WO2020192436A1 - 终端设备及其显示屏和显示屏制备方法 - Google Patents

终端设备及其显示屏和显示屏制备方法 Download PDF

Info

Publication number
WO2020192436A1
WO2020192436A1 PCT/CN2020/078952 CN2020078952W WO2020192436A1 WO 2020192436 A1 WO2020192436 A1 WO 2020192436A1 CN 2020078952 W CN2020078952 W CN 2020078952W WO 2020192436 A1 WO2020192436 A1 WO 2020192436A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display screen
pixel
micro lens
light
Prior art date
Application number
PCT/CN2020/078952
Other languages
English (en)
French (fr)
Inventor
刘思远
景燎
吴旭东
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920412018.0U external-priority patent/CN209928406U/zh
Priority claimed from CN201910243137.2A external-priority patent/CN111756884A/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to US17/599,268 priority Critical patent/US20220190294A1/en
Priority to EP20776741.9A priority patent/EP3951567A4/en
Publication of WO2020192436A1 publication Critical patent/WO2020192436A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • This application relates to terminal equipment, especially terminal equipment with a full screen, and a display screen and a display screen preparation method.
  • full-screen terminal devices for example, full-screen mobile phones
  • existing full-screen terminal devices refer to ultra-large-screen terminal devices whose screen exceeds a preset ratio (for example, 90%) of the front of the device, and does not truly achieve a 100% screen ratio.
  • the camera module installed on the same side of the terminal device together with the screen is the biggest obstacle.
  • its camera function is often an indispensable functional requirement. Therefore, the structural configuration of the screen and camera module needs to be optimized to increase the screen ratio of the terminal device.
  • the main purpose of the present application is to provide a terminal device and its display screen and display screen preparation method, wherein the display screen has a relatively high light transmittance, so that on the one hand, the camera module located below the display screen The group can collect enough light for imaging. On the other hand, the screen ratio of the terminal device is increased.
  • Another object of the present application is to provide a terminal device and a display screen and a method for preparing the display screen, wherein the camera module is configured as an under-screen camera module, which is mounted on the terminal device with the display screen. Different height positions, so that the camera module does not become an obstacle to increasing the screen ratio.
  • Another object of the present application is to provide a terminal device and a display screen and a method for preparing the display screen, wherein the display screen includes a microlens layer disposed above the pixel layer to converge and enter the The light from the display screen to the gap between the pixels in the pixel layer, in this way, the light transmittance of the display screen is improved.
  • Another object of the present application is to provide a terminal device and its display screen and display screen preparation method, wherein the display screen used in this application does not need to make significant adjustments to the existing structure of the existing display screen, only An additional layer of the microlens layer corresponding to each pixel gap in the pixel layer needs to be provided above the pixel layer of the display screen.
  • Another object of the present application is to provide a terminal device and its display screen and display screen manufacturing method, wherein the refractive index of the material forming the microlens layer is greater than the refractive index of the material used to form the encapsulation layer, so as to Enhance the light transmittance of the display screen.
  • the present application provides a display screen, which from top to bottom includes: a cover layer, a touch layer, a polarization layer, an encapsulation layer, a pixel layer, and a circuit driving layer; the circuit driving layer Formed on the bottom side of the pixel layer and electrically connected to the pixel layer for driving the pixel layer to work; the encapsulation layer is formed on the top side of the pixel layer and used for encapsulating the pixel layer;
  • the pixel layer includes pixels distributed in an array, and each of the pixels has a gap between them, so that light that sequentially passes through the cover layer, the touch layer, the polarizing layer and the encapsulation layer can pass through the gaps.
  • the display screen further includes a microlens layer provided above the pixel layer, wherein the microlens layer corresponds to each of the gaps between the pixels, for use in the Before the light passes through the pixel layer through the gap, the light is condensed to each of the gaps to increase the light transmittance of the display screen.
  • the microlens layer includes microlens units distributed in an array, wherein each of the microlens units corresponds to each of the gaps.
  • the micro lens layer is integrally formed on each of the gaps between the pixels in the pixel layer, and the encapsulation layer is integrally formed on the micro lens layer and the pixel layer, To encapsulate the pixel layer and the micro lens layer.
  • the microlens layer is integrally formed on the top surface of the encapsulation layer.
  • the micro lens layer is recessed and integrally formed on the top surface of the packaging layer.
  • the height dimension of the micro lens unit is less than or equal to the height dimension of the packaging layer.
  • the lateral size of the microlens unit is larger than the size of the gap.
  • the longitudinal size of the micro lens unit is greater than or equal to the size of the gap between adjacent pixels.
  • the material forming the encapsulation layer is a light-permeable rigid material.
  • the material forming the encapsulation layer is a transparent and flexible material.
  • the display screen further includes a backplane layer having an opening, wherein the opening corresponds to the gap between adjacent pixels in the pixel layer.
  • the present application also provides a method for preparing a display screen, which includes:
  • a micro lens layer is formed on the pixel layer of the display screen, wherein the micro lens layer corresponds to the gap between the pixels in the pixel layer, and a circuit driving layer is provided on the bottom side of the pixel layer , The circuit driving layer is electrically connected to the pixel layer for driving the pixel layer to work;
  • An encapsulation layer is formed on the microlens layer and the pixel layer to encapsulate the microlens layer and the pixel layer through the encapsulation layer, wherein the encapsulation layer is further provided with a polarization layer, Touch layer and cover layer.
  • the micro lens layer is integrally formed in the gap between the pixels in the pixel layer.
  • the encapsulation layer is integrally formed on the microlens layer and the pixel layer through a deposition process.
  • the refractive index of the material forming the microlens layer is greater than the refractive index of the material forming the encapsulation layer.
  • the present application provides a method for preparing a display screen, which includes:
  • a micro lens layer is integrally formed on the packaging layer
  • the encapsulation layer is arranged above the pixel layer, wherein the micro lens layer corresponds to the gap between the pixels in the pixel layer, wherein a circuit driving layer is provided on the bottom side of the pixel layer, The circuit driving layer is electrically connected to the pixel layer for driving the pixel layer to work; and
  • a polarization layer, a touch control layer and a cover layer are sequentially arranged on the encapsulation layer.
  • the microlens layer is integrally formed on the top surface of the encapsulation layer.
  • the micro lens layer is recessed and integrally formed on the top surface of the packaging layer.
  • a terminal device which includes a terminal body, a camera module, and the above-mentioned display screen, wherein the display screen is mounted on the terminal body, and the camera module Set on the bottom side of the display screen, so that the camera module can receive the cover layer, the touch layer, the polarization layer, and the encapsulation layer that sequentially pass through the display screen And the microlens layer, the gap of the pixel layer and the imaging light of the circuit driving layer.
  • the camera module is installed at the opening of the backplane layer at the bottom of the display screen.
  • Figure 1 illustrates a schematic structural diagram of an existing display screen for terminal equipment.
  • Fig. 2 illustrates a schematic structural diagram of a display screen according to an embodiment of the present application.
  • Fig. 3A illustrates a modified implementation of the display screen according to an embodiment of the present application.
  • FIG. 3B illustrates a schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • Fig. 3C illustrates a schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • Fig. 3D illustrates a schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • FIG. 3E illustrates a schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • FIG. 3F illustrates a schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • Fig. 3G illustrates a schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • Fig. 4A illustrates a schematic diagram of a microlens array in the display screen according to an embodiment of the present application.
  • Fig. 4B illustrates another schematic diagram of the microlens array in the display screen according to an embodiment of the present application.
  • Fig. 5 illustrates another modified implementation of the display screen according to an embodiment of the present application.
  • Fig. 6A illustrates another modified implementation of the display screen according to an embodiment of the present application.
  • Fig. 6B illustrates another modified implementation of the display screen according to an embodiment of the present application.
  • Fig. 7 illustrates another modified implementation of the display screen according to an embodiment of the present application.
  • Fig. 8A illustrates another modified implementation of the display screen according to an embodiment of the present application.
  • Fig. 8B illustrates another modified implementation of the display screen according to an embodiment of the present application.
  • Fig. 9 illustrates another modified implementation of the display screen according to an embodiment of the present application.
  • FIG. 10 illustrates a schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • FIG. 11 illustrates a schematic diagram of another manufacturing process of the display screen according to an embodiment of the present application.
  • FIG. 12 illustrates a schematic diagram of another preparation process of the display screen according to an embodiment of the present application.
  • FIG. 13 illustrates a schematic diagram of another preparation process of the display screen according to an embodiment of the present application.
  • FIG. 14 illustrates another schematic diagram of the manufacturing process of the display screen according to an embodiment of the present application.
  • FIG. 15 illustrates a schematic diagram of another preparation process of the display screen according to an embodiment of the present application.
  • FIG. 16 illustrates a schematic diagram of another preparation process of the display screen according to an embodiment of the present application.
  • Fig. 17 illustrates a specific example of a terminal device according to an embodiment of the present application.
  • FIG. 18 illustrates a schematic diagram of an imaging path of a camera module in the terminal device according to an embodiment of the present application.
  • Fig. 19 illustrates another schematic diagram of the terminal device according to an embodiment of the present application.
  • FIG. 20 illustrates another schematic diagram of the terminal device according to an embodiment of the present application.
  • FIG. 21 illustrates a specific example of a camera module according to an embodiment of the present application.
  • Fig. 22 illustrates another specific example of a camera module according to an embodiment of the present application.
  • FIG. 23 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 24 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 25 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 26 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 27 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 28 illustrates another specific example of a camera module according to an embodiment of the present application.
  • FIG. 29 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 30 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 31 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 32 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 33 illustrates another specific example of the camera module according to the embodiment of the present application.
  • FIG. 34 illustrates a schematic diagram of a conventional camera module based on a molding process.
  • Figure 35 illustrates a specific schematic diagram of the photosensitive chip of the camera module
  • FIG. 36 illustrates another specific schematic diagram of the photosensitive chip of the camera module.
  • ordinal numbers such as “first”, “second”, etc. will be used to describe various components, those components are not limited here. The term is only used to distinguish one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component without departing from the teaching of the inventive concept.
  • the term "and/or" as used herein includes any and all combinations of one or more of the associated listed items.
  • an existing technical solution is to use a retractable camera module to hide and use the camera module. Specifically, when shooting is required, the camera module is extended out of the housing of the terminal device for shooting; after the shooting is completed, the camera module is retracted into the housing of the terminal device.
  • FIG. 1 illustrates a schematic structural diagram of an existing display screen for terminal equipment.
  • the display is an OLED display, which from top to bottom includes a cover layer 21P, a touch layer 22P, a polarization layer 23P, an encapsulation layer 24P, a pixel layer 25P, a circuit drive layer 26P, and a backplane layer 27P, wherein the cover layer 21P is bonded to the top side of the touch layer 22P by an adhesive; the polarizing layer 23P is provided on the bottom side of the touch layer 22P; the polarizing layer 23P is provided on the bottom side of the
  • the encapsulation layer 24P is used to encapsulate the pixel layer 25P, so that the pixel layer 25P is in a sealed environment, so that the organic materials in the pixel layer 25P are not polluted or volatilized by the outside; on the bottom side of the pixel layer 25P is provided
  • the circuit driving layer 26P is used to drive the pixel layer 25P to work, so that
  • the imaging light from the outside needs to pass through the cover layer 21P, touch layer 22P, polarizing layer 23P, encapsulation layer 24P, and pixel layer 25P of the display screen in sequence. Only the circuit drive layer 26P and the backplane layer 27P can be sensed by the camera module located under the display screen.
  • the pixel layer 25P has a high high light resistance rate, and most of the imaging light passes through the gap between the pixels. Pixel layer 25P.
  • the size ratio between the pixel gaps of the pixel layer can be increased, for example, the unit pixel size is reduced or the gap size between pixels is increased.
  • reducing the size of a unit pixel will result in a decrease in the luminous intensity of the pixel and result in a reduction in the life of the pixel, and an increase in the pixel gap will directly result in a reduction in screen resolution.
  • the technical solution of increasing the ratio of the pixel gap size will damage the performance of the display screen itself in specific implementation, which is not conducive to the development of display technology.
  • the basic idea of this application is to provide a layer of microlens layer on the pixel layer of the display screen so as to converge through the microlens layer to sequentially pass through the cover layer, touch layer, polarizing layer and the The imaging light of the encapsulation layer reaches the gap between the pixels in the pixel layer.
  • the light transmittance of the display screen is enhanced, so that the camera module located below the display screen can capture enough The amount of imaging light used for imaging.
  • this application proposes a terminal device, which includes a terminal body, a camera module, and a display screen.
  • the display screen is installed on the terminal body, and the camera module is arranged on the bottom side of the display screen.
  • the display screen includes from top to bottom: a cover layer, a touch layer, a polarization layer, an encapsulation layer, a pixel layer, and a circuit driving layer, wherein the circuit driving layer is formed on the bottom side of the pixel layer , And electrically connected to the pixel layer for driving the pixel layer to work;
  • the encapsulation layer is formed on the top side of the pixel layer for encapsulating the pixel layer;
  • the pixel layer includes arrays Pixels, each of the pixels has a gap between them, so that the light that sequentially passes through the cover layer, the touch layer, the polarizing layer and the encapsulation layer can pass through the pixel layer through the gap;
  • the display screen further includes a microlens layer formed in the encapsulation layer
  • the light transmittance of the display screen is increased, so that when the camera module is placed below the display screen, the camera module can still capture Get enough imaging light for imaging. That is, by optimizing the display screen, the technical solution of the under-screen camera module can be realized, so as to truly realize the comprehensive screen design of the terminal device.
  • Fig. 2 illustrates a schematic structural diagram of a display screen according to an embodiment of the present application.
  • the display screen 20 according to the embodiment of the present application is used to implement a full-screen configuration of a terminal device (for example, a smart phone), which includes: a cover layer 21, a touch layer 22, The polarizing layer 23, the encapsulation layer 24, the pixel layer 25, and the circuit driving layer 26, wherein the circuit driving layer 26 is formed on the bottom side of the pixel layer 25 and is electrically connected to the pixel layer 25 for driving the The pixel layer 25 works; the encapsulation layer 24 is formed on the top side of the pixel layer 25 for encapsulating the pixel layer 25; and the pixel layer 25 includes pixels 251 distributed in an array, each of the pixels There is a gap 250 between the 251, so that the light passing through the cover layer 21, the touch layer 22, the polarizing layer 23 and the encapsulation layer 24 can pass through the pixel layer 25 through the gap 250.
  • the display screen 20 further includes a micro lens layer 28 disposed above the pixel layer 25, wherein the micro lens layer 28 corresponds to each of the pixels 251 in the pixel layer 25
  • the gap 250 is used to converge the light to each of the gaps 250 before the light passes through the pixel layer 25 through the gap 250, so that a relatively larger amount of light can pass through the gap 250
  • the display screen 20 is implemented as an OLED (Organic Light-emitting Diode) display screen 20.
