WO2020196438A1 - 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム - Google Patents

電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム Download PDF

Info

Publication number
WO2020196438A1
WO2020196438A1 PCT/JP2020/012814 JP2020012814W WO2020196438A1 WO 2020196438 A1 WO2020196438 A1 WO 2020196438A1 JP 2020012814 W JP2020012814 W JP 2020012814W WO 2020196438 A1 WO2020196438 A1 WO 2020196438A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
shunt resistor
open
power storage
battery management
Prior art date
Application number
PCT/JP2020/012814
Other languages
English (en)
French (fr)
Inventor
誠治 高井
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN202080020880.2A priority Critical patent/CN113574704A/zh
Priority to DE112020001524.6T priority patent/DE112020001524T5/de
Priority to US17/442,761 priority patent/US11885852B2/en
Publication of WO2020196438A1 publication Critical patent/WO2020196438A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery management device, a power storage device, a battery management method, and a computer program.
  • a battery management device for preventing overcharging, overdischarging, etc. is provided in a power storage device such as a lithium ion battery.
  • the battery management device has a current measuring unit that measures the current flowing through the power storage element included in the power storage device.
  • the current measuring unit measures the current flowing through the shunt resistor connected to the power storage element.
  • the battery management device measures the voltage, current, and temperature of the power storage element, and cuts off the current flowing through the power storage element when an abnormality is detected, thereby preventing the power storage element from becoming abnormal.
  • the battery management device can estimate the SOC (State Of Charge) of the power storage element by measuring the charge / discharge current of the power storage element and integrating the current values.
  • Patent Document 1 discloses an example of a battery management device.
  • current measurement may not be performed normally due to a failure such as the shunt resistor being disconnected from the circuit or the signal line connected to the shunt resistor being disconnected to measure the current. .. If the current measurement cannot be performed normally, the battery management device cannot properly manage the power storage element. Therefore, a technique for easily determining the presence or absence of these failures is required.
  • An object of the present invention is to provide a battery management device, a power storage device, a battery management method, and a computer program that can easily determine the presence or absence of a failure that causes current measurement to fail normally.
  • the battery management device manages a power storage element to which a shunt resistor is connected.
  • the battery management device uses a pair of signal lines connected to both ends of the shunt resistor to measure the current flowing through the shunt resistor, and uses the signal line as a reference potential source via an open / close switch.
  • the power storage device includes a power storage element, a shunt resistor connected to the power storage element, and a battery management device that manages the power storage element.
  • the battery management device uses a pair of signal lines connected to both ends of the shunt resistor to measure the current flowing through the shunt resistor, and sets the signal line as a reference potential via an open / close switch.
  • the connection between the connection line connected to the source and the pair of signal lines via the shunt resistor becomes poor based on the change in the current measured by the current measuring unit when the open / close switch is opened / closed. It has a determination unit for determining the presence or absence of a failure.
  • the battery management method manages a power storage element to which a shunt resistor is connected.
  • the battery management method uses a pair of signal lines connected to both ends of the shunt resistor, and uses the signal line as a reference potential source via a current measuring unit that measures the current flowing through the shunt resistor and an open / close switch. Based on the change in the current measured by the current measuring unit when the open / close switch is opened / closed, the connection between the pair of signal lines via the shunt resistor becomes defective. Judge the presence or absence of a failure.
  • a computer program includes a current measuring unit that measures the current flowing through the shunt resistor using a pair of signal lines connected to both ends of the shunt resistor connected to the power storage element, and an opening / closing unit.
  • a computer is made to execute a process for managing the power storage element by using a connection line that connects the signal line to the reference potential source via a switch.
  • the computer program is a pair of signals via the shunt resistor based on a step of causing the computer to open and close the open / close switch and a change in the current measured by the current measuring unit when the open / close switch is opened and closed.
  • a process including a step of determining the presence or absence of a failure in which the connection between the wires becomes poor is executed.
  • the battery management device can easily determine the presence or absence of a failure that causes the current measurement of the power storage device to be impossible.
  • FIG. It is a conceptual diagram which shows the arrangement example of a power storage device. It is a schematic perspective view which shows the example of the appearance of the power storage device. It is a schematic exploded perspective view which shows the structural example of the power storage device. It is a block diagram which shows the electric structure example of the power storage device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the procedure of an example of the process of determining the presence or absence of failure performed by a battery management device. It is a graph which shows typically the change of the current value measured by the current measuring part. It is a flowchart which shows the procedure of another example of the process of determining the presence or absence of a failure performed by a battery management device. It is a block diagram which shows the electric structure example of the power storage device which concerns on Embodiment 2.
  • the battery management device that manages the power storage element to which the shunt resistor is connected includes a current measuring unit that measures the current flowing through the shunt resistor using a pair of signal lines connected to both ends of the shunt resistor.
  • the pair via the shunt resistor based on the connection line connecting the signal line to the reference potential source via the open / close switch and the change in the current measured by the current measuring unit when the open / close switch is opened / closed. It is provided with a determination unit for determining the presence or absence of a failure in which the connection between the signal lines of the above is defective.
  • the change in current when the open / close switch is opened / closed differs depending on whether there is a failure in which the connection between the pair of signal lines via the shunt resistor is poor or not.
  • the ionization management device can determine the presence or absence of a failure based on the change in the current when the open / close switch is opened / closed.
  • the battery management device measures the current flowing through the shunt resistor and performs a process for managing the power storage element based on the current value.
  • the battery management device is based on the current value. Proper processing is not possible.
  • the change in the current when the open / close switch is opened / closed is clearly different depending on the presence / absence of the failure. The presence or absence of failure can be determined with. Since the presence or absence of a failure can be determined in a short time, the battery management device can stop the process based on the incorrect current value due to the failure in a short time and reduce the influence of the measurement of the incorrect current value.
  • the battery management device may further include a first opening / closing unit that periodically opens / closes the opening / closing switch.
  • the battery management device 3 can determine the occurrence of a failure by periodically determining the presence or absence of a connection failure of the signal line.
  • the battery management device may further include a second opening / closing unit that opens / closes the opening / closing switch when the value of the current measured by the current measuring unit is included in the predetermined range.
  • a second opening / closing unit that opens / closes the opening / closing switch when the value of the current measured by the current measuring unit is included in the predetermined range.
  • the reference potential source may be ground, and the current measuring unit measures the voltage between the pair of signal lines, measures the current based on the voltage, and has a higher resistance than the shunt resistor.
  • the pair of connection lines are connected to the pair of signal lines via a resistor, and the determination unit opens and closes the current as compared with the current measured by the current measurement unit when the open / close switch is open.
  • the current measured by the current measuring unit approaches zero with the switch closed, it may be determined that the failure has occurred.
  • the open / close switch is closed, the signal line is largely unaffected by ground connected via a resistor.
  • the current value measured by the current measuring unit is almost the same when the open / close switch is open and when it is closed.
  • the battery management device can determine that a failure has occurred when the current value when the open / close switch is closed changes so as to approach zero as compared with the current value when the open / close switch is open.
  • the battery management device includes an overcurrent detection unit that detects an overcurrent flowing through the shunt resistor, and a cutoff processing unit that performs a process for cutting off the current flowing through the shunt resistor when the overcurrent is detected. And may be further provided, and the determination unit may determine the presence or absence of the failure before the interruption processing unit performs the processing.
  • the change in the current when the open / close switch is opened / closed is clearly different depending on the presence or absence of a failure. Therefore, as compared with detecting the change in the current flowing through the shunt resistor due to the failure to an overcurrent, the battery The management device can determine the presence or absence of a failure in a short time.
  • the battery management device can determine the presence or absence of a failure before interrupting the current in response to the detection of the overcurrent.
  • the battery management device can stop the process based on the incorrect current value due to the failure before the current is cut off to reduce the influence of the incorrect current value being measured.
  • the power storage device includes a power storage element, a shunt resistor connected to the power storage element, and a battery management device that manages the power storage element.
  • the battery management device uses a pair of signal lines connected to both ends of the shunt resistor to measure the current flowing through the shunt resistor, and sets the signal line as a reference potential via an open / close switch.
  • the connection between the connection line connected to the source and the pair of signal lines via the shunt resistor becomes poor based on the change in the current measured by the current measuring unit when the open / close switch is opened / closed. It has a determination unit for determining the presence or absence of a failure.
  • the change in current when the open / close switch is opened / closed differs depending on whether there is a failure in which the connection between the pair of signal lines via the shunt resistor is poor or not.
  • the ionization management device can determine the presence or absence of a failure based on the change in the current when the open / close switch is opened / closed.
  • the power storage element may be a lithium ion battery containing lithium iron phosphate in the electrode.
  • an iron-based lithium-ion battery it is necessary to calculate the SOC based on the current value in order to obtain the SOC.
  • the battery management device can determine the occurrence of the failure in a short time and quickly stop the SOC calculation using the incorrect current value. Therefore, the battery management device can more accurately calculate the SOC of the power storage element based on the current value. Accurate SOC can be obtained even if the power storage element is an iron-based lithium-ion battery cell.
