WO2020192723A1 - 定位参考信号的发送、接收方法、装置、发收发节点 - Google Patents

定位参考信号的发送、接收方法、装置、发收发节点 Download PDF

Info

Publication number
WO2020192723A1
WO2020192723A1 PCT/CN2020/081348 CN2020081348W WO2020192723A1 WO 2020192723 A1 WO2020192723 A1 WO 2020192723A1 CN 2020081348 W CN2020081348 W CN 2020081348W WO 2020192723 A1 WO2020192723 A1 WO 2020192723A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
resource block
prs resource
symbol
frame
Prior art date
Application number
PCT/CN2020/081348
Other languages
English (en)
French (fr)
Inventor
毕程
袁戈非
陈诗军
徐万夫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20779957.8A priority Critical patent/EP3926878A4/en
Priority to US17/437,520 priority patent/US20220150098A1/en
Publication of WO2020192723A1 publication Critical patent/WO2020192723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous

Definitions

  • This article relates to, but is not limited to, a positioning reference signal sending method, receiving method, device, transmitting node, receiving node, and computer-readable storage medium.
  • the path loss As the frequency of radio waves used in mobile communications increases, the path loss also increases.
  • the antenna size is fixed relative to the wireless wavelength. Based on this fact, the high-frequency path loss can be compensated by increasing the number of antennas without increasing the size of the antenna array. At the same time, the increase in reflection, diffraction and building penetration loss greatly increases the difficulty of signal coverage.
  • massive antenna arrays Massive Multiple-Input Multiple-Output, Massive MIMO
  • Massive MIMO can generate high-gain, adjustable shaped beams, which can significantly improve signal coverage and reduce interference to the surroundings. Therefore, in the fifth generation of mobile communications It is widely used in the system (5th generation mobile networks, 5G).
  • LTE Long Term Evolution
  • PRS positioning reference signal
  • the receiving node needs to measure the downlink signal transmitted from one or several cells, and the measurement result is further used to calculate the position.
  • the downlink positioning reference signals used for measurement were all transmitted in the form of broadcast, but according to the progress of the new radio positioning study item (NR positioning SI) that just ended, the design of 5G positioning reference signals should support Send in beam form.
  • NR positioning SI new radio positioning study item
  • multiple PRS resource blocks transmit the same information through beam scanning.
  • the receiving node receives the PRS resource block, it cannot identify which PRS resource block it is, and thus cannot determine the serving beam.
  • the embodiments of the present disclosure provide a positioning reference signal sending method, receiving method, device, transmitting node, receiving node, and computer-readable storage medium, so as to realize the sending and receiving of positioning reference signals in a beam.
  • the embodiment of the present disclosure provides a method for sending a positioning reference signal PRS, which includes: allocating time-frequency resources for PRS resource blocks according to subcarrier spacing; and sending the PRS resource blocks according to the allocated time-frequency resources, wherein each PRS The resource block contains resource block identification information.
  • the embodiment of the present disclosure also provides a method for receiving a positioning reference signal PRS, which includes: determining a time-frequency resource for transmitting a PRS resource block according to the subcarrier interval; and detecting and receiving the PRS resource block according to the determined time-frequency resource, wherein: Each PRS resource block contains resource block identification information.
  • An embodiment of the present disclosure also provides a device for sending a positioning reference signal PRS, which includes: an allocation module, configured to allocate time-frequency resources to PRS resource blocks according to subcarrier spacing; and a sending module, configured to transmit data according to the allocated time-frequency resources.
  • PRS resource block each PRS resource block contains resource block identification information.
  • the embodiments of the present disclosure also provide a transmitting node, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the PRS sending method when the program is executed .
  • the embodiment of the present disclosure also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the PRS sending method.
  • the embodiment of the present disclosure also provides a positioning reference signal PRS receiving device, including: a determining module, configured to determine the time-frequency resource for transmitting the PRS resource block according to the subcarrier interval; and a detection receiving module, configured to determine the time-frequency resource according to the determined
  • the PRS resource blocks are detected and received, where each PRS resource block includes resource block identification information.
  • the embodiment of the present disclosure also provides a receiving node, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor implements the PRS receiving method when the program is executed .
  • the embodiments of the present disclosure also provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to execute the PRS receiving method.
  • Fig. 1 is a flowchart of a method for transmitting a positioning reference signal according to an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a PRS resource block in Figure 1;
  • Fig. 3 is a schematic diagram of PRS sequence distribution according to Application Example 1 of the present disclosure.
  • Fig. 5 is a schematic diagram of PRS sequence distribution according to Application Example 3 of the present disclosure.
  • Fig. 7 is a schematic diagram of PRS sequence distribution according to Application Example 5 of the present disclosure.
  • Fig. 8 is a schematic diagram of PRS sequence distribution according to Application Example 6 of the present disclosure.
  • FIG. 10 is a schematic diagram of PRS sequence distribution according to Application Example 8 of the present disclosure.
  • Fig. 11 is a schematic diagram of PRS sequence distribution according to Application Example 9 of the present disclosure.
  • FIG. 12 is a flowchart of a method for receiving positioning reference signals according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of the composition of an apparatus for transmitting positioning reference signals according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of the composition of a receiving device for positioning reference signals according to an embodiment of the present disclosure
  • 15 is a schematic diagram of the composition of a transmitting node according to an embodiment of the present disclosure.
  • Fig. 16 is a schematic diagram of the composition of a receiving node according to an embodiment of the present disclosure.
  • the method for sending a positioning reference signal PRS in an embodiment of the present disclosure is applied to a transmitting node, and includes steps 101 to 102.
  • Step 101 Allocate time-frequency resources for PRS resource blocks according to the subcarrier spacing.
  • half a subframe (5ms) is used as the scheduling period to allocate time-frequency resources to the PRS resource block.
  • the sub-carrier interval may be 15 kHz, 30 kHz, 120 kHz, 240 kHz, etc. The following describes the scenario of each sub-carrier interval.
  • the first symbol position allocated for each PRS resource block is ⁇ 2,8 ⁇ +14 ⁇ n, and n is a natural number less than or equal to 4.
  • Scenario B The sub-carrier spacing is 30kHz
  • the first symbol position allocated for each PRS resource block is ⁇ 2,8 ⁇ +14 ⁇ n, and n is a natural number less than or equal to 7.
  • Scenario D The subcarrier spacing is 240kHz
  • the carrier frequency is greater than 6 GHz.
  • the position of the first symbol allocated to the PRS resource block according to the subcarrier interval allows the PRS sequence to be reasonably allocated in the time-frequency resource, which is convenient for receiving and detecting by the receiving node.
