WO2020195998A9 - 爆薬組成物及びその製造方法、並びに異原子ドープナノダイヤモンドの製造方法 - Google Patents
爆薬組成物及びその製造方法、並びに異原子ドープナノダイヤモンドの製造方法 Download PDFInfo
- Publication number
- WO2020195998A9 WO2020195998A9 PCT/JP2020/011338 JP2020011338W WO2020195998A9 WO 2020195998 A9 WO2020195998 A9 WO 2020195998A9 JP 2020011338 W JP2020011338 W JP 2020011338W WO 2020195998 A9 WO2020195998 A9 WO 2020195998A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- explosive
- heteroatomic
- explosive composition
- compounds
- examples
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
- C01B32/28—After-treatment, e.g. purification, irradiation, separation or recovery
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B25/00—Compositions containing a nitrated organic compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/06—Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
- B01J3/08—Application of shock waves for chemical reactions or for modifying the crystal structure of substances
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/25—Diamond
- C01B32/26—Preparation
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B23/00—Compositions characterised by non-explosive or non-thermic constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the present invention relates to an explosive composition, a method for producing the same, and a method for producing heteroatomic-doped nanodiamonds.
- the diamond luminescence center is a nano-sized, chemically stable fluorescent chromophore, and is expected as a probe for fluorescence imaging because it does not show decomposition, fading, and blinking in vivo, which are often found in organic phosphors. ing.
- the spin information of electrons excited in the light emitting center can be measured from the outside, so it is expected to be used as ODMR (Optically Detected Magnetic Resonance) or qubit.
- the SiV center which is one of the emission centers of diamond, has a sharp peak called ZPL (Zero Phonon Level) in the emission spectrum (Non-Patent Document 1).
- Diamonds doped with silicon or boron are manufactured by the CVD method or the like (Patent Documents 1 to 4).
- Patent Document 5 discloses an explosive composition for diamond synthesis containing one or more types of high-performance explosives and diamond powder.
- An object of the present invention is to provide an explosive composition and a method for producing the same, which are suitable for producing nanodiamonds doped with different atoms, and a method for producing nanodiamonds doped with different atoms.
- the present invention provides the following explosive composition, a method for producing the same, and a method for producing heteroatomic-doped nanodiamonds.
- Item 1 It contains at least one explosive and at least one heteroatomic compound, the heteroatomic compound being B, P, Si, S, Cr, Sn, Al, Ge, Li, Na, K, Cs, Mg, Ca, Sr. , Ba, Ti, Zr, V, Nb, Ta, Mo, W, Mn, Ni, Cu, Ag, Cd, Hg, Ga, In, Tl, As, Sb, Bi, Se, Te, Co, Xe, F
- An explosive composition comprising at least one foreign atom selected from the group consisting of, Y and lanthanoids.
- the explosives are trinitrotoluene (TNT), cyclotrimethylene trinitramine (hexogen, RDX), cyclotetramethylenetetranitramine (octogen), trinitrophenylmethylnitramine (tetryl), pentaerythritol tetranitrate (PETN).
- TNT trinitrotoluene
- RDX cyclotrimethylene trinitramine
- octogen cyclotetramethylenetetranitramine
- tetryl trinitrophenylmethylnitramine
- PETN pentaerythritol tetranitrate
- the explosive composition according to Item 1 which comprises at least one selected from the group consisting of tetranitromethane (TNM), triamino-trinitrobenzene, hexanitrostilben and diaminodinitrobenzofloxane.
- TNM tetranitromethane
- Item 5. The explosive composition according to any one of Items 1 to 4, wherein the explosive and / or the heteroatomic compound has a particle size of 10 mm or less.
- Item 6. Item 3. Production of the explosive composition according to any one of Items 1 to 5, wherein the explosive and the heteroatomic compound are mixed using a dry powder, a molten state, or a solvent and molded by a pressing method or a filling method. Method.
- Item 8 A method for producing heteroatomic-doped nanodiamonds, which comprises a step of exploding the explosive composition according to any one of Items 1 to 5 in a closed container.
- nanodiamonds doped with at least one different atom can be obtained by the detonation method.
- FIG. 1 (A) 738 nm bright spot imaging image (a), (b) Brightness of FIG. 1 (a) of silicon-doped nanodiamond obtained by using triphenylsilanol as a silicon compound and adding 1% by mass by external percentage. Fluorescence measurement results of points, (c) XRD measurement results of samples after mixed acid and alkali treatment.
- a fluorescent side band (shoulder peak) is present near 750 nm, but this side band may not be present depending on the sample.
- the explosive composition of the present invention contains at least one explosive and at least one heteroatomic compound.
- the explosive is not particularly limited, and a known explosive can be widely used. Specific examples include trinitrotoluene (TNT), cyclotrimethylene trinitramine (hexogen, RDX), cyclotetramethylenetetranitramine (octogen), trinitrophenylmethylnitramine (tetryl), pentaerythritol tetranitrate (PETN). ), Tetranitromethane (TNM), triamino-trinitrobenzene, hexanitrostilben, diaminodinitrobenzofloxane and the like, and these can be used alone or in combination of two or more.
- TNT trinitrotoluene
- RDX cyclotrimethylene trinitramine
- octogen cyclotetramethylenetetranitramine
- tetryl trinitrophenylmethylnitramine
- PETN pentaerythritol tetranitrate
- the heteroatomic compound is a compound containing at least one different atom (atom other than carbon), and may be either an organic compound or an inorganic compound.
- Different atoms are B, P, Si, S, Cr, Sn, Al, Ge, Li, Na, K, Cs, Mg, Ca, Sr, Ba, Ti, Zr, V, Nb, Ta, Mo, W, Selected from the group consisting of Mn, Ni, Cu, Ag, Cd, Hg, Ga, In, Tl, As, Sb, Bi, Se, Te, Co, Xe, F, Y and lanthanoids, preferably Si, Ge, Selected from the group consisting of Sn, B, P, Ni, Ti, Co, Xe, Cr, W, Ta, Zr, Ag and lanthanoids, more preferably Si, Ge, Sn, B, P, Ni, Ti, Co. , Xe, Cr, W, Ta, Zr, and Ag.
- heteroatomic compounds whose specific examples are described below are merely examples, and known heteroatomic compounds can be widely used.
- the organic silicon compound is -Acetoxytrimethylsilane, diacetoxydimethylsilane, triacetoxymethylsilane, acetoxytriethylsilane, diacetoxydiethylsilane, triacetoxyethylsilane, acetoxytripropylsilane, methoxytrimethylsilane, dimethoxydimethylsilane, trimethoxymethylsilane, ethoxytrimethylsilane , Silanes with lower alkyl groups such as diethoxydimethylsilane, triethoxymethylsilane, ethoxytriethylsilane, diethoxydiethylsilane, triethoxyethylsilane, trimethylphenoxysilane,
- -Polysilanes such as hexamethyldisilane, hexaethyldisilane, hexapropyldisilane, hexaphenyldisilane, octaphenylcyclotetrasilane-Triethylsilazane, tripropylsilazane, triphenylsilazane, hexamethyldisilazane, hexaethyldisilazane, hexaphenyldi Silazans such as silazane, hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, hexaethylcyclotrisilazane, octaethylcyclotetrasilazane, hexaphenylcyclotrisilazane, etc.
- -Aromatic silanes in which silicon atoms are incorporated into aromatic rings such as silabenzene and disilabenzene.
- -Tetramethylsilane ethyltrimethylsilane, trimethylpropylsilane, trimethylphenylsilane, diethyldimethylsilane, triethylmethylsilane, methyltriphenylsilane, tetraethylsilane, triethylphenylsilane, diethyldiphenylsilane, ethyltriphenylsilane, tetraphenylsilane, etc.
- Alkyl or aryl substituted silane -Carboxylic acid-containing silanes such as triphenylsilylcarboxylic acid, trimethylsilylacetic acid, trimethylsilylpropionic acid, and trimethylsilylbutyric acid,
- ⁇ Siloxane such as hexamethyldisiloxane, hexaethyldisiloxane, hexapropyldisiloxane, hexaphenyldisiloxane, etc.
- -Silanes having an alkyl group or an aryl group and a hydrogen atom such as methylsilane, dimethylsilane, trimethylsilane, diethylsilane, triethylsilane, tripropylsilane, diphenylsilane, and triphenylsilane, -Tetrakis (chloromethyl) silane, tetrakis (hydroxymethyl) silane, tetrakis (trimethylsilyl) silane, tetrakis (trimethylsilyl) methane, tetrakis (dimethylsilanolyl) silane, tetrakis (tri (hydroxymethyl) silyl) silane, tetrakis (nitrate) Methyl) silane, And so on.
