WO2020194965A1 - 電池モジュール - Google Patents

電池モジュール Download PDF

Info

Publication number
WO2020194965A1
WO2020194965A1 PCT/JP2019/051122 JP2019051122W WO2020194965A1 WO 2020194965 A1 WO2020194965 A1 WO 2020194965A1 JP 2019051122 W JP2019051122 W JP 2019051122W WO 2020194965 A1 WO2020194965 A1 WO 2020194965A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
plate
duct
stacking direction
battery module
Prior art date
Application number
PCT/JP2019/051122
Other languages
English (en)
French (fr)
Inventor
直剛 吉田
拓也 江頭
雄佑 藤井
直 武田
拓也 畝原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201980094239.0A priority Critical patent/CN113574725B/zh
Priority to JP2021508774A priority patent/JP7418409B2/ja
Priority to EP19920720.0A priority patent/EP3944358A4/en
Priority to US17/439,372 priority patent/US20220158294A1/en
Publication of WO2020194965A1 publication Critical patent/WO2020194965A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module.
  • a battery module in which a plurality of batteries are electrically connected is known as a power source that requires a high output voltage, for example, for a vehicle.
  • each battery constituting the battery module is provided with a valve portion that opens in response to an increase in internal pressure.
  • gas is generated by a chemical reaction.
  • Patent Document 1 describes a battery laminate in which a plurality of batteries are laminated, and an exhaust duct fixed to one surface of the battery laminate so as to be connected to a valve portion of each battery.
  • a battery module comprising is disclosed.
  • the battery module is provided with various ignition countermeasures.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a technique for enhancing the safety of a battery module.
  • This battery module is a battery laminate having a plurality of stacked batteries, and has a battery laminate having a valve portion from which each battery ejects gas and a surface of the battery laminate on which the plurality of valve portions are arranged.
  • a duct plate that covers the duct plate and has an exhaust duct that extends in the stacking direction of the batteries and is connected to the valve portion of each battery to temporarily store the ejected gas, and a cover plate placed on the duct plate.
  • a flow path portion defined by a duct plate and a cover plate, extending from the exhaust duct in a first direction intersecting the stacking direction, and leaking gas in the exhaust duct to the outside of the battery module.
  • the cover plate has a first hanging wall portion extending in the second direction in which the cover plate and the duct plate are lined up and overlapping the duct plate when viewed from the stacking direction at the end portion in the stacking direction.
  • the safety of the battery module can be enhanced.
  • FIG. 1 It is a perspective view of the battery module which concerns on embodiment. It is an exploded perspective view of a battery module. It is sectional drawing side view of the area including the duct plate and the cover plate of a battery module. It is sectional drawing side view of the area including the duct plate and the cover plate of a battery module. It is sectional drawing side view of the region including the duct plate and the cover plate of the battery module which concerns on modification 1.
  • FIG. 1 is a perspective view of the battery module according to the embodiment.
  • FIG. 2 is an exploded perspective view of the battery module. Note that in FIGS. 1 and 2, the first hanging wall portion 86 of the cover plate 60 and the second hanging wall portion 88 of the duct plate 28 are not shown.
  • the battery module 1 includes a battery laminate 2, a pair of end plates 4, a cooling plate 6, a heat conductive layer 8, a side separator 10, a restraining member 12, a duct plate 28, and a cover plate 60. Be prepared.
  • the battery laminate 2 has a plurality of batteries 14 and an inter-cell separator 16.
  • Each battery 14 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery. Further, each battery 14 is a so-called square battery, and has a flat rectangular parallelepiped outer can 18. A substantially rectangular opening (not shown) is provided on one surface of the outer can 18, and an electrode body, an electrolytic solution, or the like is housed in the outer can 18 through the opening. A sealing plate 20 for closing the opening of the outer can 18 is provided.
  • the positive electrode output terminal 22 is arranged near one end in the longitudinal direction, and the negative electrode output terminal 22 is arranged near the other end.
  • the pair of output terminals 22 are electrically connected to the positive electrode plate and the negative electrode plate constituting the electrode body, respectively.
  • the output terminal 22 of the positive electrode will be referred to as a positive electrode terminal 22a
  • the output terminal 22 of the negative electrode will be referred to as a negative electrode terminal 22b.
  • the positive electrode terminal 22a and the negative electrode terminal 22b are collectively referred to as an output terminal 22.
  • the outer can 18, the sealing plate 20, and the output terminal 22 are conductors, for example, made of metal.
  • the sealing plate 20 and the opening of the outer can 18 are joined by, for example, laser welding.
  • Each output terminal 22 is inserted into a through hole (not shown) formed in the sealing plate 20.
  • An insulating sealing member (not shown) is interposed between each output terminal 22 and each through hole.
  • the sealing plate 20 is the upper surface of the battery 14, and the bottom surface of the outer can 18 facing the sealing plate 20 is the lower surface of the battery 14.
  • the battery 14 has two main surfaces connecting the upper surface and the lower surface. This main surface is the surface having the largest area among the six surfaces of the battery 14. Further, the main surface is a long side surface connected to the long side of the upper surface and the lower surface. The remaining two surfaces excluding the upper surface, the lower surface and the two main surfaces are the side surfaces of the battery 14. This side surface is a pair of short sides connected to the short sides of the top and bottom surfaces.
  • the surface on the upper surface side of the battery 14 is the upper surface of the battery laminate 2
  • the surface on the lower surface side of the battery 14 is the lower surface of the battery laminate 2
  • the surface on the side surface side of the battery 14 is the battery. It is the side surface of the laminated body 2.
  • the sealing plate 20 is provided with a valve portion 24 between the pair of output terminals 22.
  • the valve portion 24 is also called a safety valve, and is a mechanism for each battery 14 to eject gas inside the battery.
  • the valve portion 24 is configured to be able to open the valve when the internal pressure of the outer can 18 rises above a predetermined value to release the gas inside.
  • the valve portion 24 is composed of, for example, a thin-walled portion provided in a part of the sealing plate 20 and thinner than the other portion, and a linear groove formed on the surface of the thin-walled portion. In this configuration, when the internal pressure of the outer can 18 rises, the thin-walled portion is torn from the groove to open the valve.
  • the valve portion 24 of each battery 14 is connected to an exhaust duct 38 described later, and the gas inside the battery is discharged from the valve portion 24 to the exhaust duct 38.
  • each battery 14 has an insulating film 26.
  • the insulating film 26 is, for example, a tubular shrink tube, and is heated after the outer can 18 is passed through the inside. As a result, the insulating film 26 shrinks and covers the two main surfaces, the two side surfaces and the bottom surface of the outer can 18. The insulating film 26 can suppress a short circuit between adjacent batteries 14 or between the batteries 14 and the end plate 4 or the restraint member 12.
  • the plurality of batteries 14 are stacked at predetermined intervals so that the main surfaces of adjacent batteries 14 face each other.
  • stacking means arranging a plurality of members in any one direction. Therefore, stacking the batteries 14 includes arranging a plurality of batteries 14 horizontally. In this embodiment, the batteries 14 are stacked horizontally. Therefore, the stacking direction X of the battery 14 is a direction extending horizontally. In the following, the horizontal direction and the direction perpendicular to the stacking direction X are referred to as the horizontal direction Y, and the direction perpendicular to the stacking direction X and the horizontal direction Y is referred to as the vertical direction Z as appropriate.
  • each battery 14 is arranged so that the output terminal 22 faces the same direction.
  • Each battery 14 of the present embodiment is arranged so that the output terminal 22 faces upward in the vertical direction.
  • each battery 14 is laminated so that the positive electrode terminal 22a of one battery 14 and the negative electrode terminal 22b of the other battery 14 are adjacent to each other.
  • adjacent batteries 14 are connected in parallel, the positive electrode terminals 22a of one battery 14 and the positive electrode terminals 22a of the other battery 14 are laminated so as to be adjacent to each other.
  • the inter-cell separator 16 is also called an insulating spacer, and is made of, for example, a resin sheet having an insulating property.
  • the resin constituting the cell-cell separator 16 include thermoplastic resins such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), and Noryl (registered trademark) resin (modified PPE).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • Noryl (registered trademark) resin modified PPE
  • the battery laminate 2 is sandwiched by a pair of end plates 4 in the stacking direction X of the batteries 14.
  • the pair of end plates 4 are arranged at both ends of the battery laminate 2 in the stacking direction X of the battery 14.
  • the pair of end plates 4 are adjacent to the batteries 14 located at both ends in the stacking direction X via the outer end separator 5.
  • the outer end separator 5 can be made of the same resin material as the cell-to-cell separator 16.
  • Each end plate 4 is a metal plate made of a metal such as iron, stainless steel, or aluminum. By interposing the outer end separator 5 between the end plate 4 and the battery 14, both are insulated.
  • Each end plate 4 has fastening holes 4a on two surfaces facing the horizontal direction Y.
  • the three fastening holes 4a are arranged at predetermined intervals in the vertical direction Z.
  • the surface on which the fastening hole 4a is provided faces the flat surface portion 54 of the restraint member 12, which will be described later.
  • a duct plate 28 is placed on the upper surface of the battery laminate 2.
  • the duct plate 28 is a plate-shaped member that covers the upper surface of the battery laminate 2, that is, the surface on which the valve portion 24 of each battery 14 is arranged.
  • the duct plate 28 has a plurality of openings 32 that expose the valve portion 24 at positions corresponding to the valve portion 24 of each battery 14.
  • the plurality of openings 32 are provided in the base plate 33 extending along the upper surface of the battery laminate 2.
  • the duct plate 28 has an exhaust duct 38 for temporarily storing the gas ejected from each battery 14.
  • the exhaust duct 38 extends in the stacking direction X of the batteries 14 and is connected to the valve portion 24 of each battery 14.
  • Each valve portion 24 is communicated with the exhaust duct 38 through the opening 32.
  • the exhaust duct 38 is defined by a first wall portion 34 that covers the upper part of the plurality of openings 32 and a pair of second wall portions 36 that surround the sides of each opening 32.
  • the first wall portion 34 and the pair of second wall portions 36 are elongated in the stacking direction X, respectively.
  • the pair of second wall portions 36 are arranged in the horizontal direction Y with the plurality of openings 32 interposed therebetween, and each wall surface faces the horizontal direction Y where the stacking direction X of the battery 14 intersects.
  • the first wall portion 34 faces each valve portion 24 with the wall surface facing the vertical direction Z in which the duct plate 28 and the cover plate 60 are lined up.
  • the pair of second wall portions 36 project from the base plate 33 toward the cover plate 60 and form both side surfaces of the exhaust duct 38.
  • the first wall portion 34 is fixed to the upper ends of the pair of second wall portions 36 to form the top surface of the exhaust duct 38.
  • the duct plate 28 has an opening 40 at a position corresponding to the output terminal 22 of each battery 14 to expose the output terminal 22.
  • a bus bar 42 is placed in each opening 40.
  • the plurality of bus bars 42 are supported by the duct plate 28. Therefore, the duct plate 28 also functions as a so-called bus bar plate.
  • the output terminals 22 of the adjacent batteries 14 are electrically connected to each other by the bus bar 42 mounted on each opening 40.
  • the duct plate 28 of the present embodiment is composed of a resin such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), noryl (registered trademark) resin (modified PPE), except for the first wall portion 34. Will be done.
  • the first wall portion 34 is made of a metal such as iron or aluminum.
  • the pair of second wall portions 36 are integrally molded with the base plate 33. The first wall portion 34 is fixed to the pair of second wall portions 36 by a fastening member (not shown) such as a screw.
  • the bus bar 42 is a substantially strip-shaped member made of a metal such as copper or aluminum. One end of the bus bar 42 is connected to the output terminal 22 of one battery 14, and the other end is connected to the output terminal 22 of the other battery 14.
  • the bus bar 42 may form a battery block by connecting output terminals 22 having the same polarity in a plurality of adjacent batteries 14 in parallel, and may further connect the battery blocks in series.
  • the bus bar 42 connected to the output terminals 22 of the batteries 14 located at both ends in the stacking direction X has an external connection terminal 44.
  • the external connection terminal 44 is connected to an external load (not shown).
  • a voltage detection line 46 is placed on the duct plate 28.
  • the voltage detection line 46 is electrically connected to a plurality of batteries 14 to detect the voltage of each battery 14.
  • the voltage detection wire 46 has a plurality of conductors (not shown). One end of each lead wire is connected to each bus bar 42, and the other end is connected to the connector 48.
  • the connector 48 is connected to an external battery ECU (not shown) or the like.
  • the battery ECU controls detection of the voltage of each battery 14, charging / discharging of each battery 14, and the like.
