处在于,这里的一组时频资源是与现有发送/接收资源池独立地进行配置的。对于一组时频资源的具体配置方法,可以使用与资源池相同的配置方法,例如按照TS 36.213的14.1.5小节所述方法,并将其中的“子帧”替换为“时隙”。PSFCH长度的作用范围为其所关联的一组时频资源。由于一组时频资源独立于资源池进行配置,这一组时频资源可以与现有资源池不同,也可以与现有资源池相同。
再例如,每个BWP可以配置或预配置一个PSFCH长度,每个BWP有一个PSFCH长度。再例如,每个载波或成员载波(carrier或component carrier)可以配置或预配置一个PSFCH长度,每个载波有一个PSFCH长度。
再例如,所述长度信息被预定义。例如,标准中规定PSFCH长度,PSFCH具有固定的长度。
对于上述以BWP或载波为粒度的PSFCH长度配置,可以容易地从资源池的PSFCH长度配置扩展而来,例如,BWP或载波的PSFCH长度可以不被配置或配置为零,PSFCH长度可以作为BWP或载波的参数之一进行配置,也可以独立地配置,等等,不再一一赘述。
以上从PSFCH对AGC的影响角度说明了指示PSFCH长度的必要性。实际上,指示的长度信息不局限于PSFCH长度,也可以扩展到其他场景。
图21是本发明实施例的边链路资源的另一示意图,例如图21所示,使用制式1(numerology 1)的UE 1与使用numerology 2的UE 2存在频分复用或者UE 1受到UE 2干扰。由于不同numerology具有不同的子载波间隔,因此时隙长度不同。由于UE 2的两个时隙(slot 1和slot 2)不一定同时有信息发送,或者slot 1和slot 2内分别有不同的设备发送,因此UE 1在一个时隙内的接收功率也可能发生变化,从而也 需要进行多次AGC估计。对于图21,可以将numerology 2的时隙长度作为一种长度信息通知给UE 1,从而使UE 1能够进行更加准确的AGC估计。
图22是本发明实施例的边链路资源的另一示意图,例如图22所示,尽管UE 1和UE 2使用相同的numerology,但UE 2使用迷你时隙(或者称为小时隙、mini-slot或non-slot)发送,由于时域上信息发送的粒度不同,也会造成与图21类似的结果。对于图22,可以将迷你时隙长度作为一种长度信息通知给UE 1,从而使UE 1能够进行更加准确的AGC估计。
图21和图22仅作为示例进行了示意性说明,不同numerology的时隙长度可以具有其他多种倍数关系,时隙和迷你时隙的长度也可以有其他多种倍数关系,不一一列举。另外,可以扩展到图21和图22的组合,例如UE 2可以使用与UE 1不同的numerology,并同时使用迷你时隙。长度信息的配置可以使用之前所述的配置PSFCH长度的任意方法,不再赘述。
以上各个实施例仅对本发明实施例进行了示例性说明,但本发明不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
由上述实施例可知,第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及所述第二设备根据所述长度信息与第一设备进行边链路通信。由此,所述第二设备能够根据所述长度信息对所述第一部分进行处理,从而能够提高边链路传输的性能(例如提高AGC估计的准确性)。
实施例2
本发明实施例提供一种边链路资源复用方法,该实施例2可以单独地实施,也可以和实施例1结合起来实施。本实施例2与实施例1相同的内容不再赘述。
在本发明实施例中,第二设备在一个时隙内与第一设备进行边链路信息的发送和/或接收;其中,所述时隙至少包括第一部分和第二部分;所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的所述第二部分被配置有第二解调参考信号。
由实施例1可以看到PSFCH对与其复用的PSSCH的影响,图23是本发明实施例的边链路资源的另一示意图,图24是本发明实施例的边链路资源的另一示意图, 示出了两种PSFCH时隙结构对PSSCH的影响。如图23和24所示,位于时隙后部的PSSCH与PSFCH复用,如前所述,这里的复用可以是频分复用,也可以是复用在一组重叠的时频资源内,从而PSSCH受到PSFCH的干扰。
由于受PSFCH复用影响,时隙后部的PSSCH与时隙前部的PSSCH需要独立进行AGC估计,因此即使PSSCH在一个时隙内发送,时隙内的前部PSSCH和后部PSSCH需要独立的AGC估计符号。例如,图23中时隙后部PSSCH之前的AGC 2符号和图24中时隙后部PSSCH之前的GUARD 2&AGC 2符号可以被用作该PSSCH的AGC估计符号。
如果沿用NR Rel-15的DM-RS位置配置方法,由于PSSCH使用整个时隙传输,用于PSSCH解调的DM-RS的位置将取决于整个时隙的长度,具体DM-RS位置可以参见标准TS 38.211f30的6.4.1.1小节。然而,重用NR的DM-RS配置可能导致DM-RS符号与AGC符号发生碰撞,即某一DM-RS符号位于后部PSSCH的AGC符号位置,例如DM-RS位于图23中的AGC 2符号或图24中的GUARD 2&AGC 2符号。考虑到PSFCH长度也可以是可配置的或可变的,上述DM-RS符号与AGC符号的碰撞很有可能发生。由于AGC符号不能用于解调,位于AGC符号位置的DM-RS将不能被使用,因此造成信道估计性能损失。
为解决这一问题,当PSSCH在整个时隙发送时,不根据整个时隙长度来确定DM-RS位置,而分别根据时隙内前部PSSCH和后部PSSCH所占的符号长度(排除掉保护间隔和AGC符号)独立决定前后两部分DM-RS的位置,即为前部PSSCH和后部PSSCH独立配置DM-RS。
如图23和24所示,例如在一个时隙内使用两种独立的DM-RS配置,即DM-RS配置#1和DM-RS配置#2,DM-RS配置#1用于决定前部PSSCH的DM-RS符号位置,其取决于前部PSSCH所占的符号数(除去保护间隔和AGC符号),DM-RS配置#2用于决定后部PSSCH的DM-RS符号位置,其取决于后部PSSCH所占的符号数(除去保护间隔和AGC符号)。无论使用一种DM-RS配置还是两种DM-RS配置,对DM-RS位置的具体配置方法不做限制,例如可以使用TS 38.211f30的6.4.1.1小节的方法。总之,DM-RS符号不位于时隙内的保护间隔和AGC符号位置。
在一个实施例中,所述第一解调参考信号和/或所述第二解调参考信号被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多 个时隙,在频域上包含一个或多个资源块。
在一个实施例中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
对于DM-RS位置,在一个时隙内使用一种DM-RS配置和在一个时隙内使用多种DM-RS配置可以共存。例如,对于配置了PSFCH长度并且PSFCH长度不为零的资源池,该资源池可以在一个时隙内使用多种独立的DM-RS配置,例如图23或图24所示;对于没有配置PSFCH长度或者PSFCH长度为零的资源池,该资源池可以在一个时隙内使用一种DM-RS配置,例如沿用NR Rel-15的DM-RS配置方法。
图25是本发明实施例的资源池配置的另一示意图,如图25所示,对于资源池i,可以配置两种独立的DM-RS配置,对于资源池j,可以配置一种DM-RS配置。通过配置两种独立的DM-RS,能够提高边链路信道估计的准确性。
实施例3
本发明实施例提供一种边链路资源复用方法,该实施例3可以单独地实施,也可以和实施例1结合起来实施,还可以和实施例2结合起来实施,也可以和实施例1、2均结合起来实施。本实施例3与实施例1、2相同的内容不再赘述。
