WO2020159339A1 - 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2020159339A1
WO2020159339A1 PCT/KR2020/001596 KR2020001596W WO2020159339A1 WO 2020159339 A1 WO2020159339 A1 WO 2020159339A1 KR 2020001596 W KR2020001596 W KR 2020001596W WO 2020159339 A1 WO2020159339 A1 WO 2020159339A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
information
resource
transmission
specific
Prior art date
Application number
PCT/KR2020/001596
Other languages
English (en)
French (fr)
Inventor
차현수
윤석현
고우석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020217025929A priority Critical patent/KR20210112385A/ko
Priority to US17/425,797 priority patent/US11979845B2/en
Publication of WO2020159339A1 publication Critical patent/WO2020159339A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • H04W56/009Closed loop measurements

Definitions

  • Various embodiments of the present disclosure are directed to a wireless communication system, and specifically, to a method for transmitting and receiving signals in a wireless communication system and an apparatus supporting the same.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • next-generation RAT in consideration of such improved mobile broadband communication, massive MTC, and ultra-reliable and low latency communication (URLLC) is being discussed.
  • Various embodiments of the present disclosure can provide a method for transmitting and receiving signals in a wireless communication system and an apparatus supporting the same.
  • various embodiments of the present disclosure transmit at least one of an ID (Identifier) of a specific PRS resource and an ID of a PRS resource set including the specific PRS resource, based on information associated with positioning in a wireless communication system.
  • An ID (Identifier) of a specific PRS resource and an ID of a PRS resource set including the specific PRS resource, based on information associated with positioning in a wireless communication system.
  • a method and a device supporting the same can be provided.
  • Various embodiments of the present disclosure can provide a method for transmitting and receiving signals in a wireless communication system and an apparatus supporting the same.
  • a method of an apparatus in a wireless communication system comprising: receiving information on a transmission time of a plurality of PRS resources included in at least one PRS (Positioning Reference Signal) resource set; Measuring information related to positioning for each of the plurality of PRS resources based on the information on the transmission time; And based on information associated with the positioning, at least one of an ID (Identifier) of a specific PRS resource among the plurality of PRS resources and an ID of a PRS resource set including the specific PRS resource and the specific PRS resource are included. And transmitting a Transmission and Reception Point (TRP) ID associated with the PRS resource set.
  • TRP Transmission and Reception Point
  • the specific PRS resource may be M PRS resources in the order of highest quality value of information related to the positioning among the plurality of PRS resources, and the M may be a natural number.
  • the specific PRS resource may be a PRS resource in which the quality value of information related to the positioning among the plurality of PRS resources is greater than or equal to a preset value.
  • the information related to the positioning includes time difference information for transmission and reception, and the time difference information for transmission and reception may be a difference value between a time at which PRS is received on the specific PRS resource and a time at which information related to the measurement related to the specific PRS resource is transmitted. have.
  • the specific PRS resource may be a PRS resource in which a PRS having the smallest Time of Arrival (ToA) is received among a plurality of PRSs received on the plurality of PRS resources.
  • ToA Time of Arrival
  • Information related to the location may include RSTD (Reference Signal Timing Difference).
  • the at least one PRS resource set is associated with a beam combination with at least one transmit beam and at least one receive beam, and information associated with positioning for the specific PRS resource and the ID of the specific PRS resource are the at least one PRS It may be configured to be transmitted for each resource set.
  • One embodiment includes an apparatus operating in a wireless communication system, comprising: a memory; And one or more processors connected to the memory,
  • the one or more processors receive information on a transmission time point of a plurality of PRS resources included in at least one PRS (Positioning Reference Signal) resource set, and based on the information on the transmission time point, the plurality of PRS resources For each, the information associated with the location is measured, and based on the information associated with the location, at least one of an ID (Identifier) of a specific PRS resource among the plurality of PRS resources and an ID of a PRS resource set including the specific PRS resource It is a device that transmits a Transmission and Reception Point (TRP) ID associated with a PRS resource set containing any one of the above and specific PRS resources.
  • TRP Transmission and Reception Point
  • the specific PRS resource may be M PRS resources in the order of highest quality value of information related to the positioning among the plurality of PRS resources, and the M may be a natural number.
  • the specific PRS resource may be a PRS resource in which the quality value of information related to the positioning among the plurality of PRS resources is greater than or equal to a preset value.
  • the information related to the positioning includes time difference information for transmission and reception, and the time difference information for transmission and reception may be a difference value between a time at which PRS is received on the specific PRS resource and a time at which information related to the measurement related to the specific PRS resource is transmitted. have.
  • the device is a device that communicates with one or more of a mobile terminal, a network, and an autonomous vehicle other than the vehicle in which the device is included.
  • An embodiment includes an apparatus operating in a wireless communication system, comprising: one or more processors; And one or more memories storing one or more instructions for causing the one or more processors to perform the method, the method comprising: a plurality of at least one Positioning Reference Signal (PRS) resource set Receiving information about a transmission time point of PRS resources; Measuring information related to positioning for each of the plurality of PRS resources based on the information on the transmission time; And based on information associated with the positioning, at least one of an ID (Identifier) of a specific PRS resource among the plurality of PRS resources and an ID of a PRS resource set including the specific PRS resource and the specific PRS resource are included. And transmitting a Transmission and Reception Point (TRP) ID associated with the PRS resource set.
  • TRP Transmission and Reception Point
  • the specific PRS resource may be M PRS resources in the order of highest quality value of information related to the positioning among the plurality of PRS resources, and the M may be a natural number.
  • the specific PRS resource may be a PRS resource in which the quality value of information related to the positioning among the plurality of PRS resources is greater than or equal to a preset value.
  • a method of a device in a wireless communication system comprising: transmitting information about a transmission time point of a plurality of PRS resources included in at least one PRS (Positioning Reference Signal) resource set; Transmitting the plurality of PRS resources based on the information on the transmission time; And at least one of an ID (Identifier) of a specific PRS resource among the plurality of PRS resources and an ID of a PRS resource set including the specific PRS resource, and a TRP (Transmission and Reception) associated with the PRS resource set including the specific PRS resource.
  • Point is a method comprising the step of receiving an ID.
  • One embodiment includes an apparatus operating in a wireless communication system, comprising: a memory; And one or more processors connected to the memory, wherein the one or more processors: transmit information on a transmission time point of a plurality of PRS resources included in at least one Positioning Reference Signal (PRS) resource set, and Based on the information on the transmission time, the plurality of PRS resources are transmitted, and at least one of an ID (Identifier) of a specific PRS resource among the plurality of PRS resources and a PRS resource set including the specific PRS resource It is a device that receives a Transmission and Reception Point (TRP) ID associated with a set of PRS resources including one and the specific PRS resource.
  • TRP Transmission and Reception Point
  • a processor-readable medium storing one or more instructions that cause one or more processors to perform a method, the method comprising: at least one or more PRS (Positioning) Reference Signal) transmitting information on a transmission time point of a plurality of PRS resources included in the resource set; Transmitting the plurality of PRS resources based on the information on the transmission time; And TRP (Transmission and Reception) associated with at least one of an ID (Identifier) of a specific PRS resource among the plurality of PRS resources and an ID of a PRS resource set including the specific PRS resource and a PRS resource set including the specific PRS resource.
  • Point is a processor-readable medium comprising the step of receiving an ID.
  • At least one of an ID (Identifier) of a specific PRS resource and an ID of a PRS resource set including the specific PRS resource is transmitted.
  • a method and an apparatus supporting it can be provided.
  • unnecessary RSTD measurement values can be excluded to improve accuracy and reduce unnecessary reporting overhead.
  • FIG. 1 is a view for explaining a physical channel that can be used in various embodiments of the present disclosure and a signal transmission method using them.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • FIG. 4 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
  • SSB Synchronization Signal Block
  • FIG. 6 is a diagram illustrating an example of a method of transmitting an SSB to which various embodiments of the present disclosure are applicable.
  • FIG. 7 is a diagram illustrating an example of PRS mapping in an LTE system to which various embodiments of the present disclosure are applicable.
  • FIG. 8 is a diagram illustrating an example of an architecture of a system for measuring a position of a terminal to which various embodiments of the present disclosure are applicable.
  • FIG. 9 is a diagram illustrating an example of a procedure for measuring a position of a terminal to which various embodiments of the present disclosure are applicable.
  • LTE positioning protocol LTP
  • FIG. 11 is a diagram illustrating an example of a protocol layer for supporting NR positioning protocol a (NRPPa) protocol data unit (PDU) transmission to which various embodiments of the present disclosure are applicable.
  • NRPPa NR positioning protocol a
  • PDU protocol data unit
  • OTDOA observed time difference of arrival
  • 13 is for describing a UE transmission/reception time difference reported according to an embodiment of the present disclosure.
  • 15 is for explaining the operation of the terminal according to an embodiment of the present disclosure.
  • 16 is for explaining the operation of the base station according to an embodiment of the present disclosure.
  • 17 is for describing a two-cell based multi-cell RTT technique according to an embodiment of the present disclosure.
  • 19 is for describing an operation of a base station based on M-best reporting according to an embodiment of the present disclosure.
  • FIG. 20 is a diagram briefly illustrating a network initial access and subsequent communication process according to various embodiments of the present disclosure.
  • 21 is a diagram illustrating DRX operation according to various embodiments of the present disclosure.
  • FIG. 22 is a diagram briefly illustrating an operation method of a terminal and a base station according to various embodiments of the present disclosure.
  • FIG. 23 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure.
  • 24 is a flowchart illustrating a method of operating a base station and a location server according to various embodiments of the present disclosure.
  • 25 is a diagram illustrating an apparatus in which various embodiments of the present disclosure can be implemented.
  • 26 illustrates a communication system applied to various embodiments of the present disclosure.
  • FIG. 27 illustrates a wireless device that can be applied to various embodiments of the present disclosure.
  • 29 illustrates a portable device applied to various embodiments of the present disclosure.
  • FIG. 30 illustrates a vehicle or autonomous vehicle applied to various embodiments of the present disclosure.
  • 31 illustrates a vehicle applied to various embodiments of the present disclosure.
  • each component or feature can be considered to be optional, unless expressly stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • various embodiments of the present disclosure may be configured by combining some components and/or features. The order of operations described in various embodiments of the present disclosure can be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • the base station has a meaning as a terminal node of a network that directly communicates with a terminal. Certain operations described in this document as being performed by a base station may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a terminal in a network consisting of a plurality of network nodes including a base station may be performed by a base station or other network nodes other than the base station.
  • the'base station' may be replaced by terms such as a fixed station, Node B, eNode B (eNB), gNode B (gNB), advanced base station (ABS), or access point.
  • eNB eNode B
  • gNB gNode B
  • ABS advanced base station
  • a terminal is a user equipment (UE), a mobile station (MS), a subscriber station (SS), and a mobile subscriber station (MSS). ), a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end may refer to a fixed and/or mobile node that provides a data service or a voice service
  • the receiving end may refer to a fixed and/or mobile node that receives a data service or a voice service. Therefore, in the uplink, a mobile station can be a transmitting end and a base station can be a receiving end. Likewise, in the downlink, a mobile station can be a receiving end, and a base station can be a transmitting end.
  • Various embodiments of the present disclosure may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3rd Generation Partnership Project (3GPP) system, 3GPP LTE system, 3GPP 5G NR system and 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP TS 36.211 3GPP TS 36.212
  • 3GPP TS 36.213 3GPP TS 36.321
  • 3GPP TS 36.331 3GPP TS 37.213
  • 3GPP TS 38.331 documents that is, obvious steps or parts that are not described among various embodiments of the present disclosure may be described with reference to the documents. Also, all terms disclosed in this document may be described by the standard document.
  • 3GPP NR system as well as a 3GPP LTE/LTE-A system will be described as an example of a wireless access system in which various embodiments of the present disclosure can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • OFDMA may be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP LTE Long Term Evolution
  • E-UMTS Evolved UMTS
  • OFDMA OFDMA
  • SC-FDMA SC-FDMA
  • LTE-A Advanced
  • various embodiments of the present disclosure mainly describe a 3GPP NR system as well as a 3GPP LTE/LTE-A system, but can also be applied to IEEE 802.16e/m systems, etc. Can.
  • a terminal receives information from a base station through a downlink (DL) and transmits information to a base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • FIG. 1 is a view for explaining a physical channel that can be used in various embodiments of the present disclosure and a signal transmission method using them.
  • the UE When the power is turned off again when the power is turned off, or newly entered the cell, the UE performs an initial cell search operation such as synchronizing with the base station (S11). To this end, the terminal receives a primary synchronization channel (P-SCH: Primary Synchronization Channel) and a floating channel (S-SCH: Secondary Synchronization Channel) from the base station, synchronizes with the base station, and acquires information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain intra-cell broadcast information.
  • PBCH physical broadcast channel
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information. Can be obtained (S12).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure (Random Access Procedure) to complete the access to the base station (S13 ⁇ S16).
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and the RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Random Access Response) may be received (S14).
  • the UE transmits a PUSCH (Physical Uplink Shared Channel) using scheduling information in the RAR (S15), and a collision resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal (Contention Resolution Procedure) ) Can be performed (S16 ).
  • PUSCH Physical Uplink Shared Channel
  • Contention Resolution Procedure Contention Resolution Procedure
  • S13/S15 may be performed as one operation in which the terminal transmits
  • S14/S16 may be performed in one operation in which the base station performs transmission.
  • the terminal After performing the above-described procedure, the terminal receives the physical downlink control channel signal and/or the physical downlink shared channel signal (S17) and the physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • the Uplink Shared Channel (PUCCH) signal and/or the Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • UCI includes HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) information, etc. .
  • UCI is generally periodically transmitted through PUCCH, but can be transmitted through PUSCH when control information and data should be simultaneously transmitted.
  • the UE may periodically transmit UCI through PUSCH.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • the NR system can support multiple numerology.
  • the numerology may be defined by subcarrier spacing (SCS) and cyclic prefix (CP) overhead.
  • SCS subcarrier spacing
  • CP cyclic prefix
  • a plurality of subcarrier intervals may be derived by scaling the basic subcarrier interval with an integer N (or ⁇ ).
  • N integer
  • the used numerology can be selected independently of the frequency band of the cell.
  • various frame structures according to a plurality of pneumatics may be supported.
  • OFDM orthogonal frequency division multiplexing
  • NR supports multiple numerology (eg, subcarrier spacing) to support various 5G services. For example, when the subcarrier spacing is 15 kHz, it supports a wide area in traditional cellular bands, and when the subcarrier spacing is 30 kHz/60 kHz, dense-urban, lower latency It supports latency and wider carrier bandwidth, and when the subcarrier spacing is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • numerology eg, subcarrier spacing
  • the NR frequency band is defined as two types of frequency ranges, FR1 and FR2.
  • FR1 is a sub 6 GHz range
  • FR2 is a 6 mm range above and may mean a millimeter wave (mmWave).
  • mmWave millimeter wave
  • Table 2 illustrates the definition of the NR frequency band.
  • T c 1/( ⁇ f max * N f ), which is a basic time unit for NR.
  • ⁇ f max 480*10 3 Hz
  • N f 4096, which is a value related to the size of a fast Fourier transform (FFT) or an inverse fast Fourier transform (IFFT).
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • slots are n ⁇ s ⁇ ⁇ 0,... in increasing order within a subframe. , N slot, ⁇ subframe -1 ⁇ , and within the radio frame, n ⁇ s,f ⁇ ⁇ 0,... , N slot, ⁇ frame -1 ⁇ .
  • One slot is composed of N ⁇ symb consecutive OFDM symbols, and N ⁇ symb depends on a cyclic prefix (CP).
  • the start of the slot n ⁇ s in the subframe is temporally aligned with the start of the OFDM symbol n ⁇ s * N ⁇ symb in the same subframe.
  • Table 3 shows the number of symbols for each slot according to the SCS, the number of slots for each frame, and the number of slots for each subframe when the normal CP is used
  • Table 4 shows the slot number according to the SCS when the extended CSP is used It indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • N slot symb indicates the number of symbols in the slot
  • N frame indicates the number of slots in the frame
  • ⁇ slot indicates the number of slots in the frame
  • N subframe indicates the number of slots in the subframe
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • TU Time Unit
  • one subframe may include four slots.
  • mini-slot may contain 2, 4 or 7 symbols or more or fewer symbols.
  • FIG. 3 is a diagram illustrating a slot structure based on an NR system to which various embodiments of the present disclosure are applicable.
  • one slot may include a plurality of symbols in the time domain. For example, in the case of a normal CP (normal CP), one slot includes 7 symbols, but in the case of an extended CP (extended CP), one slot may include 6 symbols.
  • the carrier may include a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P contiguous
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • N e.g. 5
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • FIG. 4 is a diagram illustrating a self-contained slot structure to which various embodiments of the present disclosure are applicable.
  • the independent slot structure is a slot structure in which a downlink control channel, downlink/uplink data, and uplink control channel can all be included in one slot. Can.
  • the base station and the UE can sequentially perform DL transmission and UL transmission in one slot, and can transmit and receive DL data and transmit/receive UL ACK/NACK therein in one slot.
  • this structure reduces the time it takes to retransmit data when a data transmission error occurs, thereby minimizing the delay of final data transmission.
  • a type gap of a certain time length is required for a base station and a UE to switch from a transmission mode to a reception mode or a transition from a reception mode to a transmission mode.
  • some OFDM symbols at a time point of switching from DL to UL in an independent slot structure may be set as a guard period (GP).
  • the independent slot structure includes both the DL control area and the UL control area
  • the control areas may be selectively included in the independent slot structure.
  • the free-standing slot structure may include a case in which both the DL control area and the UL control area are included as well as the case where both the DL control area and the UL control area are included as shown in FIG. 4. .
  • one slot may be configured in the order of DL control area / DL data area / UL control area / UL data area, or may be configured in the order of UL control area / UL data area / DL control area / DL data area.
  • PDCCH may be transmitted in the DL control region, and PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • the base station transmits the related signal to the terminal through the downlink channel described later, and the terminal receives the related signal from the base station through the downlink channel described later.
  • PDSCH Physical downlink shared channel
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM Applies.
  • a codeword is generated by encoding TB.
  • PDSCH can carry up to two codewords. For each codeword, scrambling and modulation mapping are performed, and modulation symbols generated from each codeword are mapped to one or more layers (Layer mapping). Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) and is generated as an OFDM symbol signal and transmitted through a corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • PDCCH Physical downlink control channel
  • downlink control information for example, DL data scheduling information and UL data scheduling information
  • DCI downlink control information
  • DL data scheduling information for example, DL data scheduling information and UL data scheduling information
  • uplink control information for example, ACK/NACK (Positive Acknowledgement/Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted.
  • uplink control information for example, ACK/NACK (Positive Acknowledgement/Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted.
  • ACK/NACK Phase Acknowledgement/Negative Acknowledgement
  • CSI Channel State Information
  • SR Service Request
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, and 16 control channel elements (CCEs) according to an aggregation level (AL).
  • CCE is composed of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P)RB.
  • the PDCCH is transmitted through a control resource set (CORESET).
  • CORESET is defined as a set of REGs with a given numerology (eg, SCS, CP length, etc.). Multiple CORESETs for one UE may overlap in the time/frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific upper layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of symbols (up to 3) constituting the CORESET may be set by higher layer signaling.
  • the precoder granularity in the frequency domain for each CORESET can be set to one of the following by higher layer signaling:
  • REGs in CORESET are numbered based on a time-first mapping manner. That is, REGs are sequentially numbered from 0 starting from the first OFDM symbol in the lowest-numbered resource block inside CORESET.
  • the CCE to REG mapping type is set to one of a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • the UE obtains DCI transmitted through the PDCCH by performing decoding (aka blind decoding) on a set of PDCCH candidates.
  • the set of PDCCH candidates that the UE decodes is defined as a set of PDCCH search spaces.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more set of search spaces set by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more search space sets, and each search space set is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId represents a control resource set related to the search space set
  • -monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (eg, indicates the first symbol(s) of the control resource set)
  • Table 5 illustrates the features of each search space type.
  • Table 6 illustrates DCI formats transmitted through the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH It can be used to schedule.
  • DCI format 1_0 is used to schedule the TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule the TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH Can.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH (PDCCH), which is a PDCCH delivered to UEs defined
  • the terminal transmits the related signal to the base station through the uplink channel described later, and the base station receives the related signal from the terminal through the uplink channel described later.
  • PUSCH Physical uplink shared channel
  • PUSCH is uplink data (eg, UL-shared channel transport block, UL-SCH TB) and/or uplink control information (UCI), CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform or DFT-s-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) It is transmitted based on the waveform.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • PUSCH may be transmitted based on a waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by UL grant in DCI, or semi-static based on upper layer (eg, RRC) signaling (and/or Layer 1 (L1) signaling (eg, PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission may be performed on a codebook basis or a non-codebook basis.
  • PUCCH Physical uplink control channel
  • PUCCH carries uplink control information, HARQ-ACK and/or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • Table 7 illustrates PUCCH formats.
  • PUCCH format 0 carries UCI up to 2 bits in size, and is mapped and transmitted based on a sequence. Specifically, the UE transmits a specific UCI to a base station by transmitting one sequence among a plurality of sequences through PUCCH in PUCCH format 0. The UE transmits a PUCCH in PUCCH format 0 in PUCCH resource for setting a corresponding SR only when transmitting a positive SR.
  • PUCCH format 1 carries UCI up to 2 bits in size, and modulation symbols are spread in an orthogonal cover code (OCC) in the time domain (set differently depending on whether frequency hopping is performed).
  • OCC orthogonal cover code
  • DMRS is transmitted on a symbol in which a modulation symbol is not transmitted (ie, time division multiplexing (TDM)).
  • PUCCH format 2 carries UCI having a bit size larger than 2 bits, and modulation symbols are transmitted through DMRS and Frequency Division Multiplexing (FDM).
  • DM-RS is located at symbol indexes #1, #4, #7, and #10 in a given resource block at a density of 1/3.
  • PN Pulseudo Noise sequence is used for the DM_RS sequence.
  • frequency hopping may be activated.
  • PUCCH format 3 does not allow terminal multiplexing in the same physical resource blocks, and carries a UCI having a bit size larger than 2 bits.
  • PUCCH resources of PUCCH format 3 do not include orthogonal cover codes.
  • the modulation symbol is transmitted by DMRS and Time Division Multiplexing (TDM).
  • PUCCH format 4 supports multiplexing up to 4 terminals in the same physical resource block, and carries UCI having a bit size larger than 2 bits.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted by DMRS and Time Division Multiplexing (TDM).
  • SSB Synchronization Signal Block
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, and the like based on the SSB.
  • SSB is mixed with SS/PBCH (Synchronization Signal/Physical Broadcast channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast channel
  • SSB is composed of PSS, SSS and PBCH.
  • SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers
  • PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and quadrature phase shift keying (QPSK) are applied to the PBCH.
  • the PBCH is composed of a data RE and a DMRS (Demodulation Reference Signal) RE for each OFDM symbol. There are three DMRS REs for each RB, and three data REs exist between the DMRS REs.