  • the cooling plate 6 has a flat plate shape extending in the stacking direction X and the horizontal direction Y, and is made of a material having high thermal conductivity such as aluminum.
  • the cooling plate 6 is thermally connected to the battery laminate 2, that is, is heat exchangeably connected to the battery laminate 2 to cool each battery 14.
  • the battery laminate 2 is placed on the main surface of the cooling plate 6.
  • the battery laminate 2 is placed on the cooling plate 6 so that the lower surface faces the cooling plate 6 side. Therefore, the battery laminate 2 and the cooling plate 6 are aligned in the vertical direction Z.
  • the cooling plate 6 may be connected to the outside of the battery module 1, for example, the vehicle body of the vehicle on which the battery module 1 is mounted so as to be heat exchangeable.
  • the cooling plate 6 may have a flow path inside through which a refrigerant such as water or ethylene glycol flows.
  • a refrigerant such as water or ethylene glycol flows.
  • the heat conductive layer 8 is an insulating member interposed between the battery laminate 2 and the cooling plate 6. That is, the cooling plate 6 is thermally connected to the battery laminate 2 via the heat conductive layer 8.
  • the heat conductive layer 8 covers the entire bottom surface of the battery laminate 2.
  • the thermal conductivity of the heat conductive layer 8 is higher than the thermal conductivity of air.
  • the heat conductive layer 8 can be made of a known resin sheet having good heat conductivity, such as an acrylic rubber sheet or a silicone rubber sheet. Further, the heat conductive layer 8 may be made of a known adhesive, grease or the like having good heat conductivity and insulating properties. When the outer can 18 is sufficiently insulated by the insulating film 26 or the like, the heat conductive layer 8 does not have to have an insulating property.
  • the heat conductive layer 8 By interposing the heat conductive layer 8 between the battery laminate 2 and the cooling plate 6, a thermal connection between each battery 14 and the cooling plate 6 can be obtained more reliably. Therefore, the cooling efficiency of each battery 14 can be improved, and each battery 14 can be cooled more uniformly. Further, when the heat conductive layer 8 has an insulating property, it is possible to more reliably prevent the battery laminate 2 and the cooling plate 6 from being electrically connected to each other. Further, the heat conductive layer 8 can suppress the displacement between the battery laminate 2 and the cooling plate 6.
  • the side separator 10 has an insulating property and is a member for insulating the restraining member 12 and the battery laminate 2.
  • a pair of side separators 10 are arranged in the horizontal direction Y.
  • Each side separator 10 has a long shape that is long in the stacking direction X of the battery 14.
  • a battery laminate 2, a pair of end plates 4, a cooling plate 6, and a heat conductive layer 8 are arranged between the pair of side separators 10.
  • Each side separator 10 is made of, for example, a resin having an insulating property.
  • thermoplastic resin such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), noryl (registered trademark) resin (modified PPE), etc. Is exemplified.
  • the side separator 10 of the present embodiment has a first portion 50, a second portion 52, and a third portion 53.
  • the first portion 50 has a rectangular flat plate shape and extends along the side surface of the battery stack 2 in the stacking direction X of the battery 14.
  • the second portion 52 has a strip shape extending in the stacking direction X, and projects from the lower side of the first portion 50 toward the battery laminate 2.
  • the third portion 53 has a strip shape extending in the stacking direction X, and projects from the upper side of the first portion 50 toward the battery laminate 2. Therefore, the second portion 52 and the third portion 53 face each other in the arrangement direction of the battery laminate 2 and the cooling plate 6.
  • a battery laminate 2, a cooling plate 6, and a heat conductive layer 8 are arranged between the second portion 52 and the third portion 53.
  • the restraint member 12 is also called a bind bar and is a long member long in the stacking direction X of the battery 14.
  • a pair of restraint members 12 are arranged in the horizontal direction Y.
  • Each restraint member 12 is made of metal. Examples of the metal constituting the restraint member 12 include iron and stainless steel.
  • a battery laminate 2, a pair of end plates 4, a cooling plate 6, a heat conductive layer 8 and a pair of side separators 10 are arranged between the pair of restraint members 12.
  • the restraint member 12 of the present embodiment has a flat surface portion 54 and a pair of arm portions 56.
  • the flat surface portion 54 has a rectangular shape and extends in the stacking direction X along the side surface of the battery laminate 2.
  • the pair of arm portions 56 project from the ends on both sides of the flat surface portion 54 in the vertical direction Z toward the battery laminate 2. That is, one arm 56 projects from the upper side of the flat surface portion 54 toward the battery laminate 2, and the other arm 56 projects from the lower side of the flat surface portion 54 toward the battery laminate 2. Therefore, the pair of arms 56 face each other in the arrangement direction of the battery laminate 2 and the cooling plate 6.
  • a battery laminate 2, a cooling plate 6, a heat conductive layer 8 and a side separator 10 are arranged between the pair of arms 56.
  • a contact plate 68 is fixed to a region of the flat surface portion 54 facing each end plate 4 by welding or the like.
  • the contact plate 68 is a member long in the vertical direction Z.
  • the contact plate 68 is provided with a through hole 70 that penetrates the contact plate 68 in the horizontal direction Y at a position corresponding to the fastening hole 4a of the end plate 4.
  • the flat surface portion 54 has a through hole 58 that penetrates the flat surface portion 54 in the horizontal direction Y at a position corresponding to the through hole 70 of the contact plate 68.
  • a plurality of batteries 14 are sandwiched in the stacking direction X.
  • a plurality of batteries 14 and a plurality of inter-cell separators 16 are alternately arranged to form a battery laminate 2, and the battery laminate 2 is laminated by a pair of end plates 4 via an outer end separator 5. It is sandwiched in the direction X.
  • the heat conductive layer 8 is arranged on the lower surface of the battery laminated body 2, and the cooling plate 6 is arranged so as to face the battery laminated body 2 with the heat conductive layer 8 interposed therebetween.
  • the battery laminate 2, the pair of end plates 4, the cooling plate 6, and the heat conductive layer 8 are sandwiched by the pair of side separators 10 in the horizontal direction Y. Further, from the outside of the pair of side separators 10, a pair of restraint members 12 sandwich the whole in the horizontal direction Y.
  • the pair of end plates 4 and the pair of restraint members 12 are aligned with each other so that the fastening hole 4a, the through hole 70, and the through hole 58 overlap each other. Then, a fastening member 59 such as a screw is inserted into the through hole 58 and the through hole 70 and screwed into the fastening hole 4a. As a result, the pair of end plates 4 and the pair of restraint members 12 are fixed. By engaging the pair of end plates 4 and the pair of restraint members 12, the plurality of batteries 14 are tightened and restrained in the stacking direction X. As a result, each battery 14 is positioned in the stacking direction X.
  • the restraint member 12 sandwiches the plurality of batteries 14 in the stacking direction X, and also sandwiches the battery stack 2, the heat conductive layer 8 and the cooling plate 6 in these arrangement directions. Specifically, the restraint member 12 sandwiches a plurality of batteries 14 in the stacking direction X by engaging both ends of the flat surface portions 54 in the stacking direction X of the batteries 14 with the pair of end plates 4. Further, the restraint member 12 sandwiches the battery laminate 2, the heat conductive layer 8 and the cooling plate 6 with a pair of arm portions 56 in the vertical direction Z. That is, the restraint member 12 has a function of fastening a plurality of batteries 14 and a function of fastening the battery laminate 2 and the cooling plate 6. Therefore, unlike the conventional structure, the battery laminate 2 and the cooling plate 6 are not fastened with screws.
  • the first portion 50 of the side separator 10 is interposed between the side surface of the battery laminate 2 and the flat surface portion 54 of the restraint member 12.
  • the second portion 52 of the side separator 10 is interposed between the cooling plate 6 and the lower arm portion 56 of the restraint member 12.
  • the third portion 53 of the side separator 10 is interposed between the upper surface of the battery laminate 2 and the upper arm portion 56 of the restraint member 12. As a result, the upper surface of each battery 14 and the upper arm portion 56 are electrically insulated.
  • the heat conductive layer 8 and the cooling plate 6 sandwiched in the vertical direction Z by the pair of arms 56 With the battery laminate 2, the heat conductive layer 8 and the cooling plate 6 sandwiched in the vertical direction Z by the pair of arms 56, the heat conductive layer 8 is pressed against the battery laminate 2 and the cooling plate 6 and is elastic. Deform or plastically deform. As a result, a thermal connection between the battery laminate 2 and the cooling plate 6 can be obtained more reliably. In addition, it is possible to make the cooling of the entire battery laminate 2 uniform. Further, the deviation of the battery laminate 2 and the cooling plate 6 in the XY plane direction can be further suppressed.
  • the duct plate 28 is placed on the battery laminate 2.
  • the duct plate 28 is fixed to the battery laminate 2 by engaging the third portion 53 of the pair of side separators 10.
  • a bus bar 42 is attached to the output terminal 22 of each battery 14, and the output terminals 22 of the plurality of batteries 14 are electrically connected to each other.
  • the bus bar 42 is fixed to the output terminal 22 by welding.
  • a cover plate 60 is placed on the upper surface of the duct plate 28.
  • the cover plate 60 is a plate-shaped member that covers the upper part of the duct plate 28.
  • the cover plate 60 of the present embodiment is a so-called top cover that constitutes a part of the outer shell of the battery module 1, specifically, the upper surface of the battery module 1.
  • the cover plate 60 suppresses contact of condensed water, dust, etc. with the output terminal 22, the valve portion 24, the bus bar 42, and the like of the battery 14.
  • the cover plate 60 is made of an insulating resin such as polypropylene (PP), polybutylene terephthalate (PBT), polycarbonate (PC), and Noryl (registered trademark) resin (modified PPE).
  • the cover plate 60 has an insulating cover portion 62 at a position where it overlaps with the external connection terminal 44 in the vertical direction Z. With the cover plate 60 mounted on the duct plate 28, the external connection terminal 44 is covered with the insulating cover portion 62.
  • Both ends of the cover plate 60 in the horizontal direction Y are fixed to the duct plate 28.
  • the cover plate 60 of the present embodiment is fixed to the duct plate 28 by snap-fitting.
  • the duct plate 28 has a plurality of engaging claws 72 at both ends in the horizontal direction Y at intervals in the stacking direction X.
  • the cover plate 60 has an engaging hole 74 at a position where it overlaps with each engaging claw 72 when viewed from the vertical direction Z.
  • FIG. 3 is a cross-sectional side view of a region of the battery module 1 including the duct plate 28 and the cover plate 60.
  • FIG. 3 illustrates a cross section along a YZ plane extending in the horizontal direction Y and the vertical direction Z. Further, the illustration of the internal structure of the battery 14 is omitted.
  • the battery module 1 includes a flow path portion 76.
  • the flow path portion 76 is a flow path for leaking the gas in the exhaust duct 38 to the outside of the battery module 1.
  • the flow path portion 76 is defined by the duct plate 28 and the cover plate 60, and extends from the exhaust duct 38 in the first direction (horizontal direction Y in the present embodiment) intersecting the stacking direction X.
  • the flow path portions 76 are arranged on both sides of the exhaust duct 38 in the horizontal direction Y.
  • Each flow path portion 76 is connected to a second wall portion 36 facing the horizontal direction Y of the exhaust duct 38. More specifically, the second wall portion 36 is provided with an opening 78, and one end of each flow path portion 76 is connected to the opening 78.
  • the other end of each flow path 76 is connected to a flow path outlet 80 arranged at the end of the battery module 1 in the horizontal direction Y.
  • a plurality of openings 78 are provided in the second wall portion 36 at predetermined intervals in the stacking direction X, and one end of the flow path portion 76 is connected to the plurality of openings 78. Further, the flow path outlet 80 is an opening long in the stacking direction X. Therefore, the flow path portion 76 is a planar flow path that extends in the stacking direction X and the horizontal direction Y.
  • the cover plate 60 is arranged so that a predetermined gap G is provided between the cover plate 60 and the first wall portion 34 of the exhaust duct 38. That is, the first wall portion 34 and the cover plate 60 are separated from each other by the gap G in the vertical direction Z. Both ends of the gap G in the horizontal direction Y are connected to the flow path portion 76. Therefore, the two flow path portions 76 arranged in the horizontal direction Y are communicated with each other through the gap G.
  • the gas in the battery 14 When the gas in the battery 14 is ejected from the valve portion 24, the gas collides with the first wall portion 34 facing the valve portion 24.
  • the gas that collides with the first wall portion 34 flows along the first wall portion 34 and flows into the flow path portion 76 through the opening 78.
  • the gas flowing into the flow path portion 76 flows in the flow path portion 76 in the horizontal direction Y and the stacking direction X, and leaks to the outside of the battery module 1 from the flow path outlet 80.
  • At least a part of the gas ejected from the battery 14 is a flammable gas. Further, the gas ejected from the battery 14 also includes fine particles such as fragments of the battery structure. High-temperature flammable gas and high-temperature fine particles are discharged to the outside of the battery module 1, and if these and oxygen outside the module are mixed, ignition may occur outside the battery module 1.