  • OLED Organic Light-emitting Diode
  • the OLED display screen 20 has the advantages of self-luminescence, wide viewing angle, high contrast, low power consumption, high response speed, and full color.
  • the existing OLED display screen 20 generally has low light transmittance.
  • the existing OLED display 20 includes a cover layer 21P, a touch layer 22P, a polarization layer 23P, an encapsulation layer 24P, a pixel layer 25P, a circuit driving layer 26P, and a back plate layer 27P from top to bottom.
  • the cover layer 21P is usually implemented as a glass layer, which is located on the top layer of the display screen, and is used to protect the layer structure located under the cover layer 21P.
  • the glass layer is made of glass material, which is a material with high light transmittance. In other words, the cover layer 21P will not adversely affect the light transmittance of the display screen.
  • the layer structure under the cover layer 21P is the touch layer 22P, and the two are usually connected by an adhesive.
  • the touch layer 22P is an indispensable configuration for realizing the touch function of the display screen. In other words, the influence of the touch layer 22P on the light transmittance of the display screen is almost inevitable.
  • the layer structure under the touch layer 22P is the polarizing layer 23P, which is usually implemented as a circular polarizer or the like. It should be understood that the polarizing layer 23P, such as a circular polarizer, is itself an optical element and has a better light transmittance. Therefore, the polarizing layer 23P has little effect on the light transmittance of the display screen.
  • the layer structure under the polarizing layer 23P is the encapsulation layer 24P.
  • the function of the encapsulation layer 24P is to encapsulate the pixel layer 25P below it so that the pixel layer 25P is in a sealed environment so that the organic materials in the pixel layer 25P are not External pollution or volatilization.
  • the encapsulation layer 24P is made of rigid light-permeable material, such as glass or plastic stool; when the display screen is a flexible screen
  • the encapsulation layer 24P is made of a flexible light-permeable material, such as PI film ((Polyimide Film, polyimide film). It should be observed that whether it is a rigid screen or a flexible screen, the encapsulation layer 24P is made of transparent It is made of light materials and has little effect on the overall light transmittance of the display screen.
  • the layer structure covered by the encapsulation layer 24P and located under the encapsulation layer 24P is the pixel layer 25P.
  • the pixel unit in the pixel layer 25 is implemented as an OLED (Organic Light-emitting Diode).
  • OLED Organic Light-emitting Diode
  • Those skilled in the art should know that organic light-emitting diodes have high light resistance, that is, light that passes through the cover layer 21P, touch layer 22P, polarizing layer 23P, and encapsulation layer 24P and reaches the pixel layer 25 is difficult to transmit.
  • the organic light emitting diode reaches the other side of the pixel layer 25. Correspondingly, this part of the light can only pass through the gap between the pixels and pass through the pixel layer 25P.
  • the pixel layer 25P has a light-transmitting area and a non-light-transmitting area, wherein the light-transmitting area is defined by the gap between pixels, and the non-light-transmitting area is defined by the pixels.
  • the ratio of the pixel gap to the total area of the pixel layer 25P is small. Therefore, a large amount of light is blocked in the pixel layer 25P, resulting in a lower light transmittance of the entire display screen.
  • the layer structure under the pixel layer 25P is the circuit driving layer 26P, which functions to be electrically connected to the pixel layer 25P and drive the pixel layer 25P to work.
  • the circuit driving layer 26P includes a driving circuit and a packaging layer for packaging the driving circuit.
  • the packaging layer is made of a material with better light transmittance, which has little effect on the overall light transmittance of the display screen, but if the driving circuit is set Improper will affect the spread of light. Specifically, if the electronic components of the drive circuit correspond to the pixel gap, this part of the drive circuit will have an adverse effect on the light passing through the display; if the drive circuit’s components are located below the pixel, this part of the drive will not Affect the spread of light.
  • the layer structure under the circuit driving layer 26P is the backplane layer, which mainly functions to strengthen the overall structural strength of the display screen.
  • the display screen is an OLED display screen
  • the light transmittance of the backplane layer is not low.
  • the backplane layer is used to provide a light source and the light transmittance is low.
  • the reasons for the low light transmittance of the existing OLED display screen are as follows: First, the light transmittance area of the pixel layer 25P is relatively low, that is, the pixel gap is relatively low, and only a small amount of light can pass through the pixel gap. Pass through the pixel layer 25P; secondly, part of the drive circuit in the circuit drive layer 26P (when the components of the drive circuit correspond to the pixel gap) will affect the light transmission performance of the display screen.
  • the display screen 20 is provided with the microlens layer 28, which is provided above the pixel layer 25 and corresponds to each of the pixels 251 in the pixel layer 25 The gap 250.
  • the microlens layer 28 has a function of condensing light to converge the light to each of the gaps 250 between the pixels 251, so as to effectively make a larger number of pixels without changing the size of the pixel gap 250.
  • the light ray can pass through the pixel layer 25 through the gap 250 between the pixels 251.
  • the backplane layer 27P can be directly removed.
  • an opening 270 is provided at a position where the backplane layer 27 needs to transmit light.
  • the overall light transmittance of the display screen 20 can be effectively improved, so that external light can pass through the cover layer 21, the cover layer 21, the The touch layer 22, the polarization layer 23, the encapsulation layer 24, the microlens layer 28 and the circuit driving layer 26 are pressed to the other side of the display screen 20 (set as the back side).
  • FIG. 3A illustrates a modified implementation of the display screen 20 according to an embodiment of the present application.
  • the display screen 20 further includes a backplane layer 27 supported on the bottom side of the circuit drive layer 26, so as to strengthen the display screen 20 through the backplane layer 27 Structural strength.
  • the backplane layer 27 is provided with at least one opening 270 where the display screen 20 needs to transmit light, wherein the opening 270 corresponds to all the spaces between the pixels 251 in the pixel layer 25
  • the gap 250 is such that the light passing through the pixel layer 25 through the gap 250 of the pixel layer 25 can reach the back of the display screen 20 through the opening 270.
  • the opening 270 has a size consistent with the camera module installed under the display screen 20, so that the opening 270 itself can be As a reference hole for the installation and positioning of the camera module, it facilitates the installation and calibration of the camera module.
  • the light passing through the display screen 20 through the opening 270 can directly enter the camera module for imaging reaction.
  • the circuit driving layer 26 may also be optimized. Specifically, the arrangement of the driving circuit in the circuit driving layer 26 is adjusted to: try to avoid the components in the driving circuit from being arranged under the pixel gap 250, so as to effectively avoid the driving circuit from affecting the entire display screen 20.
  • the light transmittance has an adverse effect.
  • the configuration of the microlens layer 28 is a core factor affecting the light transmittance of the display screen 20.
  • the micro lens layer 28 includes a series of micro lens units 280.
  • the micro lens units 280 are distributed in an array, and each of the micro lens units 280 corresponds to each Each of the gaps 250 between the pixels 251.
  • each of the micro lens units 280 has a light-gathering effect, that is, the light rays radiated to each of the micro lens units 280 are refracted at each of the micro lens units 280 to converge toward the corresponding pixel gap 250, so as Compared with the existing display screen 20, the amount of light passing through the gaps 250 is increased, that is, the overall light transmittance of the display screen 20 is improved.
  • each of the microlens units 280 is implemented as a convex lens with the effect of converging light, wherein the convex surface of the convex lens faces the front of the display screen 20, and the bottom surface of the convex lens Toward each pixel gap 250, so that when external light reaches the convex lens, the external light is refracted at the convex surface of the convex lens and converges toward the gap 250 between the pixels 251, so that more external light can borrow The pixel layer 25 is penetrated by the gap 250 between the pixels 251.
  • the convex lens may be implemented as a spherical convex lens, an aspheric convex lens or a cylindrical lens (wherein, the convex surface of the cylindrical lens may be implemented as a spherical surface or an aspherical surface), as shown in FIG. 4A and FIG. 4B.
  • this application is not limited.
  • the microlens layer 28 of the present invention is formed on the encapsulation layer 24, that is, the encapsulation layer 24 is used to encapsulate the pixel layer 25, and has a light-transmitting function.
  • the encapsulation layer 24 The layer 24 is basically implemented as a glass cover plate or a light-transmitting encapsulation film.
  • the encapsulation layer 24 has a light-transmitting area and a light-concentrating area, and the light-transmitting area is used for The light emitted by the pixel layer 25 is transmitted through the screen for display and imaging; and the light-condensing area is implemented as the microlens layer 28 to condense light.
  • the microlens layer 28 is formed in a light-transmitting area.
  • the corresponding mold of the light-transmitting area is designed as The shape of the microlens layer 28 is such that the microlens layer 28 of the encapsulation layer 24 is obtained.
  • a predetermined position of the encapsulation layer 24 is configured to protrude downward and upward to form at least one microlens unit 280.
  • the encapsulation layer 24 has an upper surface and a lower surface, wherein at least part of the upper surface protrudes from the other upper surface parts, and at least part of the lower surface protrudes from the other lower surface parts, And the protruding upper surface portion and the protruding lower surface portion correspond to each other to form the light-concentrating area, thereby forming at least one of the micro lens unit 280, which is further integrated in the encapsulation layer 24
  • the micro lens layer 28 is molded.
  • the microlens layer 28 may be integrally formed in each of the gaps 250 between the pixels 251 in the pixel layer 25, so that each of the microlens layer 28
  • the micro lens unit 280 directly corresponds to each of the gaps 250 between the pixels 251, and is used to converge a larger amount of light to each of the gaps 250 between the pixels 251 to improve the display The transmittance of the screen 20.
  • the micro lens layer 28 involved in the present application can be prepared by a preparation process such as forming a micro lens layer 28 on a photosensitive chip.
  • a preparation process such as forming a micro lens layer 28 on a photosensitive chip.
  • other manufacturing processes can also be used to form the microlens layer 28 on the pixel layer 25, which is not limited by this application.
  • the bottom surface of each micro lens unit 280 of the micro lens layer 28 after molding is attached to the gap 250 between the pixels 251 to cover the gap 250, and each The convex surface of the micro lens unit 280 protrudes upward relative to the gap 250 for condensing external light to the gap 250.
  • the encapsulation layer 24 is integrally formed on the microlens layer 28 and the pixel layer 25 to encapsulate the pixel layer 25 and the microlens layer 28.
  • the microlens layer can be deposited on the The encapsulation layer 24 is formed above the lens layer 28 and the pixel layer 25. It is also possible to use an etching method to manufacture the display screen explained in this embodiment.
  • the encapsulation layer 24 includes a first encapsulation layer portion 241 and a second encapsulation layer portion 242.
  • the first encapsulation layer portion 241 is made of a material with a larger refractive index.
  • the second encapsulation layer portion 242 It is made of a material with a lower refractive index.
  • the first encapsulation layer portion 241 of the encapsulation layer 24 corresponds to the gap between the adjacent pixels 251 of the pixel layer 25, so that light can pass through the first encapsulation of the encapsulation layer 24
  • the layer portion 241 then passes through the gap between the adjacent pixels 251 of the pixel layer 25.
  • the micro lens layer 28 is integrally formed on the encapsulation layer 24.
  • the first encapsulation layer portion 241 of the encapsulation layer 24 is etched to form the microlens unit 280, and the thickness of the microlens unit 280 may be equal to the thickness of the encapsulation layer 24.
  • the thickness of the second encapsulation layer portion 242 may also be smaller than the thickness of the first encapsulation layer portion 241 of the encapsulation layer 24.
  • the thickness of the microlens unit 280 is smaller than the first encapsulation layer portion 241 of the encapsulation layer 24, and then the same material as the second encapsulation layer portion 242 of the encapsulation layer 24 Is filled above the micro lens unit 280, and then the polarizing layer 23, the touch layer 22, and the cover layer 21 are sequentially disposed above the encapsulation layer 24, with the openings
  • the backplane layer 27 is disposed under the circuit driving layer 26 to obtain the complete display screen.
  • the thickness of the microlens layer 28 is lower than the thickness of the second encapsulation layer portion 242 of the encapsulation layer 24, and then the polarizing layer 23 is directly disposed above the encapsulation layer 24, The light passes through the polarizing layer 23, then passes through the gap between the polarizing layer 23 and the micro lens unit 280, passes through the micro lens layer 28, and then passes through the adjacent pixel layer 25. The gap between the pixels 251 reaches the circuit driving layer 26 afterwards.
  • microlens unit 280 formed by etching may also be coated or sprayed with an anti-reflection film or a material with a higher refractive index to increase the transmittance and refractive index of light at that location.
  • the thickness of the microlens layer 28 is lower than the thickness of the second packaging layer portion 242 of the packaging layer 24, and then a light-permeable material is filled in the microlens unit 280 and the packaging layer. Between the layers 24, the microlens layer 28 and the encapsulation layer 24 are flush, and the refractive index of the filling material and the material of the second encapsulation layer portion 242 of the encapsulation layer 24 are not the same.
  • the polarizing layer 23 is disposed above the encapsulation layer 24, the light passes through the polarizing layer 23, then passes through the gap between the encapsulation layer 24 and the micro lens unit 280, and then passes through the micro lens The layer 28 then passes through the gap between the adjacent pixels 251 of the pixel layer 25 to reach the circuit driving layer 26.
  • microlens unit 280 formed by etching may also be coated or sprayed with an anti-reflection film or a material with a higher refractive index to increase the transmittance and refractive index of light at that location.
  • the encapsulation layer 24 is first obtained.
  • the encapsulation layer 24 includes two parts, one part is the first encapsulation layer part 241, and the other part is the second encapsulation layer part 242, wherein the first encapsulation layer 24 is The layer portion 241 and the second encapsulation layer portion 242 are spaced apart from each other. It is worth noting that the size of the interval between the first encapsulation layer portion 241 and the second encapsulation layer portion 242 may be determined by the size of the pixel 251 and the gap value of the pixel 251.
  • the refractive index of the first encapsulation layer portion 241 is greater than the refractive index of the second encapsulation layer portion 242.
  • the micro lens unit 280 is formed on the first encapsulation layer portion 241 through an etching process, so that the micro lens layer 28 is integrally formed on the encapsulation layer 24.
  • the thickness of the micro lens unit 280 may be lower than the thickness of the encapsulation layer 24 or may be equal to the thickness of the encapsulation layer 24.
  • the thickness of the micro lens unit 280 is equal to the thickness of the encapsulation layer 24, and specifically, an upper light entrance surface of the micro lens unit 280 and an upper surface of the encapsulation layer 24 are at the same level. On the surface, the lower light-emitting surface of the microlens unit 280 and the lower surface of the encapsulation layer 24 are on the same surface.