  • the power storage element may supply a current for starting the engine of the moving body.
  • the power storage device for starting the engine can supply a large current.
  • a low resistance shunt resistor In order to measure a large current with a battery management device, it is necessary to use a low resistance shunt resistor. Low resistance shunt resistors can be large and heavy.
  • the power storage device is provided on the moving body, and when vibration is applied to the heavy shunt resistor included in the power storage device, the stress applied to the part fixing the shunt resistor increases and the shunt resistor is not connected. May become. Since the battery management device can determine whether the shunt resistor is not connected, it is possible to appropriately diagnose a failure of the power storage device in which the shunt resistor can be disconnected.
  • the moving body may be a four-wheeled vehicle.
  • a large amount of electric power is required, and the power storage device needs to supply a large current.
  • Shunt resistors can be large and heavy to measure large currents with battery management devices.
  • the battery management device can appropriately diagnose the failure of the power storage device by determining the non-connection of the shunt resistor.
  • a current measuring unit for measuring the current flowing through the shunt resistor and a current measuring unit using a pair of signal lines connected to both ends of the shunt resistor are used.
  • the shunt resistor is used based on the change in the current measured by the current measuring unit when the open / close switch is opened / closed. It is determined whether or not there is a failure in which the connection between the pair of signal lines becomes defective.
  • the change in the current when the open / close switch is opened / closed differs depending on whether there is a failure in which the connection between the pair of signal lines via the shunt resistor is defective or not. It is possible to determine the presence or absence of a failure based on the change in current when the open / close switch is opened / closed.
  • a current measuring unit that measures the current flowing through the shunt resistor using a pair of signal lines connected to both ends of the shunt resistor connected to the power storage element, and the signal line as a reference potential source via an open / close switch.
  • a computer program that causes a computer using a connecting line to execute a process for managing the power storage element includes a step of causing the computer to open / close the open / close switch and measuring the current when the open / close switch is opened / closed. Based on the change in the current measured by the unit, the process including the step of determining the presence or absence of a failure in which the connection between the pair of signal lines via the shunt resistor becomes defective is executed.
  • the change in current when the open / close switch is opened / closed differs depending on whether there is a failure in which the connection between the pair of signal lines via the shunt resistor is poor or not. It is possible to determine the presence or absence of a failure based on the change in current when the open / close switch is opened / closed.
  • FIG. 1 is a conceptual diagram showing an arrangement example of the power storage device 1.
  • the power storage device 1 is provided in the moving body 100.
  • the power storage device 1 is connected to the engine 10 included in the moving body 100.
  • the moving body 100 is a four-wheeled vehicle.
  • the power storage device 1 supplies an electric current for starting the engine 10.
  • FIG. 2 is a schematic perspective view showing an example of the appearance of the power storage device 1.
  • the power storage device 1 has a rectangular parallelepiped case 21 and a lid 22 that closes the opening of the case 21.
  • FIG. 3 is a schematic exploded perspective view showing a configuration example of the power storage device 1.
  • the case 21 houses a battery unit 27 including a plurality of power storage elements 271.
  • the power storage element 271 is, for example, a cell of an iron-based lithium ion battery.
  • the iron-based lithium ion battery contains lithium iron phosphate at the electrode.
  • the power storage element 271 may be a cell of a lithium ion battery other than the iron-based lithium ion battery, or may be a cell of a battery other than the lithium ion battery.
  • a partition plate 211 is provided in the case 21.
  • a power storage element 271 is inserted between the partition plates 211.
  • An inner lid 26 is arranged between the lid portion 22 and the power storage element 271.
  • a plurality of metal bus bars 261 are placed on the inner lid 26.
  • the inner lid 26 is arranged on the terminal surface where the terminals of the power storage element 271 are provided, the adjacent terminals of the adjacent power storage elements 271 are connected by the bus bar 261 and the power storage elements 271 are connected in series.
  • An accommodating portion 23 is provided on the lid portion 22, and the accommodating portion 23 is covered with the cover 24.
  • the accommodating portion 23 has a box shape, and has a projecting portion 231 projecting outward in a square shape at the central portion of one elongated side surface.
  • a pair of external terminals 221 and 221 made of metal such as lead alloy and having different polarities are provided on both sides of the protruding portion 231 of the lid portion 22.
  • the external terminals 221,221 are terminals for connecting to the outside of the power storage device 1.
  • the control board 25 and the shunt resistor 28 are housed in the housing unit 23.
  • the control board 25 includes a battery management device that manages the power storage element 271.
  • the battery unit 27, the control board 25, and the shunt resistor 28 are connected by accommodating the control board 25 and the shunt resistor 28 in the accommodating portion 23 and covering the accommodating portion 23 with the cover 24.
  • FIG. 4 is a block diagram showing an example of an electrical configuration of the power storage device 1 according to the first embodiment.
  • the control board 25 includes a battery management device 3 and a current cutoff unit 4.
  • the battery management device 3 executes the battery management method.
  • a current cutoff unit 4, a battery unit 27, and a shunt resistor 28 are connected in series between the pair of external terminals 221,221.
  • the battery unit 27 includes a plurality of power storage elements 271.
  • the number of power storage elements 271 is not limited to four. Electric power is output from the external terminals 221,221 by discharging the respective power storage elements 271. Further, the plurality of power storage elements 271 are charged by applying a voltage from the outside between the external terminals 221,221.
  • the current cutoff unit 4 cuts off the current as needed to stop the charging / discharging of the power storage element 271.
  • the current cutoff unit 4 is configured to include, for example, a relay.
  • the battery management device 3 includes a control unit 31.
  • the control unit 31 is configured by using a processor and a memory.
  • the control unit 31 is configured by using a CPU (Central Processing Unit).
  • the control unit 31 controls each part of the battery management device 3.
  • a non-volatile memory 32 is connected to the control unit 31.
  • the memory 32 stores the computer program 321.
  • the control unit 31 is a computer that executes necessary processing according to the computer program 321.
  • the control unit 31 is connected to the current cutoff unit 4 and controls the operation of the current cutoff unit 4.
  • the battery management device 3 includes a voltage measuring unit 33.
  • the voltage measuring unit 33 is connected to the battery unit 27 and measures the voltage of each power storage element 271.
  • the voltage measuring unit 33 is connected to the control unit 31, and inputs the measured voltage values of the respective power storage elements 271 to the control unit 31.
  • the control unit 31 determines the state of each power storage element 271 based on the voltage value. For example, when the control unit 31 determines that the power storage element 271 is abnormal, the control unit 31 causes the current cutoff unit 4 to cut off the current.
  • the battery management device 3 includes a current measuring unit 34.
  • the current measuring unit 34 is connected to both ends of the shunt resistor 28.
  • the current measuring unit 34 is connected to the shunt resistor 28 through a pair of signal lines 341 and 341 connected to both ends of the shunt resistor 28.
  • the current measuring unit 34 has differential AD (Analog-to-digital) conversion units 342 and 343.
  • a pair of signal lines 341 and 341 are connected to the differential AD conversion units 342 and 343, and the voltage between the pair of signal lines 341 and 341 is converted into a digital signal.
  • the current measuring unit 34 acquires the value of the voltage across the shunt resistor 28.
  • the current measuring unit 34 calculates the value of the current flowing through the shunt resistor 28 based on the voltage across the shunt resistor 28. For example, the current measuring unit 34 stores the resistance value of the shunt resistor 28 in advance, and calculates the current value by dividing the voltage value by the resistance value. In this way, the voltage measuring unit 33 measures the value of the current flowing through the shunt resistor 28. The current measuring unit 34 calculates the current value respectively by using the digital signal of the voltage converted by each of the differential AD conversion units 342 and 343. That is, the current measuring unit 34 calculates a plurality of current values. The voltage measuring unit 33 is connected to the control unit 31 and inputs the measured current value to the control unit 31.
  • the control unit 31 determines the state of the power storage element 271 based on the current value. For example, when the control unit 31 determines that the power storage element 271 is abnormal, the control unit 31 causes the current cutoff unit 4 to cut off the current. Further, the control unit 31 integrates the current value. The control unit 31 may calculate the SOC of the power storage element 271 based on the integrated value of the current. The control unit 31 may store the current value, the integrated value of the current, or the SOC in the memory 32.
  • the battery management device 3 may include an output unit that outputs information indicating the state of the power storage element 271 such as the current value or the SOC to the outside.
  • the current measuring unit 34 may input a plurality of measured current values to the control unit 31.
  • the control unit 31 compares a plurality of current values and determines the state of the current measurement unit 34. For example, when the difference between a plurality of current values exceeds a predetermined value, the control unit 31 determines that the current measuring unit 34 is abnormal.
  • the current measuring unit 34 may compare a plurality of current values and self-diagnose the state of the current measuring unit 34.
  • the battery management device 3 includes a temperature measuring unit 36.
  • the temperature measuring unit 36 measures the temperature inside the battery unit 27.
  • the temperature measuring unit 36 measures the temperature using a thermocouple or a thermistor.
  • the temperature measuring unit 36 is connected to the control unit 31 and inputs the measured temperature value to the control unit 31.
  • the control unit 31 determines the state of the power storage element 271 based on the temperature value, and when it is determined that the power storage element 271 is abnormal, the current cutoff unit 4 causes the current cutoff unit 4 to cut off the current.
  • the battery management device 3 includes a potential difference detection unit 35.
  • the potential difference detection unit 35 has a differential amplifier circuit 351.
  • a pair of input signal lines 354 and 354 connected to both ends of the shunt resistor 28 are connected to the input end of the differential amplifier circuit 351.
  • the reference voltage of the differential amplifier circuit 351 is a potential raised from the ground potential by using the voltage source 355 and the amplification unit 353.
  • a comparator 352 is connected to the output end of the differential amplifier circuit 351.
  • the comparator 352 is connected to the control unit 31.
  • the differential amplifier circuit 351 amplifies and outputs the potential difference between the pair of input signal lines 354 and 354, that is, the potential difference between both ends of the shunt resistor 28.
  • the comparator 352 compares the value of the potential difference output from the differential amplifier circuit 351 with a predetermined threshold value. In this way, the potential difference detection unit 35 detects the potential difference at both ends of the shunt resistor 28.
  • the comparator 352 inputs a current cutoff instruction to the control unit 31 when the value of the potential difference exceeds the threshold value.
  • the control unit 31 causes the current cutoff unit 4 to cut off the current.