  • PRS resource blocks are sent according to the allocated time-frequency resources, where each PRS resource block includes resource block identification information.
  • the resource block identification information When the PRS is transmitted through the beam, the resource block identification information has a corresponding relationship with the beam, that is, when the receiving node learns the resource block identification information, it also learns the information of the beam that transmits the PRS.
  • each PRS resource block contains continuous or non-contiguous Symbols
  • the PRS period includes multiple PRS bursts (burst), each PRS burst includes multiple PRS resource blocks, and each PRS resource block includes continuous or non-continuous Symbols.
  • Each PRS resource block corresponds to a beam, and the coverage angle of these 8 beams is 120 degrees.
  • the transmitting node polls these 8 beams, and the receiving node obtains the corresponding PRS sequence.
  • the PRS resource blocks sent by the same transmitting end The signals sent by the symbols are the same.
  • the same signal sent by the symbols means: the i-th PRS resource block
  • the transmitted signal of the symbols and the jth PRS resource block The signals sent by each symbol correspond to the same.
  • the first in the PRS resource block The transmitted sequence r(m) of each symbol is generated in the following way:
  • the initial value of the sequence c(i) is determined by at least one of the following:
  • l is the symbol index in a slot
  • the PRS identifier used to generate the initial value is configured by the upper layer. If the upper layer is not configured, it is equal to the cell ID x is related to the PRS time domain and is a preset value configured by the upper layer;
  • the signal sent by the last symbol in the PRS resource block includes the resource block identification information.
  • the resource block identification information may be the identification index of the PRS resource block.
  • the transmitted sequence r(m) of the last symbol in the PRS resource block is generated in the following manner:
  • the initial value of the sequence c(i) is determined by at least one of the following:
  • the PRS identifier used to generate the initial value is configured by the upper layer. If the upper layer is not configured, it is equal to the cell ID x is related to the PRS time domain and is a preset value configured by the upper layer;
  • time-frequency resources are reasonably allocated to the PRS resource block, and the resource block identification information is included in the PRS resource block, so that the PRS can be transmitted in a beam polling manner.
  • the front of the PRS resource block The method of generating the signal transmitted by each symbol is called mode one, and the mode of generating the signal transmitted by the last symbol in the PRS resource block is called mode two.
  • the subcarrier spacing is 120kHz or 240kHz.
  • each PRS resource block is determined according to the first symbol position in scenes C and D in step 101, and resources are allocated to the PRS in the PRS resource block in com1 mode, where the value of x is 12, and the PRS sequence It is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 3.
  • the value of com1 corresponding to x is 12; the value of com2 corresponding to x is 6, the value of com3 corresponding to x is 4, the value of com4 corresponding to x is 3, and the value of com6 corresponding to x is 2.
  • the subcarrier spacing is 120kHz or 240kHz.
  • each PRS resource block is determined according to the position of the first symbol in scenes C and D in step 101, and resources are allocated to the PRS in the com2 mode, and the value of x is 6, where the PRS sequence of the first symbol is PRS resource block middle and front
  • the generation mode (mode 1) of the signal transmitted by each symbol is determined, and the second symbol sequence is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 4.
  • the subcarrier spacing is 120kHz or 240kHz.
  • each PRS resource block is determined according to the position of the first symbol in scenes C and D in step 101, and resources are allocated to the PRS in the com1 mode, and the value of x is 12, where the PRS sequence of the first symbol is PRS resource block middle and front
  • the generation mode (mode 1) of the signal transmitted by each symbol is determined, and the second symbol sequence is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 5.
  • the sub-carrier spacing is 15kHz, 30kHz, 120kHz or 240kHz.
  • each PRS resource block is determined according to the first symbol position in scenes A, B, C, and D in step 101, and resources are allocated to the PRS according to the com2 method.
  • the value of x is 6, where the first and the first
  • the two-symbol PRS sequence is in accordance with the front of the PRS resource block
  • the generation mode (mode 1) of the signal transmitted by each symbol is determined, and the third symbol sequence is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 6.
  • the sub-carrier spacing is 15kHz, 30kHz, 120kHz or 240kHz.
  • each PRS resource block is determined according to the position of the first symbol in scenes A, B, C, and D in step 101, and resources are allocated to the PRS in the com3 mode.
  • the value of x is 4, where the first and the first
  • the two-symbol PRS sequence is in accordance with the front of the PRS resource block
  • the generation mode (mode 1) of the signal transmitted by each symbol is determined, and the third symbol sequence is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 7.
  • the sub-carrier spacing is 15kHz, 30kHz, 120kHz or 240kHz.
  • each PRS resource block is determined according to the first symbol position in scenes A, B, C, and D in step 101, and resources are allocated to the PRS according to the com3 method.
  • the value of x is 4, where the first to third The PRS sequence of four symbols is The signal generation mode (mode 1) of the signal sent by each symbol is determined, and the fourth symbol sequence is determined according to the signal generation mode (mode 2) of the last symbol in the PRS resource block, as shown in FIG. 8.
  • the sub-carrier spacing is 15kHz, 30kHz, 120kHz or 240kHz.
  • each PRS resource block is determined according to the position of the first symbol in scenes A, B, C, and D in step 101, and resources are allocated to the PRS according to the com4 method.
  • the value of x is 3, where the first to third
  • the PRS sequence of four symbols is The generation mode (mode 1) of the signal transmitted by each symbol is determined, and the fourth symbol sequence is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 9.
  • the sub-carrier spacing is 15kHz, 30kHz, 120kHz or 240kHz.
  • each PRS resource block is determined according to the first symbol position in scenes A, B, C, and D in step 101, and resources are allocated to the PRS according to the com4 mode, and the value of x is 3, where the first to fourth The PRS sequence of four symbols is The signal generation mode (mode 1) of each symbol is determined, and the fifth symbol sequence is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 10.
  • the sub-carrier spacing is 15kHz, 30kHz, 120kHz or 240kHz.
  • each PRS resource block is determined according to the first symbol position in scenes A, B, C, and D in step 101, and resources are allocated to the PRS according to the com6 method.
  • the value of x is 2, where the first to fifth The PRS sequence of four symbols is in accordance with the first in the PRS resource block
  • the generation mode (mode 1) of the signal transmitted by each symbol is determined, and the sixth symbol sequence is determined according to the generation mode (mode 2) of the signal transmitted by the last symbol in the PRS resource block, as shown in FIG. 11.
  • the positioning reference signal receiving method of the embodiment of the present disclosure is applied to a receiving node, and includes steps 201 to 202.
  • step 201 the time-frequency resource for transmitting the PRS resource block is determined according to the subcarrier interval.
  • the time-frequency resource for transmitting the PRS resource block is determined in the same manner as the transmitting node.
