WO2020196025A1 - 基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法 - Google Patents

基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法 Download PDF

Info

Publication number
WO2020196025A1
WO2020196025A1 PCT/JP2020/011443 JP2020011443W WO2020196025A1 WO 2020196025 A1 WO2020196025 A1 WO 2020196025A1 JP 2020011443 W JP2020011443 W JP 2020011443W WO 2020196025 A1 WO2020196025 A1 WO 2020196025A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
temperature
processing apparatus
alloy
treatment
Prior art date
Application number
PCT/JP2020/011443
Other languages
English (en)
French (fr)
Inventor
圭太 市村
油谷 幸則
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2021509089A priority Critical patent/JP7394115B2/ja
Publication of WO2020196025A1 publication Critical patent/WO2020196025A1/ja
Priority to US17/477,079 priority patent/US20220005712A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers

Definitions

  • the present disclosure relates to a substrate processing apparatus, a method for manufacturing a semiconductor apparatus, a substrate support, and a processing method thereof.
  • a substrate processing step of supplying gas onto a substrate heated to a desired temperature to perform various processes such as forming a thin film on the substrate and ashing is performed.
  • a member formed of an alloy of aluminum (Al) may be used.
  • the components contained in the Al alloy may evaporate and scatter, contaminating the inside of the processing container and the processing substrate. If the inside of the processing container or the processing board is contaminated, the board processing device may not be able to perform normal processing, or a lot-out of the board may be caused.
  • the present disclosure provides a technique capable of preventing evaporation and scattering of components contained in an Al alloy when the Al alloy is used in a high temperature processing container.
  • the processing chamber for processing the substrate the substrate support for supporting the substrate in the processing chamber, and the substrate supported by the substrate support are heated.
  • the substrate support is provided with a configured heater, and the surface of the substrate support is composed of an alloy of Al containing magnesium (Mg), and the surface is heated to a predetermined first temperature in an air atmosphere.
  • a treatment of forming a film of aluminum oxide (AlO) on the surface is performed by maintaining a state in which the surface becomes the first temperature for a predetermined time.
  • FIG. 1 In the substrate processing device 10, for example, two load lock chambers 14a and 14b and two processing chambers 16a and 16b are arranged around a transport chamber 12. , An atmospheric transport chamber (EFEM: Equipment Front End Module) 20 for transporting a substrate to and from a carrier such as a cassette is arranged on the upstream side of the load lock chambers 14a and 14b. In the air transport chamber 20, for example, three hoops (not shown) capable of accommodating 25 substrates at regular intervals in the vertical direction are arranged.
  • EFEM Equipment Front End Module
  • an atmospheric robot (not shown) that transports five substrates at a time is arranged between the atmospheric transport chamber 20 and the load lock chambers 14a and 14b.
  • the transport chamber 12, the load lock chambers 14a and 14b, and the processing chambers 16a and 16b are made of Al.
  • the configuration of the load lock chambers 14a and 14b will be described.
  • the description of the load lock chamber 14b will be omitted because it has a symmetrical structure with the load lock chamber 14a but has the same configuration.
  • the load lock chamber 14a is provided with a substrate support (boat) 24 for accommodating substrates 22 such as 25 wafers at regular intervals in the vertical direction.
  • the substrate support 24 is made of, for example, silicon carbide or the like, and a mounting portion 32 on which, for example, 25 substrates 22 are mounted is formed in parallel inside the three columns 30 in the longitudinal direction. Further, the substrate support 24 is designed to move in the vertical direction (move in the vertical direction) in the load lock chamber 14a, and is rotated around a rotation axis extending in the vertical direction.
  • the substrate support 24 moves in the vertical direction, two substrates 22 are simultaneously transferred from the finger pair 40, which will be described later, to the upper surface of the mounting portion 32 provided on each of the three columns 30 of the substrate support 24. Will be done. Further, by moving the substrate support 24 in the vertical direction, two substrates 22 are simultaneously transferred from the substrate support 24 to the finger pair 40.
  • the transport chamber 12 is provided with a vacuum robot 36 that transports the substrate 22 between the load lock chamber 14a and the processing chamber 16a.
  • the vacuum robot 36 has an arm 42 provided with a finger pair 40 composed of an upper finger 38a and a lower finger 38b.
  • the upper finger 38a and the lower finger 38b have, for example, the same shape, are separated in the vertical direction at predetermined intervals, extend substantially horizontally from the arm 42 in the same direction, and support the substrate 22 at the same time. It is configured so that it can be done.
  • the arm 42 is configured to rotate about a rotation axis extending in the vertical direction, and is configured to move in the horizontal direction, and is configured to be able to convey two substrates 22 at the same time.
  • FIG. 3 is a schematic vertical cross-sectional view of the processing chamber 16a included in the substrate processing apparatus 10 according to the present embodiment.
  • the description of the processing chamber 16b will be omitted because it has a symmetrical structure with that of the processing chamber 16a, but the configuration is the same.
  • the processing chamber 16a communicates with the transport chamber 12 via the gate valve 78.
  • the processing chamber 16a includes a processing container 47.
  • the processing container 47 includes a cap-shaped lid 43 and a lower container 48.
  • the processing container 47 is formed by airtightly providing the lid 43 on the lower container 48.
  • the lid 43 is made of, for example, a non-metal material such as AlO or quartz, and the lower container 48 is made of, for example, Al or the like.
  • a reaction chamber 50 for accommodating the substrate 22 is configured in the processing container 47.
  • Two substrate holding tables 44a and 44b which are substrate supports, are arranged in the reaction chamber 50. That is, the substrate holding tables 44a and 44b are provided in the same space of the reaction chamber 50, respectively.
  • Substrate holding surfaces 41a and 41b for holding the substrate 22 are provided on the upper surfaces of the substrate holding bases 44a and 44b, that is, on the surfaces of the substrate holding bases 44a and 44b facing the lid 43.
  • the board holding table 44b is arranged far away from the transfer chamber 12 with the board holding table 44a in between.
  • the reaction chamber 50 is composed of a first processing unit 59 including a first substrate holding table 44a and a second processing unit 61 including a second substrate holding table 44b.
  • a partition member 46 that partitions a part in the horizontal direction is provided in the space between the first processing unit 59 and the second processing unit 61.
  • the first processing unit 59 and the second processing unit 61 have independent structures.
  • the first processing unit 59 and the second processing unit 61 communicate with each other.
  • the substrates 22 are placed on the substrate holding tables 44a and 44b via the vacuum robot 36, so that the two substrates 22 can be heat-treated at the same time in the same space of the reaction chamber 50. It is made possible.
  • FIG. 4 is a vertical cross-sectional view of the substrate holding base 44a as the substrate support according to the present embodiment.
  • two substrate holding bases 44a and 44b for holding the substrate 22 on the substrate holding surfaces 41a and 41b are arranged as substrate supports.
  • the first substrate holding table 44a and the second substrate holding table 44b are fixed to the processing container 47 by the fixing member 52 in the processing chamber 16a, respectively.
  • the substrate holding bases 44a and 44b are each supported by providing a plurality of columns 49 that are supported from below.
  • the substrate holding bases 44a and 44b are formed of members containing Al as a main component.
  • the advantages of using a member containing Al as a main component in a vacuum vessel in a substrate processing apparatus include high thermal conductivity, easy processing, excellent corrosion resistance, and low cost.
  • the heat from the heaters 45a and 45b as the heating unit, which will be described later can be efficiently and uniformly transferred to the substrate 22. Therefore, at the time of substrate processing, the temperature of the substrate 22 can be heated so as to be uniform in the plane, and the in-plane uniformity of the substrate processing can be improved.
  • it is difficult to practically use a pure Al member in a high temperature zone exceeding 400 ° C. because it is easily deformed due to a decrease in strength due to heat.
  • the substrate holding tables 44a and 44b are formed of an Al alloy to which a small amount of magnesium (Mg), chromium, or the like is added for the purpose of increasing the mechanical strength in a high temperature zone.
  • an Al alloy for example, A5052, A5056 and the like can be used.
  • A5052 is particularly used.
  • A5052 is an Al alloy containing 2.2 to 2.8% of Mg, 0.15 to 0.35% of chromium, and silicon, iron, copper, manganese, zinc and the like.
  • the heat resistance may be improved as compared with the case where the substrate holding bases 44a and 44b are made of Al alloy, but the thermal conductivity is lowered.
  • the substrate holding bases 44a and 44b are made of aluminum nitride (AlN)
  • AlN aluminum nitride
