WO2024026896A1 - 信息处理方法、信息发送方法和装置 - Google Patents

信息处理方法、信息发送方法和装置 Download PDF

Info

Publication number
WO2024026896A1
WO2024026896A1 PCT/CN2022/110717 CN2022110717W WO2024026896A1 WO 2024026896 A1 WO2024026896 A1 WO 2024026896A1 CN 2022110717 W CN2022110717 W CN 2022110717W WO 2024026896 A1 WO2024026896 A1 WO 2024026896A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
csi
synchronization signal
signal block
terminal device
Prior art date
Application number
PCT/CN2022/110717
Other languages
English (en)
French (fr)
Inventor
路杨
张磊
蒋琴艳
Original Assignee
富士通株式会社
路杨
张磊
蒋琴艳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 路杨, 张磊, 蒋琴艳 filed Critical 富士通株式会社
Priority to PCT/CN2022/110717 priority Critical patent/WO2024026896A1/zh
Publication of WO2024026896A1 publication Critical patent/WO2024026896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of this application relate to the field of communication technology.
  • NR New Wireless
  • NR New Wireless
  • a large bandwidth such as 100MHz
  • NR needs to use a large number of ports (64T/64R), a shorter TTI (transmission time interval) (such as 1ms), NR base station baseband processing, digital front-end, etc.
  • the functional energy consumption overhead is significantly higher than that of LTE (Long Term Evolution) base stations.
  • NR's FR2 frequency range 2) operating frequency (>6GHz) is higher. The higher the frequency, the greater the signal path loss. Therefore, the design principle of NR is to use narrower beams to transmit signals farther.
  • the current FR1 frequency range 1 band AAU (active antenna unit) generally uses 192 antenna units and supports 64 channels, which is much larger than the maximum 8 channels of LTE.
  • the average energy consumption of an NR base station is more than three times that of an LTE base station. Nearly 50% of the cost for operators to deploy 5G (5th generation) networks is electricity expenses. More importantly, even when there is no business, the energy consumption of the NR base station is still very high, because even when there is no business, the base station still needs to send public signals, such as SSB (Synchronization Signal Block), SIB1 (First System Information Block) ) and SI (system information), etc., thus greatly reducing the energy usage efficiency of NR base stations. NR network energy saving is an urgent issue that needs to be solved.
  • the secondary cell (SCell) of the terminal device is supported in the intra-band carrier aggregation (CA) scenario.
  • the synchronization signal block (SSB) may not be sent, and the terminal device obtains downlink synchronization of the SCell from the SSB sent by the special cell (SpCell).
  • SpCell special cell
  • FIG. 1 is a schematic diagram of the network energy saving solution.
  • the network device can dynamically activate and deactivate based on the traffic volume, measurement reports and other information of the NR cell and its adjacent cells.
  • a cell is deactivated, it stops sending synchronization signal blocks, system information, etc. of the cell and stops receiving uplink signals sent by terminal equipment. In this way, SpCell's energy consumption can be saved when the business volume is low.
  • the terminal device when the cell enters the energy-saving state, the terminal device will switch to the adjacent cell and notify the adjacent NR network equipment or LTE network equipment that the NR cell has entered the energy-saving state.
  • the adjacent NR/LTE network equipment will bear the responsibility of the NR cell. Coverage area and business volume.
  • the adjacent NR/LTE network equipment will determine whether to request the NR cell that has entered the energy-saving state to resume normal operation based on its own business volume, measurement reports and other information. For example, when its own business volume reaches a certain threshold, it will trigger a request to enter energy-saving state.
  • the NR cell in the status resumes normal operation. When the NR cell resumes normal operation, some terminal equipment that previously switched to the adjacent NR/LTE cell may switch back to the NR cell.
  • embodiments of the present application provide an information processing method, information sending method and device.
  • an information sending device configured in a network side device, and the device includes:
  • a first sending unit that stops sending the first synchronization signal block of the first cell that should be sent to the terminal device, and sends CSI-RS to the terminal device;
  • the CSI-RS has a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell, and the first synchronization signal block and the second synchronization signal Blocks are in a quasi-colocated (QCL) relationship.
  • QCL quasi-colocated
  • an information processing device configured in a terminal device, and the device includes:
  • a first receiving unit that receives the CSI-RS sent by the network side device
  • a first processing unit that performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS;
  • the CSI-RS has a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell, and the first synchronization signal block and the second synchronization signal Blocks are in a quasi-colocated (QCL) relationship.
  • QCL quasi-colocated
  • a communication system includes: a terminal device and/or a network device.
  • the terminal device is configured with the information processing device of the aforementioned aspect.
  • the network device is configured with the aforementioned information processing device.
  • Information sending device is configured to send information to the terminal device.
  • the terminal device can perform downlink reception of the reference signal of the energy-saving cell or determine the measurement result of the energy-saving cell according to the CSI-RS, and the terminal device can perform random access and RLM/BFD in the energy-saving cell. /RRM measurement, in this way, the terminal equipment does not have to switch to other cells, which can avoid migrating the terminal equipment of the energy-saving state cell to the adjacent cell, causing service interruption and increasing the load level of the adjacent cell, and ensuring that the user will not be reduced when the cell enters the energy-saving state. experience.
  • Figure 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • Figure 2 is a schematic diagram of a distributed network energy-saving solution
  • FIG. 3 is a schematic diagram of the information processing method according to the embodiment of the present application.
  • Figure 4 is another schematic diagram of the information sending method according to the embodiment of the present application.
  • Figure 5 is a schematic diagram of the information sending method according to the embodiment of the present application.
  • Figure 6 is another schematic diagram of the information sending method according to the embodiment of the present application.
  • Figure 7 is a schematic diagram of an information sending device according to an embodiment of the present application.
  • Figure 8 is another schematic diagram of an information processing device according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of a network device according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or temporal order of these elements, and these elements should not be used by these terms. restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprises,” “includes,” “having” and the like refer to the presence of stated features, elements, elements or components but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that complies with any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Long Term Evolution Enhanced (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Enhanced
  • LTE-A Long Term Evolution Enhanced
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • communication between devices in the communication system can be carried out according to any stage of communication protocols, which may include but are not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and 5G. , New Wireless (NR, New Radio), etc., and/or other communication protocols currently known or to be developed in the future.
  • Network device refers to a device in a communication system that connects a terminal device to a communication network and provides services to the terminal device.
  • Network equipment may include but is not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, wireless network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc. In addition, it may also include remote radio head (RRH, Remote Radio Head), remote End wireless unit (RRU, Remote Radio Unit), relay or low-power node (such as femeto, pico, etc.), IAB (Integrated Access and Backhaul) node or IAB-DU or IAB-donor. And the term “base station” may include some or all of their functions, each of which may provide communications coverage to a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used. Where there is no confusion, the terms “cell” and “base station” are interchangeable.
  • the term "user equipment” (UE, User Equipment) or “terminal equipment” (TE, Terminal Equipment or Terminal Device) refers to a device that accesses a communication network through a network device and receives network services.
  • Terminal equipment can be fixed or mobile, and can also be called mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), IAB-MT, station (station), etc.
  • Terminal devices may include, but are not limited to, the following devices: Cellular Phone, Personal Digital Assistant (PDA), wireless modem, wireless communication device, handheld device, machine-type communication device, laptop computer, cordless phone , smartphones, smart watches, digital cameras, and more.
  • PDA Personal Digital Assistant
  • wireless modem wireless communication device
  • handheld device machine-type communication device
  • laptop computer machine-type communication device
  • cordless phone smartphones, smart watches, digital cameras, and more.
  • the terminal device can also be a machine or device for monitoring or measuring.
  • the terminal device can include but is not limited to: Machine Type Communication (MTC) terminals, Vehicle communication terminals, device-to-device (D2D, Device to Device) terminals, machine-to-machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • network side refers to one side of the network, which may be a certain base station or may include one or more network devices as above.
  • user side or “terminal side” or “terminal device side” refers to the side of the user or terminal, which may be a certain UE or may include one or more terminal devices as above.
  • device can refer to network equipment or terminal equipment.
  • uplink control signal and “uplink control information (UCI, Uplink Control Information)” or “physical uplink control channel (PUCCH, Physical Uplink Control Channel)” can be interchanged without causing confusion.
  • uplink data signal and “uplink data information” or “Physical Uplink Shared Channel (PUSCH, Physical Uplink Shared Channel)” can be interchanged;
  • downlink control signal and “downlink control information (DCI, Downlink Control Information)” or “physical downlink control channel (PDCCH, Physical Downlink Control Channel)” are interchangeable, and the terms “downlink data signal” and “downlink data information” are interchangeable.
  • Physical Downlink Shared Channel PDSCH, Physical Downlink Shared Channel
  • sending or receiving PUSCH can be understood as sending or receiving uplink data carried by PUSCH
  • sending or receiving PUCCH can be understood as sending or receiving uplink information carried by PUCCH
  • sending or receiving PRACH can be understood as sending or receiving uplink data carried by PRACH.
  • the uplink signal may include uplink data signals and/or uplink control signals, etc., and may also be called uplink transmission (UL transmission) or uplink information or uplink channel.
  • Sending an uplink transmission on an uplink resource can be understood as using the uplink resource to send the uplink transmission.
  • downlink data/signals/channels/information can be understood accordingly.
  • the high-level signaling may be, for example, Radio Resource Control (RRC) signaling; for example, it is called an RRC message (RRC message), and for example, it includes MIB, system information (system information), and dedicated RRC message; or it is called RRC IE (RRC information element).
  • RRC Radio Resource Control
  • high-level signaling may also be MAC (Medium Access Control) signaling; or it may be called MAC CE (MAC control element).
  • RRC Radio Resource Control
  • RRC message RRC message
  • MIB system information (system information), and dedicated RRC message
  • RRC IE RRC information element
  • high-level signaling may also be MAC (Medium Access Control) signaling; or it may be called MAC CE (MAC control element).
  • MAC CE Medium Access Control
  • FIG. 2 is a schematic diagram of a communication system according to an embodiment of the present application, schematically illustrating a terminal device and a network device as an example.
  • the communication system 200 may include a network device 201 and terminal devices 202 and 203 .
  • FIG. 2 only takes two terminal devices and one network device as an example for illustration, but the embodiment of the present application is not limited thereto.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC Ultra-Reliable and Low -Latency Communication
  • the terminal device 202 can send data to the network device 201, for example, using an authorized or authorization-free transmission method.
  • the network device 201 can receive data sent by one or more terminal devices 202 and feed back information to the terminal device 202, such as confirmed ACK/non-confirmed NACK information, etc. Based on the feedback information, the terminal device 202 can confirm the end of the transmission process, or can further New data transmission is performed, or data retransmission can be performed.
  • Figure 2 shows that both terminal devices 202 and 203 are within the coverage of the network device 201, but the application is not limited thereto. Neither of the two terminal devices 202 and 203 may be within the coverage range of the network device 201, or one terminal device 202 may be within the coverage range of the network device 201 and the other terminal device 203 may be outside the coverage range of the network device 201.
  • the embodiment of the present application provides an information processing method, which is explained from the terminal device side.
  • Figure 3 is a schematic diagram of an information processing method according to an embodiment of the present application, applied to a terminal device. As shown in Figure 3, the method includes:
  • the terminal device receives the CSI-RS sent by the network side device;
  • the terminal device performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS;
  • the CSI-RS is in a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell
  • the first synchronization signal block of the first cell is in a quasi-colocation relationship with the first synchronization signal block of the first cell.
  • the second synchronization signal block of the second cell is a quasi-co-located (QCL) relationship.
  • the network side may stop sending the synchronization signal blocks of one or more serving cells of the terminal device, or extend the sending period of the synchronization signal blocks (for example, from 20 ms to 320 ms). Stop as follows: Sending a synchronization block may also refer to extending the period of a synchronization signal block.
  • the synchronization signal block of the first cell (or first carrier) is called the first synchronization signal block.
  • the first cell is the serving cell that stops sending the synchronization signal block.
  • the first cell may be a special cell of the terminal device. (for example, the primary cell PCell or the primary and secondary cell PSCell), or it may be a non-special cell (for example, SCell).
  • the first cell is a special cell (SpCell) of the terminal device when it is in the connected state, or a special cell (SpCell) for the terminal device.
  • the cell selected or reselected when the device is in the idle or deactivated state is not limited to this in the embodiment of the present application. Therefore, the energy consumption overhead on the network side can be saved. Therefore, the first cell can also be called an energy-saving cell (or SSB-less cell).
  • the synchronization signal block (also called Synchronization Signal and PBCH block, SSB for short) may include a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and/or Physical layer broadcast channel (Physical Broadcast Channel, PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical layer broadcast channel
  • the synchronization signal block of the second cell is called the second synchronization signal block.
  • the second cell may be a special cell of the terminal device (such as the primary cell PCell or the primary and secondary cells PSCell), or it may be a non-special cell ( For example, SCell), the second cell (or second carrier) may also be called a reference cell or an anchor cell, and the embodiment of the present application is not limited to this.
  • the first synchronization signal block of the first cell and the second synchronization signal block of the second cell have a quasi-co-located QCL relationship, and the types of the QCL relationship include QCL type C and QCL type D.
  • the first synchronization signal block and the second synchronization signal block having a quasi-co-location relationship have the same index. In other words, the first SSB and the second SSB with the same index are in a quasi-co-location relationship. This quasi-co-location relationship can be implicitly indicated. Or it may be explicitly indicated by the second indication information. This indication method will be described later
  • the terminal cannot determine the measurement result of the first synchronization signal block based on the second synchronization signal block. Therefore, in one synchronization signal Within the block period, the number of the second synchronization signal blocks sent is not less than the number of the first synchronization signal blocks that should be sent. However, the first synchronization signal block of the first cell is different from the number of the first synchronization signal blocks that should be sent.
  • the subcarrier spacing, period and/or transmission power of the second synchronization signal block of the second cell may be the same or different.
  • the network side device can send the SSB configuration information (such as the configuration information of the first SSB and the configuration information of the second SSB) to the terminal side in advance, where the configuration information uses abstract syntax to mark the ASN.1 data format and can be expressed as:
  • the position of the SSB indicated by the ssb-PositionsInBurst information element of the second cell is not less than the position of the SSB indicated by the information element of the first cell, but the period ssb-periodicityServingCell, subcarrier spacing ssbSubcarrierSpacing, and transmission power ss-PBCH- BlockPower can be the same or different.
  • the CSI-RS is in a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell, and the type of the QCL relationship includes QCL type C and QCL type D, this quasi-co-location relationship can be indicated by CSI-RS resource configuration information, which will be explained later.
  • the terminal device may also receive the CSI-RS resource configuration information.