  • the following describes the scenario of each subcarrier interval.
  • n is a natural number less than or equal to 4.
  • Scenario B The sub-carrier spacing is 30kHz
  • the first symbol position of each PRS resource block is determined to be ⁇ 2,8 ⁇ +14 ⁇ n, and n is a natural number less than or equal to 7.
  • Scenario D The subcarrier spacing is 240kHz
  • the carrier frequency is greater than 6 GHz.
  • the PRS sequence is reasonably allocated in the time-frequency resource, which is convenient for receiving and detecting by the receiving node.
  • step 202 PRS resource blocks are detected and received according to the determined time-frequency resources, where each PRS resource block includes resource block identification information.
  • the resource block identification information When the PRS is transmitted through the beam, the resource block identification information has a corresponding relationship with the beam, that is, when the receiving node learns the resource block identification information, it also learns the information of the beam transmitting the PRS.
  • each PRS resource block contains continuous or non-contiguous Symbols
  • TPRS includes multiple PRS bursts, each PRS burst includes multiple PRS resource blocks, and each PRS resource block includes continuous or non-continuous Symbols.
  • the signal sent by the last symbol in the PRS resource block includes the resource block identification information.
  • the resource block identification information may be the identification index of the PRS resource block.
  • step 202 includes: detecting and receiving the previous PRS resource blocks from one or more transmitting nodes Symbols; and detecting and receiving the last symbol of the PRS resource block, and determining the resource block identification information corresponding to the PRS resource block according to the last symbol.
  • the initial value of the sequence c(i) is determined by at least one of the following:
  • the position of the first symbol of the block, The PRS identifier used to generate the initial value is configured by the upper layer. If the upper layer is not configured, it is equal to the cell ID x is related to the PRS time domain and is a preset value configured by the upper layer;
  • the transmitted sequence r(m) of the last symbol in the PRS resource block is generated in the following manner:
  • the initial value of the sequence c(i) is determined by at least one of the following:
  • the PRS identifier used to generate the initial value is configured by the upper layer. If the upper layer is not configured, it is equal to the cell ID x is related to the PRS time domain and is a preset value configured by the upper layer;
  • the receiving node may detect and determine the corresponding resource block identification information according to the last symbol generation mode in the PRS resource block.
  • the method further includes: checking all the symbols in the PRS resource block The PRS sequence is detected to obtain the arrival time of the PRS sequence sent by different transmitting nodes.
  • the arrival time of the PRS sequence sent by different transmitting nodes can be obtained, and then the time difference can be obtained. According to the time difference, the location information of the receiving node can be determined.
  • the detection of PRS resource block identification information is realized without significantly increasing the detection time, and the positioning based on the time difference in the scenario of beam polling and sending the PRS can be realized.
  • an embodiment of the present disclosure also provides an apparatus for sending a positioning reference signal, which includes an allocation module 31 and a sending module 32.
  • the allocation module 31 is configured to allocate time-frequency resources for PRS resource blocks according to the subcarrier interval.
  • the sending module 32 is configured to send PRS resource blocks according to the allocated time-frequency resources, where each PRS resource block includes resource block identification information.
  • the allocation module 31 is configured to allocate time-frequency resources to PRS resource blocks with half a subframe as the scheduling period.
  • the allocation module 31 is used to allocate the first symbol position for each PRS resource block to ⁇ 2, 8 ⁇ + 14 ⁇ n when the subcarrier interval is 15 kHz, and n is a natural number less than or equal to 4. .
  • the allocation module 31 is configured to allocate the first symbol position for each PRS resource block to ⁇ 2,8 ⁇ +14 ⁇ n when the subcarrier spacing is 30kHz, where n is a natural number less than or equal to 7. .
  • each PRS resource block contains continuous or non-contiguous Symbols
  • the PRS resource blocks sent by the same transmitting end The signals sent by the symbols are the same.
  • the first in the PRS resource block The transmitted sequence r(m) of each symbol is generated in the following way:
  • the initial value of the sequence c(i) is determined by at least one of the following:
  • the position of the first symbol of the block, The PRS identifier used to generate the initial value is configured by the upper layer. If the upper layer is not configured, it is equal to the cell ID x is related to the PRS time domain and is a preset value configured by the upper layer;
  • the signal sent by the last symbol in the PRS resource block includes the resource block identification information.
  • the transmitted sequence r(m) of the last symbol in the PRS resource block is generated in the following manner:
  • the initial value of the sequence c(i) is determined by at least one of the following:
  • the PRS identifier used to generate the initial value is configured by the upper layer. If the upper layer is not configured, it is equal to the cell ID x is related to the PRS time domain and is a preset value configured by the upper layer;
  • time-frequency resources are reasonably allocated to PRS resource blocks, and resource block identification information is included in the PRS resource blocks, so that the PRS can be transmitted in a beam polling manner.
  • an embodiment of the present disclosure also provides a device for receiving a positioning reference signal PRS, which includes a determining module 41 and a detecting and receiving module 42.
  • the determining module 41 is configured to determine the time-frequency resource for transmitting the PRS resource block according to the subcarrier interval.
  • the detection receiving module 42 is configured to detect and receive PRS resource blocks according to the determined time-frequency resources, where each PRS resource block includes resource block identification information.
  • the embodiment of the present disclosure also provides a transmitting node, including: a memory 51, a processor 52, and a computer program 53 stored on the memory 51 and running on the processor 52, and the processor 52 executes the program 53 Time to implement the PRS transmission method according to the present disclosure.
  • the transmitting node may be a device that transmits PRS, such as a base station.
  • an embodiment of the present disclosure also provides a receiving node, including: a memory 61, a processor 62, and a computer program 63 stored in the memory 61 and running on the processor 62, and the processor 62 executes the program 63 When realizing the PRS receiving method according to the present disclosure.
  • the receiving node may be a device that receives PRS, such as user equipment (UE).
  • UE user equipment
  • the embodiments of the present disclosure also provide a computer-readable storage medium storing computer-executable instructions for executing the PRS sending method according to the present disclosure.
  • the embodiments of the present disclosure also provide a computer-readable storage medium storing computer-executable instructions for executing the PRS receiving method according to the present disclosure.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (ROM), Random Access Memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk, etc.
  • U disk Read-Only Memory
  • RAM Random Access Memory
  • RAM Random Access Memory
  • mobile hard disk magnetic disk or optical disk, etc.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery media. .