  • the thermal conductivity may be higher than that of the case of being made of an Al alloy, but the heat resistance is lowered. Therefore, in the present embodiment, the substrate holding bases 44a and 44b are made of Al alloy.
  • the entire substrate holding bases 44a and 44b except for a part of the built-in heaters 45a and 45b are configured by A5052 will be described.
  • the inside of the substrate holding bases 44a and 44b is SUS.
  • the member formed of the above material may be configured to cover the surface of the substrate holding tables 44a and 44b and the periphery thereof with an Al alloy. Thereby, the heat resistance of the substrate holding bases 44a and 44b can be further improved.
  • the substrate holding bases 44a and 44b include heaters 45a and 45b as heating portions below the substrate holding surfaces 41a and 41b, respectively, so that the substrate 22 can be heated.
  • the substrate holding tables 44a and 44b are provided with temperature sensors (omitted in the drawing).
  • a controller 121 corresponding to the controller 77 in FIG. 3 is electrically connected to the heaters 45a and 45b and the temperature sensor. The controller 121 is configured to control the power supplied to the heaters 45a and 45b based on the temperature information detected by the temperature sensor.
  • three board holding pins are provided vertically penetrating the outer periphery of the board holding surface 41a of the board holding table 44a and the board holding surface 41b of the board holding table 44b, respectively.
  • the board holding pin is configured to move up and down in the vertical direction.
  • the substrate 22 conveyed from the transfer chamber 12 into the processing chamber 16a via the vacuum robot 36 or the like is placed on the substrate holding pin, and then the substrate holding pin is moved up and down, so that the first The substrate 22 is mounted on the substrate holding table 44a (that is, the first substrate holding surface 41a) and the second substrate holding table 44b (that is, the second substrate holding surface 41b). ..
  • a support portion 55 for supporting the substrate holding bases 44a and 44b is provided between the substrate holding base 44 and the support column 49. That is, a support portion 55 is provided on the bottom surface of each of the flanges 53a and 53b of the substrate holding bases 44a and 44b. A support column 49 is inserted in a portion 55a or the like of the support portion 55.
  • Lamp houses 67a and 67b as a second heating unit are provided on the ceiling of the processing container 47.
  • the lamp houses 67a and 67b are configured to heat the substrate 22 from substantially opposite to the heaters 45a and 45b as the first heating unit.
  • the lamp houses 67a and 67b are provided with lamp groups 57a and 57b as heating sources, respectively.
  • a robot arm 64 as a substrate transfer device is provided between the first processing unit 59 and the second processing unit 61 in the processing chamber 16a, that is, the partition member 46.
  • the robot arm 64 is configured to convey the substrate 22 in the processing chamber 16a and stand by in the processing chamber 16a while the substrate processing is being performed.
  • a gas supply unit for supplying the processing gas into the processing chamber 16a is provided above the processing chamber 16a. That is, a first gas supply unit 51a for supplying the processing gas to the first processing unit 59 and a second gas supply unit 51b for supplying the processing gas to the second processing unit 61 are provided.
  • the lid 43 constituting the processing container 47 is provided with gas supply ports 63a and 63b. The downstream ends of the first gas supply pipe 65a and the second gas supply pipe 65b are airtightly connected to the gas supply ports 63a and 63b of the lid 43, respectively.
  • a nitrogen gas supply source (not shown) that supplies N 2 gas, which is a nitrogen-containing gas as a processing gas, and a mass flow controller (MFC) as a flow control device, respectively, are supplied to the gas supply pipes 65a and 65b from the upstream side.
  • a valve (not shown) and a valve (not shown) that is an on-off valve are provided.
  • a controller 77 which will be described later, is electrically connected to the MFC and the valve.
  • the controller 77 is configured to control the opening and closing of the MFC and the valve so that the flow rate of the gas supplied into the processing chamber 16a becomes a predetermined flow rate.
  • the N 2 gas which is the processing gas
  • the nitrogen gas supply source, the MFC, and the valve may be independent or shared by the gas supply units 51a and 51b, respectively.
  • the gas supply pipes 65a and 65b, the nitrogen gas supply source, the MFC and the valve constitute the gas supply units 51a and 51b according to the present embodiment, respectively.
  • a middle plate is provided below the substrate supports 44a and 44b of the processing container 47 (lower container 48).
  • the middle plate is provided with a second exhaust port 60 for exhausting the processing gas or the like from the processing chamber 16a.
  • a third exhaust port 62 for exhausting the processing gas or the like exhausted from the second exhaust port 60 is provided on the bottom surface of the lower container 48.
  • An upstream end of a gas exhaust pipe (not shown) for exhausting gas is connected to the gas exhaust port 62.
  • the gas exhaust pipe is provided with an APC valve (not shown) which is a pressure regulator, a valve (not shown) which is an on-off valve, and a pump (not shown) which is an exhaust device. Further, the gas exhaust pipe is provided with a pressure sensor (not shown).
  • a controller 121 which will be described later, is electrically connected to the APC valve, valve, pump, and pressure sensor. It is configured so that the inside of the processing chamber 16a can be exhausted by operating the pump and opening the valve. That is, the processing gas supplied from the gas supply units 51a and 51b is processed through the exhaust holes of the exhaust baffle rings 54a and 54b, the first exhaust port 58, the second exhaust port 60 and the third exhaust port 62. It is discharged from the chamber 16a.
  • the pressure value in the processing chamber 16a can be reduced to, for example, about 0.1 Pa.
  • the exhaust unit according to this embodiment is composed of the first to third gas exhaust ports, gas exhaust pipes, APC valves, valves, and pumps.
  • the controller 121 which is a control unit (control means), is a computer provided with a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. It is configured.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which the procedures and conditions for substrate processing described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each procedure in the substrate processing step described later and obtain a predetermined result, and functions as a program.
  • this process recipe, control program, etc. are collectively referred to as a program.
  • a process recipe is also simply referred to as a recipe.
  • the term program is used in the present specification, it may include only a recipe alone, a control program alone, or both of them.
  • the RAM 121b is configured as a memory area in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d is connected to the vacuum robot 36, the gate valves 351a, 351b, 361a, 361b, the robot arm 64, the heaters 45a, 45b, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a performs a substrate transfer operation by the vacuum robot 36, an opening / closing operation of the gate valves 351a, 351b, 361a, 361b, a temperature adjusting operation of the heaters 45a, 45b, a start and stop of the vacuum pump, according to the contents of the read recipe. It is configured to control the substrate transfer operation by the atmospheric robot.
  • the following film forming treatment on the substrate holding table 44a is performed outside the processing container 47.
  • the film forming treatment does not necessarily have to be carried out in a closed container, but is preferably carried out in a heat treatment chamber (treatment container) capable of maintaining the following treatment atmosphere.
  • the film forming treatment is performed in a heat treatment chamber different from the processing container 47 of the substrate processing apparatus, which is configured so that the inside can be maintained at a predetermined humidity.
  • the substrate holding table 44a is carried into the heat treatment chamber, and the atmosphere in the heat treatment chamber is adjusted so that the absolute humidity is 11.0 to 12.5 (g / m 3 ) in the atmospheric atmosphere.
  • the built-in heater 45a is energized, the surface temperature of the substrate holding table 44a as the first temperature is heated to 450 ° C., and this state is maintained for 3 hours.
  • an oxide film made of AlO is formed on the surface of the substrate holding table 44a made of Al alloy.
  • the portion where the oxide film is formed is the entire surface of the substrate holding table 44a. That is, it is the surface of the substrate holding base 44a including the flange 53a indicated by the thick line in FIG.
  • the portion where the oxide film is formed may be only a portion of the entire surface of the substrate holding table 44a that is exposed to the processing chamber 16a at least when mounted in the processing container 47.
  • the surface of the substrate holding table 44a is raised by energizing the built-in heater 45a, but the outside of the substrate holding table 44a (without or in combination with the heater 45a) ( The surface of the substrate holding table 44a may be heated by irradiating heat from a heater provided on the surface side).
  • FIG. 6 shows the result of an experiment in which the effect of the film forming treatment according to the present embodiment was verified using the sample.
  • blocks of A5052 which is an Al alloy
  • A5052 which is an Al alloy
  • the sample (a) was not subjected to the film forming treatment, and the samples (b) to (d) were subjected to the film forming treatment.