  • the process corresponding to the current cutoff instruction from the comparator 352 is executed as an interrupt process.
  • the comparator 352 may input a current cutoff instruction to the control unit 31 when the value of the potential difference is equal to or greater than the threshold value.
  • the potential difference detection unit 35 detects the occurrence of an overcurrent and shuts off the current.
  • the potential difference detection unit 35 corresponds to the overcurrent detection unit.
  • the process in which the control unit 31 causes the current cutoff unit 4 to cut off the current when an overcurrent is detected corresponds to the cutoff processing unit.
  • connection lines 347 and 347 are connected to the pair of signal lines 341 and 341 connected to the one differential AD conversion unit 343 included in the current measurement unit 34.
  • Each connection line 347 connects the signal line 341 and the ground 346 via a resistor 344 and an open / close switch 345.
  • Earth 346 corresponds to the reference potential source.
  • the open / close switch 345 is closed, the differential AD conversion unit 343 is connected to the ground 346 via the resistor 344.
  • the open / close switch 345 is open, the differential AD conversion unit 343 is not connected to the ground 346.
  • the open / close switch 345 is normally in the open state.
  • the current measuring unit 34 can open and close the open / close switch 345.
  • the resistor 344 has a higher resistance than the shunt resistor 28 so that the voltage drop due to the resistor 344 is negligibly smaller than the voltage drop due to the shunt resistor 28.
  • the pair of signal lines 341 and 341 are connected to each other via the shunt resistor 28.
  • a failure may occur in which the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 becomes poor.
  • the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 becomes poor.
  • the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 becomes poor.
  • the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 becomes poor.
  • the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 becomes poor. ..
  • the battery management device 3 In a state where the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 is poor, the current measuring unit 34 cannot normally measure the current flowing through the shunt resistor 28. Therefore, the battery management device 3 cannot properly manage the power storage element 271. For example, the battery management device 3 cannot correctly calculate the SOC of the power storage element 271.
  • FIG. 5 is a flowchart showing an example procedure of a process for determining the presence or absence of a failure performed by the battery management device 3.
  • the step is abbreviated as S.
  • the current measuring unit 34 measures the current (S11).
  • S11 the differential AD conversion unit 343 converts the voltage between the pair of signal lines 341 and 341 into a digital signal with the open / close switch 345 open.
  • the current measuring unit 34 calculates the current value using the digital signal of the voltage converted by the differential AD conversion unit 343.
  • the current measuring unit 34 inputs the current value to the control unit 31.
  • the current measuring unit 34 closes the open / close switch 345 (S12). With the open / close switch 345 closed, the current measuring unit 34 measures the current (S13). In S13, the differential AD conversion unit 343 converts the voltage between the pair of signal lines 341 and 341 into a digital signal with the open / close switch 345 closed. The current measurement unit 34 calculates the current value using the digital signal of the voltage converted by the differential AD conversion unit 343. The current measuring unit 34 inputs the current value to the control unit 31.
  • the control unit 31 compares the current value measured by the current measuring unit 34 with the open / close switch 345 open and the current value measured by the current measuring unit 34 with the open / close switch 345 closed, and compares the current value measured by the current measuring unit 34 with the open / close switch 345. It is determined whether or not the current value has changed according to the opening and closing (S14).
  • the open / close switch 345 When the open / close switch 345 is open, the voltage between both ends of the shunt resistor 28 is high in the state where the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 is not defective. It is input to the differential AD conversion unit 343. When the open / close switch 345 is closed, the resistor 344 has a higher resistance than the shunt resistor 28, so that the signal line 341 is almost unaffected by the ground 346 connected via the resistor 344. A voltage substantially equivalent to that when the open / close switch 345 is open is input to the differential AD conversion unit 343. In this state, the current value measured by the current measuring unit 34 is substantially the same when the open / close switch 345 is open and when it is closed.
  • the pair of signal lines 341 and 341 are not connected to each other and are in a high impedance state.
  • a high voltage is input to the differential AD conversion unit 343, and the current measuring unit 34 measures a high current value.
  • the signal line 341 is connected to ground 346 through the connection line 347.
  • the voltage between the pair of signal lines 341 and 341 becomes almost zero, and a voltage of almost zero is input to the differential AD conversion unit 343.
  • the current measuring unit 34 measures a current value of almost zero. In this state, the current value measured by the current measuring unit 34 changes greatly depending on whether the open / close switch 345 is open or closed.
  • FIG. 6 is a graph schematically showing a change in the current value measured by the current measuring unit 34.
  • the horizontal axis in the figure indicates time, and the vertical axis indicates current value.
  • the time when the open / close switch 345 is opened to closed is indicated by an arrow.
  • the current value in the state where no failure has occurred is shown by a broken line, and the current value in the state where a failure has occurred is shown by a solid line. In the state where no failure has occurred, the current value is the same before and after the open / close switch 345 is closed, or the change in the current value is small.
  • the current value is high when the open / close switch 345 is open, and the current value is close to zero when the open / close switch 345 is closed.
  • the current value changes significantly. Specifically, the current value when the open / close switch 345 is closed changes so as to approach zero as compared with the current value when the open / close switch 345 is open.
  • the change in the current when the open / close switch 345 is opened / closed differs depending on whether or not a failure has occurred. Therefore, the battery management device 3 can determine whether or not a failure has occurred according to the difference in the change in the current when the open / close switch 345 is opened / closed.
  • the control unit 31 sets the current value when the absolute value of the difference between the current value when the open / close switch 345 is open and the current value when the open / close switch 345 is closed exceeds a predetermined threshold value. Judge that it has changed. Alternatively, the control unit 31 may determine that the current value has changed when the absolute value of the difference between the current values is equal to or greater than the threshold value. Alternatively, the control unit 31 determines that the current value has changed when the absolute value of the difference between the current values exceeds or exceeds the threshold value and the change in the current value approaches zero. You may.
  • control unit 31 is a change in which the change in the current value approaches zero, and the current value changes when the absolute value of the current in the state where the open / close switch 345 is closed is equal to or less than a predetermined upper limit value. May be determined.
  • the control unit 31 determines that a failure has occurred (S15).
  • the processing of S14 and S15 corresponds to the determination unit.
  • the current measuring unit 34 keeps the open / close switch 345 open (S16), and the battery management device 3 determines whether or not there is a failure. End the process.
  • the control unit 31 may determine that a failure has not occurred when there is no change in the current value.
  • the current cutoff unit 4 may cut off the current, or the process of managing the power storage element 271 based on the current value may be stopped.
  • the control unit 31 stops the process of calculating the SOC of the power storage element 271 based on the current value.
  • the control unit 31 stops or deletes the recording of the current value or SOC that has become an incorrect value due to a failure.
  • the control unit 31 may output information indicating the occurrence of the failure to the output unit when it is determined that a failure has occurred.
  • the battery management device 3 outputs information indicating the occurrence of a failure from the output unit to the display unit, and the display unit displays an image indicating the occurrence of the failure.
  • the battery management device 3 fails to the external device of the power storage device 1 or the external device of the mobile body 100 such as a smartphone, from the output unit, or through the communication unit in the mobile body 100 connected to the output unit. Information indicating the occurrence may be output.
  • the battery management device 3 periodically executes the processes of S11 to S16.
  • the current measuring unit 34 corresponds to the first opening / closing unit.
  • the battery management device 3 executes the processes S11 to S16 once a minute. By periodically determining the presence or absence of a failure, the battery management device 3 can reliably determine the occurrence of a failure.
  • the processing of S14 and S15 is executed by the control unit 31 according to the computer program 321.
  • the processes S11 to S13 and S16 may be executed by the control unit 31 controlling the current measurement unit 34 according to the computer program 321.
  • FIG. 7 is a flowchart showing a procedure of another example of the process of determining the presence or absence of a failure performed by the battery management device 3.
  • the current measuring unit 34 measures the current (S21).
  • the current measuring unit 34 inputs the current value to the control unit 31.
  • the control unit 31 determines whether or not the current value is included in a predetermined range which is a value higher than usual (S22). For example, a value equal to or higher than a predetermined lower limit value is set as a value included in the predetermined range.
  • the control unit 31 determines that the current value is included in the predetermined range when the current value is 50 A or more.
  • the control unit 31 ends the process of determining the presence or absence of a failure.
  • the control unit 31 instructs the current measurement unit 34 to close the open / close switch 345, and the current measurement unit 34 closes the open / close switch 345. (S23). With the open / close switch 345 closed, the current measuring unit 34 measures the current (S24). The control unit 31 determines whether or not the current value has changed according to the opening / closing of the open / close switch 345 (S25). When the current value changes (S25: YES), the control unit 31 determines that a failure has occurred (S26). The processing of S25 and S26 corresponds to the determination unit.
  • the current measuring unit 34 keeps the open / close switch 345 open (S27), and the battery management device 3 determines whether or not there is a failure. End the process.
  • the control unit 31 may perform a specific process such as outputting information indicating the occurrence of the failure to the output unit.
  • the control unit 31 may determine that a failure has not occurred when there is no change in the current value.
  • the battery management device 3 periodically executes the processes of S21 to S27. For example, the battery management device 3 executes the processes S21 to S27 once a minute.
  • the processing of S22, S25 and S26 is executed by the control unit 31 according to the computer program 321.
  • the processes of S21, S23, S24 and S27 may be executed by the control unit 31 controlling the current measurement unit 34 according to the computer program 321.
  • the current measuring unit 34 corresponds to the second opening / closing unit.
  • the current measuring unit 34 measures a high current value when a failure occurs.
  • the battery management device 3 makes a determination when the current value is included in a predetermined range which is higher than usual and there is a high possibility that a failure has occurred.
  • the battery management device 3 makes a determination when there is a high possibility that a failure has occurred, and can determine the occurrence of a failure with high accuracy.
  • the battery management device 3 connects the ground 346 to the signal line 341 via the open / close switch 345.