  • the CSI-RS resource may be configured by the first cell or the second cell or may be configured with the third cell. The embodiments of this application do not limit the different TRP configurations of the cell reference signal.
  • the terminal device may perform the first synchronization signal block of the first cell according to the CSI-RS.
  • the reference signal is used for downlink reception or to determine the measurement result of the first cell, and the terminal device can perform random access, CSI-RS or SSB-based RLM/BFD/RRM measurement in the first cell.
  • the terminal equipment does not have to be switched to other cells, and the migration of the terminal equipment in the energy-saving state cell to the adjacent cell can avoid business interruption and increase the load level of the adjacent cell, ensuring that the user experience will not be reduced when the cell enters the energy-saving state.
  • the network side device may instruct the network side device to stop sending the first SSB that should be sent through first indication information.
  • the first indication information may be represented by one or more bits.
  • the first indication information may also be Index of the first synchronization signal that should be sent to indicate stopping sending.
  • the network device of the first cell may send the first indication information before stopping sending the first SSB, and the first indication information may be carried by system information or a dedicated RRC message.
  • the first indication information may be a newly added information element in the system information or the dedicated RRC message.
  • the system information or the dedicated RRC signaling does not include the newly added information element, it represents all SSBs of the first cell. All are sent normally.
  • the system information or dedicated RRC signaling includes the newly added information element, it means that the first SSB of the first cell that should be sent stops sending.
  • the value of this information element is also used to indicate the index of the first SSB that should have stopped sending.
  • this information element can be represented by a bitmap. Each bit of the bitmap corresponds to the index of an SSB.
  • the information element can also use an N-bit value to indicate the purpose of stopping sending.
  • the sent SSB index value is not limited by this embodiment of the present application.
  • the network side device may send second indication information to instruct the terminal device to perform downlink reception of the first cell reference signal or determine the measurement result of the first cell through CSI-RS.
  • the sent second indication information may indicate the identity of the second cell or the resource identity of the CSI-RS.
  • the terminal device receives the second indication information indicating the identity of the second cell or the resource identity of the CSI-RS , indicating that the terminal equipment can perform downlink reception of the first cell reference signal or determine the measurement result of the first cell through the CSI-RS that has a quasi-co-location relationship with the second cell or the CSI-RS corresponding to the CSI-RS resource identifier.
  • the terminal equipment if the terminal equipment does not receive the second indication information, it cannot perform downlink reception of the first cell reference signal or determine the measurement result of the first cell through the CSI-RS. In this way, if the terminal equipment needs to To perform downlink reception of the first cell reference signal or determine the measurement result of the first cell, a wake-up signal needs to be sent so that the first SSB resumes transmission. Relevant embodiments of the wake-up signal will be described in the embodiment of the second aspect.
  • the second indication information is used to indicate that the first synchronization signal block and the second synchronization signal block are in a quasi-co-location relationship, so that the terminal equipment can be configured according to the quasi-co-location relationship with the second cell.
  • the related CSI-RS performs downlink reception of the first cell reference signal or determines the measurement result of the first cell.
  • the network device of the first cell may send second indication information before stopping sending the first SSB, and the second indication information may be carried by system information or a dedicated RRC message.
  • the second indication information may be a newly added information element in the system information or a dedicated RRC message, including the identifier of the second cell or the resource identifier of the CSI-RS, and the cell identifier may be (NCGI or PCI).
  • the resource identifier can be nzp-CRS-RS-ResourceID.
  • this information element is not included in the system information or dedicated RRC signaling, it means that the terminal equipment cannot perform downlink reception of the first cell reference signal or determine the measurement result of the first cell through CSI-RS.
  • the dedicated RRC signaling includes this information element, it means that the terminal equipment can perform downlink reception of the first cell reference signal or determine the measurement result of the first cell through CSI-RS.
  • the newly added information element may be a quasi-co-located cell identification information element, including identification information of the second cell, used to indicate the first synchronization signal block of the first cell and the second synchronization signal of the second cell. Blocks are quasi-colocated.
  • this information element is included in the system information or dedicated RRC signaling, it means that the terminal device can perform downlink reception of the first cell reference signal or determine the first cell through the CSI-RS that has a quasi-co-location relationship with the second cell. measurement results.
  • the following describes how the terminal equipment side determines whether there is a CSI-RS used for downlink reception of the first cell reference signal or determining the measurement result of the first cell.
  • the terminal device can use the CSI-RS resource to The configuration information determines whether the first SSB or the second SSB has a QCL relationship with the configured CSI-RS. If there is a QCL relationship, the terminal device can perform downlink reception of the first cell reference signal or determine the measurement result of the first cell through the CSI-RS.
  • the terminal device determines whether the first SSB or the second SSB has a quasi-co-location relationship (Type C/D) with the configured CSI-RS based on the non-zero power CSI-RS resource configuration information of the first cell or the second cell,
  • This CSI-RS can be used for beam management, time domain fine synchronization or L1-RSRP measurement.
  • the CSI-RS resource configuration information used for mobility measurement determine whether the first SSB or the second SSB has a quasi-co-location relationship (Type C/D) with the configured CSI-RS, which is used for L3 -RSRP measurement.
  • Non-zero power CSI-RS resource configuration uses abstract syntax notation ASN.1 data format can be expressed as:
  • the terminal device can determine that the SSB of the specific serving cell (ServCellIndex) of the terminal device has a quasi-co-location relationship with the CSI-RS through the QCL-Info in the NZP-CSI-RS resource configuration. If the serving cell (the cell indicated by ServCellIndex) stops sending SSB (first SSB), and the terminal device determines that the configured CSI-RS has a QCL relationship with the first SSB of the first cell, the terminal device can determine the pair of SSBs through the CSI-RS The first cell reference signal is received in downlink or the measurement result of the first cell is determined to initiate random access in the first cell (cell indicated by ServCellIndex) and perform RLM/BFD/RRM measurement.
  • the serving cell the cell indicated by ServCellIndex
  • the CSI-RS configuration for mobility measurement uses abstract syntax notation ASN.1 data format can be expressed as:
  • the terminal device can determine that the SSB of the specified cell (the cell indicated by PysCellId) has a quasi-colocation relationship with the CSI-RS through the associatedSSB field in the mobility management resource configuration of the CSI-RS. If the designated cell stops sending SSB (first SSB), and the terminal device determines that the configured CSI-RS has a QCL relationship with the first SSB of the first cell, the terminal device may determine to reference the first cell through the CSI-RS. The signal is received in the downlink or the measurement result of the first cell is determined to initiate random access in the first cell (the cell indicated by PysCellId) or the second cell and perform RLM/BFD/RRM measurement.
  • the resource identifier of the CSI-RS may be indicated according to the second indication information to explicitly indicate the CSI-RS used to perform downlink reception of the first cell reference signal or determine the measurement result of the first cell. Therefore, the terminal device receives The resource identifier (second indication information) of the CSI-RS obtained can determine that there is a CSI-RS used for downlink reception of the first cell reference signal or determining the measurement result of the first cell.
  • the resource identifier of the CSI-RS indicates The CSI-RS has a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell.
  • the network device may also send the resource configuration information of the specific CSI-RS.
  • the implementation of the resource configuration information of the specific CSI-RS may refer to the resource configuration information in 1) or 2) above, indicating that it is related to the first cell or the first cell.
  • the SSB of the second cell has a QCL relationship.
  • the network side device that sends/stops sending the first SSB of the first cell and the network side device that sends the CSI-RS may be the same network device or different network devices, wherein the CSI-RS and The first cell reference signal may be sent by the same or different TRP.
  • the network side device that sends the first indication information and the second indication information and receives the wake-up signal may also be the same or different network device as the network side device that sends/stops sending the first SSB.
  • the terminal device when receiving the second indication information, may perform downlink reception of the first cell reference signal according to the CSI-RS or determine the measurement result of the first cell. According to the measurement As a result, random access is performed on the first cell, and RLM/BFD/RRM measurements are performed. Details below.
  • the terminal device may determine the measurement result of the first cell according to the CSI-RS.
  • the measurement result includes: received power (RSRP), received quality (RSRQ), signal-to-interference ratio (SINR). A sort of.
  • the terminal device takes the first SSB as a measurement object.
  • the second measurement result of the CSI-RS is used as the first measurement result of the first SSB.
  • the measurement results include L1 measurement results for the first synchronization signal block, or L3 measurement results for the first synchronization signal block.
  • the terminal device can perform random access and RLM/BFD/RRM measurement based on the first measurement result.
  • the process of random access and RLM/BFD/RRM measurement can refer to the existing technology, which will be described below with examples.
  • the terminal device takes the CSI-RS as the measurement object and measures the L1 access power of the CSI-RS.
  • the terminal equipment selects for random access in the first cell based on the second measurement result of the CSI-RS that has a quasi-co-location relationship with the first SSB (replacing or replacing the first measurement result of the first synchronization signal block).
  • the first synchronization signal block entered.
  • the terminal equipment selects the second synchronization signal block for random access based on the second measurement result of the CSI-RS that has a quasi-co-location relationship with the second SSB, and determines that it is associated with the PRACH resource of the first cell.
  • the synchronization signal block is the second synchronization signal block.
  • the terminal device when performing RLM/BFD based on the first SSB, the terminal device takes CSI-RS as a measurement object.
  • the terminal device determines that the reference signal used for wireless link detection or beam failure detection is the CSI-RS, and the terminal device performs wireless communication of the first cell based on the second measurement result of the CSI-RS.
  • Link failure detection or beam failure detection the measurement result is the received power.
  • the terminal device when performing RRM measurement on the first SSB, the terminal device takes the CSI-RS as a measurement object and measures the L3 received power, reception quality or signal-to-interference ratio of the CSI-RS. The terminal device determines that the reference signal used for radio resource management measurement is the CSI-RS. Therefore, the terminal device performs radio resource management (RRM) of the first SSB based on the second measurement result of the CSI-RS. )Measurement.
  • RRM radio resource management
  • the terminal device when performing RRM measurement on the first cell, the terminal device takes the first cell as the measurement object and measures the L3 received power, reception quality or signal-to-interference ratio of the first cell. The terminal device calculates the RRM measurement result of the first cell according to the CSI-RS measurement result.
  • the terminal equipment when performing RRM measurement on the first cell, the terminal equipment takes the CSI-RS as the measurement object and measures the L3 received power, reception quality or signal-to-interference ratio of the CSI-RS. The terminal equipment measures the CSI-RS to perform RRM measurement of the first cell and determine the RRM measurement result of the first cell.
  • the terminal device can perform random access and RLM/BFD/RRM measurements based on the CSI-RS, which will be explained with examples below.
  • the terminal device may perform downlink reception of the first cell reference signal according to the CSI-RS (hereinafter referred to as the second CSI-RS).
  • the first cell reference signal includes: the first CSI-RS. RS.
  • the first CSI-RS and the first SSB are in a QCL relationship, and the second CSI-RS and the second SSB are in a QCL relationship. That is, the terminal device performs downlink reception of the first CSI-RS according to the second CSI-RS pair, and performs RLM/BFD/RRM measurement or non-contention random access based on the received first CSI-RS. They are explained below.
  • the terminal device when the terminal device receives the first CSI-RS that is in a quasi-co-located relationship with the first synchronization signal block, it receives the second downlink reception parameter of the second CSI-RS as the basis for receiving the first CSI. - the first downlink reception parameter of the RS, and receive the first CSI-RS according to the first downlink reception parameter.
  • the downlink reception parameters include Doppler offset, Doppler spread, average delay, delay spread, and spatial reception parameters. That is to say, the terminal device receives the second CSI-RS and uses the second downlink reception parameters The first CSI-RS is received as the first downlink reception parameter.
  • the terminal equipment when the terminal equipment receives the first CSI-RS that is in a quasi-co-located relationship with the first synchronization signal block, the terminal equipment determines that the first CSI-RS is consistent with the first CSI-RS of the first cell.
  • the quasi-co-location relationship of a synchronization signal block is the same as the quasi-co-location relationship of the first CSI-RS and the second CSI-RS, and the received second downlink reception parameter of the second CSI-RS is received. Describe the first CSI-RS. That is to say, the terminal device does not need to receive the first CSI-RS, but receives the second CSI-RS, and receives the first CSI-RS based on the second downlink reception parameter of the second CSI-RS.
  • the terminal device can perform RLM/BFD/RRM measurement or non-contention random access based on the first CSI-RS, which will be described with examples below.
  • the terminal device can also perform downlink reception of the first cell reference signal in combination with the second SSB. Or determine the measurement result of the first cell, that is, the terminal device performs downlink reception of the first cell reference signal according to the CSI-RS and the second SSB or determine the measurement result of the first cell.
  • the terminal device when the terminal device accesses the network after the first cell stops sending the first synchronization signal block, uses the CSI-RS and the second synchronization signal block of the second cell.
  • the second synchronization signal block performs downlink reception of the first cell reference signal or determines the measurement result of the first cell.
  • the terminal equipment when the terminal equipment measures CSI-RS, it needs to first perform receiving beamforming based on the first SSB with type-D quasi-co-location relationship. If the first cell does not send the first SSB, the terminal equipment cannot determine to receive the CSI-RS. beam. Therefore, if the terminal device accesses the network after the first cell stops transmitting the first SSB, the terminal device cannot perform CSI-RS reception beamforming. Since the second SSB has a QCL relationship with the first SSB with the same index, the terminal device can perform reception beamforming of the CSI-RS of the first cell according to the second SSB.
  • the terminal device can use the CSI-RS and the second SSB The measurement performs downlink reception of the first cell reference signal or determines the measurement result of the first cell.
  • QCL Type C/D quasi-co-location relationship
  • contention-based random access requires selecting the SSB for random access based on the received power (SS-RSRP) of the SSB currently initiating the random access cell.
  • SS-RSRP received power
  • the preamble sequence is selected on the corresponding RO resource and sent according to the mapping rules from SSB to RO.
  • contention-based random access is generally initiated in the PCell or PSCell of the terminal equipment in the connected state.
  • the uplink is out of synchronization and uplink data arrives in the RRC connected state.
  • LBT fails
  • Scheduling Request (SR) fails, there is no PUCCH resource available for SR and uplink data arrives in RRC connected state, there is positioning requirement, etc.
  • the terminal equipment For terminal equipment in the idle/deactivated state, the terminal equipment initiates contention-based random access in the resident cell, such as initial access in the RRC idle state, RRC connection recovery process in the RRC inactive state, other system information requests, RRC inactive Small data transmission in active state, etc.
  • contention-based random access such as initial access in the RRC idle state, RRC connection recovery process in the RRC inactive state, other system information requests, RRC inactive Small data transmission in active state, etc.