  • the samples (b) to (d) are placed on the heater in an atmospheric pressure atmosphere in which the absolute humidity is adjusted within the range of 11.0 to 12.5 (g / m 3 ). , The surface was maintained at a predetermined temperature for 3 hours.
  • the surface temperatures of the samples (b) to (d), that is, the oxidation treatment temperature as the first temperature were 350 ° C., 400 ° C., and 450 ° C., respectively.
  • the lower part of the figure shows the appearance of the sample (a) not subjected to the film forming treatment and the samples (b) to (d) after the film forming treatment. It can be seen from the appearance that the oxide film is not formed on the sample (a) which has not been subjected to the film formation treatment and the sample (b) whose oxidation treatment temperature is 350 ° C. Further, although an oxide film is formed on the sample (c) having an oxidation treatment temperature of 400 ° C., it is estimated from its appearance that the oxide film is thinner than that of the sample (d) having the same temperature of 450 ° C. Will be done. Here, as a result of measuring the thickness of the oxide film formed on the surface of the sample (d), the thickness was about 1.0 ⁇ m.
  • the absolute humidity was adjusted to the range of 11.0 to 12.5 (g / m 3 ) under the atmospheric atmosphere (large) as in the film forming treatment on the sample (d).
  • Mg in the film is sufficiently oxidized to form a film that does not substantially contain elemental Mg.
  • the oxide film forming treatment to the substrate holding table 44a made of the same Al alloy under the same thermal oxidation conditions, the same effect of suppressing Mg precipitation can be obtained for the substrate holding table 44a. be able to.
  • the oxide film is formed on at least the entire surface of the substrate holding table 44a exposed to the treatment chamber. As a result, it is possible to prevent Mg precipitated from the Al alloy from being released into the treatment chamber and causing contamination.
  • a coating film is also formed on the surface of the flange 53a.
  • the oxidized Mg (MgO) contained in the vicinity of the surface of the member formed of the Al alloy is volatilized or oxidized and does not substantially contain the elemental Mg.
  • a coating of AlO containing is formed. This makes it possible to prevent the simple substance Mg from evaporating and volatilizing from the coating. If the film formation treatment time or oxidation treatment temperature is insufficient, the elemental Mg remains in the oxide film without being oxidized, or only an oxide film having an insufficient thickness to prevent Mg precipitation is formed. Therefore, the effect of suppressing Mg precipitation cannot be obtained.
  • the two substrates 22 carried into the processing chamber 16a are provided with the first substrate holding surfaces 41a by means of the substrate holding pins (not shown) and the robot arm 64 provided on the substrate holding tables 44a and 44b, respectively. Each is transferred and held on the second substrate holding surface 41b.
  • the heaters 45a and 45b built in the substrate holding bases 44a and 44b, respectively, and the surface of the substrate 22 held on the substrate holding surfaces 41a and 41b of the substrate holding bases 44a and 44b has a desired temperature (for example, 425). °C).
  • the surface temperatures of the substrate holding tables 44a and 44b at this time are referred to as the substrate processing surface temperature (second temperature) for convenience.
  • the temperatures of the heaters 45a and 45b are adjusted by controlling the power supplied to the heaters 45a and 45b based on the temperature information detected by the temperature sensor (not shown).
  • the lamp houses 67a and 67b are not used to heat the substrate 22.
  • the surface temperature of the substrate 22 can be further increased by further using the lamp houses 67a and 67b.
  • the inside of the processing chamber 16a is evacuated by a pump (not shown) so that the desired pressure is 6 Torr in this case.
  • the pressure in the processing chamber 16a is measured by a pressure sensor (not shown), and the opening degree of the APC valve (not shown) is feedback-controlled based on the measured pressure information.
  • N 2 gas which is a treatment gas
  • the valves (not shown) of the gas supply units 51a and 51b are opened, and the processing gas is supplied from the gas supply pipes 65a and 65b to the first processing unit 59 and the second processing unit 61, respectively.
  • nitrogen (N 2 ) gas has been described as an example as the treatment gas, but the present invention is not limited to this, and oxygen-containing gas may be used for ashing treatment, and an inert gas may be used for heat treatment. In this way, the substrate 22 is heated in the atmosphere of the supplied processing gas to perform a predetermined treatment.
  • Predetermined time has elapsed, a desired processing when finished closing the gas supply unit 51a, 51b of the valve to stop the supply of the N 2 gas into the processing chamber 16a.
  • the pressure in the processing chamber 16a is 6 Torr and the surface temperature of the substrate holding tables 44a and 44b is 425 ° C. Volatilization and precipitation of Mg from the Al alloy constituting the substrate holding tables 44a and 44b can be suppressed even in the state of being heated to the above.
  • the surface of the substrate support is made of an Al alloy containing Mg, and the surface of the substrate support is an oxide film that prevents the volatilization and precipitation of Mg contained in the Al alloy.
  • the surface temperature (second temperature) during substrate processing is high, especially the temperature at which thermal deformation of pure Al occurs, for example, it is used under the condition that it exceeds 400 ° C, which is the actual durable temperature of pure Al.
  • the surface temperature during substrate treatment exceeds 600 ° C.
  • the Al alloy may soften or melt, so it is desirable that the surface temperature during substrate treatment be 600 ° C. or lower at which such a phenomenon is unlikely to occur.
  • Mg evaporates and scatters from the Al alloy constituting the substrate support, and Mg adheres to the inside of the processing container of the substrate processing apparatus and to the substrate, so that the substrate processing apparatus is normal. It is possible to prevent the processing from becoming impossible and causing a lot-out of the substrate.
  • the suitable oxidation treatment temperature (first temperature) for the member composed of the Al alloy is 450 ° C. or higher.
  • first temperature the suitable oxidation treatment temperature for the member composed of the Al alloy.
  • an oxide film having a sufficient Mg precipitation suppressing function can be formed by performing the film forming treatment at at least 450 ° C. or higher. That is, it has a sufficient thickness to prevent the simple substance Mg contained in the Al alloy covered with the coating from being precipitated, and the Mg in the coating is sufficiently oxidized to substantially not contain the simple substance Mg.
  • a film can be formed.
  • the thickness of the oxide layer sufficient to suppress Mg precipitation may not be obtained, or the oxidation of Mg in the film may be insufficient, and the precipitation suppressing effect cannot be obtained.
  • the oxidation treatment temperature is 400 ° C. or lower, there is a high possibility that Mg precipitation occurs, as shown in the above-mentioned treatment experiment results.
  • the oxidation treatment temperature exceeds 600 ° C., the Al alloy may soften or melt, so it is desirable that the oxidation treatment temperature be 600 ° C. or lower, which is unlikely to cause such a phenomenon.
  • the oxidation treatment temperature is equal to or higher than the surface temperature (second temperature) at the time of substrate treatment.
  • the thickness of the oxide film formed on the surface of the Al alloy member is 1 ⁇ m or more, it is assumed that the surface temperature (second temperature) during substrate treatment rises to 450 ° C. as the above-mentioned treatment experiment results. However, it is possible to prevent the simple substance Mg contained in the Al alloy from permeating through the coating film and being released into the treatment chamber. If the thickness of the oxide film is less than 1 ⁇ m, when the second temperature rises to 450 ° C., the elemental Mg contained in the Al alloy may permeate through the film and be released into the treatment chamber.
  • the thickness of the oxide film is 10 ⁇ m or less.
  • the atmospheric atmosphere in which the oxide film forming treatment is carried out contains water vapor.
  • the film forming rate can be increased.
  • an oxide film capable of suppressing Mg precipitation can be relatively easily formed even with a simple facility.
  • the pressure in the oxide film forming treatment is not limited to atmospheric pressure, and may be performed under a slight depressurization (for example, 600 Torr or more and less than 760 Torr) or a slight pressurization (for example, more than 760 Torr and 900 Torr or less).
  • the time for maintaining the surface of the Al alloy member at the first temperature is 3 hours or more.
  • the thermal oxidation treatment as the film forming treatment for at least 3 hours or more, the thickness required to suppress the precipitation of the elemental Mg contained in the Al alloy is sufficient, and the Mg in the film is sufficient. It is possible to form a film that is oxidized to and substantially does not contain elemental Mg. If it is less than 3 hours, it is difficult to form an oxide film having a thickness (for example, 1 ⁇ m or more) necessary for suppressing the precipitation of elemental Mg contained in the Al alloy. In addition, since it is possible to form an oxide film having a sufficient thickness in the time of 100 hours or less, it is desirable that the time is 100 hours or less in consideration of productivity.
  • the composition of the Al alloy that suppresses the precipitation of Mg by forming an oxide film preferably has a Mg content of 2 to 5 wt%, for example, 2.2 wt% or more.
  • a Mg content of 2 to 5 wt% for example, 2.2 wt% or more.