在本发明实施例中,第二设备在一个时隙内与第一设备进行边链路信息的发送和/或接收;其中,在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
图26是本发明实施例的边链路资源的另一示意图,如图26所示,例如对于UE 1,其可能需要在某一时隙内向UE 2发送PSCCH和PSSCH,并且在该时隙内通过PSFCH向UE 3发送反馈信息,即UE 1支持与UE 2和与UE 3的两个单播会话。
功率控制对于单播具有重要意义,通过功率控制可以在满足自身业务需求的同时避免对其他设备造成干扰。然而,由于位于同一时隙内的PSCCH/PSSCH与PSFCH的目的设备不同,例如UE 1与UE 2之间的距离远小于UE 1与UE 3之间的距离,通过功率控制确定的发送功率也可能不同。
例如图26所示,PSCCH/PSSCH的发送功率为Pm,而PSFCH的发送功率为Pn;通过功率控制确定最终发送功率的具体过程可以参见TS 38.213的第7节,这里不再 赘述。因此,UE 1需要在一个时隙内进行功率的调整,即符号级的功率调整,类比于NR Rel-15时隙级(或子帧级)的功率调整,如此动态的功率调整(符号级的功率调整)将增加设备的硬件实现复杂度,对设备能力增加更高的要求。
为解决这一问题,可以令UE 1选择PSCCH/PSSCH和PSFCH中较大的功率作为最终的发送功率,即P=max{Pm,Pn},并在时隙内始终使用功率P对PSCCH、PSSCH和PSFCH进行发送。对于Pm和Pn中较小的发送功率Pmin=min{Pm,Pn}而言,调整后的发送功率P高于由功率控制确定的原始功率值Pmin,并且Pmin的接收设备不知道实际发送功率进行了调整。
在一个实施例中,所述至少两种发送功率包括作为所述最大的发送功率的第一发送功率以及小于所述最大的发送功率的第二发送功率。
在一个实施例中,对于所述第二发送功率,使用相位调制方式将与所述第二发送功率相关联的信息进行发送。例如,可以使用边链路控制信息(SCI)对所述相位调制方式进行指示。
例如,为了不影响该设备正常接收,UE 1可以使用相位调制方式(如QPSK等调制方式)向其发送信息,相应地码率也需要根据相位调制方式进行调整,并在SCI中将实际使用的调制编码方式通知给Pmin的接收设备,由于功率大小不影响相位调制符号的解调性能,接收该相位调制符号(对应功率Pmin)的设备仍然可以正确接收解调,功率调整对于该设备是透明的。
在一个实施例中,可以使用如下至少之一的信令或信息将所述第一发送功率发送给所述第二发送功率的接收设备:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
在一个实施例中,也可以使用如下至少之一的信令或信息将所述第一发送功率和所述第二发送功率之间的差值或比值发送给所述第二发送功率的接收设备:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
例如,也可以让UE 1通过信令(例如SCI)将调整后的功率P通知给Pmin的接收设备。或者,也可以让UE 1通过信令(例如SCI)将功率的该变量ΔP=P-Pmin或ΔP=Pmin-P通知给Pmin的接收设备,从而接收设备能够恢复出实际发送功率P。
由此,当一个时隙内需要使用多于一种功率进行发送时,使用其中最大的功率进行发送,能够降低功率控制和功率调整的复杂度。
实施例4
本发明实施例提供一种边链路资源指示方法,由终端设备或网络设备对第二设备进行指示。其中该终端设备可以是与该第二设备进行边链路通信的第一设备,也可以是其他终端设备,本发明不限于此。
在本发明实施例中,终端设备或者网络设备向第二设备发送用于指示一个时隙中第一部分长度的长度信息;其中,所述长度信息被所述第二设备用于与第一设备进行边链路信息的发送和/或接收。
在一个实施例中,所述长度信息被所述第二设备用于对所述第一部分进行AGC。
在一个实施例中,所述长度信息包括如下至少之一:物理边链路反馈信道的长度、制式(Numerology)对应的时隙长度、小时隙(mini-slot)的长度。
在一个实施例中,所述边链路信息包括如下至少之一的信道所携带的信息:物理边链路控制信道、物理边链路共享信道、物理边链路反馈信道。
在一个实施例中,当在与所述一个时隙在时间上重合的时间范围内具有至少两个所述第一部分长度时,所述至少两个所述第一部分长度被配置为相同。
在一个实施例中,所述长度信息由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
在一个实施例中,所述边链路控制信息的循环冗余校验码(CRC)使用公共标识进行加扰。
在一个实施例中,所述边链路控制信息指示如下至少之一:物理边链路反馈信道的长度、物理边链路反馈信道所在时隙、物理边链路反馈信道所在符号、物理边链路反馈信道所在资源块、物理边链路共享信道所在时隙、物理边链路共享信道所在符号、物理边链路共享信道所在资源块。
在一个实施例中,所述长度信息被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
在一个实施例中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息、边链路控制信息、下行控制信息。
在一个实施例中,所述时频资源包括如下至少之一:接收资源池、发送资源池、 部分带宽(BWP)、载波、成员载波。
在一个实施例中,所述长度信息被预定义。
在一个实施例中,所述时隙中所述第一部分的前一个或多个符号承载用于所述自动增益控制的信息。
在一个实施例中,所述时隙中所述第一部分的前一个或多个符号作为保护间隔。
在一个实施例中,所述时隙中所述第一部分的前一个符号承载用于所述自动增益控制的信息并且作为保护间隔。
在一个实施例中,所述时隙还至少包括一个第二部分;以及所述时隙中所述第二部分的前一个或多个符号承载用于所述自动增益控制的信息和/或作为保护间隔。
在一个实施例中,所述第二部分为物理边链路控制信道和/或物理边链路共享信道。
在一个实施例中,所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的其他部分被至少配置有第二解调参考信号。
在一个实施例中,所述第一解调参考信号和/或所述第二解调参考信号被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
在一个实施例中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
在一个实施例中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
在一个实施例中,在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
由上述实施例可知,第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及所述第二设备根据所述长度信息与第一设备进行边链路通信。由此,所述第二设备能够根据所述长度信息对所述第一部分进行处理,从而能够提高边链路传输的性能(例如提高AGC估计的准确性)。
此外,所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的第二部分被配置有第二解调参考信号。通过独立地配置至少两种DM-RS,能够提高边链路信道估计的准确性。
此外,当一个时隙内需要使用多于一种功率进行发送时,使用其中最大的功率进行发送,能够降低功率控制和功率调整的复杂度。
实施例5