  • the terminal device in the connected state performs non-contention random access configured by RRC
  • the network device configures dedicated SSB-based random access resources for the terminal device
  • the terminal device also needs to be based on the SSB of the current random access cell.
  • the received power (SS-RSRP) selects the SSB for random access.
  • the UE determines the next available random access opportunity (RO) corresponding to the SSB, and sends the dedicated preamble configured by the network corresponding to the SSB on the RO.
  • RO random access opportunity
  • the network can also configure dedicated random access resources based on CSI-RS for non-contention random access.
  • the received power of CSI-RS is higher than the preset
  • the terminal device selects the dedicated preamble corresponding to the CSI-RS and the RO that sends the preamble.
  • the network can configure CSI-RS-based random access resources for the terminal device instead of configuring SSB-based dedicated random access resources.
  • the terminal device Since the SS-RSRP that needs to be measured during the random access process needs to be based on the synchronization reference signal (SS) in the SSB, if the PCell or PSCell cell of the terminal device or the cell where the terminal device resides stops sending SSB, the terminal device will not be able to complete the process normally. Random access.
  • SS synchronization reference signal
  • the physical layer of the terminal device uses the second measurement result (RSRP) of the CSI-RS to calculate the first SS-RSRP of the first SSB, and calculates the first SS-RSRP based on the second measurement result (RSRP) of the first SSB.
  • the first measurement result (SS-RSRP) of an SSB selects the first synchronization signal block for random access; one method is that the terminal equipment MAC layer can also use the CSI-RSRP that has a QCL relationship with the first SSB reported by the physical layer.
  • the second measurement result of the RS selects the first synchronization signal block for random access. For example, if the second measurement result of a CSI-RS is higher than the preset threshold, select the first SSB that has a QCL relationship with the CSI-RS for random access. Random access.
  • the terminal device selects the second SSB for random access based on the second measurement result of the CSI-RS that has a QCL relationship with the second SSB, and the terminal device determines the PRACH resource of the first cell.
  • the associated synchronization signal block is the second synchronization signal block that has a QCL relationship with the CSI-RS, that is, the SSB index corresponding to the SSB in the PRACH resource configuration (such as RO or preamble resource configuration) refers to the SSB index that has a QCL relationship with the CSI-RS.
  • the PRACH resource configuration includes the PRACH of CBRA configured with RACH-ConfigCommon, the PRACH of CFRA configured with RACH-ConfigDedicated, and the PRACH resource configuration of BFR configured with BeamFailureRecoveryConfig.
  • the terminal device when the terminal device initiates contention random access in the first cell, after selecting the second SSB, it determines according to the PRACH resource configuration in RACH-ConfigCommon and the index of the selected second SSB that the index corresponds to the second SSB.
  • Random access opportunity (RO) of the PRACH resource of a cell then randomly selects a preamble belonging to the first cell from the preamble group related to the second SSB index, and finally puts the selected preamble in the selected random
  • the access opportunity is sent on the corresponding resource.
  • the terminal device when the terminal device initiates SSB-based non-contention random access in the first cell, after selecting the second SSB for random access, the terminal device configures the PRACH resources belonging to the first cell according to the PRACH resources in RACH-ConfigDedicated. Random access opportunity (RO), and determine the dedicated preamble corresponding to the index belonging to the first cell according to the index of the selected second SSB.
  • RO Random access opportunity
  • the terminal device performs downlink reception of the first CSI-RS based on the second CSI-RS.
  • the terminal device uses the second downlink reception parameter for receiving the second CSI-RS as the first downlink reception parameter for receiving the first CSI-RS, and uses the first downlink reception parameter according to the first downlink reception parameter.
  • the row reception parameter receives the first CSI-RS.
  • the downlink reception parameters include Doppler offset, Doppler spread, average delay, delay spread, and spatial reception parameters.
  • the terminal device receives the second CSI-RS and uses the second downlink reception parameters As the first downlink reception parameter, the first CSI-RS is received.
  • the terminal device determines a quasi-colocation relationship between the first CSI-RS and the first synchronization signal block of the first cell and a quasi-colocation relationship between the first CSI-RS and the second CSI-RS.
  • the address relationship is the same, and the first CSI-RS is received according to the second downlink reception parameter for receiving the second CSI-RS.
  • the terminal device selects the dedicated preamble corresponding to the first CSI-RS and the RO to send the preamble. For example, when detecting beam failure, initiate a non-contention-based Beam failure recovery is randomly accessed.
  • the terminal device In the existing technology, if the terminal device is configured to perform wireless link or beam failure detection based on the SSB of the first cell, but the network device does not send the SSB of the first cell, the terminal device cannot complete RLM/BFD normally.
  • the terminal device first determines the CSI-RS related to the first SSB of the first cell or the second SSB and QCL of the second cell according to the aforementioned method, and when measuring the first synchronization signal block The second measurement result of the CSI-RS is used as the first measurement result of the first synchronization signal block. Or the terminal device determines that the reference signal for wireless link detection or beam failure detection based on the first SSB is CSI-RS, and the terminal device performs the first cell operation based on the second measurement result of the CSI-RS. Wireless link failure detection or beam failure detection.
  • the terminal device determines (believes) that the reference signal used for RLM or BFD is a CSI-RS that has a QCL relationship with the first SSB or the second SSB. , thereby performing an assessment of wireless link failure or beam failure of the first cell based on the received power of the CSI-RS.
  • the RLM reference signal configuration information can be expressed as: using abstract syntax tag ASN.1 data format:
  • the terminal device In the existing technology, if the terminal device is configured to perform RRM measurement based on the SSB of the first cell, including RRM measurement of the L3 received power, reception quality or signal-to-interference ratio of the SSB of the first cell, but the first cell does not send the first SSB, the terminal device cannot complete RRM measurement normally.
  • the terminal device first determines the CSI-RS related to the first SSB of the first cell or the second SSB and QCL of the second cell according to the aforementioned method, and the terminal device measures the first When synchronizing the signal block, the second measurement result of the CSI-RS is used as the first measurement result of the first synchronization signal block.
  • the terminal device determines that the reference signal for radio resource management based on the first SSB is a CSI-RS that has a QCL relationship with the first SSB or the second SSB, and the terminal device measures a second parameter of the CSI-RS.
  • the measurement results are used to perform radio resource management (RRM) measurements of the first cell.
  • RRM radio resource management
  • the terminal device measures the second cell and reports the measurement result of the second cell to the network as the measurement result of the first cell.
  • the network side may regard the RRM measurement results of the second cell as the measurement results of the first cell.
  • the second CSI-RS can be directly used as the measurement object.
  • the terminal device receives the first CSI-RS that is in a quasi-co-located relationship with the first synchronization signal block
  • the terminal device receives the second downlink reception parameter of the second CSI-RS as the basis for receiving the first CSI-RS.
  • the first downlink reception parameter of the RS is received, and the first CSI-RS is received according to the first downlink reception parameter.
  • the downlink reception parameters include Doppler offset, Doppler spread, average delay, delay spread, and spatial reception parameters.
  • the terminal device determines a quasi-colocation relationship between the first CSI-RS and the first synchronization signal block of the first cell and a quasi-colocation relationship between the first CSI-RS and the second CSI-RS.
  • the address relationship is the same, the first CSI-RS is received according to the second downlink reception parameter of the second CSI-RS, and RLM/BFD/RRM measurement based on the first CSI-RS is completed.
  • the terminal device can perform downlink reception of the reference signal of the energy-saving cell or determine the measurement result of the energy-saving cell according to the CSI-RS, and the terminal device can perform random access and RLM/BFD/RRM measurements in the energy-saving cell, so that , the terminal equipment does not have to be switched to other cells, which can avoid migrating terminal equipment in the energy-saving state cell to the adjacent cell to cause service interruption and increase the load level of the adjacent cell, ensuring that the user experience is not reduced when the cell enters the energy-saving state.
  • the embodiment of the present application provides an information sending method.
  • the explanation is from the terminal device side, and the same content as the embodiment of the first aspect will not be repeated again.
  • FIG 4 is a schematic diagram of an information sending method in an embodiment of the present application. As shown in Figure 4, the method includes:
  • the terminal device initiates random access in the first cell or performs RLM/BFD/RRM measurement based on the first synchronization signal block of the first cell, and the terminal device cannot successfully receive or measure the first
  • the terminal device send a first wake-up signal to the network side device, the wake-up signal is used to instruct the network side device to resume sending the first synchronization signal block of the first cell;
  • the terminal device when the terminal device does not receive the second indication information sent by the network side device and when the terminal device initiates random access in the first cell or based on the first cell's third
  • the first wake-up signal is sent to the network side device, for example, carried by a designated PRACH opportunity or random access preamble; for the implementation of the second indication information, please refer to The embodiment of the first aspect will not be described again here.
  • the terminal equipment does not receive the second indication information, which means that the terminal equipment cannot perform downlink reception of the first cell reference signal or determine the measurement result of the first cell based on the CSI-RS. If the terminal equipment needs to initiate random access or based on If the first synchronization signal block of the first cell performs RLM/BFD/RRM measurement or cell selection or reselection to the first cell, it is necessary to send a first wake-up signal so that the first cell resumes SSB transmission.
  • the method may further include: when the terminal device cannot successfully receive or measure the second synchronization signal block of the second cell, the terminal device sends a second wake-up signal to the network side device, so The second wake-up signal is used to instruct the network side device to resume sending the second synchronization signal block of the second cell.
  • the first synchronization signal block of the first cell and the second synchronization signal block of the second cell have a quasi-co-location (QCL) relationship.
  • the second cell for the implementation of the first cell, the second cell, the first SSB and the second SSB, please refer to the embodiment of the first aspect, which will not be described again here.
  • the method may further include: the terminal device receiving first indication information.
  • first indication information please refer to the embodiment of the first aspect, which will not be described again here.
  • the recipients of the first and second wake-up signals, the execution subject that sends the first indication information, the execution subject that sends the second indication information, the network device that stops sending the first SSB, and the network that sends the CSI-RS The devices can be the same or different network devices.
  • the method may further include:
  • the terminal device receives the first synchronization signal block that the network side device resumes sending;
  • the terminal device may also receive the second synchronization signal block resumed sent by the network side device.
  • the terminal device can send a wake-up signal (Wake-Up signal) to cause the energy-saving cell that has stopped sending SSB to resume SSB transmission, and perform random access in the energy-saving cell based on the resumed SSB transmission, based on CSI-RS or SSB RLM/BFD/RRM measurement, etc.
  • the terminal equipment does not have to switch to other cells, and it can avoid migrating the terminal equipment in the energy-saving state cell to the adjacent cell to cause service interruption and increase the load level of the adjacent cell.
  • the embodiment of the present application provides an information sending method.
  • This method is a process performed by a network side device corresponding to the method of the embodiments of the first and second aspects, and the same content as the embodiments of the first and second aspects will not be repeatedly described.
  • FIG. 5 is a schematic diagram of an information sending method according to an embodiment of the present application. As shown in Figure 5, the method includes:
  • the network side device stops sending the first synchronization signal block of the first cell that should be sent to the terminal device; and sends CSI-RS;
  • the CSI-RS is in a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell.
  • the first synchronization signal block of the first cell is in a quasi-co-location relationship with the second synchronization signal block of the second cell.
  • the second synchronization signal block of the cell is a quasi-co-located (QCL) relationship.
  • the first cell, the second cell, the first SSB and the second SSB please refer to the embodiment of the first aspect, which will not be described again here.
  • the method may further include: the network side device sending first indication information to the terminal device.
  • the network side device sending first indication information to the terminal device.
  • the network side device sends second indication information to the terminal device.
  • second indication information reference may be made to the embodiment of the first aspect, which will not be described again here.
  • the method may further include:
  • the network-side device receives a first wake-up signal sent by the terminal device.
  • the first wake-up signal is used to instruct the network-side device to resume sending the first synchronization signal block of the first cell.
  • the method further includes:
  • the network side device resumes sending the first synchronization signal block of the first cell to the terminal device.
  • the network side device resumes sending the first synchronization signal block of the first cell before sending an RRC reconfiguration message; the RRC reconfiguration message is for a primary cell group (MCG) or a secondary cell.
  • RRC reconfiguration message for group (SCG) resynchronization (ReSynchronization). Since the non-contention random access indicated by the RRC reconfiguration message for MCG/SCG resynchronization (ReSynchronization) is initiated by the network side device, the non-contention random access for MCG/SCG resynchronization (ReSynchronization) cannot be based on CSI -RS can only be based on SSB.
  • the network device needs to resume sending the first SSB before sending the RRC reconfiguration message, so that the terminal device can complete the MCG/SCG resynchronization (ReSynchronization) based on the first SSB that resumes sending.
  • MCG/SCG resynchronization ReSynchronization
  • Figure 6 is a schematic diagram of an information sending method according to an embodiment of the present application. As shown in Figure 6, the method includes:
  • the network side device sends or stops sending the second synchronization signal block of the second cell that should be sent to the terminal device; and sends CSI-RS;
  • the CSI-RS is in a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell.
  • the first synchronization signal block of the first cell is in a quasi-co-location relationship with the second synchronization signal block of the second cell.
  • the second synchronization signal block of the cell is a quasi-co-located (QCL) relationship.
  • the method may further include:
  • the network side device receives a second wake-up signal sent by the terminal device.
  • the second wake-up signal is used to instruct the network side device to resume sending the second synchronization signal block of the second cell.
  • the method further includes:
  • the network side device resumes sending the second synchronization signal block of the second cell to the terminal device.
  • the network-side devices in Figure 5 and Figure 6 may be the same network device or different network devices, and the embodiments of the present application are not limited to this.
  • An embodiment of the present application provides an information sending device.
  • the device may be, for example, a network device, or may be one or some components or components configured on the network device.
  • the device of the embodiment of the present application corresponds to the method of the embodiment of the third aspect, and the same content as the embodiment of the third aspect will not be repeatedly described.
  • FIG. 7 is a schematic diagram of an example of an information sending device according to an embodiment of the present application. As shown in Figure 7, the information sending device 700 includes:
  • the first sending unit 701 stops sending the first synchronization signal block of the first cell that should be sent to the terminal device, and sends CSI-RS to the terminal device;
  • the CSI-RS has a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell, and the first synchronization signal block and the second synchronization signal Blocks are in a quasi-colocated (QCL) relationship.
  • QCL quasi-colocated
  • the first sending unit sends first indication information and/or second indication information to the terminal device, regarding the first indication information, the second indication information, the first SSB, the second SSB, and the CSI -For the implementation of RS, please refer to the foregoing embodiments and will not be described again here.