Abstract

本公开提供一种定位参考信号的发送方法、接收方法、装置、发射节点、接收节点和计算机可读存储介质。所述发送方法包括:根据子载波间隔为PRS资源块分配时频资源;以及按照分配的时频资源发送所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。

Description

定位参考信号的发送、接收方法、装置、发收发节点 技术领域
本文涉及但不限于一种定位参考信号的发送方法、接收方法、装置、发射节点、接收节点和计算机可读存储介质。
背景技术
随着移动通信使用的无线电波频率的提高,路径损耗也随之增大。天线尺寸相对无线波长是固定的,基于这个事实,可以通过增加天线数量来弥补高频路径损耗,同时不会增加天线阵列的尺寸。同时,反射、衍射和建筑物穿透损耗的增加,都大大增加了信号覆盖的难度。使用大规模天线阵列(Massive Multiple-Input Multiple-Output,Massive MIMO),能够产生高增益、可调节的赋形波束,可以明显改善信号覆盖,同时降低对周边的干扰,因此在第五代移动通信系统(5th generation mobile networks,5G)中得到广泛应用。
长期演进(Long Term Evolution,LTE)自版本9(release 9)开始引入了对定位的支持,定位参考信号(Positioning reference signal,PRS)也被引入来实现下行定位。通常,接收节点需要测量从一个或者几个小区发射的下行信号,测量结果进一步会用来计算位置。
在5G之前,用作测量的下行定位参考信号都是以广播形式发射,但是根据刚刚结束的新无线定位研究项目(New Radio positioning Study Item,NR positioning SI)进展,5G定位参考信号的设计应当支持以波束形式发送。但是,在一个PRS突发(burst)内,多个PRS资源块通过波束扫描方式传输相同信息,当接收节点接收PRS资源块,无法识别是哪个PRS资源块,从而无法确定服务波束。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种定位参考信号的发送方法、接收方法、装置、发射节点、接收节点和计算机可读存储介质,以实现通过波束的方式发送和接收定位参考信号。
本公开实施例提供了一种定位参考信号PRS的发送方法,包括:根据子载波间隔为PRS资源块分配时频资源;以及按照分配的时频资源发送所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
本公开实施例还提供一种定位参考信号PRS的接收方法,包括:根据子载波间隔确定发送PRS资源块的时频资源;以及按照确定的时频资源检测并接收所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
本公开实施例还提供一种定位参考信号PRS的发送装置,包括:分配模块,用于根据子载波间隔为PRS资源块分配时频资源;以及发送模块,用于按照分配的时频资源发送所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
本公开实施例还提供一种发射节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述的PRS的发送方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述的PRS的发送方法。
本公开实施例还提供一种定位参考信号PRS的接收装置,包括:确定模块,用于根据子载波间隔确定发送PRS资源块的时频资源;以及检测接收模块,用于按照确定的时频资源检测并接收所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
本公开实施例还提供一种接收节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述的PRS的接收方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行所述的PRS的接收方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是根据本公开实施例的定位参考信号的发送方法的流程图;
图2是图1是PRS资源块示意图;
图3是根据本公开应用实例1的PRS序列分布示意图;
图4是根据本公开应用实例2的PRS序列分布示意图;
图5是根据本公开应用实例3的PRS序列分布示意图;
图6是根据本公开应用实例4的PRS序列分布示意图;
图7是根据本公开应用实例5的PRS序列分布示意图;
图8是根据本公开应用实例6的PRS序列分布示意图;
图9是根据本公开应用实例7的PRS序列分布示意图;
图10是根据本公开应用实例8的PRS序列分布示意图;
图11是根据本公开应用实例9的PRS序列分布示意图;
图12是根据本公开实施例的定位参考信号的接收方法的流程图;
图13是根据本公开实施例的定位参考信号的发送装置的组成示意图;
图14是根据本公开实施例的定位参考信号的接收装置的组成示意图;
图15是根据本公开实施例的发射节点的组成示意图;以及
图16是根据本公开实施例的接收节点的组成示意图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示,本公开实施例的定位参考信号PRS的发送方法,应用于发射节点,并且包括步骤101至102。
步骤101,根据子载波间隔为PRS资源块分配时频资源。
在一实施例中,以半个子帧(5ms)为调度周期,为PRS资源块分配时频资源。
所述子载波间隔可以是15kHZ、30kHz、120kHz、240kHz等,下面对每个子载波间隔的场景进行说明。
场景A:子载波间隔为15kHZ
在子载波间隔为15kHz时,为每个PRS资源块分配的第一个符号位置为{2,8}+14·n,n为小于等于4的自然数。
在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=1,2,3,4。
场景B:子载波间隔为30kHz
在子载波间隔为30kHz时,为每个PRS资源块分配的第一个符号位置为{2,8}+14·n,n为小于等于7的自然数。
在一实施例中,对于频分双工(Frequency Division Duplexing,FDD)场景,在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=4,5,6,7。
在一实施例中,对于时分双工(Time Division Duplexing,TDD)场景,在载频频点小于或等于2.4GHz时,n=2,3;在载频频点大于2.4GHz且小于或等于6GHz时,n=4,5,6,7。
场景C:子载波间隔为120kHz
在子载波间隔为120kHz时,为每个PRS资源块分配的第一个符号位置为{4,8,16,20}+28·n,n=1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19。
场景D:子载波间隔为240kHz
在子载波间隔为240kHz时,为每个PRS资源块分配的第一个符号位置为{4,8,16,20,32,36,40,44}+56·n,n=10,11,12,13,15,16,17,18。
针对场景C和场景D,载频频点均大于6GHz。
本公开实施例中,根据子载波间隔为PRS资源块分配的第一个符号位置,使得PRS序列合理地分配在时频资源中,便于接收节点接收和检测。
在步骤102,按照分配的时频资源发送PRS资源块,其中,每个PRS资源块包含资源块标识信息。
在通过波束发射PRS时,资源块标识信息与波束具有对应关系,也就是说,当接收节点获知资源块标识信息也即获知了发射PRS的波 束的信息。
在一实施例中,每个PRS资源块包含连续或者非连续的
Figure PCTCN2020081348-appb-000001
个符号,
Figure PCTCN2020081348-appb-000002
参照图2,PRS周期(TPRS)包括多个PRS突发(burst),每个PRS burst包括多个PRS资源块,每个PRS资源块包括连续或者非连续的
Figure PCTCN2020081348-appb-000003
个符号。每个PRS资源块对应一个波束,这8个波束覆盖的角度为120度。发射节点对这8个波束进行轮询,接收节点获取相应的PRS序列。
在一实施例中,在一个调度周期内,同一个发射端发送的PRS资源块中前
Figure PCTCN2020081348-appb-000004
个符号所发送信号相同。
PRS资源块前
Figure PCTCN2020081348-appb-000005
个符号所发信号相同是指:第i个PRS资源块的第
Figure PCTCN2020081348-appb-000006
个符号所发送信号和第j个PRS资源块的第
Figure PCTCN2020081348-appb-000007
个符号所发送的信号对应相同。
在一实施例中,PRS资源块中前
Figure PCTCN2020081348-appb-000008
个符号所发送序列r(m)由以下方式生成:
Figure PCTCN2020081348-appb-000009
其中,序列c(i)的初始值由如下中的至少之一确定:
Figure PCTCN2020081348-appb-000010
Figure PCTCN2020081348-appb-000011
Figure PCTCN2020081348-appb-000012
Figure PCTCN2020081348-appb-000013
Figure PCTCN2020081348-appb-000014
Figure PCTCN2020081348-appb-000015
其中,
Figure PCTCN2020081348-appb-000016
是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
Figure PCTCN2020081348-appb-000017
是一个PRS资源块内包含的符号数,
Figure PCTCN2020081348-appb-000018
是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
Figure PCTCN2020081348-appb-000019
为生成初始值用的PRS标识,由上层配置,如果上层没有配置就等于小区ID
Figure PCTCN2020081348-appb-000020
x与PRS时域相关,为预设值,由上层配置;
Figure PCTCN2020081348-appb-000021
在一实施例中,PRS资源块中最后一个符号所发送信号包含所述资源块标识信息。
所述资源块标识信息可以是PRS资源块的标识索引。
在一实施例中,PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
Figure PCTCN2020081348-appb-000022
其中,序列c(i)的初始值由如下中的至少之一确定:
Figure PCTCN2020081348-appb-000023
Figure PCTCN2020081348-appb-000024
Figure PCTCN2020081348-appb-000025
Figure PCTCN2020081348-appb-000026