本发明实施例提供一种边链路资源复用装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。但本发明不限于此,例如可以是路侧设备或者网络设备,也可以是配置于路侧设备或者网络设备的某个或某些部件或者组件。本实施例5与实施例1至3相同的内容不再赘述。
图27是本发明实施例的边链路资源复用装置的一示意图,如图27所示,边链路资源复用装置2700包括:
接收单元2701,其接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及
处理单元2702,其根据所述长度信息与第一设备进行边链路信息的发送和/或接收。
在一个实施例中,所述处理单元还用于根据所述长度信息对所述第一部分进行自动增益控制。
在一个实施例中,所述长度信息包括如下至少之一:物理边链路反馈信道的长度、制式对应的时隙长度、小时隙的长度。
在一个实施例中,所述边链路信息包括如下至少之一的信道所携带的信息:物理边链路控制信道、物理边链路共享信道、物理边链路反馈信道。
在一个实施例中,当在与所述一个时隙在时间上重合的时间范围内具有至少两个所述第一部分长度时,所述至少两个所述第一部分长度被配置为相同。
在一个实施例中,所述长度信息由如下至少之一配置:无线资源控制信令、系统信息、边链路控制信息、下行控制信息。
在一个实施例中,所述边链路控制信息的循环冗余校验码使用公共标识进行加扰;所述边链路控制信息指示如下至少之一:物理边链路反馈信道的长度、物理边链路反馈信道所在时隙、物理边链路反馈信道所在符号、物理边链路反馈信道所在资源块、物理边链路共享信道所在时隙、物理边链路共享信道所在符号、物理边链路共享信道所在资源块。
在一个实施例中,所述长度信息被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
在一个实施例中,所述时频资源由如下至少之一配置:无线资源控制信令、系统信息、边链路控制信息、下行控制信息。
在一个实施例中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽、载波、成员载波。
在一个实施例中,所述长度信息被预定义。
在一个实施例中,所述时隙中所述第一部分的前一个或多个符号承载用于自动增益控制的信息;并且所述时隙中所述第一部分的前一个或多个符号作为保护间隔。
在一个实施例中,所述时隙还至少包括一个第二部分;以及所述时隙中所述第二部分的前一个或多个符号承载用于自动增益控制的信息和/或作为保护间隔。
在一个实施例中,所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的其他部分被至少配置有第二解调参考信号。
在一个实施例中,所述第一解调参考信号和/或所述第二解调参考信号被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
在一个实施例中,所述时频资源由如下至少之一配置:无线资源控制信令、系统信息、边链路控制信息、下行控制信息。
在一个实施例中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽、载波、成员载波。
在一个实施例中,在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
值得注意的是,以上仅对与本发明相关的各部件或模块进行了说明,但本发明不限于此。边链路资源复用装置2700还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图27中仅示例性示出了各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实 现;本发明实施并不对此进行限制。
由上述实施例可知,第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及所述第二设备根据所述长度信息与第一设备进行边链路通信。由此,所述第二设备能够根据所述长度信息对所述第一部分进行处理,从而能够提高边链路传输的性能(例如提高AGC估计的准确性)。
此外,所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的第二部分被配置有第二解调参考信号。通过独立地配置至少两种DM-RS,能够提高边链路信道估计的准确性。
此外,当一个时隙内需要使用多于一种功率进行发送时,使用其中最大的功率进行发送,能够降低功率控制和功率调整的复杂度。
实施例6
本发明实施例提供一种边链路资源指示装置。该装置例如可以是终端设备或网络设备,也可以是配置于终端设备或网络设备的某个或某些部件或者组件。但本发明不限于此,例如可以是路侧设备,也可以是配置于路侧设备的某个或某些部件或者组件。本实施例6与实施例4相同的内容不再赘述。
图28是本发明实施例的边链路资源指示装置的示意图,如图28所示,边链路资源指示装置2800包括:
发送单元2801,其向第二设备发送用于指示一个时隙中第一部分长度的长度信息;其中,所述长度信息被所述第二设备用于与第一设备进行边链路信息的发送和/或接收。
值得注意的是,以上仅对与本发明相关的各部件或模块进行了说明,但本发明不限于此。边链路资源指示装置2800还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。
此外,为了简单起见,图28中仅示例性示出各个部件或模块之间的连接关系或信号走向,但是本领域技术人员应该清楚的是,可以采用总线连接等各种相关技术。上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本发明实施并不对此进行限制。
由上述实施例可知,第二设备接收终端设备或者网络设备发送的指示一个时隙中 第一部分长度的长度信息;以及所述第二设备根据所述长度信息与第一设备进行边链路通信。由此,所述第二设备能够根据所述长度信息对所述第一部分进行处理,从而能够提高边链路传输的性能(例如提高AGC估计的准确性)。
此外,所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的第二部分被配置有第二解调参考信号。通过独立地配置至少两种DM-RS,能够提高边链路信道估计的准确性。
此外,当一个时隙内需要使用多于一种功率进行发送时,使用其中最大的功率进行发送,能够降低功率控制和功率调整的复杂度。
实施例7
本发明实施例还提供一种通信系统,可以参考图1,与实施例1至6相同的内容不再赘述。在本实施例中,通信系统100可以包括:
第一设备102,其与第二设备103进行边链路通信;以及
第二设备103,其接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及根据所述长度信息与所述第一设备102进行边链路信息的发送和/或接收。
如图1所示,通信系统100还可以包括:
网络设备101,其为第一设备102和/或第二设备103提供服务。例如,网络设备101向第二设备103发送用于指示一个时隙中第一部分长度的长度信息。
本发明实施例还提供一种网络设备,例如可以是基站,但本发明不限于此,还可以是其他的网络设备。
图29是本发明实施例的网络设备的构成示意图。如图29所示,网络设备2900可以包括:处理器2910(例如中央处理器CPU)和存储器2920;存储器2920耦合到处理器2910。其中该存储器2920可存储各种数据;此外还存储信息处理的程序2930,并且在处理器2910的控制下执行该程序2930。
例如,处理器2910可以被配置为执行程序而实现如实施例4所述的边链路资源指示方法。例如处理器2910可以被配置为进行如下的控制:向第二设备发送用于指示一个时隙中第一部分长度的长度信息;其中,所述长度信息被所述第二设备用于与第一设备进行边链路信息的发送和/或接收。