Abstract

高温処理容器内においてアルミニウム(Al)合金を使用した際に、Al合金中に含まれる成分の蒸発・飛散を防止する。基板を処理する処理室と、処理室内で基板を支持する基板保持台と、基板保持台で支持された基板を加熱するよう構成されたヒータと、を備える基板処理装置において、基板保持台は、Mgを含有するAlの合金で表面が構成され、大気雰囲気下において、表面が所定の第1温度となるように加熱する処理と、表面が第1温度となる状態を所定の時間維持することにより、表面に酸化アルミニウムの被膜を形成する処理とが施される。

Description

基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法
 本開示は、基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法に関する。
 半導体装置の製造工程の一工程として、例えば、所望の温度に加熱された基板上にガスを供給することで、基板上への薄膜の形成、アッシング等の様々な処理を行う基板処理工程が行われることがある(例えば特許文献1参照)。基板処理装置における処理容器内においては、アルミニウム(Al)の合金により形成される部材を使用することがある。
特開2013-8949号公報
 しかし、高温となった処理容器内でAl合金を使用すると、Al合金に含まれる成分が蒸発・飛散し、処理容器内や処理基板を汚染してしまうことがある。処理容器内や処理基板が汚染された場合、基板処理装置が正常な処理を行えなくなったり、基板のロットアウトを引き起こしたりする可能性がある。
 本開示は、高温処理容器内においてAl合金を使用した際に、Al合金に含まれる成分の蒸発・飛散を防止することが可能な技術を提供する。
 上記の課題を解決するため、本開示の一実施形態によれば、基板を処理する処理室と、処理室内で基板を支持する基板支持具と、基板支持具で支持された基板を加熱するよう構成されたヒータと、を備え、基板支持具は、マグネシウム(Mg)を含有するAlの合金で表面が構成され、大気雰囲気下において、表面が所定の第1温度となるように加熱する処理と、表面が第1温度となる状態を所定の時間維持することにより、表面に酸化アルミニウム(AlO)の被膜を形成する処理と、が施されている技術が提供される。
 本開示によれば、高温処理容器内においてAl合金を使用した際に、Al合金中に含まれる成分の蒸発・飛散を防止することが可能な技術を提供することができる。
本開示の一実施形態に係る基板処理装置の横断面概略図である。 本開示の一実施形態に係る基板処理装置の縦断面概略図である。 本開示の一実施形態に係る処理室の縦断面概略図である。 本開示の一実施形態に係る基板保持台の概略図である。 本開示の一実施形態に係る基板処理装置のコントローラの構成例を示すブロック図である。 本開示の一実施形態に係る基板処理装置により処理実験結果の一例を説明するための図である。
 <本開示の一実施形態>
 (1)基板処理装置の構成
 図1に示すように、基板処理装置10は、例えば搬送室12を中心として、2つのロードロック室14a,14b及び2つの処理室16a,16bが配置されており、ロードロック室14a,14bの上流側にカセットなどのキャリアとの間で基板を搬送するための大気搬送室(EFEM: Equipment Front End Module)20が配置されている。大気搬送室20は、例えば25枚の基板を縦方向に一定間隔を隔てて収容可能なフープ(図示せず)が3台配置されている。また、大気搬送室20には、大気搬送室20とロードロック室14a,14bとの間で基板を例えば5枚ずつ搬送する図示しない大気ロボットが配置されている。例えば、搬送室12、ロードロック室14a,14b及び処理室16a,16bは、Alにて形成されている。   
 まず、ロードロック室14a,14bの構成について、説明する。なお、ロードロック室14bの説明については、ロードロック室14aと左右対称構造となっているが構成は同一であるため、省略する。
 図2に示すように、ロードロック室14aには、例えば25枚のウェハなどの基板22を縦方向に一定間隔を隔てて収容する基板支持体(ボート)24が設けられている。基板支持体24は、例えば炭化珪素等により構成され、3つの支柱30の長手方向内側には、例えば25個の基板22を載置する載置部32が平行に形成されている。また、基板支持体24は、ロードロック室14a内において、鉛直方向に移動(上下方向に移動)するようにされているとともに、鉛直方向に延びる回転軸を軸として回転するようにされている。基板支持体24が鉛直方向に移動することにより、基板支持体24の3つの支柱30それぞれに設けられた載置部32の上面に、後述するフィンガ対40から基板22が同時に2枚ずつ移載される。また、基板支持体24が鉛直方向に移動することにより、基板支持体24からフィンガ対40へも基板22が同時に2枚ずつ移載されるように構成されている。   
 搬送室12には、ロードロック室14aと処理室16aとの間で基板22を搬送する真空ロボット36が設けられている。真空ロボット36は、上フィンガ38a及び下フィンガ38bから構成されるフィンガ対40が設けられたアーム42を有する。上フィンガ38a及び下フィンガ38bは、例えば同一の形状をしており、上下方向に所定の間隔で離間され、アーム42からそれぞれ略水平に同じ方向に延びて、それぞれ基板22を同時に支持することができるように構成されている。アーム42は、鉛直方向に延びる回転軸を軸として回転するように構成されているとともに、水平方向に移動するように構成され、同時に2枚の基板22を搬送可能に構成されている。   
 (2)処理室の構成   
 次に、図3等を用いて処理室16a,16bの構成について説明する。図3は、本実施形態に係る基板処理装置10が備える処理室16aの縦断面概略図である。なお、処理室16bの説明については、処理室16aと左右対称構造となっているが、構成は同一であるため、省略する。 
 図3に示すように、処理室16aは、ゲートバルブ78を介して搬送室12と連通している。処理室16aは、処理容器47を備えている。処理容器47は、キャップ状の蓋体43と、下側容器48と、を備えている。蓋体43が下側容器48の上に気密に設けられることにより、処理容器47が構成される。蓋体43は、例えばAlO又は石英等の非金属材料等により構成されており、下側容器48は、例えばAl等により構成されている。処理容器47内には、基板22を収容する反応室50が構成されている。
 反応室50内には、基板支持具である2つの基板保持台44a,44bが配置されている。すなわち、基板保持台44a,44bはそれぞれ、反応室50の同一空間内に設けられている。基板保持台44a,44bの上面、すなわち基板保持台44a,44bの蓋体43と対向する面には、基板22を保持する基板保持面41a,41bが設けられている。基板保持台44bは、搬送室12から見て、基板保持台44aを挟んで遠方に配置されている。そして、反応室50は、第1の基板保持台44aを備える第1の処理部59と、第2の基板保持台44bを備える第2の処理部61と、から構成されている。第1の処理部59と第2の処理部61との間の空間には、水平方向の一部を仕切る仕切部材46が設けられている。第1の処理部59と第2の処理部61は、それぞれ独立した構造となっている。第1の処理部59と、第2の処理部61とは連通している。 
 そして、処理室16aは、真空ロボット36を介して基板保持台44a,44bに基板22がそれぞれ載置されることにより、反応室50の同一空間内で2枚の基板22を同時に熱処理することができるようにされている。 
 (基板支持具)
  図4は、本実施形態に係る基板支持具としての基板保持台44aの縦断面図である。上述したように、反応室50の底側には、基板支持具として、基板22を基板保持面41a,41bでそれぞれ保持する2つの基板保持台44a,44bが配置されている。第1の基板保持台44a及び第2の基板保持台44bは、処理室16a内において、固定部材52により、処理容器47にそれぞれ固定されている。 基板保持台44a,44bはそれぞれ、下方から支持する複数の支柱49が設けられることで支持されている。 
 基板保持台44a,44bは、Alを主成分とする部材によって形成されている。基板処理装置における真空容器内においてAlを主成分とする部材を使用する利点としては、熱伝導率が高いこと、加工が容易であること、耐食性に優れること、安価であることなどが上げられる。特に、熱伝導率の高い材料で構成することで、後述する加熱部としてのヒータ45a,45bからの熱を基板22に効率よく、均一に伝達させることができる。従って、基板処理時において、基板22の温度が面内均一となるように加熱することができ、基板処理の面内均一性を向上させることができる。しかしながら、純Alの部材は熱によって強度の低下による変形を起こし易いという理由から、400℃を超える高温度帯で実用的に使用することは難しい。