Figure PCTCN2020081348-appb-000027
Figure PCTCN2020081348-appb-000028
Figure PCTCN2020081348-appb-000029
其中,i prs为PRS资源块的标识索引,i prs小于等于
Figure PCTCN2020081348-appb-000030
是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
Figure PCTCN2020081348-appb-000031
是一个PRS资源块内包含的符号数,
Figure PCTCN2020081348-appb-000032
是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
Figure PCTCN2020081348-appb-000033
为生成初始值用的PRS标识,由上层配置,如果上层没有配置就等于小区ID
Figure PCTCN2020081348-appb-000034
x与PRS时域相关,为预设值,由上层配置;
Figure PCTCN2020081348-appb-000035
本公开实施例通过合理地为PRS资源块分配时频资源,以及在PRS资源块包含资源块标识信息,使得可以通过波束轮询的方式传输 PRS。
下面以几个应用实例进行说明。在应用实例中,PRS资源块中前
Figure PCTCN2020081348-appb-000036
个符号所发送信号的生成方式称为方式一,PRS资源块中最后一个符号所发送信号的生成方式称为方式二。
应用实例1
适用于场景C和D,也即子载波间隔为120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000037
每个PRS资源块的起始位置为按照步骤101中场景C、D中第一个符号位置确定,在该PRS资源块内以com1方式给PRS分配资源,其中,x的值取12,PRS序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图3所示。
com1对应x的值取12;com2对应x的值取6,com3对应x的值取4,com4对应x的值取3,com6对应x的值取2。
应用实例2
适用于场景C和D,也即子载波间隔为120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000038
每个PRS资源块的起始位置为按照步骤101中场景C、D中第一个符号位置确定,按照com2方式给PRS分配资源,x的值取6,其中,第一个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000039
个符号所发送信号的生成方式(方式一)确定,第二个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图4所示。
应用实例3
适用于场景C和D,也即子载波间隔为120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000040
每个PRS资源块的起始位置为按照步骤101中场景C、D中第一个符号位置确定,按照com1方式给PRS分配资源,x的值取12,其中,第一个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000041
个符号所发送信号的生成方式(方式一)确定,第二个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图5所示。
应用实例4
适用于场景A,B,C,D,也即子载波间隔为15kHz、30kHz、 120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000042
每个PRS资源块的起始位置为按照步骤101中场景A,B,C,D中第一个符号位置确定,按照com2方式给PRS分配资源,x的值取6,其中,第一和第二个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000043
个符号所发送信号的生成方式(方式一)确定,第三个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图6所示。
应用实例5
适用于场景A,B,C,D,也即子载波间隔为15kHz、30kHz、120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000044
每个PRS资源块的起始位置为按照步骤101中场景A,B,C,D中第一个符号位置确定,按照com3方式给PRS分配资源,x的值取4,其中,第一和第二个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000045
个符号所发送信号的生成方式(方式一)确定,第三个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图7所示。
应用实例6
适用于场景A,B,C,D,也即子载波间隔为15kHz、30kHz、120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000046
每个PRS资源块的起始位置为按照步骤101中场景A,B,C,D中第一个符号位置确定,按照com3方式给PRS分配资源,x的值取4,其中,第一至三个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000047
个符号所发送信号的生成方式(方式一)确定,第四个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图8所示。
应用实例7
适用于场景A,B,C,D,也即子载波间隔为15kHz、30kHz、120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000048
每个PRS资源块的起始位置为按照步骤101中场景A,B,C,D中第一个符号位置确定,按照com4方式给PRS分配资 源,x的值取3,其中,第一至三个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000049
个符号所发送信号的生成方式(方式一)确定,第四个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图9所示。
应用实例8
适用于场景A,B,C,D,也即子载波间隔为15kHz、30kHz、120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000050
每个PRS资源块的起始位置为按照步骤101中场景A,B,C,D中第一个符号位置确定,按照com4方式给PRS分配资源,x的值取3,其中,第一至四个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000051
个符号所发送信号的生成方式(方式一)确定,第五个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图10所示。
应用实例9
适用于场景A,B,C,D,也即子载波间隔为15kHz、30kHz、120kHz或240kHz。
设置
Figure PCTCN2020081348-appb-000052
每个PRS资源块的起始位置为按照步骤101中场景A,B,C,D中第一个符号位置确定,按照com6方式给PRS分配资源,x的值取2,其中,第一至五个符号的PRS序列按照PRS资源块中前
Figure PCTCN2020081348-appb-000053
个符号所发送信号的生成方式(方式一)确定,第六个符号序列按照PRS资源块中最后一个符号所发送信号的生成方式(方式二)确定,如图11所示。
如图12所示,本公开实施例的定位参考信号的接收方法,应用于接收节点,并且包括步骤201至202。
在步骤201,根据子载波间隔确定发送PRS资源块的时频资源。
与发射节点对应,按照与发射节点相同的方式确定发送PRS资源块的时频资源,下面对每个子载波间隔的场景进行说明。
场景A:子载波间隔为15kHz
在子载波间隔为15kHz时,确定每个PRS资源块的第一个符号位置为{2,8}+14·n,n为小于等于4的自然数。
在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=1,2,3,4。
场景B:子载波间隔为30kHz
在子载波间隔为30kHz时,确定每个PRS资源块的第一个符号位置为{2,8}+14·n,n为小于等于7的自然数。
在一实施例中,对于FDD场景,在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=4,5,6,7。
在一实施例中,对于TDD场景,在载频频点小于或等于2.4GHz时,n=2,3;在载频频点大于2.4GHz且小于或等于6GHz时,n=4,5,6,7。
场景C:子载波间隔为120kHz
在子载波间隔为120kHz时,确定每个PRS资源块的第一个符号位置为{4,8,16,20}+28·n,n=1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19。
场景D:子载波间隔为240kHz
在子载波间隔为240kHz时,确定每个PRS资源块的第一个符号位置为{4,8,16,20,32,36,40,44}+56·n,n=10,11,12,13,15,16,17,18。
针对场景C和场景D,载频频点均大于6GHz。
本公开实施例中,PRS序列合理地分配在时频资源中,便于接收节点接收和检测。
在步骤202,按照确定的时频资源检测并接收PRS资源块,其中,每个PRS资源块包含资源块标识信息。
在通过波束发射PRS时,资源块标识信息与波束具有对应关系,也就是说,当接收节点获知资源块标识信息也即获知了发射PRS的波束的信息。
在一实施例中,每个PRS资源块包含连续或者非连续的
Figure PCTCN2020081348-appb-000054
个符号,
Figure PCTCN2020081348-appb-000055
参照图2,TPRS包括多个PRS burst,每个PRS burst包括多个PRS资源块,每个PRS资源块包括连续或者非连续的
Figure PCTCN2020081348-appb-000056
个符号。
在一实施例中,PRS资源块中最后一个符号所发送信号包含所述资源块标识信息。
所述资源块标识信息可以是PRS资源块的标识索引。
在一实施例中,步骤202包括:检测并接收来自一个或多个发射节点的PRS资源块的前
Figure PCTCN2020081348-appb-000057
个符号;以及检测并接收PRS资源块的最后一个符号,根据所述最后一个符号确定PRS资源块对应的资源块标识信息。
检测并接收来自一个或多个发射节点的PRS资源块的前
Figure PCTCN2020081348-appb-000058
个符号的步骤包括:
按照如下方式生成PRS资源块中前
Figure PCTCN2020081348-appb-000059
个符号所发送序列r(m):
Figure PCTCN2020081348-appb-000060
根据所生成的序列r(m)检测PRS资源块的前