  • Cell search refers to a process in which a terminal acquires time/frequency synchronization of a cell and detects a cell ID (eg, physical layer cell ID, PCID) of the cell.
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • the cell search process of the terminal may be summarized as in Table 8 below.
  • 336 cell ID groups exist, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs.
  • Information about the cell ID group to which the cell ID of the cell belongs is provided/obtained through the SSS of the cell, and information about the cell ID among the 336 cells in the cell ID is provided/obtained through the PSS.
  • FIG. 6 is a diagram illustrating an example of a method of transmitting an SSB to which various embodiments of the present disclosure are applicable.
  • the SSB is periodically transmitted according to the SSB period.
  • the SSB basic period assumed by the UE is defined as 20 ms.
  • the SSB period can be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
  • a network eg, a base station.
  • the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
  • the maximum transmission frequency L of the SSB may be given as follows according to the frequency band of the carrier. One slot includes up to two SSBs.
  • the time position of the SSB candidate in the SS burst set may be defined as follows according to the SCS.
  • the time position of the SSB candidate is indexed from 0 to L-1 according to the time order within the SSB burst set (ie, half-frame) (SSB index).
  • -Case A 15 kHz
  • SCS The index of the starting symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • -Case B 30 kHz
  • SCS The index of the starting symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28*n.
  • n 0.
  • n 0, 1.
  • -Case C 30 kHz
  • SCS The index of the starting symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • -Case D 120 kHz
  • SCS The index of the starting symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28*n.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • -Case E 240 kHz
  • SCS The index of the starting symbol of the candidate SSB is given as ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56*n.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • Positioning may mean determining a geographical location and/or speed of the UE by measuring a radio signal.
  • Location information may be requested by a client (eg, application) associated with the UE, and reported to the client. Also, the location information may be included in the core network or may be requested by a client connected to the core network. The location information may be reported in a standard format such as cell-based or geographic coordinates, in which case, an estimation error value and/or positioning method used for positioning and velocity of the UE You can report together.
  • PRS positioning reference signal
  • PRS is a reference signal used to estimate the location of the UE.
  • PRS can be transmitted only in a downlink subframe configured for PRS transmission (hereinafter,'Positioning Subframe').
  • the OFDM (Orthogonal Frequency Division Multiplexing) symbols of the MBSFN subframe are the same CP (subframe #0). Cyclic Prefix). If the positioning subframe in the cell is set to only MBSFM subframes, OFDM symbols set for PRS in the MBSFN subframe may have an extended CP.
  • the sequence of the PRS can be defined by Equation 1 below.
  • n s denotes a slot number in a radio frame
  • l denotes an OFDM symbol number in the slot.
  • c(i) is a pseudo-random sequence, and can be initialized according to [Equation 2] below.
  • the N CP is 1 in the general CP (Cyclic Prefix) and 0 in the extended CP.
  • FIG. 7 is a diagram illustrating an example of PRS mapping in an LTE system to which various embodiments of the present disclosure are applicable.
  • PRS may be transmitted through antenna port 6.
  • 7(a) shows an example in which the PRS is mapped in the general CP
  • FIG. 7(b) shows an example in which the PRS is mapped in the extended CP.
  • PRS may be transmitted in consecutive subframes grouped for location estimation.
  • the subframes grouped for location estimation are referred to as Positioning Occasion.
  • This positioning opportunity may consist of 1, 2, 4 or 6 subframes.
  • this positioning opportunity may occur periodically in a period of 160, 320, 640 or 1280 subframes.
  • a cell-specific subframe offset value for indicating the start subframe of PRS transmission may be defined, and the offset value and the period of the positioning opportunity for PRS transmission are as shown in Table 9 below. Configuration Index).
  • the PRS included in each positioning opportunity is transmitted with a constant power.
  • the PRS may be transmitted with zero power at a specific positioning opportunity (Occasion), which is called PRS muting.
  • PRS muting For example, by muting the PRS transmitted from the serving cell, the UE can easily detect the PRS of the adjacent cell.
  • the PRS muting configuration for a cell can be defined by a periodic muting sequence consisting of 2, 4, 8 or 16 positioning opportunities (Occasion). That is, the periodic muting sequence may be composed of 2, 4, 8, or 16 bits depending on positioning opportunities corresponding to the PRS muting setting, and each bit may have a value of '0' or '1'. For example, PRS muting may be performed at a positioning opportunity (Occasion) with a bit value of '0'.
  • the positioning subframe is designed as a low interference subframe, so that no data is transmitted in the positioning subframe. Therefore, PRS may be interfered with by PRS of other cells, but not by data transmission.
  • FIG. 8 is a diagram illustrating an example of an architecture of a system for measuring a position of a terminal to which various embodiments of the present disclosure are applicable.
  • the Core Access and Mobility Management Function receives a request for a location service related to a specific target UE from another entity such as a Gateway Mobile Location Center (GMLC), or a specific target in the AMF itself. It may decide to start a location service on behalf of the UE. Then, the AMF sends a location service request to the LMF (Location Management Function). Upon receiving the location service request, the LMF may process the location service request and return a processing result including the estimated location of the UE to the AMF. On the other hand, when the location service request is received from another entity, such as GMLC, other than AMF, the AMF may deliver the processing result received from the LMF to another entity.
  • GMLC Gateway Mobile Location Center
  • ng-eNB new generation evolved-NB
  • gNB are network elements of NG-RAN that can provide measurement results for location tracking, and can measure radio signals for target UEs and deliver the results to LMF.
  • the ng-eNB can control some Transmission Points (TPs) such as remote radio heads or PRS-only TPs supporting a PRS-based beacon system for E-UTRA.
  • TPs Transmission Points
  • the LMF is connected to the Enhanced Serving Mobile Location Center (E-SMLC), and the E-SMLC enables the LMF to access the E-UTRAN.
  • E-SMLC Enhanced Serving Mobile Location Center
  • OTDOA is one of the positioning methods of the E-UTRAN using the downlink measurement acquired by the target UE through a signal transmitted by the LMF from eNBs and/or PRS-only TPs in the E-UTRAN. (Observed Time Difference Of Arrival).
  • the LMF may be connected to the SLP (SUPL Location Platform).
  • the LMF can support and manage different location determination services for target UEs.
  • the LMF may interact with a serving ng-eNB or serving gNB for the target UE to obtain a location measurement of the UE.
  • LMF is based on the location service (LCS) client type, the required quality of service (QoS), UE positioning capabilities (UE positioning capabilities), gNB positioning capabilities and ng-eNB positioning capabilities, etc. Determine and apply this positioning method to the serving gNB and/or serving ng-eNB.
  • the LMF may determine additional information such as location estimates for the target UE and accuracy of location estimation and speed.
  • SLP is a Secure User Plane Location (SUPL) entity responsible for positioning through a user plane.
  • SUPL Secure User Plane Location
  • the UE may measure the location of the UE by using a downlink reference signal transmitted from NG-RAN and E-UTRAN.
  • the downlink reference signal transmitted from NG-RAN and E-UTRAN to the UE may include SS/PBCH block, CSI-RS and/or PRS, and the location of the UE using any downlink reference signal Whether to measure may be in accordance with settings such as LMF/E-SMLC/ng-eNB/E-UTRAN.
  • RAT-independent methods that utilize different GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN access points, Bluetooth beacons, and sensors built into the UE (e.g. barometric pressure sensors) You can also measure the location.
  • GNSS Global Navigation Satellite System
  • TBS Transmissionrestrial Beacon System
  • WLAN access points e.g. barometric pressure sensors
  • the UE may include an LCS application, and may access the LCS application through communication with a network to which the UE is connected or through other applications included in the UE.
  • the LCS application may include measurement and calculation functions necessary to determine the location of the UE.
  • the UE may include an independent positioning function such as GPS (Global Positioning System), and may report the location of the UE independently of NG-RAN transmission.
  • the independently obtained positioning information may be used as auxiliary information of positioning information obtained from a network.
  • FIG. 9 is a diagram illustrating an example of a procedure for measuring a position of a terminal to which various embodiments of the present disclosure are applicable.
  • CM-IDLE Connection Management-IDLE
  • the AMF When the UE is in the CM-IDLE (Connection Management-IDLE) state, when the AMF receives a location service request, the AMF establishes a signaling connection with the UE and allocates a network trigger service to allocate a specific serving gNB or ng-eNB. You can ask.
  • This operation process is omitted in FIG. 9. That is, in FIG. 9, it can be assumed that the UE is in a connected mode. However, the signaling connection may be released by the NG-RAN during the positioning process for reasons such as signaling and data inactivity.
  • a 5GC entity such as GMLC may request a location service for measuring the location of the target UE with the serving AMF.
  • the serving AMF may determine that a location service is needed to measure the location of the target UE. For example, in order to measure the location of the UE for an emergency call, the serving AMF may decide to perform the location service directly.
  • the AMF sends a location service request to the LMF according to step 2, and according to step 3a, the LMF serves location procedures for obtaining location measurement data or location measurement assistance data ng-eNB, You can start with the serving gNB.
  • the LMF may request location related information related to one or more UEs to the NG-RAN, and indicate the type of location information required and the related QoS.
  • the NG-RAN may transmit location-related information to the LMF in response to the request.
  • the location determination method according to the request is E-CID
  • the NG-RAN may transmit additional location related information to the LMF through one or more NRPPa messages.
  • the'position-related information' may mean all values used for location calculation, such as actual location estimation information and radio measurement or location measurement.
  • the protocol used in step 3a may be an NRPPa protocol, which will be described later.
  • the LMF may initiate location procedures for downlink positioning with the UE.
  • the LMF may transmit location assistance data to the UE or obtain location estimates or location measurements.
  • a performance information exchange process may be performed.
  • the LMF may request capability information from the UE, and the UE may transmit capability information to the LMF.
  • the Capability information includes various aspects of a specific location measurement method, such as information on a location measurement method that can be supported by an LFM or UE, and various types of assistance data for A-GNSS. ) And information on common features not limited to any one location measurement method, such as the ability to handle multiple LPP transactions.
  • the UE may provide the (Capability) information to the LMF.
  • an assist data transfer process may be performed.
  • the UE may request location assistance data from the LMF, and may instruct the LMF to require specific location assistance data.
  • the LMF may transmit corresponding location assistance data to the UE, and additionally, may transmit additional assistance data to the UE through one or more additional LPP messages.
  • the location assistance data transmitted from the LMF to the UE may be transmitted through a unicast method, and in some cases, without the process of the UE requesting the assistance data from the LMF, the LMF sends the location assistance data to the UE and/or Alternatively, additional auxiliary data may be transmitted to the UE.
  • a location information transfer process may be performed.
  • the LMF may request the UE for location-related information related to the UE, and instruct the type of required location information and related QoS. Then, the UE may transmit location-related information to the LMF in response to the request. At this time, additionally, the UE may transmit additional location related information to the LMF through one or more LPP messages.
  • the'location-related information' may mean all values used for location calculation, such as actual location estimation information and radio measurement or location measurement, and typically, UEs from a plurality of NG-RANs and/or E-UTRANs There may be a reference signal time difference (RSTD) value measured by the UE based on downlink reference signals transmitted to the downlink reference signals. Similar to the above, the UE can transmit the location-related information to the LMF even if there is no request from the LMF.
  • RSTD reference signal time difference
  • step 3b is performed in the order of a capability transfer process, a location assistance data transfer process, and a location information transfer process, but is not limited to this order.
  • step 3b is not restricted in any particular order to improve the flexibility of location measurement.
  • the UE may request location assistance data at any time to perform a location measurement request already requested by the LMF.
  • the LMF also does not satisfy the QoS required by the location information delivered by the UE, it may request location information, such as location measurements or location estimates, at any time.
  • location information such as location measurements or location estimates
  • an error message may be transmitted and received, and an abort message for stopping location measurement may be transmitted and received.
  • the protocol used in step 3b may be an LPP protocol, which will be described later.
  • step 3b may be additionally performed after step 3a is performed, but may be performed instead of step 3a.
  • the LMF may provide a location service response to the AMF.
  • the location service response may include information on whether the UE's location estimation is successful and the UE's location estimate.
  • the AMF may deliver a location service response to a 5GC entity such as GMLC, and if the procedure of FIG. 9 is initiated by step 1b, the AMF is associated with an emergency call, etc.
  • a location service response can be used.
  • LTE Positioning Protocol LTP
  • LPP LTE positioning protocol
  • LPP includes a target device (e.g., UE in the control plane or a SUPL Enabled Terminal (SET) in the user plane) and a location server (e.g., LMF in the control plane or SLP in the user plane) ) Can be terminated.
  • the LPP message may be delivered in the form of a transparent PDU through an intermediate network interface using appropriate protocols such as NGAP over the NG-C interface, NAS-RRC over the LTE-Uu and NR-Uu interfaces.
  • NGAP over the NG-C interface
  • NAS-RRC over the LTE-Uu and NR-Uu interfaces.
  • the LPP protocol enables positioning for NR and LTE using a variety of positioning methods.
  • the target device and the location server may exchange capability information with each other, exchange of auxiliary data for positioning, and/or location information.
  • an error information exchange and/or an instruction to stop the LPP procedure may be performed through an LPP message.
  • NRPPa NR Positioning Protocol A
  • FIG. 11 is a diagram illustrating an example of a protocol layer for supporting NR positioning protocol a (NRPPa) protocol data unit (PDU) transmission to which various embodiments of the present disclosure are applicable.
  • NRPPa NR positioning protocol a
  • PDU protocol data unit
  • NRPPa can be used for information exchange between the NG-RAN node and the LMF. Specifically, NRPPa can exchange E-CID for measurement transmitted from ng-eNB to LMF, data to support OTDOA positioning method, Cell-ID and Cell location ID for NR Cell ID positioning method, and the like.
  • the AMF can route NRPPa PDUs based on the routing ID of the associated LMF through the NG-C interface, even if there is no information about the associated NRPPa transaction.
  • the procedure of the NRPPa protocol for location and data collection can be divided into two types.
  • the first type is a UE associated procedure for delivering information (eg, location measurement information, etc.) for a specific UE
  • the second type is information applicable to an NG-RAN node and related TPs ( For example, it is a non-UE associated procedure for delivering gNB/ng-eNG/TP timing information, etc.).
  • the two types of procedures may be supported independently or simultaneously.
  • Positioning methods supported by NG-RAN include GNSS, OTDOA, E-CID (enhanced cell ID), barometric sensor positioning, WLAN positioning, Bluetooth positioning and terrestrial beacon system (TBS), and Uplink Time Difference of Arrival (UTDOA). It can be.
  • the position of the UE may be measured using any one of the positioning methods, but the position of the UE may also be measured using two or more positioning methods.
  • OTDOA observed time difference of arrival
  • the OTDOA positioning method uses the timing of measurement of downlink signals received by the UE from multiple TPs including eNB, ng-eNB and PRS dedicated TP.
  • the UE measures the timing of the downlink signals received using the location assistance data received from the location server.
  • the location of the UE may be determined based on the measurement results and the geographical coordinates of neighboring TPs.
  • the UE connected to the gNB may request a measurement gap for OTDOA measurement from TP. If the UE does not recognize the SFN for at least one TP in the OTDOA auxiliary data, the UE prior to requesting a measurement gap for performing a reference signal time difference (RSTD) measurement (Measurement) OTDOA reference cell (reference cell)
  • RSTD reference signal time difference
  • An autonomous gap can be used to obtain the SFN of.
  • the RSTD may be defined based on the smallest relative time difference between the boundaries of two subframes respectively received from the reference cell and the measurement cell. That is, it may be calculated based on a relative time difference between the start time of the subframe of the reference cell closest to the start time of the subframe received from the measurement cell. Meanwhile, the reference cell may be selected by the UE.
  • TOA time of arrival
  • RSTD time of arrival
  • RSTD for two TPs may be calculated based on [Equation 3] below.
  • ⁇ x t , y t ⁇ is the (unknown) coordinate of the target UE
  • ⁇ x i , y i ⁇ is the (known) coordinate of the TP
  • ⁇ 25, y 1 ⁇ may be the coordinates of the reference TP (or other TP).
  • (T i -T 1 ) is a transmission time offset between two TPs, which may be referred to as “Real Time Differences” (RTDs)
  • RTDs Real Time Differences
  • n i , n 1 may indicate values related to UE TOA measurement errors.
  • E-CID Enhanced Cell ID
  • the location of the UE can be measured through the geographical information of the serving ng-eNB, serving gNB and/or serving cell of the UE.
  • geographic information of a serving ng-eNB, a serving gNB, and/or a serving cell may be obtained through paging, registration, and the like.
  • the E-CID positioning method may use additional UE measurement and/or NG-RAN radio resources to improve the UE location estimate.
  • some of the same measurement methods as the measurement control system of the RRC protocol can be used, but in general, additional measurement is not performed only for location measurement of the UE.
  • a separate measurement configuration or measurement control message may not be provided to measure the position of the UE, and the UE also does not expect an additional measurement operation for location measurement only to be requested.
  • UE can report the measurement value obtained through measurement methods that are generally measurable.
  • the serving gNB can implement the E-CID positioning method using E-UTRA measurements provided by the UE.
  • measurement elements that can be used for E-CID positioning may be as follows.
  • E-UTRA RSRP Reference Signal Received Power
  • E-UTRA RSRQ Reference Signal Received Quality
  • UE E-UTRA receive-transmission time difference Rx-Tx Time difference
  • GERAN/WLAN RSSI Reference Signal Strength Indication
  • UTRAN CPICH Common Pilot Channel
  • RSCP Receiveived Signal Code Power
  • -E-UTRAN measurement ng-eNB Rx-Tx Time difference, Timing Advance (T ADV ), Angle of Arrival (AoA)
  • T ADV can be divided into Type 1 and Type 2 as follows.
  • T ADV Type 1 (ng-eNB receive-transmit time difference) + (UE E-UTRA receive-transmit time difference)
  • T ADV Type 2 ng-eNB receive-transmit time difference
  • AoA may be used to measure the direction of the UE.
  • AoA may be defined as an estimated angle for the UE's location in a counterclockwise direction from the base station/TP. At this time, the geographical reference direction may be north.
  • the base station/TP may use an uplink signal such as Sounding Reference Signal (SRS) and/or Demodulation Reference Signal (DMRS) for AoA measurement.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • the larger the array of the antenna array the higher the measurement accuracy of the AoA, and when the antenna arrays are arranged at the same interval, signals received from adjacent antenna elements may have a constant phase-rotate.
  • UTDOA is a method of determining the location of the UE by estimating the arrival time of the SRS.
  • a serving cell can be used as a reference cell to estimate the location of the UE through a difference in arrival time with other cells (or base stations/TPs).
  • E-SMLC may indicate a serving cell of a target UE to instruct SRS transmission to a target UE.
  • E-SMLC may provide configuration such as whether SRS is periodic/aperiodic, bandwidth, and frequency/group/sequence hopping.
  • the LMF referred to in the present disclosure may be regarded as a location server and may be regarded as a higher concept/entity including the concept of a location server.
  • the UE RX-TX time difference referred to in the following disclosure is information related to UE positioning, information related to the time at which PRS is received on a specific PRS resource and the position measured for the specific PRS resource. It can be defined as the difference value from the time to transmit. A detailed description of the UE transmission/reception time difference will be described later.
  • TA Timing Advance
  • NB eNB/gNB
  • NB RX-TX time difference NB RX-TX time difference
  • the size of the received signal energy was mainly used when measuring the UE transmission/reception time difference, but when using the Round Trip Time (RTT) used to measure the position of the terminal, the received signal It is necessary to measure and report the UE transmission/reception time difference based on the timing for the first detected path.
  • RTT Round Trip Time
  • the TRP/base station can transmit RS (Reference Signals) in a plurality of beams (multiple beam(s))
  • RS Reference Signals
  • the UE transmit/receive time difference is different from the ToA from the UE perspective depending on the direction of the transmit beam. can be different. It is necessary to consider the above-mentioned points for more accurate terminal position estimation.
  • the location of the UE may be measured by using information such as the angle of the RTT and the transmit beam in a single cell, but the multi-cell RTT method You can also measure/find the location.
  • the terminal sets/instructs the base station/LMF to report the UE transmission/reception time difference value to the base station/LMF.
  • Can receive In order to accurately report the UE transmit/receive time difference value reported for RTT measurement, it is necessary for the UE to accurately measure the ToA value and reflect it to report the UE transmit/receive time difference value.
  • the terminal transmits RS (eg, PRS, CSI-RS, etc.) from the TRP/gNB to a plurality of transmission beams, and/or For RS (eg PRS, CSI-RS, etc.) resources, the UE transmission/reception time difference value and/or ToA value may be set/instructed to report to the base station/LMF.
  • RS may be simultaneously transmitted through the multiple transmission beams, or may be transmitted through a transmission beam that changes over time (TX beam sweeping).
  • the ToA is a radio signal Calculate the time difference between UE transmission and reception based on the propagation delay time of the RS having the smallest travel time from the transmitter to the terminal, ToA and/or time of flight (ToF), and instruct to report to the base station/LMF Or you can get set.
  • the UE may be configured/instructed to report the RS resource index along with the UE transmission/reception time difference value from the base station/LMF, or configured/instructed to report only the RS resource index.
  • the RS resource index may be a resource through which a specific RS is transmitted among several RSs transmitted from a specific TP/gNB, and a transmission beam transmitted by the TP/gNB may be different for each RS resource.
  • the RS resource index may be used equivalently to the RS resource ID.
  • the UE transmit/receive time difference value is calculated based on the RS resource from which the RS having the smallest ToA or propagation delay time among the plurality of RSs is received, and the RS having the smallest ToA or propagation delay time value RS resource index corresponding to may be reported to the base station/LMF.
  • the operation of the terminal can be set/instructed by the base station/LMF.
  • the base station/LMF can further improve the positioning accuracy of the terminal by additionally utilizing the direction information of the transmission beam.
  • additional beam information can be used to measure the location of the terminal. This will be described later.
  • 13 is for describing a UE transmission/reception time difference reported according to an embodiment of the present disclosure.
  • the UE transmission/reception time difference value is t B ⁇ t C and gNB transmission/reception time difference value is t D ⁇ t A
  • the RTT value may be the sum of the UE transmission/reception time difference value and the gNB transmission/reception time difference value.
  • PRS resource #1, PRS resource #2, and PRS resource #3 correspond to different symbols, and the TP/gNB may transmit PRS on the PRS resource while changing the transmission beam for each OFDM symbol.
  • FIG. 13 exemplarily shows that a UE measures ToA or ToF when a specific gNB transmits different RSs while sweeping a transmission beam for 3 symbols.
  • a ToA or ToF value may be different for different transmission beams.
  • the UE transmit/receive time difference value is calculated based on the arrival time when the RS transmitted by the TX beam #3 is received and reported to the base station/LMF. Can be set/instructed.
  • the arrival time of TX baem #3 is t B
  • the UE transmission/reception time difference value is t B- t C.
  • the UE may additionally report the RS resource index (with the smallest ToA or ToF value) to the base station/LMF in addition to reporting the UE transmission/reception time difference value.