 そのため本実施形態では、基板保持台44a,44bは、高温度帯での機械的強度を高める目的で、マグネシウム(Mg)やクロムなどを少量添加したAl合金によって形成されている。このようなAl合金としては、例えば、A5052やA5056等を用いることができる。本実施形態では特にA5052を用いる。A5052はMgを2.2~2.8%、クロムを0.15~0.35%、他にシリコン、鉄、銅、マンガン、亜鉛などを含有したAl合金である。このA5052を用いることで400℃を超える高温度帯においても、強度の低下による熱変形のリスクを抑えることが可能である。なお、本明細書における「2.2~2.8%」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「2.2~2.8%」とは「2.2%以上2.8%以下」を意味する。他の数値範囲についても同様である。
 しかし一方で、処理容器47内でA5052等のAl合金で構成された部材(Al合金部材)が加熱されると、Al合金に含まれるMgが蒸発・飛散し、処理容器47内や被処理基板を汚染してしまうことがある。これは、Mgの蒸気圧が比較的高いため、高温下においてAl合金内部からMgが蒸発・飛散しやすくなることが原因である。また、処理容器47内の圧力が低いほどその傾向はより顕著となる。処理容器47内や被処理基板がMgで汚染された場合、基板処理装置が正常な処理を行えなくなったり、被処理基板のロットアウトを引き起こしたりする。そこで本実施形態では、後述するように、Al合金で構成された基板保持台44a,44bに対して事前にMgの揮発・析出を防止する被膜形成処理を施している。
 なお、基板保持台44a,44bをステンレス(SUS)で構成した場合、Al合金で構成した場合と比べて、耐熱性を向上させることができる場合はあるが、熱伝導率は低くなる。また、基板保持台44a,44bを窒化アルミニウム(AlN)で構成した場合、Al合金で構成した場合と比べて、熱伝導率を高くできる場合はあるが、耐熱性は低くなる。したがって本実施形態では、基板保持台44a,44bをAl合金により構成している。なお、本実施形態では、内蔵されたヒータ45a,45bなどの一部を除く基板保持台44a,44b全体をA5052により構成する例について説明するが、例えば、基板保持台44a,44bの内部をSUSで形成された部材し、基板保持台44a,44bの表面を含むその周りをAl合金で覆うように構成してもよい。これにより、基板保持台44a,44bの耐熱性をより向上させることができる。
 基板保持台44a,44bには、基板保持面41a,41bの下方に、加熱部としてのヒータ45a,45bがそれぞれ内包されており、基板22を加熱できるように構成されている。ヒータ45a,45bに電力が供給されると、基板22表面が所定温度まで加熱されるようになっている。なお、基板保持台44a,44bには、温度センサ(図中省略)が設けられている。ヒータ45a,45b及び温度センサには、図3のコントローラ77に対応するコントローラ121が電気的に接続されている。コントローラ121は、温度センサにより検出された温度情報に基づいてヒータ45a,45bへの供給電力などを制御するように構成されている。
 基板保持台44aの基板保持面41a及び基板保持台44bの基板保持面41bの外周にはそれぞれ、例えば3つの基板保持ピン(図中省略)が鉛直方向に貫通して設けられている。基板保持ピンは上下方向に昇降するように構成されている。これにより、搬送室12から真空ロボット36等を介して処理室16a内に搬送された基板22が、基板保持ピンに載置された後、基板保持ピンが上下に昇降されることで、第1の基板保持台44a(すなわち第1の基板保持面41a)及び第2の基板保持台44b(すなわち第2の基板保持面41b)上に、基板22がそれぞれ載置されるように構成されている。
 (支持部)
  図4に示すように、基板保持台44と支柱49との間には、基板保持台44a,44bを支持する支持部55が設けられている。すなわち、基板保持台44a,44bのフランジ53a,53bのそれぞれの底面には、支持部55が設けられている。支持部55の部分55a等において支柱49が挿入されている。
 基板保持台44a,44bの外側には、それぞれの周囲を囲むように排気孔が形成されている排気バッフルリング54a,54bが配置されている。
 処理容器47の天井部には、第2の加熱部としてのランプハウス67a,67bが設けられている。ランプハウス67a,67bは、第1の加熱部としてのヒータ45a,45bとは実質的に反対側から、基板22を加熱するように構成されている。ランプハウス67a,67bにはそれぞれ、加熱源としてのランプ群57a,57bが設けられている。
 (基板搬送装置) 
  処理室16a内の第1処理部59と第2処理部61との間、すなわち仕切部材46には、基板搬送装置としてのロボットアーム64が設けられている。ロボットアーム64は、基板22を処理室16a内で搬送し、基板処理が行われている間、処理室16a内で待機するように構成されている。
 (ガス供給部)
  図3に示すように、処理室16aの上部には、処理室16a内へ処理ガスを供給するガス供給部が設けられている。すなわち第1の処理部59へ処理ガスを供給する第1のガス供給部51aと、第2の処理部61へ処理ガスを供給する第2のガス供給部51bとが設けられている。処理容器47を構成する蓋体43には、ガス供給口63a,63bが設けられている。蓋体43のガス供給口63a,63bにはそれぞれ、第1のガス供給管65a,第2のガス供給管65bの下流端が気密に接続されている。
 ガス供給管65a,65bにはそれぞれ、上流側から順に、処理ガスとしての窒素含有ガスであるNガスを供給する窒素ガス供給源(図示せず)、流量制御装置としてのマスフローコントローラ(MFC)(図示せず)及び開閉弁であるバルブ(図示せず)が設けられている。   
 MFC及びバルブには、後述するコントローラ77が電気的に接続されている。コントローラ77は、処理室16a内に供給するガスの流量が所定の流量となるように、MFC及びバルブの開閉を制御するように構成されている。このように、MFCにより流量制御しながら、ガス供給管65a,65b及びガス供給口63a,63bを介して、処理室16a内に処理ガスであるNガスを自在に供給できるように構成されている。なお、窒素ガス供給源、MFC及びバルブは、ガス供給部51a,51bでそれぞれ独立したものであってもよく、共有のものであってもよい。
 主に、ガス供給管65a,65b、窒素ガス供給源、MFC及びバルブにより、本実施形態に係るガス供給部51a,51bがそれぞれ構成されている。
 (排気部)   
  排気バッフルリング54a,54bの下方にはそれぞれ、処理容器47(下側容器48)と基板保持台44a,44bとによりそれぞれ形成される第1の排気口58が設けられている。処理容器47(下側容器48)の基板支持台44a,44bより下方には、中板が設けられている。中板には、処理室16aから処理ガス等を排気する第2の排気口60が設けられている。また、下側容器48の底面には、第2の排気口60から排気された処理ガス等を排気する第3の排気口62が設けられている。ガス排気口62には、ガスを排気するガス排気管(図示せず)の上流端が接続されている。ガス排気管には、圧力調整器であるAPCバルブ(図示せず)、開閉弁であるバルブ(図示せず)、排気装置であるポンプ(図示せず)が設けられている。また、ガス排気管には、圧力センサ(図示せず)が設けられている。
 APCバルブ、バルブ、ポンプ及び圧力センサには、後述するコントローラ121が電気的に接続されている。ポンプを作動させ、バルブを開けることにより、処理室16a内を排気可能なように構成されている。すなわち、ガス供給部51a,51bから供給された処理ガスは、排気バッフルリング54a,54bの排気孔、第1の排気口58、第2の排気口60及び第3の排気口62を介して処理室16aから排出される。
 また、圧力センサにより検出された圧力情報に基づいて、APCバルブの開度を調整することにより、処理室16a内の圧力値を、例えば0.1Pa程度までの減圧できるよう構成されている。   
 主に、第1~第3のガス排気口、ガス排気管、APCバルブ、バルブ、ポンプにより、本実施形態に係る排気部が構成されている。
 (制御部)   
  図5に示すように、制御部(制御手段)であるコントローラ121は、)CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aよって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域として構成されている。