  • the gas ejected from the valve portion 24 is once received by the exhaust duct 38, and then gradually discharged to the outside of the battery module 1 via the flow path portion 76. As a result, the temperature of the gas or fine particles can be lowered by the time the gas or fine particles are released to the outside of the battery module 1, so that ignition outside the battery module 1 can be suppressed.
  • FIG. 4 is a cross-sectional side view of a region of the battery module 1 including the duct plate 28 and the cover plate 60.
  • FIG. 4 illustrates a cross section along an XZ plane extending in the stacking direction X and the vertical direction Z. Further, the illustration of the internal structure of the battery 14 is omitted.
  • the cover plate 60 has a first hanging wall portion 86 at an end portion of the battery 14 in the stacking direction X.
  • first hanging wall portions 86 are provided at both ends in the stacking direction X.
  • the main surface of each first hanging wall portion 86 faces the stacking direction X.
  • Each first hanging wall portion 86 extends in the second direction (vertical direction Z in the present embodiment) in which the cover plate 60 and the duct plate 28 are lined up at the end of the cover plate 60 in the stacking direction X, and is viewed from the stacking direction X. Overlaps the duct plate 28.
  • the first hanging wall portion 86 of the present embodiment overlaps with the first wall portion 34. Further, the first hanging wall portion 86 also overlaps with the second hanging wall portion 88, which will be described later.
  • the extending range of each first hanging wall portion 86 in the horizontal direction Y is preferably a range that overlaps with at least the entire exhaust duct 38.
  • the first hanging wall portion 86 of the present embodiment extends over substantially the entire horizontal direction Y.
  • the cover plate 60 is deformed so as to bulge in the central portion or is separated from the duct plate 28. It shifts in the direction of
  • the first hanging wall portion 86 overlaps with at least the first wall portion 34. Therefore, even if the cover plate 60 is deformed or displaced, the size of the gap between the cover plate 60 and the duct plate 28 does not substantially change. As a result, it is possible to prevent gas from leaking from the gap between the cover plate 60 and the duct plate 28 at the end of the stacking direction X instead of the flow path outlet 80.
  • the flow path resistance of the flow path portion 76 is, for example, the flow path resistance at the position where the flow path resistance is the smallest in the region from the opening 78 to the flow path outlet 80.
  • the duct plate 28 has a second hanging wall portion 88 at the end portion of the battery 14 in the stacking direction X.
  • second hanging wall portions 88 are provided at both ends in the stacking direction X.
  • the main surface of each second hanging wall portion 88 faces the stacking direction X.
  • each second hanging wall portion 88 extends in the second direction (vertical direction Z in the present embodiment) and overlaps with the first hanging wall portion 86 when viewed from the stacking direction X.
  • the exhaust duct 38 has a pair of third wall portions 90 that connect the ends of the pair of second wall portions 36 in the stacking direction X and form the end faces of the exhaust duct 38 in the stacking direction X.
  • Each of the second hanging wall portions 88 extends outward from the upper end of each third wall portion 90 in the stacking direction X, and then extends toward the battery laminate 2 side in the vertical direction Z.
  • the second hanging wall portion 88 is arranged between the first hanging wall portion 86 and the third wall portion 90 in the stacking direction X.
  • the first hanging wall portion 86 and the second hanging wall portion 88 face each other with a predetermined gap between the main surfaces facing each other.
  • the gap between the first hanging wall portion 86 and the second hanging wall portion 88 is set so that the flow path resistance becomes larger than the flow path resistance of the flow path portion 76.
  • gas leakage at the end of the stacking direction X can be further suppressed.
  • the main surfaces of the first hanging wall portion 86 and the second hanging wall portion 88 may come into contact with each other.
  • the second hanging wall portion 88 also overlaps with the battery laminate 2 when viewed from the stacking direction X of the battery 14. That is, the second hanging wall portion 88 extends from the upper end of the third wall portion 90 to the lower side of the upper surface of the battery laminate 2. Therefore, the main surface of the second hanging wall portion 88 faces the main surface of the batteries 14 arranged on the outermost side in the stacking direction X. The main surface of the second hanging wall portion 88 facing the battery laminate 2 side faces the main surface of the outer end separator 5 with a predetermined gap.
  • the gas leaking from the gap between the duct plate 28 and the upper surface of the battery 14 without being ejected to the exhaust duct 38 is discharged to the battery module 1. It is possible to suppress leakage to the outside of the.
  • the second hanging wall portion 88 and the outer end separator 5 may come into contact with each other.
  • the first wall portion 34 of the present embodiment is composed of a metal plate. Therefore, the rigidity of the first wall portion 34 is higher than that of the case made of resin.
  • the duct plate 28 may be displaced in the direction away from the battery laminate 2 due to the collision of the gas ejected from the battery 14 with the first wall portion 34.
  • a gap is formed between the base plate 33 and the battery laminate 2, and gas may leak from this gap. The gas leaking in this way is discharged to the outside of the battery module 1 without passing through the exhaust duct 38 and the flow path portion 76, and therefore remains at a high temperature. Therefore, the risk of ignition outside the module increases.
  • the second hanging wall portion 88 overlaps with the battery laminate 2. Therefore, even when the duct plate 28 is displaced in the direction away from the battery laminate 2, the size of the gap between the duct plate 28 and the battery laminate 2 does not substantially change. As a result, it is possible to prevent the gas ejected from the battery 14 from leaking to the outside of the battery module 1 without passing through the exhaust duct 38 and the flow path portion 76.
  • both ends in the stacking direction X are also fixed to the duct plate 28 by snap-fitting.
  • the cover plate 60 has engaging claws 87 extending from the upper end of the first hanging wall portion 86 to the outside in the stacking direction X at both ends in the stacking direction X.
  • the duct plate 28 has a locking wall 89 protruding from the main surface of the second hanging wall portion 88 facing outward in the stacking direction.
  • the locking wall 89 has an engaging hole 89a at a position overlapping the engaging claw 87 when viewed from the vertical direction Z.
  • the cover plate 60 is deformably fixed to the duct plate 28 by ejecting gas from the battery 14.
  • the exhaust duct 38 is arranged at a position overlapping the central portion of the cover plate 60 in the horizontal direction Y when viewed from the vertical direction Z. Therefore, when gas is ejected from the battery 14 and the internal pressure of the flow path portion 76 increases, the cover plate 60 is deformed so that the central portion swells.
  • the cover plate 60 can be deformed mainly by its own elasticity.
  • the "central portion” refers to, for example, with respect to the outermost engaging hole 74 on one end side of the cover plate 60 in the horizontal direction Y and the outermost engaging hole 74 on the other end side. A region including midpoints at equal distances in the horizontal direction Y.
  • the battery module 1 is provided on the battery laminate 2 having the plurality of stacked batteries 14, the duct plate 28 mounted on the battery laminate 2, and the duct plate 28. It includes a cover plate 60 on which it is placed, and a duct plate 28 and a flow path portion 76 defined by the cover plate 60.
  • Each battery 14 of the battery stack 2 has a valve portion 24 for ejecting gas.
  • the duct plate 28 has an exhaust duct 38 and covers a surface of the battery laminate 2 in which a plurality of valve portions 24 are arranged.
  • the exhaust duct 38 extends in the stacking direction X of the batteries 14 and is connected to the valve portion 24 of each battery 14, and temporarily stores the ejected gas.
  • the flow path portion 76 extends from the exhaust duct 38 in the first direction intersecting the stacking direction X of the battery 14, and causes the gas in the exhaust duct 38 to leak to the outside of the battery module 1.
  • the cover plate 60 has a first hanging wall portion 86 at the end of the battery 14 in the stacking direction X, which extends in the second direction in which the cover plate 60 and the duct plate 28 are arranged and overlaps with the duct plate 28 when viewed from the stacking direction X. ..
  • each valve portion 24 By connecting each valve portion 24 to the exhaust duct 38, the impact and pressure of the ejected gas can be received by the exhaust duct 38.
  • the exhaust duct 38 can receive a large impact or a rapidly rising pressure generated at the initial stage of gas ejection.
  • the gas ejected into the exhaust duct 38 gradually leaks from the flow path portion 76 to the outside of the battery module 1.
  • the temperature can be lowered until the gas or fine particles reach the flow path outlet 80.
  • ignition of the battery module 1 outside can be suppressed.
  • the cover plate 60 may swell excessively. If the cover plate 60 swells excessively, a large gap is created between the cover plate 60 and the duct plate 28, and gas may leak from an unintended location.
  • the gap is formed at the end of the battery module 1 in the stacking direction X, when gas is ejected from the battery 14 that is closer to the outside in the stacking direction X, that is, the battery 14 that is close to the outside of the battery module 1.
  • the gas is directly discharged to the outside of the battery module 1 through the gap. In this case, since the gas and fine particles are discharged to the outside of the battery module 1 at a high temperature, there is an increased risk of ignition outside the battery module 1.
  • the first hanging wall portion 86 on the cover plate 60, it is possible to prevent a gap having a flow path resistance smaller than that of the flow path portion 76 from being generated at the end portion in the stacking direction X. As a result, gas leakage at the end portion in the stacking direction X can be suppressed, and gas can be guided to the flow path outlet 80 of the flow path portion 76. That is, it is possible to prevent unintended gas leakage from other than the flow path portion 76. Therefore, according to the present embodiment, the safety of the battery module 1 can be enhanced. Further, the capacity of the battery module 1 can be increased while maintaining the safety of the battery module 1. Further, since the first hanging wall portion 86 extends toward the duct plate 28 side, even if the cover plate 60 is lifted, it is possible to suppress the formation of a gap between the cover plate 60 and the duct plate 28.
  • the duct plate 28 has a second hanging wall portion 88 extending in the second direction and overlapping the first hanging wall portion 86 when viewed from the stacking direction X at the end portion of the battery 14 in the stacking direction X.
  • the second hanging wall portion 88 overlaps with the battery laminated body 2. As a result, gas leakage at the end of the stacking direction X can be further suppressed.
  • the cover plate 60 is deformably fixed to the duct plate 28 by ejecting gas from the battery 14.
  • the cover plate 60 can be expanded to increase the volume of the space in which the gas stays in the battery module 1. Therefore, the amount of gas that can be temporarily retained inside the battery module 1 can be increased, and the time for retaining the gas can be extended. As a result, ignition outside the module can be further suppressed.
  • FIG. 5 is a cross-sectional side view of a region including the duct plate 28 and the cover plate 60 of the battery module 1 according to the first modification.
  • FIG. 5 illustrates a cross section along an XZ plane extending in the stacking direction X and the vertical direction Z. Further, the illustration of the internal structure of the battery 14 is omitted.
  • the first hanging wall portion 86 overlaps with the duct plate 28 in the range from the first wall portion 34 to the base plate 33.
  • the first hanging wall portion 86 extends below the upper surface of the battery laminate 2 and overlaps with the battery laminate 2 when viewed from the stacking direction X. Therefore, the main surface of the first hanging wall portion 86 faces the main surface of the batteries 14 arranged on the outermost side in the stacking direction X. By making the main surface of the first hanging wall portion 86 face the main surface of the battery 14, the gas leaking from the gap between the duct plate 28 and the upper surface of the battery 14 without being ejected to the exhaust duct 38 is outside the battery module 1. It is possible to further suppress leakage to the battery.
  • first hanging wall portion 86 of this modified example is fixed to the end plate 4.
  • the lower end of each first hanging wall portion 86 bends to the outside of the battery module 1 in the stacking direction X, and extends along the upper surface of each end plate 4.
  • the portion extending along the end plate 4 constitutes an engaging portion 92 with the end plate 4.
  • a through hole 92a is provided in each engaging portion 92.
  • a fastening hole 4b is provided on the upper surface of each end plate 4 at a position overlapping the through hole 92a in the vertical direction Z.
  • the number of batteries 14 included in the battery module 1 is not particularly limited.
  • the structure of each part of the battery module 1 including the shape of the side separator 10 and the fastening structure between the end plate 4 and the restraint member 12 is not particularly limited.
  • the battery 14 may have a cylindrical shape or the like. When sufficient heat conduction and frictional force between the battery laminate 2 and the cooling plate 6 can be secured, the heat conduction layer 8 is omitted, and an insulating sheet made of PET or PC is used as the battery laminate 2 and the cooling plate. It may be interposed between 6 and 6. Fixing the cover plate 60 and the end plate 4 is not limited to fastening with the fastening member 94.
  • the fixing may be a snap-fit coupling between an engaging claw provided on one of the cover plate 60 and the end plate 4 and an engaging hole provided on the other. Further, the fixing may be heat welding, welding, adhesion or the like. Further, a sealing material such as a gasket may be interposed between the cover plate 60 and the end plate 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