- Examples of the inorganic silicon compound include silicon oxide, silicon oxynitride, silicon nitride, silicon oxide carbide, silicon nitride carbide, silane, and a carbon material doped with silicon.
- Examples of the carbon-doped carbon material include graphite, graphite, activated carbon, carbon black, Ketjen black, coke, soft carbon, hard carbon, acetylene black, carbon fiber, and mesoporous carbon.
- Examples of the boron compound include an inorganic boron compound and an organic boron compound.
- inorganic boron compound examples include orthoboric acid, diboron dioxide, diboron trioxide, tetraboron trioxide, tetraboron pentoxide, boron tribromide, tetrafluoroboric acid, ammonium borate, magnesium borate and the like. Be done.
- organic boron compound examples include triethylborone, (R) -5,5-diphenyl-2-methyl-3,4-propano-1,3,2-oxazaborolidine, triisopropylborate, 2-iso.
- examples thereof include acid, 3-acetylphenylboronic acid, boron trifluoride acetic acid complex, boron trifluoride sulfolane complex, 2-thiophenboronic acid, and tris (trimethylsilyl)
- Examples of the phosphorus compound include an inorganic phosphorus compound and an organic phosphorus compound.
- Examples of the inorganic phosphorus compound include ammonium polyphosphate.
- Organophosphorus compounds include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, trypentyl phosphate, trihexyl phosphate, dimethyl ethyl phosphate, methyldibutyl phosphate, ethyldipropyl phosphate, 2-ethylhexyl di (p-tolyl) phosphate.
- germanium compound examples include organic germaniums such as methyl germanium, ethyl germanium, trimethyl germanium methoxyde, dimethyl germanium diacetate, tributyl germanium acetate, tetramethoxy germanium, tetraethoxy germanium, isobutyl germanium, alkyl germanium trichloride, and dimethyl amino germanium trichloride.
- organic germaniums such as methyl germanium, ethyl germanium, trimethyl germanium methoxyde, dimethyl germanium diacetate, tributyl germanium acetate, tetramethoxy germanium, tetraethoxy germanium, isobutyl germanium, alkyl germanium trichloride, and dimethyl amino germanium trichloride.
- Examples of the compound include germanium complexes such as nitrotriphenol complex (Ge 2 (ntp) 2 O), catechol complex (Ge (cat) 2 ) or aminopyrene complex (Ge 2 (ap) 2 Cl 2 ), germanium ethoxide, Examples thereof include germanium alkoxides such as germanium tetrabutoxide.
- tin compound examples include tin (II) oxide, tin (IV) oxide, tin (II) sulfide, tin (IV) sulfide, tin (II) chloride, tin (IV) chloride, tin bromide (II), and the like.
- Inorganic tin compounds such as tin fluoride (II), tin acetate, tin sulfate, alkyl tin compounds such as tetramethyltin, monoalkyl tin oxide compounds such as monobutyl tin oxide, dialkyl tin oxide compounds such as dibutyl tin oxide, tetra.
- aryltin compounds such as phenyltin, organotin compounds such as dimethyltinmaleate, hydroxybutyltin oxide, and monobutyltintris (2-ethylhexanoate).
- nickel compound examples include divalent nickel halides such as nickel chloride (II), nickel bromide (II) and nickel iodide (II), and inorganic nickel such as nickel acetate (II) and nickel carbonate (II).
- divalent nickel halides such as nickel chloride (II), nickel bromide (II) and nickel iodide (II)
- inorganic nickel such as nickel acetate (II) and nickel carbonate (II).
- examples thereof include compounds, organic nickel compounds such as nickel bis (ethylacetacetate) and nickel bis (acetylacetonate).
- titanium compound examples include inorganic titanium compounds such as titanium dioxide, titanium nitride, strontium titanate, barium titanate, and potassium titanate, and tetraalkoxytitanium such as tetraethoxytitanium, tetraisopropoxytitanium, and tetrabutyloxytitanium; titanium.
- inorganic titanium compounds such as titanium dioxide, titanium nitride, strontium titanate, barium titanate, and potassium titanate
- tetraalkoxytitanium such as tetraethoxytitanium, tetraisopropoxytitanium, and tetrabutyloxytitanium
- cobalt compound examples include inorganic cobalt compounds such as cobalt inorganic acid salt, cobalt halide, cobalt oxide, cobalt hydroxide, dicobalt octacarbonyl, cobalt hydrogen tetracarbonyl, tetracobalt dodecacarbonyl, and alkylidine tricobalt nonacarbonyl.
- inorganic cobalt compounds such as cobalt inorganic acid salt, cobalt halide, cobalt oxide, cobalt hydroxide, dicobalt octacarbonyl, cobalt hydrogen tetracarbonyl, tetracobalt dodecacarbonyl, and alkylidine tricobalt nonacarbonyl.
- Cobalt Tris ethylacetate acetate
- Cobalt Tris acetylacetonate
- organic acid salts of cobalt eg acetate, propionate, bromate, naphthenate, stearate
- methanesulphonate ethanesulfonic acid
- Alkyl sulfonates such as salts, octane sulfonates, dodecane sulfonates (eg C 6-18 alkyl sulfonates); benzene sulfonates, p-toluene sulfonates, naphthalene sulfonates, decylbenzene sulfonates
- aryl sulfonates for example, C 6-18 alkyl-aryl sulfonates
- alkyl groups such as acid salts and dodecylbenzene sulfonates
- organic cobalt complexes e
- the ligands constituting the complex include OH (hydroxo), alkoxy (methoxy, ethoxy, propoxy, butoxy, etc.), acyl (acetyl, propionyl, etc.), alkoxycarbonyl (methoxycarbonyl, ethoxycarbonyl, etc.), acetylacetonate, cyclopentadienyl group, a halogen atom (chlorine, bromine), CO, CN, oxygen atom, H 2 O (aquo), phosphine phosphorus compounds (such as triarylphosphines, such as triphenylphosphine), NH 3 (ammine) , NO, NO 2 (nitro), NO 3 (nitrat), ethylenediamine, diethylenetriamine, pyridine, nitrogen-containing compounds such as phenanthroline and the like.
- Examples of the xenon compound include fluorides such as XeF 2 , XeF 4 , XeF 6 , XeOF 2 , XeOF 4 , XeO 2 F 4 , oxides such as XeO 3 , XeO 4 , and xenonic acid Xe (OH) 6 and the like.
- the chromium compound examples include a chromium acetylacetone complex such as chromium acetylacetone, a chromium alkoxide such as chromium (III) isopropoxide, chromium organic acid such as chromium (II) acetate and hydroxychromium diacetate (III), and tris (allyl).
- a chromium acetylacetone complex such as chromium acetylacetone
- a chromium alkoxide such as chromium (III) isopropoxide
- chromium organic acid such as chromium (II) acetate and hydroxychromium diacetate (III)
- tris allyl
- Chromium Tris (Metalyl) Chromium, Tris (Crotyl) Chromium, Bis (Cyclopentadienyl) Chromium (ie Chromosen), Bis (Pentamethylcyclopentadienyl) Chromium (ie Decamethylchromocene), Bis (benzene) ) Chromium, bis (ethylbenzene) chromium, bis (mesitylen) chromium, bis (pentadienyl) chromium, bis (2,4-dimethylpentadienyl) chromium, bis (allyl) tricarbonylchromium, (cyclopentadienyl) (pentadienyl) ) Chromium, tetra (1-norbornyl) chromium, (trimethylenemethane) tetracarbonyl chromium, bis (butadiene) dicarbonyl chromium, (butadiene)
- tungsten compound examples include inorganic tungsten compounds such as tungsten trioxide, ammonium tungstate, and sodium tungstate, and boron atomic coordination tungsten complexes such as ethylborylethylidene ligands; carbonyl ligands and cyclopentadi.
- inorganic tungsten compounds such as tungsten trioxide, ammonium tungstate, and sodium tungstate
- boron atomic coordination tungsten complexes such as ethylborylethylidene ligands; carbonyl ligands and cyclopentadi.
- Carbon atom-coordinated tungsten complex such as enyl ligand, alkyl group ligand, olefin-based ligand; Nitrogen atom-coordinated tungsten complex such as pyridine ligand, acetonitrile ligand; phosphine ligand, phosphite Phosphorus atom-coordinated tungsten complexes coordinated with ligands and the like; organic tungsten compounds such as sulfur atom-coordinated tungsten complexes coordinated with diethylcarbamodithiolate ligands and the like can be mentioned.