  • the information sending device 700 may also include other components or modules.
  • the specific contents of these components or modules please refer to related technologies.
  • each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • An embodiment of the present application provides an information processing device.
  • the device may be, for example, a terminal device, or may be some or some components or components configured in the terminal device.
  • the device of the embodiment of the present application corresponds to the method of the embodiment of the first aspect, and the same content as the embodiment of the first aspect will not be repeatedly described.
  • FIG. 8 is a schematic diagram of an example of an information processing device according to an embodiment of the present application. As shown in Figure 8, the information processing device 800 includes:
  • the first receiving unit 801 receives the CSI-RS sent by the network side device
  • the first processing unit 802 performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS;
  • the CSI-RS has a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell, and the first synchronization signal block and the second synchronization signal Blocks are in a quasi-colocated (QCL) relationship.
  • QCL quasi-colocated
  • the first processing unit when the terminal device cannot successfully receive the first synchronization signal block sent by the network side device, the first processing unit performs downlink processing on the first cell reference signal according to the CSI-RS. Receive or determine measurement results of the first cell.
  • the first receiving unit also receives the first indication information and/or the second indication information sent by the network side device, regarding the first indication information, the second indication information, the first SSB, the second SSB, Please refer to the foregoing embodiments for the implementation of CSI-RS, which will not be described again here.
  • the first cell is a special cell (SpCell) when the terminal device is in a connected state.
  • SpCell special cell
  • the CSI-RS and the first cell reference signal are sent by different TRPs.
  • the first measurement result of the first synchronization signal block is obtained through the second measurement result of the CSI-RS.
  • the first processing unit selects the first synchronization signal block for random access in the first cell according to the second measurement result of the CSI-RS that has a quasi-co-location relationship with the first SSB. , or the first processing unit selects the second synchronization signal block for random access according to the second measurement result of the CSI-RS that has a quasi-co-location relationship with the second SSB, and determines that it is related to the PRACH resource of the first cell
  • the connected synchronization signal block is the second synchronization signal block.
  • the first processing unit determines that the reference signal used for wireless link detection or beam failure detection is the CSI-RS, and measures a second measurement result of the CSI-RS to perform the Radio link failure detection or beam failure detection of the first cell.
  • the first processing unit determines that the reference signal used for radio resource management measurement is the CSI-RS, and performs the first SSB based on the second measurement result of the CSI-RS.
  • Radio Resource Management (RRM) measurements are used to determine that the reference signal used for radio resource management measurement is the CSI-RS.
  • the measurement result of the CSI-RS is used as the RRM measurement result of the first cell, or the CSI-RS is measured to perform RRM measurement of the first cell.
  • the first processing unit determines whether the first CSI-RS pair is in a quasi-co-located relationship with the first synchronization signal block according to the second CSI-RS pair that is in a quasi-co-located relationship with the second synchronization signal block.
  • -RS performs downlink reception.
  • the first processing unit when the terminal device receives the first CSI-RS that is in a quasi-co-located relationship with the first synchronization signal block, the first processing unit will receive the first synchronization signal block that is in a quasi-co-located relationship with the second synchronization signal block.
  • the second downlink reception parameter of the second CSI-RS in the quasi-co-location relationship is received as the first downlink reception parameter of the first CSI-RS, and is received according to the first downlink reception parameter of the first CSI-RS.
  • the first CSI-RS or the first processing unit determines a quasi-co-location relationship between the first CSI-RS and the synchronization signal block of the first cell and the first CSI-RS and the The second CSI-RS has the same quasi-co-location relationship, and the first CSI-RS is received according to the second downlink reception parameter for receiving the second CSI-RS.
  • the first processing unit further performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS and the second synchronization signal block of the second cell.
  • the first processing unit determines The second synchronization signal block performs downlink reception of the first cell reference signal or determines the measurement result of the first cell.
  • the information processing device 800 may also include other components or modules.
  • the specific contents of these components or modules please refer to related technologies.
  • each of the above components or modules can be implemented by hardware facilities such as a processor, a memory, a transmitter, a receiver, etc.; the implementation of this application is not limited to this.
  • An embodiment of the present application also provides a communication system, including network equipment and terminal equipment.
  • the network device includes the device described in the embodiment of the fourth aspect, configured to perform the method described in the embodiment of the third aspect, because in the embodiment of the third aspect, the method has been Detailed descriptions are given, and their contents are incorporated here and will not be repeated.
  • the terminal device includes the device described in the embodiment of the fifth aspect and is configured to perform the method described in the embodiment of the first aspect, because in the embodiment of the first aspect, the method has been Detailed descriptions are given, and their contents are incorporated here and will not be repeated.
  • the embodiment of the present application also provides a network device, such as gNB (base station in NR), etc.
  • gNB base station in NR
  • FIG. 9 is a schematic diagram of a network device according to an embodiment of the present application.
  • network device 900 may include: a central processing unit (CPU) 901 and a memory 902 ; memory 902 is coupled to central processor 901 .
  • the memory 902 can store various data; in addition, it also stores information processing programs, and executes the program under the control of the central processor 901 to receive various information sent by the terminal device and send various information to the terminal device.
  • CPU central processing unit
  • memory 902 is coupled to central processor 901 .
  • the memory 902 can store various data; in addition, it also stores information processing programs, and executes the program under the control of the central processor 901 to receive various information sent by the terminal device and send various information to the terminal device.
  • the functions of the device described in the embodiment of the fourth aspect may be integrated into the central processor 901, and the central processor 901 may be configured to execute a program to implement the embodiments described in the third aspect.
  • the content of the method is incorporated here and will not be repeated here.
  • the device described in the embodiment of the fourth aspect may be configured separately from the central processor 901.
  • the device described in the embodiment of the fourth aspect may be configured to be connected to the central processor 901.
  • the chip realizes the functions of the device in the embodiment of the fourth aspect through the control of the central processor 901.
  • the network device 900 may also include: a transceiver 903, an antenna 904, etc.; the functions of the above components are similar to those of the existing technology and will not be described again here. It is worth noting that the network device 900 does not necessarily include all components shown in Figure 9; in addition, the network device 900 may also include components not shown in Figure 9, and reference may be made to the existing technology.
  • This embodiment of the present application also provides a terminal device, such as a UE.
  • Figure 10 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 1000 may include a processor 1001 and a memory 1002; the memory 1002 stores data and programs and is coupled to the processor 1001. It is worth noting that this figure is exemplary; other types of structures may also be used to supplement or replace this structure to implement telecommunications functions or other functions.
  • the functions of the device of the embodiment of the fifth aspect may be integrated into the processor 1001, wherein the processor 1001 may be configured to execute a program to implement the method described in the embodiment of the first aspect, Its contents are incorporated here and will not be repeated here.
  • the device of the embodiment of the fifth aspect may be configured separately from the processor 1001.
  • the device of the embodiment of the fifth aspect may be configured as a chip connected to the processor 1001, and controlled by the processor 1001. To realize the functions of the device according to the embodiment of the fifth aspect.
  • the terminal device 1000 may also include: a communication module 1003, an input unit 1004, a display 1005, and a power supply 1006.
  • the functions of the above components are similar to those in the prior art and will not be described again here. It is worth noting that the terminal device 1000 does not have to include all the components shown in Figure 10, and the above components are not required; in addition, the terminal device 1000 can also include components not shown in Figure 10, you can refer to the relevant technology.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a terminal device, the program causes the terminal device to execute the method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes a terminal device to execute the method described in the embodiment of the first aspect.
  • An embodiment of the present application also provides a computer program, wherein when the program is executed in a network device, the program causes the network device to execute the method described in the embodiment of the third aspect.
  • An embodiment of the present application also provides a storage medium storing a computer program, wherein the computer program causes a network device to execute the method described in the embodiment of the third aspect.
  • the above devices and methods of this application can be implemented by hardware, or can be implemented by hardware combined with software.
  • the present application relates to a computer-readable program that, when executed by a logic component, enables the logic component to implement the apparatus or component described above, or enables the logic component to implement the various methods described above or steps.
  • This application also involves storage media used to store the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, etc.
  • the methods/devices described in connection with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams and/or one or more combinations of the functional block diagrams shown in the figure may correspond to each software module of the computer program flow, or may correspond to each hardware module.
  • These software modules can respectively correspond to the various steps shown in the figure.
  • These hardware modules can be implemented by solidifying these software modules using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module may be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the software module can be stored in the memory of the mobile terminal or in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or the large-capacity flash memory device.
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings may be implemented as a general-purpose processor or a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any appropriate combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks and/or one or more combinations of the functional blocks described in the accompanying drawings can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, or multiple microprocessors. processor, one or more microprocessors combined with DSP communications, or any other such configuration.
  • An information processing method applied to terminal equipment, characterized in that the method includes:
  • the terminal device receives the CSI-RS sent by the network side device
  • the terminal equipment performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS;
  • the CSI-RS has a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell, and the first synchronization signal block and the second synchronization signal Blocks are in a quasi-colocated (QCL) relationship.
  • QCL quasi-colocated
  • the terminal device When the terminal device cannot successfully receive the first synchronization signal block sent by the network side device, the terminal device performs downlink reception of the first cell reference signal or determines the measurement of the first cell according to the CSI-RS. result.
  • the terminal device receives the first indication information sent by the network side device, and the first indication information is used to instruct to stop sending the synchronization signal block of the first cell that should be sent.
  • the terminal device receives the second indication information sent by the network device, the second indication information is used to indicate the identity of the second cell or the resource identity of the CSI-RS, or is used to indicate the first synchronization signal.
  • the block and the second synchronization signal block have a quasi-co-location relationship, so that the terminal equipment performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS.
  • the terminal equipment obtains the measurement result of the first synchronization signal block or the CSI-RS that is co-located with the first synchronization signal block through the CSI-RS, or obtains the third synchronization signal block through the CSI-RS. Measurement results for a small area.
  • the terminal device When the terminal device measures the first synchronization signal block, the first measurement result of the first synchronization signal block is obtained through the second measurement result of the CSI-RS.
  • the terminal equipment selects a first synchronization signal block for random access in the first cell according to the second measurement result of the CSI-RS that has a quasi-co-location relationship with the first SSB.
  • the terminal equipment selects a second synchronization signal block for random access based on the second measurement result of the CSI-RS that has a quasi-co-location relationship with the second SSB, and determines the synchronization associated with the PRACH resource of the first cell.
  • the signal block is a second synchronization signal block.
  • the terminal device determines that the reference signal used for wireless link detection or beam failure detection is the CSI-RS, and the terminal device performs wireless measurement of the first cell based on the second measurement result of the CSI-RS.
  • Link failure detection or beam failure detection is the CSI-RS
  • the terminal device determines that the reference signal used for radio resource management measurement is the CSI-RS, and the terminal device performs radio resource management (RRM) of the first SSB based on the second measurement result of the CSI-RS. )Measurement.
  • RRM radio resource management
  • the measurement result of the CSI-RS is used as the measurement result of the first cell.
  • the terminal equipment measures the CSI-RS to perform measurement of the first cell.
  • the terminal device performs downlink reception of the first CSI-RS that is in a quasi-co-located relationship with the first synchronization signal block based on the second CSI-RS that is in a quasi-co-located relationship with the second synchronization signal block.
  • the terminal device When receiving the first CSI-RS that is in a quasi-co-located relationship with the first synchronization signal block, the terminal device will receive the third CSI-RS that is in a quasi-co-located relationship with the second synchronization signal block.
  • the second downlink reception parameter is used as the first downlink reception parameter for receiving the first CSI-RS, and the first CSI-RS is received according to the first downlink reception parameter of the first CSI-RS.
  • the terminal equipment determines that the quasi-co-location relationship between the first CSI-RS and the synchronization signal block of the first cell is the same as the quasi-co-location relationship between the first CSI-RS and the second CSI-RS, and receiving the first CSI-RS according to the second downlink reception parameter of the second CSI-RS.
  • the terminal equipment performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS and the second synchronization signal block of the second cell.
  • the network side device stops sending the first synchronization signal block of the first cell that should be sent to the terminal device, and sends CSI-RS to the terminal device;
  • the CSI-RS has a quasi-co-location relationship with the first synchronization signal block of the first cell or with the second synchronization signal block of the second cell, and the first synchronization signal block and the second synchronization signal Blocks are in a quasi-colocated (QCL) relationship.
  • QCL quasi-colocated
  • the network side device sends first indication information to the terminal device, where the first indication information is used to instruct to stop sending the synchronization signal block of the first cell that should be sent.
  • the second indication information sent by the network side device to the terminal device is used to indicate the identifier of the second cell or the resource identifier of the CSI-RS, or is used to indicate the first synchronization signal block There is a quasi-co-location relationship with the second synchronization signal block, so that the terminal equipment performs downlink reception of the first cell reference signal or determines the measurement result of the first cell according to the CSI-RS.
  • a network device comprising a memory storing a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of appendices 24 to 29.
  • a terminal device comprising a memory and a processor, the memory stores a computer program, and the processor is configured to execute the computer program to implement the method as described in any one of appendices 1 to 23.
  • a communication system comprising the network device described in Supplementary Note 30 and/or the terminal device described in Supplementary Note 31.