  • CSI-RS Channel State Information Reference Signals
  • the base station/LMF may set/direct the UE to report the UE transmission/reception time difference value together with the CSI-RS resource and/or CSI-RS resource set.
  • the terminal indicates that the TP/gNB changes the transmission beam when each CSI-RS resource is transmitted. It is assumed to be received, and the UE can measure ToA for CSI-RS resources transmitted in each symbol.
  • CSI-RS resources #1, #2, and #3 are transmitted in three consecutive or discontinuous symbols.
  • the terminal may assume a transmission time point based on a symbol for which each RS resource is set, and may measure or predict a propagation delay time or ToF by measuring the received ToA. If it is assumed that the shortest propagation delay time is CSI-RS resource #3, the UE transmit/receive time difference value is calculated for CSI-RS resource #3 in the same manner as the above-described method for calculating UE transmit/receive time difference value, and this is transmitted to the base station Can report.
  • the UE transmission/reception time difference value is t B ⁇ t C and gNB transmission/reception time difference value is t D ⁇ t A
  • the RTT value may be the sum of the UE transmission/reception time difference value and the gNB transmission/reception time difference value.
  • a specific TP/gNB transmits RS (eg, PRS, CSI-RS) to a plurality of transmission beams at the same time
  • the UE measures ToA for each RS transmitted in the plurality of transmission beams and transmits and receives the UE
  • the time difference value may be set/instructed to report to the base station/LMF.
  • the UE may calculate the UE transmission/reception time difference value based on the smallest ToA or ToF among RSs transmitted in each transmission beam and report it to the base station/LMF.
  • the above-described operation of the terminal may be set/instructed by the base station/LMF. Considering the above-described example in light of FIG.
  • the TP/gNB transmits 3 RSs with 3 transmission beams at a specific point in time, and the UE measures ToA or ToF for RS resources through which each RS is transmitted.
  • the UE measures and reports the UE transmission/reception time difference value based on the ToA for the RS resource with the smallest ToA.
  • the RS resource index corresponding to the measured and reported UE transmission/reception time difference value may be reported together, or only the RS resource index may be reported.
  • information on a time point for transmitting RS in TP/gNB may be additionally signaled to the terminal.
  • the PRS transmission time point (eg, symbol boundary) of the base station considered by the terminal is different from the time point at which the base station actually transmits the PRS, and thus a problem occurs in the UE measuring the time difference between the transmission and reception of the PRS and/or the UE.
  • additional signaling of information on a time point for transmitting RS in TP/gNB may be required.
  • the terminal may measure information related to positioning (eg, UE transmission/reception time difference, etc.) for each of a plurality of PRS resources based on the information on the transmission time.
  • the base station has one or more transmission panels (TX panels) may be considered.
  • one PRS resource set corresponding to each transmission panel may be considered, and a plurality of RS resource sets corresponding to a plurality of transmission panels (multiple RS (eg, CSI-RS, PRS, SSB) resource set).
  • the PRS resource set may be a set including at least one PRS resource, and may have a PRS resource set ID for each PRS resource set.
  • the UE may be set/instructed to report to the base station/LMF about the RS resource index having the smallest propagation delay time and/or ToA value and the UE transmission/reception time difference value. . That is, one RS resource index and/or UE transmission/reception time difference value for each RS resource set may be set/instructed to report to the base station/LMF.
  • the base station and the terminal have one or more transmission/reception panels, among all possible transmission/reception panel combinations of the base station and the terminal for RS (eg, PRS) transmission/reception (eg, TX panel #1, TX panel #2 of the base station) And when the terminal has RX panel #1, RX panel #2, there are 4 possible combinations between the transmission/reception panels), the RS resource index having the smallest propagation delay time or ToA value, and/or the UE transmission/reception time difference value May be configured/instructed to report the UE to the base station/LMF. That is, an index of a specific PRS resource may be transmitted for each PRS resource set associated with a combination of at least one transmission beam and at least one reception beam.
  • RS eg, PRS
  • TP(s)/cell(s) multiple TP(s)/cell(s)
  • a terminal a terminal that receives a RS transmitted from each base station/cell to a plurality of transmission beams
  • a UE transmission/reception time difference value is measured based on a specific RS resource (specific transmission beam) having the smallest propagation delay time, ToA or ToF value, and report.
  • the operation of the terminal can be set/instructed by the base station/LMF.
  • the operation of the terminal may be defined as a default operation even if there is no separate setting/instruction of the base station/LMF.
  • 15 is for explaining the operation of the terminal according to an embodiment of the present disclosure.
  • the terminal receives the configuration information for the RS from the base station.
  • the configuration information for RS may include, for example, RS resource index and/or RS resource set index information.
  • the setting information for reporting the UE transmission/reception time difference information to the base station/LMF may be a setting for a specific RS resource in which the UE calculates the UE transmission/reception time difference as mentioned in the above-described embodiments.
  • step S2030 the UE reports the UE transmission/reception time difference value and/or RS resource index for the received RS resource by which the RS having the smallest ToA and/or propagation delay time value among RSs received from a specific TP/base station.
  • 16 is for explaining the operation of the base station according to an embodiment of the present disclosure.
  • the base station transmits configuration information for RS to the terminal.
  • the configuration information for RS may include, for example, RS resource index and/or RS resource set index information.
  • the base station transmits configuration information for the UE terminal to report transmission/reception time difference information to the base station/LMF to the terminal.
  • the setting information for reporting the UE transmission/reception time difference information to the base station/LMF may be a setting for a specific RS resource in which the UE calculates the UE transmission/reception time difference as mentioned in the above-described embodiments.
  • step S2130 the base station receives a UE transmission/reception time difference value and an RS resource index for an RS resource in which an RS having the smallest ToA and/or propagation delay time value among RSs transmitted to the terminal is received.
  • terminal positioning can be effectively performed by utilizing RTT information between multiple base stations/cells and terminals using a plurality of transmission beams.
  • the RS resource index transmission beam index
  • transmission beam index can be reported together to be used for terminal positioning.
  • the location of the terminal may be measured by additionally using other information in addition to the RTT measurement value.
  • a base station/LMF knows that a specific UE can measure a UE transmission/reception time difference for a serving cell/base station and one neighboring cell/TP/base station, a two-cell based multicell RTT technique and a base station/ The base station/LMF can locate the UE using the transmission beam direction information of the TP.
  • the UE measures ToA for RS resources (eg, PRS resources) through which RS transmitted from two TPs/gNBs from base stations/LMFs to different transmission beams is received.
  • RS resources eg, PRS resources
  • an RS having the smallest propagation delay time, ToA or ToF value may be set/instructed to report an index of an RS resource received and a corresponding UE transmission/reception time difference value.
  • RS resource index and UE transmission/reception time difference values are reported to the base station/LMF for each TP/gNB, so that two circles can be drawn with a multi-cell RTT formula for two-cells. There are two intersections of the two circles. In this case, the two intersections become possible locations where the terminal can be located.
  • 17 is for describing a two-cell based multi-cell RTT technique according to an embodiment of the present disclosure.
  • points indicated by A and B are possible positions where the terminal can be located.
  • the base station/LMF can estimate/ grasp the direction of the beam transmitted by the TP/gNB, and finally determine the location of the terminal. That is, in order for the LMF to locate the terminal in the above-mentioned manner, the LMF must know the direction information of each transmission beam of the TP/gNB transmitting the RS (e.g., PRS).
  • the base station/LMF is set/instructed to the terminal to report the UE transmission/reception time difference value between three or more cells/TP/base station and the terminal, but the terminal only includes one neighboring cell/base station including the serving cell.
  • a case in which a UE transmission/reception time difference value can be obtained may be considered.
  • the UE may report the UE transmission/reception time difference and the RS resource index used for measuring the UE transmission/reception time difference to the base station/LMF for each cell/base station only in the above-described case.
  • the RS resource index is an RS resource index indicating a value in which ToA, ToF, or propagation delay time is the smallest for an RS resource through which RS is transmitted in each base station/cell.
  • the RS resource index may report two RS resource indexes for two cells/base stations, or only one RS resource index.
  • the operation of the above-mentioned terminal may be set/instructed by the base station/LMF.
  • the base station/LMF can perform UE positioning using the UE transmit/receive time difference value for the cell/base station reported by the UE, but at this time, the reliability/quality information about the UE transmit/receive time difference value reported from the UE can be known. If there is, it can perform terminal positioning more effectively. That is, the report of the terminal based on the reliability/quality information of the UE transmission/reception time difference measurement may help the base station/LMF to perform terminal positioning more effectively.
  • the reliability and/or quality of UE transmission/reception time difference measurement values for each cell/base station can be defined/set to the UE from the base station/LMF similar to the ToA quality for RS and/or RS resources transmitted from each cell/base station. . That is, reliability may be defined in consideration of an error/error range of a ToA measured by a specific RS and/or RS resource.
  • quality for OTDOA/ToA may be OTDOA measurement quality defined in 3GPP 36.355 (Rel-15). It is defined as “OTDOA-MeasQuality” and is defined as Table 10 below as an error value value along with the error resolution for ToA.
  • the quality of the above-mentioned OTDOA/TOA measurement values can be defined/set for various RS (e.g., PRS) resources transmitted by the same TP/base station.
  • RS e.g., PRS
  • the quality of the above-mentioned UE transmission/reception time difference value may be defined/set for various RS (e.g., PRS) resources transmitted by the same TP/base station.
  • RS e.g., PRS
  • embodiments are disclosed based on the reliability/quality of a measurement value associated with a terminal location, and reporting a specific measurement value and a corresponding RS resource index among the measurement values.
  • the base station/LMF is a UE (eg, PRS, CSI-RS) transmitted from N TP/base stations to the UE, the UE transmit/receive time difference report and/or the UE transmit/receive time difference report obtained for the M RSs having the best ToA quality, and / Or UE transmission/reception time difference and/or RS resource index reporting corresponding to the M RSs may be set/instructed.
  • N and M may be a natural number greater than 0, and N may be a value equal to or greater than M.
  • M-best reporting for UE transmission/reception time difference measurement may consider two cases as follows.
  • the reference to M-best reporting referred to in the present disclosure means to include both of the following cases even if there is no additional reference.
  • a single TP/gNB/cell may transmit RS on N RS resources (e.g., PRS resources).
  • N RS resources e.g., PRS resources
  • the base station/LMF may set/instruct the UE to report M UE transmission/reception time difference values having the highest quality and/or RS resource index.
  • the M quality of UE transmission/reception time difference with the highest quality reported by the UE is M in order of highest quality value of information (for example, UE transmission/reception time difference) associated with positioning among a plurality of PRS resources received by the UE. It may be a value measured for the PRS resource.
  • a specific one value may be selectively used for RTT calculation among M UE transmission/reception time difference values reported by the base station/LMF.
  • the transmission beam direction information of the TP/gNB can be utilized to locate the terminal.
  • the base station/LMF is configured to report the highest quality M UE transmission/reception time difference value and/or RS resource index among RSs transmitted by RS resources (eg, PRS resources) in a total of N TP/gNB/cells. Can be set/instructed. That is, UE transmission/reception time difference values and/or RS resource indexes for the M TP/gNBs having the highest quality may be used for UE positioning.
  • RS resources eg, PRS resources
  • the base station/LMF reports all UE transmission/reception time differences measured from RS (eg, PRS, CSI-RS) transmitted from each TP/base station to the UE, but provides information on the best quality UE transmission/reception time differences. Can be set/instructed to report together.
  • M RS e.g., PRS
  • resource indexes corresponding to the best quality UE transmission/reception time differences may be reported together.
  • the RS resource set index and/or the TP/base station/cell information transmitted with each RS resource may be reported together with each RS resource index.
  • a TRP ID may be included as an example of TP/base station/cell information.
  • the base station/LMF grasps the location of the terminal through the M-best reporting as described above, it is possible to improve the positioning accuracy of the terminal and reduce unnecessary reporting overhead of the terminal by excluding measurement values with low reliability. There are advantages.
  • the base station/LMF may set/instruct the UE to report only the UE transmission/reception time difference that guarantees a certain level of quality to the base station/LMF.
  • the UE transmission/reception time difference that guarantees a certain level of quality may be a value measured for PRS resources whose quality value of information related to positioning (eg, UE transmission/reception time difference) is greater than or equal to a preset value.
  • the base station/LMF may be set/instructed to additionally report RS resource information (RS resource index) to the base station/LMF for the UE transmission/reception time difference that guarantees a certain level of quality to the UE.
  • RS resource information RS resource index
  • the quality of the specific level may be defined as a default value as a specific threshold value, and the specific threshold value may be set/instructed from the base station/LMF to the terminal.
  • the base station/LMF is set/instructed to report RSTD measurement values obtained for M RSs having the highest OTDOA/ToA measurement quality among RSs (eg, PRS, CSI-RS) transmitted from N TP/base stations to the UE. can do.
  • RSs eg, PRS, CSI-RS
  • the base station/LMF reports all RSTD measurement values for RS (eg, PRS, CSI-RS) transmitted from each TP/base station to the UE, but also provides RS resource information for the M RSTD measurement values having the highest quality. Can be set/instructed to report together.
  • M RS e.g., PRS
  • resource indexes corresponding to M RSTD measurement values having the highest quality may be reported together.
  • the RS resource set index and/or the TP/base station/cell information transmitted with each RS resource may be reported together with each RS resource index.
  • the base station/LMF may set/instruct the UE to report only the UE transmission/reception time difference that guarantees a certain level of quality to the base station/LMF.
  • the base station/LMF may be set/instructed to additionally report RS resource information (RS resource index) to the base station/LMF for the UE transmission/reception time difference that guarantees a certain level of quality to the UE.
  • RS resource index RS resource index
  • the quality of the specific level may be defined as a default value as a specific threshold value, and the specific threshold value may be set/instructed from the base station/LMF to the terminal.
  • embodiments 3.2.1 to 3.2.2 of the present disclosure described above can be similarly extended/applied for various measurements measured by downlink RS (RS resource), and this can also be considered to be included in the spirit of the present invention.
  • RS resource downlink RS
  • the above-described embodiments 3.2.1 to 3.2.2 may be extended/applied to the angle measurement value (e.g., AoA) measured by the UE.
  • the terminal receives configuration information for RS from the base station.
  • the configuration information for RS may include, for example, RS resource index and/or RS resource set index information.
  • step S2220 the terminal receives configuration information for reporting the UE transmission/reception time difference information to the base station/LMF.
  • the setting information for reporting the UE transmission/reception time difference information to the base station/LMF may be a setting for a specific RS resource in which the UE calculates the UE transmission/reception time difference as mentioned in the above-described embodiments.
  • step S2230 the UE reports the M UE transmission/reception time difference value and/or RS resource index having the highest quality among RSs received from a specific TP/base station.
  • 19 is for describing an operation of a base station based on M-best reporting according to an embodiment of the present disclosure.
  • the base station transmits configuration information for RS to the terminal.
  • the configuration information for RS may include, for example, RS resource index and/or RS resource set index information.
  • the base station transmits configuration information for the UE terminal to report the transmission/reception time difference information to the base station/LMF to the terminal.
  • the setting information for reporting the UE transmission/reception time difference information to the base station/LMF may be a setting for a specific RS resource in which the UE calculates the UE transmission/reception time difference as mentioned in the above-described embodiments.
  • step S2330 the base station receives the M UE transmission/reception time difference value and/or RS resource index of the highest quality among RSs transmitted to the UE.
  • each step of FIGS. 18 and 19 may be performed simultaneously or independently.
  • RSTD measurement for OTDOA or AoA measurement used for angle-based UE positioning may be considered in addition to the UE transmission/reception time difference mentioned in FIGS. 18 and 19.
  • a terminal positioning accuracy may be improved by using a method of determining the location of the terminal by using the multi-cell RTT method described above and a method of determining the location of the terminal by the OTDOA method.
  • the coverage of the uplink RS eg, SRS, Uplink PRS
  • the downlink RS eg, PRS
  • RTT measurement values with a large number of cell/gNB/TP are measured. It can be difficult to measure.
  • OTDOA can utilize RSTD measurement values for a large number of TP/cell/base stations. In consideration of this, the reporting operation of the following terminals may be considered.
  • the UE is configured/instructed to report M UE transmission/reception time difference values for M cell/gNB/TP among N cell/gNB/TP and RSTD measurement values for N cell/gNB/TP to base station/LMF.
  • the information that the UE reports to the base station/LMF may be N RSTD measurement values and M UE transmission/reception time difference values.
  • a criterion for selecting M UE transmission/reception time difference values that are a part of the N cell/gNB/TPs may be ToA quality for N cell/gNB/TPs as described above.
  • the ToA measurement quality may be set/instructed for OTDOA measurement quality, or may be indicated/set for UE transmission/reception time difference quality.
  • the OTDOA measurement quality and the UE transmission/reception time difference quality may be conceptually the same in terms of ToA measurement quality, but may be different in terms of setting/instruction/reporting.
  • a specific M TP/base station/gNB/cell When setting/instructing to report a UE transmission/reception time difference for M cells/gNB/TPs that are part of the N cell/gNB/TPs, a specific M TP/base station/gNB/cell expresses to the UE. (Explicitly). At this time, the specific M TP/base station/gNB/cell may be indicated by TP ID/cell ID and/or RS resource index and/or RS resource set index.
  • a terminal may perform a network access process to perform the above-described/suggested procedures and/or methods.
  • the terminal may receive and store system information and configuration information necessary to perform the above-described/suggested procedures and/or methods while accessing a network (eg, a base station) and store it in a memory.
  • Configuration information necessary for various embodiments of the present disclosure may be received through upper layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
  • a physical channel and a reference signal may be transmitted using beam-forming.
  • a beam management process may be performed to align beams between a base station and a terminal.
  • signals proposed in various embodiments of the present disclosure may be transmitted/received using beam-forming.
  • RRC Radio Resource Control
  • beam alignment may be performed based on SSB (or SS/PBCH block).
  • beam alignment in RRC CONNECTED mode may be performed based on CSI-RS (in DL) and SRS (in UL).
  • the beam-related operation may be omitted in the following description.
  • a base station may periodically transmit an SSB (2410).
  • the SSB includes PSS/SSS/PBCH.
  • SSB may be transmitted using beam sweeping.
  • the base station may transmit Remaining Minimum System Information (RMSI) and Other System Information (OSI) (2415).
  • the RMSI may include information necessary for the UE to initially access the base station (eg, PRACH configuration information).
  • the terminal performs SSB detection and then identifies the best SSB.
  • the UE may transmit the RACH preamble (Message 1, Msg1) to the base station using the PRACH resource linked/corresponding to the index (ie, beam) of the best SSB (2420).
  • the beam direction of the RACH preamble is associated with PRACH resources. Association between PRACH resources (and/or RACH preamble) and SSB (index) may be established through system information (eg, RMSI). Subsequently, as part of the RACH process, the base station transmits a random access response (RAR) (Msg2) in response to the RACH preamble (2425), and the UE uses Msg3 (eg, RRC Connection Request) using the UL grant in the RAR. Transmit (2430), the base station may send a contention resolution (contention resolution) message (Msg4) (2435). Msg4 may include RRC Connection Setup.
  • RAR random access response
  • Msg3 eg, RRC Connection Request
  • Msg4 may include RRC Connection Setup.
  • subsequent beam alignment may be performed based on SSB/CSI-RS (in DL) and SRS (in UL).
  • the UE may receive SSB/CSI-RS (2440).
  • SSB/CSI-RS can be used by the UE to generate a beam/CSI report.
  • the base station may request the UE to report the beam/CSI through DCI (2445).
  • the UE may generate a beam/CSI report based on the SSB/CSI-RS, and transmit the generated beam/CSI report to the base station through PUSCH/PUCCH (2450).
  • the beam/CSI report may include beam measurement results, preferred beam information, and the like.
  • the base station and the terminal can switch the beam based on the beam/CSI report (2455a, 2455b).
  • the terminal and the base station may perform the procedures and/or methods described/proposed above.
  • the terminal and the base station process information in the memory according to various embodiments of the present disclosure based on configuration information obtained in a network access process (eg, system information acquisition process, RRC connection process through RACH, etc.)
  • the wireless signal can be transmitted or the received wireless signal can be processed and stored in a memory.
  • the radio signal may include at least one of PDCCH, PDSCH, and RS (Reference Signal) for downlink, and at least one of PUCCH, PUSCH, and SRS for uplink.
  • 21 is a diagram illustrating DRX operation according to various embodiments of the present disclosure.
  • a terminal may perform a DRX operation while performing the above-described/suggested procedures and/or methods.
  • the terminal in which DRX is set may lower power consumption by discontinuously receiving the DL signal.
  • DRX may be performed in a Radio Resource Control (RRC)_IDLE state, an RRC_INACTIVE state, or an RRC_CONNECTED state.
  • RRC_IDLE state and the RRC_INACTIVE state DRX is used to discontinuously receive the paging signal.
  • RRC_CONNECTED DRX In the RRC_CONNECTED state, DRX is used for discontinuous reception of the PDCCH. For convenience, the DRX performed in the RRC_CONNECTED state is referred to as RRC_CONNECTED DRX.
  • the DRX cycle is composed of On Duration and Opportunity for DRX.
  • the DRX cycle defines a time interval in which On Duration is periodically repeated.
  • On Duration indicates the time period that the UE monitors to receive the PDCCH.
  • the UE performs PDCCH monitoring for On Duration. If there is a successfully detected PDCCH during PDCCH monitoring, the terminal operates an inactivity timer and maintains an awake state. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the terminal enters a sleep state after the On Duration is over.
  • PDCCH monitoring/reception may be discontinuously performed in the time domain in performing the above-described/suggested procedures and/or methods.
  • a PDCCH reception opportunity eg, a slot having a PDCCH search space
  • PDCCH monitoring/reception may be continuously performed in the time domain in performing the above-described/suggested procedures and/or methods.
  • a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be continuously set. Meanwhile, regardless of whether DRX is set, PDCCH monitoring may be restricted in a time interval set as a measurement gap.
  • Table 11 shows a process of a terminal related to DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON/OFF is controlled by a DRX command of the MAC layer.
  • RRC Radio Resource Control
  • the UE may discontinuously perform PDCCH monitoring in performing the procedures and/or methods described/suggested in various embodiments of the present disclosure.
  • MAC-CellGroupConfig includes configuration information necessary to set a medium access control (MAC) parameter for a cell group.
  • MAC-CellGroupConfig may also include configuration information about DRX.
  • MAC-CellGroupConfig defines DRX and may include information as follows.
  • -Value of drx-InactivityTimer Defines the length of the time period in which the UE remains awake after the PDCCH opportunity where the PDCCH indicating the initial UL or DL data is detected.
  • -Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval until DL retransmission is received after DL initial transmission is received.
  • the UE maintains the awake state and performs PDCCH monitoring at every PDCCH opportunity.
  • RRC_IDLE DRX In the RRC_IDLE state and the RRC_INACTIVE state, DRX is used to discontinuously receive the paging signal. For convenience, DRX performed in the RRC_IDLE (or RRC_INACTIVE) state is referred to as RRC_IDLE DRX.
  • PDCCH monitoring/reception may be discontinuously performed in the time domain in performing the above-described/suggested procedures and/or methods.