此外,如图29所示,网络设备2900还可以包括:收发机2940和天线2950等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备2900也并不是必须要包括图29中所示的所有部件;此外,网络设备2900还可以包括图29中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种终端设备,但本发明不限于此,还可以是其他的设备。
图30是本发明实施例的终端设备的示意图。如图30所示,该终端设备3000可以包括处理器3010和存储器3020;存储器3020存储有数据和程序,并耦合到处理器3010。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
例如,处理器3010可以被配置为执行程序而实现如实施例1所述的边链路资源复用方法。例如处理器3010可以被配置为进行如下的控制:接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及根据所述长度信息与第一设备进行边链路信息的发送和/或接收。
再例如,处理器3010可以被配置为执行程序而实现如实施例2所述的边链路资源复用方法。例如处理器3010可以被配置为进行如下的控制:在一个时隙内与第一设备进行边链路信息的发送和/或接收;其中,所述时隙至少包括第一部分和第二部分;所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的所述第二部分被配置有第二解调参考信号。
再例如,处理器3010可以被配置为执行程序而实现如实施例3所述的边链路资源复用方法。例如处理器3010可以被配置为进行如下的控制:在一个时隙内与第一设备进行边链路信息的发送和/或接收;其中,在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
如图30所示,该终端设备3000还可以包括:通信模块3030、输入单元3040、显示器3050、电源3060。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备3000也并不是必须要包括图30中所示的所有部件,上述部件并不是必需的;此外,终端设备3000还可以包括图30中没有示出的部件,可以参考现有技术。
本发明实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行实施例1至3所述的边链路资源复用方法或实施例4所 述的边链路资源复用方法。
本发明实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行实施例1至3所述的边链路资源复用方法或实施例4所述的边链路资源指示方法。
本发明实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所述程序使得所述网络设备执行实施例1至3所述的边链路资源复用方法或实施例4所述的边链路资源复用方法。
本发明实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行实施例1至3所述的边链路资源复用方法或实施例4所述的边链路资源指示方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本发明所描述功能的通用处理器、数字信号处理器(DSP)、专 用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记1、一种边链路资源复用方法,包括:
第二设备接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及
所述第二设备根据所述长度信息与第一设备进行边链路信息的发送和/或接收。
附记2、根据附记1所述的方法,其中,
所述第二设备根据所述长度信息对所述第一部分进行自动增益控制。
附记3、根据附记1或2所述的方法,其中,所述长度信息包括如下至少之一:物理边链路反馈信道的长度、制式(Numerology)对应的时隙长度、小时隙(mini-slot)的长度。
附记4、根据附记1至3任一项所述的方法,其中,所述边链路信息包括如下至少之一的信道所携带的信息:物理边链路控制信道、物理边链路共享信道、物理边链路反馈信道。
附记5、根据附记1至4任一项所述的方法,其中,当在与所述一个时隙在时间上重合的时间范围内具有至少两个所述第一部分长度时,所述至少两个所述第一部分长度被配置为相同。
附记6、根据附记1至5任一项所述的方法,其中,所述长度信息由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记7、根据附记6所述的方法,其中,所述边链路控制信息的循环冗余校验码 (CRC)使用公共标识进行加扰。
附记8、根据附记7所述的方法,其中,所述边链路控制信息指示如下至少之一:物理边链路反馈信道的长度、物理边链路反馈信道所在时隙、物理边链路反馈信道所在符号、物理边链路反馈信道所在资源块、物理边链路共享信道所在时隙、物理边链路共享信道所在符号、物理边链路共享信道所在资源块。
附记9、根据附记6所述的方法,其中,当某一时隙内由所述边链路控制信息(SCI)和/或所述下行控制信息(DCI)配置的第一长度信息与由所述无线资源控制(RRC)信令和/或所述系统信息(SI)配置的第二长度信息不同时,该时隙的长度信息被确定为所述第一长度信息。
附记10、根据附记1至9任一项所述的方法,其中,所述长度信息被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
附记11、根据附记10所述的方法,其中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息、边链路控制信息、下行控制信息。
附记12、根据附记10或11所述的方法,其中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
附记13、根据附记1至5任一项所述的方法,其中,所述长度信息被预定义。
附记14、根据附记1至13任一项所述的方法,其中,所述时隙中所述第一部分的前一个或多个符号承载用于所述自动增益控制的信息。
附记15、根据附记14所述的方法,其中,所述时隙中所述第一部分的前一个或多个符号作为保护间隔。
附记16、根据附记1至13任一项所述的方法,其中,所述时隙中所述第一部分的前一个符号承载用于所述自动增益控制的信息并且作为保护间隔。
附记17、根据附记1至16任一项所述的方法,其中,所述时隙还至少包括一个第二部分;以及所述时隙中所述第二部分的前一个或多个符号承载用于所述自动增益控制的信息和/或作为保护间隔。
附记18、根据附记17所述的方法,其中,所述第二部分为物理边链路控制信道和/或物理边链路共享信道。
附记19、根据附记1至18任一项所述的方法,其中,所述时隙中的所述第一部 分被配置有第一解调参考信号;以及所述时隙中的其他部分被至少配置有第二解调参考信号。
附记20、根据附记19所述的方法,其中,所述第一解调参考信号和/或所述第二解调参考信号被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
附记21、根据附记20所述的方法,其中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记22、根据附记20或21所述的方法,其中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