Abstract

本申请实施例提供一种信息处理方法、信息发送方法以及装置,该信息处理方法包括:终端设备接收网络侧设备发送的CSI-RS;所述终端设备根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果;其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。

Description

信息处理方法、信息发送方法和装置 技术领域
本申请实施例涉及通信技术领域。
背景技术
由于NR(新无线)基站需要工作在大带宽(如100MHz),需要使用大量端口(64T/64R),更短的TTI(传输时间间隔)(如1ms),NR基站在基带处理、数字前端等功能上的能耗开销要显著高于LTE(长期演进)基站。而且NR的FR2(频率范围2)工作频率(>6GHz)较高,频点越高时信号的路损越大,因此NR的设计原则是使用较窄的波束使信号传输得更远。这样,NR基站用来做模拟波束赋型的天线单元个数将大大增加,这就导致射频单元和和收发信号的射频通道数也随之增加,每个射频通道设有一个功率放大器(PA),PA的能耗会占到整个基站能耗的80%左右,随着PA数量增大基站的能耗也随之增加。当前FR1(频率范围1)频段AAU(有源天线单元)一般采用192个天线单元,支持64通道,比LTE最多8通道数要大得多。
根据运营商的数据统计,平均一个NR基站的能耗超过LTE基站能耗的三倍,运营商在部署5G(第5代)网络的成本中,有将近五成是电费开销。更重要的是,NR基站即使在没有业务的时间段,能耗开销还是很大,因为即使在没有业务时基站还是需要发送公共信号,例如SSB(同步信号块)、SIB1(第1系统信息块)和SI(系统信息)等,所以大大降低了NR基站的能源使用效率。NR网络节能是亟待解决的问题。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
在3GPP Rel-15/Rel-16(第三代合作伙伴计划版本15/版本16)中,支持在同频(intra-band)载波聚合(CA)的场景下,终端设备的辅小区(SCell)可以不发送同步信号块(SSB),终端设备由特殊小区(SpCell)发送的SSB获得SCell的下行同步。 在同一站址,至少有一个小区发送SSB,只有发送SSB的小区才能作为终端设备的SpCell。
发明人发现,现有技术中,同一站址的小区中,必须有至少一个小区发送SSB,另外,终端设备的服务小区(至少SpCell)必须发送SSB。这样,即使在该站址没有业务时能量开销也很大,不利于网络节能。
另外,为了网络节能,假使终端设备的所有服务小区停止发送SSB,或延长SSB的发送周期,意味着终端设备失去对服务小区的下行同步和下行信道估计信号,也即终端设备无法基于服务小区的SSB进行测量,因此,终端设备的服务小区无法服务该终端设备。原本连接到该服务小区的终端设备必须切换到相邻小区,原本驻留在该服务小区的终端设备将进行小区重选(cell re-selection)以驻留在相邻小区。图1是网络节能方案示意图,如图1所示,为了网络节能,对于终端设备的SpCell,网络设备可以根据NR小区及其相邻小区的业务量、测量报告等信息动态的激活和去激活,当去激活小区时,停止发送该小区的同步信号块、系统信息等以及停止接收终端设备发送的上行信号。这样,在业务量较低的情况下,可以节省SpCell的能耗。
这样,小区进入节能状态时终端设备会切换到相邻小区,并告知相邻的NR网络设备或LTE网络设备该NR小区已进入节能状态,相邻的NR/LTE网络设备将承担该NR小区的覆盖区域以及业务量。之后,相邻NR/LTE网络设备会根据自己的业务量、测量报告等信息确定是否请求已进入节能状态的NR小区恢复正常工作,例如,当自己的业务量达到一定门限时,触发请求进入节能状态的NR小区恢复正常工作。当NR小区恢复正常工作时,一些之前切换到相邻NR/LTE小区的终端设备可能会切换回该NR小区。
发明人发现,在上述方案中,当NR小区动态地多次进入节能状态,终端设备也将频繁切换出NR小区或频繁小区重选,这样会影响用户体验。另外,节能状态小区的终端设备迁移到相邻小区势必增加相邻小区的负载水平,影响相邻小区终端设备的服务质量。
针对上述问题的至少之一,本申请实施例提供一种信息处理方法、信息发送方法和装置。
根据本申请实施例的一方面,提供一种信息发送装置,配置于网络侧设备,所述装置包括:
第一发送单元,其停止向终端设备发送本应发送的第一小区的第一同步信号块,以及,向终端设备发送CSI-RS;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。
根据本申请实施例的另一方面,提供一种信息处理装置,配置于终端设备,所述装置包括:
第一接收单元,其接收网络侧设备发送的CSI-RS;
第一处理单元,其根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。
根据本申请实施例的另一方面,提供一种通信系统,所述通信系统包括:终端设备和/或网络设备,该终端设备配置有前述一方面的信息处理装置,该网络设备配置有前述一方面的信息发送装置。
本申请实施例的有益效果之一在于:终端设备可以根据CSI-RS对节能小区的参考信号进行下行接收或者确定节能小区的测量结果,并且终端设备可以在节能小区进行随机接入和RLM/BFD/RRM测量,这样,终端设备不必切换到其他小区,可以避免将节能状态小区的终端设备迁移到相邻小区产生业务中断和增加相邻小区的负载水平,保证了小区进入节能状态时不降低用户体验。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本申请实施例中通信系统的示意图;
图2是分布式网络节能方案的示意图;
图3是本申请实施例的信息处理方法的一示意图;
图4是本申请实施例的信息发送方法的另一示意图;
图5是本申请实施例的信息发送方法的一示意图;
图6是本申请实施例的信息发送方法的又一示意图;
图7是本申请实施例的信息发送装置的一示意图;
图8是本申请实施例的信息处理装置的另一示意图;
图9是本申请实施例的网络设备的一示意图;
图10是本申请实施例的终端设备的一示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根 据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femeto、pico等等)、IAB(Integrated Access and Backhaul)节点或IAB-DU或IAB-donor。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。在不引起混淆的情况下,术语“小区”和“基站”可以互换。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment或Terminal Device)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、IAB-MT、站(station),等等。
终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、 机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
此外,术语“网络侧”或“网络设备侧”是指网络的一侧,可以是某一基站,也可以包括如上的一个或多个网络设备。术语“用户侧”或“终端侧”或“终端设备侧”是指用户或终端的一侧,可以是某一UE,也可以包括如上的一个或多个终端设备。本文在没有特别指出的情况下,“设备”可以指网络设备,也可以指终端设备。
在以下的说明中,在不引起混淆的情况下,术语“上行控制信号”和“上行控制信息(UCI,Uplink Control Information)”或“物理上行控制信道(PUCCH,Physical Uplink Control Channel)”可以互换,术语“上行数据信号”和“上行数据信息”或“物理上行共享信道(PUSCH,Physical Uplink Shared Channel)”可以互换;
术语“下行控制信号”和“下行控制信息(DCI,Downlink Control Information)”或“物理下行控制信道(PDCCH,Physical Downlink Control Channel)”可以互换,术语“下行数据信号”和“下行数据信息”或“物理下行共享信道(PDSCH,Physical Downlink Shared Channel)”可以互换。
另外,发送或接收PUSCH可以理解为发送或接收由PUSCH承载的上行数据,发送或接收PUCCH可以理解为发送或接收由PUCCH承载的上行信息,发送或接收PRACH可以理解为发送或接收由PRACH承载的preamble;上行信号可以包括上行数据信号和/或上行控制信号等,也可以称为上行传输(UL transmission)或上行信息或上行信道。在上行资源上发送上行传输可以理解为使用该上行资源发送该上行传输。类似地,可以相应地理解下行数据/信号/信道/信息。
在本申请实施例中,高层信令例如可以是无线资源控制(RRC)信令;例如称为RRC消息(RRC message),例如包括MIB、系统信息(system information)、专用RRC消息;或者称为RRC IE(RRC information element)。高层信令例如还可以是MAC(Medium Access Control)信令;或者称为MAC CE(MAC control element)。但本申请不限于此。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图2是本申请实施例的通信系统的示意图,示意性说明了以终端设备和网络设备为例的情况,如图2所示,通信系统200可以包括网络设备201和终端设备202、203。为简单起见,图2仅以两个终端设备和一个网络设备为例进行说明,但本申请实施例不限于此。
在本申请实施例中,网络设备201和终端设备202、203之间可以进行现有的业务或者未来可实施的业务发送。例如,这些业务可以包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,终端设备202可以向网络设备201发送数据,例如使用授权或免授权传输方式。网络设备201可以接收一个或多个终端设备202发送的数据,并向终端设备202反馈信息,例如确认ACK/非确认NACK信息等,终端设备202根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
值得注意的是,图2示出了两个终端设备202、203均处于网络设备201的覆盖范围内,但本申请不限于此。两个终端设备202、203可以均不在网络设备201的覆盖范围内,或者一个终端设备202在网络设备201的覆盖范围之内而另一个终端设备203在网络设备201的覆盖范围之外。
下面结合附图和具体实施方式对本申请实施例进行说明。
第一方面的实施例
本申请实施例提供一种信息处理方法,从终端设备侧进行说明。
图3是本申请实施例的信息处理方法的一示意图,应用于终端设备,如图3所示,该方法包括:
301,终端设备接收网络侧设备发送的CSI-RS;
302,所述终端设备根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一小区的第一同步信号块与所述第二小区的第二同步信号块是准共址(QCL)关系。
值得注意的是,以上附图3仅示意性地对本申请实施例进行了说明,但本申请不限于此。例如可以增加其他的一些操作或者减少其中的某些操作。本领域的技术人员可以根据上述内容进行适当地变型,而不仅限于上述附图3的记载。
在一些实施例中,在没有业务时,网络侧可以停止发送该终端设备的一个或多个服务小区的同步信号块,或延长同步信号块的发送周期(例如从20ms延长至320ms),以下停止发送同步块也可以指延长同步信号块的周期。以下第一小区(或称为第一载波)的同步信号块称为第一同步信号块,该第一小区即为停止发送同步信号块的服务小区,该第一小区可以是终端设备的特殊小区(例如主小区PCell或主辅小区PSCell),也可以是非特殊小区(例如SCell),例如,所述第一小区为所述终端设备在连接状态时的特殊小区(SpCell),或为所述终端设备在空闲或去激活状态时所选择或重选的小区,本申请实施例并不以此作为限制。由此,可以节省网络侧的能耗开销,因此,该第一小区也可以称为节能小区(或SSB-less小区)。该同步信号块(也叫作同步信号和PBCH块,Synchronization Signal and PBCH block,简称SSB)可以包括主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS),和/或物理层广播信道(Physical Broadcast Channel,PBCH)。
在一些实施例中,第二小区的同步信号块称为第二同步信号块,该第二小区可以是终端设备的特殊小区(例如主小区PCell或主辅小区PSCell),也可以是非特殊小区(例如SCell),该第二小区(或称第二载波)也可以称为参考小区或锚点小区,本申请实施例并不以此作为限制。所述第一小区的所述第一同步信号块与第二小区的第二同步信号块是准共址QCL关系,该QCL关系的类型包括QCL类型C和QCL类型D。有准共址关系的第一同步信号块和第二同步信号块具有相同索引,换句话说,第一SSB与相同索引的第二SSB是准共址关系,该准共址关系可以隐式指示或由第二指示信息显式指示,关于该指示方式将在后述进行说明。
另外,如果第二同步信号块的发送个数少于本应发送的第一同步信号块个数,终端无法基于第二同步信号块确定第一同步信号块的测量结果,因此,在一个同步信号块周期内,所述第二同步信号块的发送个数不少于本应发送的所述第一同步信号块的个数,但是,所述第一小区的所述第一同步信号块与所述第二小区的第二同步信号块的子载波间隔,周期和/或发送功率可以相同或不同。其中,网络侧设备可以预先向 终端侧发送SSB的配置信息(例如第一SSB的配置信息和第二SSB的配置信息),其中,该配置信息使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110717-appb-000001
例如,第二小区的ssb-PositionsInBurst信元所指示的SSB的位置不少于第一小区的该信元指示的SSB的位置,但周期ssb-periodicityServingCell、子载波间隔ssbSubcarrierSpacing、发送功率ss-PBCH-BlockPower可以相同或不同。
在一些实施例中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,该QCL关系的类型包括QCL类型C和QCL类型D,该准共址关系可以由CSI-RS资源配置信息指示,具体将在后述进行说明。
在一些实施例中,在301中,终端设备在接收该CSI-RS前,还可以接收该CSI-RS资源配置信息,该CSI-RS资源可以由第一小区配置或第二小区配置或与第一小区参考信号不同的TRP配置,本申请实施例并不以此作为限制。
在一些实施例中,在所述终端设备无法成功接收网络侧设备发送的所述第一同步信号块(第一小区的第一SSB停止发送)时,终端设备可根据CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果,并且终端设备可以在第一小区进行随机接入、基于CSI-RS或SSB的RLM/BFD/RRM测量。这样,终端设备不必切换到其他小区,可以避免将节能状态小区的终端设备迁移到相邻小区产生业务中断和增加相邻小区的负载水平,保证了小区进入节能状态时不降低用户体验。
在一些实施例中,网络侧设备可以通过第一指示信息指示网络侧设备停止发送本应发送的第一SSB,该第一指示信息可以用一位或多位比特表示,该第一指示信息还用于指示停止发送的本应发送的第一同步信号的索引。其中,第一小区的网络设备可以在停止发送第一SSB之前,发送该第一指示信息,该第一指示信息可以由系统信息或专用RRC消息承载。
例如,该第一指示信息可以是系统信息或专用RRC消息中新增的信息元,在该系统信息或专用RRC信令中不包括该新增的信息元时,表示该第一小区的所有SSB都正常发送,在该系统信息或专用RRC信令中包括该新增的信息元时,表示本应发送的该第一小区的第一SSB停止发送。该信息元的值还用于指示停止发送的本应发送的第一SSB的索引,例如,该信息元可以用比特位图表示,该比特位图的每一个比特对应一个SSB的索引,如果该比特的值为1表示该索引的SSB正常发送,比特的值为0表示该索引的SSB停止发送,反之亦可;或者,该信息元也可以用N位比特的值来表示停止发送的本应发送的SSB索引值(SSB index),本申请实施例并不以此作为限制。
在一些实施例中,网络侧设备可以通过发送第二指示信息指示终端设备能够通过CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。该发送的第二指示信息可以指示第二小区的标识或CSI-RS的资源标识,换句话说,在终端设备接收到指示第二小区的标识或CSI-RS的资源标识的第二指示信息时,指示终端设备能够通过与第二小区有准共址关系的CSI-RS或该CSI-RS资源标识对应的CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
在一些实施例中,终端设备没有收到第二指示信息则不能通过所述CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果,这样,如果终端设备需要对所述第一小区参考信号进行下行接收或确定第一小区的测量结果,则需要发送唤醒信号,使得第一SSB恢复发送,关于唤醒信号的相关实施例将在第二方面的实施例进行说明。
或者,在一些实施例中,该第二指示信息用于指示所述第一同步信号块与所述第二同步信号块是准共址关系,以便于终端设备根据与第二小区有准共址关系的CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果。
在一些实施例中,第一小区的网络设备可以在停止发送第一SSB之前,发送给第二指示信息,该第二指示信息可以由系统信息或专用RRC消息承载。
例如,该第二指示信息可以是系统信息或专用RRC消息中新增的信息元,包含第二小区的标识或CSI-RS的资源标识,该小区标识可以是(NCGI或PCI)。该资源标识可以是nzp-CRS-RS-ResourceID。在该系统信息或专用RRC信令中不包括该信息元时,表示终端设备不能通过CSI-RS对所述第一小区参考信号进行下行接收或确定 第一小区的测量结果,在该系统信息或专用RRC信令中包括该信息元时,表示终端设备能通过CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
例如,该新增信息元可以为准共址小区标识信息元,包含第二小区的标识信息,用于指示所述第一小区的第一同步信号块与所述第二小区的第二同步信号块是准共址关系。在该系统信息或专用RRC信令中包括该信息元时,表示终端设备可以通过与第二小区有准共址关系的CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
以下说明终端设备侧如何确定是否有用于对第一小区参考信号进行下行接收或确定第一小区的测量结果的CSI-RS。
一方面,可以根据CSI-RS资源配置信息隐式地指示是否有用于对第一小区参考信号进行下行接收或确定第一小区的测量结果的CSI-RS,也即终端设备根据该CSI-RS资源配置信息确定第一SSB或第二SSB是否与配置的CSI-RS有QCL关系。如果有QCL关系,则终端设备能够通过该CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
例如,终端设备根据第一小区或第二小区的非零功率CSI-RS资源配置信息,确定第一SSB或第二SSB是否与配置的CSI-RS有准共址关系(Type C/D),该CSI-RS可用于波束管理、时域精同步或L1-RSRP测量。或者,根据用于移动性测量的CSI-RS资源配置信息,确定第一SSB或第二SSB是否与配置的CSI-RS有准共址关系(Type C/D),该CSI-RS用于L3-RSRP测量。
1)非零功率CSI-RS资源配置使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110717-appb-000002