電池モジュールの安全性を高めるために、電池モジュールは、それぞれが弁部(24)を有する複数の電池(14)が積層された電池積層体(2)と、電池積層体(2)における複数の弁部(24)が配置される面を覆い、各電池(14)の弁部(24)から噴出したガスを一時的に貯留する排気ダクト(38)を有するダクトプレート(28)と、ダクトプレート(28)に載置されるカバープレート(60)と、ダクトプレート(28)およびカバープレート(60)で画成され、排気ダクト(38)から延びて排気ダクト(38)内のガスを電池モジュールの外部に漏出させる流路部と、を備える。カバープレート(60)は、積層方向(X)における端部に、カバープレート(60)およびダクトプレート(28)が並ぶ第2方向に延びて積層方向(X)から見てダクトプレート(28)と重なる第1垂壁部(86)を有する。

Description

電池モジュール
 本発明は、電池モジュールに関する。
 例えば車両用等の高い出力電圧が要求される電源として、複数個の電池が電気的に接続された電池モジュールが知られている。一般に、電池モジュールを構成する各電池には、内圧の上昇に応じて開弁する弁部が設けられている。例えば、電池内部で短絡が生じ温度が上昇した場合、化学反応によってガスが発生する。これにより電池内圧が高まると、高温高圧のガスが弁部から噴出する。このような電池を備える電池モジュールに関して、特許文献1には、複数の電池が積層された電池積層体と、電池積層体の一面に各電池の弁部と連結するように固定された排気ダクトと、を備える電池モジュールが開示されている。
国際公開2013/161655号
 電池から噴出したガスが電池モジュールの外部に排出されて外部の酸素と混ざると、電池モジュールの外部で発火に至るおそれがある。電池モジュールの使用者の安全を担保するために、ガス噴出から所定時間(例えば5分間)は、電池モジュール外での発火を遅らせることが求められる。このため、電池モジュールには、様々な発火対策が施されている。
 電池モジュール外の発火を抑制する方法として、電池から噴出したガスを時間をかけて徐々に電池モジュール外に漏出させることが考えられる。これにより、電池から噴出したガスや微粒子の温度を下げて、電池モジュール外での発火を抑制することができる。一方で、近年は電池モジュールのさらなる高容量化が求められており、この要求を満たすために電池の高容量化が進んでいる。電池が高容量化すると電池から噴出するガスの量が増える。今後、電池の高容量化がさらに進み電池から噴出するガスの量がより増大すると、電池モジュールの外部での発火のおそれが高まり、電池モジュールの安全性が低下し得る。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、電池モジュールの安全性を高める技術を提供することにある。
 本発明のある態様は、電池モジュールである。この電池モジュールは、積層された複数の電池を有する電池積層体であって、各電池がガスを噴出する弁部を有する電池積層体と、電池積層体における複数の弁部が配置される面を覆うダクトプレートであって、電池の積層方向に延びて各電池の弁部に接続され、噴出したガスを一時的に貯留する排気ダクトを有するダクトプレートと、ダクトプレートに載置されるカバープレートと、ダクトプレートおよびカバープレートで画成され、排気ダクトから積層方向と交わる第1方向に延び、排気ダクト内のガスを電池モジュールの外部に漏出させる流路部と、を備える。カバープレートは、積層方向における端部に、カバープレートおよびダクトプレートが並ぶ第2方向に延びて積層方向から見てダクトプレートと重なる第1垂壁部を有する。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、電池モジュールの安全性を高めることができる。
実施の形態に係る電池モジュールの斜視図である。 電池モジュールの分解斜視図である。 電池モジュールのダクトプレートおよびカバープレートを含む領域の断面側面図である。 電池モジュールのダクトプレートおよびカバープレートを含む領域の断面側面図である。 変形例1に係る電池モジュールのダクトプレートおよびカバープレートを含む領域の断面側面図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
 図1は、実施の形態に係る電池モジュールの斜視図である。図2は、電池モジュールの分解斜視図である。なお、図1および図2では、カバープレート60の第1垂壁部86およびダクトプレート28の第2垂壁部88の図示を省略している。電池モジュール1は、電池積層体2と、一対のエンドプレート4と、冷却プレート6と、熱伝導層8と、サイドセパレータ10と、拘束部材12と、ダクトプレート28と、カバープレート60と、を備える。
 電池積層体2は、複数の電池14と、セル間セパレータ16と、を有する。各電池14は、例えば、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。また、各電池14はいわゆる角形電池であり、扁平な直方体形状の外装缶18を有する。外装缶18の一面には図示しない略長方形状の開口が設けられ、この開口を介して外装缶18に電極体や電解液等が収容される。外装缶18の開口には、開口を塞ぐ封口板20が設けられる。
 封口板20には、長手方向の一端寄りに正極の出力端子22が配置され、他端寄りに負極の出力端子22が配置される。一対の出力端子22はそれぞれ、電極体を構成する正極板、負極板と電気的に接続される。以下では適宜、正極の出力端子22を正極端子22aと称し、負極の出力端子22を負極端子22bと称する。また、出力端子22の極性を区別する必要がない場合、正極端子22aと負極端子22bとをまとめて出力端子22と称する。
 外装缶18、封口板20および出力端子22は導電体であり、例えば金属製である。封口板20と外装缶18の開口とは、例えばレーザー溶接により接合される。各出力端子22は、封口板20に形成された貫通孔(図示せず)に挿通される。各出力端子22と各貫通孔との間には、絶縁性のシール部材(図示せず)が介在する。
 本実施の形態の説明では、便宜上、封口板20を電池14の上面、封口板20と対向する外装缶18の底面を電池14の下面とする。また、電池14は、上面および下面をつなぐ2つの主表面を有する。この主表面は、電池14が有する6つの面のうち面積の最も大きい面である。また、主表面は、上面および下面の長辺と接続される長側面である。上面、下面および2つの主表面を除いた残り2つの面は、電池14の側面とする。この側面は、上面および下面の短辺と接続される一対の短側面である。
 また、便宜上、電池積層体2において電池14の上面側の面を電池積層体2の上面とし、電池14の下面側の面を電池積層体2の下面とし、電池14の側面側の面を電池積層体2の側面とする。これらの方向および位置は、便宜上規定したものである。したがって、例えば、本発明において上面と規定された部分は、下面と規定された部分よりも必ず上方に位置することを意味するものではない。
 封口板20には、一対の出力端子22の間に弁部24が設けられる。弁部24は、安全弁とも呼ばれ、各電池14が電池内部のガスを噴出するための機構である。弁部24は、外装缶18の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出できるように構成される。弁部24は、例えば封口板20の一部に設けられる、他部よりも厚さが薄い薄肉部と、この薄肉部の表面に形成される線状の溝とで構成される。この構成では、外装缶18の内圧が上昇すると、溝を起点に薄肉部が裂けることで開弁される。各電池14の弁部24は、後述する排気ダクト38に接続され、電池内部のガスは弁部24から排気ダクト38に排出される。
 また、各電池14は、絶縁フィルム26を有する。絶縁フィルム26は、例えば筒状のシュリンクチューブであり、外装缶18を内部に通した後に加熱される。これにより、絶縁フィルム26は収縮し、外装缶18の2つの主表面、2つの側面および底面を被覆する。絶縁フィルム26により、隣り合う電池14間、あるいは電池14とエンドプレート4や拘束部材12との間の短絡を抑制することができる。
 複数の電池14は、隣り合う電池14の主表面同士が対向するようにして所定の間隔で積層される。なお、「積層」は、任意の1方向に複数の部材を並べることを意味する。したがって、電池14の積層には、複数の電池14を水平に並べることも含まれる。本実施の形態では、電池14は水平に積層されている。したがって、電池14の積層方向Xは、水平に延びる方向である。以下では適宜、水平で且つ積層方向Xに垂直な方向を水平方向Yとし、積層方向Xおよび水平方向Yに対し垂直な方向を鉛直方向Zとする。
 また、各電池14は、出力端子22が同じ方向を向くように配置される。本実施の形態の各電池14は、出力端子22が鉛直方向上方を向くように配置される。また、各電池14は、隣接する電池14を直列に接続する場合、一方の電池14の正極端子22aと他方の電池14の負極端子22bとが隣り合うように積層される。また、隣接する電池14を並列に接続する場合、一方の電池14の正極端子22aと他方の電池14の正極端子22aとが隣り合うように積層される。
 セル間セパレータ16は、絶縁スペーサとも呼ばれ、例えば絶縁性を有する樹脂シートからなる。セル間セパレータ16を構成する樹脂としては、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の熱可塑性樹脂が例示される。セル間セパレータ16は、隣接する2つの電池14の間に配置されて、当該2つの電池14間を電気的に絶縁する。
 電池積層体2は、一対のエンドプレート4により電池14の積層方向Xに挟まれる。一対のエンドプレート4は、電池14の積層方向Xにおける電池積層体2の両端に配置される。一対のエンドプレート4は、積層方向Xにおける両端に位置する電池14と、外端セパレータ5を介して隣り合う。外端セパレータ5は、セル間セパレータ16と同じ樹脂材料で構成することができる。各エンドプレート4は、鉄、ステンレス鋼、アルミニウム等の金属で構成される金属板である。エンドプレート4と電池14との間に外端セパレータ5が介在することで、両者が絶縁される。