  • the change in the current when the open / close switch 345 is opened / closed differs depending on whether there is a failure in which the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 is defective and the state is not.
  • the battery management device 3 can determine the presence or absence of a failure based on the change in the current when the open / close switch 345 is opened / closed.
  • the battery management device 3 Since the change in the current when the open / close switch 345 is opened and closed clearly differs depending on the presence or absence of a failure, the battery management device 3 fails in a short time as compared with determining the presence or absence of a failure from the time change of the current. The presence or absence can be determined.
  • the battery management device 3 can easily and in a short time determine the presence or absence of a failure that causes the current measurement to be performed normally. For example, even if a failure occurs in which the battery management device 3 and the shunt resistor 28 are disconnected, the battery management device 3 can easily determine the occurrence of the failure.
  • the battery management device 3 can stop the processing based on the incorrect current value due to the failure in a short time, and can reduce the influence of the incorrect current value being measured.
  • a connection line 347, a resistor 344, and an open / close switch 345 are added to the battery management device 3 as compared with the conventional battery management device. The number of added parts is small, and the cost increase is small compared to the conventional battery management device.
  • the battery management device 3 determines the presence or absence of a failure before performing a process of detecting an overcurrent and interrupting the current by using the potential difference detecting unit 35. Since the change in the current when the open / close switch 345 opens and closes clearly differs depending on the presence or absence of a failure, the battery management device 3 is compared with detecting the change in the current flowing through the shunt resistor 28 due to the failure to an overcurrent. Can determine the presence or absence of a failure in a short time. Therefore, the battery management device 3 can stop the process based on the incorrect current value due to the failure before shutting off the current in response to the detection of the overcurrent. For example, the battery management device 3 performs a process of stopping the calculation of the SOC of the power storage element 271 based on the current value before the current is cut off.
  • the battery management device 3 can determine the occurrence of the failure in a short time and quickly stop the SOC calculation using the incorrect current value. Therefore, the battery management device 3 can more accurately calculate the SOC of the power storage element 271 based on the current value.
  • the SOC of the power storage element In general, there is a correlation between the SOC of the power storage element and the open circuit voltage, and the SOC can be estimated from the open circuit voltage.
  • the open circuit voltage corresponding to many values of SOC is almost constant, and it is difficult to estimate SOC from the open circuit voltage. Therefore, in an iron-based lithium-ion battery, it is necessary to calculate the SOC based on the current value in order to obtain the SOC. Since the battery management device 3 can accurately calculate the SOC of the power storage element 271 based on the current value, accurate SOC can be obtained even if the power storage element 271 is a cell of an iron-based lithium ion battery.
  • the power storage device 1 is provided in the moving body 100 in order to start the engine 10.
  • the power storage device 1 can supply a large current in order to start the engine 10.
  • the moving body 100 is a four-wheeled vehicle, and a large current is required to start the engine 10 of the four-wheeled vehicle.
  • a low resistance shunt resistor 28 In order to measure a large current with the battery management device 3, it is necessary to use a low resistance shunt resistor 28.
  • Low resistance shunt resistor 28 can be large and heavy. When vibration is applied to the power storage device 1 and the heavy shunt resistor 28 is vibrated as the moving body 100 moves, the stress applied to the portion fixing the shunt resistor 28 becomes large, and the shunt resistor 28 is fixed. 28 may be disconnected from the battery management device 3.
  • the battery management device 3 can determine that the shunt resistor 28 is not connected, and can appropriately diagnose the failure of the power storage device 1. In particular, with respect to the power storage device 1 provided in the four-wheeled vehicle, the battery management device 3 can reliably determine the non-connection of the shunt resistor 28 and appropriately diagnose the failure.
  • FIG. 8 is a block diagram showing an example of an electrical configuration of the power storage device 1 according to the second embodiment.
  • the current measuring unit 34 is connected to the shunt resistor 28 through a pair of signal lines 341 and 341 connected to both ends of the shunt resistor 28.
  • the current measuring unit 34 includes a differential AD conversion unit that converts the voltage between the pair of signal lines 341 and 341 into a digital signal, acquires the voltage values across the shunt resistor 28, and shunts the resistor. Calculate the value of the current flowing through 28.
  • a pair of connecting lines 374 and 374 are connected to the pair of signal lines 341 and 341.
  • Each connection line 374 connects the signal line 341 and the ground 373 via a resistor 371 and an open / close switch 372.
  • Earth 373 corresponds to the reference potential source.
  • the open / close switch 372 is closed, the current measuring unit 34 is connected to the ground 373 via the resistor 371.
  • the open / close switch 372 is open, the current measuring unit 34 is not connected to the ground 373.
  • the opening / closing switch 372 is controlled to open / close by the control unit 31.
  • the open / close switch 372 is normally in the open state.
  • the resistor 371 has a higher resistance than the shunt resistor 28 so that the voltage drop due to the resistor 371 is negligibly smaller than the voltage drop due to the shunt resistor 28.
  • the configuration of the other parts of the battery management device 3 is the same as that of the first embodiment. Further, the configuration of the parts other than the battery management device 3 of the power storage device 1 and the mobile body 100 is the same as that of the first embodiment.
  • the battery management device 3 performs a process of determining whether or not there is a failure in which the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 becomes defective.
  • the battery management device 3 determines the presence or absence of a failure by the same process as the process shown in the flowchart of FIG. With the open / close switch 372 open, the current measuring unit 34 measures the current (S11). Next, the control unit 31 closes the open / close switch 372 (S12). With the open / close switch 372 closed, the current measuring unit 34 measures the current (S13).
  • the control unit 31 compares the current value measured by the current measuring unit 34 with the open / close switch 372 open and the current value measured by the current measuring unit 34 with the open / close switch 372 closed, and compares the current value measured by the current measuring unit 34 with the open / close switch 372. It is determined whether or not the current value has changed according to the opening and closing (S14).
  • the resistor 371 When the open / close switch 372 is closed in a state where the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 is not defective, the resistor 371 has a high resistance, so that the signal is displayed. Wire 341 is almost unaffected by Earth 373.
  • the current value measured by the current measuring unit 34 is substantially the same when the open / close switch 372 is open and when it is closed. In the state where the failure occurs, when the open / close switch 372 is closed, the signal line 341 is connected to the ground 373 through the connection line 374, and the current measuring unit 34 measures a current value of almost zero.
  • the current value measured by the current measuring unit 34 varies greatly depending on whether the open / close switch 372 is open or closed.
  • the control unit 31 determines that a failure has occurred (S15). After the end of S15 or when there is no change in the current value (S14: NO), the control unit 31 opens the open / close switch 372 (S16) and ends the process of determining the presence or absence of a failure. When the control unit 31 determines that a failure has occurred, the control unit 31 may perform a specific process such as outputting information indicating the occurrence of the failure to the output unit.
  • the battery management device 3 periodically executes the processes of S11 to S16.
  • the processing of S12 and S14 to S16 is executed by the control unit 31 according to the computer program 321. At this time, the control unit 31 corresponds to the first opening / closing unit.
  • the processes of S11 and S13 may be executed by the control unit 31 controlling the current measurement unit 34 according to the computer program 321.
  • the battery management device 3 may determine the presence or absence of a failure by the same process as the process shown in the flowchart of FIG. 7.
  • the current measuring unit 34 measures the current (S21).
  • the control unit 31 determines whether or not the current value is included in a predetermined range which is a value higher than usual (S22). When the current value is not included in the predetermined range (S22: NO), the control unit 31 ends the process of determining the presence or absence of a failure.
  • the control unit 31 closes the open / close switch 372 (S23). With the open / close switch 372 closed, the current measuring unit 34 measures the current (S24). The control unit 31 determines whether or not the current value has changed according to the opening / closing of the open / close switch 372 (S25). When the current value changes (S25: YES), the control unit 31 determines that a failure has occurred (S26). After the end of S26 or when there is no change in the current value (S25: NO), the control unit 31 opens the open / close switch 372 (S27) and ends the process of determining the presence or absence of a failure. When the control unit 31 determines that a failure has occurred, the control unit 31 may perform a specific process such as outputting information indicating the occurrence of the failure to the output unit.
  • the battery management device 3 periodically executes the processes of S21 to S27.
  • the processes of S22, S23, and S25 to S27 are executed by the control unit 31 according to the computer program 321.
  • the processes of S21 and S24 may be executed by the control unit 31 controlling the current measurement unit 34 according to the computer program 321.
  • the control unit 31 corresponds to the second opening / closing unit.
  • the battery management device 3 has a failure in which the connection between the pair of signal lines 341 and 341 via the shunt resistor 28 becomes defective based on the change in the current when the open / close switch 372 is opened / closed. Can be determined. That is, the battery management device 3 can easily and in a short time determine the presence or absence of a failure that causes the current measurement to be performed normally.
  • the battery management device 3 has a connection line 374, a resistor 371, and an open / close switch 372 added. The number of added parts is small, and the cost increase is small compared to the conventional battery management device.
  • the reference potential source is ground.
  • the reference potential source may be other than ground.
  • the current cutoff unit 4 is present outside the battery management device 3.
  • the battery management device 3 may include a current cutoff unit 4 inside.
  • the shunt resistor 28 is present outside the battery management device 3.
  • the battery management device 3 may include a shunt resistor 28 inside.
  • the moving body 100 is a four-wheeled vehicle and the power storage device 1 is used to start the engine 10.
  • the power storage device 1 may be used for purposes other than starting the engine 10, such as supplying electric power for driving various devices in the moving body 100.
  • the power storage device 1 may be provided in a moving body other than the four-wheeled vehicle.
  • the power storage device 1 may be used for applications other than mobile bodies.
  • Power storage device 10 Engine 100 Mobile unit 221 External terminal 25 Control board 27 Battery unit 271 Power storage element 28 Shunt resistor 3 Battery management device 31 Control unit 32 Memory 321 Computer program 34 Current measurement unit 341 Signal line 342, 343 Differential AD conversion Part 344, 371 Resistor 345, 372 Open / close switch 346, 373 Earth 347, 374 Connection line 35 Potential difference detection part 4 Current cutoff part