 I/Oポート121dは、真空ロボット36、ゲートバルブ351a,351b,361a,361b、ロボットアーム64、ヒータ45a,45b等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、真空ロボット36による基板搬送動作、ゲートバルブ351a,351b,361a,361bの開閉動作、ヒータ45a,45bの温度調整動作、真空ポンプの起動および停止、大気ロボットによる基板搬送動作、等を制御するように構成されている。
 (3)Al合金部材の被膜形成処理(Mg揮発・析出防止処理)
  続いて、基板処理装置の基板保持台44aに対して、Mgを含有するAl合金の表面の熱酸化処理、すなわち、大気雰囲気下において、表面が所定の第1温度となるように加熱する処理と、表面が第1温度となる状態を所定の時間維持することにより、表面にAlOの被膜を形成する処理を実施する一実施形態について説明する。
 本実施形態においては、ヒータ45aを備えた基板保持台44aを基板処理装置の処理容器47に搭載する前に、処理容器47外において、基板保持台44aに対する以下の被膜形成処理を実施する。当該被膜形成処理は、密閉された容器内で実行される必要は必ずしもないが、以下の処理雰囲気を維持可能な熱処理室(処理容器)内で実行されることが好ましい。本実施形態では、内部を所定の湿度に維持可能に構成された、基板処理装置の処理容器47とは異なる熱処理室において当該被膜形成処理をおこなう。基板処理を行う処理容器47外で当該被膜形成処理を行うことにより、Al合金から揮発するMgが処理容器47内に付着し汚染が発生するのを防ぐことができる。
 まず、基板保持台44aを熱処理室内に搬入し、熱処理室内の雰囲気を大気雰囲気で絶対湿度を11.0~12.5(g/m)となるように調整する。その後、内蔵されたヒータ45aに通電を行い、第1温度としての基板保持台44aの表面温度を450℃となるまで加熱し、この状態を3時間維持する。これにより、Al合金で構成された基板保持台44aの表面にAlOで構成される酸化被膜を形成させる。
 本実施形態において、酸化被膜を形成する箇所は、基板保持台44aの表面全体である。すなわち、図4の太線で表示したフランジ53aを含めた基板保持台44aの表面である。但し、酸化被膜を形成する箇所は、基板保持台44aの表面全体の内、少なくとも処理容器47内に搭載された際に、処理室16aに対して露出する部分のみとしてもよい。少なくとも処理室16aに露出する表面部分の全てに酸化被膜を形成することによって、Al合金から析出するMgが処理室16a内に放出されて汚染が発生するのを防止することができる。
 なお、本実施形態では、内蔵されたヒータ45aに通電することで基板保持台44aの表面の昇温を行ったが、ヒータ45aを用いずに、又は併用して、基板保持台44aの外側(表面側)に設けられたヒータから熱を照射して、基板保持台44aの表面を加熱するようにしてもよい。
 (4)Al合金サンプルに対する被膜形成処理の効果の評価
  続いて、サンプルを用いて本実施形態に係る被膜形成処理の効果を検証した実験の結果を図6に示す。本実験では、Al合金であるA5052のブロックをサンプル(a)~(d)として用意し、熱酸化温度(第1温度)の違いによるMgの揮発・析出防止効果の違いについて評価した。サンプル(a)は、被膜形成処理を行っていないもの、サンプル(b)~(d)に対して被膜形成処理を行った。サンプル(b)~(d)に対する被膜形成処理は、絶対湿度が11.0~12.5(g/m)の範囲内に調整された大気圧雰囲気でそれらをヒータ上に載置して、その表面が各々の所定の温度となる状態を3時間維持させることにより行った。サンプル(b)~(d)の表面温度、すなわち第1温度としての酸化処理温度はそれぞれ、350℃、400℃、450℃とした。
 同図の下段には、被膜形成処理を施していないサンプル(a)と、被膜形成処理後のサンプル(b)~(d)の外観を示している。被膜形成処理を行っていないサンプル(a)と酸化処理温度が350℃であるサンプル(b)には酸化被膜が形成されていないことがその外観から分かる。また、酸化処理温度が400℃であるサンプル(c)には酸化被膜が形成されているが、同温度が450℃であるサンプル(d)に比べて酸化被膜が薄いことが、その外観から推測される。ここで、サンプル(d)の表面に形成された酸化被膜の厚さを測定した結果、その厚さは約1.0μmであった。
 同図の下段に示された結果から、A5052等のAl合金の表面に酸化被膜を形成するためには、その表面温度を400℃以上まで昇温させる必要があることが分かる。また、1.0μm以上の酸化被膜を形成するためには、その表面温度を450℃以上まで昇温させる必要があることが分かる。
 同図の中段には、基板処理装置を用いて基板処理が行われる際に基板保持台44aが置かれるのと同じ条件を再現し、その条件下に被膜形成処理後のサンプル(b)~(d)を置いた際の、シリコン基板へのMgの転写の様子を示している。これらのサンプリング条件は、被膜形成処理後のサンプル(b)~(d)をそれぞれ表面温度が450℃となるまで加熱するとともに、雰囲気をNガス100%、圧力を6Torrとした条件下で、加熱された状態の各サンプル上にシリコン基板を載せ、24時間経過させたものである。このシリコン基板への各サンプルからのMgの転写の様子によって、基板処理時と同様の条件において、各サンプルからMgが揮発・析出するかどうかを判定することができる。
 同図の中段に示されるように、サンプル(b)及び(c)の場合、白く示されたMgの転写が発生している。従って、酸化処理温度が400℃であるサンプル(c)では、酸化被膜は形成されているものの、Mgの析出を抑制する効果が不十分であることが分かる。一方、サンプル(d)の場合、そのようなMgの転写は発生していない。従って、酸化処理温度が450℃であるサンプル(d)では、表面に形成された酸化被膜によって、明確なMg析出の抑制効果が得られていることが分かる。
 この結果から、酸化処理温度が400~450℃の温度帯に、Mg析出の抑制効果が得られる境界となる温度が存在すると推定できる。また、酸化処理温度を450℃以上として、表面に形成される酸化被膜の厚さを1.0μm以上とすることで、Mg析出の抑制効果を明確に得ることができることが分かる。
 すなわち、以上の実験結果によれば、サンプル(d)への被膜形成処理のように、絶対湿度を11.0~12.5(g/m)の範囲に調整された大気雰囲気下(大気圧下)において、Al合金で形成された部材をその表面が450℃以上である所定の第1温度となるように加熱する処理と、その表面が第1温度となる状態を少なくとも2時間以上、望ましくは3時間以上である所定の時間維持する処理とを行うことにより、その表面にMg析出の抑制効果が得られるのに十分な1.0μm以上である所定の厚さの酸化被膜(AlO膜)を形成することができることが明らかとなった。また、被膜中のMgが十分に酸化され単体Mgを実質的に含まない被膜を形成することができる。
 従って、同じAl合金で構成された基板保持台44aに対して、同様の熱酸化条件で酸化被膜の形成処理を施すことによって、基板保持台44aに対しても同様のMg析出の抑制効果を得ることができる。酸化被膜は、少なくとも処理室に露出する基板保持台44aの表面全体に形成される。これにより、Al合金から析出するMgが処理室に放出されて汚染が発生するのを防止することができる。なお、上述した通り、基板保持台44a全体に対して被膜形成処理を施す際、フランジ53aの表面にも被膜が形成される。
 なお、本実施形態における被膜形成処理においては、Al合金で形成された部材の表面近傍に含まれたMgが揮発又は酸化され、単体Mgを実質的に含まない、酸化されたMg(MgO)を含むAlOの被膜が形成される。これにより、被膜中から単体Mgが蒸発・揮発しないようにすることができる。被膜形成処理の時間や酸化処理温度が不十分な場合、酸化被膜中に単体Mgが酸化されずに残留することや、Mg析出を防止するのに不十分な厚さの酸化被膜しか形成されないことがあり、Mg析出抑止効果を得ることができない。
 (5)基板処理工程 
  次に、上述の基板処理装置10の処理室16aを用いて、半導体装置(デバイス)の製造工程の一工程として、ウェハ等の基板22に窒化処理を行う工程例について説明する。本実施形態では、上述したサンプル(d)の場合と同様の被膜形成処理が施された基板保持台44a,44bを用いて当該工程が実行される。なお、以下の説明において、基板処理装置10を構成する各部の動作はコントローラ121により制御される。 
 (基板搬入工程)