- thallium compound examples include inorganic thallium compounds such as thallium nitrate, thallium sulfate, thallium fluoride, thallium chloride, thallium bromide and thallium iodide, trialkyl thallium such as trimethyl thallium, triethyl thallium and triisobutyl thallium, and dialkyl thallium. Hallide, Alkenyl Dialkyl Thallium, Alkinyl Dialkyl Thallium, Triphenyl Thallium, Tri-Trill Thallium, etc. Examples include organic thallium compounds.
- zirconium compound examples include inorganic zirconium compounds such as zirconium nitrate, zirconium sulfate, zirconium carbonate, zirconium hydroxide, zirconium fluoride, zirconium chloride, zirconium bromide and zirconium iodide, zirconium n-propoxide, zirconium n-butoxide.
- inorganic zirconium compounds such as zirconium nitrate, zirconium sulfate, zirconium carbonate, zirconium hydroxide, zirconium fluoride, zirconium chloride, zirconium bromide and zirconium iodide, zirconium n-propoxide, zirconium n-butoxide.
- silver compounds include organic silver compounds such as silver acetate, silver pivalate, silver trifluoromethanesulfonate, and silver benzoate; silver nitrate, silver fluoride, silver chloride, silver bromide, silver iodide, silver sulfate, and oxidation.
- examples thereof include inorganic silver compounds such as silver, silver sulfide, silver tetrafluoroborate, silver hexafluorophosphate (AgPF 6 ), and silver hexafluoroantimonate (AgSbF6).
- aluminum compound examples include inorganic aluminum compounds such as aluminum oxide, alkoxy compounds such as trimethoxyaluminum, triethoxyaluminum, isopropoxyaluminum, isopropoxydiethoxyaluminum, and tributoxyaluminum; triacetoxyaluminum, tristeert aluminum, and tri.
- inorganic aluminum compounds such as aluminum oxide, alkoxy compounds such as trimethoxyaluminum, triethoxyaluminum, isopropoxyaluminum, isopropoxydiethoxyaluminum, and tributoxyaluminum; triacetoxyaluminum, tristeert aluminum, and tri.
- Asiloxy compounds such as butyrate aluminum; aluminum isopropyrate, aluminum sec-butyrate, aluminum tert-butyrate, aluminum tris (ethylacetacetate), tris (hexafluoroacetylacetonate) aluminum, tris (ethylacetacetate) aluminum, tris ( n-propyl acetoacetate) aluminum, tris (iso-propyl acetoacetate) aluminum, tris (n-butyl acetoacetate) aluminum, tris salicylaldehyde aluminum, tris (2-ethoxycarbonylphenylate) aluminum, tris (acetylacetonate)
- Trialkylaluminum such as aluminum, trimethylaluminum, triethylaluminum, triisobutylaluminum, dialkylaluminum halide, alkenyldialkylaluminum, alkynyldialkylaluminum, triphenylaluminum, arylaluminum such as
- vanadium compound examples include vanadium acid and metavanadium acid, and alkoxides such as these alkali metal salt inorganic vanadium compounds, triethoxyvanadyl, pentaethoxyvanadium, triamiloxyvanadyl, and triisopropoxyvanadyl; Acenates such as vanadium acetylacetonate, vanadylacetylacetonate, and vanadiumoxyacetylacetonate; organic vanadium compounds such as vanadium stearate, vanadium pivalate, and vanadium acetate can be mentioned.
- alkoxides such as these alkali metal salt inorganic vanadium compounds, triethoxyvanadyl, pentaethoxyvanadium, triamiloxyvanadyl, and triisopropoxyvanadyl
- Acenates such as vanadium acetylacetonate, vanadylacetylacetonate, and vana
- niobium compound examples include halides such as niobium pentachloride and niobium pentafluoride, inorganic niobium compounds such as niobium sulfate, niobium acid and niobium salt, and organic niobium compounds such as niobium alkoxide.
- halides such as niobium pentachloride and niobium pentafluoride
- inorganic niobium compounds such as niobium sulfate, niobium acid and niobium salt
- organic niobium compounds such as niobium alkoxide.
- the tantalum compound examples include inorganic tantalum compounds such as TaCl 5 and TaF 5 , Ta (OC 2 H 5 ) 5 , Ta (OCH 3 ) 5 , Ta (OC 3 H 7 ) 5 , Ta (OC 4 H 9 ). Examples thereof include organic tantalum compounds such as 5 , (C 5 H 5 ) 2 TaH 3 , and Ta (N (CH 3 ) 2 ) 5 .
- molybdenum compound examples include molybdenum trioxide, ammonium molybdenum, magnesium molybdenum, calcium molybdenum, barium molybdenum, sodium molybdenum, potassium molybdenum, molybdenum acid, ammonium molybdenum, sodium molybdenum, and kei.
- Inorganic molybdenum compounds such as molybdenum acid, molybdenum disulfide, molybdenum diserene, molybdenum diterlude, molybdenum boride, molybdenum disilicate, molybdenum nitride, molybdenum carbide, organic molybdenum such as molybdenum dialkyldithiophosphate and molybdenum dialkyldithiocarbamate Examples include compounds.
- manganese compound examples include inorganic manganese compounds such as hydroxides, nitrates, acetates, sulfates, chlorides and carbonates of manganese, manganese oxalate, acetylacetonate compounds, and manganese such as methoxide, ethoxyoxide and butoxide.
- inorganic manganese compounds such as hydroxides, nitrates, acetates, sulfates, chlorides and carbonates of manganese, manganese oxalate, acetylacetonate compounds, and manganese such as methoxide, ethoxyoxide and butoxide.
- Examples of the copper compound include organic copper compounds such as copper oxalate, copper stearate, copper formate, copper tartrate, copper oleate, copper acetate, copper gluconate, and copper salicylate, copper carbonate, copper chloride, and copper bromide.
- examples thereof include inorganic copper compounds such as natural minerals such as copper iodide, copper phosphate, hydrotalcite, stichtite and pyrolite.
- cadmium compound examples include inorganic cadmium compounds such as cadmium fluoride, cadmium chloride, cadmium bromide, cadmium iodide, cadmium oxide and cadmium carbonate, and organic cadmium compounds such as cadmium phthalate and cadmium naphthalate.
- inorganic cadmium compounds such as cadmium fluoride, cadmium chloride, cadmium bromide, cadmium iodide, cadmium oxide and cadmium carbonate
- organic cadmium compounds such as cadmium phthalate and cadmium naphthalate.
- the mercury compound examples include inorganic mercury compounds such as mercury chloride, mercury sulfate and mercury nitrate, methylmercury, methylmercury chloride, ethylmercury, ethylmercury chloride, phenylmercury acetate, thimerosal and mercury parachlorobenzoate.
- inorganic mercury compounds such as mercury chloride, mercury sulfate and mercury nitrate, methylmercury, methylmercury chloride, ethylmercury, ethylmercury chloride, phenylmercury acetate, thimerosal and mercury parachlorobenzoate.
- organic mercury compounds such as fluorescein mercury acetate.
- gallium compounds include organic gallium compounds such as tetraphenyl gallium and tetrakis (3,4,5-trifluorophenyl) gallium, and inorganic gallium compounds such as gallium oxoate, gallium halide, gallium hydroxide, and gallium cyanide. Can be mentioned.
- Examples of the indium compound include organic indium compounds such as triethoxyindium, indium 2-ethylhexanoate, and indium acetylacetonate, indium cyanide, indium nitrate, indium sulfate, indium carbonate, indium fluoride, indium chloride, and bromide. Examples thereof include inorganic indium compounds such as indium and indium iodide.
- arsenic compounds include arsenic trioxide, arsenic pentoxide, arsenite trichloride, arsenic pentachloride, arsenous acid, and arsenous acid, and salts thereof include sodium arsenate, ammonium arsenate, and arsenic acid.
- Inorganic arsenic compounds such as potassium acid, ammonium arsenous acid, potassium arsenous acid, cacodile acid, phenylarsenic acid, diphenylarsenic acid, p-hydroxyphenylarsenic acid, p-aminophenylarsenic acid, and sodium cacodileate as salts thereof , Organoarsenic compounds such as potassium cacodylate.
- antimony compound examples include inorganic antimony compounds such as antimony oxide, antimony phosphate, KSb (OH), and NH 4 SbF 6 , antimony esters with organic acids, cyclic alkyl subantimony esters, and organic antimony compounds such as triphenylantimony. Can be mentioned.
- the bismuth compound examples include organic bismuth compounds such as triphenylbismuth, bismuth 2-ethylhexanoate, and bismuth acetylacetonate, bismuth nitrate, bismuth sulfate, bismuth acetate, bismuth hydroxide, bismuth fluoride, bismuth chloride, and bromide.