  • the thickness of the microlens unit 280 is smaller than the thickness of the encapsulation layer 24, and an upper light entrance surface of the microlens unit 280 is lower than an upper surface of the encapsulation layer 24, so The lower light-emitting surface of the micro lens unit 280 and the lower surface of the encapsulation layer 24 are on the same surface.
  • the upper light entrance surface of the microlens layer 28 is lower than the upper surface of the encapsulation layer 24, and the lower light exit surface of the microlens layer 28 is higher than the upper surface. The lower surface of the encapsulation layer 24.
  • a filling material is placed between the micro lens unit 280 and the encapsulation layer 24, and the filling material is the same as the material of the second encapsulation layer portion 242 of the encapsulation layer 24.
  • the pixel layer 25 and the circuit driving layer 26 are installed under the encapsulation layer 24, and the micro lens unit 280 of the micro lens layer 28 is aligned with the adjacent pixel layer 25 The gap between the pixels 251.
  • the polarizing layer 23, the touch layer 22 and the cover layer 21 are installed to obtain the display screen.
  • FIG. 3F it is another implementation of the manufacturing method of the display screen according to the embodiment of the present application.
  • the main difference is that the thickness of the microlens is smaller than the thickness of the encapsulation layer 24, and the upper light entrance surface of the microlens is lower than the upper surface of the encapsulation layer 24 and the thickness of the microlens
  • the lower light emitting surface is equal to the lower surface of the encapsulation layer 24.
  • the refractive index of the material filled between the encapsulation layer 24 and the microlens unit 280 is greater than that of the material of the second encapsulation layer portion 242 of the encapsulation layer 24, and fills the upper and lower portions of the microlens layer 28 The encapsulation layer 24 is flush.
  • FIG. 3G it is another implementation of the manufacturing method of the display screen according to the embodiment of the present application.
  • the main difference is that the thickness of the microlens is less than the thickness of the encapsulation layer 24 and the upper light entrance surface of the microlens is lower than the upper surface of the encapsulation layer 24 and the lower surface of the microlens
  • the light-emitting surface is higher than the lower surface of the encapsulation layer 24.
  • light passes through the gap between the polarizing layer 23 and the micro lens layer 28, then passes through the micro lens layer 28, and then passes between the micro lens layer 28 and the pixel layer 25. After the gap between the pixel layer 25 and the adjacent pixels 250 of the pixel layer 25, it finally reaches the circuit driving layer 26.
  • FIG. 6A illustrates another modified implementation of the display screen 20 according to an embodiment of the present application.
  • the microlens layer 28 has a film structure, which is prefabricated and then attached to the pixel layer 25, wherein the attachment position of the microlens layer 28 And the arrangement of the micro lens units 280 of the micro lens layer 28 is such that when the micro lens layer 28 is attached to the pixel layer 25, each of the micro lens units 280 of the micro lens layer 28 Correspond to each of the gaps 250 between the pixels 251, so as to increase the light transmittance of the display screen 20.
  • the encapsulation layer 24 is integrally formed on the microlens layer 28 and the pixel layer 25 to encapsulate the pixel layer 25 and the microlens layer 28.
  • the microlens layer can be deposited on the The encapsulation layer 24 is formed above the lens layer 28 and the pixel layer 25.
  • the manufacturing method in which the microlens layer is integrally formed on the pixel layer described in FIG. 3B, FIG. 3C or FIG. 3D can also be applied in this embodiment.
  • the microlens layer 28 is located in the encapsulation layer 24.
  • the height dimension H of the micro lens unit 280 ie, the height dimension of the micro lens unit 280
  • the micro lens layer 28 is tangent to the top surface of the encapsulation layer 24.
  • the width W of the bottom surface of the cylindrical lens (that is, the lateral dimension of the micro lens unit 280) is greater than the total distance between the pixels 251.
  • the size of the gap 250 is such that the cylindrical lens can completely cover the gap 250 between the pixels 251. It should be understood that when the cylindrical lens completely covers the gap 250 between the pixels 251, the light rays originally falling outside the gap 250 can be diverted to the pixels through the light-gathering effect of the cylindrical lens.
  • the gap 250 between 251, so that part of the light can pass through the pixel layer 25 through the gap 250.
  • the length L of the bottom surface of the cylindrical lens (ie, the longitudinal dimension of the micro lens unit 280) is greater than or equal to the gap between the adjacent pixels 251, so that the cylindrical lens can completely cover
  • the gap 250 between the pixels 251 is used to increase the amount of light converging to the pixel gap 250.
  • the length L of the bottom surface of the cylindrical lens is an integer multiple of the size of a single gap of the adjacent pixels 251.
  • the length of the bottom surface of the cylindrical lens can be set to the size of the gap, so that The array mode formed by the cylindrical lenses can perfectly correspond to the array mode formed by the pixels 251.
  • the refractive index of the molding material of the microlens layer 28 is greater than the refractive index of the molding material of the encapsulation layer 24. It should be understood that the higher the refractive index, the stronger the bending ability of light. Therefore, when the microlens layer 28 has a larger refractive index, a relatively larger range of light energy originally falling outside the gap 250 is The light condensing effect of the cylindrical lens is turned to the gap 250 between the pixels 251. It should be understood that the effect of light convergence increases as the refractive index difference between the microlens layer 28 and the encapsulation layer 24 increases.
  • FIG. 6B illustrates another modified implementation of the display screen 20 according to the embodiment of the present application.
  • the microlens layer 28 is a film structure.
  • a recessed structure is etched, and then a film is coated on the recessed structure, that is, the encapsulation layer 24 is recessed inwardly
  • the lower surface is coated with a film to form a film structure, and the film structure can play a role of concentrating light.
  • a certain gap may be left between the film structure and the pixel layer 25.
  • the film structure does not directly contact the pixel layer 25.
  • FIG. 7 illustrates another modified implementation of the display screen 20 according to an embodiment of the present application.
  • the microlens layer 28 has a film structure, which is preformed and then attached to the encapsulation layer 24, wherein the attachment position of the microlens layer 28 is
  • the arrangement of the micro lens units 280 of the micro lens layer 28 is such that when the micro lens layer 28 is attached to the encapsulation layer 24, the micro lens units 280 of the micro lens layer 28 are respectively Correspond to each of the gaps 250 between the pixels 251 to increase the light transmittance of the display screen 20.
  • the polarizing layer 23 is configured to have at least one accommodating space, wherein the accommodating space corresponds to the micro lens unit 280 of the micro lens layer 28, and the accommodating space is configured to match At least part of the micro lens unit 280 of the film structure can be accommodated in the accommodation space of the polarizing layer 23.
  • the lower surface of the polarizing layer 23 and the upper surface of the microlens layer 28 are configured to match each other.
  • the lower surface of the polarizing layer 23 is set to be at least partially recessed inward, and at least a portion of the upper surface of the microlens layer 28 is set to be at least partially convex toward the outside.
  • the lower surface of the polarizing layer 23 and the upper surface of the microlens layer 28 can be attached to each other.
  • the microlens layer 28 is not in direct contact with the pixel layer 25, that is, The microlens layer 28 and the pixel layer 25 are separated by a layer of the encapsulation layer 24, however, each of the microlens units 280 of the microlens layer 28 still corresponds to the distance between the pixels 251, respectively.
  • Each of the gaps 250 therefore, the microlens layer 28 can still make more light converge to each of the gaps 250 between the pixels 251, so as to improve the light transmittance of the display screen 20.
  • FIG. 8A illustrates another modified implementation of the display screen 20 according to an embodiment of the present application.
  • the microlens layer 28 is recessed and integrally formed on the top surface of the encapsulation layer 24 (for example, by an etching process).
  • the polarizing layer 23 may be etched so that a bottom surface of the polarizing layer 23 is recessed inward, and then the recessed position of the bottom surface of the polarizing layer 23 is filled with
  • the micro lens unit 280 is formed.
  • the filling material may be a transparent high refractive index material.
  • the micro-projection lens unit 280 and the polarizing layer 23 can be made flush.
  • the molding position of the microlens layer 28 and the arrangement of the microlens unit 280 of the microlens layer 28 are such that when the microlens layer 28 is integrally molded on the top surface of the encapsulation layer 24, the Each of the microlens units 280 of the microlens layer 28 corresponds to each of the gaps 250 between the pixels 251, so as to improve the light transmittance of the display screen 20.
  • the microlens layer 28 and the encapsulation layer 24 have an integrated structure, and this structural feature is beneficial to the preparation of the display screen 20.
  • the microlens layer 28 and the encapsulation layer 24 can be prepared as one element in the same process, so as to reduce the manufacturing process and manufacturing cost of the display screen 20.
  • FIG. 8B illustrates another modified implementation of the display screen 20 according to an embodiment of the present application.
  • the microlens layer 28 is a film structure and is provided on the polarizing layer 23.
  • a recessed structure is etched, and then a film is coated on the recessed structure, that is, for the inward recesses of the polarizing layer 23
  • the lower surface is coated with a film to form a film structure, and the film structure can play a role of concentrating light.
  • a certain gap may be left between the film structure and the pixel layer 25.
  • the film structure does not directly contact the pixel layer 25.
  • FIG. 9 illustrates another modified implementation of the display screen 20 according to an embodiment of the present application.
  • the microlens layer 28 is convexly integrally molded on the top surface of the encapsulation layer 24 (for example, by a deposition process), wherein the molding of the microlens layer 28
  • the position and the arrangement of the micro lens unit 280 of the micro lens layer 28 are such that when the micro lens layer 28 is integrally formed on the top surface of the encapsulation layer 24, each of the micro lens layer 28
  • the micro lens unit 280 corresponds to each of the gaps 250 between the pixels 251, so as to improve the light transmittance of the display screen 20.
  • the microlens layer 28 and the encapsulation layer 24 have an integrated structure, and this structural feature is beneficial to the preparation of the display screen 20.
  • the microlens layer 28 and the encapsulation layer 24 can be prepared as one element in the same process, so as to reduce the manufacturing process and manufacturing cost of the display screen 20.
  • the display screen 20 used in the present application does not need to make significant adjustments to the existing structure of the existing display screen 20, and only needs to provide an additional layer above the pixel layer 25 of the display screen 20
  • the process for preparing the microlens layer 28 is relatively simple, with high production efficiency and low cost.
  • the present application also provides a method for preparing a display screen for preparing a display screen with relatively high light transmittance.
  • FIG. 10 illustrates a schematic diagram of the manufacturing process of the display screen 20 according to an embodiment of the present application.
  • the circuit driving layer 26 is first prefabricated, and the pixel layer 25 is formed on the circuit driving layer 26, wherein the circuit driving layer 26 is electrically connected to the pixel
  • the layer 25 is used to drive the pixel layer 25 to work.
  • the current mainstream production process of the pixel layer 25 in the OLED display screen is the evaporation process. In simple terms, the evaporation process is heating by electric current in vacuum, electron beam bombardment heating, laser heating and other methods.
  • a printing process can also be used, that is, a printing method is used to prepare the organic material film of the display.
  • the microlens layer 28 is integrally formed on the pixel layer 25, wherein each microlens unit 280 of the microlens layer 28 corresponds to each of the pixel layers 25
  • the microlens unit 280 may be formed on the gap 250 between the pixels 251 of the pixel layer 25 through a deposition process. In this way, the pixel layer 25 is integrally formed with ⁇ lens layer 28.
  • the encapsulation layer 24 is formed on the micro lens layer 28 and the pixel layer 25 to encapsulate the micro lens layer 28 and the pixel layer by the encapsulation layer 24 25.
  • the encapsulation layer 24 can also be integrally formed on the pixel layer 25 and the micro lens layer 28 by using a deposition process to encapsulate the pixel layer 25 and the micro lens layer 28 by the encapsulation layer 24 .
  • the polarization layer 23, the touch layer 22 and the cover 21 are sequentially formed on the encapsulation layer 24 to form the display screen 20 in combination.
  • a backplane layer 27 with openings 270 can be further attached to the bottom side of the circuit driving layer 26 to enhance the structural strength of the display screen 20 through the backplane layer 27.
  • the opening 270 of the backplane layer 27 is opened in the light-transmitting part of the display screen 20.
  • the microlens layer 28 is formed in the encapsulation layer 24 and corresponds to the gap 250 between the pixels 251, so that when light passes through the cover layer 21, When the touch layer 22, the polarizing layer 22, and the encapsulation layer 24 hit the microlens layer 28, the microlens layer 28 condenses the light to the gap between the pixels 251 250, so that a relatively larger amount of light can pass through the pixel layer 25 through the gap 250. Furthermore, the light passing through the pixel layer 25 can further pass through the circuit driving layer 26 to reach the bottom side of the display screen 20. In this way, the overall light transmittance of the display screen 20 can be effectively improved.
  • the refractive index of the material forming the microlens layer 28 is greater than the refractive index of the material forming the encapsulation layer 24.
  • FIG. 11 illustrates a schematic diagram of another manufacturing process of the display screen 20 according to an embodiment of the present application.
  • the circuit driving layer 26 is first prefabricated, and the pixel layer 25 is formed on the circuit driving layer 26, wherein the circuit driving layer 26 is electrically connected to the The pixel layer 25 is used to drive the pixel layer 25 to work.
  • the current mainstream production process of the pixel layer 25 in the OLED display screen is the evaporation process.
  • the evaporation process is heating by electric current in vacuum, electron beam bombardment heating, laser heating and other methods.
  • a printing process can also be used, that is, a printing method is used to prepare the organic material film of the display.
  • the micro lens layer 28 with a film structure is prefabricated, and the micro lens layer 28 is attached to the pixel layer 25.
  • the attachment position of the microlens layer 28 and the arrangement of the microlens unit 280 of the microlens layer 28 are such that when the microlens layer 28 is attached to the
  • each of the micro lens units 280 of the micro lens layer 28 corresponds to each of the gaps 250 between the pixels 251, so as to improve the light transmittance of the display screen 20.
  • the encapsulation layer 24 is formed on the microlens layer 28 and the pixel layer 25 to encapsulate the microlens layer 28 and the pixel layer by the encapsulation layer 24 25.
  • the encapsulation layer 24 may be integrally molded on the pixel layer 25 and the micro lens layer 28 by a deposition process, so that the pixel layer 25 and the micro lens layer 28 are encapsulated by the encapsulation layer 24.
  • the polarization layer 23, the touch layer 22 and the cover 21 are sequentially formed on the encapsulation layer 24 to form the display screen 20 in combination.
  • a backplane layer 27 with openings 270 can be further attached to the bottom side of the circuit driving layer 26 to enhance the structural strength of the display screen 20 through the backplane layer 27.