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電池管理装置は、シャント抵抗器が接続された蓄電素子を管理する。電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを備える。

Description

電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム
 本発明は、電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラムに関する。
 リチウムイオン電池等の蓄電装置には、過充電・過放電等を防止するための電池管理装置(BMU:Battery Management Unit)が設けられている。電池管理装置は、蓄電装置に含まれる蓄電素子に流れる電流を計測する電流計測部を有している。電流計測部は、蓄電素子に接続されたシャント抵抗器に流れる電流を計測する。電池管理装置は、蓄電素子の電圧、電流及び温度を計測し、異常を検出した場合に蓄電素子に流れる電流を遮断することにより、蓄電素子が異常な状態になることを防止している。電池管理装置は、蓄電素子の充放電電流を計測し、電流値を積算することにより、蓄電素子のSOC(State Of Charge)を推定できる。特許文献1は、電池管理装置の例を開示している。
特開2018-31778号公報
 蓄電装置では、シャント抵抗器が回路と非接続になるか、又は電流を計測するためにシャント抵抗器に接続される信号線が断線する等の故障により、電流計測が正常にできなくなることがある。電流計測が正常にできない場合、電池管理装置は蓄電素子を適切に管理することができない。そこで、これらの故障の有無を容易に判定するための技術が必要となる。
 本発明は、電流計測が正常にできなくなる原因となる故障の有無を容易に判定できる電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラムを提供することを目的とする。
 本発明の一局面に係る電池管理装置は、シャント抵抗器が接続された蓄電素子を管理する。電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを備える。
 本発明の他の局面に係る蓄電装置は、蓄電素子と、前記蓄電素子に接続されるシャント抵抗器と、前記蓄電素子を管理する電池管理装置とを備える。前記電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを有する。
 本発明の他の局面に係る電池管理方法は、シャント抵抗器が接続された蓄電素子を管理する。電池管理方法は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用い、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する。
 本発明の他の局面に係るコンピュータプログラムは、蓄電素子に接続されたシャント抵抗器の両端に接続される一対の信号線を用いて前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用いて、コンピュータに、前記蓄電素子を管理するための処理を実行させる。コンピュータプログラムは、前記コンピュータに、前記開閉スイッチを開閉させるステップと、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定するステップとを含む処理を実行させる。
 上記構成により、電池管理装置は、蓄電装置について、電流計測が正常にできなくなる原因となる故障の有無を容易に判定できる。
蓄電装置の配置例を示す概念図である。 蓄電装置の外観の例を示す模式的斜視図である。 蓄電装置の構成例を示す模式的な分解斜視図である。 実施形態1に係る蓄電装置の電気的構成例を示すブロック図である。 電池管理装置が行う故障の有無を判定する処理の一例の手順を示すフローチャートである。 電流計測部で計測される電流値の変化を模式的に示すグラフである。 電池管理装置が行う故障の有無を判定する処理の他の例の手順を示すフローチャートである。 実施形態2に係る蓄電装置の電気的構成例を示すブロック図である。
 シャント抵抗器が接続された蓄電素子を管理する電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを備える。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。電離管理装置は、開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無を判定できる。
 従来、電池管理装置は、シャント抵抗器に流れる電流を計測し、電流値に基づいて蓄電素子を管理するための処理を行っている。シャント抵抗器が電池管理装置と非接続になる等、シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障が発生した場合は、電池管理装置は、電流値に基づいた適切な処理ができない。本実施形態では、開閉スイッチが開閉したときの電流の変化は故障の有無に応じて明確に異なるので、電流の時間変化から故障の有無を判定することに比べて、電池管理装置は、短時間で故障の有無を判定できる。短時間で故障の有無を判定できるので、電池管理装置は、故障に起因する正しくない電流値に基づいた処理を短時間で停止し、正しくない電流値が計測されることの影響を小さくできる。
 電池管理装置は、前記開閉スイッチを定期的に開閉させる第1開閉部を更に備えてもよい。定期的に信号線の接続不良の有無を判定することにより、電池管理装置3は、故障の発生を判定できる。
 電池管理装置は、前記電流計測部が計測する電流の値が所定範囲に含まれる場合に、前記開閉スイッチを開閉させる第2開閉部を更に備えてもよい。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態では、電流値は、故障がない場合よりも高い値になる。このため、電流値が通常よりも高い値である所定範囲に含まれる場合は、故障が発生している可能性が高い。電池管理装置は、電流値が通常よりも高い値である所定範囲に含まれる場合に、判定を行う。電池管理装置は、故障が発生している可能性が高いときに判定を行うため、高い確度で故障の発生を判定できる。
 前記基準電位源は、アースであってもよく、前記電流計測部は、前記一対の信号線の間の電圧を測定し、前記電圧に基づいて電流を計測し、前記シャント抵抗器よりも高抵抗の抵抗器を介して一対の前記接続線が前記一対の信号線に接続されており、前記判定部は、前記開閉スイッチが開いた状態で前記電流計測部が計測する電流に比べて、前記開閉スイッチが閉じた状態で前記電流計測部が計測する電流がゼロへ近づく場合に、前記故障が発生したと判定してもよい。故障が発生していない状態では、開閉スイッチが閉じた場合、信号線は、抵抗器を介して接続されたアースの影響をほとんど受けない。電流計測部が計測する電流値は、開閉スイッチが開いている場合と閉じた場合とでほぼ同一である。故障が発生した状態では、開閉スイッチが開いている場合、信号線はハイインピーダンス状態になり、電流計測部は高い電流値を計測する。開閉スイッチが閉じた場合、信号線はアースに接続され、電流計測部は、ほぼゼロの電流値を計測する。従って、電池管理装置は、開閉スイッチが開いているときの電流値に比べて、開閉スイッチが閉じているときの電流値がゼロへ近づくように変化した場合に、故障が発生したと判定できる。
 電池管理装置は、前記シャント抵抗器に流れる過電流を検出する過電流検出部と、前記過電流が検出された場合に、前記シャント抵抗器に流れる電流を遮断するための処理を行う遮断処理部とを更に備えてもよく、前記判定部は、前記遮断処理部が前記処理を行う前に、前記故障の有無を判定してもよい。本実施形態では、開閉スイッチが開閉したときの電流の変化は故障の有無に応じて明確に異なるので、故障によるシャント抵抗器に流れる電流の過電流への変化を検出することに比べて、電池管理装置は、短時間で故障の有無を判定できる。このため、電池管理装置は、過電流の検出に応じて電流を遮断する前に、故障の有無を判定できる。電池管理装置は、電流が遮断される前に、故障に起因する正しくない電流値に基づいた処理を停止し、正しくない電流値が計測されることの影響を小さくできる。
 蓄電装置は、蓄電素子と、前記蓄電素子に接続されるシャント抵抗器と、前記蓄電素子を管理する電池管理装置とを備える。前記電池管理装置は、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを有する。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。電離管理装置は、開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無を判定できる。
 前記蓄電素子は、リン酸鉄リチウムを電極に含んだリチウムイオン電池であってもよい。鉄系リチウムイオン電池では、SOCを得るためには、電流値に基づいたSOCの計算を行う必要がある。電池管理装置は、故障により正しくない電流値が計測される場合に、短時間で故障の発生を判定して、正しくない電流値を用いたSOCの計算を素早く停止できる。このため、電池管理装置は、電流値に基づいた蓄電素子のSOCの計算をより正確に実行できる。蓄電素子が鉄系リチウムイオン電池のセルであっても、正確なSOCが得られる。
 前記蓄電素子は、移動体のエンジンを始動させるための電流を供給してもよい。エンジンを始動させるための蓄電装置は、大電流を供給可能である。電池管理装置で大電流を計測するためには、低抵抗のシャント抵抗器を用いる必要がある。低抵抗のシャント抵抗器は、大きく重いことがある。蓄電装置は移動体に設けられており、蓄電装置に含まれる重いシャント抵抗器に振動が加わった場合は、シャント抵抗器を固定している部分に加わる応力が大きくなり、シャント抵抗器が非接続になることがある。電池管理装置は、シャント抵抗器の非接続を判定できるので、シャント抵抗器が非接続になりうる蓄電装置について、適切に故障を診断できる。
 前記移動体は四輪自動車であってもよい。四輪自動車のエンジンを始動させるためには、多くの電力が必要となり、蓄電装置は大電流を供給する必要がある。電池管理装置で大電流を計測するためにシャント抵抗器は大きく重いことがある。四輪自動車に設けられた電池管理装置に振動が加わった場合は、シャント抵抗器を固定している部分に加わる応力が大きくなり、シャント抵抗器が非接続になることがある。電池管理装置は、シャント抵抗器の非接続を判定することにより、適切に蓄電装置の故障を診断できる。
 シャント抵抗器が接続された蓄電素子を管理する電池管理方法では、前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用い、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無の判定が可能である。
 蓄電素子に接続されたシャント抵抗器の両端に接続される一対の信号線を用いて前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用いるコンピュータに、前記蓄電素子を管理するための処理を実行させるコンピュータプログラムは、前記コンピュータに、前記開閉スイッチを開閉させるステップと、前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定するステップとを含む処理を実行させる。シャント抵抗器を介した一対の信号線の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチが開閉したときの電流の変化が異なる。開閉スイッチが開閉したときの電流の変化に基づいて、故障の有無の判定が可能である。
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
<実施形態1>
 図1は、蓄電装置1の配置例を示す概念図である。蓄電装置1は、移動体100内に設けられている。蓄電装置1は、移動体100が備えるエンジン10に接続されている。移動体100は四輪自動車である。蓄電装置1は、エンジン10を始動させるための電流を供給する。
 図2は、蓄電装置1の外観の例を示す模式的斜視図である。蓄電装置1は直方体状のケース21とケース21の開口部を閉塞する蓋部22を有する。図3は、蓄電装置1の構成例を示す模式的な分解斜視図である。ケース21には、複数の蓄電素子271を含んでなる電池部27が収容される。蓄電素子271は、例えば、鉄系リチウムイオン電池のセルである。鉄系リチウムイオン電池は、電極にリン酸鉄リチウムを含んでいる。蓄電素子271は、鉄系リチウムイオン電池以外のリチウムイオン電池のセルであってもよく、リチウムイオン電池以外の電池のセルであってもよい。
 ケース21内には、仕切り板211が設けられている。夫々の仕切り板211の間に、蓄電素子271が挿入されている。蓋部22と蓄電素子271との間には、中蓋26が配置されている。中蓋26には、複数の金属製のバスバー261が載置されている。蓄電素子271の端子が設けられている端子面に中蓋26が配置され、隣り合う蓄電素子271の隣り合う端子がバスバー261により接続され、蓄電素子271が直列に接続されている。
 蓋部22上には、収容部23が設けられており、収容部23をカバー24が覆っている。収容部23は箱状をなし、一長側面の中央部に、外側に角型に突出した突出部231を有する。蓋部22における突出部231の両側には、鉛合金等の金属製で、極性が異なる一対の外部端子221,221が設けられている。外部端子221,221は、蓄電装置1の外部と接続するための端子である。収容部23内には、制御基板25及びシャント抵抗器28が収容されている。制御基板25は、蓄電素子271を管理する電池管理装置を含んでいる。収容部23に制御基板25及びシャント抵抗器28を収容し、カバー24により収容部23を覆うことにより、電池部27と制御基板25及びシャント抵抗器28とが接続される。