Figure PCTCN2020081348-appb-000061
个符号;
其中,序列c(i)的初始值由如下中的至少之一确定:
Figure PCTCN2020081348-appb-000062
Figure PCTCN2020081348-appb-000063
Figure PCTCN2020081348-appb-000064
Figure PCTCN2020081348-appb-000065
Figure PCTCN2020081348-appb-000066
Figure PCTCN2020081348-appb-000067
其中,
Figure PCTCN2020081348-appb-000068
是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
Figure PCTCN2020081348-appb-000069
是一个PRS资源块内包含的符号数,
Figure PCTCN2020081348-appb-000070
是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
Figure PCTCN2020081348-appb-000071
为生成初始值用的PRS标识,由上层配置,如果上层没有配置就等于小区ID
Figure PCTCN2020081348-appb-000072
x与PRS时域相关,为预设值,由上层配置;
Figure PCTCN2020081348-appb-000073
在一实施例中,PRS资源块中最后一个符号所发送序列r(m)由 以下方式生成:
Figure PCTCN2020081348-appb-000074
其中,序列c(i)的初始值由如下中的至少之一确定:
Figure PCTCN2020081348-appb-000075
Figure PCTCN2020081348-appb-000076
Figure PCTCN2020081348-appb-000077
Figure PCTCN2020081348-appb-000078
Figure PCTCN2020081348-appb-000079
Figure PCTCN2020081348-appb-000080
Figure PCTCN2020081348-appb-000081
其中,i prs为PRS资源块的标识索引,i prs小于等于
Figure PCTCN2020081348-appb-000082
是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
Figure PCTCN2020081348-appb-000083
是一个PRS资源块内包含的符号数,
Figure PCTCN2020081348-appb-000084
是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
Figure PCTCN2020081348-appb-000085
为生成初始值用的PRS标识,由上层配置,如果上层没有配置就等于小区ID
Figure PCTCN2020081348-appb-000086
x与PRS时域相关,为预设值,由上层配置;
Figure PCTCN2020081348-appb-000087
接收节点可以按照PRS资源块中最后一个符号生成方式检测确定对应的资源块标识信息。
在一实施例中,在检测并接收PRS资源块的最后一个符号,根据所述最后一个符号确定PRS资源块对应的资源块标识信息的步骤之后,所述方法还包括:对PRS资源块内所有PRS序列进行检测,以获得不同发射节点发送PRS序列的到达时间。
对PRS资源块内所有PRS序列进行检测,可以获得不同发射节点发送PRS序列的到达时间,进而得到时间差,根据时间差可以确定接收节点自身的位置信息。
采用本实施例,在不显著增加检测时间的情况下实现了PRS资源块标识信息的检测,进而可以实现波束轮询发送PRS场景下的基于 时间差的定位。
如图13所示,本公开实施例还提供一种定位参考信号的发送装置,包括分配模块31和发送模块32。
分配模块31用于根据子载波间隔为PRS资源块分配时频资源。
发送模块32用于按照分配的时频资源发送PRS资源块,其中,每个PRS资源块包含资源块标识信息。
在一实施例中,分配模块31用于以半个子帧为调度周期,为PRS资源块分配时频资源。
在一实施例中,分配模块31用于在子载波间隔为15kHz时,为每个PRS资源块分配的第一个符号位置为{2,8}+14·n,n为小于等于4的自然数。
在一实施例中,在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=1,2,3,4。
在一实施例中,分配模块31用于在子载波间隔为30kHz时,为每个PRS资源块分配的第一个符号位置为{2,8}+14·n,n为小于等于7的自然数。
在一实施例中,对于频分双工FDD场景,在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=4,5,6,7;对于时分双工TDD场景,在载频频点小于或等于2.4GHz时,n=2,3;在载频频点大于2.4GHz且小于或等于6GHz时,n=4,5,6,7。
在一实施例中,分配模块31用于在子载波间隔为120kHz时,为每个PRS资源块分配的第一个符号位置为{4,8,16,20}+28·n,n=1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19。
在一实施例中,分配模块31用于在子载波间隔为240kHz时,为每个PRS资源块分配的第一个符号位置为{4,8,16,20,32,36,40,44}+56·n,n=10,11,12,13,15,16,17,18。
在一实施例中,每个PRS资源块包含连续或者非连续的
Figure PCTCN2020081348-appb-000088
个符号,
Figure PCTCN2020081348-appb-000089
在一实施例中,在一个调度周期内,同一个发射端发送的PRS资源块中前
Figure PCTCN2020081348-appb-000090
个符号所发送信号相同。
在一实施例中,PRS资源块中前
Figure PCTCN2020081348-appb-000091
个符号所发送序列r(m)由以下方式生成:
Figure PCTCN2020081348-appb-000092
其中,序列c(i)的初始值由如下中的至少之一确定:
Figure PCTCN2020081348-appb-000093
Figure PCTCN2020081348-appb-000094
Figure PCTCN2020081348-appb-000095
Figure PCTCN2020081348-appb-000096
Figure PCTCN2020081348-appb-000097
Figure PCTCN2020081348-appb-000098
其中,
Figure PCTCN2020081348-appb-000099
是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
Figure PCTCN2020081348-appb-000100
是一个PRS资源块内包含的符号数,
Figure PCTCN2020081348-appb-000101
是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
Figure PCTCN2020081348-appb-000102
为生成初始值用的PRS标识,由上层配置,如果上层没有配置就等于小区ID
Figure PCTCN2020081348-appb-000103
x与PRS时域相关,为预设值,由上层配置;
Figure PCTCN2020081348-appb-000104
在一实施例中,PRS资源块中最后一个符号所发送信号包含所述资源块标识信息。
在一实施例中,PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
Figure PCTCN2020081348-appb-000105
其中,序列c(i)的初始值由如下中的至少之一确定:
Figure PCTCN2020081348-appb-000106
Figure PCTCN2020081348-appb-000107
Figure PCTCN2020081348-appb-000108
Figure PCTCN2020081348-appb-000109
Figure PCTCN2020081348-appb-000110
Figure PCTCN2020081348-appb-000111
Figure PCTCN2020081348-appb-000112
其中,i prs为PRS资源块的标识索引,i prs小于等于
Figure PCTCN2020081348-appb-000113
是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
Figure PCTCN2020081348-appb-000114
是一个PRS资源块内包含的符号数,
Figure PCTCN2020081348-appb-000115
是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
Figure PCTCN2020081348-appb-000116
为生成初始值用的PRS标识,由上层配置,如果上层没有配置就等于小区ID
Figure PCTCN2020081348-appb-000117
x与PRS时域相关,为预设值,由上层配置;
Figure PCTCN2020081348-appb-000118
本公开实施例通过合理地为PRS资源块分配时频资源,以及在PRS资源块包含资源块标识信息,使得可以通过波束轮询的方式传输PRS。
如图14所示,本公开实施例还提供一种定位参考信号PRS的接收装置,包括确定模块41和检测接收模块42。
确定模块41用于根据子载波间隔确定发送PRS资源块的时频资源。
检测接收模块42用于按照确定的时频资源检测并接收PRS资源块,其中,每个PRS资源块包含资源块标识信息。
如图15所示,本公开实施例还提供一种发射节点,包括:存储器51、处理器52及存储在存储器51上并可在处理器52上运行的计算机程序53,处理器52执行程序53时实现根据本公开的PRS的发送方法。
所述发射节点可以是基站等发送PRS的设备。
如图16所示,本公开实施例还提供一种接收节点,包括:存储器61、处理器62及存储在存储器61上并可在处理器62上运行的计算机程序63,处理器62执行程序63时实现根据本公开的PRS的接收方法。
所述接收节点可以是用户设备(UE)等接收PRS的设备。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行根据本公开的PRS的发送方法。
本公开实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行根据本公开的PRS的接收方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外, 本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (31)