- organic bismuth compounds such as triphenylbismuth, bismuth 2-ethylhexanoate, and bismuth acetylacetonate, bismuth nitrate, bismuth sulfate, bismuth acetate, bismuth hydroxide, bismuth fluoride, bismuth chloride, and bromide.
- inorganic bismuth compounds such as bismuth and bismuth iodide.
- selenium compound examples include an organic selenium compound such as selenomethionine, selenocysteine and selenocystine, an alkali metal selenate such as potassium selenate, and an inorganic selenium compound containing an alkali metal selenate such as sodium selenate. Can be mentioned.
- tellurium compound examples include telluric acid and salts thereof, tellurium oxide, tellurium chloride, tellurium bromide, tellurium iodide and tellurium alkoxide.
- magnesium compounds include organic magnesium compounds such as ethyl acetoacetate magnesium monoisopropyrate, magnesium bis (ethyl acetoacetate), alkyl acetoacetate magnesium monoisopropylate, and magnesium bis (acetylacetonate), magnesium oxide, magnesium sulfate, and nitrate.
- organic magnesium compounds such as ethyl acetoacetate magnesium monoisopropyrate, magnesium bis (ethyl acetoacetate), alkyl acetoacetate magnesium monoisopropylate, and magnesium bis (acetylacetonate), magnesium oxide, magnesium sulfate, and nitrate.
- examples thereof include inorganic magnesium compounds such as magnesium and magnesium chloride.
- Examples of the calcium compound include organic calcium compounds such as calcium 2-ethylhexanoate, calcium ethoxide, calcium methoxydo, calcium methoxyethoxydo, and calcium acetylacetonate, calcium nitrate, calcium sulfate, calcium carbonate, calcium phosphate, and water.
- examples thereof include inorganic calcium compounds such as calcium oxide, calcium cyanide, calcium fluoride, calcium chloride, calcium bromide and calcium iodide.
- heteroatomic compound having a heteroatomic Li Na, K, Cs, S, Sr, Ba, F, Y, or lanthanoid
- a known organic or inorganic compound can be used as the heteroatomic compound having a heteroatomic Li, Na, K, Cs, S, Sr, Ba, F, Y, or lanthanoid.
- the heteroatomic compound may be used alone or in combination of two or more.
- the ratio of the explosive in the explosive composition containing at least one explosive and at least one heteroatomic compound is preferably 80 to 99.9999% by mass, more preferably 85 to 99.999% by mass, still more preferably 90. It is 99.99% by mass, particularly preferably 95 to 99.9% by mass, and the proportion of the heteroatomic compound is preferably 0.0001 to 20% by mass, more preferably 0.001 to 15% by mass. It is more preferably 0.01 to 10% by mass, and particularly preferably 0.1 to 5% by mass.
- the content of the different atom in the explosive composition containing the explosive and the different atomic compound is preferably 0.000005 to 10% by mass, more preferably 0.00001 to 8% by mass, and further preferably 0.0001 to 5% by mass. , Particularly preferably 0.001 to 3% by mass, and most preferably 0.01 to 1% by mass.
- the mixture of at least one explosive and at least one heteroatomic compound may be powder-mixed or melted if both are solids, or dissolved or dispersed in a suitable solvent and mixed. May be good. Mixing can be performed by stirring, bead milling, ultrasonic waves, or the like.
- the explosive composition comprising at least one explosive and at least one heteroatomic compound further comprises at least one cooling medium.
- the cooling medium may be a solid, a liquid, or a gas.
- Examples of the method using a cooling medium include a method of detonating an explosive composition containing an explosive and a heteroatomic compound in the cooling medium.
- Examples of the cooling medium include inert gas (nitrogen, argon, CO), water, ice, liquid nitrogen, an aqueous solution of an heteroatomic salt, crystalline hydrate and the like.
- the heteroatomic salt include ammonium hexafluorosilicate, ammonium silicate, and tetramethylammonium silicate when the heteroatom is silicon.
- the cooling medium is preferably used about 5 times the weight of the explosive.
- the explosive composition comprising at least one explosive and at least one heteroatomic compound is heteroatom doped by compression by a shock wave under high pressure and high temperature conditions produced by the explosion of the explosive. Converted to nanodiamonds (detonation method). During the explosive explosion, at least one foreign atom is incorporated into the diamond lattice.
- the carbon source of the heteroatom-doped nanodiamond can be an explosive and an organic heteroatomic compound, but if the explosive composition containing the explosive and at least one heteroatomic compound further comprises a carbon material that does not contain the heteroatom, this carbon The material can also be a carbon source for heteroatomic doped nanodiamonds.
- the heteroatomic doped nanodiamonds produced using the explosive composition of the present invention contain an heteroatomic V (vacancy) center thereby having a fluorescence peak.
- the wavelength of the fluorescence emission peak is preferably 720 to 770 nm, more preferably 730 to 760 nm when the foreign atom contains silicon, and preferably 580 to 630 nm, more preferably when the foreign atom contains germanium. It is 590 to 620 nm, and when the foreign atom contains tin, it is preferably 590 to 650 nm, more preferably 600 to 640 nm.
- the fluorescence emission peak of nanodiamonds having a Group 14 element of Si includes a sharp peak of about 738 nm called ZPL (Zero Phonon Level).
- the concentration of the heteroatomic V-center in the heteroatomic-doped nanodiamonds produced using the explosive composition of the present invention is preferably 1 ⁇ 10 10 / cm 3 or more, more preferably 2 ⁇ 10 10 to 1 ⁇ 10. It is 19 / cm 3 . It is estimated that the concentration of the heteroatomic V center can be specified by using, for example, a confocal laser scanning microscope or a fluorescence absorption spectroscope. For the determination of the concentration of the heteroatomic V center by fluorescence absorption analysis, refer to the literature (DOI 10.1002 / pssa.201532174).
- the BET specific surface area of the heteroatomic doped nanodiamonds produced using the explosive composition of the present invention is preferably 20 to 900 m 2 / g, more preferably 25 to 800 m 2 / g, still more preferably 30 to 700. m 2 / g, especially preferably 35-600 m 2 / g.
- the BET specific surface area can be measured by nitrogen adsorption. Examples of the BET specific surface area measuring device include BELSORP-miniII (manufactured by Microtrac Bell Co., Ltd.), and the BET specific surface area can be measured under the following conditions, for example.
- the average size of the primary particles of heteroatomic doped nanodiamonds produced using the explosive composition of the present invention is preferably 2 to 70 nm, more preferably 2.5 to 60 nm, even more preferably 3 to 55 nm, particularly preferably. Is 3.5 to 50 nm.
- the average size of the primary particles can be determined by Scheller's equation from the analysis results of powder X-ray diffraction (XRD). Examples of the XRD measuring device include a fully automatic multipurpose X-ray diffractometer (manufactured by Rigaku Corporation).
- the carbon content of the heteroatomic doped nanodiamond produced using the explosive composition of the present invention is preferably 70 to 99% by mass, more preferably 75 to 98% by mass, and further preferably 80 to 97% by mass. ..
- the hydrogen content of the heteroatomic doped nanodiamond produced using the explosive composition of the present invention is preferably 0.1 to 5% by mass, more preferably 0.2 to 4.5% by mass, still more preferably 0.3 to 4.0% by mass. ..
- the nitrogen content of the heteroatomic doped nanodiamond produced using the explosive composition of the present invention is preferably 0.1 to 5% by mass, more preferably 0.2 to 4.5% by mass, and even more preferably 0.3 to 4.0% by mass. ..
- the carbon, hydrogen, and nitrogen contents of heteroatomic-doped nanodiamonds can be measured by elemental analysis.
- the heteroatomic content of the heteroatomic doped nanodiamonds produced using the explosive composition of the present invention is preferably 0.0001 to 10.0% by mass, more preferably 0.0001 to 5.0% by mass, still more preferably 0.0001 to 1.0% by mass. is there.
- the heteroatomic content can be measured, for example, by inductively coupled plasma emission spectrometry (ICP-AES, XRF, SIMS (secondary ion mass analysis)), and heteroatom-doped nanodiamonds are quantified as an acidic solution after alkali melting. be able to.
- the heteroatom-doped nanodiamonds produced using the explosive composition of the invention are Raman spectroscopically shown in Raman shift charts of diamond, graphite, surface hydroxy groups (OH),
- the peak characteristic of the surface carbonyl group (CO) can be identified.
- Raman peaks characteristic of diamond in the shift chart is 1100 ⁇ 1400 cm -1
- characteristic peaks graphite is 1450 ⁇ 1700 cm -1
- characteristic peaks in the surface hydroxyl group (OH) is 1500 ⁇ 1750 cm - It is 1
- the peak characteristic of the surface carbonyl group (CO) is 1650 to 1800 cm -1 .