 各エンドプレート4は、水平方向Yを向く2つの面に締結孔4aを有する。本実施の形態では、3つの締結孔4aが鉛直方向Zに所定の間隔をあけて配置されている。締結孔4aが設けられる面は、拘束部材12の後述する平面部54と対向する。
 電池積層体2の上面には、ダクトプレート28が載置される。ダクトプレート28は、電池積層体2の上面、つまり各電池14の弁部24が配置される面を覆う板状の部材である。ダクトプレート28は、各電池14の弁部24に対応する位置に、弁部24を露出させる複数の開口32を有する。複数の開口32は、電池積層体2の上面に沿って延びるベース板33に設けられる。また、ダクトプレート28は、各電池14から噴出したガスを一時的に貯留する排気ダクト38を有する。排気ダクト38は、電池14の積層方向Xに延びて各電池14の弁部24に接続される。各弁部24は、開口32を介して排気ダクト38に連通される。
 排気ダクト38は、複数の開口32の上方を覆う第1壁部34と、各開口32の側方を囲う一対の第2壁部36と、で画成される。第1壁部34および一対の第2壁部36は、それぞれ積層方向Xに長い長尺状である。一対の第2壁部36は、複数の開口32を挟んで水平方向Yに配列され、それぞれの壁面が電池14の積層方向Xと交わる水平方向Yを向く。第1壁部34は、壁面がダクトプレート28およびカバープレート60の並ぶ鉛直方向Zを向き、各弁部24と対向する。一対の第2壁部36は、ベース板33からカバープレート60に向けて突出し、排気ダクト38の両側面を構成する。第1壁部34は、一対の第2壁部36の上端に固定されて排気ダクト38の天面を構成する。
 また、ダクトプレート28は、各電池14の出力端子22に対応する位置に、出力端子22を露出させる開口40を有する。各開口40には、バスバー42が載置される。複数のバスバー42は、ダクトプレート28によって支持される。したがって、ダクトプレート28は、いわゆるバスバープレートとしても機能する。各開口40に載置されたバスバー42によって、隣り合う電池14の出力端子22どうしが電気的に接続される。
 本実施の形態のダクトプレート28は、第1壁部34を除いてポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の樹脂で構成される。第1壁部34は、鉄やアルミニウム等の金属で構成される。また、一対の第2壁部36は、ベース板33と一体成形される。第1壁部34は、ねじ等の締結部材(図示せず)により一対の第2壁部36に固定される。
 バスバー42は、銅やアルミニウム等の金属で構成される略帯状の部材である。バスバー42は、一方の端部が一方の電池14の出力端子22に接続され、他方の端部が他方の電池14の出力端子22に接続される。バスバー42は、隣接する複数個の電池14における同極性の出力端子22どうしを並列接続して電池ブロックを形成し、さらに電池ブロックどうしを直列接続してもよい。
 積層方向Xにおいて両端に位置する電池14の出力端子22に接続されるバスバー42は、外部接続端子44を有する。外部接続端子44は、外部負荷(図示せず)に接続される。また、ダクトプレート28には、電圧検出線46が載置される。電圧検出線46は、複数の電池14に電気的に接続されて各電池14の電圧を検出する。電圧検出線46は、複数の導線(図示せず)を有する。各導線は、一端が各バスバー42に接続され、他端がコネクタ48に接続される。コネクタ48は、外部の電池ECU(図示せず)等に接続される。電池ECUは、各電池14の電圧等の検知、各電池14の充放電等を制御する。
 冷却プレート6は、積層方向Xおよび水平方向Yに延在する平板状であり、アルミニウム等の熱伝導性の高い材料で構成される。冷却プレート6は、電池積層体2に熱的に接続されて、つまり電池積層体2に熱交換可能に接続されて、各電池14を冷却する。本実施の形態では、冷却プレート6の主表面に電池積層体2が載置される。電池積層体2は、下面が冷却プレート6側を向くようにして、冷却プレート6に載置される。したがって、電池積層体2と冷却プレート6とは鉛直方向Zに並ぶ。冷却プレート6は、電池モジュール1の外部、例えば電池モジュール1が搭載される車両の車体等に熱交換可能に接続されてもよい。また、冷却プレート6は、水やエチレングリコール等の冷媒が流れる流路を内部に有してもよい。これらにより、電池積層体2と冷却プレート6との熱交換効率をより高めることができ、ひいては電池14の冷却効率をより高めることができる。
 熱伝導層8は、電池積層体2と冷却プレート6との間に介在する絶縁性の部材である。つまり、冷却プレート6は、熱伝導層8を介して電池積層体2に熱的に接続される。熱伝導層8は、電池積層体2の底面全体を覆っている。熱伝導層8の熱伝導率は空気の熱伝導率よりも高い。熱伝導層8は、例えばアクリルゴムシートやシリコーンゴムシート等の、良好な熱伝導性を有する公知の樹脂シート等で構成することができる。また、熱伝導層8は、良好な熱伝導性および絶縁性を有する公知の接着剤、グリス等で構成されてもよい。なお、外装缶18が絶縁フィルム26等で十分に絶縁されている場合には、熱伝導層8は絶縁性を有しなくてもよい。
 熱伝導層8を電池積層体2と冷却プレート6との間に介在させることで、各電池14と冷却プレート6との熱的な接続をより確実に得ることができる。このため、各電池14の冷却効率を高めることができるとともに、各電池14をより均一に冷却することができる。また、熱伝導層8が絶縁性を有する場合には、電池積層体2と冷却プレート6とが電気的に接続されてしまうことをより確実に回避することができる。さらに、熱伝導層8によって、電池積層体2と冷却プレート6とのずれを抑制することができる。
 サイドセパレータ10は、絶縁性を有し、拘束部材12と電池積層体2とを絶縁するための部材である。本実施の形態では、水平方向Yに一対のサイドセパレータ10が配列される。各サイドセパレータ10は、電池14の積層方向Xに長い長尺状である。一対のサイドセパレータ10の間には、電池積層体2、一対のエンドプレート4、冷却プレート6および熱伝導層8が配置される。各サイドセパレータ10は、例えば絶縁性を有する樹脂からなる。サイドセパレータ10を構成する樹脂としては、セル間セパレータ16と同様に、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の熱可塑性樹脂が例示される。
 本実施の形態のサイドセパレータ10は、第1部分50と、第2部分52と、第3部分53と、を有する。第1部分50は、矩形の平板状であり、電池積層体2の側面に沿って電池14の積層方向Xに延びる。第2部分52は、積層方向Xに延びる帯状であり、第1部分50の下辺から電池積層体2側に突出する。第3部分53は、積層方向Xに延びる帯状であり、第1部分50の上辺から電池積層体2側に突出する。したがって、第2部分52および第3部分53は、電池積層体2および冷却プレート6の配列方向で互いに対向する。第2部分52および第3部分53の間には、電池積層体2、冷却プレート6および熱伝導層8が配置される。
 拘束部材12は、バインドバーとも呼ばれ、電池14の積層方向Xに長い長尺状の部材である。本実施の形態では、水平方向Yに一対の拘束部材12が配列される。各拘束部材12は金属製である。拘束部材12を構成する金属としては、鉄やステンレス鋼等が例示される。一対の拘束部材12の間には、電池積層体2、一対のエンドプレート4、冷却プレート6、熱伝導層8および一対のサイドセパレータ10が配置される。
 本実施の形態の拘束部材12は、平面部54と、一対の腕部56と、を有する。平面部54は矩形状であり、電池積層体2の側面に沿って積層方向Xに延びる。一対の腕部56は、鉛直方向Zにおける平面部54の両側の端部から電池積層体2側に突出する。つまり、一方の腕部56は平面部54の上辺から電池積層体2側に突出し、他方の腕部56は平面部54の下辺から電池積層体2側に突出する。したがって、一対の腕部56は、電池積層体2および冷却プレート6の配列方向で互いに対向する。一対の腕部56の間には、電池積層体2、冷却プレート6、熱伝導層8およびサイドセパレータ10が配置される。
 平面部54における各エンドプレート4と対向する領域には、コンタクトプレート68が溶接等により固定される。コンタクトプレート68は、鉛直方向Zに長い部材である。コンタクトプレート68には、エンドプレート4の締結孔4aに対応する位置に、コンタクトプレート68を水平方向Yに貫通する貫通孔70が設けられる。また、平面部54は、コンタクトプレート68の貫通孔70に対応する位置に、平面部54を水平方向Yに貫通する貫通孔58を有する。
 各拘束部材12の平面部54に一対のエンドプレート4が係合することで、複数の電池14が積層方向Xに挟み込まれる。具体的には、複数の電池14と複数のセル間セパレータ16とが交互に配列されて電池積層体2が形成され、電池積層体2が外端セパレータ5を介して一対のエンドプレート4で積層方向Xに挟まれる。また、電池積層体2の下面に熱伝導層8が配置され、さらに熱伝導層8を挟んで電池積層体2と対向するように冷却プレート6が配置される。この状態で、電池積層体2、一対のエンドプレート4、冷却プレート6および熱伝導層8が一対のサイドセパレータ10で水平方向Yに挟まれる。さらに、一対のサイドセパレータ10の外側から、一対の拘束部材12が全体を水平方向Yに挟み込む。
 一対のエンドプレート4と一対の拘束部材12とは、締結孔4a、貫通孔70および貫通孔58が重なり合うように、互いに位置合わせされる。そして、ねじ等の締結部材59が貫通孔58および貫通孔70に挿通され、締結孔4aに螺合される。これにより、一対のエンドプレート4と一対の拘束部材12とが固定される。一対のエンドプレート4と一対の拘束部材12とが係合されることで、複数の電池14は、積層方向Xにおいて締め付けられて拘束される。これにより、各電池14は、積層方向Xにおいて位置決めされる。
 また、拘束部材12は、複数の電池14を積層方向Xに挟み込むとともに、電池積層体2、熱伝導層8および冷却プレート6をこれらの配列方向に挟み込む。具体的には、拘束部材12は、電池14の積層方向Xにおける平面部54の両端部が一対のエンドプレート4と係合することで、複数の電池14を積層方向Xに挟み込む。また、拘束部材12は、一対の腕部56で電池積層体2、熱伝導層8および冷却プレート6を鉛直方向Zに挟み込む。つまり、拘束部材12は、複数の電池14を締結する機能と、電池積層体2と冷却プレート6とを締結する機能とを兼ね備えている。したがって、電池積層体2と冷却プレート6とは、従来の構造とは異なり、ねじで非締結である。