  1. 一种定位参考信号PRS的发送方法,包括:
    根据子载波间隔为PRS资源块分配时频资源;以及
    按照分配的时频资源发送所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
  2. 如权利要求1所述的方法,其中,根据子载波间隔为PRS资源块分配时频资源的步骤包括:
    以半个子帧为调度周期,为所述PRS资源块分配时频资源。
  3. 如权利要求1所述的方法,其中,根据子载波间隔为PRS资源块分配时频资源的步骤包括:
    在子载波间隔为15kHz时,为每个PRS资源块分配的第一个符号位置为{2,8}+14·n,n为小于等于4的自然数。
  4. 如权利要求3所述的方法,其中,
    在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=1,2,3,4。
  5. 如权利要求1所述的方法,其中,根据子载波间隔为PRS资源块分配时频资源的步骤包括:
    在子载波间隔为30kHZ时,为每个PRS资源块分配的第一个符号位置为{2,8}+14·n,n为小于等于7的自然数。
  6. 如权利要求5所述的方法,其中,
    对于频分双工FDD场景,在载频频点小于或等于3GHz时,n=2,3;在载频频点大于3GHz且小于或等于6GHz时,n=4,5,6,7;
    对于时分双工TDD场景,在载频频点小于或等于2.4GHz时,n=2,3;在载频频点大于2.4GHz且小于或等于6GHz时,n=4,5,6,7。
  7. 如权利要求1所述的方法,其中,根据子载波间隔为PRS资源块分配时频资源的步骤包括:
    在子载波间隔为120kHZ时,为每个PRS资源块分配的第一个符号位置为{4,8,16,20}+28·n,n=1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19。
  8. 如权利要求1所述的方法,其中,根据子载波间隔为PRS资源块分配时频资源的步骤包括:
    在子载波间隔为240kHz时,为每个PRS资源块分配的第一个符号位置为{4,8,16,20,32,36,40,44}+56·n,n=10,11,12,13,15,16,17,18。
  9. 如权利要求1所述的方法,其中,
    每个所述PRS资源块包含连续或者非连续的
    Figure PCTCN2020081348-appb-100001
    个符号,
    Figure PCTCN2020081348-appb-100002
  10. 如权利要求9所述的方法,其中,
    在一个调度周期内,同一个发射端发送的所述PRS资源块中前
    Figure PCTCN2020081348-appb-100003
    个符号所发送信号相同。
  11. 如权利要求10所述的方法,其中,
    所述PRS资源块中前
    Figure PCTCN2020081348-appb-100004
    个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100005
    其中,序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100006
    其中,
    Figure PCTCN2020081348-appb-100007
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100008
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100009
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100010
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  12. 如权利要求10所述的方法,其中,
    所述PRS资源块中前
    Figure PCTCN2020081348-appb-100011
    个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100012
    其中,序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100013
    其中,
    Figure PCTCN2020081348-appb-100014
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100015
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100016
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100017
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值;
    Figure PCTCN2020081348-appb-100018
  13. 如权利要求10所述的方法,其中,
    所述PRS资源块中前
    Figure PCTCN2020081348-appb-100019
    个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100020
    其中,序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100021
    其中,
    Figure PCTCN2020081348-appb-100022
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100023
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100024
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100025
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  14. 如权利要求10所述的方法,其中,
    所述PRS资源块中前
    Figure PCTCN2020081348-appb-100026
    个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100027
    其中,序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100028
    其中,
    Figure PCTCN2020081348-appb-100029
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100030
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100031
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100032
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值;
    Figure PCTCN2020081348-appb-100033
  15. 如权利要求10所述的方法,其中,
    所述PRS资源块中前
    Figure PCTCN2020081348-appb-100034
    个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100035
    其中,序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100036
    其中,
    Figure PCTCN2020081348-appb-100037
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100038
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100039
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100040
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  16. 如权利要求10所述的方法,其中,
    所述PRS资源块中前
    Figure PCTCN2020081348-appb-100041
    个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100042
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100043
    其中,
    Figure PCTCN2020081348-appb-100044
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100045
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100046
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100047
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  17. 如权利要求9所述的方法,其中,
    所述PRS资源块中最后一个符号所发送信号包含所述资源块标识信息。
  18. 如权利要求17所述的方法,其中,
    所述PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100048
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100049
    其中,i prs为PRS资源块的标识索引,i prs小于等于
    Figure PCTCN2020081348-appb-100050
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100051
    是一个 PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100052
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100053
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  19. 如权利要求17所述的方法,其中,
    所述PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100054
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100055
    其中,i prs为PRS资源块的标识索引,i prs小于等于
    Figure PCTCN2020081348-appb-100056
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100057
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100058
    是一个时隙包含的符号数,n hf代表半帧号,当在子帧的第一个半帧,n hf=0,在后一个半帧,n hf=1,s i为对应的PRS资源块的第一个符号的位置,
    Figure PCTCN2020081348-appb-100059
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值;
    Figure PCTCN2020081348-appb-100060
  20. 如权利要求17所述的方法,其中,
    所述PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100061
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100062
    其中,
    Figure PCTCN2020081348-appb-100063
    是一个无线帧内的时隙索引,l是一个时隙内的符号索引,
    Figure PCTCN2020081348-appb-100064
    是一个时隙包含的符号数,
    Figure PCTCN2020081348-appb-100065
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  21. 如权利要求17所述的方法,其中,
    所述PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100066
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100067
    其中,i prs为PRS资源块的标识索引,i prs小于等于
    Figure PCTCN2020081348-appb-100068
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100069
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  22. 如权利要求17所述的方法,其中,
    所述PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100070
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100071
    其中,i prs为PRS资源块的标识索引,i prs小于等于
    Figure PCTCN2020081348-appb-100072
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100073
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  23. 如权利要求17所述的方法,其中,
    所述PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100074
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100075
    其中,i prs为PRS资源块的标识索引,i prs小于等于
    Figure PCTCN2020081348-appb-100076
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100077
    为生成初始值用的 PRS标识,x与PRS时域相关,为预设值;
    Figure PCTCN2020081348-appb-100078
  24. 如权利要求17所述的方法,其中,
    所述PRS资源块中最后一个符号所发送序列r(m)由以下方式生成:
    Figure PCTCN2020081348-appb-100079
    序列c(i)的初始值c init为:
    Figure PCTCN2020081348-appb-100080
    其中,i prs为PRS资源块的标识索引,i prs小于等于
    Figure PCTCN2020081348-appb-100081
    是一个PRS资源块内包含的符号数,
    Figure PCTCN2020081348-appb-100082
    为生成初始值用的PRS标识,x与PRS时域相关,为预设值。
  25. 一种定位参考信号PRS的接收方法,包括:
    根据子载波间隔确定发送PRS资源块的时频资源;以及
    按照确定的时频资源检测并接收所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
  26. 一种定位参考信号PRS的发送装置,包括:
    分配模块,用于根据子载波间隔为PRS资源块分配时频资源;以及
    发送模块,用于按照分配的时频资源发送所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
  27. 一种发射节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至24中任意一项所述的PRS的发送方法。
  28. 一种计算机可读存储介质,存储有计算机可执行指令,所 述计算机可执行指令被处理器运行时,使得所述处理器执行权利要求1至24中任意一项所述的PRS的发送方法。
  29. 一种定位参考信号PRS的接收装置,包括:
    确定模块,用于根据子载波间隔确定发送PRS资源块的时频资源;以及
    检测接收模块,用于按照确定的时频资源检测并接收所述PRS资源块,其中,每个PRS资源块包含资源块标识信息。
  30. 一种接收节点,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求25所述的PRS的接收方法。
  31. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器运行时,使得所述处理器执行权利要求25所述PRS的接收方法。
PCT/CN2020/081348 2019-03-27 2020-03-26 定位参考信号的发送、接收方法、装置、发收发节点 WO2020192723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20779957.8A EP3926878A4 (en) 2019-03-27 2020-03-26 METHOD AND APPARATUS FOR TRANSMITTING POSITIONING REFERENCE SIGNAL, METHOD AND APPARATUS FOR RECEIVING POSITIONING REFERENCE SIGNAL, TRANSMITTER NODE AND RECEIVER NODE
US17/437,520 US20220150098A1 (en) 2019-03-27 2020-03-26 Transmitting and receiving methods and devices for positioning reference signal, and transmitting and receiving nodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910239843.X 2019-03-27
CN201910239843.XA CN110557235B (zh) 2019-03-27 2019-03-27 定位参考信号的发送、接收方法、装置、收发节点