- the area of peaks characteristic of diamond, graphite, surface hydroxy groups (OH), and surface carbonyl groups (CO) is indicated by Raman spectroscopy.
- the laser wavelength of the Raman light source is, for example, 325 nm or 488 nm.
- a confocal microscopic Raman spectroscope for example, trade name: microlaser Raman spectrophotometer LabRAM HR Evolution, manufactured by Horiba Seisakusho Co., Ltd.
- the ratio (D / G) of diamond peak area (D) to graphite peak area (G). ) Is preferably 0.2 to 9, more preferably 0.3 to 8, and even more preferably 0.5 to 7.
- H / D is preferably 0.1 to 5, more preferably 0.1 to 4.0, and even more preferably 0.1 to 3.0.
- (C / D) is preferably 0.01 to 1.5, more preferably 0.03 to 1.2, and even more preferably 0.05 to 1.0.
- At least one oxygen functional group termination and / or at least one hydrogen termination is applied to the surface of the heteroatomic doped nanodiamond produced using the explosive composition of the present invention.
- the hydrogen termination include alkyl groups having 1 to 20 carbon atoms.
- the presence of at least one oxygen functional group termination on the surface of the heteroatomic-doped nanodiamond is preferable because the aggregation of nanodiamond particles is suppressed.
- the presence of at least one hydrogen termination on the surface of the heteroatomic doped nanodiamond is preferable because the zeta potential becomes positive and stable and highly dispersed in an acidic aqueous solution.
- the heteroatomic doped nanodiamonds produced using the explosive composition of the present invention may have a core-shell structure.
- the core of a heteroatomic doped nanodiamond with a core-shell structure is nanodiamond particles doped with a heteroatom.
- This core preferably has a SiV center and fluoresces.
- the shell is a non-diamond coating layer, which may contain sp2 carbon and preferably contains oxygen atoms.
- the shell may be a graphite layer.
- the thickness of the shell is preferably 5 nm or less, more preferably 3 nm or less, still more preferably 1 nm or less.
- the shell may have hydrophilic functional groups on its surface.
- the heteroatomic doped nanodiamond can preferably be produced by the detonation method using the explosive composition of the present invention.
- the shape of the heteroatomic-doped nanodiamond is preferably spherical, ellipsoidal, or a polyhedron close to them.
- the circularity is a numerical value for expressing the complexity of a figure drawn on an image or the like.
- the maximum value of the circularity is 1, and the more complicated the figure, the smaller the value.
- the circularity can be determined by, for example, analyzing a TEM image of silicon-doped nanodiamonds with image analysis software (for example, winROOF) and using the following formula.
- Circularity 4 ⁇ ⁇ (area) ⁇ (peripheral length) ⁇ 2
- the formula is "4 ⁇ x (10 x 10 x ⁇ ) ⁇ (10 x 2 x ⁇ ) ⁇ 2"
- the circularity is 1 (maximum value).
- the circularity of the heteroatomic-doped nanodiamond produced using the explosive composition of the present invention is preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.35 or more.
- the center of the heteroatom-doped nanodiamond particles produced using the explosive composition of the invention has a diamond structure containing sp3 carbon and doped heteroatoms and its surface. Is covered with an amorphous layer composed of sp2 carbon. In a more preferred embodiment, the outside of the amorphous layer may be covered with a graphite oxide layer. Further, a hydrated layer may be formed between the amorphous layer and the graphite oxide layer.
- the heteroatomic doped nanodiamonds produced using the explosive composition of the invention have a positive or negative zeta potential.
- the zeta potential of the heteroatomic doped nanodiamond is preferably ⁇ 70 to 70 mV, more preferably ⁇ 60 to 30 mV.
- the heteroatomic doped nanodiamond is produced by a manufacturing method including a step of mixing an explosive composition containing at least one explosive and at least one heteroatomic compound, and a step of exploding the obtained explosive composition in a closed container. Will be done.
- the container include a metal container and a synthetic resin container.
- Explosives and heteroatomic compounds are preferably molded by pressing or casting.
- methods for producing particles (dry powder) of explosives and heteroatomic compounds include a crystallization method, a crushing method, and a spray flash method.
- the explosive composition is molded by the pressing method or the filling method, the explosive and the heteroatomic compound are mixed using a dry powder or a molten state or a solvent.
- the mixed state of the explosive and the heteroatomic compound may be any combination of the following four: ⁇ Explosives (dry powder) and heteroatomic compounds (dry powder) ⁇ Explosives (dry powder) and heteroatomic compounds (melted state) ⁇ Explosives (melted state) and heteroatomic compounds (dry powder) ⁇ Explosives (melted state) and heteroatomic compounds (melted state)
- the mixture of the explosive and the heteroatomic compound may be in the presence or absence of a solvent, and can be molded by a pressing method or a filling method after mixing.
- the average particle size of the explosive and the heteroatomic compound is preferably 10 mm or less, more preferably 5 mm or less, and further preferably 1 mm or less, respectively.
- the average particle size of these particles can be measured by a laser diffraction / scattering method, an optical microscope, or a Raman method.
- the product obtained by the explosion can be further subjected to a purification step and a post-treatment step.
- the purification step can include one or both of mixed acid treatment and alkali treatment.
- a preferred purification step is a mixed acid treatment step.
- an explosive composition containing at least one explosive and at least one heteroatomic compound is detonated in a closed container, in addition to heteroatomic-doped nanodiamonds, graphite, metal impurities, elemental heteroatomic substances, heteroatomic oxides, etc. Is generated.
- Graphite and metal impurities can be removed by mixed acid treatment, and simple substances and heteroatomic oxides can be removed by alkali treatment.
- the temperature of the mixed acid treatment is 50 to 200 ° C., and the time of the mixed acid treatment is 0.5 to 24 hours.
- alkali examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.
- the temperature of the alkali treatment is 30 to 150 ° C., and the time of the alkali treatment is 0.5 to 24 hours.
- the post-treatment step can include annealing, vapor phase oxidation.
- the annealing process the doped foreign atoms in the heteroatomic doped nanodiamond can meet with defects (Vacancy) to form a heteroatomic V center.
- the graphite layer formed on the surface of the heteroatomic-doped nanodiamond can be thinned or removed by vapor phase oxidation.
- a pore forming step may be performed before annealing. The pore forming step is performed by irradiation with an ion beam or an electron beam.
- the heteroatomic V center is formed by annealing without performing the pore forming step, more heteroatomic V centers can be formed by performing annealing after the pore forming step.
- the upper limit of the pore density introduced by ion beam irradiation or electron beam irradiation is limited by the concentration at which diamond is destroyed (> 1 ⁇ 10 21 / cm 3 pore density), but the lower limit is, for example, 1 ⁇ . 10 16 / cm 3 or more, and 1 ⁇ 10 18 / cm 3 or more.
- the ion beam is preferably a hydrogen (H) or helium (He) ion beam.
- the energy of the hydrogen ion beam is preferably 10 to 1500 keV
- the energy of the helium ion beam is preferably 20 to 2000 keV.
- the energy of the electron beam is preferably 500 to 5000 keV.
- the annealing temperature is preferably 800 ° C. or higher, and the annealing time is 30 minutes or longer.
- the gas phase oxidation can be performed in an air atmosphere, the gas phase oxidation temperature is preferably 300 ° C. or higher, and the gas phase oxidation time is 2 hours or longer.
- an explosive composition comprising at least one explosive and at least one heteroatomic compound is converted to diamond by shock wave compression under high pressure and high temperature conditions produced by the detonation of the explosive. Be done (detonation method). During the explosive explosion, foreign atoms are incorporated into the diamond lattice.
- the carbon source of the nanodiamond can be an explosive and an organic heteroatomic compound, but if the explosive composition containing the explosive and the heteroatomic compound further contains a nonatomic carbon material, this carbon material is also an heteroatomic doped nanodiamond. Can be a carbon source for.
- TNT was used as the explosive
- the dopant shown in Table 1 was used as the compound in which the heteroatom was silicon in the number of moles shown in Table 1 with respect to 1 mol of TNT, under the conditions of temperature (K) and pressure (GPa) shown in Table 1.
- K temperature
- GPa pressure
- silicon-doped nanodiamonds can be obtained at the ratios shown in Table 1.