附记23、根据附记1至22任一项所述的方法,其中,
在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
附记24、根据附记23所述的方法,其中,所述至少两种发送功率包括作为所述最大的发送功率的第一发送功率以及小于所述最大的发送功率的第二发送功率。
附记25、根据附记24所述的方法,其中,对于所述第二发送功率,使用相位调制方式将与所述第二发送功率相关联的信息进行发送。
附记26、根据附记25所述的方法,其中,使用边链路控制信息(SCI)对所述相位调制方式进行指示。
附记27、根据附记24所述的方法,其中,使用如下至少之一的信令或信息将所述第一发送功率发送给所述第二发送功率的接收设备:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记28、根据附记24所述的方法,其中,使用如下至少之一的信令或信息将所述第一发送功率和所述第二发送功率之间的差值或比值发送给所述第二发送功率的接收设备:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记29、一种边链路资源复用方法,包括:
第二设备在一个时隙内与第一设备进行边链路信息的发送和/或接收;
其中,所述时隙至少包括第一部分和第二部分;所述时隙中的所述第一部分被配 置有第一解调参考信号;以及所述时隙中的所述第二部分被配置有第二解调参考信号。
附记30、根据附记29所述的方法,其中,所述第一解调参考信号和/或所述第二解调参考信号被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
附记31、根据附记30所述的方法,其中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记32、根据附记30或31所述的方法,其中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
附记33、一种边链路资源复用方法,包括:
第二设备在一个时隙内与第一设备进行边链路信息的发送和/或接收;
其中,在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
附记34、根据附记33所述的方法,其中,所述至少两种发送功率包括作为所述最大的发送功率的第一发送功率以及小于所述最大的发送功率的第二发送功率。
附记35、根据附记34所述的方法,其中,对于所述第二发送功率,使用相位调制方式将与所述第二发送功率相关联的信息进行发送。
附记36、根据附记35所述的方法,其中,使用边链路控制信息(SCI)对所述相位调制方式进行指示。
附记37、根据附记34所述的方法,其中,使用如下至少之一的信令或信息将所述第一发送功率发送给所述第二发送功率的接收设备:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记38、根据附记34所述的方法,其中,使用如下至少之一的信令或信息将所述第一发送功率和所述第二发送功率之间的差值或比值发送给所述第二发送功率的接收设备:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记39、一种边链路资源指示方法,包括:
终端设备或者网络设备向第二设备发送用于指示一个时隙中第一部分长度的长 度信息;
其中,所述长度信息被所述第二设备用于与第一设备进行边链路信息的发送和/或接收。
附记40、根据附记39所述的方法,其中,
所述长度信息被所述第二设备用于对所述第一部分进行自动增益控制。
附记41、根据附记39或40所述的方法,其中,所述长度信息包括如下至少之一:物理边链路反馈信道的长度、制式(Numerology)对应的时隙长度、小时隙(mini-slot)的长度。
附记42、根据附记39至41任一项所述的方法,其中,所述边链路信息包括如下至少之一的信道所携带的信息:物理边链路控制信道、物理边链路共享信道、物理边链路反馈信道。
附记43、根据附记39至42任一项所述的方法,其中,当在与所述一个时隙在时间上重合的时间范围内具有至少两个所述第一部分长度时,所述至少两个所述第一部分长度被配置为相同。
附记44、根据附记39至44任一项所述的方法,其中,所述长度信息由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记45、根据附记44所述的方法,其中,所述边链路控制信息的循环冗余校验码(CRC)使用公共标识进行加扰。
附记46、根据附记45所述的方法,其中,所述边链路控制信息指示如下至少之一:物理边链路反馈信道的长度、物理边链路反馈信道所在时隙、物理边链路反馈信道所在符号、物理边链路反馈信道所在资源块、物理边链路共享信道所在时隙、物理边链路共享信道所在符号、物理边链路共享信道所在资源块。
附记47、根据附记44所述的方法,其中,当某一时隙内由所述边链路控制信息(SCI)和/或所述下行控制信息(DCI)配置的第一长度信息与由所述无线资源控制(RRC)信令和/或所述系统信息(SI)配置的第二长度信息不同时,该时隙的长度信息被确定为所述第一长度信息。
附记48、根据附记39至47任一项所述的方法,其中,所述长度信息被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多 个时隙,在频域上包含一个或多个资源块。
附记49、根据附记48所述的方法,其中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息、边链路控制信息、下行控制信息。
附记50、根据附记48或49所述的方法,其中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
附记51、根据附记39至44任一项所述的方法,其中,所述长度信息被预定义。
附记52、根据附记39至51任一项所述的方法,其中,所述时隙中所述第一部分的前一个或多个符号承载用于所述自动增益控制的信息。
附记53、根据附记52所述的方法,其中,所述时隙中所述第一部分的前一个或多个符号作为保护间隔。
附记54、根据附记39至51任一项所述的方法,其中,所述时隙中所述第一部分的前一个符号承载用于所述自动增益控制的信息并且作为保护间隔。
附记55、根据附记39至54任一项所述的方法,其中,所述时隙还至少包括一个第二部分;以及所述时隙中所述第二部分的前一个或多个符号承载用于所述自动增益控制的信息和/或作为保护间隔。
附记56、根据附记55所述的方法,其中,所述第二部分为物理边链路控制信道和/或物理边链路共享信道。
附记57、根据附记39至56任一项所述的方法,其中,所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的其他部分被至少配置有第二解调参考信号。
附记58、根据附记57所述的方法,其中,所述第一解调参考信号和/或所述第二解调参考信号被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
附记59、根据附记58所述的方法,其中,所述时频资源由如下至少之一配置:无线资源控制(RRC)信令、系统信息(SI)、边链路控制信息(SCI)、下行控制信息(DCI)。
附记60、根据附记58或59所述的方法,其中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽(BWP)、载波、成员载波。
附记61、根据附记39至60任一项所述的方法,其中,
在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