  • the opening 270 of the backplane layer 27 is opened in the light-transmitting part of the display screen 20.
  • the microlens layer 28 is located in the encapsulation layer 24 and the microlens unit 280 corresponds to the gap 250 of each pixel 251 in the pixel layer 25, so that when light sequentially passes through the When the cover layer 21, the touch layer 22, the polarization layer 23 and the encapsulation layer 24 reach the microlens layer 28, the microlens layer 28 condenses the light to each of the pixels 251 There is a gap 250 between them, so that a relatively larger amount of light can pass through the pixel layer 25 through the gap 250. Furthermore, the light passing through the pixel layer 25 can further pass through the circuit driving layer 26 to reach the bottom side of the display screen 20. In this way, the overall light transmittance of the display screen 20 can be effectively improved.
  • the refractive index of the material forming the microlens layer 28 is greater than the refractive index of the material forming the encapsulation layer 24.
  • FIG. 12 illustrates a schematic diagram of another manufacturing process of the display screen 20 according to an embodiment of the present application.
  • the circuit driving layer 26 is first prefabricated, and the pixel layer 25 is formed on the circuit driving layer 26, wherein the circuit driving layer 26 is electrically connected to the The pixel layer 25 is used to drive the pixel layer 25 to work.
  • the current mainstream production process of the pixel layer 25 in the OLED display screen is the evaporation process.
  • the evaporation process is heating by electric current in vacuum, electron beam bombardment heating, laser heating and other methods.
  • a printing process can also be used, that is, a printing method is used to prepare the organic material film of the display.
  • an encapsulation layer 24 is integrally formed on the pixel layer 25 to encapsulate the pixel layer 25 by the encapsulation layer 24.
  • a microlens layer 28 is integrally formed on the top surface of the encapsulation layer 24, wherein the microlens layer 28 includes microlens units 280 arranged in an array, and each microlens unit 280 corresponds to The gap 250 between the pixels 251 of the pixel layer 25.
  • the microlens layer 28 is integrally formed on the top surface of the encapsulation layer 24 through a process such as deposition. As shown in FIG. 12, the microlens layer 28 after molding extends convexly on the top surface of the encapsulation layer 24, and each of the microlens units 280 of the microlens layer 28 corresponds to the Each of the gaps 250 between the pixels 251.
  • microlens layer 28 is integrally formed on the top surface of the encapsulation layer 24, that is, there is an integral structure between the microlens layer 28 and the encapsulation layer 24, so that During the preparation process, the microlens layer 28 can be integrally molded on the top surface of the encapsulation layer 24 in advance, and further, the encapsulation layer 24 with the microlens layer 28 is attached above the pixel layer 25 , As shown in Figure 13.
  • the polarization layer 23, the touch control layer 22 and the cover 21 are sequentially formed on the microlens layer 28 to form the display screen 20 in combination.
  • a backplane layer 27 with openings 270 can be further attached to the bottom side of the circuit driving layer 26 to enhance the structural strength of the display screen 20 through the backplane layer 27.
  • the opening 270 of the backplane layer 27 is opened in the light-transmitting part of the display screen 20.
  • the micro lens layer 28 is formed on the top side of the encapsulation layer 24 and the micro lens unit 280 corresponds to the gap 250 between the pixels 251 in the pixel layer 25, so that when the light When sequentially passing through the cover layer 21, the touch layer 22, and the polarizing layer 23 to reach the microlens layer 28, the microlens layer 28 gathers the light and passes through the The encapsulation layer 24 reaches the gap 250 between the pixels 251, so that a relatively larger amount of light can pass through the pixel layer 25 through the gap 250. Furthermore, the light passing through the pixel layer 25 can further pass through the circuit driving layer 26 to reach the bottom side of the display screen 20. In this way, the overall light transmittance of the display screen 20 can be effectively improved.
  • the refractive index of the material forming the microlens layer 28 is greater than the refractive index of the material forming the encapsulation layer 24.
  • FIG. 14 illustrates a schematic diagram of another manufacturing process of the display screen 20 according to an embodiment of the present application.
  • the circuit driving layer 26 is first prefabricated, and the pixel layer 25 is formed on the circuit driving layer 26, wherein the circuit driving layer 26 is electrically connected to the The pixel layer 25 is used to drive the pixel layer 25 to work.
  • the current mainstream production process of the pixel layer 25 in the OLED display screen is the evaporation process.
  • the evaporation process is heating by electric current in vacuum, electron beam bombardment heating, laser heating and other methods.
  • a printing process can also be used, that is, a printing method is used to prepare the organic material film of the display.
  • an encapsulation layer 24 is integrally formed on the pixel layer 25 to encapsulate the pixel layer 25 by the encapsulation layer 24.
  • a microlens layer 28 is integrally formed on the top surface of the encapsulation layer 24, wherein the microlens layer 28 includes microlens units 280 arranged in an array, and each microlens unit 280 corresponds to The gap 250 between the pixels 251 of the pixel layer 25.
  • the microlens layer 28 is integrally formed on the top surface of the encapsulation layer 24 through a process such as etching. As shown in FIG. 14, the microlens layer 28 after molding is formed concavely on the top surface of the encapsulation layer 24, and each of the microlens units 280 of the microlens layer 28 corresponds to the pixel, respectively. 251 between each of the gaps 250.
  • microlens layer 28 is integrally formed on the top surface of the encapsulation layer 24, that is, there is an integral structure between the microlens layer 28 and the encapsulation layer 24, so that During the preparation process, the microlens layer 28 can be integrally molded on the top surface of the encapsulation layer 24 in advance, and further, the encapsulation layer 24 with the microlens layer 28 is attached above the pixel layer 25 , As shown in Figure 15.
  • the polarizing layer 23, the touch control layer 22 and the cover 21 are sequentially formed on the microlens layer 28 to combine to form the display screen 20.
  • a backplane layer 27 with openings 270 can be further attached to the bottom side of the circuit driving layer 26 to enhance the structural strength of the display screen 20 through the backplane layer 27.
  • the opening 270 of the backplane layer 27 is opened in the light-transmitting part of the display screen 20.
  • the micro lens layer 28 is formed on the top side of the encapsulation layer 24 and the micro lens unit 280 corresponds to the gap 250 between the pixels 251 in the pixel layer 25, so that part of the light Pass through the cover layer 21, the touch layer 22, and the polarizing layer 23 in sequence to reach the microlens layer 28, and part of the light sequentially passes through the cover layer 21, the touch layer 22,
  • the micro lens layer 28 collects the light and passes through the encapsulation layer 24 to reach the gap 250 between the pixels 251, so that a relatively larger amount of light can pass through the pixel layer 25 through the gap 250.
  • the light passing through the pixel layer 25 can further pass through the circuit driving layer 26 to reach the bottom side of the display screen 20. In this way, the overall light transmittance of the display screen 20 can be effectively improved.
  • the refractive index of the material forming the microlens layer 28 is greater than the refractive index of the material forming the encapsulation layer 24.
  • FIG. 16 illustrates a schematic diagram of another preparation process of the display screen 20 according to an embodiment of the present application.
  • the circuit driving layer 26 is first prefabricated, and the pixel layer 25 is formed on the circuit driving layer 26, wherein the circuit driving layer 26 is electrically connected to the The pixel layer 25 is used to drive the pixel layer 25 to work.
  • the current mainstream production process of the pixel layer 25 in the OLED display screen is the evaporation process.
  • the evaporation process is heating by electric current in vacuum, electron beam bombardment heating, laser heating and other methods.
  • a printing process can also be used, that is, a printing method is used to prepare the organic material film of the display.
  • an encapsulation layer 24 is integrally formed on the pixel layer 25 to encapsulate the pixel layer 25 by the encapsulation layer 24. Further, the microlens layer 28 having a film structure is prefabricated, and the microlens layer 28 is attached to the top surface of the encapsulation layer 24.
  • the attachment position of the microlens layer 28 and the layout of the microlens units 280 of the microlens layer 28 are such that when the microlens layer 28 is attached to the When the encapsulation layer 24 is encapsulated, each of the microlens units 280 of the microlens layer 28 corresponds to each of the gaps 250 between the pixels 251 to increase the light transmittance of the display screen 20.
  • the polarizing layer 23, the touch layer 22 and the cover 21 are sequentially formed on the microlens layer 28 to combine to form the display screen 20.
  • a backplane layer 27 with openings 270 can be further attached to the bottom side of the circuit driving layer 26 to enhance the structural strength of the display screen 20 through the backplane layer 27.
  • the opening 270 of the backplane layer 27 is opened in the light-transmitting part of the display screen 20.
  • the micro lens layer 28 is formed on the top side of the encapsulation layer 24 and the micro lens unit 280 corresponds to the gap 250 between the pixels 251 in the pixel layer 25, so that when the light When sequentially passing through the cover layer 21, the touch layer 22, and the polarizing layer 23 to reach the microlens layer 28, the microlens layer 28 gathers the light and passes through the The encapsulation layer 24 reaches the gap 250 between the pixels 251, so that a relatively larger amount of light can pass through the pixel layer 25 through the gap 250. Furthermore, the light passing through the pixel layer 25 can further pass through the circuit driving layer 26 to reach the bottom side of the display screen 20. In this way, the overall light transmittance of the display screen 20 can be effectively improved.
  • the refractive index of the material forming the microlens layer 28 is greater than the refractive index of the material forming the encapsulation layer 24.
  • the present application also provides a terminal device, which can be in various forms.
  • the terminal device described in this application can include mobile phones, smart phones, notebook computers, PDAs ( Personal digital assistants), PAD (tablet computers), PMP (portable multimedia players), navigation devices, smart watches and other mobile terminals, as well as fixed terminals such as digital TVs and desktop computers.
  • the terminal device is assumed to be a mobile terminal, and the mobile terminal is assumed to be a smart phone (as shown in FIG. 17), and the application is described.
  • the configuration according to the embodiments of the present application can also be applied to fixed-type terminals.
  • the embodiments of the present application are all described by taking a smart phone as an example, and other application scenarios may be cross-referenced.
  • Fig. 17 illustrates a specific example of a terminal device according to an embodiment of the present application, wherein, in this specific example, the terminal device is implemented as a smart phone.
  • the terminal device includes a terminal body 10, a camera module 30, and the above-mentioned display screen 20.
  • the terminal body 10 includes a housing 11 that is set to form the outer contour of the terminal device and a main board 12 for mounting the control circuit and power supply circuit components of the terminal device, wherein the size of the main board 12 is smaller than that of the The size of the accommodating space defined by the housing 11 allows the motherboard 12 to be installed in the housing 11 in a "flat" manner.
  • the display screen 20 is installed in the housing 11 and serves as a display module of the terminal device, wherein the display screen 20 is electrically connected to the main board 12 to serve as the display screen 20 through the main board 12 Power supply to realize image display function.
  • the display screen 20 is installed at the top opening of the housing 11 to define the top surface of the terminal setting by the display screen 20, and the camera
  • the module 30 is arranged under the display screen 20 and is housed in the housing 11 as a camera module of the terminal device.
  • the screen ratio of the terminal device (the proportion of the display screen 20 occupying the top surface of the terminal device) can be further expanded Increase (the limit can be increased to 100%).
  • the camera module 30 is configured as an under-screen camera module 30, which and the display screen 20 are installed at different height positions of the housing 11, so that the camera module Group 30 is free from becoming an obstacle to the expansion of the screen ratio.
  • the housing 11 adopts a "narrow" frame design, that is, the width dimension of the edge of the housing 11 relative to the width dimension of the display screen 20 can be regarded as negligible.
  • the screen occupying ratio of the terminal device can be further increased (the limit can be increased to 100%).
  • the camera module 30 is disposed under the display screen 20.
  • the core technical problem that traditional terminal equipment cannot implement the "under-screen camera module 30" technical solution is that when the camera module 30 is placed under the display screen 20, it cannot collect sufficient amounts of external information.
  • the imaging light makes it difficult to realize the imaging function of the camera module 30.
  • the light transmittance of the display screen 20 is effectively increased by providing an additional layer of microlens layer 28 in the display screen 20, and the camera module 30 is mounted on The position below the display screen 20 corresponds to the position of the microlens layer 28 in the display screen 20, so that when the camera module 30 is set below the display screen 20, the image from the outside The light can still pass through the display screen 20 (from its front to its back) and reach the camera module 30 for imaging, as shown in FIG. 18.
  • the imaging path (or photosensitive path) of the camera module 30 is: firstly, external light passes through The cover layer 21, the touch layer 22, the polarizing layer 23, and the encapsulation layer 24 of the display screen 20 can reach the microlens layer 28 disposed on the pixel layer 25, wherein the microlens layer 28
  • Each of the micro lens units 280 corresponds to the gap 250 between each of the pixels 251 in the pixel layer 25; further, the light reaching the micro lens layer 28 is refracted at each of the micro lens units 280 And converge toward the gap 250 between the corresponding pixels 251, so that relatively more light can pass through the pixel layer 25 through the gap 250 between the pixels 251; then, pass through the pixel layer
  • the light beam 25 can further pass through the circuit driving layer 26 to be collected by the camera module 30 disposed under the circuit driving layer 26 for imaging reaction.
  • the imaging path (or photosensitive path) of the camera module 30 is as follows: Through the cover layer 21, the touch layer 22, and the polarizing layer 23 of the display screen 20 to reach the microlens layer 28 disposed on the encapsulation layer 24, wherein each of the microlens layer 28
  • the micro lens unit 280 corresponds to the gap 250 between the pixels 251 in the pixel layer 25 through the encapsulation layer 24; further, the light reaching the micro lens layer 28 is in each of the micro lens unit Refraction occurs at 280 and converges in the direction of the gap 250 between the corresponding pixels 251; further, this part of the converged light passes through the encapsulation layer 24, and then enters the gap 250 between the corresponding pixels 251, In this way, relatively more light can pass through the pixel layer 25 through the gap 250 between the pixels 251; then, the light passing through the pixel layer 25 can further pass through the circuit.
  • the driving layer 26 is collected by the camera module 30
  • the imaging path (or photosensitive path) of the camera module 30 is as follows: First, external light passes through the cover layer 21, the touch layer 22, the polarization layer 23 and the encapsulation layer 24 of the display screen 20 to reach the The microlens layer 28 on the pixel layer 25, wherein each microlens unit 280 of the microlens layer 28 corresponds to the gap 250 between the pixels 251 in the pixel layer 25; further, The light rays reaching the microlens layer 28 are refracted at each microlens unit 280 and converge toward the gap 250 between the corresponding pixels 251, so that relatively more light can pass through the pixels 251.
  • the gap 250 between the two passes through the pixel layer 25; then, the light passing through the pixel layer 25 can further pass through the openings 270 of the circuit driving layer 26 and the backplane layer 27 to be
  • the camera module 30 arranged at the bottom of the display screen 20 collects data for imaging reaction.