- Dopant molecule 1 silline
- Dopant molecule 2 Tetramethylsilane (SiMe 4 )
- Dopant molecule 3 Tetrakis (nitrate methyl) silane (SiPETN)
- Dopant molecule 4 Tetrakis (dimethylsilanolyl) silane (Si (SiMe 2 OH) 4 )
- Dopant molecule 5 Tetrakis (trimethylsilyl) silane (Si (SiMe 3 ) 4 )
- Dopant molecule 6 Tetrakis (trimethylsilyl) methane (C (SiMe 3 ) 4 )
- Example 7 Approximately 60 g of an explosive composition obtained by adding 10 parts by mass, 1 part by mass or 0.1 part by mass of triphenylsilanol as a silicon compound to 100 parts by mass of an explosive containing trinitrotoluene (TNT) and cyclotrimethylene trinitramine (RDX). It was used to produce silicon-doped nanodiamonds according to the conventional method for producing nanodiamonds. The obtained silicon-doped nanodiamonds were subjected to the following treatments. The amount of triphenylsilanol added to the explosive was 10% by mass, 1% by mass, or 0.1% by mass.
- TNT trinitrotoluene
- RDX cyclotrimethylene trinitramine
- FIG. 1 (a) shows a 738 nm bright spot imaging image of silicon-doped nanodiamonds obtained by using triphenylsilanol as a silicon compound and adding an amount of 1% by mass.
- the fluorescence spectrum of the bright spot in FIG. 1 (a) is shown in FIG. 1 (b). The zero phonon line (fluorescence peak) of the SiV center can be confirmed.
- the Si content of the obtained silicon-doped nanodiamond is 3.2% by mass when the addition amount of triphenylsilanol in the explosive is 10% by mass, 0.15% by mass when 1% by mass, and 0.1% by mass. It was 0.03% by mass. From FIG. 1 (b), it was confirmed that the silicon-doped nanodiamond of the present invention has a fluorescence of 738 nm derived from the SV center. Furthermore, the average size and BET specific surface area of the primary particles measured by XRD of the obtained silicon-doped nanodiamonds are shown in Table 2 below.
- BET specific surface area measuring device BELSORP-miniII (manufactured by Microtrack Bell Co., Ltd.) Measured powder amount: 40 mg Pre-drying: 120 ° C, processed in vacuum for 3 hours Measurement temperature: -196 ° C (liquid nitrogen temperature) -Measurement of average size of primary particles (powder X-ray diffraction method (XRD)) Equipment: Fully automatic multipurpose X-ray diffractometer (manufactured by Rigaku Corporation) ⁇ Measurement method of Si introduction amount (XRF) Equipment: Fluorescent X-ray analyzer ZSX Primus IV Made by Rigaku Corporation
- Example 8 Boron-doped nanodiamonds can be obtained in the same manner as in Example 7 except that 1 part by mass of phenylboronic acid was used instead of 1 part by mass of triphenylsilanol in Example 7.
- Example 9 Phosphorus-doped nanodiamonds can be obtained in the same manner as in Example 7 except that 1 part by mass of triphenylphosphine was used instead of 1 part by mass of triphenylsilanol in Example 7.
- Example 10 Nickel-doped nanodiamonds can be obtained in the same manner as in Example 7 except that 1 part by mass of nickel bis (acetylacetonate) was used instead of 1 part by mass of triphenylsilanol in Example 7.
- Example 11 Silicon and boron were doped in the same manner as in Example 7 except that 0.5 parts by mass of triphenylsilanol and 0.5 parts by mass of phenylboronic acid were used instead of 1 part by mass of triphenylsilanol in Example 7. Nanodiamonds are obtained.
- Example 12 Silicon and phosphorus were doped in the same manner as in Example 7 except that 0.5 parts by mass of triphenylsilanol and 0.5 parts by mass of triphenylphosphine were used instead of 1 part by mass of triphenylsilanol in Example 7. Nanodiamonds are obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
項1. 少なくとも1種の爆薬と少なくとも1種の異原子化合物を含み、前記異原子化合物がB、P、Si、S、Cr、Sn、Al、Ge、Li、Na、K、Cs、Mg、Ca、Sr、Ba、Ti、Zr、V、Nb、Ta、Mo、W、Mn、Ni、Cu、Ag、Cd、Hg、Ga、In、Tl、As、Sb、Bi、Se、Te、Co、Xe、F、Y及びランタノイドからなる群から選ばれる少なくとも1種の異原子を含む、爆薬組成物。
項2. 前記爆薬が、トリニトロトルエン(TNT)、シクロトリメチレントリニトラミン(ヘキソゲン、RDX)、シクロテトラメチレンテトラニトラミン(オクトゲン)、トリニトロフェニルメチルニトラミン(テトリル)、ペンタエリスリトールテトラニトレート(PETN)、テトラニトロメタン(TNM)、トリアミノ-トリニトロベンゼン、ヘキサニトロスチルベン及びジアミノジニトロベンゾフロキサンからなる群から選ばれる少なくとも1種を含む、項1に記載の爆薬組成物。
項3. 異原子化合物が有機異原子化合物である、項1又は2に記載の爆薬組成物。
項4. 爆薬を80~99.9999質量%、異原子化合物を0.0001~20質量%含む、項1~3のいずれか1項に記載の爆薬組成物。
項5. 爆薬および/または異原子化合物の粒子サイズが10mm以下である、項1~4のいずれか1項に記載の爆薬組成物。
項6. 爆薬と異原子化合物を乾燥粉もしくは溶融状態もしくは溶媒を用いて混合し、圧搾法もしくは注填法成形することを特徴とする、項1~5のいずれか1項に記載の爆薬組成物の製造方法。
項7. 粒子サイズが10mm以下の爆薬および/または異原子化合物を用いて乾燥粉もしくは溶融状態で混合して爆薬組成物を作製する、項6に記載の爆薬組成物の製造方法。
項8. 項1~5のいずれか1項に記載の爆薬組成物を密閉容器内で爆発させる工程を含む、異原子ドープナノダイヤモンドの製造方法。
・アセトキシトリメチルシラン、ジアセトキシジメチルシラン、トリアセトキシメチルシラン、アセトキシトリエチルシラン、ジアセトキシジエチルシラン、トリアセトキシエチルシラン、アセトキシトリプロピルシラン、メトキシトリメチルシラン、ジメトキシジメチルシラン、トリメトキシメチルシラン、エトキシトリメチルシラン、ジエトキシジメチルシラン、トリエトキシメチルシラン、エトキシトリエチルシラン、ジエトキシジエチルシラン、トリエトキシエチルシラン、トリメチルフェノキシシランなどの低級アルキル基を有するシラン、
・トリエチルシラザン、トリプロピルシラザン、トリフェニルシラザン、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサフェニルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、ヘキサエチルシクロトリシラザン、オクタエチルシクロテトラシラザン、ヘキサフェニルシクロトリシラザンなどのシラザン、
・シラベンゼン、ジシラベンゼンなどの芳香環にケイ素原子が組み込まれた芳香族シラン
・トリメチルシラノール、ジメチルフェニルシラノール、トリエチルシラノール、ジエチルシランジオール、トリプロピルシラノール、ジプロピルシランジオール、トリフェニルシラノール、ジフェニルシランジオールなどの水酸基含有シラン
・トリフェニルシリルカルボン酸、トリメチルシリル酢酸、トリメチルシリルプロピオン酸、トリメチルシリル酪酸などのカルボキシル基含有シラン、
・メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、トリエチルシラン、トリプロピルシラン、ジフェニルシラン、トリフェニルシランなどのアルキル基もしくはアリール基と水素原子を有するシラン、