附记62、一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至33任一项所述的资源复用方法,或者如附记34至61任一项所述的资源指示方法。
附记63、一种网络设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记34至61任一项所述的资源指示方法。

Claims (20)

  1. 一种边链路资源复用装置,包括:
    接收单元,其接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及
    处理单元,其根据所述长度信息与第一设备进行边链路信息的发送和/或接收。
  2. 根据权利要求1所述的装置,其中,所述处理单元还用于根据所述长度信息对所述第一部分进行自动增益控制。
  3. 根据权利要求1所述的装置,其中,所述长度信息包括如下至少之一:物理边链路反馈信道的长度、制式对应的时隙长度、小时隙的长度。
  4. 根据权利要求1所述的装置,其中,所述边链路信息包括如下至少之一的信道所携带的信息:物理边链路控制信道、物理边链路共享信道、物理边链路反馈信道。
  5. 根据权利要求1所述的装置,其中,当在与所述一个时隙在时间上重合的时间范围内具有至少两个所述第一部分长度时,所述至少两个所述第一部分长度被配置为相同。
  6. 根据权利要求1所述的装置,其中,所述长度信息由如下至少之一配置:无线资源控制信令、系统信息、边链路控制信息、下行控制信息。
  7. 根据权利要求6所述的装置,其中,所述边链路控制信息的循环冗余校验码使用公共标识进行加扰;
    所述边链路控制信息指示如下至少之一:物理边链路反馈信道的长度、物理边链路反馈信道所在时隙、物理边链路反馈信道所在符号、物理边链路反馈信道所在资源块、物理边链路共享信道所在时隙、物理边链路共享信道所在符号、物理边链路共享信道所在资源块。
  8. 根据权利要求1所述的装置,其中,所述长度信息被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
  9. 根据权利要求8所述的装置,其中,所述时频资源由如下至少之一配置:无线资源控制信令、系统信息、边链路控制信息、下行控制信息。
  10. 根据权利要求8所述的装置,其中,所述时频资源包括如下至少之一:接收 资源池、发送资源池、部分带宽、载波、成员载波。
  11. 根据权利要求1所述的装置,其中,所述长度信息被预定义。
  12. 根据权利要求1所述的装置,其中,所述时隙中所述第一部分的前一个或多个符号承载用于自动增益控制的信息;并且所述时隙中所述第一部分的前一个或多个符号作为保护间隔。
  13. 根据权利要求1所述的装置,其中,所述时隙还至少包括一个第二部分;以及所述时隙中所述第二部分的前一个或多个符号承载用于自动增益控制的信息和/或作为保护间隔。
  14. 根据权利要求1所述的装置,其中,所述时隙中的所述第一部分被配置有第一解调参考信号;以及所述时隙中的其他部分被至少配置有第二解调参考信号。
  15. 根据权利要求14所述的装置,其中,所述第一解调参考信号和/或所述第二解调参考信号被配置或预配置或预定义为与一个或一组时频资源相关;所述时频资源在时域上包含一个或多个时隙,在频域上包含一个或多个资源块。
  16. 根据权利要求15所述的装置,其中,所述时频资源由如下至少之一配置:无线资源控制信令、系统信息、边链路控制信息、下行控制信息。
  17. 根据权利要求15所述的装置,其中,所述时频资源包括如下至少之一:接收资源池、发送资源池、部分带宽、载波、成员载波。
  18. 根据权利要求1所述的装置,其中,在所述时隙中需要至少两种发送功率的情况下,使用所述至少两种发送功率中最大的发送功率作为所述时隙的发送功率。
  19. 一种边链路资源指示装置,包括:
    发送单元,其向第二设备发送用于指示一个时隙中第一部分长度的长度信息;
    其中,所述长度信息被所述第二设备用于与第一设备进行边链路信息的发送和/或接收。
  20. 一种通信系统,包括:
    第一设备,其与第二设备进行边链路通信;以及
    第二设备,其接收终端设备或者网络设备发送的指示一个时隙中第一部分长度的长度信息;以及根据所述长度信息与所述第一设备进行边链路信息的发送和/或接收。
PCT/CN2019/071196 2019-01-10 2019-01-10 边链路资源复用和指示方法以及装置 WO2020142991A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19908260.3A EP3910969A4 (en) 2019-01-10 2019-01-10 METHOD AND DEVICE FOR REUSE AND DISPLAY OF PAGE LINK RESOURCES
CN201980081676.9A CN113243117B (zh) 2019-01-10 2019-01-10 边链路资源复用和指示方法以及装置
JP2021539035A JP7448544B2 (ja) 2019-01-10 2019-01-10 サイドリンクリソース多重化方法及び装置、並びにサイドリンクリソース指示方法及び装置
PCT/CN2019/071196 WO2020142991A1 (zh) 2019-01-10 2019-01-10 边链路资源复用和指示方法以及装置
KR1020217020504A KR102557859B1 (ko) 2019-01-10 2019-01-10 사이드 링크 리소스 재사용 및 표시를 위한 방법 및 디바이스
US17/352,482 US11968667B2 (en) 2019-01-10 2021-06-21 Sidelink resource multiplexing and indication methods and apparatuses thereof
JP2023175591A JP2023179649A (ja) 2019-01-10 2023-10-10 サイドリンクリソース多重化方法及び装置、並びにサイドリンクリソース指示方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071196 WO2020142991A1 (zh) 2019-01-10 2019-01-10 边链路资源复用和指示方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/352,482 Continuation US11968667B2 (en) 2019-01-10 2021-06-21 Sidelink resource multiplexing and indication methods and apparatuses thereof

Publications (1)

Publication Number Publication Date
WO2020142991A1 true WO2020142991A1 (zh) 2020-07-16

Family

ID=71520842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071196 WO2020142991A1 (zh) 2019-01-10 2019-01-10 边链路资源复用和指示方法以及装置

Country Status (6)

Country Link
US (1) US11968667B2 (zh)
EP (1) EP3910969A4 (zh)
JP (2) JP7448544B2 (zh)