  • the imaging path (or light-sensing path) of the camera module 30 is as follows: first, external light passes through the cover layer 21, the touch layer 22, and the polarizing layer 23 of the display screen 20 to reach the package The microlens layer 28 on the layer 24, wherein each of the microlens units 280 of the microlens layer 28 respectively correspond to the space between the pixels 251 in the pixel layer 25 through the encapsulation layer 24 Further, the light reaching the microlens layer 28 is refracted at each microlens unit 280 and converges in the direction of the gap 250 between the corresponding pixels 251; further, this part of the converged light Pass through the encapsulation layer 24 and then enter the corresponding gap 250 between the pixels 251.
  • the light passing through the pixel layer 25 can further pass through the openings 270 of the circuit drive layer 26 and the backplane layer 27 to be disposed at the bottom of the display screen 20 Collected by the camera module 30 for imaging reaction.
  • the camera module 30 can be installed under the display screen 20 and corresponds to the backplane The opening 270 of the layer 27; or, when the size of the opening 270 matches the camera module 30, the camera module 30 can be directly mounted on the opening of the backplane layer 27 A hole 270, wherein the opening 270 for mounting the camera module 30 on the backplane layer 27 not only enables the light passing through the circuit driving layer 26 to be directly collected by the camera module 30, Moreover, the overall height of the terminal device can also be reduced, which will be further elaborated in the subsequent description.
  • the camera module 30 can be configured as an under-screen camera module 30, so that the screen ratio of the terminal device can be further increased .
  • the height dimension of the housing 11 is required. Increase, that is, the overall height size of the terminal device needs to be increased, which is contrary to the current trend of thinner terminal devices.
  • the foregoing has provided a technical solution for reducing the overall height of the terminal device.
  • the display screen 20 when the display screen 20 is implemented as the display screen 20 as shown in FIG. 3, that is, the display screen 20 includes a back plate layer 27 provided with an opening 270, wherein the opening The hole 270 corresponds to the microlens layer 28.
  • the opening 270 of the backplane layer 27 has a size that matches that of the camera module 30, so that the camera module 30 It can be directly installed in the opening 270 of the backplane layer 27, as shown in FIG. 19.
  • the opening 270 of the backplane layer 27 is not only a light-transmitting hole of the display screen 20, but also a mounting reference hole of the camera module 30. It should be understood that when the camera module 30 is installed at the opening 270 of the backplane layer 27, the overall height of the display screen 20 and the camera module 30 can be effectively reduced, thereby The overall height dimension of the terminal device can be reduced.
  • the terminal device may further provide an auxiliary mounting member 13, which is installed in the opening 270 of the back plate and used to install the camera module 30 therein, As shown in Figure 20.
  • the auxiliary mounting member 13 may be implemented as a tubular member with a through hole, wherein the outer diameter of the tubular member is equal to the diameter of the opening 270, and the inner diameter of the through hole of the tubular member is the same as that of the camera mold.
  • the size of the group 30 is matched, so that the camera module 30 can still be installed at the opening 270 of the backplane layer 27 through the tubular member.
  • the height of the tubular member is equal to or slightly smaller than the height dimension of the opening 270, so that when the camera module 30 is installed in the through hole of the tubular member, the camera module 30 and The overall height dimension of the display screen 20 can be reduced, so that the camera module 30 can be directly installed in the opening 270 of the backplane layer 27.
  • a camera module 30 having a lower height dimension is used.
  • FIG. 21 illustrates a specific example of the camera module 30 according to an embodiment of the present application.
  • the camera module 30 includes a circuit board 31, a photosensitive chip 32, and a light-transmitting component 33.
  • the circuit board 31 has a groove 310, and the photosensitive chip 32 It is arranged in the groove 310 and is electrically connected to the circuit board 31, and the light-transmitting component 33 is located on the light-sensing path of the light-sensing chip 32. In this way, the imaging light passing through the display screen 20 first reaches the light-transmitting component 33, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction.
  • the circuit board has a flat surface, and the photosensitive chip is directly attached and electrically connected to the flat surface of the circuit board. Since each camera module has a preset optical back focus requirement, the mounting reference height of the photosensitive chip directly determines the overall height of the camera module 30.
  • the circuit board 31 is provided with the groove 310 to lower the photosensitive chip 32 through the groove 310.
  • the installation base height In other words, in the embodiment of the present application, the top surface of the circuit board 31 is an uneven surface, wherein the area of the circuit board 31 for mounting the photosensitive chip 32 is recessed downward, so that the photosensitive The mounting reference height of the chip 32 can be reduced. It should be understood that under the premise that the optical back focus requirement remains unchanged, the installation height of the optical lens 332 relative to the circuit board 31 can be reduced, so that the overall height of the camera module 30 can be reduced.
  • the size of the groove 310 is consistent with the size of the photosensitive chip 32, so that the groove 310 itself can be used to position and limit the photosensitive chip 32.
  • the photosensitive chip 32 can be directly embedded in the groove 310 without the need for conventional COB-based imaging.
  • the module needs to constantly calibrate and locate the installation position of the photosensitive chip on the circuit board. Further, after the photosensitive chip 32 is installed in the groove 310 and electrically connected to the circuit board 31, the photosensitive chip 32 is "detained" in the groove 310 to prevent the The photosensitive chip 32 is separated from the groove 310 or is offset.
  • the camera module 30 further includes a set of leads 34, wherein, after the photosensitive chip 32 is attached to the groove 310 of the circuit board 31, the lead 34 is used to realize the photosensitive The electrical connection between the chip 32 and the circuit board 31.
  • each of the lead wires 34 bends and extends between the photosensitive chip 32 and the circuit board 31, so as to connect the photosensitive chip 32 to the circuit board 31 through the lead wires 34, so that, The circuit board 31 can supply power to the photosensitive chip 32 according to the lead 34, and the photosensitive chip 32 can transmit the collected signal according to the lead 34.
  • the type of the lead 34 is not limited by this application.
  • the lead 34 may be a gold wire, a silver wire, or a copper wire.
  • the lead 34 can be installed between the circuit board 31 and the photosensitive chip 32 through a process of "golding wire" to realize electrical connection between the two.
  • the "golden thread” process is generally divided into two types: the “positive gold line” process and the “reverse gold line” process.
  • the “positive gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the circuit board 31, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the photosensitive chip 32. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31.
  • the "reverse gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the photosensitive chip 32, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the circuit board 31. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31. It is worth mentioning that the height of the upward protrusion of the lead 34 formed by the "reverse gold wire” process is lower than the height of the upward protrusion of the lead 34 formed by the "positive gold wire” process. Therefore, preferably In this specific implementation, the wire 34 is formed by the "reverse gold wire” process.
  • the camera module 30 further includes a base 35, which is disposed on the circuit board 31 to support the light-transmitting component 33.
  • the light-transmitting component 33 includes a color filter element 331 and an optical lens 332, and the color filter element 331 and the optical lens 332 are sequentially disposed on the photosensitive path of the photosensitive chip 32.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the circuit board 31; or, the base 35 can be implemented as a mold.
  • the plastic base can be integrally formed on the circuit board 31 and/or the corresponding position of the photosensitive chip 32 through MOB (Molding on Board) and MOC (Molding on Chip) processes.
  • MOB Manufacturing on Board
  • MOC Molding on Chip
  • the MOC process means that the molded base is integrally molded on the circuit board 31 through a molding process, wherein the molded base after molding except for covering the circuit board 31 and on the circuit board 31
  • at least a part of the lead 34 is also covered, or at least part of the lead 34 and the photosensitive chip 32 are covered (wherein at least a part of the photosensitive chip 32 is The non-photosensitive area of the photosensitive chip 32).
  • the color filter element 331 is provided between the optical lens 332 and the photosensitive element, so that the light entering the camera module 30 from the optical lens 332 is After the color filter element 331 is filtered, it can be received by the photosensitive chip 32 and photoelectrically converted, so as to improve the imaging quality of the camera module 30.
  • the color filter element 331 can be used to filter the infrared part of the light entering the camera module 30 from the optical lens 332.
  • the color filter element 331 can be implemented in different types, including but not limited to, the color filter element 331 can be implemented as an infrared cut filter, a full transmission spectrum filter, and others.
  • the filter or a combination of multiple filters can be Switch to be selectively located on the photosensitive path of the photosensitive chip 32. In this way, when the camera module 30 is used in an environment with sufficient light such as daytime, the infrared cut filter can be switched to the photosensitive path.
  • the light-sensing path of the chip 32 is used to filter the infrared rays in the light reflected by the object entering the camera module 30 through the infrared cut filter, and when the camera module is used in a dark environment such as night In the case of the group 30, the full transmission spectrum filter can be switched to the photosensitive path of the photosensitive chip 32 to allow part of the infrared rays of the light reflected by the object entering the camera module 30 to pass through.
  • the color filter element 331 can also be provided at other positions on the photosensitive path of the photosensitive chip 32.
  • the color filter element 331 is provided at the bottom of the optical lens 332, and the optical The bottom of the lens 332, etc., are not limited by this application.
  • the camera module 30 can be implemented as a fixed focus module or a dynamic focus module, wherein when the camera module 30 is a dynamic focus module
  • the camera module 30 further includes a driver 36 connected to the circuit board 31, and the driver 36 is used to controllably drive the lens to move to realize Auto-Focus.
  • FIG. 22 illustrates another specific example of the camera module 30 according to the embodiment of the present application, in which the camera module 30 shown in FIG. 22 is an example of the camera module 30 shown in FIG. 21 A variant implementation.
  • the camera module 30 includes a circuit board 31, a photosensitive chip 32, a light-transmitting component 33, and a reinforcing plate 37, wherein the circuit board 31 has a through Ground is formed in an opening 310A of the circuit board 31, the reinforcing plate 37 is attached to the bottom surface of the circuit board 31, and the photosensitive chip 32 is disposed at the opening 310A of the circuit board 31 and Attached to the reinforcing plate 37, the photosensitive chip 32 is conductively connected to the circuit board 31, and the light-transmitting component 33 is arranged on the photosensitive path of the photosensitive chip 32.
  • the imaging light passing through the display screen 20 first reaches the light-transmitting component 33, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction.
  • the circuit board 31 has the opening 310A, which is formed through the circuit board 31 to pass the The opening 310A reduces the mounting reference height of the photosensitive chip 32.
  • the top surface of the circuit board 31 is a non-flat surface, wherein the area of the circuit board 31 for mounting the photosensitive chip 32 is recessed downward and penetrates the circuit board 31, so that the mounting reference height of the photosensitive chip 32 can be further reduced.
  • each camera module has a preset optical back focus requirement, so that the installation height of the optical lens 332 relative to the circuit board 31 can be further reduced while keeping the optical back focus requirement unchanged. Therefore, the overall height of the camera module 30 can be further reduced.
  • the bottom surface of the photosensitive chip 32 is flush with the bottom surface of the circuit board 31, that is, the mounting reference height of the photosensitive chip 32 is the The height of the bottom surface of the circuit board 31, so that under the premise of ensuring the preset optical back focus, the mounting position of the photosensitive chip 32 can be further reduced, so that the overall height of the camera module 30 is further reduced .
  • the size of the opening 310A is consistent with the size of the photosensitive chip 32, so that the opening 310A itself can be used to position and limit the photosensitive chip 32.
  • the photosensitive chip 32 can be directly fitted into the opening 310A and finally attached to the reinforcing plate 37 , Without the need to constantly calibrate and position the mounting position of the photosensitive chip 32 on the circuit board 31 as in the existing COB-based camera module.
  • the photosensitive chip 32 is "detained" in the opening 310A to prevent the The photosensitive chip 32 detaches from the opening 310A or is offset.
  • the camera module 30 further includes a set of leads 34, wherein after the photosensitive chip 32 is installed in the opening 310A of the circuit board 31, the photosensitive chip is realized by the leads 34 The electrical connection between 32 and the circuit board 31.
  • each of the lead wires 34 bends and extends between the photosensitive chip 32 and the circuit board 31, so as to connect the photosensitive chip 32 to the circuit board 31 through the lead wires 34, so that,
  • the circuit board 31 can supply power to the photosensitive chip 32 according to the lead 34, and the photosensitive chip 32 can transmit the collected signal according to the lead 34.
  • the type of the lead 34 is not limited by this application.
  • the lead 34 may be a gold wire, a silver wire, or a copper wire.
  • the lead 34 can be installed between the circuit board 31 and the photosensitive chip 32 through a process of "golding wire" to realize electrical connection between the two.
  • the "golden thread” process is generally divided into two types: the “positive gold line” process and the “reverse gold line” process.
  • the “positive gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the circuit board 31, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the photosensitive chip 32. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31.
  • the "reverse gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the photosensitive chip 32, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the circuit board 31. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31. It is worth mentioning that the height of the upward protrusion of the lead 34 formed by the "reverse gold wire” process is lower than the height of the upward protrusion of the lead 34 formed by the "positive gold wire” process. Therefore, preferably In this specific implementation, the wire 34 is formed by the "reverse gold wire” process.
  • the camera module 30 further includes a base 35, which is disposed on the circuit board 31 to support the light-transmitting component 33.
  • the light-transmitting component 33 includes a color filter element 331 and an optical lens 332, and the color filter element 331 and the optical lens 332 are sequentially disposed on the photosensitive path of the photosensitive chip 32.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the circuit board 31; or, the base 35 can be implemented as a mold.
  • the plastic base can be integrally formed on the circuit board 31 and/or the corresponding position of the photosensitive chip 32 through MOB (Molding on Board) and MOC (Molding on Chip) processes.
  • MOB Manufacturing on Board
  • MOC Molding on Chip
  • the MOC process means that the molded base is integrally molded on the circuit board 31 through a molding process, wherein the molded base after molding except for covering the circuit board 31 and on the circuit board 31
  • at least a part of the lead 34 is also covered, or at least part of the lead 34 and the photosensitive chip 32 are covered (wherein at least a part of the photosensitive chip 32 is The non-photosensitive area of the photosensitive chip 32).
  • the color filter element 331 is provided between the optical lens 332 and the photosensitive element, so that the light entering the camera module 30 from the optical lens 332 is After the color filter element 331 is filtered, it can be received by the photosensitive chip 32 and photoelectrically converted, so as to improve the imaging quality of the camera module 30.
  • the color filter element 331 can be used to filter the infrared part of the light entering the camera module 30 from the optical lens 332.
  • the color filter element 331 can be implemented in different types, including but not limited to, the color filter element 331 can be implemented as an infrared cut filter, a full transmission spectrum filter, and others.