・テトラキス(クロロメチル)シラン、テトラキス(ヒドロキシメチル)シラン、テトラキス(トリメチルシリル)シラン、テトラキス(トリメチルシリル)メタン、テトラキス(ジメチルシラノリル)シラン、テトラキス(トリ(ヒドロキシメチル)シリル)シラン、テトラキス(ニトレートメチル)シラン、
などが挙げられる。
1,3-フェニレン ビス(ジフェニルホスフェート)、1,4-フェニレン ビス(ジキシレニルホスフェート)、1,3-フェニレン ビス(3,5,5’-トリメチルヘキシルホスフェート)、ビスフェノールA ビス(ジフェニルホスフェート)、4,4’-ビフェニル ビス(ジキシレニルホスフェート)、1,3,5-フェニレン トリス(ジキシレニルホスフェート)などの縮合リン酸エステル、
トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、トリクレジルホスファイトなどの亜リン酸エステル、
1,3-フェニレン ビス(ジフェニルホスファイト)、1,3-フェニレン ビス(ジキシレニルホスファイト)、1,4-フェニレン ビス(3,5,5’-トリメチルヘキシルホスファイト)、ビスフェノールA ビス(ジフェニルホスファイト)、4,4’-ビフェニル ビス(ジキシレニルホスファイト)、1,3,5-フェニレン トリス(ジキシレニルホスファイト)などの亜リン酸エステルが挙げられる。
・測定粉末量:40mg
・予備乾燥:120℃、真空で3時間処理
・測定温度:-196℃(液体窒素温度)
本発明の爆薬組成物を用いて製造される異原子ドープナノダイヤモンドの一次粒子の平均サイズは、好ましくは2~70 nm、より好ましくは2.5~60 nm、さらに好ましくは3~55 nm、特に好ましくは3.5~50 nmである。一次粒子の平均サイズは、粉末X線回折法(XRD) の分析結果から、シェラーの式により求めることができる。XRDの測定装置は、例えば全自動多目的X線回折装置(株式会社リガク製)を挙げることができる。
円形度=4π×(面積)÷(周囲長)^2
例えば、半径10の真円の場合、「4π×(10×10×π)÷(10×2×π)^2」の計算式になり、円形度は1(最大値)という結果になる。つまり、円形度において真円は、最も複雑ではない図形ということになる。本発明の爆薬組成物を用いて製造される異原子ドープナノダイヤモンドの円形度は、好ましくは0.2以上、より好ましくは0.3以上、さらに好ましくは0.35以上である。
・爆薬(乾燥粉)と異原子化合物(乾燥粉)
・爆薬(乾燥粉)と異原子化合物(溶融状態)
・爆薬(溶融状態)と異原子化合物(乾燥粉)
・爆薬(溶融状態)と異原子化合物(溶融状態)
爆薬と異原子化合物の混合は、溶媒の存在下或いは非存在下のいずれであってもよく、混合後に圧搾法もしくは注填法により成形することができる。
実施例1~6
爆薬としてTNTを用い、異原子がケイ素である化合物として表1に示すドーパントをTNT1モルに対し表1に示すモル数で用い、表1に示す温度(K)及び圧力(GPa)の条件で、常法に従い爆ごう法によるケイ素ドープナノダイヤモンドの製造を行うと、表1に示す割合でケイ素がドープされたナノダイヤモンドを得ることができる。
ドーパント分子1:シリン(silline)
ドーパント分子2:テトラメチルシラン(SiMe4)
ドーパント分子3:テトラキス(ニトレートメチル)シラン(SiPETN)
ドーパント分子4:テトラキス(ジメチルシラノリル)シラン(Si(SiMe2OH)4)
ドーパント分子5:テトラキス(トリメチルシリル)シラン(Si(SiMe3)4)
ドーパント分子6:テトラキス(トリメチルシリル)メタン(C(SiMe3)4)
トリニトロトルエン(TNT)とシクロトリメチレントリニトラミン(RDX)を含む爆薬100質量部に、ケイ素化合物としてトリフェニルシラノールを各々10質量部、1質量部又は0.1質量部添加した爆薬組成物約60gを使用し、ナノダイヤモンド製造の常法に従い、ケイ素ドープナノダイヤモンドを製造した。得られたケイ素ドープナノダイヤモンドについて、以下の処理を行った。なお、爆薬中のトリフェニルシラノールの添加量は、10質量%、1質量%又は0.1質量%であった。
(i)混酸処理
濃硫酸:濃硝酸=11:1(重量比)の混酸2800gに爆轟試験で得たナノダイヤモンド15gを加え、撹拌しながら150℃で10時間処理した。
(ii)アルカリ処理
8Nの水酸化ナトリウム水溶液100mLに混酸処理したナノダイヤモンド1gを加え、撹拌しながら100℃で10時間処理した。
(iii)アニーリング
アルカリ処理後のナノダイヤモンドを真空雰囲気下、800℃で30分間アニーリングした。
(iv)気相酸化
アニーリングしたナノダイヤモンドを大気雰囲気下、300℃、2時間気相酸化処理することで、本発明のケイ素ドープナノダイヤモンドを得た。
(v)蛍光分析
気相酸化で得られた本発明のケイ素ドープナノダイヤモンドの10w/v%の水懸濁液をガラス基板上に滴下し、乾燥させて評価サンプルを作製した。得られた評価サンプルを顕微ラマン分光装置(商品名:顕微レーザーラマン分光光度計LabRAM HR Evolution、堀場製作所株式会社製)を用いて高速マッピングを行い、738nm輝点イメージングを行った。ケイ素化合物としてトリフェニルシラノールを用い、添加量が外割で1質量%で得られたケイ素ドープナノダイヤモンドの738nm輝点イメージング像を図1(a)に示す。図1(a)の輝点の蛍光スペクトルを図1(b)に示す。SiVセンターのゼロフォノンライン(蛍光ピーク)が確認できる。得られたケイ素ドープナノダイヤモンドのSi含有量は、爆薬中のトリフェニルシラノールの添加量が10質量%のときに3.2質量%、1質量%のときに0.15質量%、0.1質量%のときに0.03質量%であった。
図1(b)より、本発明のケイ素ドープナノダイヤモンドがSVセンターに由来する738nmの蛍光を有することが確認された。さらに、得られたケイ素ドープナノダイヤモンドのXRDにより測定した一次粒子の平均サイズ、BET比表面積を以下の表2に示す。
装置:BELSORP-miniII(マイクロトラック・ベル株式会社製)
測定粉末量:40mg
予備乾燥:120℃、真空で3時間処理
測定温度:-196℃(液体窒素温度)
・一次粒子の平均サイズの測定(粉末X線回折法(XRD))
装置:全自動多目的X線回折装置(株式会社リガク製)
・Si導入量の測定法(XRF)
装置:蛍光X線分析装置ZSX Primus IV 株式会社リガク製
実施例7のトリフェニルシラノール1質量部に代えてフェニルボロン酸1質量部を使用した以外は実施例7と同様にして、ホウ素がドープされたナノダイヤモンドが得られる。
実施例7のトリフェニルシラノール1質量部に代えてトリフェニルホスフィン1質量部を使用した以外は実施例7と同様にして、リンがドープされたナノダイヤモンドが得られる。
実施例7のトリフェニルシラノール1質量部に代えてニッケルビス(アセチルアセトナート)1質量部を使用した以外は実施例7と同様にして、ニッケルがドープされたナノダイヤモンドが得られる。
実施例7のトリフェニルシラノール1質量部に代えてトリフェニルシラノール0.5質量部とフェニルボロン酸0.5質量部を使用した以外は実施例7と同様にして、ケイ素とホウ素がドープされたナノダイヤモンドが得られる。
実施例7のトリフェニルシラノール1質量部に代えてトリフェニルシラノール0.5質量部とトリフェニルホスフィン0.5質量部を使用した以外は実施例7と同様にして、ケイ素とリンがドープされたナノダイヤモンドが得られる。
Claims (8)
- 少なくとも1種の爆薬と少なくとも1種の異原子化合物を含み、前記異原子化合物がB、P、Si、S、Cr、Sn、Al、Ge、Li、Na、K、Cs、Mg、Ca、Sr、Ba、Ti、Zr、V、Nb、Ta、Mo、W、Mn、Ni、Cu、Ag、Cd、Hg、Ga、In、Tl、As、Sb、Bi、Se、Te、Co、Xe、F、Y及びランタノイドからなる群から選ばれる少なくとも1種の異原子を含む、爆薬組成物。
- 前記爆薬が、トリニトロトルエン(TNT)、シクロトリメチレントリニトラミン(ヘキソゲン、RDX)、シクロテトラメチレンテトラニトラミン(オクトゲン)、トリニトロフェニルメチルニトラミン(テトリル)、ペンタエリスリトールテトラニトレート(PETN)、テトラニトロメタン(TNM)、トリアミノ-トリニトロベンゼン、ヘキサニトロスチルベン及びジアミノジニトロベンゾフロキサンからなる群から選ばれる少なくとも1種を含む、請求項1に記載の爆薬組成物。
- 異原子化合物が有機異原子化合物である、請求項1又は2に記載の爆薬組成物。
- 爆薬を80~99.9999質量%、異原子化合物を0.0001~20質量%含む、請求項1~3のいずれか1項に記載の爆薬組成物。
- 爆薬および/または異原子化合物の粒子サイズが10mm以下である、請求項1~4のいずれか1項に記載の爆薬組成物。
- 爆薬と異原子化合物を乾燥粉もしくは溶融状態もしくは溶媒を用いて混合し、圧搾法もしくは注填法によって成形することを特徴とする、請求項1~5のいずれか1項に記載の爆薬組成物の製造方法。
- 粒子サイズが10mm以下の爆薬および/または異原子化合物を用いて乾燥粉もしくは溶融状態で混合して爆薬組成物を作製する、請求項6に記載される爆薬組成物の製造方法。
- 請求項1~5のいずれか1項に記載の爆薬組成物を密閉容器内で爆発させる工程を含む、異原子ドープナノダイヤモンドの製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021509073A JPWO2020195998A1 (ja) | 2019-03-26 | 2020-03-16 | |
CA3134679A CA3134679A1 (en) | 2019-03-26 | 2020-03-16 | Explosive composition and method for manufacturing same, and method for manufacturing heteroatom-doped nanodiamond |
EP20777445.6A EP3950110A4 (en) | 2019-03-26 | 2020-03-16 | EXPLOSIVE COMPOSITION AND METHOD FOR MAKING THE SAME, AND METHOD FOR MANUFACTURING HETEROATOME-DOPICED NANODIAMENT |
US17/598,034 US20220177388A1 (en) | 2019-03-26 | 2020-03-16 | Explosive composition and method for manufacturing same, and method for manufacturing heteroatom-doped nanodiamond |
CN202080024638.2A CN113631253A (zh) | 2019-03-26 | 2020-03-16 | 炸药组合物及其制造方法、以及掺杂杂原子的纳米金刚石的制造方法 |
KR1020217032663A KR20210153615A (ko) | 2019-03-26 | 2020-03-16 | 폭약 조성물 및 그의 제조 방법, 그리고 이원자 도프 나노다이아몬드의 제조 방법 |
AU2020249854A AU2020249854A1 (en) | 2019-03-26 | 2020-03-16 | Explosive composition and method for manufacturing same, and method for manufacturing heteroatom-doped nanodiamond |
SG11202107715QA SG11202107715QA (en) | 2019-03-26 | 2020-03-16 | Explosive composition and method for manufacturing same, and method for manufacturing heteroatom-doped nanodiamond |