 一対の拘束部材12が一対のエンドプレート4に固定された状態で、サイドセパレータ10の第1部分50は、電池積層体2の側面と拘束部材12の平面部54との間に介在する。これにより、各電池14の側面と平面部54とが電気的に絶縁される。サイドセパレータ10の第2部分52は、冷却プレート6と拘束部材12の下側の腕部56との間に介在する。これにより、冷却プレート6と下側の腕部56とが電気的に絶縁される。サイドセパレータ10の第3部分53は、電池積層体2の上面と拘束部材12の上側の腕部56との間に介在する。これにより、各電池14の上面と上側の腕部56とが電気的に絶縁される。
 一対の腕部56によって電池積層体2、熱伝導層8および冷却プレート6が鉛直方向Zに挟み込まれた状態で、熱伝導層8は、電池積層体2および冷却プレート6に押圧されて、弾性変形または塑性変形する。これにより、電池積層体2と冷却プレート6との熱的な接続をより確実に得ることができる。また、電池積層体2全体の冷却の均一化を図ることができる。さらに、電池積層体2と冷却プレート6とのXY平面方向のずれをより一層抑制することができる。
 一例として、これらの組み付けが完了した後に、電池積層体2にダクトプレート28が載置される。ダクトプレート28は、一対のサイドセパレータ10の第3部分53が係合することで電池積層体2に対して固定される。そして、各電池14の出力端子22にバスバー42が取り付けられて、複数の電池14の出力端子22どうしが電気的に接続される。例えばバスバー42は、溶接により出力端子22に固定される。
 ダクトプレート28の上面には、カバープレート60が載置される。カバープレート60は、ダクトプレート28の上方を覆う板状の部材である。本実施の形態のカバープレート60は、電池モジュール1の外郭の一部、具体的には電池モジュール1の上面を構成する、いわゆるトップカバーである。カバープレート60により、電池14の出力端子22や弁部24、バスバー42等への結露水や塵埃等の接触が抑制される。カバープレート60は、例えばポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ノリル(登録商標)樹脂(変性PPE)等の絶縁性を有する樹脂で構成される。カバープレート60は、鉛直方向Zで外部接続端子44と重なる位置に絶縁カバー部62を有する。カバープレート60がダクトプレート28に載置された状態で、外部接続端子44は絶縁カバー部62で覆われる。
 カバープレート60は、水平方向Yにおける両端部がダクトプレート28に固定される。本実施の形態のカバープレート60は、スナップフィットによりダクトプレート28に固定される。具体的には、ダクトプレート28は、水平方向Yにおける両端部に、積層方向Xに間隔をあけて複数の係合爪72を有する。また、カバープレート60は、鉛直方向Zから見て各係合爪72と重なる位置に係合孔74を有する。カバープレート60がダクトプレート28に載置されると、各係合孔74に各係合爪72が挿入される。これにより、カバープレート60の水平方向Yにおける両端部がダクトプレート28に固定される。
 図3は、電池モジュール1のダクトプレート28およびカバープレート60を含む領域の断面側面図である。図3では、水平方向Yおよび鉛直方向Zに拡がるYZ平面に沿った断面を図示している。また、電池14の内部構造の図示を省略している。
 電池モジュール1は、流路部76を備える。流路部76は、排気ダクト38内のガスを電池モジュール1の外部に漏出させる流路である。流路部76は、ダクトプレート28およびカバープレート60で画成され、排気ダクト38から積層方向Xと交わる第1方向(本実施の形態では水平方向Y)に延びる。本実施の形態では、排気ダクト38を挟んで水平方向Yの両側に流路部76が配置される。各流路部76は、排気ダクト38の水平方向Yを向く第2壁部36に接続される。より具体的には、第2壁部36には開口78が設けられ、各流路部76の一方の端部は開口78に接続される。各流路部76の他方の端部は、電池モジュール1の水平方向Yの端部に配置される流路出口80に接続される。
 第2壁部36には積層方向Xに所定の間隔をあけて複数の開口78が設けられ、流路部76の一方の端部は複数の開口78に接続される。また、流路出口80は、積層方向Xに長い開口である。したがって、流路部76は、積層方向Xおよび水平方向Yに拡がる平面状の流路である。カバープレート60は、排気ダクト38の第1壁部34との間に所定の隙間Gが設けられるように配置される。つまり、第1壁部34とカバープレート60とは、隙間Gだけ鉛直方向Zに離間している。隙間Gは、水平方向Yの両端部が流路部76に接続される。したがって、水平方向Yに並ぶ2つの流路部76は、隙間Gを介して連通される。
 弁部24から電池14内のガスが噴出すると、ガスは弁部24と対向する第1壁部34に衝突する。第1壁部34に衝突したガスは、第1壁部34に沿って流れて開口78から流路部76に流入する。流路部76に流入したガスは、流路部76内を水平方向Yおよび積層方向Xに流れ、流路出口80から電池モジュール1の外部に漏出する。
 電池14から噴出するガスの少なくとも一部は、可燃性のガスである。また、電池14から噴出するガスには、電池構造物の破片等の微粒子も含まれる。電池モジュール1の外部に高温の可燃性ガスと高温の微粒子とが排出され、これらとモジュール外の酸素とが混ざると、電池モジュール1の外部で発火に至るおそれがある。これに対し、本実施の形態では弁部24から噴出したガスを一旦排気ダクト38で受け、その後に流路部76を経由して電池モジュール1の外部に徐々に放出している。これにより、ガスや微粒子が電池モジュール1の外部に放出されるまでに、その温度を下げることができるため、電池モジュール1の外部での発火を抑制することができる。
 図4は、電池モジュール1のダクトプレート28およびカバープレート60を含む領域の断面側面図である。図4では、積層方向Xおよび鉛直方向Zに拡がるXZ平面に沿った断面を図示している。また、電池14の内部構造の図示を省略している。
 カバープレート60は、電池14の積層方向Xにおける端部に第1垂壁部86を有する。本実施の形態では、積層方向Xにおける両端に第1垂壁部86が設けられている。各第1垂壁部86は、その主表面が積層方向Xを向いている。各第1垂壁部86は、カバープレート60の積層方向Xの端部においてカバープレート60およびダクトプレート28が並ぶ第2方向(本実施の形態では鉛直方向Z)に延び、積層方向Xから見てダクトプレート28と重なる。
 本実施の形態の第1垂壁部86は、第1壁部34とオーバーラップしている。また、第1垂壁部86は、後述する第2垂壁部88ともオーバーラップしている。水平方向Yにおける各第1垂壁部86の延在範囲は、少なくとも排気ダクト38の全体と重なる範囲であることが好ましい。本実施の形態の第1垂壁部86は、水平方向Yの実質全体に延在している。カバープレート60に第1垂壁部86を設けることで、排気ダクト38から流路部76に流入したガスが、流路出口80ではなく積層方向Xの端部におけるカバープレート60とダクトプレート28との隙間から漏れてしまうことを抑制することができる。特に、電池14から噴出するガスの量が多い場合、電池14からガスが噴出して流路部76の内圧が高まると、カバープレート60は中央部が膨らむように変形したりダクトプレート28から離間する方向に変位したりする。これに対し、本実施の形態では、第1垂壁部86が少なくとも第1壁部34とオーバーラップしている。このため、カバープレート60が変形や変位した場合でも、カバープレート60とダクトプレート28との隙間の大きさは実質的に変化しない。これにより、流路出口80ではなく積層方向Xの端部におけるカバープレート60とダクトプレート28との隙間からガスが漏れてしまうことを抑制することができる。
 また、流路部76の流路抵抗よりも流路抵抗が大きくなるように第1垂壁部86とダクトプレート28との隙間を設定することで、積層方向Xの端部におけるガスの漏れをより確実に抑制することができる。流路部76の流路抵抗は、例えば開口78から流路出口80に至るまでの領域において最も流路抵抗の小さい箇所における流路抵抗である。
 また、ダクトプレート28は、電池14の積層方向Xにおける端部に第2垂壁部88を有する。本実施の形態では、積層方向Xにおける両端に第2垂壁部88が設けられている。各第2垂壁部88は、その主表面が積層方向Xを向いている。また、各第2垂壁部88は、第2方向(本実施の形態では鉛直方向Z)に延び、積層方向Xから見て第1垂壁部86と重なる。
 排気ダクト38は、一対の第2壁部36における積層方向Xの端部をつなぎ、排気ダクト38の積層方向Xの端面を構成する一対の第3壁部90を有する。各第2垂壁部88は、各第3壁部90の上端から積層方向Xの外側に延出した後に、鉛直方向Zにおいて電池積層体2側に延びている。第2垂壁部88は、積層方向Xにおいて第1垂壁部86と第3壁部90との間に配置される。
 第1垂壁部86と第2垂壁部88とは、互いに向かい合う主表面が所定の隙間をあけて対向している。例えば、流路部76の流路抵抗よりも流路抵抗が大きくなるように第1垂壁部86と第2垂壁部88との隙間が設定される。これにより、積層方向Xの端部におけるガスの漏れをより抑制することができる。なお、第1垂壁部86と第2垂壁部88とは、互いに向かい合う主表面が当接してもよい。
 また、第2垂壁部88は、電池14の積層方向Xから見て電池積層体2とも重なっている。つまり、第2垂壁部88は、第3壁部90の上端から、電池積層体2の上面よりも下方まで延びている。したがって、第2垂壁部88の主表面は、積層方向Xの最も外側に配列される電池14の主表面と対向する。第2垂壁部88は、電池積層体2側を向く主表面が外端セパレータ5の主表面と所定の隙間をあけて対向している。第2垂壁部88の主表面を外端セパレータ5の主表面と対向させることで、排気ダクト38に噴出されずにダクトプレート28と電池14の上面との隙間から漏れたガスが電池モジュール1の外部に漏れることを抑制することができる。なお、第2垂壁部88と外端セパレータ5とは互いに当接してもよい。