  • the filter or a combination of multiple filters can be Switch to be selectively located on the photosensitive path of the photosensitive chip 32. In this way, when the camera module 30 is used in an environment with sufficient light such as daytime, the infrared cut filter can be switched to the photosensitive path.
  • the light-sensing path of the chip 32 is used to filter the infrared rays in the light reflected by the object entering the camera module 30 through the infrared cut filter, and when the camera module is used in a dark environment such as night In the case of the group 30, the full transmission spectrum filter can be switched to the photosensitive path of the photosensitive chip 32 to allow part of the infrared rays of the light reflected by the object entering the camera module 30 to pass through.
  • the color filter element 331 can also be provided at other positions on the photosensitive path of the photosensitive chip 32.
  • the color filter element 331 is provided at the bottom of the optical lens 332, and the optical The bottom of the lens 332, etc., are not limited by this application.
  • the camera module 30 can be implemented as a fixed-focus camera module or a dynamic-focus camera module, where, when the camera module 30 is a dynamic-focus camera module At this time, the camera module 30 further includes a driver 36 electrically connected to the circuit board 31, and the driver 36 is used to controllably drive the lens to move to achieve auto-focus (Auto-Focus).
  • FIG. 23 illustrates another specific diagram of the camera module 30 according to an embodiment of the present application, where the camera module 30 illustrated in FIG. 23 is a part of the camera module 30 illustrated in FIG. 22 A variant implementation.
  • the base 35 is directly installed on the reinforcing plate 37.
  • the installation reference height of the base 35 is reduced, so that the installation reference height of the optical lens 332 installed on the base 35 is reduced, so that the overall height of the camera module 30 The size can be reduced.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the reinforcing plate 37; or, the base 35 can be implemented as The molded base can be integrally molded on the reinforcing board 37, the circuit board 31 and/or the corresponding position of the photosensitive chip 32 through MOB (Molding on Board) and MOC (Molding on Chip) processes.
  • MOB Manufacturing on Board
  • MOC Molding on Chip
  • the MOC process means that the molded base is integrally formed on the circuit board 31 through a molding process, wherein the molded base after molding except for covering the reinforcing plate 37, the circuit board 31 and the In addition to the electronic components 312 on the circuit board 31, at least a part of the lead 34 is also covered, or at least a part of the lead 34 and the photosensitive chip 32 (wherein, the photosensitive chip At least a part of the area of the chip 32 is the non-photosensitive area of the photosensitive chip 32).
  • FIG. 24 illustrates yet another specific example of the camera module 30 according to an embodiment of the present application, wherein the camera module 30 illustrated in FIG. 24 is another example of the camera module 30 illustrated in FIG. 22 A variant implementation.
  • the base 35 has at least two positioning posts 351 extending downward, and the circuit board 31 has at least two openings 311
  • the positioning post 351 is disposed on the reinforcing plate 37 through the opening 311. In this way, the installation reference height of the base 35 can be reduced, so that the overall height of the camera module 30 Can be reduced.
  • FIG. 25 and FIG. 26 illustrate another specific example of the camera module 30 according to an embodiment of the present application, wherein the camera module 30 shown in FIG. 25 and FIG. 26 is the one shown in FIG. 22 Another modified implementation of the camera module 30 is described.
  • the reinforcing plate 37 has a boss 371A or a groove 371 at the opening 310A of the circuit board 31 to pass through the boss 371A.
  • the groove 371 is used to adjust the mounting reference height of the photosensitive chip 32.
  • the bottom surface of the photosensitive chip 32 is not flush with the bottom surface of the circuit board 31.
  • the mounting reference height of the photosensitive chip 32 is further reduced, so that the The overall height of the camera module 30 can be further reduced if the design requirements of the preset optical back focus are met. It should be noted that when the reinforcing plate 37 has a groove 371 at the opening 310A of the circuit board 31, the photosensitive chip 32 is mounted on the reinforcing plate 37. At that time, the photosensitive chip 32 The bottom surface of is lower than the bottom surface of the circuit board 31.
  • the reinforcing plate 37 has a boss 371A at the opening 310A of the circuit board 31, compared with the existing camera module based on the COB process, the The mounting reference height of the photosensitive chip 32 is reduced, so that the overall height of the camera module 30 can be reduced while meeting the design requirements of the preset optical back focus.
  • the reinforcing plate 37 has a boss 371A at the opening 310A of the circuit board 31, the photosensitive chip 32 is mounted on the reinforcing plate 37, then, the photosensitive chip 32 The bottom surface of is higher than the bottom surface of the circuit board 31 but lower than the top surface of the circuit board 31.
  • FIG. 27 illustrates another specific example of the camera module 30 according to the embodiment of the present application, wherein the camera module 30 illustrated in FIG. 27 is a part of the camera module 30 illustrated in FIG. 24 A variant implementation.
  • the camera module 30 includes a circuit board 31, a photosensitive chip 32, a base 35, an optical lens 332, a color filter element 331, and a reinforcing plate 37, wherein,
  • the circuit board 31 has an opening 310A formed through the circuit board 31, the reinforcing plate 37 is attached to the bottom surface of the circuit board 31, and the photosensitive chip 32 is disposed on the circuit board 31.
  • the opening 310A of the board 31 is attached to the reinforcing plate 37, the photosensitive chip 32 is conductively connected to the circuit board 31, and the color filter element 331 and the optical lens 332 are sequentially It is arranged on the photosensitive path of the photosensitive chip 32. In this way, the imaging light passing through the display screen 20 first reaches the optical lens 332, and after being filtered by the color filter element 331, reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction.
  • the optical lens 332 and the base 35 have an integrated structure, that is, the optical lens 332 and the base 35 have been assembled before participating in the assembly of the camera module 30 Into a whole.
  • the optical lens 332 is an integrated lens 333 which is assembled with the base 35 to form a component unit.
  • the base 35 has at least two positioning posts extending downward
  • the circuit board 31 has at least two openings
  • the positioning posts pass through the openings and are disposed on the reinforcing plate. 37.
  • the integrated lens 333 and the photosensitive chip 32 have the same mounting reference surface (ie, the top surface of the reinforcing plate 37). In this way, the overall height of the camera module 30 can be reduced while meeting the design requirements of the preset optical back focus.
  • the integrated lens 333 may further include the color filter unit 331, that is, in this specific implementation, the optical lens 332, the base 35 and the
  • the color filter unit 331 has an integrated structure, that is, the optical lens 332, the base 35 and the color filter unit 331 have been assembled into a whole before participating in the assembly of the camera module 30. In this way, the assembly method of the camera module 30 can be made more compact, so that the overall height of the camera module 30 can be reduced.
  • FIG. 28 illustrates another specific example of the camera module 30 according to an embodiment of the present application.
  • the camera module 30 includes an optical lens 332, a base 35, a color filter element 331, a photosensitive chip 32, and a circuit board 31, wherein the photosensitive chip 32 is conductively grounded.
  • the base 35 is disposed on the circuit board 31, the lens and the color filter element 331 are sequentially disposed on the photosensitive path of the photosensitive chip 32, wherein the base 35 is used To support the color filter element 331.
  • the imaging light passing through the display screen 20 first reaches the optical lens 332, is filtered by the color filter element 331, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction .
  • the camera module 30 further includes a set of leads 34, wherein after the photosensitive chip 32 is attached to the circuit board, the photosensitive chip 32 and the circuit board 31 are realized by the leads 34 Electrical connection between.
  • each of the lead wires 34 bends and extends between the photosensitive chip 32 and the circuit board 31, so as to connect the photosensitive chip 32 to the circuit board 31 through the lead wires 34, so that,
  • the circuit board 31 can supply power to the photosensitive chip 32 according to the lead 34, and the photosensitive chip 32 can transmit the collected signal according to the lead 34.
  • the type of the lead 34 is not limited by this application.
  • the lead 34 may be a gold wire, a silver wire, or a copper wire.
  • the lead 34 can be installed between the circuit board 31 and the photosensitive chip 32 through a process of "golding wire" to realize electrical connection between the two.
  • the "golden thread” process is generally divided into two types: the “positive gold line” process and the “reverse gold line” process.
  • the “positive gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the circuit board 31, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the photosensitive chip 32. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31.
  • the "reverse gold wire” process means that in the process of laying out the leads 34, first one end of the lead 34 is formed on the conductive end of the photosensitive chip 32, and then the lead 34 is bent and extended, and finally The other end of the lead 34 is formed on the conductive end of the circuit board 31. In this way, the lead 34 is formed between the photosensitive chip 32 and the circuit board 31. It is worth mentioning that the height of the upward protrusion of the lead 34 formed by the "reverse gold wire” process is relative to the height of the upward protrusion of the lead 34 formed by the "positive gold wire” process. Therefore, preferably, In this specific implementation, the wire 34 is formed by the "reverse gold wire” process.
  • a set of electronic components 312 are also provided on the circuit board 31, wherein each of the electronic components 312 can be mounted on the edge of the circuit board 31 at intervals by a process such as SMT (Surface Mount Technology) Area (compared to the mounting position of the photosensitive chip 32).
  • the electronic components 312 include but are not limited to resistors, capacitors, inductors and the like. It is worth mentioning that the photosensitive chip 32 and each of the electronic components 312 may be located on the same side or the opposite side of the circuit board 31 respectively. For example, the photosensitive chip 32 and each of the electronic components 312 may be respectively located on the same side of the circuit board 31, and each of the electronic components 312 may be mounted on the circuit board 31 at intervals. The edge area.
  • the base 35 is supported on the top surface of the circuit board 31, and the base 35 includes a main body 352 and extends downward along the main body 352.
  • the main body 352 and the side wall 353 define a receiving cavity 354.
  • the side wall 353 is supported by the circuit board 31, and the bottom surface of the base 35, the upper surface of the circuit board 31 and the side wall 353 define together
  • the accommodating cavity 354 is formed, wherein the electronic components 312 provided on the circuit board 31 are accommodated in the accommodating cavity 354.
  • the height dimension of the receiving cavity 354 is less than 0.2 mm, for example, 0.1 mm.
  • the base 35 further has at least one accommodating hole 355, and the accommodating hole 355 penetrates the base 35 to communicate with the accommodating cavity 354 And the external environment.
  • the height of the accommodating cavity 354 is lower than that of the electronic components 312 with higher dimensions, such as capacitors. Therefore, when the base 35 is disposed on the circuit board 31, since the height from the bottom surface of the main body 352 of the base 35 to the top surface of the circuit board 31 is smaller than that of the electronic components 312 with relatively high dimensions such as capacitors, If the accommodating hole 355 is not provided, the aforementioned electronic component 312 cannot be accommodated.
  • the function of the accommodating hole 355 is to avoid high-size electronic components 312, so that when the height of the base 35 is reduced, the electronic components 312 can also be accommodated in the base 35. .
  • the overall design height of the base 35 can be reduced, so that the overall height of the camera module 30 can be reduced.
  • the height of the capacitor in the electronic component 312 is 0.38 mm
  • the height of the accommodating cavity 354 is 0.1 mm
  • the thickness of the main body 352 of the base 35 is set to 0.4 mm, that is, The height of the receiving hole 355 is 0.4 mm.
  • the accommodating hole 355 should match the arrangement of the electronic component 312 of the circuit board 31, and the horizontal size of the electronic component 312 determines the size of the accommodating hole 355 That is, the electronic component 312 should be able to be accommodated in the receiving hole 355.
  • the base 35 further has a light through hole 356 formed in the main body 352 of the base 35 and corresponding to the photosensitive chip 32.
  • the light-through hole 356 is used to place the color filter element 331.
  • the main body 352 of the base 35 further has a cantilever 357, the cantilever 357 integrally extends from the main body 352 and defines the size of the light-passing hole 356, wherein the color filter element 331 is placed On the cantilever 357, the light received by the module is filtered.
  • the color filter element 331 can be implemented in different types, including but not limited to the color filter element 331 can be implemented as an infrared cut filter, a full transmission spectrum filter Light sheet and other filters or a combination of multiple filters.
  • the color filter element 331 when the color filter element 331 is implemented as a combination of an infrared cut filter and a full transmission spectrum filter, that is, the infrared cut filter and the full transmission spectrum filter can be Switch to be selectively located on the photosensitive path of the photosensitive chip 32. In this way, when the camera module 30 is used in an environment with sufficient light such as daytime, the infrared cut filter can be switched to the photosensitive path.
  • the light-sensing path of the chip 32 is used to filter the infrared rays in the light reflected by the object entering the camera module 30 through the infrared cut filter, and when the camera module is used in a dark environment such as night In the case of the group 30, the full transmission spectrum filter can be switched to the photosensitive path of the photosensitive chip 32 to allow part of the infrared rays of the light reflected by the object entering the camera module 30 to pass through.
  • the color filter element 331 can also be arranged at other positions on the photosensitive path of the photosensitive chip 32.
  • the color filter element 331 is arranged on the bottom of the optical lens 332, and the bottom of the optical lens 332 And so on, this application is not limited.
  • the base 35 can be implemented as a traditional plastic bracket, which is prefabricated and attached to the top surface of the circuit board 31; or, the base 35 It can be implemented as a molded base, which can be integrally formed by an injection molding process and attached to the top surface of the circuit board 31.
  • the containing hole 355 is configured as a through hole, that is, the containing hole 355 is connected to the containing cavity 354 and the external environment. It should be conceivable that when the camera module 30 is assembled, dirt can easily enter through the accommodating hole 355 and cause stains on the photosensitive chip 32.
  • the camera module 30 further includes a protective member 38, which extends downwardly from the main body 352 integrally.
  • the protective member 38 surrounds the photosensitive chip 32, the protective member 38, the main body 352 of the base 35, and the color filter element 331 disposed on the main body 352 A sealed space is formed to prevent dirt from entering the photosensitive chip 32.
  • the protector 38 can be implemented as a part of the main body 352 of the base 35, which extends downward from the main body 352, wherein, when the base 35 is disposed on the When the circuit board 31 is used, the protective member 38 surrounds the photosensitive chip 32, and the protective member 38, the main body 352 of the base 35, and the color filter element 331 disposed on the main body 352 form a seal Space to prevent dirt from entering the photosensitive chip 32.
  • the protective member 38 and the base 35 are arranged separately, as shown in FIG. 29.
  • the protective member 38 is attached to the base 35 through processes such as bonding, thereby lowering the base. 35 Difficulty in molding.
  • the upper end of the accommodating hole 355 can be sealed with a film or glue, etc., to prevent damage to the electronic components 312 on the one hand, and to further enhance the sealing effect on the other hand to prevent dirt from entering the photosensitive chip 32.
  • the camera module 30 can be implemented as a fixed focus module or a dynamic focus module.
  • the camera module 30 is a dynamic focus module
  • the The camera module 30 further includes a driver 36 electrically connected to the circuit board 31 (for example, but not limited, the driver can be implemented as a motor, etc.).