Figure PCTCN2022110717-appb-000003
也就是说,终端设备通过NZP-CSI-RS资源配置中的QCL-Info可以确定终端设备的的特定服务小区(ServCellIndex)的SSB与该CSI-RS有准共址关系。如果该服务小区(ServCellIndex指示的小区)停止发送SSB(第一SSB),并且终端设备确定该配置的CSI-RS与第一小区的第一SSB有QCL关系,终端设备可以确定通过CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果,以在第一小区(ServCellIndex指示的小区)发起随机接入,执行RLM/BFD/RRM测量。
2)移动性测量的CSI-RS配置使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110717-appb-000004
Figure PCTCN2022110717-appb-000005
也就是说,终端设备通过CSI-RS的移动性管理资源配置中的associatedSSB域可以确定指定小区(PysCellId指示的小区)的SSB与该CSI-RS有准共址关系。如果该指定小区停止发送SSB(第一SSB),并且终端设备确定该配置的CSI-RS与第一小区的第一SSB有QCL关系,终端设备可以确定通过CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果,以在第一小区(PysCellId指示的小区)或第二小区发起随机接入,执行RLM/BFD/RRM测量。
一方面,可以根据第二指示信息指示CSI-RS的资源标识来显式指示用于对第一小区参考信号进行下行接收或确定第一小区的测量结果的CSI-RS,因此,终端设备根据接收到的CSI-RS的资源标识(第二指示信息)即可以确定有用于对第一小区参考信号进行下行接收或确定第一小区的测量结果的CSI-RS,该CSI-RS的资源标识指示的CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系。其中,网络设备还可以发送该特定CSI-RS的资源配置信息,该特定CSI-RS的资源配置信息的实施方式可以参考以上1)或2)中的资源配置信息,指示与第一 小区或第二小区的SSB有QCL关系。终端设备在接收到第二指示信息后,确定第二指示信息中指示的CSI-RS资源标识是该特定CSI-RS的资源配置信息中的特定CSI-RS的资源标识,由此,终端设备确定能够通过该CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
需要说明的是,前述发送/停止发送第一小区的第一SSB的网络侧设备和发送CSI-RS的网络侧设备可以是相同的网络设备或不同的网络设备,其中,所述CSI-RS与所述第一小区参考信号可以是由相同或不同TRP发送的。前述发送第一指示信息和第二指示信息以及接收唤醒信号的网络侧设备也可以与前述发送/停止发送第一SSB的网络侧设备时相同或不同的网络设备。
在一些实施例中,如前所述,终端设备在接收到第二指示信息时,可以根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果,根据该测量结果在第一小区上进行随机接入,执行RLM/BFD/RRM测量。以下详细说明。
在一些实施例中,在302中,终端设备可以根据CSI-RS确定第一小区的测量结果,该测量结果包括:接收功率(RSRP)、接收质量(RSRQ)、信干比(SINR)中的一种。
一方面,终端设备将第一SSB作为测量对象。在测量第一SSB时,将CSI-RS的第二测量结果作为该第一SSB的第一测量结果。其中,所述测量结果包括对所述第一同步信号块的L1测量结果,或者,对所述第一同步信号块的L3测量结果。终端设备可以基于该第一测量结果进行随机接入和RLM/BFD/RRM测量,其中,随机接入和RLM/BFD/RRM测量的过程可以参考现有技术,具体将在后述举例说明。
一方面,在第一小区发起随机接入时,终端设备将CSI-RS作为测量对象,测量CSI-RS的L1接入功率。所述终端设备根据与第一SSB有准共址关系的CSI-RS的第二测量结果(代替或替换第一同步信号块的第一测量结果)选择用于在所述第一小区进行随机接入的第一同步信号块。或者,所述终端设备根据与第二SSB有准共址关系的CSI-RS的第二测量结果选择进行随机接入的第二同步信号块,并确定与所述第一小区的PRACH资源相关联的同步信号块为第二同步信号块。
一方面,在执行基于第一SSB的RLM/BFD时,终端设备将CSI-RS作为测量对象。所述终端设备确定用于无线链路检测或波束失败检测的参考信号为该CSI-RS,并且,所述终端设备根据所述CSI-RS的第二测量结果以进行所述第一小区的无线链 路失败检测或波束失败检测,该测量结果为接收功率。
一方面,在执行对第一SSB的RRM测量时,终端设备将CSI-RS作为测量对象,测量CSI-RS的L3接收功率、接收质量或信干比。所述终端设备确定用于无线资源管理测量的参考信号为该CSI-RS,由此,所述终端设备根据该CSI-RS的第二测量结果以进行所述第一SSB的无线资源管理(RRM)测量。
一方面,对第一小区进行RRM测量时,终端设备将第一小区作为测量对象,测量第一小区的L3接收功率、接收质量或信干比。所述终端设备根据CSI-RS的测量结果计算得到所述第一小区的RRM测量结果。
一方面,对第一小区进行RRM测量时,终端设备将CSI-RS作为测量对象,测量CSI-RS的L3接收功率、接收质量或信干比。所述终端设备测量该CSI-RS,以进行第一小区的RRM测量,确定第一小区的RRM测量结果。
由此,终端设备可以基于该CSI-RS进行随机接入、RLM/BFD/RRM测量,具体将在后述举例说明。
在一些实施例中,在302中,终端设备可以根据该CSI-RS(以下称为第二CSI-RS)对第一小区参考信号进行下行接收,该第一小区参考信号包括:第一CSI-RS。该第一CSI-RS与第一SSB是QCL关系,该第二CSI-RS与第二SSB是QCL关系。即终端设备根据第二CSI-RS对与第一CSI-RS进行下行接收,并基于接收的第一CSI-RS执行RLM/BFD/RRM测量,或非竞争的随机接入。以下分别说明。
一方面,所述终端设备在接收所述与第一同步信号块是准共址关系的第一CSI-RS时,将接收第二CSI-RS的第二下行接收参数作为接收所述第一CSI-RS的第一下行接收参数,并根据所述第一下行接收参数接收所述第一CSI-RS。其中,该下行接收参数包括多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数,也就是说,终端设备接收第二CSI-RS,并将第二下行接收参数作为第一下行接收参数接收第一CSI-RS。
一方面,所述终端设备在接收所述与第一同步信号块是准共址关系的第一CSI-RS时,所述终端设备确定所述第一CSI-RS与所述第一小区的第一同步信号块的准共址关系和所述第一CSI-RS与所述第二CSI-RS的准共址关系相同,并根据接收所述第二CSI-RS的第二下行接收参数接收所述第一CSI-RS。也就是说,终端设备无需接收第一CSI-RS,而是接收第二CSI-RS,并基于接收第二CSI-RS的第二下行接 收参数接收该第一CSI-RS。
由此,终端设备可以基于该第一CSI-RS进行RLM/BFD/RRM测量,或非竞争的随机接入,具体将在后述举例说明。
在以上对第一小区参考信号进行下行接收或确定第一小区的测量结果时,考虑了301中接收的CSI-RS,另外,终端设备还可以结合第二SSB对第一小区参考信号进行下行接收或确定第一小区的测量结果,也即终端设备根据CSI-RS和第二SSB对第一小区参考信号进行下行接收或确定第一小区的测量结果。
在一些实施例中,在所述终端设备在所述第一小区停止发送所述第一同步信号块后接入网络时,所述终端设备根据所述CSI-RS和所述第二小区的第二同步信号块对第一小区参考信号进行下行接收或确定第一小区的测量结果。
例如,终端设备测量CSI-RS时,需要先根据有type-D准共址关系的第一SSB进行接收波束赋型,如果第一小区不发送第一SSB,则终端设备无法确定接收CSI-RS的波束。因此,如果终端设备是在第一小区停止发送第一SSB之后接入网络,终端设备无法进行CSI-RS的接收波束赋型。由于第二SSB和相同索引的第一SSB有QCL关系,终端设备可以根据第二SSB进行第一小区的CSI-RS的接收波束赋型。
如果CSI-RS与第一小区的第一SSB有准共址关系(QCL Type C/D),或有CSI-RS与第二SSB有QCL关系,终端设备可以基于该CSI-RS以及第二SSB测量对第一小区参考信号进行下行接收或确定第一小区的测量结果。
(一)关于随机接入
在现有的NR系统中,基于竞争的随机接入需要根据当前发起随机接入小区的SSB的接收功率(SS-RSRP)选择进行随机接入的SSB。首先选择一个SS-RSRP高于预设门限的SSB,根据所选择的SSB确定随机接入机会(RO),即选择该SSB对应的下一个可用的随机接入机会,然后,在与该SSB相关的前导码组中随机选择一个前导码,最后将选择的前导码在所选择的随机接入机会的相应的资源上发送,以发起随机接入过程。也即每个有效的RO及其包含的前导序列会与SSB进行关联映射,当选择了一个SSB后,根据SSB到RO的映射规则在相应的RO资源上选择前导序列进行发送。
对于连接状态的终端设备,基于竞争的随机接入一般在连接状态终端设备的PCell或PSCell中发起,例如在RRC连接重建立过程中、上行失同步且在RRC连接 态时有上行数据到达、上行LBT失败、调度请求(SR)失败、没有SR可用的PUCCH资源且在RRC连接态时有上行数据到达、有定位需求等。
对于空闲/去激活状态的终端设备,终端设备在驻留小区中发起基于竞争的随机接入,例如在RRC空闲态初始接入、RRC非激活状态RRC连接恢复过程、其他系统信息请求、RRC非激活状态的小数据传输等。
另外,当连接状态的终端设备进行RRC配置的非竞争随机接入时,如果网络设备为终端设备配置了基于SSB的专用随机接入资源,也需要终端设备根据当前发起随机接入小区的SSB的接收功率(SS-RSRP)选择进行随机接入的SSB。选择SSB后,UE确定该SSB对应的下一个可用的随机接入机会(RO),并将网络配置的与该SSB对应的专用前导码在该RO上进行发送。
另外,当连接状态的终端设备进行RRC配置的非竞争随机接入时,网络也可以为非竞争随机接入配置基于CSI-RS的专用随机接入资源,当CSI-RS的接收功率高于预设门限时,终端设备选择该CSI-RS对应的专用前导码以及发送前导码的RO。例如,当终端设备检测到波束失败,发起基于非竞争的波束失败恢复的随机接入。这种情况下,网络可以为终端设备配置基于CSI-RS的随机接入资源,而不配置基于SSB的专用随机接入资源。
由于随机接入过程中需要测量的SS-RSRP需基于SSB中的同步参考信号(SS),如果终端设备的PCell或PSCell小区或者终端设备驻留的小区停止发送SSB,会使终端设备无法正常完成随机接入。
在本申请实施例中,在第一小区停止发送第一SSB时,当连接状态终端设备在第一小区(PCell/PSCell),或空闲/非激活终端设备在第一小区(驻留小区)发起随机接入时,有不同的实现方法。一种方法是,终端设备的物理层在测量第一SSB接收功率(SS-RSRP)时,利用CSI-RS的第二测量结果(RSRP)计算第一SSB的第一SS-RSRP,并基于第一SSB的第一测量结果(SS-RSRP)选择进行随机接入的第一同步信号块;一种方法是,终端设备MAC层也可以根据物理层上报的与第一SSB有QCL关系的CSI-RS的第二测量结果选择进行随机接入的第一同步信号块,例如如果一个CSI-RS的第二测量结果高于预设门限,则选择与该CSI-RS有QCL关系的第一SSB进行随机接入。
在一些实施例中,终端设备根据与第二SSB有QCL关系的CSI-RS的第二测量 结果选择进行随机接入的第二SSB,并且所述终端设备确定与所述第一小区的PRACH资源相关联的同步信号块为与CSI-RS有QCL关系的第二同步信号块,即PRACH资源配置中(例如RO或前导码资源配置)中的SSB对应的SSB index指的是与CSI-RS有QCL关系的第二同步信号块的SSB index。其中PRACH资源配置包括RACH-ConfigCommon配置的CBRA的PRACH、RACH-ConfigDedicated配置的CFRA的PRACH、BeamFailureRecoveryConfig配置的BFR的PRACH资源配置。
例如,当终端设备在第一小区中发起竞争的随机接入时,在选择第二SSB后,根据RACH-ConfigCommon中的PRACH资源配置以及所选择的第二SSB的index确定该index对应的属于第一小区的PRACH资源的随机接入机会(RO),然后,在与第二SSB index相关的前导码组中随机选择一个属于第一小区的前导码,最后将选择的前导码在所选择的随机接入机会相应的资源上发送。
又例如,终端设备在第一小区中发起基于SSB的非竞争的随机接入时,选择第二SSB进行随机接入后,终端设备根据RACH-ConfigDedicated中的PRACH资源配置属于第一小区的PRACH资源的随机接入机会(RO),并根据选择的第二SSB的索引确定该索引对应的属于第一小区的专用前导码。
在本申请实施例中,如果网络设备为非竞争随机接入配置基于CSI-RS的专用随机接入资源,终端设备根据第二CSI-RS对第一CSI-RS进行下行接收。所述终端设备在接收第一CSI-RS时,将接收第二CSI-RS的第二下行接收参数作为接收所述第一CSI-RS的第一下行接收参数,并根据所述第一下行接收参数接收所述第一CSI-RS。其中,该下行接收参数包括多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数,也就是说,终端设备接收第二CSI-RS,并将第二下行接收参数作为第一下行接收参数,来接收第一CSI-RS。或者,所述终端设备确定所述第一CSI-RS与所述第一小区的第一同步信号块的准共址关系和所述第一CSI-RS与所述第二CSI-RS的准共址关系相同,并根据接收所述第二CSI-RS的第二下行接收参数接收所述第一CSI-RS。当第一CSI-RS的接收功率高于预设门限时,终端设备选择该第一CSI-RS对应的专用前导码以及发送前导码的RO例如,在检测到波束失败时,发起基于非竞争的Beam failure recovery随机接入。
(二)关于RLM/BFD/RRM测量
情况一:基于SSB的测量
在现有技术中,如果终端设备被配置进行基于第一小区SSB的无线链路或波束失败检测,但是网络设备不发送第一小区SSB,终端设备无法正常完成RLM/BFD。
在本申请实施例中,所述终端设备首先根据前述方法确定与第一小区的第一SSB或与第二小区的第二SSB与QCL关系的CSI-RS,测量所述第一同步信号块时将所述CSI-RS的第二测量结果作为所述第一同步信号块的第一测量结果。或者所述终端设备确定基于第一SSB的无线链路检测或波束失败检测的参考信号为CSI-RS,并且,所述终端设备根据所述CSI-RS的第二测量结果进行所述第一小区的无线链路失败检测或波束失败检测。
例如,当连接状态终端设备被配置基于第一SSB进行RLM、BFD测量时,终端设备确定(认为)用于RLM或BFD的参考信号为与第一SSB或第二SSB有QCL关系的CSI-RS,从而根据所述CSI-RS的接收功率进行所述第一小区的无线链路失败或波束失败的评估。例如该RLM参考信号配置信息使用抽象语法标记ASN.1数据格式可以表示为:
Figure PCTCN2022110717-appb-000006
在现有技术中,如果终端设备被配置进行基于第一小区SSB的RRM测量,包括对第一小区SSB的L3接收功率、接收质量或信干比的RRM测量,但是第一小区不发送第一SSB,终端设备无法正常完成RRM测量。
在本申请实施例中,所述终端设备首先根据前述方法确定与第一小区的第一SSB或与第二小区的第二SSB与QCL关系的CSI-RS,所述终端设备测量所述第一同步信号块时将CSI-RS的第二测量结果作为所述第一同步信号块的第一测量结果。或者,所述终端设备确定基于第一SSB的无线资源管理的参考信号为与第一SSB或第二SSB有QCL关系的CSI-RS,并且,所述终端设备测量所述CSI-RS的第二测量结果以进行所述第一小区的无线资源管理(RRM)测量。或者,终端设备测量第二小区并将第二小区的测量结果作为第一小区的测量结果上报给网络。另一些实施例中,如果终端设备仅上报第二小区的测量结果,网络侧可将针对第二小区的RRM测量结果 当作第一小区的测量结果。
情况二:基于CSI-RS的测量
在本申请实施例中,如果前述RLM/BFD/RRM的测量是基于第一CSI-RS的测量,可以直接将该第二CSI-RS作为测量对象。或者,所述终端设备在接收所述与第一同步信号块是准共址关系的第一CSI-RS时,将接收第二CSI-RS的第二下行接收参数作为接收所述第一CSI-RS的第一下行接收参数,并根据所述第一下行接收参数接收所述第一CSI-RS。其中,该下行接收参数包括多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数。或者,所述终端设备确定所述第一CSI-RS与所述第一小区的第一同步信号块的准共址关系和所述第一CSI-RS与所述第二CSI-RS的准共址关系相同,根据接收所述第二CSI-RS的第二下行接收参数接收所述第一CSI-RS,并完成基于第一CSI-RS的RLM/BFD/RRM测量。
由上述实施例可知,终端设备可以根据CSI-RS对节能小区的参考信号进行下行接收或者确定节能小区的测量结果,并且终端设备可以在节能小区进行随机接入和RLM/BFD/RRM测量,这样,终端设备不必切换到其他小区,可以避免将节能状态小区的终端设备迁移到相邻小区产生业务中断和增加相邻小区的负载水平,保证了小区进入节能状态时不降低用户体验。
第二方面的实施例
本申请实施例提供一种信息发送方法。从终端设备侧说明,其中与第一方面的实施例相同的内容不再重复说明。
图4是本申请实施例中信息发送方法一示意图,如图4所示,该方法包括:
401,在所述终端设备在第一小区发起随机接入或基于所述第一小区的第一同步信号块进行RLM/BFD/RRM测量,且所述终端设备无法成功接收或测量所述第一同步信号块时,向网络侧设备发送第一唤醒信号,所述唤醒信号用于指示网络侧设备恢复发送所述第一小区的第一同步信号块;
在一些实施例中,在401中,在所述终端设备没有接收到网络侧设备发送的第二指示信息且在所述终端设备在第一小区发起随机接入或基于所述第一小区的第一同步信号块进行RLM/BFD/RRM测量时,向网络侧设备发送所述第一唤醒信号,例如,用指定的PRACH机会或随机接入前导码承载;关于第二指示信息的实施方式可以参 考第一方面的实施例,此处不再赘述。
也就是说,终端设备没有接收到第二指示信息,表示终端设备不能根据CSI-RS进行第一小区参考信号的下行接收或确定第一小区的测量结果,如果终端设备需要发起随机接入或基于所述第一小区的第一同步信号块进行RLM/BFD/RRM测量或小区选择或重选到所述第一小区,则需要发送第一唤醒信号,使得第一小区恢复SSB的发送。
在一些实施例中,该方法还可以包括:在所述终端设备无法成功接收或测量所述第二小区的第二同步信号块时,所述终端设备向网络侧设备发送第二唤醒信号,所述第二唤醒信号用于指示网络侧设备恢复发送所述第二小区的第二同步信号块。
其中,所述第一小区的第一同步信号块与所述第二小区的第二同步信号块是准共址(QCL)关系。
在一些实施例中,该第一小区、第二小区、第一SSB和第二SSB的实施方式请参考第一方面的实施例,此处不再赘述。
在一些实施例中,该方法还可以包括:终端设备接收第一指示信息,关于该第一指示信息的实施方式请参考第一方面的实施例,此处不再赘述。
需要说明的是,第一、第二唤醒信号的接收对象、以及发送第一指示信息的执行主体、发送第二指示信息的执行主体、停止发送第一SSB的网络设备以及发送CSI-RS的网络设备可以是相同或不同的网络设备。
在一些实施例中,该方法还可以包括:
402,所述终端设备接收网络侧设备恢复发送的所述第一同步信号块;
403,根据所述第一同步信号块进行随机接入或基于所述第一小区的第一同步信号块进行RLM/BFD/RRM测量。
关于402-403的实施方式可以参考现有技术,此处不再赘述。
另外,终端设备还可以接收网络侧设备恢复发送的第二同步信号块。