 図4は、実施形態1に係る蓄電装置1の電気的構成例を示すブロック図である。制御基板25には、電池管理装置3及び電流遮断部4が含まれている。電池管理装置3は、電池管理方法を実行する。一対の外部端子221,221の間には、直列に、電流遮断部4、電池部27及びシャント抵抗器28が接続されている。電池部27は複数の蓄電素子271を含む。蓄電素子271の数は四個に限らない。夫々の蓄電素子271が放電することにより、外部端子221,221から電力が出力される。また、外部端子221,221の間に外部から電圧が印加されることにより、複数の蓄電素子271は充電される。シャント抵抗器28には、蓄電素子271が充放電を行うときの電流が流れる。電流遮断部4は、必要に応じて電流を遮断し、蓄電素子271の充放電を停止させる。電流遮断部4は、例えば、リレーを含んで構成されている。
 電池管理装置3は、制御部31を備えている。制御部31は、プロセッサ及びメモリを用いて構成されている。例えば、制御部31はCPU(Central Processing Unit )を用いて構成されている。制御部31は、電池管理装置3の各部分を制御する。制御部31には、不揮発性のメモリ32が接続されている。メモリ32はコンピュータプログラム321を記憶している。制御部31は、コンピュータプログラム321に従って必要な処理を実行するコンピュータである。制御部31は、電流遮断部4に接続されており、電流遮断部4の動作を制御する。
 電池管理装置3は、電圧計測部33を備えている。電圧計測部33は、電池部27に接続されており、夫々の蓄電素子271の電圧を計測する。電圧計測部33は、制御部31に接続されており、計測した夫々の蓄電素子271の電圧の値を制御部31へ入力する。制御部31は、電圧値に基づいて、夫々の蓄電素子271の状態を判定する。例えば、制御部31は、蓄電素子271が異常であると判定した場合、電流遮断部4に、電流を遮断させる。
 電池管理装置3は、電流計測部34を備えている。電流計測部34は、シャント抵抗器28の両端に接続されている。電流計測部34は、シャント抵抗器28の両端に接続される一対の信号線341,341を通じてシャント抵抗器28に接続されている。電流計測部34は、差動AD(Analog-to-digital )変換部342及び343を有している。差動AD変換部342及び343は、一対の信号線341,341が接続されており、一対の信号線341,341の間の電圧をデジタル信号へ変換する。これにより、電流計測部34は、シャント抵抗器28の両端の電圧の値を取得する。
 電流計測部34は、シャント抵抗器28の両端の電圧に基づいて、シャント抵抗器28に流れる電流の値を計算する。例えば、電流計測部34は、シャント抵抗器28の抵抗値を予め記憶しており、電圧値を抵抗値で除することにより、電流値を計算する。このようにして、電圧計測部33は、シャント抵抗器28に流れる電流の値を計測する。電流計測部34は、差動AD変換部342及び343の夫々が変換した電圧のデジタル信号を用いて、夫々に電流値を計算する。即ち、電流計測部34は、複数の電流値を計算する。電圧計測部33は、制御部31に接続されており、計測した電流値を制御部31へ入力する。
 制御部31は、電流値に基づいて、蓄電素子271の状態を判定する。例えば、制御部31は、蓄電素子271が異常であると判定した場合、電流遮断部4に、電流を遮断させる。更に、制御部31は、電流値を積算する。制御部31は、電流の積算値に基づいて蓄電素子271のSOCを計算してもよい。制御部31は、電流値、電流の積算値、又はSOCをメモリ32に記憶させてもよい。電池管理装置3は、電流値又はSOC等の蓄電素子271の状態を表す情報を外部へ出力する出力部を備えていてもよい。
 電流計測部34は、計測した複数の電流値を制御部31へ入力してもよい。制御部31は、複数の電流値を比較し、電流計測部34の状態を判定する。例えば、複数の電流値の差が所定値を超過した場合に、制御部31は、電流計測部34が異常であると判定する。代替的に、電流計測部34が複数の電流値を比較し、電流計測部34の状態を自己診断してもよい。
 電池管理装置3は、温度計測部36を備えている。温度計測部36は、電池部27内の温度を計測する。例えば、温度計測部36は、熱電対又はサーミスタを用いて温度を計測する。温度計測部36は、制御部31に接続されており、計測した温度の値を制御部31へ入力する。制御部31は、温度値に基づいて、蓄電素子271の状態を判定し、蓄電素子271が異常であると判定した場合、電流遮断部4に、電流を遮断させる。
 電池管理装置3は、電位差検出部35を備えている。電位差検出部35は、差動増幅回路351を有している。差動増幅回路351の入力端には、シャント抵抗器28の両端に接続される一対の入力信号線354,354が接続されている。差動増幅回路351の基準電圧は、電圧源355及び増幅部353を用いて接地電位から上昇された電位である。差動増幅回路351の出力端には、コンパレータ352が接続されている。コンパレータ352は、制御部31に接続されている。
 差動増幅回路351は、一対の入力信号線354,354の電位の差、即ち、シャント抵抗器28の両端の電位の差を増幅して出力する。コンパレータ352は、差動増幅回路351から出力された電位差の値と所定の閾値とを比較する。このようにして、電位差検出部35はシャント抵抗器28の両端の電位差を検出する。コンパレータ352は、電位差の値が閾値を超過している場合に、制御部31へ電流の遮断指示を入力する。制御部31は、コンパレータ352から電流の遮断指示が入力された場合、電流遮断部4に、電流を遮断させる。コンパレータ352からの電流の遮断指示に応じた処理は、割り込み処理として実行される。なお、コンパレータ352は、電位差の値が閾値以上である場合に制御部31へ電流の遮断指示を入力してもよい。
 シャント抵抗器28の両端の電位差が大きい場合は、シャント抵抗器28の両端の間に過電流が流れている。例えば、蓄電装置1の外部からの短絡により、過電流が発生する。即ち、電位差検出部35は、過電流の発生を検出し、電流を遮断させる。電位差検出部35は、過電流検出部に対応する。過電流が検出された場合に制御部31が電流遮断部4に電流を遮断させる処理は、遮断処理部に対応する。
 本実施形態では、電流計測部34に含まれる一の差動AD変換部343に接続される一対の信号線341,341には、一対の接続線347,347が接続されている。夫々の接続線347は、抵抗器344及び開閉スイッチ345を介して信号線341とアース346とを接続する。アース346は基準電位源に対応する。開閉スイッチ345が閉じた状態では、差動AD変換部343は、抵抗器344を介してアース346に接続される。開閉スイッチ345が開いた状態では、差動AD変換部343は、アース346に接続されない。開閉スイッチ345は、開いた状態が常態となっている。電流計測部34は、開閉スイッチ345を開閉することができる。抵抗器344は、抵抗器344による電圧降下がシャント抵抗器28による電圧降下に比べて無視できるほど小さくなるように、シャント抵抗器28よりも高抵抗である。
 蓄電装置1が正常な状態では、一対の信号線341,341は、シャント抵抗器28を介して互いに接続されている。蓄電装置1では、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生することがある。例えば、外部端子221,221の間の回路とシャント抵抗器28とが非接続になった場合は、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる。例えば、一対の信号線341,341の少なくとも一方が断線した場合、又はシャント抵抗器28が破断した場合でも、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる。シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になった状態では、電流計測部34は、シャント抵抗器28に流れる電流を正常に計測できない。このため、電池管理装置3は、蓄電素子271を適切に管理できない。例えば、電池管理装置3は、蓄電素子271のSOCを正しく計算することができない。
 電池管理装置3は、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障の有無を判定する処理を行う。図5は、電池管理装置3が行う故障の有無を判定する処理の一例の手順を示すフローチャートである。以下、ステップをSと略す。開閉スイッチ345が開いた状態で、電流計測部34は、電流を計測する(S11)。S11では、差動AD変換部343は、開閉スイッチ345が開いた状態で一対の信号線341,341の間の電圧をデジタル信号へ変換する。電流計測部34は、差動AD変換部343が変換した電圧のデジタル信号を用いて、電流値を計算する。電流計測部34は、電流値を制御部31へ入力する。
 電流計測部34は、次に、開閉スイッチ345を閉じた状態にする(S12)。開閉スイッチ345が閉じた状態で、電流計測部34は、電流を計測する(S13)。S13では、差動AD変換部343は、開閉スイッチ345が閉じた状態で一対の信号線341,341の間の電圧をデジタル信号へ変換する。電流計測部34は、差動AD変換部343が変換した電圧のデジタル信号を用いて、電流値を計算する。電流計測部34は、電流値を制御部31へ入力する。制御部31は、開閉スイッチ345が開いた状態で電流計測部34が計測した電流値と、開閉スイッチ345が閉じた状態で電流計測部34が計測した電流値とを比較し、開閉スイッチ345の開閉に応じて電流値が変化したか否かを判定する(S14)。
 シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生していない状態では、開閉スイッチ345が開いている場合、シャント抵抗器28の両端間の電圧が差動AD変換部343へ入力される。開閉スイッチ345が閉じた場合、シャント抵抗器28に比べて抵抗器344は高抵抗であるので、信号線341は、抵抗器344を介して接続されたアース346の影響をほとんど受けない。差動AD変換部343へは、開閉スイッチ345が開いている場合とほぼ同等の電圧が入力される。この状態では、電流計測部34が計測する電流値は、開閉スイッチ345が開いている場合と閉じた場合とでほぼ同一である。
 故障が発生した状態では、開閉スイッチ345が開いている場合、一対の信号線341,341は互いに非接続でハイインピーダンス状態になる。差動AD変換部343へは、高い電圧が入力され、電流計測部34は高い電流値を計測する。開閉スイッチ345が閉じた場合、信号線341は、接続線347を通じてアース346に接続される。一対の信号線341,341の間の電圧はほぼゼロになり、差動AD変換部343へは、ほぼゼロの電圧が入力される。電流計測部34は、ほぼゼロの電流値を計測する。この状態では、電流計測部34が計測する電流値は、開閉スイッチ345が開いている場合と閉じた場合とで大きく変化する。
 図6は、電流計測部34で計測される電流値の変化を模式的に示すグラフである。図中の横軸は時間を示し、縦軸は電流値を示す。図中には、開閉スイッチ345を開いた状態から閉じた時点を矢印で示している。故障が発生していない状態での電流値を破線で示し、故障が発生した状態での電流値を実線で示す。故障が発生していない状態では、開閉スイッチ345が閉じる前後で、電流値は同一であるか、又は電流値の変化は小さい。故障が発生した状態では、開閉スイッチ345が開いているときには電流値は高く、開閉スイッチ345が閉じているときには電流値はゼロに近くなる。開閉スイッチ345が閉じる前後で、電流値は大きく変化する。具体的には、開閉スイッチ345が開いているときの電流値に比べて、開閉スイッチ345が閉じているときの電流値は、ゼロへ近づくように変化する。このように、故障が発生しているか否かに応じて、開閉スイッチ345が開閉したときの電流の変化は異なる。従って、電池管理装置3は、開閉スイッチ345が開閉したときの電流の変化の違いに応じて、故障が発生しているか否かを判定することができる。
 S14では、制御部31は、開閉スイッチ345が開いた状態での電流値と開閉スイッチ345が閉じた状態での電流値との差の絶対値が所定の閾値を超過した場合に、電流値が変化したと判定する。代替的に、制御部31は、電流値の差の絶対値が閾値以上である場合に電流値が変化したと判定してもよい。代替的に、制御部31は、電流値の差の絶対値が閾値を超過するか又は閾値以上であり、電流値の変化がゼロに近づく変化である場合に、電流値が変化したと判定してもよい。代替的に、制御部31は、電流値の変化がゼロに近づく変化であり、開閉スイッチ345が閉じた状態での電流の絶対値が所定の上限値以下である場合に、電流値が変化したと判定してもよい。
 電流値が変化した場合(S14:YES)、制御部31は、故障が発生したと判定する(S15)。S14及びS15の処理は、判定部に対応する。S15が終了した後、又は電流値の変化が無い場合(S14:NO)、電流計測部34は、開閉スイッチ345を開いた状態にし(S16)、電池管理装置3は、故障の有無を判定する処理を終了する。
 制御部31は、電流値の変化が無い場合に故障が発生していないと判定してもよい。制御部31は、故障が発生したと判定した場合に、電流遮断部4に電流を遮断させてもよく、電流値に基づいて蓄電素子271を管理する処理を停止してもよい。例えば、制御部31は、電流値に基づいて蓄電素子271のSOCを計算する処理を停止する。例えば、制御部31は、故障のために正しくない値となった電流値若しくはSOCの記録の停止又は記録の削除を行う。電池管理装置3が出力部を備える形態では、制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させてもよい。例えば、移動体100は表示部を備え、電池管理装置3は故障の発生を示す情報を出力部から移動体100は表示部へ出力し、表示部は故障の発生を表す画像を表示してもよい。また、例えば、電池管理装置3は、スマートフォン等、蓄電装置1の外部又は移動体100の外部の機器へ、出力部から、又は出力部に接続された移動体100内の通信部を通じて、故障の発生を示す情報を出力してもよい。
 電池管理装置3は、S11~S16の処理を定期的に実行する。このとき、電流計測部34は、第1開閉部に対応する。例えば、電池管理装置3は、一分に一度、S11~S16の処理を実行する。定期的に故障の有無を判定することにより、電池管理装置3は、確実に故障の発生を判定できる。S14及びS15の処理は、コンピュータプログラム321に従って制御部31が実行する。S11~S13及びS16の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。