  • DRX may be configured for discontinuous reception of a paging signal.
  • the UE may receive DRX configuration information from the base station through higher layer (eg, RRC) signaling.
  • the DRX configuration information may include DRX cycle, DRX offset, and configuration information for the DRX timer.
  • the terminal repeats On Duration and Sleep duration according to the DRX cycle.
  • the terminal may operate in a wakeup mode in On duration, and in a sleep mode in Sleep duration. In the wake-up mode, the terminal can monitor the Paging Occasion (PO) to receive the paging message.
  • PO refers to a time resource/interval (eg, subframe, slot) in which the UE expects to receive a paging message.
  • PO monitoring includes monitoring PDCCH (or MPDCCH, NPDCCH) (hereinafter, paging PDCCH) scrambled from PO to P-RNTI.
  • the paging message may be included in the paging PDCCH or PDSCH scheduled by the paging PDCCH.
  • One or more PO(s) are included in the PF (Paging Frame), and the PF may be periodically set based on the UE ID.
  • the PF corresponds to one radio frame, and the UE ID may be determined based on the terminal's International Mobile Subscriber Identity (IMSI).
  • IMSI International Mobile Subscriber Identity
  • PO monitoring may be discontinuously performed in the time domain to perform RACH for connection with the base station or to receive (or acquire) new system information from the base station.
  • FIG. 22 is a diagram briefly illustrating an operation method of a terminal and a base station according to various embodiments of the present disclosure.
  • the base station may transmit information on a transmission time point of a plurality of PRSs included in at least one PRS resource set to the terminal, and the terminal may transmit information on the transmission time point transmitted from the base station. I can receive it.
  • the base station may transmit a plurality of PRSs included in at least one PRS resource set to the terminal based on the information on the transmission time point, and the terminal may receive a plurality of PRSs transmitted from the base station.
  • the terminal may measure information related to positioning for the plurality of received PRSs.
  • information related to positioning may include the above-described UE transmission/reception time difference, propagation delay time, ToA, ToF, and RSTD.
  • step S2540 the terminal, based on the information associated with the location measured in step S2520, at least one of the ID of a specific PRS resource among a plurality of PRS and the ID of the PRS resource set including the specific PRS resource and the specific PRS
  • the TRP ID associated with the PRS resource set containing the resource may be transmitted.
  • the base station can receive it.
  • the base station may transmit at least one of the ID of the specific PRS resource and the ID of the specific PRS resource set received from the terminal and the TRP ID associated with the PRS resource set including the specific PRS resource to the location server and/or LMF. And the location server and/or LMF can receive it.
  • step S2560 the terminal, based on the information associated with the position measured in step S2520, a plurality of PRS ID of a specific PRS resource and the ID of the PRS resource set including the specific PRS resource, and at least one of the The TRP ID associated with the PRS resource set including the specific PRS resource may be transmitted. Also, the location server and/or the LMF may receive it.
  • steps S2540 to S2550 and S2560 may be selectively performed or may be performed together.
  • FIG. 23 is a flowchart illustrating a method of operating a terminal according to various embodiments of the present disclosure.
  • the UE may receive information on a transmission time point of a plurality of PRSs included in at least one PRS resource set from a base station.
  • the terminal may receive a plurality of PRSs included in at least one PRS resource set from the base station, based on the information on the transmission time.
  • the UE may measure information related to positioning for the plurality of received PRSs.
  • information related to positioning may include the above-described UE transmission/reception time difference, propagation delay time, ToA, ToF, and RSTD.
  • step S2640 the terminal, based on the information associated with the positioning measured in step S2630, at least one of the ID of a specific PRS resource among a plurality of PRS and the ID of the PRS resource set including the specific PRS resource and the specific PRS
  • the TRP ID associated with the PRS resource set containing the resource may be transmitted.
  • 24 is a flowchart illustrating a method of operating a base station and a location server according to various embodiments of the present disclosure.
  • the base station may transmit information on a transmission time point of a plurality of PRSs included in at least one PRS resource set to the UE.
  • the base station may transmit a plurality of PRSs included in at least one PRS resource set to the terminal based on the information on the transmission time.
  • step S2730a the base station, based on the information associated with the location measured from the terminal, at least one of the ID of a specific PRS resource among a plurality of PRS and the ID of the PRS resource set including the specific PRS resource and the specific PRS resource
  • the TRP ID associated with the included PRS resource set may be received.
  • the location server and/or the LMF is the ID of a specific PRS resource among the plurality of PRSs and the specific PRS, based on information associated with the location measured from the terminal, from the base station and/or the terminal. At least one of the IDs of the PRS resource set including the resource and a TRP ID associated with the PRS resource set including the specific PRS resource may be received.
  • the examples of the proposed method described above may also be included as one of various embodiments of the present disclosure, and thus may be regarded as a kind of proposed method. Further, the above-described proposed schemes may be implemented independently, but may also be implemented in a combination (or merged) form of some suggested schemes. Whether or not the proposed methods are applied (or information on the rules of the proposed methods) can be defined so that the base station notifies the UE through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • a predefined signal eg, a physical layer signal or a higher layer signal.
  • 25 is a diagram illustrating an apparatus in which various embodiments of the present disclosure can be implemented.
  • the device illustrated in FIG. 25 may be a user equipment (UE) and/or a base station (eg, eNB or gNB) adapted to perform the above-described mechanism, or may be any device that performs the same operation.
  • UE user equipment
  • base station eg, eNB or gNB
  • the device may include a digital signal processor (DSP)/microprocessor 210 and a radio frequency (RF) module (transceiver) 235.
  • DSP digital signal processor
  • RF radio frequency
  • the DSP/microprocessor 210 is electrically connected to the transceiver 235 to control the transceiver 235.
  • the device depending on the designer's choice, power management module 205, battery 255, display 215, keypad 220, SIM card 225, memory device 230, antenna 240, speaker ( 245) and an input device 250.
  • FIG. 25 may represent a terminal including a receiver 235 configured to receive a request message from a network and a transmitter 235 configured to transmit timing transmission/reception timing information to a network. These receivers and transmitters may constitute a transceiver 235.
  • the terminal may further include a processor 210 connected to the transceiver 235.
  • FIG. 25 may represent a network device including a transmitter 235 configured to transmit a request message to a terminal and a receiver 235 configured to receive transmission/reception timing information from the terminal.
  • the transmitter and receiver may configure the transceiver 235.
  • the network further includes a processor 210 coupled to the transmitter and receiver.
  • the processor 210 may calculate latency based on transmission/reception timing information.
  • a terminal or a communication device included in the terminal
  • a processor included in a base station or a communication device included in the base station
  • control memory may operate as follows.
  • a terminal or a base station includes: at least one transceiver (Transceiver); One or more memories (Memory); And one or more processors connected to a transceiver and a memory.
  • the memory can store instructions that allow one or more processors to perform the following operations.
  • the communication device included in the terminal or the base station may be configured to include the one or more processors and the one or more memories, and the communication device includes the one or more transceivers or does not include the one or more transceivers It can be configured to be connected to the one or more transceivers without.
  • one or more processors included in the terminal may include a plurality of PRSs included in at least one Positioning Reference Signal (PRS) resource set For each of the resources, information related to location can be measured.
  • PRS Positioning Reference Signal
  • one or more processors included in a base station (or one or more processors of a communication device included in the base station), based on information associated with the positioning, specifies one of the plurality of PRS resources. At least one of an ID (Identifier) of a PRS resource and an ID of a PRS resource set including the specific PRS resource may be transmitted.
  • various embodiments of the present disclosure may be implemented in combination/combination with each other, unless compatibility with each other is impossible.
  • a base station and/or a terminal (such as a processor included therein) according to various embodiments of the present disclosure are combined/combined operations of the embodiments of the first to third sections described above unless they are compatible. You can do
  • Example communication system to which various embodiments of the present disclosure are applied
  • 26 illustrates a communication system applied to various embodiments of the present disclosure.
  • a communication system 1 applied to various embodiments of the present disclosure includes a wireless device, a base station and a network.
  • the wireless device means a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication/wireless/5G device.
  • a wireless access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), Internet of Thing (IoT) device 100f, and AI device/server 400.
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • Household appliances may include a TV, a refrigerator, and a washing machine.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also directly communicate (e.g. sidelink communication) without going through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200.
  • the wireless communication/connection is various wireless access such as uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices/base stations/wireless devices, base stations and base stations can transmit/receive radio signals to each other through wireless communication/connections 150a, 150b, 150c.
  • wireless communication/connections 150a, 150b, and 150c may transmit/receive signals over various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • FIG. 27 illustrates a wireless device that can be applied to various embodiments of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x), wireless device 100x in FIG. ⁇ .
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information/signal, and then transmit the wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information/signal through the transceiver 106 and store the information obtained from the signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • memory 104 may be used to perform some or all of the processes controlled by processor 102, or instructions to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 can be coupled to the processor 102 and can transmit and/or receive wireless signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • RF radio frequency
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the wireless signal including the fourth information/signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
  • the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 can be coupled to the processor 202 and can transmit and/or receive wireless signals through one or more antennas 208.
  • Transceiver 206 may include a transmitter and/or receiver.
  • Transceiver 206 may be mixed with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 and 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and/or methods disclosed herein. , To one or more transceivers 106, 206.
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the fields.
  • signals eg, baseband signals
  • the one or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • the one or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202 or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein can be implemented using firmware or software in the form of code, instructions and/or a set of instructions.
  • the one or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • the one or more memories 104, 204 may be located inside and/or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein from one or more other devices. have.
  • one or more transceivers 106, 206 may be coupled to one or more processors 102, 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 can control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, the one or more processors 102, 202 can control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208. , It may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106 and 206 process the received wireless signal/channel and the like in the RF band signal to process the received user data, control information, wireless signal/channel, and the like using one or more processors 102 and 202. It can be converted to a baseband signal.
  • the one or more transceivers 106 and 206 may convert user data, control information, and radio signals/channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • the one or more transceivers 106, 206 may include (analog) oscillators and/or filters.
  • the wireless device 28 shows another example of a wireless device applied to various embodiments of the present disclosure.
  • the wireless device may be implemented in various forms according to use-example/service (see FIG. 26).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 27, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 can include one or more processors 102,202 and/or one or more memories 104,204 in FIG.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 27.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls the overall operation of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless/wired interface through the communication unit 110, or externally (eg, through the communication unit 110). Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 26, 100A), vehicles (FIGS. 26, 100B-1, 100B-2), XR devices (FIGS. 26, 100C), portable devices (FIGS. 26, 100D), and consumer electronics. (Fig. 26, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device (FIGS. 26 and 400), a base station (FIGs. 26 and 200), a network node, and the like.
  • the wireless device may be mobile or may be used in a fixed place depending on use-example/service.
  • various elements, components, units/parts, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit/unit, and/or module in the wireless devices 100 and 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and/or combinations thereof.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, a smart glass), and a portable computer (eg, a notebook).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the mobile device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ).
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 in FIG. 28, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the control unit 120 may perform various operations by controlling the components of the portable device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100. Also, the memory unit 130 may store input/output data/information.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the mobile device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signal (eg, touch, text, voice, image, video) input from a user, and the obtained information/signal is transmitted to the memory unit 130 Can be saved.
  • the communication unit 110 may convert information/signals stored in the memory into wireless signals, and transmit the converted wireless signals directly to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 130, it can be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • Vehicles or autonomous vehicles can be implemented as mobile robots, vehicles, trains, aerial vehicles (AVs), ships, and the like.
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving It may include a portion (140d).
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 in FIG. 28, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, a base station (e.g. base station, road side unit, etc.) and a server.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the controller 120 may include an electronic control unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, wheels, brakes, and steering devices.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, a tilt sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illumination sensor, pedal position sensor, and the like.
  • the autonomous driving unit 140d maintains a driving lane, automatically adjusts speed, such as adaptive cruise control, and automatically moves along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a such that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to a driving plan (eg, speed/direction adjustment).
  • a driving plan eg, speed/direction adjustment
  • the communication unit 110 may acquire the latest traffic information data non-periodically from an external server, and may acquire surrounding traffic information data from nearby vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information regarding a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like, based on the information collected from the vehicle or autonomous vehicles, and provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • Vehicles 31 illustrates a vehicle applied to various embodiments of the present disclosure.
  • Vehicles can also be implemented as vehicles, trains, aircraft, ships, and the like.
  • the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, and a position measurement unit 140b.
  • blocks 110 to 130/140a to 140b correspond to blocks 110 to 130/140 in FIG. 28, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the controller 120 may control various components of the vehicle 100 to perform various operations.
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100.
  • the input/output unit 140a may output an AR/VR object based on information in the memory unit 130.
  • the input/output unit 140a may include a HUD.
  • the location measuring unit 140b may acquire location information of the vehicle 100.
  • the location information may include absolute location information of the vehicle 100, location information within the driving line, acceleration information, location information with surrounding vehicles, and the like.
  • the position measuring unit 140b may include GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store them in the memory unit 130.
  • the location measuring unit 140b may acquire vehicle location information through GPS and various sensors and store it in the memory unit 130.
  • the control unit 120 may generate a virtual object based on map information, traffic information, and vehicle location information, and the input/output unit 140a may display the generated virtual object on a glass window in the vehicle (1410, 1420).
  • the controller 120 may determine whether the vehicle 100 is normally operating in the driving line based on the vehicle location information. When the vehicle 100 deviates abnormally from the driving line, the control unit 120 may display a warning on the glass window in the vehicle through the input/output unit 140a.
  • control unit 120 may broadcast a warning message about driving abnormalities to nearby vehicles through the communication unit 110. Depending on the situation, the control unit 120 may transmit the location information of the vehicle and the information on the driving/vehicle abnormality to the related organization through the communication unit 110.
  • various embodiments of the present disclosure may be implemented through a certain device and/or terminal.
  • certain devices include base stations, network nodes, transmitting terminals, receiving terminals, wireless devices, wireless communication devices, vehicles, vehicles equipped with autonomous driving functions, drones (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) It may be a module, a robot, an Augmented Reality (AR) device, a Virtual Reality (VR) device, or other devices.
  • UAV Unmanned Aerial Vehicle
  • AI Artificial Intelligence
  • It may be a module, a robot, an Augmented Reality (AR) device, a Virtual Reality (VR) device, or other devices.
  • the terminal is a personal digital assistant (PDA: Personal Digital Assistant), a cellular phone, a Personal Communication Service (PCS) phone, a Global System for Mobile (GSM) phone, a Wideband CDMA (WCDMA) phone, an MBS ( Mobile Broadband System), a smart phone, or a multi-mode multi-band (MM-MB) terminal.
  • PDA Personal Digital Assistant
  • PCS Personal Communication Service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Mobile Broadband System
  • smart phone or a multi-mode multi-band (MM-MB) terminal.
  • MM-MB multi-mode multi-band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal that integrates data communication functions such as schedule management, fax transmission and reception, and Internet access, which are the functions of a personal mobile terminal, into a mobile communication terminal.
  • a multi-mode multi-band terminal is built in a multi-modem chip, and can operate in both portable Internet systems and other mobile communication systems (for example, Code Division Multiple Access (CDMA) 2000 system, Wideband CDMA (WCDMA) system, etc.). Refers to the terminal.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband CDMA
  • the terminal is a notebook PC, hand-held PC (Hand-Held PC), tablet PC (tablet PC), ultrabook (ultrabook), slate PC (slate PC), digital broadcasting terminal, PMP (portable multimedia player), navigation
  • the wearable device may be a wearable device (eg, a smartwatch, a smart glass, a head mounted display, etc.)
  • a drone can be operated by a radio control signal without human being riding. It may be a flying vehicle, for example, the HMD may be a display device worn on the head, for example, the HMD may be used to implement VR or AR.
  • Various embodiments of the present disclosure may be implemented through various means.
  • various embodiments of the present disclosure may be implemented by hardware, firmware, software, or a combination thereof.
  • methods according to various embodiments of the present disclosure include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) ), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • a method according to various embodiments of the present disclosure may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • software code may be stored in memory and driven by a processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various means known in the art.
  • Various embodiments of the present disclosure can be applied to various wireless access systems.
  • Examples of various wireless access systems include 3GPP (3rd Generation Partnership Project) or 3GPP2 system.
  • Various embodiments of the present disclosure can be applied not only to the various wireless access systems, but also to all technical fields to which the various wireless access systems are applied.
  • the proposed method can be applied to mmWave communication systems using ultra-high frequency bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

일 실시예는, 무선 통신 시스템에서 장치의 방법에 있어서, 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 수신하는 단계; 상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정하는 단계; 및 상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 전송하는 단계를 포함하는, 방법이다.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
본 개시 (present disclosure)의 다양한 실시예들은 무선 통신 시스템에 대한 것으로, 구체적으로는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
또한, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
이와 같이 향상된 모바일 브로드밴드 통신, 매시브 MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
구체적으로, 본 개시의 다양한 실시예들은 무선 통신 시스템에서 측위와 연관된 정보에 기초하여, 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나를 전송하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
본 개시의 다양한 실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
일 실시예는, 무선 통신 시스템에서 장치의 방법에 있어서, 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 수신하는 단계; 상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정하는 단계; 및 상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 전송하는 단계를 포함하는, 방법이다.
상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 높은 순서대로 M개의 PRS 자원이고, 상기 M은 자연수일 수 있다.
상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 기 설정된 값 이상인 PRS 자원일 수 있다.
상기 측위와 연관된 정보는 송수신 시간차 정보를 포함하고, 상기 송수신 시간차 정보는 상기 특정 PRS 자원 상에서 PRS를 수신한 시간 및 상기 특정 PRS 자원에 대하여 측정한 측위와 연관된 정보를 전송하는 시간과의 차이 값일 수 있다.
상기 특정 PRS 자원은 상기 복수의 PRS 자원들 상에서 수신한 복수의 PRS들 중에서 ToA (Time of Arrival)가 가장 작은 PRS가 수신되는 PRS 자원일 수 있다.
상기 측위와 연관된 정보는 RSTD (Reference Signal Timing Difference)를 포함할 수 있다.
상기 적어도 하나 이상의 PRS 자원 집합은 적어도 하나 이상의 송신 빔 및 적어도 하나 이상의 수신 빔과의 빔 조합과 연관되고, 상기 특정 PRS 자원에 대한 측위와 연관된 정보 및 상기 특정 PRS 자원의 ID는 상기 적어도 하나 이상의 PRS 자원 집합 별로 전송되도록 설정될 수 있다.
일 실시예는, 무선 통신 시스템에서 동작하는 장치에 있어서, 메모리 (memory); 및 상기 메모리와 연결된 하나 이상의 프로세서 (processor)를 포함하고,
상기 하나 이상의 프로세서는: 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 수신하고, 상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정하고, 상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 전송하는, 장치이다.
상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 높은 순서대로 M개의 PRS 자원이고, 상기 M은 자연수일 수 있다.
상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 기 설정된 값 이상인 PRS 자원일 수 있다.
상기 측위와 연관된 정보는 송수신 시간차 정보를 포함하고, 상기 송수신 시간차 정보는 상기 특정 PRS 자원 상에서 PRS를 수신한 시간 및 상기 특정 PRS 자원에 대하여 측정한 측위와 연관된 정보를 전송하는 시간과의 차이 값일 수 있다.
상기 장치는 이동 단말기, 네트워크 및 상기 장치가 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신하는, 장치이다.
일 실시예는, 무선 통신 시스템에서 동작하는 장치에 있어서, 하나 이상의 프로세서 (processor); 및 상기 하나 이상의 프로세서가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 하나 이상의 메모리 (memory) 를 포함하고, 상기 방법은: 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 수신하는 단계; 상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정하는 단계; 및 상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 전송하는 단계를 포함하는, 장치이다.
상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 높은 순서대로 M개의 PRS 자원이고, 상기 M은 자연수일 수 있다.
상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 기 설정된 값 이상인 PRS 자원일 수 있다.
일 실시예는, 무선 통신 시스템에서 장치의 방법에 있어서, 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 전송하는 단계; 상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들을 전송하는 단계; 및 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 수신하는 단계를 포함하는, 방법이다.
일 실시예는, 무선 통신 시스템에서 동작하는 장치에 있어서, 메모리 (memory); 및 상기 메모리와 연결된 하나 이상의 프로세서 (processor)를 포함하고, 상기 하나 이상의 프로세서는: 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 전송하고, 상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들을 전송하고, 및 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 수신하는, 장치이다.
일 실시예는, 하나 이상의 프로세서 (processor) 가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 프로세서-판독 가능 매체 (processor-readable medium) 에 있어서, 상기 방법은: 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 전송하는 단계; 상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들을 전송하는 단계; 및 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 수신하는 단계를 포함하는, 프로세서-판독 가능 매체이다.
상술한 본 개시의 다양한 실시예들은 본 개시의 바람직한 실시예들 중 일부에 불과하며, 본 개시의 다양한 실시예들의 기술적 특징들이 반영된 여러 가지 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시의 다양한 실시예들에 따르면 다음과 같은 효과가 있다.
본 개시의 다양한 실시예들에 따르면, 무선 통신 시스템에서 측위와 연관된 정보에 기초하여, 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나를 전송하는 방법 및 이를 지원하는 장치가 제공될 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말의 위치를 파악할 때 불필요한 RSTD 측정 값은 배제함으로써 정확도를 향상시킬 수 있으며, 불필요한 reporting overhead를 줄일 수 있다.
본 개시의 다양한 실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
이하에 첨부되는 도면들은 본 개시의 다양한 실시예들에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시의 다양한 실시예들을 제공한다. 다만, 본 개시의 다양한 실시예들의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다. 각 도면에서의 참조 번호 (reference numerals) 들은 구조적 구성요소 (structural elements) 를 의미한다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
도 3은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 5 는 본 개시의 다양한 실시예들이 적용 가능한 SSB (Synchronization Signal Block)의 구조를 나타낸 도면이다.
도 6 은 본 개시의 다양한 실시예들이 적용 가능한 SSB 의 전송 방법의 일 예를 나타낸 도면이다.
도 7 는 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에서 PRS 매핑의 일 예를 나타낸 도면이다.
도 8 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 시스템의 아키텍쳐의 일 예를 나타낸 도면이다.
도 9 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하는 절차의 일 예를 나타낸 도면이다.
도 10 은 본 개시의 다양한 실시예들이 적용 가능한 LPP (LTE positioning protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
도 11 은 본 개시의 다양한 실시예들이 적용 가능한 NRPPa (NR positioning protocol a) PDU (protocol data unit) 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
도 12 은 본 개시의 다양한 실시예들이 적용 가능한 OTDOA (observed time difference of arrival) 측위(Positioning) 방법의 일 예를 나타낸 도면이다.
도 13은 본 개시의 일 실시예에 따라 보고되는 UE 송수신 시간차를 설명하기 위한 것이다.
도 14는 본 개시의 다른 실시예에 따라 보고되는 UE 송수신 시간차를 설명하기 위한 것이다.
도 15는 본 개시의 일 실시예에 따른 단말의 동작을 설명하기 위한 것이다.