由上述实施例可知,终端设备可以发送唤醒信号(Wake-Up signal),使停止发送SSB的节能小区恢复SSB的发送,并基于恢复发送的SSB在节能小区进行随机接入、基于CSI-RS或SSB的RLM/BFD/RRM测量等,这样,终端设备不必切换到其他小区,可以避免将节能状态小区的终端设备迁移到相邻小区产生业务中断和增加相邻小区的负载水平。
第三方面的实施例
本申请实施例提供一种信息发送方法。该方法是对应第一和第二方面的实施例的方法的网络侧设备的处理,其中与第一方面和第二方面的实施例相同的内容不再重复说明。
图5是本申请实施例的信息发送方法的一示意图。如图5所示,该方法包括:
501,网络侧设备停止向终端设备发送本应发送的第一小区的第一同步信号块;以及发送CSI-RS;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一小区的第一同步信号块与第二小区的第二同步信号块是准共址(QCL)关系。
在一些实施例中,该CSI-RS,第一小区、第二小区、第一SSB和第二SSB的实施方式请参考第一方面的实施例,此处不再赘述。
在一些实施例中,该方法还可以包括:该网络侧设备向所述终端设备发送第一指示信息,关于该第一指示信息的实施方式可以参考第一方面的实施例,此处不再赘述。
在一些实施例中,该网络侧设备向所述终端设备发送第二指示信息,关于该第二指示信息的实施方式可以参考第一方面的实施例,此处不再赘述。
在一些实施例中,在不发送第二指示信息的情况下,即终端设备不能通过CSI-RS进行第一小区参考信号的下行接收或确定第一小区的测量结果,该方法还可以包括:
502,该网络侧设备接收所述终端设备发送的第一唤醒信号,所述第一唤醒信号用于指示网络侧设备恢复发送所述第一小区的第一同步信号块。
在一些实施例中,该方法还包括:
503,该网络侧设备向终端设备恢复发送所述第一小区的第一同步信号块。
在一些实施例中,所述网络侧设备在发送RRC重配置消息之前恢复发送所述第一小区的第一同步信号块;所述RRC重配置消息是用于主小区组(MCG)或辅小区组(SCG)重新同步(ReSynchronization)的RRC重配置消息。由于用于MCG/SCG重新同步(ReSynchronization)的RRC重配置消息指示的非竞争随机接入是网络侧设备发起的,该用于MCG/SCG重新同步(ReSynchronization)的非竞争随机接入不能基于CSI-RS,只能基于SSB,因此,网络设备需要在发送该RRC重配置消息之前 恢复发送第一SSB,终端设备才可以基于恢复发送的第一SSB完成用于MCG/SCG重新同步(ReSynchronization)的RRC重配置消息指示的非竞争随机接入。
图6是本申请实施例的信息发送方法的一示意图。如图6所示,该方法包括:
601,网络侧设备向终端设备发送或停止发送本应发送的第二小区的第二同步信号块;以及,发送CSI-RS;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一小区的第一同步信号块与第二小区的第二同步信号块是准共址(QCL)关系。
在一些实施例中,该方法还可以包括:
602,该网络侧设备接收所述终端设备发送的第二唤醒信号,所述第二唤醒信号用于指示网络侧设备恢复发送所述第二小区的第二同步信号块。
在一些实施例中,该方法还包括:
603,该网络侧设备向终端设备恢复发送所述第二小区的第二同步信号块。
在一些实施例中,图5和图6中的网络侧设备可以是相同的网络设备或不相同的网络设备,本申请实施例并不以此作为限制。
以上各个实施方式仅对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施方式的基础上进行适当的变型。例如,可以单独使用上述各个实施方式,也可以将以上各个实施方式中的一种或多种结合起来。
第四方面的实施例
本申请实施例提供一种信息发送装置。该装置例如可以是网络设备,也可以是配置于网络设备的某个或某些部件或者组件。本申请实施例的装置对应第三方面的实施例的方法,其中与第三方面的实施例相同的内容不再重复说明。
图7是本申请实施例的信息发送装置的一个示例的示意图。如图7所示,信息发送装置700包括:
第一发送单元701,其停止向终端设备发送本应发送的第一小区的第一同步信号块,以及,向终端设备发送CSI-RS;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL) 关系。
在一些实施例中,该第一发送单元向所述终端设备发送第一指示信息,和/或第二指示信息,关于第一指示信息,第二指示信息,第一SSB,第二SSB,CSI-RS的实施方式请参考前述实施例,此处不再赘述。
以上对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信息发送装置700还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。此外,上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
第五方面的实施例
本申请实施例提供一种信息处理装置。该装置例如可以是终端设备,也可以是配置于终端设备的某个或某些部件或者组件。本申请实施例的装置对应第一方面的实施例的方法,其中与第一方面的实施例相同的内容不再重复说明。
图8是本申请实施例的信息处理装置的一个示例的示意图。如图8所示,信息处理装置800包括:
第一接收单元801,其接收网络侧设备发送的CSI-RS;
第一处理单元802,其根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。
在一些实施例中,在所述终端设备无法成功接收网络侧设备发送的所述第一同步信号块时,所述第一处理单元根据所述CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
在一些实施例中,所述第一接收单元还接收网络侧设备发送的第一指示信息和/或第二指示信息,关于第一指示信息,第二指示信息,第一SSB,第二SSB,CSI-RS 的实施方式请参考前述实施例,此处不再赘述。
在一些实施例中,所述第一小区为所述终端设备在连接状态时的特殊小区(SpCell)。
在一些实施例中,所述CSI-RS与所述第一小区参考信号是由不同TRP发送的。
在一些实施例中,所述第一处理单元测量所述第一同步信号块时,通过所述CSI-RS的第二测量结果获取所述第一同步信号块的第一测量结果。
在一些实施例中,所述第一处理单元根据与第一SSB有准共址关系的CSI-RS的第二测量结果选择用于在所述第一小区进行随机接入的第一同步信号块,或者,第一处理单元根据与第二SSB有准共址关系的CSI-RS的第二测量结果选择进行随机接入的第二同步信号块,并确定与所述第一小区的PRACH资源相关联的同步信号块为第二同步信号块。
在一些实施例中,所述第一处理单元确定用于无线链路检测或波束失败检测的参考信号为所述CSI-RS,并且,测量所述CSI-RS的第二测量结果以进行所述第一小区的无线链路失败检测或波束失败检测。
在一些实施例中,所述第一处理单元确定用于无线资源管理测量的参考信号为所述CSI-RS,并且,根据所述CSI-RS的第二测量结果,以进行所述第一SSB的无线资源管理(RRM)测量。
在一些实施例中,所述第一处理单元测量所述第一小区时将所述CSI-RS的测量结果作为所述第一小区的RRM测量结果,或者,测量所述CSI-RS,以进行所述第一小区的RRM测量。
在一些实施例中,所述第一处理单元根据与所述第二同步信号块是准共址关系的第二CSI-RS对与所述第一同步信号块是准共址关系的第一CSI-RS进行下行接收。
在一些实施例中,所述终端设备在接收所述与第一同步信号块是准共址关系的第一CSI-RS时,所述第一处理单元将接收所述与第二同步信号块是准共址关系的第二CSI-RS的第二下行接收参数作为接收所述第一CSI-RS的第一下行接收参数,并根据所述第一CSI-RS的第一下行接收参数接收所述第一CSI-RS,或者,所述第一处理单元确定所述第一CSI-RS与所述第一小区的同步信号块的准共址关系和所述第一CSI-RS与所述第二CSI-RS的准共址关系相同,并根据接收所述第二CSI-RS的第二下行接收参数接收所述第一CSI-RS。
在一些实施例中,所述第一处理单元还根据所述CSI-RS和所述第二小区的第二同步信号块对第一小区参考信号进行下行接收或确定第一小区的测量结果。
在一些实施例中,在所述终端设备在所述第一小区停止发送所述第一同步信号块后接入网络时,所述第一处理单元根据所述CSI-RS和所述第二小区的第二同步信号块对第一小区参考信号进行下行接收或确定第一小区的测量结果。
以上对本申请实施例进行了示例性说明,但本申请不限于此,还可以在以上各个实施例的基础上进行适当的变型。例如,可以单独使用上述各个实施例,也可以将以上各个实施例中的一种或多种结合起来。
值得注意的是,以上仅对与本申请相关的各部件或模块进行了说明,但本申请不限于此。信息处理装置800还可以包括其他部件或者模块,关于这些部件或者模块的具体内容,可以参考相关技术。此外,上述各个部件或模块可以通过例如处理器、存储器、发射机、接收机等硬件设施来实现;本申请实施并不对此进行限制。
第六方面的实施例
本申请实施例还提供一种通信系统,包括网络设备和终端设备。
在一些实施例中,网络设备包括第四方面的实施例所述的装置,被配置为执行第三方面的实施例所述的方法,由于在第三方面的实施例中,已经对该方法进行了详细说明,其内容被合并于此,不再重复说明。
在一些实施例中,终端设备包括第五方面的实施例所述的装置,被配置为执行第一方面的实施例所述的方法,由于在第一方面的实施例中,已经对该方法进行了详细说明,其内容被合并于此,不再重复说明。
本申请实施例还提供一种网络设备,例如gNB(NR中的基站)等。
图9是本申请实施例的网络设备的示意图。如图9所示,网络设备900可以包括:中央处理器(CPU)901和存储器902;存储器902耦合到中央处理器901。其中该存储器902可存储各种数据;此外还存储信息处理的程序,并且在中央处理器901的控制下执行该程序,以接收终端设备发送的各种信息、并且向终端设备发送各种信息。
在一些实施例中,第四方面的实施例的所述的装置的功能可以被集成到中央处理器901中,中央处理器901可以被配置为执行程序而实现如第三方面的实施例所述的 方法,其内容被合并于此,此处不再重复说明。
在另一些实施例中,第四方面的实施例的所述的装置可以与中央处理器901分开配置,例如可以将第四方面的实施例的所述的装置配置为与中央处理器901连接的芯片,通过中央处理器901的控制来实现第四方面的实施例的所述的装置的功能。
此外,如图9所示,网络设备900还可以包括:收发机903和天线904等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备900也并不是必须要包括图9中所示的所有部件;此外,网络设备900还可以包括图9中没有示出的部件,可以参考现有技术。
本申请实施例还提供一种终端设备,例如UE。
图10是本申请实施例的终端设备的示意图。如图10所示,该终端设备1000可以包括处理器1001和存储器1002;存储器1002存储有数据和程序,并耦合到处理器1001。值得注意的是,该图是示例性的;还可以使用其它类型的结构,来补充或代替该结构,以实现电信功能或其它功能。
在一些实施例中,第五方面的实施例的装置的功能可以被集成到处理器1001中,其中,处理器1001可以被配置为执行程序而实现如第一方面的实施例所述的方法,其内容被合并于此,此处不再重复说明。
在另一些实施例中,第五方面的实施例的装置可以与处理器1001分开配置,例如可以将第五方面的实施例的装置配置为与处理器1001连接的芯片,通过处理器1001的控制来实现第五方面的实施例的装置的功能。
如图10所示,该终端设备1000还可以包括:通信模块1003、输入单元1004、显示器1005、电源1006。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,终端设备1000也并不是必须要包括图10中所示的所有部件,上述部件并不是必需的;此外,终端设备1000还可以包括图10中没有示出的部件,可以参考相关技术。
本申请实施例还提供一种计算机程序,其中当在终端设备中执行所述程序时,所述程序使得所述终端设备执行第一方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得终端设备执行第一方面的实施例所述的方法。
本申请实施例还提供一种计算机程序,其中当在网络设备中执行所述程序时,所 述程序使得所述网络设备执行第三方面的实施例所述的方法。
本申请实施例还提供一种存储有计算机程序的存储介质,其中所述计算机程序使得网络设备执行第三方面的实施例所述的方法。
本申请以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图中所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本 申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。关于包括以上实施例的实施方式,还公开下述的附记:
1.一种信息处理方法,应用于终端设备,其特征在于,所述方法包括:
所述终端设备接收网络侧设备发送的CSI-RS;
所述终端设备根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。
2.根据附记1所述的方法,其中,所述方法还包括:
在所述终端设备无法成功接收网络侧设备发送的所述第一同步信号块时,所述终端设备根据所述CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
3.根据附记1至2任一项所述的方法,其中,在一个同步信号块周期内,所述第二同步信号块的发送个数不少于本应发送的所述第一同步信号块的个数。
4.根据附记1至3任一项所述的方法,其中,具有准共址关系的第一同步信号块和第二同步信号块具有相同索引。
5.根据附记1至4任一项所述的方法,其中,所述方法还包括:
所述终端设备接收网络侧设备发送的第一指示信息,所述第一指示信息用于指示停止发送本应发送的所述第一小区的同步信号块。
6.根据附记5所述的方法,其中,所述第一指示信息还用于指示停止发送的本应发送的所述第一同步信号块的索引。
7.根据附记1至6任一项所述的方法,其中,所述方法还包括:
所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第二小区的标识或CSI-RS的资源标识,或用于指示所述第一同步信号块与所述第二同步信号块是准共址关系,以使所述终端设备根据所述CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
8.根据附记1至7任一项所述的方法,其中,所述第一小区为所述终端设备在连接状态时的特殊小区(SpCell)。
9.根据附记1至8任一项所述的方法,其中,所述CSI-RS与所述第一小区参考信号是由不同TRP发送的。
10.根据附记1至9任一项所述的方法,其中,所述终端设备根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果,包括:
所述终端设备通过所述CSI-RS获得所述第一同步信号块或与所述第一同步信号块是共址关系的CSI-RS的测量结果,或通过所述CSI-RS获得所述第一小区的测量结果。
11.根据附记10所述的方法,其中,
所述终端设备测量所述第一同步信号块时,通过所述CSI-RS的第二测量结果获取所述第一同步信号块的第一测量结果。
12.根据附记11所述的方法,其中,所述测量结果包括L1测量结果,或者,L3测量结果。
13.根据附记10所述的方法,其中,
所述终端设备根据与第一SSB有准共址关系的CSI-RS的第二测量结果选择用于在所述第一小区进行随机接入的第一同步信号块。
14.根据附记10所述的方法,其中,所述方法还包括:
所述终端设备根据与第二SSB有准共址关系的CSI-RS的第二测量结果选择进行随机接入的第二同步信号块,并确定与所述第一小区的PRACH资源相关联的同步信号块为第二同步信号块。
15.根据附记10所述的方法,其中,
所述终端设备确定用于无线链路检测或波束失败检测的参考信号为所述CSI-RS,并且,所述终端设备根据所述CSI-RS的第二测量结果进行所述第一小区的无线链路失败检测或波束失败检测。
16.根据附记10所述的方法,其中,
所述终端设备确定用于无线资源管理测量的参考信号为所述CSI-RS,并且,所述终端设备根据所述CSI-RS的第二测量结果进行所述第一SSB的无线资源管理(RRM)测量。
17.根据附记10所述的方法,其中,
所述终端设备测量所述第一小区时将所述CSI-RS的测量结果作为所述第一小区 的测量结果。
18.根据附记10所述的方法,其中,
所述终端设备测量所述CSI-RS,以进行所述第一小区的测量。
19.根据附记1至9任一项所述的方法,其中,所述终端设备根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果,包括:
所述终端设备根据与所述第二同步信号块是准共址关系的第二CSI-RS对与所述第一同步信号块是准共址关系的第一CSI-RS进行下行接收。
20.根据附记19所述的方法,其中,
所述终端设备在接收所述与第一同步信号块是准共址关系的第一CSI-RS时,将接收所述与第二同步信号块是准共址关系的第二CSI-RS的第二下行接收参数作为接收所述第一CSI-RS的第一下行接收参数,并根据所述第一CSI-RS的第一下行接收参数接收所述第一CSI-RS。
21.根据附记19所述的方法,其中,
所述终端设备确定所述第一CSI-RS与所述第一小区的同步信号块的准共址关系和所述第一CSI-RS与所述第二CSI-RS的准共址关系相同,并根据接收所述第二CSI-RS的第二下行接收参数接收所述第一CSI-RS。
22.根据附记1至9任一项所述的方法,其中,所述终端设备根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果,包括:
所述终端设备根据所述CSI-RS和所述第二小区的第二同步信号块对第一小区参考信号进行下行接收或确定第一小区的测量结果。
23.根据附记22所述的方法,其中,在所述终端设备在所述第一小区停止发送所述第一同步信号块后接入网络时,所述终端设备根据所述CSI-RS和所述第二小区的第二同步信号块对第一小区参考信号进行下行接收或确定第一小区的测量结果。
24.一种信息发送方法,应用于网络侧设备,其特征在于,所述方法包括:
网络侧设备停止向终端设备发送本应发送的第一小区的第一同步信号块,以及向终端设备发送CSI-RS;
其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。
25.根据附记24所述的方法,其中,在一个同步信号块发送周期内,所述第二同步信号块的发送个数不少于本应发送的所述第一同步信号块的发送个数。
26.根据附记24或25所述的方法,其中,具有准共址关系的第一同步信号块和第二同步信号块具有相同索引。
27.根据附记24至26任一项所述的方法,其中,所述方法还包括:
网络侧设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示停止发送本应发送的所述第一小区的同步信号块。
28.根据附记27所述的方法,其中,所述第一指示信息还用于指示停止发送的本应发送的所述第一同步信号块的索引。
29.根据附记24至28任一项所述的方法,其中,所述方法还包括:
网络侧设备向所述终端设备发送的第二指示信息,所述第二指示信息用于指示所述第二小区的标识或CSI-RS的资源标识,或用于指示所述第一同步信号块与所述第二同步信号块是准共址关系,以使所述终端设备根据所述CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
30.一种网络设备,包括存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记24至29任一项所述的方法。
31.一种终端设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器被配置为执行所述计算机程序而实现如附记1至23任一项所述的方法。
32.一种通信系统,包括附记30所述的网络设备和/或附记31所述的终端设备。