  まず、ゲートバルブ78を開き、真空ロボット36を、フィンガ対40に載置された2枚の基板22を同時搬送しながら、処理室16a内に移動させる。これにより、それぞれの基板22が、搬送室12からゲートバルブ78を介して処理室16a内に搬入される。
 (基板保持工程)
  そして、処理室16a内に搬入された2枚の基板22は、基板保持台44a,44bにそれぞれもうけられた基板保持ピン(図示せず)およびロボットアーム64により、第1の基板保持面41a,第2の基板保持面41b上にそれぞれ移載されて保持される。
 (昇温・圧力調整工程) 
  続いて、基板保持台44a,44b内蔵のヒータ45a,45bにそれぞれ電力を供給し、基板保持台44a,44bの各基板保持面41a,41bに保持された基板22表面が所望の温度(例えば425℃)となるように加熱する。なお、この時の基板保持台44a,44bの表面温度を便宜上、基板処理時表面温度(第2温度)と呼ぶ。この際、ヒータ45a,45bの温度は、温度センサ(図示せず)により検出された温度情報に基づいてヒータ45a,45bへの供給電力を制御することによって調整される。なお、本実施形態では、ランプハウス67a,67bを用いて基板22の加熱を行わない。しかし、ランプハウス67a,67bをさらに用いることにより、基板22の表面温度を更に高めることもできる。
 また、処理室16a内が所望の圧力、ここでは6Torrとなるように、処理室16a内をポンプ(図示せず)によって真空排気する。この際、処理室16a内の圧力は圧力センサ(図示せず)で測定され、この測定された圧力情報に基づきAPCバルブ(図示せず)の開度をフィードバック制御する。
 (基板処理工程) 
  基板22の加熱処理と並行して、処理室16a内に処理ガスであるNガスを供給する。具体的には、ガス供給部51a,51bのバルブ(図示せず)を開け、処理ガスをガス供給管65a,65bから、第1の処理部59及び第2の処理部61へそれぞれ供給する。本実施形態では、処理ガスとして窒素(N)ガスを例として説明したが、それに限るものではなく、アッシング処理であれば酸素含有ガス、加熱処理であれば不活性ガス等を用いれば良い。このように、供給された処理ガスの雰囲気にて、基板22が加熱されることで、所定の処理がなされる。
 所定時間が経過して、所望の処理が終了したら、ガス供給部51a,51bのバルブを閉じ、処理室16a内へのNガスの供給を停止する。
 (大気圧復帰・基板搬出工程) 
  所定の処理が終了したら、ヒータ45a,45bへの電力供給を停止して処理室16a内を降温させると共に、排気部のAPCバルブ(図示せず)の開度を調整して処理室16a内の圧力を大気圧に復帰させる。そして、上述した基板搬入工程及び基板保持工程に示した手順とは逆の手順により、処理済みの2枚の基板22を処理室16a内から搬送室12へ搬送する。すなわち、ロボットアーム64及び真空ロボット36のフィンガ対40が、所定動作を逆の順序で行うことで、処理済みの2枚の基板22を処理室16a内から搬出する。そして、本実施形態に係る基板処理工程を終了する。
 このように、サンプル(d)と同様の被膜形成処理が施された基板保持台44a,44bを用いることにより、処理室16a内の圧力を6Torr、基板保持台44a,44bの表面温度を425℃まで加熱した状態にしても、基板保持台44a,44bを構成するAl合金からのMgの揮発・析出を抑制することができる。
 すなわち、以上の実施形態によれば、少なくともその表面がMgを含むAl合金で構成された基板支持具に対して、その表面に、Al合金中に含まれるMgの揮発・析出を防止する酸化被膜を形成することにより、基板処理時表面温度(第2温度)が高温、特に純Alの熱変形が生じる温度、例えば、純Alの実耐用温度である400℃を超えるような条件で使用してもMg析出が発生せず、また熱変形等を起こさない基板支持具を得ることが可能となる。ただし、基板処理時表面温度が600℃超とすると、Al合金が軟化もしくは溶融を起こすことがあるため、基板処理時表面温度はそのような現象が起こりにくい600℃以下とすることが望ましい。
 また、以上の実施形態によれば、基板支持具を構成するAl合金からMgが蒸発・飛散して、基板処理装置の処理容器内部や基板にMgが付着することより、基板処理装置が正常な処理を行えなくなることや、基板のロットアウトを引き起こしたりすることを防止することが可能となる。
 ここで、Al合金により構成される部材に対する好適な酸化処理温度(第1温度)は、450℃以上とする。上述の処理実験結果の通り、少なくとも450℃以上で被膜形成処理を行うことにより十分なMg析出抑止機能を有する酸化被膜を形成できる。すなわち、被膜で覆われたAl合金に含まれる単体Mgが析出するのを抑止するのに十分な厚さを有し、且つ、被膜中のMgが十分に酸化され単体Mgを実質的に含まない被膜を形成することができる。450℃未満の場合、Mg析出を抑止するのに十分な酸化層の厚さが得られないか、膜中のMgの酸化が不十分となる可能性があり、析出抑止効果を得ることができないことがある。特に酸化処理温度が400℃以下の場合、上述の処理実験結果の通り、Mgの析出が発生する可能性が高くなる。ただし、酸化処理温度を600℃超とすると、Al合金が軟化もしくは溶融を起こすことがあるため、酸化処理温度はそのような現象が起こりにくい600℃以下とすることが望ましい。
 更に、酸化処理温度(第1温度)は、基板処理時表面温度(第2温度)以上とすることが望ましい。基板加熱処理時のAl合金の表面温度以上の温度条件下で被膜形成処理を行うことにより、基板処理時における合金中のMgの析出をより確実に抑制することができる。
 また、Al合金の部材の表面に形成される酸化被膜の厚さを1μm以上とすることにより、上述の処理実験結果の通り、基板処理時表面温度(第2温度)が450℃まで上昇したとしても、Al合金に含まれる単体Mgが被膜を透過して処理室内に放出されるのを抑止することができる。この酸化被膜の厚さが1μm未満の場合、第2温度が450℃まで上昇した際にAl合金に含まれる単体Mgが被膜を透過して処理室内に放出される可能性がある。また、望ましくは当該酸化被膜の厚さを3μm以上とすることにより、第2温度が450℃まで上昇したとしても、Al合金に含まれる単体Mgが被膜を透過して処理室内に放出されるのをより確実に抑止することができる。なお、酸化被膜の厚さが10μm超となると、基板支持具表面における熱伝導に実質的な影響を与える可能性があるため、酸化被膜の厚さは10μm以下であることが望ましい。
 また、酸化被膜形成処理が実施される大気雰囲気は水蒸気を含むことが望ましい。水蒸気含有雰囲気中で酸化被膜形成処理を行うことにより、被膜形成速度を高めることができる。また、酸化被膜形成処理を大気圧下で行うことにより、Mg析出を抑止可能な酸化被膜を簡易な設備でも比較的容易に形成することができる。ただし、酸化被膜形成処理における圧力は大気圧に限定されず、微減圧(例えば600Torr以上760Torr未満)下又は微加圧(例えば760Torr超900Torr以下)下で行ってもよい。
 酸化被膜形成処理において、Al合金部材の表面が第1温度となる状態を維持する時間は3時間以上であることが望ましい。少なくとも3時間以上、被膜形成処理としての熱酸化処理を行うことにより、Al合金に含まれる単体Mgが析出するのを抑止するのに必要な厚さを有し、且つ、被膜中のMgが十分に酸化され単体Mgを実質的に含まない被膜を形成することができる。3時間未満の場合、Al合金に含まれる単体Mgが析出するのを抑止するのに必要な厚さ(例えば1μm以上)の酸化被膜を形成することが困難である。なお、当該時間は100時間以下において十分な厚さの酸化被膜を形成することが可能であるため、生産性を考慮した場合、当該時間は100時間以下であることが望ましい。
 酸化被膜を形成することによりMgの析出抑制を行うAl合金の組成は、Mgの含有率が2~5wt%であることが望ましく、例えば、2.2wt%以上とする。本開示に係る酸化被膜形成処理を行うことによって、Mg含有率が2wt%以上のAl合金においても、実質的にMgによる汚染が発生しない程度にまでMg析出を抑制する効果が期待できる。但し、Mg含有率が5wt%を超えると、本開示に係る酸化被膜が実用的な厚さの範囲では、実質的にMgによる汚染が発生しない程度にまでMg析出を抑制することが困難な場合があるため、Mg含有率は5wt%以下であることが望ましい。
 本開示に係る技術は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本開示に係る技術のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。
10 基板処理装置
41a、41b 基板保持面
44a、44b 基板保持台
45a、45b ヒータ
47 処理容器