  • the driver 36 is used to controllably drive the lens to move. To realize Auto-Focus, as shown in Figure 30.
  • the driver 36 includes at least one positioning column 361 extending at the lower end of the driver 36, and at least one positioning column 361 is formed at a position corresponding to the driver 36 At least one of the accommodating holes 355, so that when the driver 36 is installed on the base 35, the positioning post is engaged with the accommodating hole 355 in a pin manner.
  • the positioning post 361 and the accommodating hole 355 can cooperate to improve the installation accuracy of the driver, and the cooperation between the locating post and the accommodating hole 355 can also improve the reliability of the driver 36 Sex.
  • FIG. 31 illustrates yet another specific example of the camera module 30 according to the embodiment of the present application, wherein the camera module 30 shown in FIG. 31 is the same as the camera module 30 shown in FIG. 28 A variant implementation.
  • the protective member 38 is implemented as a protective film, which is attached to the upper end of the receiving hole 355 (the top surface of the main body 352) Therefore, when the base 35 is disposed on the circuit board 31, the protective film ensures that the accommodating hole 355 and the accommodating cavity 354 are a closed space, so that dirt can also be prevented from entering the photosensitive chip 32.
  • the protective film can also protect the electronic components 312.
  • the protective film may be implemented as a sticker film, or the protective film may be formed on the upper end of the containing hole 355 by a process such as glue potting, so as to seal the containing hole 355.
  • FIG. 32 illustrates yet another specific example of the camera module 30 according to an embodiment of the present application, wherein the camera module 30 illustrated in FIG. 32 is the camera module 30 illustrated in FIG. 28 A variant implementation.
  • the electronic components 312 provided on the circuit board 31 are provided on both sides of the circuit board 31, that is, the photosensitive chip 32 is provided On the circuit board 31, the electronic components 312 are located on both sides of the photosensitive chip 32.
  • the electronic components 312 on the circuit board 31 in the existing camera module are arranged around (or on four sides) of the circuit board 31.
  • the protective member 38 is integrally formed on the main body 352 and extends downward from the main body 352.
  • the protective member 38 extends downward from the main body 352 in parallel with respect to the side wall 353 to form a receiving cavity 358 between the side wall 353 and the protective member 38, and
  • the accommodating hole 355 is formed between the side wall 353 and the protector 38 and is connected to the accommodating cavity 358.
  • the electronic components 312 are arranged on the circuit board 31 in a position such that when the base 35 is attached to the top surface of the circuit board 31, The electronic component 312 is received in the receiving cavity 358, and a part of the electronic component 312 higher than the height of the receiving cavity 358 can be received in the receiving hole 355.
  • the position of the side wall 353 and the protective member 38 should be determined by the arrangement of the electronic component 312 on the circuit board 31.
  • the protective member 38 extends downward from the main body 352 in parallel with respect to the side wall 353, and is formed in The electronic component 312 and the photosensitive chip 32 are used to isolate the photosensitive chip 32 and prevent dirt from entering the photosensitive chip 32 through the containing hole 355.
  • the protective member 38 only needs to be formed between the photosensitive chip 32 and the electronic component 312 to isolate the photosensitive chip 32, that is, the protection The components 38 do not need to be arranged around the photosensitive chip 32, but only need to be formed on both sides of the photosensitive chip 32.
  • the camera module 30 has an extremely narrow side, wherein the extremely narrow side is formed on the side of the circuit board 31 where the electronic components 312 are not arranged, and the photosensitive chip 32.
  • the installation positions of the optical lens 332 are close to the edge of the circuit board 31.
  • the extremely narrow side allows the camera module 30 to be arranged on the edge of a smartphone.
  • FIG. 33 illustrates another specific example of the camera module 30 according to an embodiment of the present application.
  • the camera module 30 includes an optical lens 332, a base 35, a color filter element 331, a photosensitive chip 32, and a circuit board 31, wherein the photosensitive chip 32 is conductively grounded.
  • the base 35 is integrally formed on the circuit board 31 through a molding process, the optical lens 332 and the color filter element 331 are sequentially disposed on the photosensitive path of the photosensitive chip 32, Wherein, the base 35 is used to support the color filter element 331.
  • the imaging light passing through the display screen 20 first reaches the optical lens 332, is filtered by the color filter element 331, and then reaches the photosensitive chip 32 to be sensed by the photosensitive chip 32 for imaging reaction .
  • this specific example is an optimized solution of an existing camera module based on a molding process.
  • the photosensitive chip and electronic components are usually mounted on the circuit board first, and then the molding process is formed on the circuit board.
  • the base After attaching the filter to the lens holder, attach the lens to the filter assembly to keep the lens on the light-sensing path of the chip, as shown in Figure 34.
  • this assembly method of the prior art greatly limits the height of the camera module.
  • the filter is usually combined with a support to form a filter assembly, and then the filter assembly is mounted on the molded base, because the support is usually It is made by an injection molding process, and the thickness of the part of the support used to support the filter is basically greater than 0.15mm, and the thickness of the filter itself is usually greater than 0.21mm. Therefore, the filter assembly The thickness must be at least greater than 0.36mm.
  • the distance between the lens and the circuit board 31 is equal to the sum of the height of the mold base and the thickness of the filter assembly (at least greater than 0.76 mm), and subject to all the above factors, the prior art camera module
  • the distance between the lens of the group and the circuit board 31 cannot be further reduced, that is to say, the height of the camera module of the prior art cannot be further reduced, which cannot meet the market’s requirements for the thinning and miniaturization of the camera module Demand.
  • the molded base has a depressed step portion for mounting the color filter element 331 thereon. That is to say, compared to the existing camera module based on the molding process, in this specific example, the top surface of the molding base is a non-flat surface with a sunken step.
  • the color filter element support can be eliminated, and the distance between the color filter element 331 and the circuit board 31 can be reduced, thereby reducing the module Highly effective.
  • the molded base has a stepped peripheral groove 350, wherein the color filter element 331 of the light-transmitting component 33 is disposed in the mold
  • the stepped peripheral groove 350 of the plastic base In this way, the distance between the optical lens 332 and the circuit board 31 is no longer limited by the thickness of the color filter element 331 itself, that is, the distance between the optical lens 332 and the circuit board 31 The distance between the two can be reduced to be smaller than the sum of the thickness of the color filter element 331 and the height of the molded base to reduce the overall height of the camera module 30.
  • FIG. 35 illustrates another specific implementation of the camera module 30 according to an embodiment of the present application.
  • the camera module 30 is optimized from the perspective of the structure of the photosensitive chip itself, so as to reduce the overall height of the camera module 30.
  • the camera module 30 can be implemented as the camera module described in any one of FIGS. 21 to 33 and a modified implementation thereof.
  • the camera module 30 uses a quantum dot film 323A photosensitive chip 32A to replace the traditional CMOS/CCD photosensitive chip.
  • the quantum dot film 323A photosensitive chip 32A has the dual advantages of plane size and height size.
  • the quantum dot film 323A photosensitive chip 32A includes a color filter 321A, a top electrode 322A, a quantum dot film 323A, a bottom electrode 324A and a pixel circuit 325A from top to bottom, wherein the top electrode 322A
  • the quantum dot film 323A and the bottom electrode 324A constitute the photosensitive layer of the quantum dot film 323A photosensitive chip 32A
  • the quantum dot film 323A is electrically connected to two electrodes, and the current and/or voltage between the two electrodes It is related to the intensity of the light received by the quantum dot film 323A
  • the pixel circuit 325A includes a charge storage and reading circuit.
  • the color filter can be implemented as a Bayer filter or a Mono filter, which is not limited by this application.
  • the light passing through the color filter 321A is irradiated on the photosensitive layer, and the photosensitive layer generates electric charge between the top electrode and the bottom electrode under a given bias voltage, so that the voltage During the integration period, it accumulates in the charge storage.
  • the pixel circuit 325A reads the electrical signal and transmits it to the chip.
  • the electrical signal reflects the signal of the light intensity absorbed by the photosensitive layer during the integration period.
  • the electrical signal is transmitted through the color filter 321A.
  • the intensity of the light generated by the light so the electrical signal can correspond to the light passed by the color filter 321A, that is, if the color filter 321A is red, it means that only red light can pass through, then the color filter 321A
  • the electrical signal generated by the photosensitive layer corresponding to the bottom represents the intensity of red light in the light at that location.
  • the quantum dot film 323A photosensitive chip 32A Compared with existing CMOS or CCD chips, the quantum dot film 323A photosensitive chip 32A has a relatively smaller thickness.
  • FIG. 36 illustrates another specific diagram of the photosensitive chip of the camera module 30 according to an embodiment of the present application, wherein the photosensitive chip illustrated in FIG. 36 is a kind of the photosensitive chip illustrated in FIG. 35 Transformation implementation.
  • the quantum dot film 323A of the photosensitive layer is configured to respond to light of a selected color or color group.
  • photoconductive materials and wavelength selection can be combined.
  • the absorbing material (such as the material forming the color filter 321A array) forms a color sensitive pixel to achieve the color sensitivity.
  • the quantum dot film 323A can be configured to be sensitive to three colors of red (R), green (G), and blue (B), respectively, so that the color filter 321A in the photosensitive chip can be directly eliminated.
  • the color-sensitive pixel In the working process, when light passes through the color-sensitive pixel, the color-sensitive pixel absorbs the corresponding light, converts the light intensity of this wavelength or wavelength band into an electrical signal, and transmits it to the chip through the pixel circuit 325A to process imaging , And the rest of the light continues to propagate forward and will not affect the photoelectric conversion of the pixel.
  • this technical solution can not only reduce the Z-direction size of the photosensitive chip, but also because there is no light filtering by the color filter 321A, the photosensitive chip can receive more light, and the imaging of the photosensitive chip is clearer. .
  • the use of the quantum dot film 323A photosensitive chip 32A can reduce the size of the photosensitive chip in the XY axis direction. Specifically, due to the high light transmittance of the quantum dot film 323A, after being configured as a material sensitive to a certain wavelength or band, the quantum dot film 323A can only absorb the corresponding light, while other light It will transmit light through the film and continue to propagate forward. Therefore, a plurality of quantum dot films 323A sensitive to light of a certain wavelength or wavelength band can be arranged vertically.
  • the light intensity information of multiple wavelengths or bands can be obtained at the same time at a pixel position.
  • the three quantum dot films 323A of red color sensitive pixels, green color sensitive pixels, and blue color sensitive pixels are arranged vertically.
  • the red color sensitive pixels When light passes through the red color sensitive pixels, the red light is absorbed and converted into electrical signals, and the remaining light continues to move forward.
  • Propagation after passing through the green color-sensitive pixels, the green light is absorbed and converted into electrical signals, and the remaining light continues to travel forward.
  • blue light is also absorbed and converted into electrical signals. Therefore, the light intensity information of multiple wavelengths or wavelength bands can be obtained at the same time at a point of the size of a pixel.
  • Each layer of quantum dot film 323A can absorb and transform any kind of light required, and only the quantum dots The film 323A is configured to be sensitive to the required light.
  • the traditional color filter 321A since the traditional color filter 321A is not used, not only a stronger light intensity can be obtained, but also a higher resolution can be obtained for the photosensitive chip of the same specification.
  • the method adopted in this solution can reduce the size of the photosensitive chip in the XY direction, thereby further reducing the plane size of the camera module 30.
  • the quantum dot film 323A in the quantum dot film 323A chip involved in the present application can be prepared by the following process.
  • the quantum dot material can be processed by molten pool casting to form the quantum dot film 323A.
  • the molten pool casting may include depositing the measured quantum dot material onto the substrate and allowing the solution to evaporate, the resulting film may or may not be cracked.
  • the quantum dot material can be processed by electrodeposition to form the quantum dot film 323A.
  • the quantum dot film 323A can be formed by processing the quantum dot material by vapor deposition.
  • the quantum dot film 323A can be formed by spraying the quantum dot material with a spray gun.
  • Spray gun spraying can include treatment from gas.
  • the spray gun spray may include entrainment in the solvent.
  • the quantum dot material can be processed by growth from a solution to form the quantum dot film 323A.
  • the growth of the film from the solution may include cross-linking.
  • the crosslinking agent may be attached to at least part of the substrate to crosslink the quantum dots.
  • the quantum dots can become cross-linked and grow on the substrate where the cross-linking agent is attached, and the growth process can be similar to a seed crystal The process of growth. Since the growth occurs at a location where the cross-linking agent has been attached, the formation of a patterned film on the substrate can be achieved by depositing the cross-linking agent along the patterned substrate.
  • the quantum dot material can be processed by a hydrophobic system to form a film.
  • the hydrophobic system can enable the deposition of a single layer of the quantum dot film 323A of quantum dots, and the single layer of the quantum dot film 323A can be deposited in a pattern.
  • the quantum dot film 323A can be formed by accelerating or evaporating the quantum dot material in the gas phase.
  • the quantum dot film 323A can be formed by processing the quantum dot material by a photoprinting method.
  • the quantum dot film 323A can be formed by processing the quantum dot material by an inkjet printing method.