Claims (20)

  1. 一种信息处理装置,应用于终端设备,其特征在于,所述装置包括:
    第一接收单元,其接收网络侧设备发送的CSI-RS;
    第一处理单元,其根据所述CSI-RS对第一小区参考信号进行下行接收或确定第一小区的测量结果;
    其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。
  2. 根据权利要求1所述的装置,其中,在所述终端设备无法成功接收网络侧设备发送的所述第一同步信号块时,所述第一处理单元根据所述CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
  3. 根据权利要求1所述的装置,其中,在一个同步信号块周期内,所述第二同步信号块的发送个数不少于本应发送的所述第一同步信号块的个数。
  4. 根据权利要求1所述的装置,其中,具有准共址关系的第一同步信号块和第二同步信号块具有相同索引。
  5. 根据权利要求1所述的装置,其中,所述第一接收单元还接收网络侧设备发送的第一指示信息,所述第一指示信息用于指示停止发送本应发送的所述第一小区的同步信号块。
  6. 根据权利要求5所述的装置,其中,所述第一指示信息还用于指示停止发送的本应发送的所述第一同步信号块的索引。
  7. 根据权利要求1所述的装置,其中,所述第一接收单元还接收所述网络设备发送的第二指示信息,所述第二指示信息用于指示所述第二小区的标识或CSI-RS的资源标识,或用于指示所述第一同步信号块与所述第二同步信号块是准共址关系,以使所述终端设备根据所述CSI-RS对所述第一小区参考信号进行下行接收或确定第一小区的测量结果。
  8. 根据权利要求1所述的装置,其中,所述第一小区为所述终端设备在连接状态时的特殊小区(SpCell)。
  9. 根据权利要求1所述的装置,其中,所述CSI-RS与所述第一小区参考信号是 由不同TRP发送的。
  10. 根据权利要求1所述的装置,所述第一处理单元测量所述第一同步信号块时,通过所述CSI-RS的第二测量结果获取所述第一同步信号块的第一测量结果。
  11. 根据权利要求1所述的装置,其中,所述第一处理单元根据与第一SSB有准共址关系的CSI-RS的第二测量结果选择用于在所述第一小区进行随机接入的第一同步信号块;或者,第一处理单元根据与第二SSB有准共址关系的CSI-RS的第二测量结果选择进行随机接入的第二同步信号块,并确定与所述第一小区的PRACH资源相关联的同步信号块为第二同步信号块。
  12. 根据权利要求1所述的装置,其中,所述第一处理单元确定用于无线链路检测或波束失败检测的参考信号为所述CSI-RS,并且,测量所述CSI-RS的第二测量结果以进行所述第一小区的无线链路失败检测或波束失败检测。
  13. 根据权利要求1所述的装置,其中,所述第一处理单元确定用于无线资源管理测量的参考信号为所述CSI-RS,并且,根据所述CSI-RS的第二测量结果,以进行所述第一SSB的无线资源管理(RRM)测量。
  14. 根据权利要求1所述的装置,其中,所述第一处理单元测量所述第一小区时将所述CSI-RS的测量结果作为所述第一小区的测量结果,或者,测量所述CSI-RS,以进行所述第一小区的测量。
  15. 根据权利要求1所述的装置,其中,所述第一处理单元根据与所述第二同步信号块是准共址关系的第二CSI-RS对与所述第一同步信号块是准共址关系的第一CSI-RS进行下行接收。
  16. 根据权利要求15所述的装置,其中,所述终端设备在接收所述与第一同步信号块是准共址关系的第一CSI-RS时,所述第一处理单元将接收所述与第二同步信号块是准共址关系的第二CSI-RS的第二下行接收参数作为接收所述第一CSI-RS的第一下行接收参数,并根据所述第一CSI-RS的第一下行接收参数接收所述第一CSI-RS,或者,所述第一处理单元确定所述第一CSI-RS与所述第一小区的同步信号块的准共址关系和所述第一CSI-RS与所述第二CSI-RS的准共址关系相同,并根据接收所述第二CSI-RS的第二下行接收参数接收所述第一CSI-RS。
  17. 根据权利要求1所述的装置,其中,所述第一处理单元还根据所述CSI-RS和所述第二小区的第二同步信号块对第一小区参考信号进行下行接收或确定第一小 区的测量结果。
  18. 根据权利要求17所述的装置,其中,在所述终端设备在所述第一小区停止发送所述第一同步信号块后接入网络时,所述第一处理单元根据所述CSI-RS和所述第二小区的第二同步信号块对第一小区参考信号进行下行接收或确定第一小区的测量结果。
  19. 一种信息发送装置,应用于网络侧设备,其特征在于,所述装置包括:
    第一发送单元,其停止向终端设备发送本应发送的第一小区的第一同步信号块,以及向终端设备发送CSI-RS;
    其中,所述CSI-RS与所述第一小区的第一同步信号块或与第二小区的第二同步信号块是准共址关系,所述第一同步信号块与所述第二同步信号块是准共址(QCL)关系。
  20. 一种通信系统,包括网络设备和/或终端设备,所述网络设备包括权利要求19中的信息发送装置,所述终端设备包括权利要求1至18中任一项所述的信息处理装置。
PCT/CN2022/110717 2022-08-05 2022-08-05 信息处理方法、信息发送方法和装置 WO2024026896A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110717 WO2024026896A1 (zh) 2022-08-05 2022-08-05 信息处理方法、信息发送方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110717 WO2024026896A1 (zh) 2022-08-05 2022-08-05 信息处理方法、信息发送方法和装置

Publications (1)

Publication Number Publication Date
WO2024026896A1 true WO2024026896A1 (zh) 2024-02-08

Family

ID=89848411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110717 WO2024026896A1 (zh) 2022-08-05 2022-08-05 信息处理方法、信息发送方法和装置

Country Status (1)

Country Link
WO (1) WO2024026896A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053673A1 (en) * 2017-05-12 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication device, network node, method and computer program for achieving synchronization
CN111182562A (zh) * 2019-02-15 2020-05-19 维沃移动通信有限公司 一种测量处理方法、参数配置方法、终端和网络设备
CN113170334A (zh) * 2021-03-04 2021-07-23 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053673A1 (en) * 2017-05-12 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication device, network node, method and computer program for achieving synchronization
CN111182562A (zh) * 2019-02-15 2020-05-19 维沃移动通信有限公司 一种测量处理方法、参数配置方法、终端和网络设备
CN113170334A (zh) * 2021-03-04 2021-07-23 北京小米移动软件有限公司 信息传输方法、装置、通信设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Discussion on SSB-based RLM tests", 3GPP DRAFT; R4-1810245 RLM PERF DISCUSS SSB BASED RLM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Gothenburg, SE; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051579248 *

Similar Documents

Publication Publication Date Title
US11678274B2 (en) Method for modifying parameter values for long range extension and corresponding node
US11246068B2 (en) Communication method between a terminal and base stations for cell handover
US11102744B2 (en) Downlink synchronization method, and apparatus and system cross-reference to related applications
CN110249683B (zh) 用于波束故障恢复的方法和装置
EP3577938B1 (en) Methods for determining reporting configuration based on ue power class
US11956860B2 (en) Signal transmission method, signal detection method and apparatuses thereof and communication system
EP3583728B1 (en) Methods and apparatus for associating carriers in a wireless communication network
JP2020502882A (ja) 通信ネットワークにおけるネットワークノード、無線デバイス、およびその中における方法
WO2022027521A1 (zh) 上行信号的发送和接收方法以及装置
EP4027738B1 (en) Communication method and apparatus
US20210136833A1 (en) Random access method and data reception method, apparatuses thereof and communication system
US20220295574A1 (en) Method and apparatus for channel state information
WO2024026896A1 (zh) 信息处理方法、信息发送方法和装置
WO2024026897A1 (zh) 信息处理方法、信息发送方法和装置
WO2024026898A1 (zh) 信息处理方法、信息收发方法和装置
WO2024031404A1 (zh) 测量放松的方法、装置以及通信系统
WO2024031402A1 (zh) 测量放松的方法、装置以及通信系统
WO2024065522A1 (zh) 信息处理方法和装置
WO2024065329A1 (zh) 信息处理方法和装置
WO2023010368A1 (zh) 收发信号的方法、装置和通信系统
CN116941206A (zh) 测量方法以及装置
CN116234038A (zh) 一种状态转换方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953696

Country of ref document: EP

Kind code of ref document: A1