KR (1) KR102557859B1 (zh)
CN (1) CN113243117B (zh)
WO (1) WO2020142991A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210329431A1 (en) * 2019-01-11 2021-10-21 Huawei Technologies Co., Ltd. Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
CN114375026A (zh) * 2020-10-15 2022-04-19 维沃移动通信有限公司 资源处理方法、装置及电子设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886348B1 (en) * 2019-01-11 2024-07-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Sidelink communication method, terminal device and network device
CN111525988A (zh) * 2019-02-02 2020-08-11 华为技术有限公司 一种反馈方法及终端设备
CN111435906B (zh) * 2019-03-27 2021-11-19 维沃移动通信有限公司 一种参考值的确定方法及终端
WO2020237496A1 (zh) * 2019-05-28 2020-12-03 北京小米移动软件有限公司 传输时间调整配置方法及装置
WO2021062723A1 (en) * 2019-09-30 2021-04-08 Nec Corporation Communication methods, devices and computer readable media therefor
US11968136B2 (en) * 2019-10-04 2024-04-23 Qualcomm Incorporated Demodulation reference signal (DMRS) transmission for sidelink communications
WO2021071234A1 (ko) * 2019-10-07 2021-04-15 엘지전자 주식회사 Nr v2x에서 psfch 자원을 선택하는 방법 및 장치
WO2021221363A1 (ko) * 2020-04-28 2021-11-04 엘지전자 주식회사 Nr v2x에서 psfch 오버헤드를 기반으로 sl 통신을 수행하는 방법 및 장치
US11689325B2 (en) * 2020-12-16 2023-06-27 Qualcomm Incorporated Feedback transmission via a sidelink feedback channel resource of a sidelink resource pool
US11784769B2 (en) * 2021-06-22 2023-10-10 Qualcomm Incorporated AGC aspects of sidelink DMRS bundling
US20230051721A1 (en) * 2021-08-11 2023-02-16 Qualcomm Incorporated Short reference signals for sidelink communication
US12022459B2 (en) * 2021-09-23 2024-06-25 Qualcomm Incorporated Sidelink resource configuration for a slot with multiple mini-slots and a feedback channel
CN114340009B (zh) * 2021-12-15 2023-05-26 上海移远通信技术股份有限公司 无线通信方法、装置、设备及存储介质
US20230224830A1 (en) * 2022-01-11 2023-07-13 Qualcomm Incorporated Sidelink slots with multiple automatic gain control symbols
US12114272B2 (en) 2022-01-11 2024-10-08 Qualcomm Incorporated Gain control in sidelink
US20230224829A1 (en) * 2022-01-11 2023-07-13 Qualcomm Incorporated Using automatic gain control symbol to indicate sidelink mini-slot
US20230284203A1 (en) * 2022-03-01 2023-09-07 Qualcomm Incorporated Continuous transmission grants in sidelink communication networks
WO2024032548A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 信息传输的方法和装置
CN117676886A (zh) * 2022-08-12 2024-03-08 华为技术有限公司 通信方法及装置
WO2024077427A1 (zh) * 2022-10-10 2024-04-18 北京小米移动软件有限公司 一种psfch传输功率的配置方法及装置
WO2024087116A1 (zh) * 2022-10-27 2024-05-02 华为技术有限公司 一种通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517275A (zh) * 2012-06-27 2014-01-15 上海贝尔股份有限公司 设备到设备通信的方法和装置
CN108419295A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种终端与终端之间通信的方法、网络侧设备和终端
WO2018175528A1 (en) * 2017-03-23 2018-09-27 Intel Corporation User equipment (ue) and methods for vehicle-to-vehicle (v2v) sidelink communication in accordance with a short transmission time interval (tti)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021921A1 (ko) * 2014-08-08 2016-02-11 주식회사 아이티엘 D2d 신호의 송수신 방법 및 장치
US11088808B2 (en) * 2017-01-13 2021-08-10 Lg Electronics Inc. Method and terminal for transmitting HARQ ACK/NACK signal using sidelink