 本実施の形態の第1壁部34は、金属板で構成される。したがって、樹脂製の場合に比べて第1壁部34は剛性が高い。この場合、電池14から噴出したガスの第1壁部34への衝突によって、ダクトプレート28が電池積層体2から離間する方向に変位するおそれがある。ダクトプレート28が変位すると、ベース板33と電池積層体2との間に隙間が形成され、この隙間からガスが漏れてしまう可能性がある。このように漏れるガスは、排気ダクト38や流路部76を通過することなく電池モジュール1の外部に排出されるため、高温のままである。したがって、モジュール外部での発火のおそれが高まる。これに対し、本実施の形態では、第2垂壁部88が電池積層体2とオーバーラップしている。このため、ダクトプレート28が電池積層体2から離間する方向に変位した場合でも、ダクトプレート28と電池積層体2との隙間の大きさは実質的に変化しない。これにより、電池14から噴出するガスが排気ダクト38や流路部76を通過することなく電池モジュール1の外部に漏れてしまうことを抑制することができる。
 また、本実施の形態のカバープレート60は、積層方向Xにおける両端部もスナップフィットによりダクトプレート28に固定される。具体的には、カバープレート60は積層方向Xにおける両端部に、第1垂壁部86の上端から積層方向Xの外側に延出する係合爪87を有する。また、ダクトプレート28は、第2垂壁部88の積層方向外側を向く主表面から突出する係止壁89を有する。係止壁89は、鉛直方向Zから見て係合爪87と重なる位置に係合孔89aを有する。カバープレート60がダクトプレート28に載置されると、係合孔89aに係合爪87が挿入される。これにより、カバープレート60の積層方向Xにおける両端部がダクトプレート28に固定される。
 カバープレート60は、ダクトプレート28に対し、電池14からのガスの噴出により変形可能に固定される。鉛直方向Zから見て、排気ダクト38は、カバープレート60の水平方向Yにおける中央部と重なる位置に配置される。このため、電池14からガスが噴出して流路部76の内圧が高まると、カバープレート60は中央部が膨らむように変形する。カバープレート60は、主に自身の弾性によって変形することができる。前記「中央部」とは、例えば水平方向Yにおけるカバープレート60の一端側で最も外側に位置する係合孔74と、他端側で最も外側に位置する係合孔74とのそれぞれに対し、水平方向Yで等しい距離にある中間点を含む領域である。
 以上説明したように、本実施の形態に係る電池モジュール1は、積層された複数の電池14を有する電池積層体2と、電池積層体2に載置されるダクトプレート28と、ダクトプレート28に載置されるカバープレート60と、ダクトプレート28およびカバープレート60で画成される流路部76と、を備える。電池積層体2の各電池14は、ガスを噴出する弁部24を有する。ダクトプレート28は、排気ダクト38を有し、電池積層体2における複数の弁部24が配置される面を覆う。排気ダクト38は、電池14の積層方向Xに延びて各電池14の弁部24に接続され、噴出したガスを一時的に貯留する。流路部76は、排気ダクト38から電池14の積層方向Xと交わる第1方向に延び、排気ダクト38内のガスを電池モジュール1の外部に漏出させる。カバープレート60は、電池14の積層方向Xにおける端部に、カバープレート60およびダクトプレート28が並ぶ第2方向に延びて積層方向Xから見てダクトプレート28と重なる第1垂壁部86を有する。
 各弁部24を排気ダクト38に接続することで、噴出したガスの衝撃や圧力を排気ダクト38で受けることができる。特に、ガスの噴出初期に生じる大きな衝撃や急激に上昇する圧力を排気ダクト38で受けることができる。また、排気ダクト38に噴出したガスは、流路部76から徐々に電池モジュール1の外部に漏出する。これにより、電池モジュール1の外部にガスが勢いよく噴出することを抑制することができる。また、流路部76から徐々にガスを漏出させることで、ガスや微粒子が流路出口80に至るまでにその温度を下げることができる。これにより、電池モジュール1の外部での発火を抑制することができる。
 電池14の高容量化が進み電池14から噴出するガスの量が増えると、流路部76の内圧が増大し、カバープレート60が過度に膨らみ得る。カバープレート60が過度に膨らむと、カバープレート60とダクトプレート28との間に大きな隙間が生じ、意図しない箇所からガスが漏れてしまうおそれがある。特に、電池モジュール1の積層方向Xにおける端部に当該隙間が生じると、積層方向Xで外側寄りの電池14、つまり電池モジュール1の外部への距離が近い電池14からガスが噴出した際に、ガスが隙間から直に電池モジュール1の外部に排出されてしまう。この場合、ガスや微粒子が高温のまま電池モジュール1の外部に排出されてしまうため、電池モジュール1の外部で発火するおそれが高まる。
 これに対し、カバープレート60に第1垂壁部86を設けることで、流路部76よりも流路抵抗の小さい隙間が積層方向Xの端部に生じることを抑制することができる。これにより、積層方向Xの端部におけるガスの漏れを抑制して、流路部76の流路出口80にガスを誘導することができる。つまり、流路部76以外からの意図しないガスの漏れを防ぐことができる。よって、本実施の形態によれば、電池モジュール1の安全性を高めることができる。また、電池モジュール1の安全性を維持しながら電池モジュール1の高容量化を図ることができる。また、第1垂壁部86は、ダクトプレート28側に向かって延びるため、仮にカバープレート60が浮き上がったとしても、ダクトプレート28との間に隙間が生じることを抑制することができる。
 また、ダクトプレート28は、電池14の積層方向Xにおける端部に、第2方向に延びて積層方向Xから見て第1垂壁部86と重なる第2垂壁部88を有する。これにより、積層方向Xの端部におけるガスの漏れをより抑制することができる。また、積層方向Xから見て、第2垂壁部88は電池積層体2と重なる。これにより、積層方向Xの端部におけるガスの漏れをより抑制することができる。
 また、カバープレート60は、ダクトプレート28に対し、電池14からのガスの噴出により変形可能に固定される。これにより、電池14から噴出したガスの量が増大した際に、カバープレート60を膨張させることで、電池モジュール1内でガスが滞留する空間の容積を増加させることができる。よって、電池モジュール1の内部に一時的に留めておくことができるガスの量を増やすことができ、また留めておく時間を延ばすことができる。この結果、モジュール外部での発火をより抑制することができる。
 以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。実施の形態に含まれる構成要素の任意の組み合わせも、本発明の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。
(変形例1)
 図5は、変形例1に係る電池モジュール1のダクトプレート28およびカバープレート60を含む領域の断面側面図である。図5では、積層方向Xおよび鉛直方向Zに拡がるXZ平面に沿った断面を図示している。また、電池14の内部構造の図示を省略している。変形例1にかかる電池モジュール1では、第1垂壁部86が第1壁部34からベース板33に至るまでの範囲でダクトプレート28とオーバーラップしている。
 また、第1垂壁部86は、電池積層体2の上面よりも下方まで延び、積層方向Xから見て電池積層体2とも重なっている。したがって、第1垂壁部86の主表面は、積層方向Xの最も外側に配列される電池14の主表面と対向する。第1垂壁部86の主表面を電池14の主表面と対向させることで、排気ダクト38に噴出せずにダクトプレート28と電池14の上面との隙間から漏れたガスが電池モジュール1の外部に漏れることをより抑制することができる。
 また、本変形例の第1垂壁部86は、エンドプレート4に固定される。具体的には、各第1垂壁部86の下端は、積層方向Xで電池モジュール1の外側に折れ曲がり、各エンドプレート4の上面に沿って延びる。このエンドプレート4に沿って延びる部分は、エンドプレート4との係合部92を構成する。各係合部92には、貫通孔92aが設けられる。各エンドプレート4の上面には、鉛直方向Zで貫通孔92aと重なる位置に締結孔4bが設けられる。電池積層体2にカバープレート60が載置された状態で、締結孔4bおよび貫通孔92aが重なり合う。そして、ねじ等の締結部材94が貫通孔92aに挿通され、締結孔4bに螺合される。これにより、カバープレート60が一対のエンドプレート4に固定される。
 第1垂壁部86をエンドプレート4に固定することで、流路部76の内圧が高まってカバープレート60が膨らんでも、カバープレート60の積層方向Xにおける端部が浮き上がることを抑制することができる。これにより、電池モジュール1の積層方向Xにおける端部にガス漏れの原因となる隙間が生じることをより確実に抑制することができる。
(その他)
 電池モジュール1が備える電池14の数は特に限定されない。サイドセパレータ10の形状や、エンドプレート4と拘束部材12との締結構造を含む、電池モジュール1の各部の構造は特に限定されない。電池14は、円筒状等であってもよい。電池積層体2と冷却プレート6との間の熱伝導と摩擦力とが十分に確保できる場合には、熱伝導層8を省略し、PETやPCからなる絶縁シートを電池積層体2と冷却プレート6との間に介在させてもよい。カバープレート60とエンドプレート4との固定は、締結部材94による締結に限定されない。当該固定は、カバープレート60およびエンドプレート4の一方に設けた係合爪と他方に設けた係合孔とのスナップフィット結合であってもよい。また、当該固定は、熱溶着、溶接、接着等であってもよい。また、カバープレート60とエンドプレート4との間には、ガスケット等のシール材を介在させてもよい。
 1 電池モジュール、 2 電池積層体、 4 エンドプレート、 14 電池、 24 弁部、 28 ダクトプレート、 38 排気ダクト、 60 カバープレート、 76 流路部、 86 第1垂壁部、 88 第2垂壁部。