IL286354A IL286354A (en) | 2019-03-26 | 2021-09-13 | An explosive composition and a method for producing the same, and a method for producing a nanodiamond produced by an ether atom |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-058397 | 2019-03-26 | ||
JP2019058397 | 2019-03-26 | ||
JP2019-212821 | 2019-11-26 | ||
JP2019212821 | 2019-11-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2020195998A1 WO2020195998A1 (ja) | 2020-10-01 |
WO2020195998A9 true WO2020195998A9 (ja) | 2020-12-03 |
Family
ID=72611477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/011338 WO2020195998A1 (ja) | 2019-03-26 | 2020-03-16 | 爆薬組成物及びその製造方法、並びに異原子ドープナノダイヤモンドの製造方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US20220177388A1 (ja) |
EP (1) | EP3950110A4 (ja) |
JP (1) | JPWO2020195998A1 (ja) |
KR (1) | KR20210153615A (ja) |
CN (1) | CN113631253A (ja) |
AU (1) | AU2020249854A1 (ja) |
CA (1) | CA3134679A1 (ja) |
IL (1) | IL286354A (ja) |
SG (1) | SG11202107715QA (ja) |
TW (1) | TW202100495A (ja) |
WO (1) | WO2020195998A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7526164B2 (ja) | 2019-03-26 | 2024-07-31 | 株式会社ダイセル | 第14族元素がドープされたナノダイヤモンドの製造方法及び精製方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118145639A (zh) * | 2024-03-06 | 2024-06-07 | 广东启现智能家具有限公司 | 一种石墨烯包覆单粒子纳米金刚石材料的配方及制备方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3050564A1 (en) * | 1980-07-31 | 1982-09-23 | G Adaurov | Method of obtaining diamond and/or diamond-like modifications of boron nitride |
JPH0659398B2 (ja) | 1989-03-16 | 1994-08-10 | 工業技術院長 | ダイヤモンド合成用爆薬組成物 |
DE19933648A1 (de) * | 1999-07-17 | 2001-01-18 | Fraunhofer Ges Forschung | Verfahren zur Herstellung dotierter Diamantpartikel, danach hergestellte Partikel und deren Verwendung |
JP2004176132A (ja) | 2002-11-27 | 2004-06-24 | Toppan Printing Co Ltd | ナノダイヤモンド膜及びその製造方法 |
EP1934305B1 (en) * | 2005-10-11 | 2011-02-23 | Kuraray Co., Ltd. | A luminous body |
CN103370765B (zh) | 2010-12-23 | 2016-09-07 | 六号元素有限公司 | 控制合成金刚石材料的掺杂 |
FR2987279A1 (fr) * | 2012-02-29 | 2013-08-30 | Saint Louis Inst | Procede d'elaboration de nanoparticules de tailles ultimes par detonation de charges explosives nano-et/ou submicrostructurees |
JP7023477B2 (ja) | 2016-07-19 | 2022-02-22 | 国立研究開発法人産業技術総合研究所 | ホウ素ドープダイヤモンド |
JP6831215B2 (ja) | 2016-11-11 | 2021-02-17 | 学校法人東京理科大学 | 導電性ダイヤモンド粒子、導電性ダイヤモンド電極、及び検査装置 |
-
2020
- 2020-03-16 WO PCT/JP2020/011338 patent/WO2020195998A1/ja unknown
- 2020-03-16 EP EP20777445.6A patent/EP3950110A4/en active Pending
- 2020-03-16 CN CN202080024638.2A patent/CN113631253A/zh active Pending
- 2020-03-16 US US17/598,034 patent/US20220177388A1/en active Pending
- 2020-03-16 CA CA3134679A patent/CA3134679A1/en active Pending
- 2020-03-16 SG SG11202107715QA patent/SG11202107715QA/en unknown
- 2020-03-16 KR KR1020217032663A patent/KR20210153615A/ko unknown
- 2020-03-16 JP JP2021509073A patent/JPWO2020195998A1/ja active Pending
- 2020-03-16 AU AU2020249854A patent/AU2020249854A1/en active Pending
- 2020-03-23 TW TW109109610A patent/TW202100495A/zh unknown
-
2021
- 2021-09-13 IL IL286354A patent/IL286354A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7526164B2 (ja) | 2019-03-26 | 2024-07-31 | 株式会社ダイセル | 第14族元素がドープされたナノダイヤモンドの製造方法及び精製方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3950110A4 (en) | 2023-01-04 |
TW202100495A (zh) | 2021-01-01 |
AU2020249854A1 (en) | 2021-08-19 |
WO2020195998A1 (ja) | 2020-10-01 |
KR20210153615A (ko) | 2021-12-17 |
CA3134679A1 (en) | 2020-10-01 |
SG11202107715QA (en) | 2021-08-30 |
IL286354A (en) | 2021-10-31 |
US20220177388A1 (en) | 2022-06-09 |
JPWO2020195998A1 (ja) | 2020-10-01 |
EP3950110A1 (en) | 2022-02-09 |
CN113631253A (zh) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020195997A1 (ja) | 異原子ドープナノダイヤモンド | |
WO2020195999A1 (ja) | 第14族元素がドープされたナノダイヤモンドの製造方法及び精製方法 | |
WO2020195998A9 (ja) | 爆薬組成物及びその製造方法、並びに異原子ドープナノダイヤモンドの製造方法 | |
Ashraf et al. | MOCVD of vertically aligned ZnO nanowires using bidentate ether adducts of dimethylzinc | |
WO2023013659A1 (ja) | 異原子ドープナノダイヤモンド粒子及び異原子ドープナノダイヤモンド粒子の製造方法 | |
Paula et al. | Increased degradation capacity of methylene blue dye using Mg-doped ZnO nanoparticles decorated by Ag 0 nanoparticles | |
Chen et al. | Embedding hexanuclear tantalum bromide cluster {Ta6Br12} into SiO2 nanoparticles by reverse microemulsion method | |
RU2825658C2 (ru) | Способ изготовления наноалмазов, допированных элементом группы 14, и способ их очистки | |
RU2817654C2 (ru) | Наноалмаз, допированный гетероатомом | |
US6145342A (en) | Catalyzed preparation of amorphous chalcogenides | |
CN117794856A (zh) | 杂原子掺杂纳米金刚石粒子以及杂原子掺杂纳米金刚石粒子的制造方法 | |
WO2021166908A1 (ja) | コア/シェル型半導体ナノ粒子の製造方法 | |
Ishtiyak et al. | Novel ternary Zintl phosphide halides Ba 3 P 5 X (X= Cl, Br) with 1D helical phosphorus chains: synthesis, crystal and electronic structure | |
WO2023021897A1 (ja) | コア/シェル型半導体ナノ粒子の製造方法、及び半導体ナノ粒子複合体 | |
JP7457529B2 (ja) | 蛍光ナノダイヤモンドの製造方法 | |
CN117794891A (zh) | 半导体纳米颗粒的制造中使用的羧酸锌盐 | |
TW202330401A (zh) | 摻雜有雜原子之奈米鑽石粒子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20777445 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021509073 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020249854 Country of ref document: AU Date of ref document: 20200316 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3134679 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020777445 Country of ref document: EP Effective date: 20211026 |