도 16은 본 개시의 일 실시예에 따른 기지국의 동작을 설명하기 위한 것이다.
도 17은 본 개시의 일 실시예에 따른 two-cell 기반의 멀티셀 RTT 기법을 설명하기 위한 것이다.
도 18은 본 개시의 일 실시예에 따른 M-best reporting에 기초한 단말의 동작을 설명하기 위한 것이다.
도 19는 본 개시의 일 실시예에 따른 M-best reporting에 기초한 기지국의 동작을 설명하기 위한 것이다.
도 20은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다.
도 21 은 본 개시의 다양한 실시예들에 따른 DRX 동작을 예시한 도면이다.
도 22 은 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 23는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이다.
도 24은 본 개시의 다양한 실시예들에 따른 기지국 및 위치서버의 동작 방법을 나타낸 흐름도이다.
도 25는 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 26은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 27은 본 개시의 다양한 실시예들에 적용될 수 있는 무선 기기를 예시한다.
도 28은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다.
도 29는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다.
도 30는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다.
도 31은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다.
이하의 실시예들은 본 개시의 다양한 실시예들의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 다양한 실시예들을 구성할 수도 있다. 본 개시의 다양한 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 다양한 실시예들의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당해 기술분야에서 통상의 지식을 가진 자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시의 다양한 실시예들을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 개시의 다양한 실시예들은 기지국(Base Station)과 단말(Terminal) 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 개시의 다양한 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미할 수 있다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 개시의 다양한 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템, 3GPP 5G NR 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 다양한 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 37.213, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 개시의 다양한 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 개시의 다양한 실시예들에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 다양한 실시예들의 예시적인 실시형태를 설명하고자 하는 것이며, 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 개시의 다양한 실시예들에서 사용되는 특정(特定) 용어들은 본 개시의 다양한 실시예들의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 다양한 실시예들의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하에서는 본 개시의 다양한 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다.
본 개시의 다양한 실시예들의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 개시의 다양한 실시예들을 3GPP LTE/LTE-A 시스템 뿐만 아니라 3GPP NR 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP 시스템 일반
1.1. 물리 채널들 및 일반적인 신호 전송
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 본 개시의 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다 (S11). 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다 (S12).
이후, 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다 (S13 ~ S16). 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
한편, 임의 접속 과정이 2 단계로 수행되는 경우, S13/S15 는 단말이 송신을 수행하는 하나의 동작으로 수행되고, S14/S16 이 기지국이 송신을 수행하는 하나의 동작으로 수행될 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 무선 프레임 (Radio Frame) 구조
도 2는 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
NR 시스템은 다수의 뉴머롤로지(Numerology)들을 지원할 수 있다. 여기에서, 뉴머롤로지는 부반송파 간격(subcarrier spacing, SCS)과 순환 프리픽스(cyclic prefix, CP) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 부반송파 간격은 기본 부반송파 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 부반송파 간격을 이용하지 않는다고 가정할지라도, 이용되는 뉴머롤로지는 셀의 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 뉴머롤로지 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1와 같이 정의될 수 있다. 대역폭 파트에 대한 μ 및 순환 프리픽스는 BS에 의해 제공되는 RRC 파라미터들로부터 얻어진다.
Figure PCTKR2020001596-appb-img-000001
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤러지(예, 부반송파 간격(subcarrier spacing))를 지원한다. 예를 들어, 부반송파 간격이 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, 부반송파 간격이 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 레이턴시(lower latency) 및 더 넓은 반송파 대역폭(wider carrier bandwidth)를 지원하며, 부반송파 간격이 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 대역(frequency band)은 FR1과 FR2라는 2가지 타입의 주파수 범위(frequency range)로 정의된다. FR1은 sub 6GHz 범위이며, FR2는 above 6GHz 범위로 밀리미터 웨이브(millimiter wave, mmWave)를 의미할 수 있다.
아래 표 2는 NR 주파수 대역의 정의를 예시한다.
Figure PCTKR2020001596-appb-img-000002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 도메인의 다양한 필드들의 크기는 NR용 기본 시간 유닛(basic time unit)인 T c = 1/(△ f max* N f)의 배수로 표현된다. 여기서, △ f max = 480*10 3 Hz이고, 고속 푸리에 변환(fast Fourier transform, FFT) 혹은 역 고속 푸리에 변환(inverse fast Fourier transform, IFFT) 크기와 관련이 있는 값인 N f = 4096이다. T c는 LTE용 기반 시간 유닛이자 샘플링 시간인 T s = 1/((15kHz)*2048)와 다음의 관계를 갖는다: T s/ T c = 64. 하향링크 및 상향링크(uplink) 전송들은 T f = (△ f max* N f/100)* T c = 10ms 지속기간(duration)의 (무선) 프레임들로 조직화(organize)된다. 여기서, 각 무선 프레임은 각각이 T sf = (△ f max* N f/1000)* T c = 1ms 지속기간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 뉴머롤로지 μ에 대하여, 슬롯(slot)들은 서브프레임 내에서는 오름차순(increasing order)으로 n μ s ∈ {0,…, N slot,μ subframe-1}로 번호가 매겨지고, 무선 프레임 내에서는 오름차순으로 n μ s,f ∈ {0,…, N slot,μ frame-1}으로 번호가 매겨진다. 하나의 슬롯은 N μ symb개의 연속하는(consecutive) OFDM 심볼들로 구성되고, N μ symb는 순환 프리픽스(cyclic prefix, CP)에 의존한다. 서브프레임에서 슬롯 n μ s의 시작은 동일 서브프레임 내에서 OFDM 심볼 n μ s* N μ symb의 시작과 시간적으로 정렬된다.
표 3은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 4은 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2020001596-appb-img-000003
Figure PCTKR2020001596-appb-img-000004
상기 표에서, N slot symb 는 슬롯 내 심볼의 개수를 나타내고, N frame,μ slot는 프레임 내 슬롯의 개수를 나타내고, N subframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낸다.
본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머롤로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 2은, μ=2인 경우(즉, 부반송파 간격이 60kHz)의 일례로서, 표 3을 참고하면 1개 서브프레임은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1개 서브프레임 = {1,2,4}개 슬롯들은 예시이며, 1개 서브프레임에 포함될 수 있는 슬롯(들)의 개수는 표 6 또는 표 7과 같이 정의된다.
또한, 미니-슬롯은 2, 4 또는 7개 심볼들을 포함할 수 있거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.
도 3은 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 슬롯 구조를 나타낸 도면이다.
도 3을 참조하면, 하나의 슬롯은 시간 도메인에서 복수의 심볼들을 포함할 수 있다. 예를 들어, 보통 CP(normal CP)의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP(extended CP)의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파(carrier)는 주파수 도메인에서 복수의 부반송파(subcarrier)를 포함할 수 있다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다.
BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴머롤로지(예, SCS, CP 길이 등)에 대응될 수 있다.
반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 본 개시의 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
자립적 슬롯 구조란, 하나의 슬롯 내에 하향링크 제어 채널(downlink control channel), 하향링크/상향링크 데이터(downlink/uplink data), 그리고 상향링크 제어 채널(uplink control channel)이 모두 포함될 수 있는 슬롯 구조일 수 있다.
도 4를 참조하면, 빗금 친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간(guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 본 개시의 다양한 실시예들에 따른 자립적 슬롯 구조는 도 4와 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우 뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다.
1.3. 채널 구조
1.3.1. 하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
1.3.1.1. 물리 하향링크 공유 채널 (PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
1.3.1.2. 물리 하향링크 제어 채널 (PDCCH)
PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다.
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴머롤로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
각 CORESET 을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정될 수 있다:
- sameAsREG-bundle : 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs : CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId : 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset : PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot : PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates : AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 5 은 검색 공간 타입별 특징을 예시한다.
Figure PCTKR2020001596-appb-img-000005
표 6는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
Figure PCTKR2020001596-appb-img-000006
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
1.3.2. 상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
1.3.2.1. 물리 상향링크 공유 채널 (PUSCH)
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
1.3.2.2. 물리 상향링크 제어 채널 (PUCCH)
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다. 표 7은 PUCCH 포맷들을 예시한다.
Figure PCTKR2020001596-appb-img-000007
PUCCH format 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH format 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH format 0인 PUCCH를 전송한다.
PUCCH format 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH format 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH format 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH format 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH format 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH format 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
1.4. 셀 탐색 (Cell search)
도 5 는 본 개시의 다양한 실시예들이 적용 가능한 SSB (Synchronization Signal Block)의 구조를 나타낸 도면이다.
단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 5을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
단말의 셀 탐색 과정은 하기 표 8과 같이 정리될 수 있다.
Figure PCTKR2020001596-appb-img-000008
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다.
도 6 은 본 개시의 다양한 실시예들이 적용 가능한 SSB 의 전송 방법의 일 예를 나타낸 도면이다.
도 6을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A : 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B : 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C : 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D : 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E : 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
2. 측위 (positioning)
측위(Positioning)는 무선 신호를 측정하여 UE의 지리적 위치 및/또는 속도를 결정하는 것을 의미할 수 있다. 위치 정보는 UE와 관련된 클라이언트(예를 들어, 어플리케이션)에 의해 요청되어, 상기 클라이언트에 보고될 수 있다. 또한, 상기 위치 정보는 코어 네트워크(Core Network) 내에 포함되거나, 상기 코어 네트워크와 접속된 클라이언트에 의해 요청될 수도 있다. 상기 위치 정보는 셀 기반 또는 지리적 좌표와 같은 표준 형식(standard format)으로 보고될 수 있으며, 이 때, 상기 UE의 위치 및 속도에 대한 추정 오류치 및/또는 측위(Positioning)에 사용된 측위 방법을 함께 보고 할 수 있다.
이러한 측위를 위하여, PRS (positioning reference signal)가 사용될 수 있다. PRS는 UE의 위치 추정을 위해 사용되는 참조신호이다.
2.1. LTE 시스템에서의 PRS
예를 들어, LTE 시스템에서는, PRS는 PRS 전송을 위해 설정(Configuring)된 하향링크 서브프레임(이하, '포지셔닝 서브프레임 (Positioning Subframe)')에서만 전송될 수 있다. 또한, 만약, MBSFN (Multimedia broadcast single frequency network) 서브프레임과 non-MBSFN 서브프레임이 모두 포지셔닝 서브프레임으로 설정되면, MBSFN 서브프레임의 OFDM (Orthogonal Frequency Division Multiplexing) 심볼들은 서브프레임 #0과 동일한 CP (Cyclic Prefix)를 가져야 한다. 만약, 셀 내에서 포지셔닝 서브프레임이 MBSFM 서브프레임들만으로 설정된 경우, 상기 MBSFN 서브프레임 내에서 PRS를 위해 설정된 OFDM 심볼들은 확장 CP를 가질 수 있다.
이러한 PRS의 시퀀스는 아래의 [수학식 1]에 의해 정의될 수 있다.
[수학식 1]
Figure PCTKR2020001596-appb-img-000009
여기서, n s는 무선 프레임 내에서의 슬롯 넘버를 의미하고, l은 상기 슬롯 내에서의 OFDM 심볼 넘버를 의미한다.
Figure PCTKR2020001596-appb-img-000010
은 하향링크 대역폭 설정 중 가장 큰 값으로서,
Figure PCTKR2020001596-appb-img-000011
의 정수배로 표현된다.
Figure PCTKR2020001596-appb-img-000012
는 주파수 도메인에서 RB (Resource Block)의 크기이며, 예를 들어, 12개의 부반송파로 구성될 수 있다.
c(i)는 Pseudo-Random 시퀀스로서, 아래의 [수학식 2]에 따라 초기화될 수 있다.
[수학식 2]
Figure PCTKR2020001596-appb-img-000013
상위 계층에서 별도의 설정이 없는 한,
Figure PCTKR2020001596-appb-img-000014
Figure PCTKR2020001596-appb-img-000015
과 동일하며, N CP는 일반 CP(Cyclic Prefix)에서 1, 확장 CP에서 0이다.
도 7 은 본 개시의 다양한 실시예들이 적용 가능한 LTE 시스템에서 PRS 매핑의 일 예를 나타낸 도면이다.
도 7 을 참조하면, PRS는 안테나 포트 6을 통해서 전송될 수 있다. 도 7(a)는 일반 CP에서 PRS가 맵핑되는 예시를 나타내고, 도 7(b)는 확장 CP에서 PRS가 맵핑되는 예시를 나타낸다.
한편, LTE 시스템에서, PRS는 위치 추정을 위해 그룹핑된 연속된 서브프레임들에서 전송될 수 있는데, 이 때, 위치 추정을 위해 그룹핑된 서브프레임들을 포지셔닝 기회(Positioning Occasion)이라고 한다. 이러한 포지셔닝 기회는 1, 2, 4 또는 6 서브프레임들로 구성될 수 있다. 또한, 이러한 포지셔닝 기회는 160, 320, 640 또는 1280 서브프레임 주기로 주기적으로 발생할 수 있다. 또한, PRS 전송의 시작 서브프레임을 지시하기 위한 셀 특정 서브프레임 오프셋 값이 정의될 수 있으며, 상기 오프셋 값과 PRS 전송을 위한 포지셔닝 기회의 주기는 아래의 표 9에서 보는 바와 같이, PRS 설정 인덱스(Configuration Index)에 의해 유도될 수 있다.
Figure PCTKR2020001596-appb-img-000016
한편, 각각의 포지셔닝 기회(Occasion)에 포함된 PRS는 일정한 전력으로 전송된다. 이 때, 특정 포지셔닝 기회(Occasion)에서는 제로 파워로 PRS가 전송될 수 있는데, 이를 PRS 뮤팅(muting)이라고 한다. 예를 들어, 서빙 셀에서 전송되는 PRS를 뮤팅(muting)함으로써, 단말이 인접 셀의 PRS를 용이하게 검출할 수 있다.
셀에 대한 PRS 뮤팅 설정(Configuration)은 2, 4, 8 또는 16 개의 포지셔닝 기회(Occasion)로 구성되는 주기적 뮤팅 시퀀스에 의해 정의될 수 있다. 즉, 주기적 뮤팅 시퀀스는 PRS 뮤팅 설정에 대응하는 포지셔닝 기회들에 따라 2, 4, 8 또는 16비트로 구성될 수 있으며, 각각의 비트는 '0' 또는 '1'의 값을 가질 수 있다. 예를 들어, 비트 값이 '0'인 포지셔닝 기회(Occasion)에서 PRS 뮤팅이 수행될 수 있다.
한편, 포지셔닝 서브프레임은 저 간섭 서브프레임(low interference subframe)으로 설계되어, 상기 포지셔닝 서브프레임에서는 데이터가 전송되지 않는다. 그러므로, PRS는 다른 셀의 PRS에 의해서 간섭 받을 수는 있지만, 데이터 전송에 의해서는 간섭 받지 않는다.
2.2. NR 시스템에서의 UE 포지셔닝 아키텍처 (UE Positioning Architecture)
도 8 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 시스템의 아키텍쳐의 일 예를 나타낸 도면이다.
도 8을 참조하면, AMF (Core Access and Mobility Management Function)은 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC (Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF (Location Management Function) 에게 위치 서비스 요청을 전송한다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에 AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB (new generation evolved-NB) 및 gNB는 위치 추적을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드 (remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC (Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP (SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS (Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN에서 전송하는 하향링크 참조 신호(Downlink Reference Signal)을 활용하여 UE의 위치를 측정할 수 있다. 이 때, NG-RAN 및 E-UTRAN로부터 UE에게 전송되는 상기 하향링크 참조 신호에는 SS/PBCH 블록, CSI-RS 및/또는 PRS 등이 포함될 수 있으며, 어떠한 하향링크 참조 신호를 사용하여 UE의 위치를 측정할지 여부는 LMF/E-SMLC/ng-eNB/E-UTRAN 등의 설정에 따를 수 있다. 또한, 서로 상이한 GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN 접속 포인트, 블루투스 비콘 및 UE에 내장된 센서(예를 들어, 기압 센서)등을 활용하는 RAT-independent 방식으로 UE의 위치를 측정할 수도 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
2.3. UE의 위치 측정을 위한 동작
도 9 은 본 개시의 다양한 실시예들이 적용 가능한 단말의 위치를 측정하는 절차의 일 예를 나타낸 도면이다.
UE가 CM-IDLE (Connection Management - IDLE)상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 9에서는 생략되어 있다. 즉, 도 9에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 9을 참조하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 예를 들어, LMF가 NG-RAN에 하나 이상의 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, NG-RAN은 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 상기 요청에 의한 위치 결정 방법이 E-CID인 경우, NG-RAN은 추가적인 위치 관련 정보를 LMF에 하나 이상의 NRPPa 메시지를 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있다. 또한, 단계 3a에서 사용되는 프로토콜(Protocol)은 NRPPa 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 예를 들어, 단계 3b에서 성능 정보 교환(Capability Transfer) 과정을 수행할 수 있다. 구체적으로 LMF는 UE에게 성능(Capability) 정보를 요청하고, UE는 LMF에게 성능(Capability) 정보를 전송할 수 있다. 이 때, 성능(Capability) 정보란, LFM 또는 UE가 지원할 수 있는 위치 측정 방법에 대한 정보, A-GNSS를 위한 보조 데이터(Assistance data)의 다양한 타입과 같이 특정 위치 측정 방법에 대한 다양한 측면(aspects)들에 대한 정보 및 다중 LPP 트랜젝션들을 핸들링(handle)할 수 있는 능력 등과 같이 어느 하나의 위치 측정 방법에 국한되지 않는 공통 특징에 대한 정보 등을 포함할 수 있다. 한편, 경우에 따라서 LMF가 UE에게 성능(Capability) 정보를 요청하지 않더라도, UE가 LMF에게 성능(Capability) 정보를 제공할 수 있다.
또 다른 예로, 단계 3b에서 위치 보조 데이터 교환(Assistance data transfer) 과정을 수행할 수 있다. 구체적으로, UE는 LMF에게 위치 보조 데이터(assistance data)를 요청할 수 있고, 필요로 하는 특정 위치 보조 데이터(assistance data)를 LMF에 지시할 수 있다. 그러면, LMF는 이에 대응하는 위치 보조 데이터(assistance data)를 UE에게 전달할 수 있고, 추가적으로, 하나 이상의 추가 LPP 메시지들을 통해 추가 보조 데이터(Additional assistance data)를 UE에게 전송할 수 있다. 한편, LMF에서 UE로 전송되는 위치 보조 데이터는 유니캐스트(unicast) 방식을 통해 전송될 수 있고, 경우에 따라, UE가 LMF에 보조 데이터를 요청하는 과정 없이, LMF가 UE에게 위치 보조 데이터 및/또는 추가 보조 데이터를 UE에게 전송할 수 있다.
또 다른 예로, 단계 3b에서 위치 정보 교환(Location Information Transfer) 과정을 수행할 수 있다. 구체적으로, LMF가 UE에게 해당 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, UE는 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 추가적으로 UE는 추가 위치 관련 정보를 LMF에 하나 이상의 LPP 메시지들을 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있으며, 대표적으로는 복수의 NG-RAN 및/또는 E-UTRAN로부터 UE로 전송되는 하향링크 참조 신호(Downlink Reference Signal)들을 기반으로 UE가 측정하는RSTD(Reference Signal Time Difference) 값이 있을 수 있다. 상술한 바와 유사하게 UE 는 LMF로부터 요청이 없더라도 상기 위치 관련 정보를 LMF에 전송할 수 있다.
한편, 상술한 단계 3b에서 이루어지는 과정들은 단독으로 수행될 수도 있지만, 연속적으로 수행될 수 있다. 일반적으로, 성능 정보 교환(Capability Transfer) 과정, 위치 보조 데이터 교환(Assistance data transfer) 과정, 위치 정보 교환(Location Information Transfer) 과정 순서로 단계 3b가 수행되지만, 이러한 순서에 국한되지 않는다. 다시 말해, 단계 3b는 위치 측정의 유연성을 향상시키기 위해 특정 순서에 구애 받지 않는다. 예를 들어, UE는 LMF가 이미 요청한 위치 측정 요청을 수행하기 위해 언제든지 위치 보조 데이터를 요청할 수 있다. 또한, LMF도 UE가 전달해준 위치 정보가 요구하는 QoS를 만족하지 못하는 경우, 언제든지 위치 측정치 또는 위치 추정치 등의 위치 정보를 요청할 수 있다. 이와 유사하게 UE가 위치 추정을 위한 측정을 수행하지 않은 경우에는 언제든지 LMF로 성능(Capability) 정보를 전송할 수 있다.
또한, 단계 3b에서 LMF와 UE 간에 교환하는 정보 또는 요청에 Error가 발생한 경우, Error 메시지가 송수신될 수 있으며, 위치 측정을 중단하기 위한 중단(Abort)메시지가 송수신될 수도 있다.
한편, 단계 3b 에서 사용되는 프로토콜(Protocol)은 LPP 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 9의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 9의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
2.4. 위치 측정을 위한 프로토콜
2.4.1. LTE Positioning Protocol (LPP)
도 10 은 본 개시의 다양한 실시예들이 적용 가능한 LPP (LTE positioning protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다. LPP PDU는 MAF와 UE 간의 NAS PDU를 통해 전송될 수 있다.
도 10를 참조하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C 인터페이스를 통한 NGAP, LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트 (Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
2.4.2. NR Positioning Protocol A (NRPPa)
도 11 은 본 개시의 다양한 실시예들이 적용 가능한 NRPPa (NR positioning protocol a) PDU (protocol data unit) 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID, OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNG/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
2.5. 측위 방법 (Positioning Measurement Method)
NG-RAN에서 지원하는 측위 방법들에는 GNSS, OTDOA, E-CID (enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA (Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
2.5.1. OTDOA (Observed Time Difference Of Arrival)
도 12 은 본 개시의 다양한 실시예들이 적용 가능한 OTDOA (observed time difference of arrival) 측위(Positioning) 방법의 일 예를 나타낸 도면이다.
OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN을 인지하지 못하면, UE는 RSTD (Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 간의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1-TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추청할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
예를 들어, 두 TP에 대한 RSTD는 아래의 [수학식 3]을 기반으로 산출될 수 있다.
[수학식 3]
Figure PCTKR2020001596-appb-img-000017
여기서, c는 빛의 속도이고, {x t, y t}는 타겟 UE의 (알려지지 않은) 좌표이고, {x i, y i}는 (알려진) TP의 좌표이며, {25, y 1}은 참조 TP (또는 다른 TP)의 좌표일 수 있다. 여기서, (T i-T 1)은 두 TP 간의 전송 시간 오프셋으로서, "Real Time Differences" (RTDs)로 명칭될 수 있으며, n i, n 1은 UE TOA 측정 에러에 관한 값을 나타낼 수 있다.
2.5.2. E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정 값을 보고할 수 있다.
예를 들어, 서빙 gNB는 UE로부터 제공되는 E-UTRA 측정치를 사용하여 E-CID 측위 방법을 구현할 수 있다.
E-CID 측위를 위해 사용할 수 있는 측정 요소의 예를 들면 다음과 같을 수 있다.