Publications (1)

Publication Number Publication Date
WO2020192723A1 true WO2020192723A1 (zh) 2020-10-01

Family

ID=68736310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081348 WO2020192723A1 (zh) 2019-03-27 2020-03-26 定位参考信号的发送、接收方法、装置、发收发节点

Country Status (4)

Country Link
US (1) US20220150098A1 (zh)
EP (1) EP3926878A4 (zh)
CN (1) CN110557235B (zh)
WO (1) WO2020192723A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557235B (zh) * 2019-03-27 2023-04-07 中兴通讯股份有限公司 定位参考信号的发送、接收方法、装置、收发节点
GB2583454B (en) * 2019-04-02 2021-10-13 Samsung Electronics Co Ltd Improvements in and relating to positioning in a telecommunication network
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107483166A (zh) * 2016-06-08 2017-12-15 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
US20180131493A1 (en) * 2016-11-10 2018-05-10 Qualcomm Incorporated Sequence generation for systems supporting mixed numerologies
CN108023698A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 配置参考信号的方法和装置
US20190053711A1 (en) * 2017-07-28 2019-02-21 Speclipse, Inc. Tip for diagnosis laser handpiece capable of controlling laser energy emitted to target and its spot size
CN110557235A (zh) * 2019-03-27 2019-12-10 中兴通讯股份有限公司 定位参考信号的发送、接收方法、装置、收发节点

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103002577B (zh) * 2009-11-13 2016-03-16 北京三星通信技术研究有限公司 一种传输和接收定位参考信号的方法
US9344248B2 (en) * 2010-11-12 2016-05-17 Google Technology Holdings LLC Positioning reference signal assistance data signaling for enhanced interference coordination in a wireless communication network
CN102647790B (zh) * 2011-02-18 2015-05-13 华为技术有限公司 参考信号的发送、接收方法及装置
WO2014054887A1 (ko) * 2012-10-02 2014-04-10 한양대학교 산학협력단 하향링크 신호 및 채널의 전송방법 및 수신방법, 그 단말, 그 기지국
US10736113B2 (en) * 2016-02-16 2020-08-04 Qualcomm Incorporated Positioning signal techniques for narrowband devices
CN108282309B (zh) * 2017-01-06 2021-09-07 华为技术有限公司 参考信号传输方法和设备
CN110289896A (zh) * 2018-03-15 2019-09-27 索尼公司 电子装置、无线通信方法以及计算机可读介质
CN110365455B (zh) * 2018-04-09 2021-07-30 大唐移动通信设备有限公司 一种定位参考信号传输方法及装置
JP7289189B2 (ja) * 2018-06-28 2023-06-09 シャープ株式会社 端末装置、ロケーションサーバー及び方法
CN110808820B (zh) * 2018-07-20 2021-09-17 大唐移动通信设备有限公司 一种定位参考信号传输方法及装置
US11206631B2 (en) * 2019-01-11 2021-12-21 Kt Corporation Apparatus and method for performing positioning in new radio
WO2020146820A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Resource allocation, reference signal design, and beam management for new radio (nr) positioning
US20200235877A1 (en) * 2019-01-21 2020-07-23 Qualcomm Corporated Bandwidth part operation and downlink or uplink positioning reference signal scheme
WO2020159339A1 (ko) * 2019-02-01 2020-08-06 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
TW202038639A (zh) * 2019-02-15 2020-10-16 聯發科技股份有限公司 Rsrp 報告方法以及使用者設備
EP3911052B1 (en) * 2019-02-15 2023-08-30 LG Electronics Inc. Positioning in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107483166A (zh) * 2016-06-08 2017-12-15 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN108023698A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 配置参考信号的方法和装置
US20180131493A1 (en) * 2016-11-10 2018-05-10 Qualcomm Incorporated Sequence generation for systems supporting mixed numerologies
US20190053711A1 (en) * 2017-07-28 2019-02-21 Speclipse, Inc. Tip for diagnosis laser handpiece capable of controlling laser energy emitted to target and its spot size
CN110557235A (zh) * 2019-03-27 2019-12-10 中兴通讯股份有限公司 定位参考信号的发送、接收方法、装置、收发节点

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Further discussion of NR RAT-dependent DL Positioning", 3GPP DRAFT; R1-1901980, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 30, XP051599674 *
See also references of EP3926878A4 *

Also Published As

Publication number Publication date
EP3926878A1 (en) 2021-12-22
US20220150098A1 (en) 2022-05-12
CN110557235A (zh) 2019-12-10
CN110557235B (zh) 2023-04-07
EP3926878A4 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2020192723A1 (zh) 定位参考信号的发送、接收方法、装置、发收发节点
US9893846B2 (en) Method and apparatus for hybrid automatic retransmit request (HARQ) feedback in wireless communication system
CN110140392B (zh) 同步信号块检测方法、同步信号块传输方法、装置及系统
US10615929B2 (en) Apparatus, system and method of multi user (MU) range measurement
CN110892771A (zh) 波束故障恢复请求
WO2018214940A1 (zh) 信道侦听方法、网络侧设备及终端
US10142960B2 (en) Multi-user ranging with unassociated stations
US20130077574A1 (en) Resource Allocation and Signaling for Aperiodic Sounding
US11910435B2 (en) Method and system for Wi-Fi sensing
US20210143969A1 (en) Signaling of Measurement Signals based on a Tree Structure
WO2018120102A1 (zh) 波束选择方法、装置及系统
US8902824B2 (en) Methods of transmitting and receiving data, and apparatus therefor
US20180324687A1 (en) Device and Method of Handling a Cell Selection Procedure or a Cell Reselection Procedure
US10932296B2 (en) Device and method of handling physical random access channel resources on a secondary cell in carrier aggregation
WO2018053755A1 (zh) 一种探测参考信号发送方法及用户设备
CN109104220B (zh) 一种波束训练方法及发起方设备、响应方设备
CN111901017B (zh) 一种信号传输的装置、系统及方法
WO2018058574A1 (zh) 随机接入装置、方法以及通信系统
US11405061B2 (en) Interference mitigation in a communications network
CN107079489B (zh) 信号传输方法和网络设备
CN109120321B (zh) 一种波束赋形的方法、装置、基站及计算机可读存储介质
ES2726150T3 (es) Procedimiento para adquirir información de característica espacial de canal, y estación base

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020779957

Country of ref document: EP

Effective date: 20210916

NENP Non-entry into the national phase

Ref country code: DE