 図7は、電池管理装置3が行う故障の有無を判定する処理の他の例の手順を示すフローチャートである。開閉スイッチ345が開いた状態で、電流計測部34は、電流を計測する(S21)。電流計測部34は、電流値を制御部31へ入力する。制御部31は、電流値が通常よりも高い値である所定範囲に含まれるか否かを判定する(S22)。例えば、所定の下限値以上の値を所定範囲に含まれる値とする。例えば、制御部31は、電流値が50A以上である場合に電流値が所定範囲に含まれると判定する。電流値が所定範囲に含まれない場合(S22:NO)、制御部31は、故障の有無を判定する処理を終了する。
 電流値が所定範囲に含まれている場合(S22:YES)、制御部31は、開閉スイッチ345を閉じることを電流計測部34に指示し、電流計測部34は、開閉スイッチ345を閉じた状態にする(S23)。開閉スイッチ345が閉じた状態で、電流計測部34は、電流を計測する(S24)。制御部31は、開閉スイッチ345の開閉に応じて電流値が変化したか否かを判定する(S25)。電流値が変化した場合(S25:YES)、制御部31は、故障が発生したと判定する(S26)。S25及びS26の処理は、判定部に対応する。S26が終了した後、又は電流値の変化が無い場合(S25:NO)、電流計測部34は、開閉スイッチ345を開いた状態にし(S27)、電池管理装置3は、故障の有無を判定する処理を終了する。制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させる等、特定の処理を行ってもよい。
 制御部31は、電流値の変化が無い場合に故障が発生していないと判定してもよい。電池管理装置3は、S21~S27の処理を定期的に実行する。例えば、電池管理装置3は、一分に一度、S21~S27の処理を実行する。S22、S25及びS26の処理は、コンピュータプログラム321に従って制御部31が実行する。S21、S23、S24及びS27の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。電池管理装置3がS21~S27の処理を実行するとき、電流計測部34は、第2開閉部に対応する。
 前述したように、故障が発生した状態では、電流計測部34は高い電流値を計測する。S21~S27の処理では、電池管理装置3は、電流値が通常よりも高い値である所定範囲に含まれ、故障が発生している可能性が高い場合に、判定を行う。電池管理装置3は、故障が発生している可能性が高いときに判定を行うこととなり、高い確度で故障の発生を判定できる。
 以上詳述した如く、本実施形態においては、電池管理装置3は、信号線341に開閉スイッチ345を介してアース346を接続している。シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障がある状態と無い状態とでは、開閉スイッチ345が開閉したときの電流の変化が異なる。電池管理装置3は、開閉スイッチ345が開閉したときの電流の変化に基づいて、故障の有無を判定できる。開閉スイッチ345が開閉したときの電流の変化は故障の有無に応じて明確に異なるので、電流の時間変化から故障の有無を判定することに比べて、電池管理装置3は、短時間で故障の有無を判定できる。シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生した場合は、シャント抵抗器28に流れる電流を電流計測部34により正しく計測することができない。即ち、電池管理装置3は、電流計測が正常に行われなくなる原因となる故障の有無を容易にかつ短時間で判定できる。例えば、電池管理装置3とシャント抵抗器28とが非接続になる故障が発生した場合でも、電池管理装置3は容易に故障の発生を判定できる。
 電池管理装置3は、故障に起因する正しくない電流値に基づいた処理を短時間で停止し、正しくない電流値が計測されることの影響を小さくできる。電池管理装置3は、従来の電池管理装置に比べて、接続線347、抵抗器344及び開閉スイッチ345が追加されている。追加された部品は少なく、従来の電池管理装置に比べたコストの上昇は小さい。
 電池管理装置3は、短時間で故障の有無を判定することにより、電位差検出部35を用いて過電流を検出して電流を遮断する処理を行う前に、故障の有無の判定を行う。
 開閉スイッチ345が開閉したときの電流の変化は故障の有無に応じて明確に異なるので、故障によるシャント抵抗器28に流れる電流の過電流への変化を検出することに比べて、電池管理装置3は、短時間で故障の有無を判定できる。このため、電池管理装置3は、過電流の検出に応じて電流を遮断する前に、故障に起因する正しくない電流値に基づいた処理を停止できる。例えば、電池管理装置3は、電流値に基づいた蓄電素子271のSOCの計算を停止する処理を、電流が遮断される前に行う。
 電流値に基づいたSOCの計算は、電流値を積算して行うので、正確にSOCを計算するためには、正しくない電流値を用いないことが望ましい。電池管理装置3は、故障により正しくない電流値が計測される場合に、短時間で故障の発生を判定して、正しくない電流値を用いたSOCの計算を素早く停止できる。このため、電池管理装置3は、電流値に基づいた蓄電素子271のSOCの計算をより正確に実行できる。
 一般的に、蓄電素子のSOCと開回路電圧との間には相関関係があり、開回路電圧からSOCを推定することができる。しかし、鉄系リチウムイオン電池では、SOCの多くの値に対応する開回路電圧がほぼ一定となっており、開回路電圧からSOCを推定することが困難である。このため、鉄系リチウムイオン電池では、SOCを得るためには、電流値に基づいたSOCの計算を行う必要がある。電池管理装置3は、電流値に基づいた蓄電素子271のSOCの計算を正確に実行できるので、蓄電素子271が鉄系リチウムイオン電池のセルであっても、正確なSOCが得られる。
 本実施形態においては、蓄電装置1は、エンジン10を始動させるために移動体100に備えられている。蓄電装置1は、エンジン10を始動させるために、大電流を供給可能である。移動体100は四輪自動車であり、四輪自動車のエンジン10を始動させるためには大電流が必要である。電池管理装置3で大電流を計測するためには、低抵抗のシャント抵抗器28を用いる必要がある。低抵抗のシャント抵抗器28大きく重いことがある。移動体100の移動に伴って、蓄電装置1に振動が加わり、重いシャント抵抗器28に振動が加わった場合は、シャント抵抗器28を固定している部分に加わる応力が大きくなり、シャント抵抗器28が電池管理装置3と非接続になることがある。電池管理装置3は、シャント抵抗器28が非接続になった場合に、シャント抵抗器28の非接続を判定でき、蓄電装置1の故障を適切に診断できる。特に、四輪自動車に備えられる蓄電装置1について、電池管理装置3は、シャント抵抗器28の非接続を確実に判定し、適切に故障を診断できる。
<実施形態2>
 図8は、実施形態2に係る蓄電装置1の電気的構成例を示すブロック図である。電流計測部34は、シャント抵抗器28の両端に接続される一対の信号線341,341を通じてシャント抵抗器28に接続されている。電流計測部34は、一対の信号線341,341の間の電圧をデジタル信号へ変換する差動AD変換部を含んでおり、シャント抵抗器28の両端の電圧の値を取得し、シャント抵抗器28に流れる電流の値を計算する。
 電流計測部34の外部において、一対の信号線341,341には、一対の接続線374,374が接続されている。夫々の接続線374は、抵抗器371及び開閉スイッチ372を介して信号線341とアース373とを接続する。アース373は基準電位源に対応する。開閉スイッチ372が閉じた状態では、電流計測部34は、抵抗器371を介してアース373に接続される。開閉スイッチ372が開いた状態では、電流計測部34は、アース373に接続されない。開閉スイッチ372は、制御部31によって開閉を制御される。開閉スイッチ372は、開いた状態が常態となっている。抵抗器371は、抵抗器371による電圧降下がシャント抵抗器28による電圧降下に比べて無視できるほど小さくなるように、シャント抵抗器28よりも高抵抗である。電池管理装置3のその他の部分の構成は、実施形態1と同様である。また、蓄電装置1及び移動体100の電池管理装置3以外の部分の構成は、実施形態1と同様である。
 実施形態2においても、電池管理装置3は、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障の有無を判定する処理を行う。電池管理装置3は、図5のフローチャートに示した処理と同様の処理により、故障の有無を判定する。開閉スイッチ372が開いた状態で、電流計測部34は、電流を計測する(S11)。制御部31は、次に、開閉スイッチ372を閉じた状態にする(S12)。開閉スイッチ372が閉じた状態で、電流計測部34は、電流を計測する(S13)。制御部31は、開閉スイッチ372が開いた状態で電流計測部34が計測した電流値と、開閉スイッチ372が閉じた状態で電流計測部34が計測した電流値とを比較し、開閉スイッチ372の開閉に応じて電流値が変化したか否かを判定する(S14)。
 シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障が発生していない状態では、開閉スイッチ372が閉じた場合、抵抗器371は高抵抗であるので、信号線341は、アース373の影響をほとんど受けない。電流計測部34が計測する電流値は、開閉スイッチ372が開いている場合と閉じた場合とでほぼ同一である。故障が発生した状態では、開閉スイッチ372が閉じた場合、信号線341は、接続線374を通じてアース373に接続され、電流計測部34は、ほぼゼロの電流値を計測する。電流計測部34が計測する電流値は、開閉スイッチ372が開いている場合と閉じた場合とで大きく変化する。
 電流値が変化した場合(S14:YES)、制御部31は、故障が発生したと判定する(S15)。S15が終了した後、又は電流値の変化が無い場合(S14:NO)、制御部31は、開閉スイッチ372を開いた状態にし(S16)、故障の有無を判定する処理を終了する。制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させる等、特定の処理を行ってもよい。電池管理装置3は、S11~S16の処理を定期的に実行する。S12、S14~S16の処理は、コンピュータプログラム321に従って制御部31が実行する。このとき、制御部31は、第1開閉部に対応する。S11及びS13の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。
 代替的に、電池管理装置3は、図7のフローチャートに示した処理と同様の処理により、故障の有無を判定してもよい。開閉スイッチ372が開いた状態で、電流計測部34は、電流を計測する(S21)。制御部31は、電流値が通常よりも高い値である所定範囲に含まれるか否かを判定する(S22)。電流値が所定範囲に含まれない場合(S22:NO)、制御部31は、故障の有無を判定する処理を終了する。
 電流値が所定範囲に含まれている場合(S22:YES)、制御部31は、開閉スイッチ372を閉じた状態にする(S23)。開閉スイッチ372が閉じた状態で、電流計測部34は、電流を計測する(S24)。制御部31は、開閉スイッチ372の開閉に応じて電流値が変化したか否かを判定する(S25)。電流値が変化した場合(S25:YES)、制御部31は、故障が発生したと判定する(S26)。S26が終了した後、又は電流値の変化が無い場合(S25:NO)、制御部31は、開閉スイッチ372を開いた状態にし(S27)、故障の有無を判定する処理を終了する。制御部31は、故障が発生したと判定した場合に、故障の発生を示す情報を出力部に出力させる等、特定の処理を行ってもよい。
 電池管理装置3は、S21~S27の処理を定期的に実行する。S22、S23、S25~S27の処理は、コンピュータプログラム321に従って制御部31が実行する。S21及びS24の処理は、コンピュータプログラム321に従って制御部31が電流計測部34を制御することにより、実行されてもよい。電池管理装置3がS21~S27の処理を実行するとき、制御部31は、第2開閉部に対応する。
 本実施形態においても、電池管理装置3は、開閉スイッチ372が開閉したときの電流の変化に基づいて、シャント抵抗器28を介した一対の信号線341,341の間の接続が不良になる故障の有無を判定できる。即ち、電池管理装置3は、電流計測が正常に行われなくなる原因となる故障の有無を容易にかつ短時間で判定できる。電池管理装置3は、従来の電池管理装置に比べて、接続線374、抵抗器371及び開閉スイッチ372が追加されている。追加された部品は少なく、従来の電池管理装置に比べたコストの上昇は小さい。
 実施形態1及び2においては、基準電位源がアースである例を示した。代替的に、基準電位源はアース以外であってもよい。実施形態1及び2においては、電流遮断部4が電池管理装置3の外部に存在する形態を示した。代替的に、電池管理装置3は、電流遮断部4を内部に備えていてもよい。実施形態1及び2においては、シャント抵抗器28が電池管理装置3の外部に存在する形態を示した。代替的に、電池管理装置3は、シャント抵抗器28を内部に備えていてもよい。実施形態1及び2においては、移動体100が四輪自動車であり、蓄電装置1がエンジン10を始動させるために使用される例を示した。代替的に、蓄電装置1は、移動体100内の種々の機器を駆動させるための電力を供給する等、エンジン10の始動以外の用途に用いられてもよい。蓄電装置1は、四輪自動車以外の移動体に備えられてもよい。蓄電装置1は、移動体以外の用途に用いられてもよい。
 本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
1 蓄電装置
10 エンジン
100 移動体
221 外部端子
25 制御基板
27 電池部
271 蓄電素子
28 シャント抵抗器
3 電池管理装置
31 制御部
32 メモリ
321 コンピュータプログラム
34 電流計測部
341 信号線
342、343 差動AD変換部
344、371 抵抗器
345、372 開閉スイッチ
346、373 アース
347、374 接続線
35 電位差検出部
4 電流遮断部