- UE 측정: E-UTRA RSRP (Reference Signal Received Power), E-UTRA RSRQ (Reference Signal Received Quality), UE E-UTRA 수신-송신 시간차 (Rx-Tx Time difference), GERAN/WLAN RSSI (Reference Signal Strength Indication), UTRAN CPICH (Common Pilot Channel) RSCP (Received Signal Code Power), UTRAN CPICH Ec/Io
- E-UTRAN 측정: ng-eNB 수신-송신 시간차 (Rx-Tx Time difference), 타이밍 어드밴스 (Timing Advance; T ADV), Angle of Arrival (AoA)
여기서, T ADV는 아래와 같이 Type 1과 Type 2로 구분될 수 있다.
T ADV Type 1 = (ng-eNB 수신-송신 시간차)+(UE E-UTRA 수신-송시 시간차)
T ADV Type 2 = ng-eNB 수신-송신 시간차
한편, AoA는 UE의 방향을 측정하는데 사용될 수 있다. AoA는 기지국/TP로부터 반 시계 방향으로 UE의 위치에 대한 추정 각도로 정의될 수 있다. 이 때, 지리적 기준 방향은 북쪽일 수 있다. 기지국/TP는 AoA 측정을 위해 SRS (Sounding Reference Signal) 및/또는 DMRS (Demodulation Reference Signal)과 같은 상향링크 신호를 이용할 수 있다. 또한, 안테나 어레이의 배열이 클수록 AoA의 측정 정확도가 높아지며, 동일한 간격으로 안테나 어레이들이 배열된 경우, 인접한 안테나 소자들에서 수신된 신호들은 일정한 위상 변화(Phase-Rotate)를 가질 수 있다.
2.5.3. UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀을 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(Configuration)을 제공할 수 있다.
3. 본 개시의 다양한 실시예들
이하에서는, 상기와 같은 기술적 사상에 기반하여 본 개시의 다양한 실시예들에 대해 보다 상세히 설명한다. 이하에서 설명되는 본 개시의 다양한 실시예들에 대해서는 앞서 설명한 제 1 절 내지 제 2 절의 내용들이 적용될 수 있다. 예를 들어, 이하에서 설명되는 본 개시의 다양한 실시예들에서 정의되지 않은 동작, 기능, 용어 등은 제 1 절 내지 제 2 절의 내용들에 기반하여 수행되고 설명될 수 있다.
본 개시에서 언급하는 LMF는 위치 서버 (location server)로 간주할 수도 있으며, 위치 서버의 개념을 포함하는 보다 상위 개념/entity로 볼 수도 있다. 한편, 하기의 본 개시에서 언급되는 UE 송수신 시간차 (UE RX-TX time difference)는 단말 측위와 연관된 정보로서, 특정 PRS 자원 상에서 PRS를 수신한 시간 및 상기 특정 PRS 자원에 대하여 측정한 측위와 연관된 정보를 전송하는 시간과의 차이 값으로서 정의될 수 있다. UE 송수신 시간차에 대한 상세한 설명은 후술하기로 한다.
단말의 TA (Timing Advance)를 설정하기 위해서 UE 송수신 시간차 및 NB(eNB/gNB) 송수신 시간차 (NB RX-TX time difference)의 측정 및 보고가 필요하다. TA 설정을 위하여 UE 송수신 시간차의 측정을 수행할 때 수신 신호의 에너지 (received signal energy)의 크기를 주로 활용하였지만, 단말의 위치를 측정하기 위해서 사용하는 RTT (Round Trip Time) 를 사용할 때는 수신 신호의 최초 검출된 경로에 대한 타이밍을 기준으로 UE 송수신 시간차를 측정 및 보고하는 것이 필요하다. NR 시스템에서는 TRP/기지국이 복수의 빔 (multiple beam(s))들로 RS (Reference Signals)를 전송할 수 있기 때문에, 송신 빔의 방향에 따라서 UE 관점에서 ToA가 다를 수 있기 때문에 UE 송수신 시간차도가 다를 수 있다. 보다 정확한 단말의 위치 추정을 위해서 상술한 점들을 고려하는 것이 필요하다.
상기 RTT 측정을 단말 측위에 활용할 때, 단일 셀 (single cell)에서 RTT 및 송신 빔의 각도 등의 정보를 활용하여 단말의 위치를 측정할 수도 있지만, 멀티 셀 (Multi-cell) RTT 방식으로 단말의 위치를 측정/파악할 수도 있다. 멀티 셀 RTT 기법을 사용하기 위해서는 여러 TRP(s)/gNB(s)와 단말간의 RTT 정보 측정이 필요하고, 이를 위해서 단말이 UE 송수신 시간차 값을 기지국/LMF에 보고하도록 기지국/LMF으로부터 설정/지시 받을 수 있다. RTT 측정을 위하여 보고하는 UE 송수신 시간차 값을 정확하게 보고하기 위해서는, 단말이 ToA 값을 정확하게 측정하고 이를 반영하여 UE 송수신 시간차 값을 보고하는 것이 필요하다.
3.1. 복수의 송수신 빔 스위핑을 고려한 멀티 셀 RTT 보고
단말은 특정 TRP/gNB에 대하여 UE 송수신 시간차 값 및/또는 ToA 값을 측정하기 위해서, 상기 TRP/gNB에서 복수의 송신 빔들로 전송하는 RS (e.g., PRS, CSI-RS, etc.) 및/또는 RS (e.g. PRS, CSI-RS, etc.) 자원에 대하여 UE 송수신 시간차 값 및/또는 ToA 값을 기지국/LMF에 보고하도록 설정/지시 받을 수 있다. 상기 여러 개의 송신 빔으로 RS가 동시에 전송될 수도 있고, 시간에 따라서 변경되는 (TX beam sweeping) 송신 빔으로 전송될 수도 있다. 단말은 상기 UE 송수신 시간차 값을 보고할 때, 복수의 송신 빔들로 전송된 RS에 대해서 측정, 예측 또는 추정한 전파 지연 시간 (propagation delay(time)) 및/또는 ToA (여기서, 상기 ToA는 radio signal이 transmitter로부터 단말까지 도달하는데 소요된 travel time을 의미)가 가장 작은 RS 의 전파 지연 시간, ToA 및/또는 ToF(time of flight)를 기준으로 UE 송수신 시간차 값을 계산하고 기지국/LMF에 보고하도록 지시 또는 설정 받을 수 있다.
또한, 일 예로서 단말은 기지국/LMF으로부터 UE 송수신 시간차 값과 함께 RS 자원 인덱스 (RS resource index)를 보고하도록 설정/지시 받거나, RS 자원 인덱스만 보고하도록 설정/지시 받을 수 있다. 앞서 언급한 바와 같이, 상기 RS 자원 인덱스는 특정 TP/gNB에서 전송되는 여러 개의 RS들 가운데 특정 RS가 전송되는 자원일 수 있고, 각 RS 자원들 마다 TP/gNB가 전송하는 송신 빔이 다를 수 있다. 또한, 본 개시에서 RS 자원 인덱스는 RS 자원 ID와 등가적으로 사용될 수 있다.
이 때, 앞서 언급한 바와 같이 복수의 RS들 중에서 ToA 또는 전파 지연 시간 값이 가장 작은 RS가 수신되는 RS 자원을 기준으로 UE 송수신 시간차 값을 계산하고, 상기 ToA 또는 전파 지연 시간 값이 가장 작은 RS에 대응되는 RS 자원 인덱스를 기지국/LMF에 보고 할 수 있다. 또한, 상기 단말의 동작은 기지국/LMF로부터 설정/지시 받을 수 있다. 상술한 RS 자원 인덱스를 기지국에 보고함으로써 기지국/LMF는 송신 빔의 방향 정보를 추가적으로 활용하여 단말 측위 정확도를 향상시킬 수 있다. 또한, RTT 측정만으로 단말의 정확한 위치를 측정하기 어려운 경우, 단말의 위치를 측정하는데 추가적으로 빔 정보를 활용할 수 있는 장점이 있다. 이에 대하여는 후술하기로 한다.
도 13은 본 개시의 일 실시예에 따라 보고되는 UE 송수신 시간차를 설명하기 위한 것이다.
도 13을 참조하면, UE 송수신 시간차 값은 t B - t C 이고, gNB 송수신 시간차 값은 t D - t A 이고, RTT 값은 상기 UE 송수신 시간차 값 및 gNB 송수신 시간차 값의 합일 수 있다. 또한, PRS resource #1, PRS resource #2, PRS resource #3은 서로 다른 심볼들과 대응되고, TP/gNB는 매 OFDM 심볼마다 송신 빔을 변경하면서 PRS를 PRS 자원 상에서 전송할 수 있다.
예를 들어, RTT 기반의 단말 측위를 위해서 특정 TP/gNB가 심볼 별로 송신 빔을 변경하면서 RS 를 전송하는 경우를 가정할 수 있다. 이러한 경우, 도 13은 특정 gNB가 3개의 심볼동안 송신 빔을 스위핑 (sweeping) 하면서 서로 다른 RS 를 전송하는 경우에 단말이 ToA 또는 ToF를 측정하는 것을 예시적으로 도시하고 있다. 도 13에서와 같이 서로 다른 송신 빔에 대해서 ToA 또는 ToF 값이 달라질 수 있다. 이 때, TX beam #3에 대한 ToA 또는 ToF가 가장 작기 때문에, TX beam #3으로 전송한 RS를 수신한 도착 시간 (arrival time)을 기준으로 UE 송수신 시간차 값을 계산하고 기지국/LMF에 보고하도록 설정/지시 받을 수 있다. 이때, 도 13에서 TX baem #3의 도착 시간은 t B이고, UE 송수신 시간차 값은 t B - t C이다.
또한, 상술한 바와 같이 단말이 UE 송수신 시간차 값을 보고 하는 것 이외에 추가적으로 (가장 작은 ToA 또는 ToF 값을 갖는) RS 자원 index를 기지국/LMF에 보고할 수 있다.
상술한 바와 달리, CSI-RS (Channel State Information Reference Signals)를 사용하여 멀티셀 RTT 기반의 단말 위치 측정을 수행할 수도 있다. 이 때, CSI-RS 자원 및/또는 CSI-RS 자원 집합(set)과 함께 UE 송수신 시간차 값을 보고하도록 기지국/LMF가 단말에 설정/지시할 수 있다. 일 예로서, higher layer parameter repetition = “OFF”로 설정된 CSI-RS 자원 3개가 3개의 OFDM symbol에서 각각 전송되는 경우, 단말은 각 CSI-RS resource가 전송될 때 TP/gNB가 송신 빔을 변경할 것을 가정하여 수신할 것이고, 단말은 각 심볼에서 전송되는 CSI-RS 자원에 대해서 ToA를 측정할 수 있다. 상술한 예를 도 13에 비추어 고려할 때, CSI-RS resource #1, #2, #3가 연속적 혹은 불연속적인 3개의 심볼에서 전송되는 것을 생각해 볼 수 있다. 단말은 각 RS 자원이 설정되어 있는 심볼을 기준으로 송신 시점을 가정할 수 있고, 수신 ToA를 측정함으로써 전파 지연 시간 또는 ToF를 측정 또는 예측할 수 있다. 만약 가장 짧은 전파 지연 시간을 나타내는 것이 CSI-RS resource #3이라고 가정한다면, 상술한 UE 송수신 시간차 값을 계산하는 방법과 동일하게 CSI-RS resource #3에 대하여 UE 송수신 시간차 값을 계산하고 이를 기지국에 보고할 수 있다.
도 14는 본 개시의 다른 실시예에 따라 보고되는 UE 송수신 시간차를 설명하기 위한 것이다.
도 14를 참조하면, UE 송수신 시간차 값은 t B - t C 이고, gNB 송수신 시간차 값은 t D - t A 이고, RTT 값은 상기 UE 송수신 시간차 값 및 gNB 송수신 시간차 값의 합일 수 있다.
상술한 바와 달리, 특정 TP/gNB가 동시에 복수의 송신 빔들로 RS (e.g., PRS, CSI-RS)를 전송하는 경우, 단말이 복수의 송신 빔들에서 전송되는 RS 각각에 대하여 ToA를 측정하고 UE 송수신 시간차 값을 기지국/LMF에 보고하도록 설정/지시받을 수 있다. 이 때, 단말은 각 송신 빔으로 전송된 RS들 중에서, ToA 또는 ToF가 가장 작은 것을 기준으로 UE 송수신 시간차 값을 계산하고 기지국/LMF에 보고할 수 있다. 상술한 상기 단말의 동작은 기지국/LMF로부터 설정/지시 받을 수 있다. 상술한 예를 도 14에 비추어 고려할 때, TP/gNB는 특정 시점에 3개의 송신 빔으로 3개의 RS를 전송하고, 단말은 각각의 RS가 전송되는 RS 자원 에 대해서 ToA 또는 ToF를 측정한다. 단말은 ToA가 가장 작은 RS 자원에 대한 ToA를 기준으로 UE 송수신 시간차 값을 측정 및 보고한다. 또한, 추가적으로 상기 측정 및 보고되는 UE 송수신 시간차 값에 대응되는 RS 자원 인덱스를 함께 보고하거나, RS 자원 인덱스만 보고할 수도 있다.
한편, 상술한 멀티셀 RTT 보고와 관련된 실시예들에서, TP/gNB에서 RS를 전송하는 시점에 대한 정보를 단말에 추가적으로 시그널링 할 수 있다. 예를 들어, TP/gNB에서 PRS를 전송하는 경우, 특정 심볼 별로 송신 빔을 변경하면서 PRS 를 전송하더라도 단말과 gNB/TP간의 timing alignment가 맞지 않을 수가 있다. 이에 따라, 단말이 고려하는 기지국의 PRS 전송 시점 (e.g., symbol boundary)이 실제로 기지국이 PRS를 전송하는 시점과 달라서 단말이 송신 빔들 별 PRS의 ToA 및/또는 UE 송수신 시간차를 측정하는데 있어서 문제가 발생할 수 있다. 상술한 문제점을 보완하기 위하여, 상술한 바와 같이 TP/gNB에서 RS를 전송하는 시점에 대한 정보의 추가적인 시그널링이 필요할 수 있다.
일 예로서, RS로서 복수의 PRS 자원들을 통하여 PRS들을 전송하는 경우, 복수의 PRS 자원들 및/또는 복수의 PRS들의 전송 시점에 대한 정보를 단말에게 추가적으로 시그널링하고, 상기 전송 시점에 대한 정보에 기초하여 복수의 PRS들 자원 및/또는 복수의 PRS들을 전송할 수 있다. 또한, 단말은 상기 전송 시점에 대한 정보에 기초하여 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보 (예를 들어, UE 송수신 시간차 등)를 측정할 수 있다.
한편, 상술한 실시예들에서 기지국이 하나 이상의 송신 패널 (TX panel)을 갖고 있는 경우를 고려할 수 있다. 이러한 경우, 각 송신 패널에 상응하는 하나의 PRS 자원 집합 (PRS resource set)을 고려할 수 있고, 복수의 송신 패널들에 상응하는 복수의 RS 자원 집합들 (multiple RS(e.g., CSI-RS, PRS, SSB) resource set)을 고려할 수 있다. 여기서, PRS 자원 집합은 적어도 하나 이상의 PRS 자원을 포함하는 집합일 수 있으며, 각 PRS 자원 집합 별로 PRS 자원 집합 ID를 가질 수 있다.
이러한 경우, 각 RS 자원 집합에 속한 RS 자원들 중에서, 가장 작은 전파 지연 시간 및/또는 ToA 값을 갖는 RS 자원 인덱스 및 UE 송수신 시간차 값에 대하여 단말이 기지국/LMF에 보고하도록 설정/지시받을 수 있다. 즉, 각 RS 자원 집합들 별로 하나의 RS 자원 인덱스 및/또는 UE 송수신 시간차 값을 기지국/LMF에 보고 하도록 설정/지시 받을 수 있다.
추가적으로, 기지국과 단말이 하나 이상의 송수신 패널을 갖고 있는 경우, RS (e.g., PRS) 송수신에 대하여 기지국과 단말의 가능한 모든 송수신 패널 조합 가운데 (예를 들어, 기지국의 TX패널 #1, TX패널 #2를 갖고 있고 단말이 RX패널#1, RX패널#2를 갖고 있을 때, 송수신 패널들 간에 가능한 조합은 4개), 가장 작은 전파 지연 시간 또는 ToA 값을 갖는 RS 자원 인덱스 및/또는 UE 송수신 시간차 값을 단말이 기지국/LMF에 보고하도록 설정/지시 받을 수 있다. 즉, 적어도 하나 이상의 송신 빔 및 적어도 하나 이상의 수신 빔과의 조합과 연관된 PRS 자원 집합 별로 특정 PRS 자원의 인덱스가 각각 전송될 수 있다.
상술한 본 개시의 실시예들은 특정 TP/cell와 단말 간에 대한 경우뿐만 아니라, 복수의 TP(s)/cell(s) (multiple TP(s)/cell(s))에 대해서도 유사하게 확장 또는 적용될 수 있다. 일 예로서, 각각의 기지국/셀에서 복수의 송신 빔들로 전송하는 RS에 대해서 가장 작은 전파 지연 시간, ToA 또는 ToF 값을 갖는 특정 RS 자원 (특정 송신 빔)을 기준으로 UE 송수신 시간차 값을 측정 및 보고한다. 상기 단말의 동작은 기지국/LMF로부터 설정/지시 받을 수 있다. 또한, 본 개시에서 단말의 동작은 기지국/LMF의 별도 설정/지시가 없더라도 기본 (default) 동작으로 정의될 수도 있다.
도 15는 본 개시의 일 실시예에 따른 단말의 동작을 설명하기 위한 것이다.
도 15를 참조하면, 단계 S2010에서, 단말은 기지국으로부터 RS에 대한 설정 정보를 수신한다. 여기서, RS에 대한 설정 정보는 예를 들면 RS 자원 인덱스 및/또는 RS 자원 집합 인덱스 정보 등을 포함할 수 있다.
단계 S2020에서, 단말은 UE 송수신 시간차 (= UE RX-TX time difference)정보를 기지국/LMF에 보고하기 위한 설정 정보를 수신한다. 여기서, UE 송수신 시간차 정보를 기지국/LMF에 보고하기 위한 설정 정보는 상술한 실시예들에서 언급한 바와 같이 단말이 UE 송수신 시간차를 계산하는 특정 RS 자원에 대한 설정일 수 있다.
단계 S2030에서, 단말은 특정 TP/기지국으로부터 수신한 RS들 중에서 가장 작은 ToA 및/또는 전파 지연 시간 값을 갖는 RS가 수신된 RS 자원에 대한 UE 송수신 시간차 값 및/또는 RS 자원 인덱스를 보고한다.
도 16은 본 개시의 일 실시예에 따른 기지국의 동작을 설명하기 위한 것이다.
도 16을 참조하면, 단계 S2110에서, 기지국은 단말에 RS에 대한 설정 정보를 전송한다. 여기서, RS에 대한 설정 정보는 예를 들면 RS 자원 인덱스 및/또는 RS 자원 집합 인덱스 정보 등을 포함할 수 있다.
단계 S2120에서, 기지국은 UE 단말이 송수신 시간차 정보를 기지국/LMF에 보고하기 위한 설정 정보를 단말에 전송한다. 여기서, UE 송수신 시간차 정보를 기지국/LMF에 보고하기 위한 설정 정보는 상술한 실시예들에서 언급한 바와 같이 단말이 UE 송수신 시간차를 계산하는 특정 RS 자원에 대한 설정일 수 있다.
단계 S2130에서, 기지국은 단말에 전송한 RS들 중에서 가장 작은 ToA 및/또는 전파 지연 시간 값을 갖는 RS가 수신된 RS 자원에 대한 UE 송수신 시간차 값 및 RS 자원 인덱스를 수신한다.
상술한 본 개시의 실시예들에 따르면, 복수의 송신 빔들을 사용하는 여러 기지국/셀과 단말 간의 RTT 정보를 활용하여 단말 측위를 효과적으로 수행할 수 있다. 이에 더하여, RS 자원 인덱스 (송신 빔 인덱스)를 함께 보고함으로써 단말 측위에 활용할 수 있다.
한편, 단말의 상향링크 RS 전송 커버리지 문제 등으로 인하여, 기지국/LMF/단말에서 단말과 3개 이상의 TPs/gNBs 간의 RTT 정보를 획득하기 어려운 경우가 있을 수 있다. 이러한 경우, RTT 측정 값 외에 다른 정보를 추가적으로 활용하여 단말의 위치를 측정할 수 있다.
일 예로서, 기지국/LMF가 특정 단말이 서빙 셀/기지국과 인접 셀/TP/기지국 1개에 대해서 UE 송수신 시간차를 측정할 수 있다고 알고 있는 경우, two-cell 기반의 멀티셀 RTT 기법 및 기지국/TP의 송신 빔 방향 정보를 사용하여 기지국/LMF이 단말의 위치를 찾을 수 있다.
two-cell 기반의 멀티셀 RTT 기법에서, 단말은 기지국/LMF로부터 두 개의 TPs/gNBs로부터 서로 다른 송신 빔들로 전송되는 RS가 수신되는 RS 자원 (e.g., PRS 자원)에 대해서 ToA를 측정하고, 각 TP/gNB에서 서로 다른 송신 빔으로 전송한 RS들 중에서 전파 지연 시간, ToA 또는 ToF 값이 가장 작은 RS가 수신되는 RS 자원의 인덱스와 이에 상응하는 UE 송수신 시간차 값을 보고하도록 설정/지시 받을 수 있다. 즉, 두 개의 TP/gNB에서 전송한 RS에 대해서 TP/gNB 별로 각각 RS 자원 인덱스 및 UE 송수신 시간차 값을 기지국/LMF에 보고함으로써, two-cell에 대한 멀티셀 RTT 수식으로 두 개의 원을 그릴 수 있고, 상기 두 원의 교점 2개를 찾을 수 있다. 이 경우, 상기 교점 2개가 단말이 위치할 수 있는 가능한 위치가 된다.
도 17은 본 개시의 일 실시예에 따른 two-cell 기반의 멀티셀 RTT 기법을 설명하기 위한 것이다.
도 17을 참조하면, A와 B로 표시된 지점이 단말이 위치할 수 있는 가능한 위치이다. 이 때, 단말이 보고한 RS 자원 인덱스 정보에 기초하여 기지국/LMF은 TP/gNB가 전송한 빔의 방향을 추정/파악할 수 있고, 최종적으로 단말의 위치를 파악할 수 있다. 즉, LMF가 상기 언급한 방식으로 단말의 위치를 파악하기 위해서는 RS (e.g., PRS)를 전송한 TP/gNB 각각의 송신 빔의 방향 정보를 LMF가 알고 있어야 한다.