EP3895494A4 (en) * 2018-12-14 2022-11-02 Fg Innovation Company Limited METHODS AND APPARATUS FOR LIMITING SIDE LINK COMMUNICATIONS COLLISION IN WIRELESS COMMUNICATIONS SYSTEMS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517275A (zh) * 2012-06-27 2014-01-15 上海贝尔股份有限公司 设备到设备通信的方法和装置
CN108419295A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种终端与终端之间通信的方法、网络侧设备和终端
WO2018175528A1 (en) * 2017-03-23 2018-09-27 Intel Corporation User equipment (ue) and methods for vehicle-to-vehicle (v2v) sidelink communication in accordance with a short transmission time interval (tti)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on Physical Layer Structures for NR V2X", 3GPP DRAFT; R1-1813866, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 11, XP051480072 *
See also references of EP3910969A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210329431A1 (en) * 2019-01-11 2021-10-21 Huawei Technologies Co., Ltd. Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
CN114375026A (zh) * 2020-10-15 2022-04-19 维沃移动通信有限公司 资源处理方法、装置及电子设备

Also Published As

Publication number Publication date
JP7448544B2 (ja) 2024-03-12
EP3910969A4 (en) 2022-01-05
KR20210095695A (ko) 2021-08-02
JP2022517921A (ja) 2022-03-11
CN113243117A (zh) 2021-08-10
US11968667B2 (en) 2024-04-23
US20210314933A1 (en) 2021-10-07
KR102557859B1 (ko) 2023-07-20
EP3910969A1 (en) 2021-11-17
JP2023179649A (ja) 2023-12-19
CN113243117B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2020142991A1 (zh) 边链路资源复用和指示方法以及装置
CN111758233B (zh) 调度请求和ack/nack的优先化
US10567286B2 (en) Congestion control for LTE-V2V
US11038567B2 (en) Adaptive autonomous uplink communication design
US9913264B2 (en) Compact downlink control information for machine type communications
EP3545720B1 (en) Method and device for transmitting downlink control information
CN112640542B (zh) 参考信号的发送和接收方法以及装置
US20210400635A1 (en) Feedback Signaling for Sidelink
CN113767585A (zh) 利用下行链路(dl)半持久调度的针对多个物理下行链路共享信道(pdsch)的混合自动重传请求(harq)反馈
WO2021003620A1 (zh) 下行信号传输的方法和设备
US11356163B2 (en) Multiplexing of CSI with SL-SCH for sidelink communications
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
WO2020142925A1 (zh) 上行控制信息的发送和接收方法以及装置
WO2020142987A1 (zh) 边链路信息的发送和接收方法以及装置
US11956780B2 (en) Method and device for transmitting and receiving HARQ-ACK information in wireless communication system
US20240323733A1 (en) Method and system for measurement operation for multicast and broadcast services in 5g
US20230118350A1 (en) Method and apparatus for feeding back harq-ack in wireless communication system
US20230327838A1 (en) Method and apparatus for multicast communication
US20240073889A1 (en) Extending uplink communications by user equipment cooperation
US11678341B2 (en) Methods and apparatus for scheduling of multiple PUSCH/PDSCH
US11546835B2 (en) Channel occupancy management of new radio sidelink in a star topology of user equipment
US20230269757A1 (en) Method and apparatus for multicast communication
EP4429156A1 (en) Method and device for transmitting and receiving group-common information in wireless communication system
WO2024031509A1 (zh) 转发器及其传输方法、网络设备和通信系统
US20230353293A1 (en) Feedback information transmitting method and apparatus, and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217020504

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021539035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019908260

Country of ref document: EP

Effective date: 20210810