Claims (11)

  1.  シャント抵抗器が接続された蓄電素子を管理する電池管理装置であって、
     前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、
     開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、
     前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部と
     を備える電池管理装置。
  2.  前記開閉スイッチを定期的に開閉させる第1開閉部を更に備える
     請求項1に記載の電池管理装置。
  3.  前記電流計測部が計測する電流の値が所定範囲に含まれる場合に、前記開閉スイッチを開閉させる第2開閉部を更に備える、
     請求項1に記載の電池管理装置。
  4.  前記基準電位源は、アースであり、
     前記電流計測部は、前記一対の信号線の間の電圧を測定し、前記電圧に基づいて電流を計測し、
     前記シャント抵抗器よりも高抵抗の抵抗器を介して一対の前記接続線が前記一対の信号線に接続されており、
     前記判定部は、前記開閉スイッチが開いた状態で前記電流計測部が計測する電流に比べて、前記開閉スイッチが閉じた状態で前記電流計測部が計測する電流がゼロへ近づく場合に、前記故障が発生したと判定する、
     請求項1乃至3のいずれか一つに記載の電池管理装置。
  5.  前記シャント抵抗器に流れる過電流を検出する過電流検出部と、
     前記過電流が検出された場合に、前記シャント抵抗器に流れる電流を遮断するための処理を行う遮断処理部とを更に備え、
     前記判定部は、前記遮断処理部が前記処理を行う前に、前記故障の有無を判定する、
     請求項1乃至4のいずれか一つに記載の電池管理装置。
  6.  蓄電素子と、前記蓄電素子に接続されるシャント抵抗器と、前記蓄電素子を管理する電池管理装置とを備え、
     前記電池管理装置は、
     前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、
     開閉スイッチを介して前記信号線を基準電位源に接続する接続線と、
     前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する判定部とを有する、
     蓄電装置。
  7.  前記蓄電素子は、リン酸鉄リチウムを電極に含んだリチウムイオン電池である、
     請求項6に記載の蓄電装置。
  8.  前記蓄電素子は、移動体のエンジンを始動させるための電流を供給する、
     請求項6又は7に記載の蓄電装置。
  9.  前記移動体は四輪自動車である、
     請求項8に記載の蓄電装置。
  10.  シャント抵抗器が接続された蓄電素子を管理する電池管理方法であって、
     前記シャント抵抗器の両端に接続される一対の信号線を用いて、前記シャント抵抗器に流れる電流を計測する電流計測部と、
     開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用い、
     前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定する、
     電池管理方法。
  11.  蓄電素子に接続されたシャント抵抗器の両端に接続される一対の信号線を用いて前記シャント抵抗器に流れる電流を計測する電流計測部と、開閉スイッチを介して前記信号線を基準電位源に接続する接続線とを用いて、コンピュータに、前記蓄電素子を管理するための処理を実行させるコンピュータプログラムであって、
     前記コンピュータに、
     前記開閉スイッチを開閉させるステップと、
     前記開閉スイッチが開閉したときに前記電流計測部が計測する電流の変化に基づいて、前記シャント抵抗器を介した前記一対の信号線の間の接続が不良になる故障の有無を判定するステップと
     を含む処理を実行させるコンピュータプログラム。
PCT/JP2020/012814 2019-03-27 2020-03-24 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム WO2020196438A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080020880.2A CN113574704A (zh) 2019-03-27 2020-03-24 电池管理装置、蓄电装置、电池管理方法以及计算机程序
DE112020001524.6T DE112020001524T5 (de) 2019-03-27 2020-03-24 Batterieverwaltungsvorrichtung, Energiespeichereinrichtung, Batterieverwaltungsverfahren und Computerprogramm
US17/442,761 US11885852B2 (en) 2019-03-27 2020-03-24 Battery management device, energy storage apparatus, battery management method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019061521A JP7207074B2 (ja) 2019-03-27 2019-03-27 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム
JP2019-061521 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196438A1 true WO2020196438A1 (ja) 2020-10-01

Family

ID=72609844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012814 WO2020196438A1 (ja) 2019-03-27 2020-03-24 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム

Country Status (5)

Country Link
US (1) US11885852B2 (ja)
JP (1) JP7207074B2 (ja)
CN (1) CN113574704A (ja)
DE (1) DE112020001524T5 (ja)
WO (1) WO2020196438A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003241A1 (ko) * 2021-07-19 2023-01-26 주식회사 엘지에너지솔루션 배터리 관리 장치 및 배터리 시스템

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214606A1 (de) 2021-12-16 2023-06-22 Vitesco Technologies GmbH Stromerfassungssystem

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304800A (ja) * 1999-04-21 2000-11-02 Yazaki Corp 断線検出装置及び断線検出方法
JP2001045670A (ja) * 1999-07-30 2001-02-16 Fujitsu Ltd バッテリパック
JP2001108645A (ja) * 1999-10-13 2001-04-20 Denso Corp 負荷の異常検出装置
JP2008275323A (ja) * 2007-04-25 2008-11-13 Matsushita Electric Ind Co Ltd 電池パック、及び電池駆動機器
JP2009139223A (ja) * 2007-12-06 2009-06-25 Sanyo Electric Co Ltd 電流検出回路
JP2011058851A (ja) * 2009-09-07 2011-03-24 Sanyo Electric Co Ltd 電流検出回路を備えるバッテリシステム及びこのバッテリシステムを搭載する車両
WO2015145496A1 (ja) * 2014-03-28 2015-10-01 三洋電機株式会社 電流検出装置、電源システム
JP2017005985A (ja) * 2015-06-15 2017-01-05 株式会社Gsユアサ 二次電池の監視装置、電池パック、二次電池の保護システム、車両
JP2018031778A (ja) * 2016-08-23 2018-03-01 株式会社Gsユアサ 過電流検出装置および蓄電装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122056A (ja) 2007-11-19 2009-06-04 Denso Corp バッテリ充放電電流検出装置
JP5251943B2 (ja) 2010-09-09 2013-07-31 株式会社デンソー バッテリ充放電電流検出装置
KR20150129460A (ko) * 2014-05-12 2015-11-20 현대모비스 주식회사 차량용 지능형 배터리 센서 및 이를 이용한 데이터 저장 방법
CN106249154B (zh) 2015-06-15 2020-11-03 株式会社杰士汤浅国际 二次电池的监视装置以及保护系统、电池包、车辆
KR101998091B1 (ko) * 2016-07-29 2019-07-09 주식회사 엘지화학 션트저항을 이용한 전류 측정 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304800A (ja) * 1999-04-21 2000-11-02 Yazaki Corp 断線検出装置及び断線検出方法
JP2001045670A (ja) * 1999-07-30 2001-02-16 Fujitsu Ltd バッテリパック
JP2001108645A (ja) * 1999-10-13 2001-04-20 Denso Corp 負荷の異常検出装置
JP2008275323A (ja) * 2007-04-25 2008-11-13 Matsushita Electric Ind Co Ltd 電池パック、及び電池駆動機器
JP2009139223A (ja) * 2007-12-06 2009-06-25 Sanyo Electric Co Ltd 電流検出回路
JP2011058851A (ja) * 2009-09-07 2011-03-24 Sanyo Electric Co Ltd 電流検出回路を備えるバッテリシステム及びこのバッテリシステムを搭載する車両
WO2015145496A1 (ja) * 2014-03-28 2015-10-01 三洋電機株式会社 電流検出装置、電源システム
JP2017005985A (ja) * 2015-06-15 2017-01-05 株式会社Gsユアサ 二次電池の監視装置、電池パック、二次電池の保護システム、車両
JP2018031778A (ja) * 2016-08-23 2018-03-01 株式会社Gsユアサ 過電流検出装置および蓄電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003241A1 (ko) * 2021-07-19 2023-01-26 주식회사 엘지에너지솔루션 배터리 관리 장치 및 배터리 시스템

Also Published As

Publication number Publication date
CN113574704A (zh) 2021-10-29
JP2020159956A (ja) 2020-10-01
DE112020001524T5 (de) 2021-12-16
US11885852B2 (en) 2024-01-30
JP7207074B2 (ja) 2023-01-18
US20220170990A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
EP3232209B1 (en) Insulation resistance measuring device and method
KR102044559B1 (ko) 축전 장치 및 전력 경로 개폐 장치
KR101732854B1 (ko) 축전지 장치 및 축전지 시스템
US10840711B2 (en) Method and system for effective battery cell balancing through duty control
JP2008253129A (ja) リチウム系二次電池の急速充電方法およびそれを用いる電子機器
KR102448292B1 (ko) 배터리 팩 진단 장치
KR20090057876A (ko) 배터리팩의 잔류용량 측정의 수정장치와 방법
JP2006337155A (ja) 電池監視装置
WO2020196438A1 (ja) 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム
JP2014022282A (ja) 二次電池異常検出装置、二次電池、および二次電池異常検出方法
CN105259494A (zh) 电池均衡电路的测试装置及方法
US11381095B2 (en) Management device, energy storage apparatus, and management method for energy storage device
EP2713174A1 (en) Method and apparatus for diagnosing faults in a battery pack, and power relay assembly using same
JP2000338201A (ja) 組電池の寿命及び残容量判定装置
JP4660497B2 (ja) バッテリパックの監視保護装置
JP6386816B2 (ja) バッテリ状態監視回路及びバッテリ装置
JPH11174136A (ja) バッテリーパックの劣化判定方法およびバッテリーパックの劣化判定装置
US20130201587A1 (en) Method and apparatus for detecting a fault of a battery pack and a power relay assembly
JP4907113B2 (ja) 2次電池の充電システム装置
JPH11344545A (ja) バッテリーパックの電流測定方法及び装置
JP7279460B2 (ja) 電池管理装置、蓄電装置、電池管理方法、及びコンピュータプログラム
JP6472204B2 (ja) 充放電電源装置
JP5843518B2 (ja) 断線検出装置
JP2017163836A (ja) 蓄電装置及び電力経路開閉装置
JP2008128964A (ja) バッテリの安定開回路電圧算出方法、バッテリ装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779352

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20779352

Country of ref document: EP

Kind code of ref document: A1