한편, 다른 일 예로서 3개 이상의 셀/TP/기지국과 단말간의 UE 송수신 시간차 값을 보고 하도록 기지국/LMF이 단말에 설정/지시하였으나, 단말이 서빙 셀을 포함하여 1개의 인접 셀/기지국에 대해서만 UE 송수신 시간차 값을 획득할 수 있는 경우를 고려할 수 있다. 단말은 상술한 경우에만 각 셀/기지국에 대하여 UE 송수신 시간차와 상기 UE 송수신 시간차 측정을 위해서 사용한 RS 자원 인덱스를 함께 기지국/LMF에 보고할 수도 있다. 상기 RS 자원 인덱스는 앞서 언급한 바와 같이 각 기지국/셀에서 RS가 전송되는 RS 자원에 대하여 ToA, ToF 또는 전파 지연 시간이 가장 작은 값을 나타내는 RS 자원 인덱스이다. 상기 RS 자원 인덱스는 2개의 셀/기지국에 대하여 2개의 RS resource index를 보고할 수도 있고, 1개만 보고할 수 있다. 상기 언급한 단말의 동작은 기지국/LMF가 설정/지시할 수 있다.
3.2. 측정 값의 신뢰도/품질 기반의 측위 정보 보고
상술한 멀티셀 RTT 기반의 단말 측위를 위해서는 여러 셀/기지국과 단말간의 UE 송수신 시간차를 기지국/LMF에 보고할 필요가 있다. 기지국/LMF는 단말이 보고한 셀/기지국에 대한 UE 송수신 시간차 값을 사용하여 단말 측위를 수행할 수 있지만, 이 때 단말로부터 보고받은 UE 송수신 시간차 값에 대한 신뢰도/품질(quality) 정보를 알 수 있다면 보다 효과적으로 단말 측위를 수행할 수 있다. 즉, UE 송수신 시간차 측정의 신뢰도/품질 정보를 바탕으로 한 단말의 보고는 기지국/LMF이 보다 효과적으로 단말 측위를 수행하도록 하는데 도움이 될 수 있다.
각 셀/기지국에 대한 UE 송수신 시간차 측정 값의 신뢰도 및/또는 품질을 각 셀/기지국에서 전송된 RS 및/또는 RS 자원에 대한 ToA 품질과 유사하게 기지국/LMF로부터 단말에 정의/설정될 수 있다. 즉, 특정 RS 및/또는 RS 자원으로 측정한 ToA의 오차/오차범위 등을 고려하여 신뢰도를 정의할 수 있다. 예를 들어, OTDOA/ToA에 대한 품질은 3GPP 36.355 (Rel-15)에 정의되어 있는 OTDOA measurement quality일 수 있다. 이는 “OTDOA-MeasQuality”로 정의되어 있으며, ToA에 대한 error resolution과 함께 error value 값으로 하기의 표 10과 같이 정의된다.
Figure PCTKR2020001596-appb-img-000018
상기 언급한 OTDOA/TOA 측정 값의 품질은 동일 TP/기지국이 전송하는 여러 RS (e.g., PRS) 자원에 대해서 정의/설정될 수 있다.
상기 언급한 UE 송수신 시간차 값의 품질은 동일 TP/기지국이 전송하는 여러 RS (e.g., PRS) resource에 대해서 정의/설정될 수 있다.
하기에서는 단말 측위와 연관된 측정 값의 신뢰도/품질에 기초하여, 측정 값들 중에서 특정 측정 값 및 그에 대응하는 RS 자원 인덱스를 보고하는 실시예들을 개시한다.
3.2.1. Multi-cell RTT
기지국/LMF는 단말에 N개의 TP/기지국으로부터 전송되는 RS (e.g., PRS, CSI-RS) 가운데, UE 송수신 시간차 및/또는 ToA 품질이 가장 좋은 M개의 RS들에 대해서 획득한 UE 송수신 시간차 보고 및/또는 UE 송수신 시간차 및/또는 상기 M개의 RS들에 대응하는 RS 자원 인덱스 보고를 수행 하도록 설정/지시할 수 있다. 여기서, N 및 M은 0 보다 큰 자연수일 수 있고, N은 M과 같거나 큰 값일 수 있다. UE 송수신 시간차 측정에 대한 M-best reporting은 다음과 같이 두 가지 경우를 고려할 수 있다. 이하 본 개시에서 언급하는 M-best reporting에 대한 언급은 별도의 추가적인 언급이 없더라도 하기의 두 경우를 모두 포함하는 것을 의미한다.
3.2.1.1. 단일 TP/gNB/셀 관점에서의 M-best reporting
단일 TP/gNB/셀이 N개의 RS 자원들(e.g., PRS 자원들)에서 RS를 전송할 수 있다. N개의 RS들 가운데, 품질이 가장 좋은 M개의 UE 송수신 시간차 값 및/또는 RS 자원 인덱스를 보고하도록 기지국/LMF이 단말에게 설정/지시할 수 있다. 여기서, 단말에 의해 보고되는 품질이 가장 좋은 M개의 UE 송수신 시간차는 단말이 수신하는 복수의 PRS 자원들 중에서 측위와 연관된 정보 (예를 들어, UE 송수신 시간차)의 품질 값이 가장 높은 순서대로 M개의 PRS 자원에 대하여 측정된 값일 수 있다.
이러한 경우, 일 예로서 기지국/LMF이 보고받은 M개의 UE 송수신 시간차 값 가운데 RTT 계산을 위해서 특정 하나의 값을 선별적으로 사용할 수 있다. 또한, 다른 TP/gNB/셀에 대해서 보고하는 M개의 UE 송수신 시간차 및 RS 자원 인덱스와 함께, TP/gNB의 송신 빔 방향 정보를 활용하여 단말의 위치를 파악하는데 활용할 수 있다.
3.2.1.2. 멀티 TPs/gNBs/셀들 관점에서의 M-best reporting
총 N개의 TP/gNB/셀이 RS 자원들 (e.g., PRS 자원들)에서 전송하는 RS들 가운데, 품질이 가장 좋은 M개의 UE 송수신 시간차 값 및/또는 RS 자원 인덱스를 보고하도록 기지국/LMF이 단말에게 설정/지시할 수 있다. 즉, 가장 품질이 좋은 M개의 TP/gNB에 대한 UE 송수신 시간차 값 및/또는 RS 자원 인덱스를 단말 측위에 사용할 수 있다.
그리고/또는 기지국/LMF는 단말에 각 TP/기지국으로부터 전송되는 RS (e.g., PRS, CSI-RS)로부터 측정한 UE 송수신 시간차를 모두 보고하되, 품질이 가장 좋은 M개의 UE 송수신 시간차에 대한 정보를 함께 보고하도록 설정/지시할 수 있다. 예를 들어, 품질이 가장 좋은 M개의 UE 송수신 시간차에 해당되는 M개의 RS (e.g., PRS) 자원 인덱스를 함께 보고할 수 있다. 이때, 각 RS 자원 인덱스와 함께 RS 자원 집합 인덱스 및/또는 각 RS 자원이 전송된 TP/기지국/cell 정보가 함께 보고될 수 있다. 여기서, TP/기지국/cell 정보의 일 예로서 TRP ID가 포함될 수 있다.
예를 들어, RS가 PRS이고 M = 1인 경우를 고려하면, 단말은 측위와 연관된 정보인 UE 송수신 시간차 및 UE 송수신 시간차의 품질에 기초하여 복수의 PRS 자원들 중에서 특정 PRS 자원의 ID (= 인덱스) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID (= 인덱스)를 보고할 수 있다. 또한, 상기 특정 PRS 자원의 ID 및 상기 특정 PRS 자원 집합의 ID 중 어느 하나만 보고될 수도 있다. 또한, 상기 특정 PRS 자원의 ID 및 상기 특정 PRS 자원 집합의 ID에 추가적으로 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP ID가 보고될 수도 있다.
상술한 M-best reporting을 통하여 기지국/LMF이 멀티셀 RTT 방식으로 단말의 위치를 파악할 경우, 신뢰도가 낮은 측정 값을 배제함으로써 단말 측위 정확도를 향상시킬 수 있으며, 단말의 불필요한 reporting overhead를 줄일 수 있는 장점이 있다.
3.2.1.3. Above quality
상술한 M-best reporting과 달리, 기지국/LMF는 단말에 특정 수준의 품질을 보장하는 UE 송수신 시간차만 기지국/LMF에 보고하도록 설정/지시할 수 있다. 여기서, 특정 수준의 품질을 보장하는 UE 송수신 시간차는 측위와 연관된 정보 (예를 들어, UE 송수신 시간차)의 품질 값이 기 설정된 값 이상인 PRS 자원들에 대하여 측정된 값일 수 있다.
또한, 기지국/LMF는 단말에 특정 수준의 품질을 보장하는 UE 송수신 시간차에 대해서는 RS 자원 정보 (RS 자원 인덱스)를 기지국/LMF에 추가적으로 보고하도록 설정/지시할 수 있다. 여기서, 상기 특정 수준의 품질은 특정 임계값으로서 기본값으로 정의될 수 있으며, 상기 특정 임계값은 기지국/LMF로부터 단말에 설정/지시될 수 있다.
3.2.2. OTDOA
3.2.2.1. M-best reporting
기지국/LMF는 단말에 N개의 TP/기지국으로부터 전송되는 RS (e.g., PRS, CSI-RS) 가운데, OTDOA/ToA 측정 품질이 가장 좋은 M개의 RS에 대해서 획득한 RSTD 측정 값을 보고하도록 설정/지시할 수 있다.
또한, 기지국/LMF는 단말에 각 TP/기지국으로부터 전송되는 RS (e.g., PRS, CSI-RS)에 대한 RSTD 측정 값을 모두 보고하되, 품질이 가장 좋은 M개의 RSTD 측정 값들에 대한 RS 자원 정보도 함께 보고하도록 설정/지시할 수 있다. 예를 들어, 품질이 가장 좋은 M개의 RSTD 측정 값들에 해당되는 M개의 RS (e.g., PRS) 자원 인덱스를 함께 보고할 수 있다. 이때, 각 RS 자원 인덱스와 함께 RS 자원 집합 인덱스 및/또는 각 RS 자원이 전송된 TP/기지국/cell 정보가 함께 보고될 수 있다.
상술한 M-best reporting을 통하여 기지국/LMF이 OTDOA 방식으로 단말의 위치를 파악할 때 불필요한 RSTD 측정 값은 배제함으로써 정확도를 향상시킬 수 있으며, 불필요한 reporting overhead를 줄일 수 있다.
3.2.2.2. Above quality
상술한 M-best reporting과 달리, 기지국/LMF는 단말에 특정 수준의 품질을 보장하는 UE 송수신 시간차만 기지국/LMF에 보고하도록 설정/지시할 수 있다. 또한, 기지국/LMF는 단말에 특정 수준의 품질을 보장하는 UE 송수신 시간차에 대해서는 RS 자원 정보 (RS 자원 인덱스)를 기지국/LMF에 추가적으로 보고하도록 설정/지시할 수 있다. 여기서, 상기 특정 수준의 품질은 특정 임계값으로서 기본값으로 정의될 수 있으며, 상기 특정 임계값은 기지국/LMF로부터 단말에 설정/지시될 수 있다.
한편, 상술한 본 개시의 실시예 3.2.1 내지 3.2.2는 하향링크 RS (RS 자원)로 측정한 다양한 측정에 대하여 유사하게 확장/적용될 수 있으며, 이러한 것도 본 발명의 사상에 포함된다고 볼 수 있다. 예를 들면, 상기 언급한 UE 송수신 시간차 측정 값 및 RSTD 외에, 단말이 측정하는 각도 측정값 (e.g., AoA)에 대해서도 상기 언급한 실시예 3.2.1 내지 3.2.2가 확장/적용될 수 있다.
도 18은 본 개시의 일 실시예에 따른 M-best reporting에 기초한 단말의 동작을 설명하기 위한 것이다.
도 18을 참조하면, 단계 S2210에서, 단말은 기지국으로부터 RS에 대한 설정 정보를 수신한다. 여기서, RS에 대한 설정 정보는 예를 들면 RS 자원 인덱스 및/또는 RS 자원 집합 인덱스 정보 등을 포함할 수 있다.
단계 S2220에서, 단말은 UE 송수신 시간차 정보를 기지국/LMF에 보고하기 위한 설정 정보를 수신한다. 여기서, UE 송수신 시간차 정보를 기지국/LMF에 보고하기 위한 설정 정보는 상술한 실시예들에서 언급한 바와 같이 단말이 UE 송수신 시간차를 계산하는 특정 RS 자원에 대한 설정일 수 있다.
단계 S2230에서, 단말은 특정 TP/기지국으로부터 수신한 RS들 중에서 품질이 가장 좋은 M개의 UE 송수신 시간차 값 및/또는 RS 자원 인덱스를 보고한다.
도 19는 본 개시의 일 실시예에 따른 M-best reporting에 기초한 기지국의 동작을 설명하기 위한 것이다.
도 19를 참조하면, 단계 S2310에서, 기지국은 단말에 RS에 대한 설정 정보를 전송한다. 여기서, RS에 대한 설정 정보는 예를 들면 RS 자원 인덱스 및/또는 RS 자원 집합 인덱스 정보 등을 포함할 수 있다.
단계 S2320에서, 기지국은 UE 단말이 송수신 시간차 정보를 기지국/LMF에 보고하기 위한 설정 정보를 단말에 전송한다. 여기서, UE 송수신 시간차 정보를 기지국/LMF에 보고하기 위한 설정 정보는 상술한 실시예들에서 언급한 바와 같이 단말이 UE 송수신 시간차를 계산하는 특정 RS 자원에 대한 설정일 수 있다.
단계 S2330에서, 기지국은 단말에 전송한 RS들 중에서 품질이 가장 좋은 M개의 UE 송수신 시간차 값 및/또는 RS 자원 인덱스를 수신한다.
한편, 도 18 및 도 19의 각 단계는 동시에 수행될 수도 있고, 독립적으로 수행될 수도 있다. 아울러, 도 18 및 도 19에서 언급되는 UE 송수신 시간차 외에 OTDOA를 위한 RSTD 측정 또는 각도 기반의 단말 측위에 사용되는 AoA 측정도 고려될 수 있다.
3.3. 하이브리드 방식
본 개시의 일 실시예에 따르면, 상술한 멀티셀 RTT 방식을 활용하여 단말의 위치를 파악하는 방법과 OTDOA 방식으로 단말의 위치를 파악하는 방법을 함께 사용하여 단말 측위 정확도를 향상시킬 수 있다. 이 때, 멀티셀 RTT 방식은 단말이 전송하는 상향링크 RS (e.g., SRS, Uplink PRS)의 커버리지가 하향링크 RS (e.g., PRS)보다 작아서 많은 수의 cell/gNB/TP과의 RTT 측정 값을 측정하기 어려울 수 있다. 반면, OTDOA는 많은 수의 TP/cell/기지국에 대한 RSTD 측정 값을 활용할 수 있다. 이러한 점을 고려하여, 하기와 같은 단말의 reporting 동작을 고려할 수 있다.
우선, 단말은 N개의 cell/gNB/TP에 대한 RSTD 측정 값들과 N개의 cell/gNB/TP 가운데 M개의 cell/gNB/TP 에 대해서 M개의 UE 송수신 시간차 값을 기지국/LMF에 보고하도록 설정/지시 받을 수 있다.
즉, 단말이 기지국/LMF에 보고하는 정보는 N개의 RSTD 측정 값들과, M개의 UE 송수신 시간차 값들일 수 있다.
이 때, 상기 N개의 cell/gNB/TP 가운데 일부인 M개의 UE 송수신 시간차 값을 선택하는 기준은 상술한 바와 같이 N개의 cell/gNB/TP에 대한 ToA 품질이 될 수 있다.
한편, 상기 ToA 측정 품질은 OTDOA 측정 품질에 대해서 설정/지시될 수도 있고, UE 송수신 시간차 품질에 대해서 지시/설정될 수도 있다. 여기서, ToA 측정 품질이라는 측면에서 OTDOA 측정 품질과 UE 송수신 시간차 품질은 개념적으로는 동일할 수도 있으나, 설정/지시/보고 관점에서 다를 수도 있다.
상기 N개의 cell/gNB/TP 가운데 일부인 M개의 cell/gNB/TP에 대해서 UE 송수신 시간차를 보고하도록 설정/지시할 때, 특정 M개의 TP/기지국/gNB/cell을 기지국/LMF가 단말에 명시적으로 (explicitly) 지시할 수 있다. 이 때, 상기 특정 M개의 TP/기지국/gNB/cell은 TP ID/cell ID 및/또는 RS 자원 인덱스 및/또는 RS 자원 집합 인덱스로 지시될 수 있다.
3.4. 네트워크 초기 접속 및 통신 과정
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 개시의 다양한 실시예들에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
도 20은 본 개시의 다양한 실시예들에 따른 네트워크 초기 접속 및 이후의 통신 과정을 간단히 나타낸 도면이다. 본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서 물리 채널, 참조 신호는 빔-포밍을 이용하여 전송될 수 있다. 빔-포밍 기반의 신호 전송이 지원되는 경우, 기지국과 단말 간에 빔을 정렬하기 위해 빔-관리(beam management) 과정이 수반될 수 있다. 또한, 본 개시의 다양한 실시예들에서 제안하는 신호는 빔-포밍을 이용하여 전송/수신될 수 있다. RRC(Radio Resource Control) IDLE 모드에서 빔 정렬은 SSB(또는 SS/PBCH 블록)를 기반하여 수행될 수 있다. 반면, RRC CONNECTED 모드에서 빔 정렬은 CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 한편, 빔-포밍 기반의 신호 전송이 지원되지 않는 경우, 이하의 설명에서 빔과 관련된 동작은 생략될 수 있다.
도 20 에 도시된 바와 같이, 기지국(예, BS)는 SSB를 주기적으로 전송할 수 있다(2410). 여기서, SSB는 PSS/SSS/PBCH를 포함한다. SSB는 빔 스위핑을 이용하여 전송될 수 있다. 이후, 기지국은 RMSI(Remaining Minimum System Information)와 OSI(Other System Information)를 전송할 수 있다(2415). RMSI는 단말이 기지국에 초기 접속하는데 필요한 정보(예, PRACH 구성 정보)를 포함할 수 있다. 한편, 단말은 SSB 검출을 수행한 뒤, 베스트 SSB를 식별한다. 이후, 단말은 베스트 SSB의 인덱스(즉, 빔)에 링크된/대응되는 PRACH 자원을 이용하여 RACH 프리앰블(Message 1, Msg1)을 기지국에게 전송할 수 있다(2420). RACH 프리앰블의 빔 방향은 PRACH 자원과 연관된다. PRACH 자원 (및/또는 RACH 프리앰블)과 SSB (인덱스)간 연관성(association)은 시스템 정보(예, RMSI)를 통해 설정될 수 있다. 이후, RACH 과정의 일환으로, 기지국은 RACH 프리앰블에 대한 응답으로 RAR(Random Access Response)(Msg2)를 전송하고(2425), 단말은 RAR 내 UL 그랜트를 이용하여 Msg3(예, RRC Connection Request)을 전송하고(2430), 기지국은 충돌 해결(contention resolution) 메세지(Msg4)를 전송할 수 있다(2435). Msg4는 RRC Connection Setup을 포함할 수 있다.
RACH 과정을 통해 기지국과 단말 간에 RRC 연결이 설정되면, 그 이후의 빔 정렬은 SSB/CSI-RS (in DL) 및 SRS (in UL)에 기반하여 수행될 수 있다. 예를 들어, 단말은 SSB/CSI-RS를 수신할 수 있다(2440). SSB/CSI-RS는 단말이 빔/CSI 보고를 생성하는데 사용될 수 있다. 한편, 기지국은 DCI를 통해 빔/CSI 보고를 단말에게 요청할 수 있다(2445). 이 경우, 단말은 SSB/CSI-RS에 기반하여 빔/CSI 보고를 생성하고, 생성된 빔/CSI 보고를 PUSCH/PUCCH를 통해 기지국에게 전송할 수 있다(2450). 빔/CSI 보고는 빔 측정 결과, 선호하는 빔에 관한 정보 등을 포함할 수 있다. 기지국과 단말은 빔/CSI 보고에 기반하여 빔을 스위칭 할 수 있다(2455a, 2455b).
이후, 단말과 기지국은 앞에서 설명/제안한 절차 및/또는 방법들을 수행할 수 있다. 예를 들어, 단말과 기지국은 네트워크 접속 과정(예, 시스템 정보 획득 과정, RACH를 통한 RRC 연결 과정 등)에서 얻은 구성 정보에 기반하여, 본 개시의 다양한 실시예들에 따라 메모리에 있는 정보를 처리하여 무선 신호를 전송하거나, 수신된 무선 신호를 처리하여 메모리에 저장할 수 있다. 여기서, 무선 신호는 하향링크의 경우 PDCCH, PDSCH, RS(Reference Signal) 중 적어도 하나를 포함하고, 상향링크의 경우 PUCCH, PUSCH, SRS 중 적어도 하나를 포함할 수 있다.
3.5. DRX (Discontinuous Reception) 동작
도 21 은 본 개시의 다양한 실시예들에 따른 DRX 동작을 예시한 도면이다.
본 개시의 다양한 실시예들에 따른 단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다.
3.5.1. RRC_CONNECTED DRX
RRC_CONNECTED 상태에서 DRX는 PDCCH의 불연속 수신에 사용된다. 편의상, RRC_CONNECTED 상태에서 수행되는 DRX를 RRC_CONNECTED DRX라고 지칭한다.
도 21(a)를 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 개시의 다양한 실시예들에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 11은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 11을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 개시의 다양한 실시예들에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
Figure PCTKR2020001596-appb-img-000019
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
3.5.2. RRC_IDLE DRX
RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 편의상, RRC_IDLE (또는 RRC_INACTIVE) 상태에서 수행되는 DRX를 RRC_IDLE DRX라고 지칭한다.
따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다.
도 21(b)를 참조하면, 페이징 신호의 불연속 수신을 위해 DRX가 구성될 수 있다. 단말은 상위 계층(예, RRC) 시그널링을 통해 기지국으로부터 DRX 구성 정보(DRX configuration information)를 수신할 수 있다. DRX 구성 정보는 DRX 사이클, DRX 오프셋, DRX 타이머에 대한 구성 정보 등을 포함할 수 있다. 단말은 DRX 사이클에 따라 On Duration과 Sleep duration을 반복한다. 단말은 On duration에서 웨이크업(wakeup) 모드로 동작하고, Sleep duration에서 슬립 모드로 동작할 수 있다. 웨이크업 모드에서 단말은 페이징 메시지를 수신하기 위해 PO(Paging Occasion)를 모니터링 할 수 있다. PO는 단말이 페이징 메시지의 수신을 기대하는 시간 자원/구간(예, 서브프레임, 슬롯)을 의미한다. PO 모니터링은 PO에서 P-RNTI로 스크램블링된 PDCCH (또는, MPDCCH, NPDCCH)(이하, 페이징 PDCCH)를 모니터링 하는 것을 포함한다. 페이징 메시지는 페이징 PDCCH에 포함되거나, 페이징 PDCCH에 의해 스케줄링 되는 PDSCH에 포함될 수 있다. PF(Paging Frame) 내에 하나 혹은 복수의 PO(들)이 포함되며, PF는 UE ID에 기반하여 주기적으로 설정될 수 있다. 여기서, PF는 하나의 무선 프레임에 해당하고, UE ID는 단말의 IMSI(International Mobile Subscriber Identity)에 기반하여 결정될 수 있다. DRX가 설정된 경우, 단말은 DRX 사이클 당 하나의 PO만을 모니터링 한다. 단말은 PO에서 자신의 ID 및/또는 시스템 정보의 변경을 지시하는 페이징 메시지를 수신한 경우, 기지국과의 연결을 초기화(또는 재설정) 하기 위해 RACH 과정을 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)할 수 있다. 따라서, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 기지국과의 연결을 위해 RACH를 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)하기 위해 PO 모니터링이 시간 도메인에서 불연속적으로 수행될 수 있다.