Claims (5)

  1.  積層された複数の電池を有する電池積層体であって、各電池がガスを噴出する弁部を有する電池積層体と、
     前記電池積層体における複数の前記弁部が配置される面を覆うダクトプレートであって、前記電池の積層方向に延びて各電池の前記弁部に接続され、噴出した前記ガスを一時的に貯留する排気ダクトを有するダクトプレートと、
     前記ダクトプレートに載置されるカバープレートと、
     前記ダクトプレートおよび前記カバープレートで画成され、前記排気ダクトから前記積層方向と交わる第1方向に延び、前記排気ダクト内の前記ガスを電池モジュールの外部に漏出させる流路部と、を備え、
     前記カバープレートは、前記積層方向における端部に、前記カバープレートおよび前記ダクトプレートが並ぶ第2方向に延びて前記積層方向から見て前記ダクトプレートと重なる第1垂壁部を有することを特徴とする電池モジュール。
  2.  前記ダクトプレートは、前記積層方向における端部に、前記第2方向に延びて前記積層方向から見て前記第1垂壁部と重なる第2垂壁部を有する請求項1に記載の電池モジュール。
  3.  前記積層方向から見て、前記第2垂壁部は前記電池積層体と重なる請求項2に記載の電池モジュール。
  4.  前記電池モジュールは、前記電池積層体を前記積層方向に挟む一対のエンドプレートを備え、
     前記第1垂壁部は、前記エンドプレートに固定される請求項1乃至3のいずれか1項に記載の電池モジュール。
  5.  前記カバープレートは、前記ダクトプレートに対し、前記ガスの噴出により変形可能に固定される請求項1乃至4のいずれか1項に記載の電池モジュール。
PCT/JP2019/051122 2019-03-22 2019-12-26 電池モジュール WO2020194965A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980094239.0A CN113574725B (zh) 2019-03-22 2019-12-26 电池模块
JP2021508774A JP7418409B2 (ja) 2019-03-22 2019-12-26 電池モジュール
EP19920720.0A EP3944358A4 (en) 2019-03-22 2019-12-26 BATTERY MODULE
US17/439,372 US20220158294A1 (en) 2019-03-22 2019-12-26 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019054579 2019-03-22
JP2019-054579 2019-03-22

Publications (1)

Publication Number Publication Date
WO2020194965A1 true WO2020194965A1 (ja) 2020-10-01

Family

ID=72610693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051122 WO2020194965A1 (ja) 2019-03-22 2019-12-26 電池モジュール

Country Status (5)

Country Link
US (1) US20220158294A1 (ja)
EP (1) EP3944358A4 (ja)
JP (1) JP7418409B2 (ja)
CN (1) CN113574725B (ja)
WO (1) WO2020194965A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916250B2 (en) 2021-01-13 2024-02-27 Ford Global Technologies, Llc Battery pack including vent gas passageway

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021140931A (ja) * 2020-03-04 2021-09-16 本田技研工業株式会社 バッテリパック
CN115602994B (zh) * 2022-10-31 2024-01-23 厦门海辰储能科技股份有限公司 电池模组和用电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147150A1 (ja) * 2011-04-25 2012-11-01 日立ビークルエナジー株式会社 組電池および単電池
WO2013161655A1 (ja) * 2012-04-27 2013-10-31 三洋電機株式会社 電源装置及びこれを備える車両並びに蓄電装置
JP2016054127A (ja) * 2014-09-04 2016-04-14 株式会社Gsユアサ 蓄電装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039999A1 (ja) * 2005-09-30 2007-04-12 Densei-Lambda Kabushiki Kaisha 電池パック
JP5466906B2 (ja) * 2009-09-18 2014-04-09 パナソニック株式会社 電池モジュール
US9263713B2 (en) * 2010-05-26 2016-02-16 Samsung Sdi Co., Ltd. Battery pack
JP2013171746A (ja) * 2012-02-21 2013-09-02 Sanyo Electric Co Ltd 電源装置及びこれを備える車両並びに蓄電装置
JP5737351B2 (ja) 2013-09-05 2015-06-17 株式会社豊田自動織機 電池モジュール
JP2015135763A (ja) 2014-01-17 2015-07-27 トヨタ自動車株式会社 蓄電装置
JP6427941B2 (ja) 2014-04-30 2018-11-28 株式会社Gsユアサ 蓄電装置
WO2016026051A1 (en) 2014-08-22 2016-02-25 Corvus Energy Ltd. Thermal runaway containment apparatus for a battery
KR20170069003A (ko) * 2015-12-10 2017-06-20 삼성에스디아이 주식회사 배터리 모듈
JP6742884B2 (ja) 2016-10-26 2020-08-19 三洋電機株式会社 電源装置
JP6821391B2 (ja) 2016-10-26 2021-01-27 三洋電機株式会社 電源装置及びこれを用いる車両並びに蓄電装置
JP6638667B2 (ja) * 2017-02-10 2020-01-29 トヨタ自動車株式会社 電池パック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147150A1 (ja) * 2011-04-25 2012-11-01 日立ビークルエナジー株式会社 組電池および単電池
WO2013161655A1 (ja) * 2012-04-27 2013-10-31 三洋電機株式会社 電源装置及びこれを備える車両並びに蓄電装置
JP2016054127A (ja) * 2014-09-04 2016-04-14 株式会社Gsユアサ 蓄電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944358A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916250B2 (en) 2021-01-13 2024-02-27 Ford Global Technologies, Llc Battery pack including vent gas passageway

Also Published As

Publication number Publication date
EP3944358A4 (en) 2022-05-11
JPWO2020194965A1 (ja) 2020-10-01
CN113574725B (zh) 2023-07-28
US20220158294A1 (en) 2022-05-19
EP3944358A1 (en) 2022-01-26
CN113574725A (zh) 2021-10-29
JP7418409B2 (ja) 2024-01-19

Similar Documents

Publication Publication Date Title
JP7491901B2 (ja) 電池モジュール
WO2020188948A1 (ja) 電池モジュール
WO2020194966A1 (ja) 電池モジュール
CN112018301B (zh) 电池、用电设备、制备电池的方法和设备
WO2020194965A1 (ja) 電池モジュール
JPWO2020166182A1 (ja) 電池モジュール
JP7276896B2 (ja) 電池モジュール
JP2022062288A (ja) 電池モジュール
JP7325442B2 (ja) 電池モジュール
WO2020110448A1 (ja) 電池モジュール
KR20210072999A (ko) 에너지 밀도와 방열효과가 향상된 전지 팩
WO2020218222A1 (ja) 支持プレートおよび電圧検出線モジュール
JP2024501535A (ja) 電池モジュールおよびこれを含む電池パック
KR20230149514A (ko) 센싱모듈 조립체를 포함하는 배터리 모듈
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
JP7189093B2 (ja) 蓄電モジュール及び蓄電装置
EP4243194A1 (en) Pouch-type battery cell with improved thermal stability
WO2021251231A1 (ja) 蓄電装置
US20230163398A1 (en) Energy storage apparatus
JP2022029073A (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019920720

Country of ref document: EP