Claims (17)

  1. 基板を処理する処理室と、前記処理室内で前記基板を支持する基板支持具と、前記基板支持具で支持された前記基板を加熱するよう構成されたヒータと、を備え、
    前記基板支持具は、マグネシウムを含有するアルミニウムの合金で表面が構成され、大気雰囲気下において、前記表面が所定の第1温度となるように加熱する処理と、前記表面が前記第1温度となる状態を所定の時間維持することにより、前記表面に酸化アルミニウムの被膜を形成する処理と、が施されている基板処理装置。
  2. 前記ヒータを制御して、前記基板支持具に前記基板が支持された状態で前記基板支持具の前記表面が所定の第2温度となるように、前記表面および前記基板を加熱するよう構成された制御部を備える、請求項1に記載の基板処理装置。
  3. 前記第1温度は450℃以上である、請求項2に記載の基板処理装置。
  4. 前記第1温度は、前記第2温度以上である、請求項2に記載の基板処理装置。
  5. 前記第2温度は、400℃より高い、請求項2に記載の基板処理装置。
  6. 前記酸化アルミニウムの被膜は酸化マグネシウムを含み、単体のマグネシウムを実質的に含まない、請求項1に記載の基板処理装置。
  7. 前記酸化アルミニウムの被膜の厚さは1μm以上である、請求項1に記載の基板処理装置。
  8. 前記大気雰囲気には水蒸気が含まれている、請求項1に記載の基板処理装置。
  9. 前記酸化アルミニウムの被膜を形成する処理は、大気圧下でおこなわれる、請求項1に記載の基板処理装置。
  10. 前記所定の時間は3時間以上である、請求項1に記載の基板処理装置。
  11. 前記酸化アルミニウムの被膜は、少なくとも前記処理室に露出する前記基板支持具の表面全体に形成される、請求項1に記載の基板処理装置。
  12. 前記アルミニウムの合金におけるマグネシウムの含有率は2wt%以上である、請求項1に記載の基板処理装置。
  13. 前記酸化アルミニウムの被膜を形成する処理は、前記処理室とは異なる第2の処理室内で行われる、請求項1に記載の基板処理装置。
  14. 前記基板支持具内には、前記基板支持具によって支持される前記基板を加熱するように構成されたヒータが設けられている、請求項1に記載の基板処理装置。
  15. マグネシウムを含有するアルミニウムの合金で表面が構成され、大気雰囲気下において、前記表面が所定の第1温度となるように加熱する処理と、前記表面が前記第1温度となる状態を所定の時間維持することにより、前記表面に酸化アルミニウムの被膜を形成する処理と、が施された基板支持具に基板を支持させる工程と、
    前記基板支持具に前記基板が支持された状態で前記基板支持具の前記表面が所定の第2温度となるように、前記表面および前記基板を加熱する工程と、
    を有する半導体装置の製造方法。
  16. マグネシウムを含有するアルミニウムの合金で表面が構成され、
    大気雰囲気下において、前記表面が所定の第1温度となるように加熱する処理と、前記表面が前記第1温度となる状態を所定の時間維持することにより、前記表面に酸化アルミニウムの被膜を形成する処理と、が施された、基板処理装置の処理室内において基板を支持する基板支持具。
  17. 基板支持具の表面が、マグネシウムを含有するアルミニウムの合金で構成され、大気雰囲気下において、前記表面が所定の第1温度となるように加熱する工程と、前記表面が前記第1温度となる状態を所定の時間維持することにより、前記表面に酸化アルミニウムの被膜を形成する工程と、
    を有する基板支持具の処理方法。
PCT/JP2020/011443 2019-03-22 2020-03-16 基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法 WO2020196025A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021509089A JP7394115B2 (ja) 2019-03-22 2020-03-16 基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法
US17/477,079 US20220005712A1 (en) 2019-03-22 2021-09-16 Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Method of Processing Substrate Support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-055551 2019-03-22
JP2019055551 2019-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/477,079 Continuation US20220005712A1 (en) 2019-03-22 2021-09-16 Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Method of Processing Substrate Support

Publications (1)

Publication Number Publication Date
WO2020196025A1 true WO2020196025A1 (ja) 2020-10-01

Family

ID=72611479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011443 WO2020196025A1 (ja) 2019-03-22 2020-03-16 基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法

Country Status (3)

Country Link
US (1) US20220005712A1 (ja)
JP (1) JP7394115B2 (ja)
WO (1) WO2020196025A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286434A (ja) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk 色素増感型太陽電池用電極基板、色素増感型太陽電池用光電極および対向電極、ならびに色素増感型太陽電池
JP2008153273A (ja) * 2006-12-14 2008-07-03 Ulvac Japan Ltd 真空用冷却部材および真空用機器
JP2010114280A (ja) * 2008-11-07 2010-05-20 Sukegawa Electric Co Ltd 基板加熱プレートヒータ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173413A (ja) 2004-12-16 2006-06-29 Ulvac Japan Ltd 薄膜形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286434A (ja) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk 色素増感型太陽電池用電極基板、色素増感型太陽電池用光電極および対向電極、ならびに色素増感型太陽電池
JP2008153273A (ja) * 2006-12-14 2008-07-03 Ulvac Japan Ltd 真空用冷却部材および真空用機器
JP2010114280A (ja) * 2008-11-07 2010-05-20 Sukegawa Electric Co Ltd 基板加熱プレートヒータ

Also Published As

Publication number Publication date
US20220005712A1 (en) 2022-01-06
JPWO2020196025A1 (ja) 2021-12-09
JP7394115B2 (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
US20230162999A1 (en) External substrate system rotation in a semiconductor processing system
US6323463B1 (en) Method and apparatus for reducing contamination in a wafer loadlock of a semiconductor wafer processing system
JP5938506B1 (ja) 基板処理システム、半導体装置の製造方法、プログラム及び記録媒体
JP6282672B2 (ja) 基板を自然に酸化する方法およびシステム
TW200937561A (en) Heat treatment apparatus, and method for controlling the same
JP2002025997A (ja) バッチ式熱処理装置及びその制御方法
JP6151789B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP2001332602A (ja) 熱洗浄と熱処理との間のウェハ環境を制御するための装置および方法
JP3258885B2 (ja) 成膜処理装置
JPWO2011135731A1 (ja) 基板処理装置及び薄膜の製造方法
JP6237264B2 (ja) 縦型熱処理装置、熱処理方法及び記憶媒体
JP3238427B2 (ja) イオン注入装置内に被処理体を搬入搬出するための気密容器の排気方法
WO2020196025A1 (ja) 基板処理装置、半導体装置の製造方法、基板支持具、およびその処理方法
TW201729328A (zh) 裝載鎖定裝置中的基板冷卻方法、基板搬運方法及裝載鎖定裝置
JP2003017478A (ja) 真空処理装置および真空処理方法
JP5875809B2 (ja) 基板処理装置及び半導体装置の製造方法
JP2011066187A (ja) 成膜方法及び処理システム
JP6417916B2 (ja) 基板搬送方法、基板処理装置、及び記憶媒体
JP6630237B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
JP2001308085A (ja) 熱処理方法
JP2005136370A (ja) 基板処理装置
JP2006186189A (ja) ガス処理製造装置、ガス処理製造方法
JP2001007117A (ja) 処理装置及び処理方法
JP2008010688A (ja) 基板処理装置
JPS62298116A (ja) 処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777482

Country of ref document: EP

Kind code of ref document: A1