상술한 초기 접속 과정 및/또는 DRX 동작은 상술한 제 1 절 내지 제 3 절의 내용과 결합되어 본 개시의 또 다른 다양한 실시예들을 구성할 수도 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
도 22 은 본 개시의 다양한 실시예들에 따른 단말과 기지국의 동작 방법을 간단히 나타낸 도면이다.
도 22를 참조하면, 단계 S2510에서, 기지국은 단말에게 적어도 하나 이상의 PRS 자원 집합에 포함되는 복수의 PRS들의 전송 시점에 대한 정보를 전송할 수 있으며, 단말은 기지국으로부터 전송된 상기 전송 시점에 대한 정보를 수신할 수 있다.
단계 S2520에서, 기지국은 상기 전송 시점에 대한 정보에 기초하여, 단말에게 적어도 하나 이상의 PRS 자원 집합에 포함되는 복수의 PRS들을 전송할 수 있으며, 단말은 기지국으로부터 전송된 복수의 PRS들을 수신할 수 있다.
단계 S2530에서, 단말은 수신된 복수의 PRS들에 대하여 측위와 연관된 정보를 측정할 수 있다. 측위와 연관된 정보의 예로서, 상술한 UE 송수신 시간차, 전파 지연 시간, ToA, ToF 및 RSTD 등을 포함할 수 있다.
단계 S2540에서, 단말은 단계 S2520에서 측정된 측위와 연관된 정보에 기초하여, 복수의 PRS들 중 특정 PRS 자원의 ID 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP ID를 전송할 수 있다. 또한, 기지국은 이를 수신할 수 있다.
단계 S2550에서, 기지국은 단말로부터 수신한 특정 PRS 자원의 ID 및 특정 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP ID를 위치 서버 및/또는 LMF로 전송할 수 있으며, 위치 서버 및/또는 LMF는 이를 수신할 수 있다.
한편, 단계 S2560에서, 단말은 단계 S2520에서 측정된 측위와 연관된 정보에 기초하여, 복수의 PRS들 중 특정 PRS 자원의 ID 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP ID를 전송할 수 있다. 또한, 위치 서버 및/또는 LMF는 이를 수신할 수 있다.
여기서, 상술한 단계 S2540 내지 S2550과 S2560은 선택적으로 수행될 수도 있고, 함께 수행될 수도 있다.
도 23 는 본 개시의 다양한 실시예들에 따른 단말의 동작 방법을 나타낸 흐름도이다.
도 23을 참조하면, 단계 S2610에서, 단말은 기지국으로부터 적어도 하나 이상의 PRS 자원 집합에 포함되는 복수의 PRS들의 전송 시점에 대한 정보를 수신할 수 있다.
단계 S2620에서, 단말은 상기 전송 시점에 대한 정보에 기초하여, 기지국으로부터 적어도 하나 이상의 PRS 자원 집합에 포함되는 복수의 PRS들을 수신할 수 있다.
단계 S2630에서, 단말은 수신된 복수의 PRS들에 대하여 측위와 연관된 정보를 측정할 수 있다. 측위와 연관된 정보의 예로서, 상술한 UE 송수신 시간차, 전파 지연 시간, ToA, ToF 및 RSTD 등을 포함할 수 있다.
단계 S2640에서, 단말은 단계 S2630에서 측정된 측위와 연관된 정보에 기초하여, 복수의 PRS들 중 특정 PRS 자원의 ID 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP ID를 전송할 수 있다.
도 24 은 본 개시의 다양한 실시예들에 따른 기지국 및 위치서버의 동작 방법을 나타낸 흐름도이다.
도 24a를 참조하면, 단계 S2710a에서, 기지국은 단말에게 적어도 하나 이상의 PRS 자원 집합에 포함되는 복수의 PRS들의 전송 시점에 대한 정보를 전송할 수 있다.
단계 S2720a에서, 기지국은 상기 전송 시점에 대한 정보에 기초하여, 단말에게 적어도 하나 이상의 PRS 자원 집합에 포함되는 복수의 PRS들을 전송할 수 있다.
단계 S2730a에서, 기지국은 단말로부터 측정된 측위와 연관된 정보에 기초하여, 복수의 PRS들 중 특정 PRS 자원의 ID 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP ID를 수신할 수 있다.
도 24b를 참조하면, 단계 S2710b에서, 위치서버 및/또는 LMF는 기지국 및/또는 단말로부터, 단말로부터 측정된 측위와 연관된 정보에 기초하여, 복수의 PRS들 중 특정 PRS 자원의 ID 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP ID를 수신할 수 있다.
상술한 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 다양한 실시예들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 본 개시의 다양한 실시예들이 구현되는 장치 구성 예
4.1. 본 개시의 다양한 실시예들이 적용되는 장치 구성 예
도 25는 본 개시의 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 25에 도시된 장치는 상술한 매커니즘을 수행하도록 적응된 사용자 장치(User Equipment, UE) 및/또는 기지국 (예: eNB 또는 gNB)이거나, 동일한 작업을 수행하는 임의의 장치일 수 있다.
도 25를 참조하면, 장치는 DSP(Digital Signal Processor)/마이크로프로세서(210) 및 RF(Radio Frequency) 모듈(송수신기, Transceiver)(235)을 포함할 수도 있다. DSP/마이크로프로세서(210)는 송수신기(235)에 전기적으로 연결되어 송수신기(235)를 제어한다. 장치는, 설계자의 선택에 따라서, 전력 관리 모듈(205), 베터리(255), 디스플레이(215), 키패드(220), SIM 카드(225), 메모리 디바이스(230), 안테나(240), 스피커(245) 및 입력 디바이스(250)을 더 포함할 수도 있다.
특히, 도 25는 네트워크로부터 요청 메시지를 수신하도록 구성된 수신기(235) 및 네트워크로 타이밍 송/수신 타이밍 정보를 송신하도록 구성된 송신기(235)를 포함하는 단말을 나타낼 수도 있다. 이러한 수신기와 송신기는 송수신기(235)를 구성할 수 있다. 단말은 송수신기(235)에 연결된 프로세서(210)를 더 포함할 수도 있다.
또한, 도 25는 단말로 요청 메시지를 송신하도록 구성된 송신기(235) 및 단말로부터 송수신 타이밍 정보를 수신하도록 구성된 수신기(235)를 포함하는 네트워크 장치를 나타낼 수도 있다. 송신기 및 수신기는 송수신기(235)를 구성할 수도 있다. 네트워크는 송신기 및 수신기에 연결된 프로세서(210)를 더 포함한다. 이 프로세서(210)는 송수신 타이밍 정보에 기초하여 지연(latency)을 계산할 수도 있다.
이에, 본 개시의 다양한 실시예들에 따른 단말 (또는 상기 단말에 포함된 통신 장치) 및 기지국 (또는 상기 기지국에 포함된 통신 장치)에 포함된 프로세서는 메모리를 제어하며 다음과 같이 동작할 수 있다.
본 개시의 다양한 실시예들에 있어, 단말 또는 기지국은, 하나 이상(at least one)의 송수신기(Transceiver); 하나 이상의 메모리(Memory); 및 송수신기 및 메모리와 연결된 하나 이상의 프로세서(Processor)를 포함할 수 있다. 메모리는 하나 이상의 프로세서가 하기 동작을 수행할 수 있도록 하는 명령들(instructions)을 저장할 수 있다.
이때, 상기 단말 또는 기지국에 포함된 통신 장치라 함은, 상기 하나 이상의 프로세서 및 상기 하나 이상의 메모리를 포함하도록 구성될 수 있고, 상기 통신 장치는 상기 하나 이상의 송수신기를 포함하거나 상기 하나 이상의 송수신기를 포함하지 않고 상기 하나 이상의 송수신기와 연결되도록 구성될 수 있다.
본 개시의 다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서 (또는 상기 단말에 포함된 통신 장치의 하나 이상의 프로세서)는, 적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정할 수 있다.
본 개시의 다양한 실시예들에 따르면, 기지국에 포함된 하나 이상의 프로세서 (또는 상기 기지국에 포함된 통신 장치의 하나 이상의 프로세서)는, 상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나를 전송할 수 있다.
상술한 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말에 포함된 프로세서의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.
한편, 본 개시의 다양한 실시예들은 서로 양립이 불가능하지 않는 한 서로 조합/결합되어 실시될 수 있다. 예를 들어, 본 개시의 다양한 실시예들에 따른 기지국 및/또는 단말(에 포함된 프로세서 등)은 앞서 설명한 제 1 절 내지 제 3 절의 실시예들이 양립 불가능하지 않는 한 이들의 조합/결합된 동작을 수행할 수 있다.
4.2. 본 개시의 다양한 실시예들이 적용되는 통신 시스템 예
본 명세서에서 본 개시의 다양한 실시예들은 무선 통신 시스템에서 기지국과 단말 간의 데이터 송수신 관계를 중심으로 설명되었다. 다만 본 개시의 다양한 실시예들이 이에 한정되는 것은 아니다. 예를 들어, 본 개시의 다양한 실시예들은 다음의 기술 구성들과도 관련될 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 26은 본 개시의 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 26을 참조하면, 본 개시의 다양한 실시예들에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
4.2.1 본 개시의 다양한 실시예들이 적용되는 무선 기기 예
도 27은 본 개시의 다양한 실시예들에 적용될 수 있는 무선 기기를 예시한다.
도 27을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 26의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시의 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어(instruction, 인스트럭션) 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
4.2.2. 본 개시의 다양한 실시예들이 적용되는 무선 기기 활용 예
도 28은 본 개시의 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 26 참조).
도 28을 참조하면, 무선 기기(100, 200)는 도 27의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 27의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 27의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 26, 100a), 차량(도 26, 100b-1, 100b-2), XR 기기(도 26, 100c), 휴대 기기(도 26, 100d), 가전(도 26, 100e), IoT 기기(도 26, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 26, 400), 기지국(도 26, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 28에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 28의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
4.2.3. 본 개시의 다양한 실시예들이 적용되는 휴대기기 예
도 29는 본 개시의 다양한 실시예들에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 29를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 28의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
4.2.4. 본 개시의 다양한 실시예들이 적용되는 차량 또는 자율 주행 차량 예
도 30는 본 개시의 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 30를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 28의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
4.2.5. 본 개시의 다양한 실시예들이 적용되는 AR/VR 및 차량 예
도 31은 본 개시의 다양한 실시예들에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.
도 31을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. 여기서, 블록 110~130/140a~140b는 각각 도 28의 블록 110~130/140에 대응한다.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.
요약하면, 본 개시의 다양한 실시예들은 일정 장치 및/또는 단말을 통해 구현될 수 있다.
예를 들어, 일정 장치는, 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론 (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) 모듈, 로봇, AR (Augmented Reality) 장치, VR (Virtual Reality) 장치 또는 그 이외의 장치일 수 있다.
예를 들어, 단말은 개인 휴대 단말기 (PDA: Personal Digital Assistant), 셀룰러 폰, 개인 통신 서비스 (PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA (Wideband CDMA) 폰, MBS (Mobile Broadband System) 폰, 스마트 (Smart) 폰 또는 멀티모드 멀티밴드 (MM-MB: Multi Mode-Multi Band) 단말기 등일 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
또는, 단말은 노트북 PC, 핸드헬드 PC (Hand-Held PC), 태블릿 PC (tablet PC), 울트라북 (ultrabook), 슬레이트 PC (slate PC), 디지털 방송용 단말기, PMP (portable multimedia player), 네비게이션, 웨어러블 디바이스 (wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD (head mounted display) 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR 또는 AR을 구현하기 위해 사용될 수 있다.
본 개시의 다양한 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 개시의 다양한 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 개시의 다양한 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 개시의 다양한 실시예들은 그 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 다양한 실시예들의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 다양한 실시예들의 등가적 범위 내에서의 모든 변경은 본 개시의 다양한 실시예들의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 다양한 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 본 개시의 다양한 실시예들은 상기 다양한 무선접속 시스템 뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 장치의 방법에 있어서,
    적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 수신하는 단계;
    상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정하는 단계; 및
    상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 전송하는 단계를 포함하는,
    방법.
  2. 제1항에 있어서,
    상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 높은 순서대로 M개의 PRS 자원이고,
    상기 M은 자연수인,
    방법.
  3. 제1항에 있어서,
    상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 기 설정된 값 이상인 PRS 자원인,
    방법.
  4. 제1항에 있어서,
    상기 측위와 연관된 정보는 송수신 시간차 정보를 포함하고,
    상기 송수신 시간차 정보는 상기 특정 PRS 자원 상에서 PRS를 수신한 시간 및 상기 특정 PRS 자원에 대하여 측정한 측위와 연관된 정보를 전송하는 시간과의 차이 값인,
    방법.
  5. 제4항에 있어서,
    상기 특정 PRS 자원은 상기 복수의 PRS 자원들 상에서 수신한 복수의 PRS들 중에서 ToA (Time of Arrival)가 가장 작은 PRS가 수신되는 PRS 자원인,
    방법.
  6. 제1항에 있어서,
    상기 측위와 연관된 정보는 RSTD (Reference Signal Timing Difference)를 포함하는,
    방법.
  7. 제1항에 있어서,
    상기 적어도 하나 이상의 PRS 자원 집합은 적어도 하나 이상의 송신 빔 및 적어도 하나 이상의 수신 빔과의 빔 조합과 연관되고,
    상기 특정 PRS 자원에 대한 측위와 연관된 정보 및 상기 특정 PRS 자원의 ID는 상기 적어도 하나 이상의 PRS 자원 집합 별로 전송되도록 설정되는,
    방법.
  8. 무선 통신 시스템에서 동작하는 장치에 있어서,
    메모리 (memory); 및
    상기 메모리와 연결된 하나 이상의 프로세서 (processor)를 포함하고,
    상기 하나 이상의 프로세서는:
    적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 수신하고,
    상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정하고,
    상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 전송하는,
    장치.
  9. 제8항에 있어서,
    상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 높은 순서대로 M개의 PRS 자원이고,
    상기 M은 자연수인,
    장치.
  10. 제8항에 있어서,
    상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 기 설정된 값 이상인 PRS 자원인,
    장치.
  11. 제8항에 있어서,
    상기 측위와 연관된 정보는 송수신 시간차 정보를 포함하고,
    상기 송수신 시간차 정보는 상기 특정 PRS 자원 상에서 PRS를 수신한 시간 및 상기 특정 PRS 자원에 대하여 측정한 측위와 연관된 정보를 전송하는 시간과의 차이 값인,
    장치.
  12. 제8항에 있어서,
    상기 장치는 이동 단말기, 네트워크 및 상기 장치가 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신하는,
    장치.
  13. 무선 통신 시스템에서 동작하는 장치에 있어서,
    하나 이상의 프로세서 (processor); 및
    상기 하나 이상의 프로세서가 방법을 수행하도록 하는 하나 이상의 명령어 (instruction) 를 저장하는 하나 이상의 메모리 (memory) 를 포함하고, 상기 방법은:
    적어도 하나 이상의 PRS (Positioning Reference Signal) 자원 집합에 포함되는 복수의 PRS 자원들의 전송 시점에 대한 정보를 수신하는 단계;
    상기 전송 시점에 대한 정보에 기초하여, 상기 복수의 PRS 자원들 각각에 대하여 측위와 연관된 정보를 측정하는 단계; 및
    상기 측위와 연관된 정보에 기초하여, 상기 복수의 PRS 자원들 중 특정 PRS 자원의 ID (Identifier) 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합의 ID 중 적어도 어느 하나 및 상기 특정 PRS 자원이 포함된 PRS 자원 집합과 연관된 TRP (Transmission and Reception Point) ID를 전송하는 단계를 포함하는,
    장치.
  14. 제13항에 있어서,
    상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 높은 순서대로 M개의 PRS 자원이고,
    상기 M은 자연수인,
    장치.
  15. 제13항에 있어서,
    상기 특정 PRS 자원은 상기 복수의 PRS 자원들 중에서 상기 측위와 연관된 정보의 품질 값이 기 설정된 값 이상인 PRS 자원인,
    장치.
PCT/KR2020/001596 2019-02-01 2020-02-03 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 WO2020159339A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217025929A KR20210112385A (ko) 2019-02-01 2020-02-03 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
US17/425,797 US11979845B2 (en) 2019-02-01 2020-02-03 Method for transmitting and receiving signal in wireless communication system and apparatus supporting same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0013555 2019-02-01
KR20190013555 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020159339A1 true WO2020159339A1 (ko) 2020-08-06

Family

ID=71841206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001596 WO2020159339A1 (ko) 2019-02-01 2020-02-03 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Country Status (3)

Country Link
US (1) US11979845B2 (ko)
KR (1) KR20210112385A (ko)
WO (1) WO2020159339A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062891A1 (zh) * 2020-09-23 2022-03-31 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端
WO2022204628A1 (en) * 2021-03-26 2022-09-29 Qualcomm Incorporated Methods and apparatuses for measurement period formulation for positioning
WO2023014705A1 (en) * 2021-08-03 2023-02-09 Idac Holdings, Inc. Performing propagation delay compensation
US20230052126A1 (en) * 2021-08-13 2023-02-16 Qualcomm Incorporated Techniques for sidelink sensing and positioning
US11832212B2 (en) 2020-07-27 2023-11-28 Samsung Electronics Co., Ltd. Positioning in RRC idle and inactive states
EP4214972A4 (en) * 2020-09-18 2024-06-05 Qualcomm Incorporated METHODS AND APPARATUS FOR ESTABLISHING RX-TX TIME DIFFERENCE REPORTING

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557235B (zh) * 2019-03-27 2023-04-07 中兴通讯股份有限公司 定位参考信号的发送、接收方法、装置、收发节点
CN112333624A (zh) * 2019-07-16 2021-02-05 华为技术有限公司 用于定位的方法和通信装置
CN111093154B (zh) * 2019-09-20 2024-02-02 中兴通讯股份有限公司 定位方法、装置、终端设备及存储介质
CN113301495B (zh) * 2020-02-05 2022-08-16 维沃移动通信有限公司 一种定位方法、终端及网络设备
US11888610B2 (en) * 2020-02-26 2024-01-30 Qualcomm Incorporated Method and apparatus for positioning with LTE-NR dynamic spectrum sharing (DSS)
US20210389410A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Passive positioning with analog beamforming
US20220046748A1 (en) * 2020-08-05 2022-02-10 Apple Inc. Positioning SRS Transmissions During a Discontinuous Reception Cycle
US11988763B2 (en) * 2020-09-16 2024-05-21 Qualcomm Incorporated Positioning reference signal (PRS) time and frequency pattern adaptation for user equipment (UE) power saving
US11843964B2 (en) * 2020-10-15 2023-12-12 Qualcomm Incorporated Prioritization of positioning-related reports in uplink
TW202247692A (zh) * 2021-04-05 2022-12-01 美商高通公司 用於在網路中儲存ue定位能力的系統和方法
WO2024033887A1 (en) * 2022-08-12 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Measurement assisted sidelink ranging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159713A1 (ko) * 2015-04-01 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 rstd 측정 관련 동작 수행 방법
WO2017026672A1 (ko) * 2015-08-09 2017-02-16 엘지전자 주식회사 무선 통신 시스템에서 위치 결정을 위한 참조 신호 수신 또는 전송 방법 및 이를 위한 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512056B2 (en) * 2017-05-05 2019-12-17 Futurewei Technologies, Inc. System and method for network positioning of devices in a beamformed communications system
US11570789B2 (en) * 2019-11-06 2023-01-31 Qualcomm Incorporated Multi-user-equipment positioning signaling
US11496988B2 (en) * 2019-12-16 2022-11-08 Qualcomm Incorporated Signaling details for PRS stitching for positioning in a wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159713A1 (ko) * 2015-04-01 2016-10-06 엘지전자 주식회사 무선 통신 시스템에서 rstd 측정 관련 동작 수행 방법
WO2017026672A1 (ko) * 2015-08-09 2017-02-16 엘지전자 주식회사 무선 통신 시스템에서 위치 결정을 위한 참조 신호 수신 또는 전송 방법 및 이를 위한 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Analysis of techniques for NR DL positioning", 3GPP DRAFT; R1-1900512, 25 January 2019 (2019-01-25), Taipei, Taiwan, pages 1 - 25, XP051576118 *
LG ELECTRONICS: "Discussions on DL only based positioning . Rl-1900629", 3GPP DRAFT; R1-1900629, 25 January 2019 (2019-01-25), Taipei, Taiwan, pages 1 - 9, XP051576170 *
SONY: "Considerations on downlink based positioning in NR. R1-1900384", 3GPP DRAFT; R1-1900384, 11 January 2019 (2019-01-11), Taipei, Taiwan, pages 1 - 9, XP051575993 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832212B2 (en) 2020-07-27 2023-11-28 Samsung Electronics Co., Ltd. Positioning in RRC idle and inactive states
EP4214972A4 (en) * 2020-09-18 2024-06-05 Qualcomm Incorporated METHODS AND APPARATUS FOR ESTABLISHING RX-TX TIME DIFFERENCE REPORTING
WO2022062891A1 (zh) * 2020-09-23 2022-03-31 展讯通信(上海)有限公司 直连通信下prs资源指示方法及装置、存储介质、终端
WO2022204628A1 (en) * 2021-03-26 2022-09-29 Qualcomm Incorporated Methods and apparatuses for measurement period formulation for positioning
WO2023014705A1 (en) * 2021-08-03 2023-02-09 Idac Holdings, Inc. Performing propagation delay compensation
US20230052126A1 (en) * 2021-08-13 2023-02-16 Qualcomm Incorporated Techniques for sidelink sensing and positioning
US11832253B2 (en) * 2021-08-13 2023-11-28 Qualcomm Incorporated Techniques for sidelink sensing and positioning
US20240163875A1 (en) * 2021-08-13 2024-05-16 Qualcomm Incorporated Techniques for sidelink sensing and positioning

Also Published As

Publication number Publication date
KR20210112385A (ko) 2021-09-14
US20220174641A1 (en) 2022-06-02
US11979845B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2020159339A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020167057A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020167055A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020145727A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020222619A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222621A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020204646A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021029759A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222620A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021015510A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222616A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021194274A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020167023A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020222603A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021230652A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021206499A1 (ko) 무선 통신 시스템에서 동작하는 장치 및 동작 방법
WO2021029683A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022080992A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021215791A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021162514A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022030953A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022030948A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021172963A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222611A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022245188A1 (ko) Nr v2x에서 위치를 측정하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025929

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20747557

Country of ref document: EP

Kind code of ref document: A1