  • the camera module 30 disposed under the display screen can adopt but not limited to the technical solutions listed above and their modifications, so that the size of the camera module 30 in the height direction can be reduced. Meet the needs of thin smartphones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请涉及一种终端设备及其显示屏和显示屏制备方法,其中,所述显示屏自上而下包括盖板层、触控层、偏振层、封装层、像素层以及电路驱动层。特别地,所述显示屏还包括形成于还包括设于所述像素层上方的微透镜层,其中,所述微透镜层对应于所述像素层中所述像素之间的各所述间隙,用于在该光线藉由所述间隙穿过所述像素层之前,将光线汇聚至各所述间隙,以增加所述显示屏的透光率。

Description

终端设备及其显示屏和显示屏制备方法 技术领域
本申请涉及终端设备,尤其具有全面屏的终端设备及其显示屏和显示屏制备方法。
背景技术
近年来,全面屏终端设备(例如,全面屏手机),逐渐受到广大用户的追捧。现有的全面屏终端设备指的是屏幕超过设备正面预设比例(例如,90%)的超大屏终端设备,并没有真正做到100%的屏幕占比。
目前,在提高屏幕占比的技术方案中,与屏幕一起设置在终端设备同一侧的摄像模组是最大的障碍。然而,对于终端设备而言,其摄像功能往往是不可或缺的功能需求。因此,需对屏幕与摄像模组的结构配置进行优化,以提高终端设备的屏幕占比。
申请内容
本申请的主要目的在于提供一种终端设备及其显示屏和显示屏制备方法,其中,所述显示屏具有相对较高的透光率,以使得一方面设于所述显示屏下方的摄像模组能够采集到足量的用于成像的光线,另一方面所述终端设备的屏幕占比得以扩增。
本申请的另一目的在于提供一种终端设备及其显示屏和显示屏制备方法,其中,所述摄像模组被配置为屏下摄像模组,其与所述显示屏安装于所述终端设备的不同高度位置,从而所述摄像模组免于成为扩增屏幕占比的障碍。
本申请的另一目的在于提供一种终端设备及其显示屏和显示屏制备方法,其中,所述显示屏包括设置在像素层上方的微透镜层,以通过所述微透镜层汇聚进入所述显示屏的光线至所述像素层中各像素之间的间隙,通过这样的方式,提高所述显示屏的透光率。
本申请的另一目的在于提供一种终端设备及其显示屏和显示屏制备方法,其中,本申请所采用的所述显示屏无需对现有的显示屏的现有结构做出大幅调整,仅需在所述显示屏的所述像素层上方额外设置一层对应于所述像素层中各像素间隙的所述微透镜层。
本申请的另一目的在于提供一种终端设备及其显示屏和显示屏制备方法,其中,形成所述微透镜层的材料的折射率大于用于形成所述封装层的材料的折射率,以增强所述显示屏的透光率。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一目的或优势,本申请提供一种显示屏,其自上而下包括:盖板层、触控层、偏振层、封装层、像素层以及电路驱动层;所述电路驱动层形成于所述像素层的底侧,并电连接于所述像素层,用于驱动所述像素层工作;所述封装层形成于所述像素层的顶侧,用于封装所述像素层;所述像素层包括呈阵列分布的像素,各所述像素之间具有间隙,以供依序透过盖板层、触控层、偏振层和所述封装层的光线能藉由所述间隙穿过所述像素层;其中,所述显示屏还包括设于所述像素层上方的微透镜层,其中,所述微透镜层对应于所述像素之间的各所述间隙,用于在该光线藉由所述间隙穿过所述像素层之前,将光线汇聚至各所述间隙,以增加所述显示屏的透光率。
在本申请一实施例中,所述微透镜层包括呈阵列分布的微透镜单元,其中,各所述微透镜单元分别对应于各所述间隙。
在本申请一实施例中,所述微透镜层一体成型于所述像素层中所述像素之间的各所述间隙,所述封装层一体成型于所述微透镜层和所述像素层,以封装所述像素层和所述微透镜层。
在本申请一实施例中,所述微透镜层一体成型于所述封装层的顶表面。
在本申请一实施例中,所述微透镜层凹陷地一体成型于所述封装层的顶表面。
在本申请一实施例中,所述微透镜单元的高度尺寸小于或等于所述封装层的高度尺寸。
在本申请一实施例中,所述微透镜单元的横向尺寸大于所述间隙的尺寸。
在本申请一实施例中,所述微透镜单元的纵向尺寸大于或等于相邻的所述像素之间的间隙的尺寸。
在本申请一实施例中,形成所述封装层的材料为可透光刚性材料。
在本申请一实施例中,形成所述封装层的材料为可透光柔性材料。
在本申请一实施例中,所述显示屏还包括具有一开孔的一背板层,其中,所述开孔对应于所述像素层中相邻所述像素之间的所述间隙。
根据本申请的另一方面,本申请还提供一种显示屏制备方法,其包括:
在显示屏的像素层上形成一微透镜层,其中,所述微透镜层对应于所述像素层中各像素之间的间隙,其中,在所述像素层的底侧设有一层电路驱动层,所述电路驱动层电连接于所述像素层,用于驱动所述像素层工作;以及
在所述微透镜层和所述像素层上形成一封装层,以通过所述封装层封装所述微透镜层和所述像素层,其中,在所述封装层上还依次设有偏振层、触控层和盖板层。
在本申请一实施例中,所述微透镜层一体成型于所述像素层中各所述像素之间的所述间隙。
在本申请一实施例中,所述封装层通过沉积工艺一体成型于所述微透镜层和所述像素层。
在本申请一实施例中,形成所述微透镜层的材料的折射率大于形成所述封装层的材料的折射率。
根据本申请的又一方面,本申请提供一种显示屏制备方法,其包括:
在封装层上一体成型一微透镜层;
将所述封装层设于像素层的上方,其中,所述微透镜层对应于所述像素层中各像素之间的间隙,其中,在所述像素层的底侧设有一层电路驱动层,所述电路驱动层电连接于所述像素层,用于驱动所述像素层工作;以及
在所述封装层上依次设置偏振层、触控层和盖板层。
在本申请一实施例中,所述微透镜层一体成型于所述封装层的顶表面。
在本申请一实施例中,所述微透镜层凹陷地一体成型于所述封装层的顶表面。
根据本申请的另一方面,还提供一种终端设备,其包括:终端主体、摄像模组以及如上所述的显示屏,其中,所述显示屏安装于所述终端主体,所述摄像模组设于所述显示屏的底侧,以使得所述摄像模组能够接收到依序透过所述显示屏的所述盖板层、所述触控层、所述偏振层、所述封装层和所述微透镜层,所述像素层的所述间隙和所述电路驱动层的成像光线。
在本申请一实施例中,所述摄像模组安装于位于所述显示屏底部的所述背板层的所述开孔处。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1图示了现有的用于终端设备的显示屏的结构示意图。
图2图示了根据本申请实施例的显示屏的结构示意图。
图3A图示了根据本申请实施例的所述显示屏的一变形实施。
图3B图示了根据本申请实施例的所述显示屏的制备过程一种示意图。
图3C图示了根据本申请实施例的所述显示屏的制备过程一种示意图。
图3D图示了根据本申请实施例的所述显示屏的制备过程一种示意图。
图3E图示了根据本申请实施例的所述显示屏的制备过程一种示意图。
图3F图示了根据本申请实施例的所述显示屏的制备过程一种示意图。
图3G图示了根据本申请实施例的所述显示屏的制备过程一种示意图。
图4A图示了根据本申请实施例的所述显示屏中微透镜阵列的一种示意图。
图4B图示了根据本申请实施例的所述显示屏中微透镜阵列的另一种示意图。
图5图示了根据本申请实施例的所述显示屏的另一变形实施。
图6A图示了根据本申请实施例的所述显示屏的另一变形实施。
图6B图示了根据本申请实施例的所述显示屏的另一变形实施。
图7图示了根据本申请实施例的所述显示屏的又一变形实施。
图8A图示了根据本申请实施例的所述显示屏的又一变形实施。
图8B图示了根据本申请实施例的所述显示屏的另一变形实施。
图9图示了根据本申请实施例的所述显示屏的又一变形实施。
图10图示了根据本申请实施例的所述显示屏的制备过程一种示意图。
图11图示了根据本申请实施例的所述显示屏的另一种制备过程的示意图。
图12图示了根据本申请实施例的所述显示屏的又一种制备过程示意图。
图13图示了根据本申请实施例的所述显示屏的又一种制备过程示意图。
图14图示了根据本申请实施例的所述显示屏的又一种制备过程示意图。
图15图示了根据本申请实施例的所述显示屏的又一种制备过程示意图。
图16图示了根据本申请实施例的所述显示屏的又一种制备过程示意图。
图17图示了根据本申请实施例的终端设备的一种具体示例。
图18图示了根据本申请实施例的所述终端设备中摄像模组的成像路径示意图。
图19图示了根据本申请实施例的所述终端设备的另一示意图。
图20图示了根据本申请实施例的所述终端设备的又一示意图图21图示了根据本申请实施例的摄像模组的一种具体示例。
图22图示了根据本申请实施例的摄像模组的另一种具体示例。
图23图示了根据本申请实施例的摄像模组的又一种具体示例。
图24图示了根据本申请实施例的摄像模组的又一种具体示例。
图25图示了根据本申请实施例的摄像模组的又一种具体示例。
图26图示了根据本申请实施例的摄像模组的又一种具体示例。
图27图示了根据本申请实施例的摄像模组的又一种具体示例。
图28图示了根据本申请实施例的摄像模组的又一种具体示例。
图29图示了根据本申请实施例的摄像模组的又一种具体示例。
图30图示了根据本申请实施例的摄像模组的又一种具体示例。
图31图示了根据本申请实施例的摄像模组的又一种具体示例。
图32图示了根据本申请实施例的摄像模组的又一种具体示例。
图33图示了根据本申请实施例的摄像模组的又一种具体示例。
图34图示了现有的基于模塑工艺的摄像模组的示意图。
图35图示了所述摄像模组的感光芯片的一种具体示意
图36图示了所述摄像模组的感光芯片的另一种具体示意。
具体实施方式
以下描述用于揭露本申请以使本领域技术人员能够实现本申请。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本申请的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本申请的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本申请的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本申请的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
虽然比如“第一”、“第二”等的序数将用于描述各种组件,但是在这里不限制那些组件。该术语仅用于区分一个组件与另一组件。例如,第一组件可以被称为第二组件,且同样地,第二组件也可以被称为第一组件,而不脱离发明构思的教导。在此使用的术语“和/或”包括一个或多个关联的列出的项目的任何和全部组合。
在这里使用的术语仅用于描述各种实施例的目的且不意在限制。如在此使用的,单数形式意在也包括复数形式,除非上下文清楚地指示例外。另外将理解术语“包括”和/或“具有”当在该说明书中使用时指定所述的特征、数目、步骤、操作、组件、元件或其组合的存在,而不排除一个或多个其它特征、数目、步骤、操作、组件、元件或其组的存在或者附加。
包括技术和科学术语的在这里使用的术语具有与本领域技术人员通常理解的术语相同的含义,只要不是不同地限定该术语。应当理解在通常使用的词典中限定的术语具有与现有 技术中的术语的含义一致的含义。
下面结合附图和具体实施方式对本发明作进一步详细的说明:
申请概述
如上所述,在提高屏幕占比的技术方案中,与屏幕一起设置于终端设备同一侧的摄像模组是最大的障碍。为了真正实现全面屏,减少摄像模组对屏幕占比的影响,现存一种技术方案为:采用伸缩式摄像模组来隐藏和使用摄像模组。具体来说,在需要摄像时,将摄像模组伸出终端设备的壳体外,以进行拍摄;在完成拍摄之后,将摄像模组缩回终端设备壳体内。
然而,这种技术方案在实际应用中具有诸多缺陷。首先,摄像模组通过不断的伸缩进入和/或伸出所述终端设备壳体内的过程中,容易受外力撞击而导致受损。其次,一旦受损,摄像模组和伸缩机构的更换都较为困难。
近些年,还提出了一种屏下摄像模组的技术设想,即,将摄像模组设于显示屏的下方。然而,由于摄像模组设于显示屏的下方,其无法采集到足量的来自外界的成像光线,导致摄像模组的成像功能难以实现。
详细地说,图1图示了现有的用于终端设备的显示屏的结构示意图。如图1所示,该显示屏为OLED显示屏,其自上而下包括盖板层21P、触控层22P、偏振层23P、封装层24P、像素层25P、电路驱动层26P和背板层27P,其中,该盖板层21P通过粘合剂结合于该触控层22P的顶侧;该偏振层23P设于该触控层22P的底侧;在该偏振层23P的底侧设有该封装层24P,其用于封装该像素层25P,以使得该像素层25P处于密封环境,使得该像素层25P内的有机材料不被外界所污染或挥发;在该像素层25P的底侧设有电路驱动层26P,用于驱动所述像素层25P工作,以使得显示屏可显示图像;并且,在该电路驱动层26P的底侧还设有背板层27P,用于加强显示屏的结构强度。
换言之,当摄像模组设于显示屏的下方时,来自外界的成像光线需依次依序透过该显示屏的盖板层21P、触控层22P、偏振层23P、封装层24P、像素层25P、电路驱动层26P和背板层27P才能被设于显示屏下方的摄像模组所感知。本领域的技术人员应知晓,现有的显示屏透光率通常较低,其主要原因为:像素层25P具有较高的高阻光率,而成像光线大多通过像素之间的间隙穿过该像素层25P。
理论上来讲,为了提高现有的显示屏的透光率,可增大像素层各像素间隙之间的大小占比,例如,减少单位像素大小或者增加像素间的间隙大小。然而,减小单位像素大小会导致像素发光强度的降低导致像素寿命缩减,而增大像素间隙直接导致屏幕分辨率降低。换言之,增大像素间隙大小占比的技术方案在具体实施中对所述显示屏幕自身的性能造成损伤,不利于显示技术的发展。
针对上述技术问题,本申请的基本构思是在显示屏的像素层上设有一层微透镜层,以通过所述微透镜层汇聚依序透过盖板层、触控层、偏振层和所述封装层的成像光线至所述像素层中各像素之间的间隙,通过这样的方式,增强所述显示屏的透光率,以使得设于所述显示屏下方的摄像模组能够采集到足量的成像光线,用于成像。
基于此,本申请提出了一种终端设备,其包括:终端主体、摄像模组和显示屏,所述显示屏安装于所述终端主体,所述摄像模组设于所述显示屏的底侧,其中,所述显示屏自上而 下包括:盖板层、触控层、偏振层、封装层、像素层以及电路驱动层,其中,所述电路驱动层形成于所述像素层的底侧,并电连接于所述像素层,用于驱动所述像素层工作;所述封装层形成于所述像素层的顶侧,用于封装所述像素层;所述像素层包括呈阵列分布的像素,各所述像素之间具有间隙,以供依序透过盖板层、触控层、偏振层和所述封装层的光线能藉由所述间隙穿过所述像素层;其中,所述显示屏还包括微透镜层,所述微透镜层形成于所述封装层内,其中,所述微透镜层对应于各所述像素之间的所述间隙,用于在该光线藉由所述间隙穿过所述像素层之前,将光线汇聚至所述间隙,以使得更多数量的光线能藉由所述像素层中各所述像素之间的间隙穿过所述像素层,并透过所述电路驱动层抵至所述摄像模组。换言之,通过在所述显示屏中设置所述微透镜层,提高所述显示屏的透光率,从而当摄像模组设于所述显示屏的下方时,所述摄像模组能够依旧能采集到足量的成像光线,用于成像。即,通过优化之后的所述显示屏,能够实现屏下摄像模组的技术方案,以真正地实现终端设备的全面屏设计。
在介绍本申请的基本原理之后,下面将参考附图来具体介绍本申请的各种非限制性实施例。
示例性显示屏
图2图示了根据本申请实施例的显示屏的结构示意图。如图2所示,根据本申请实施例的显示屏20用于实现终端设备(例如,智能手机)的全面屏配置,其包括:自上而下分布的盖板层21、触控层22、偏振层23、封装层24、像素层25以及电路驱动层26,其中,所述电路驱动层26形成于所述像素层25的底侧,并电连接于所述像素层25,用于驱动所述像素层25工作;所述封装层24形成于所述像素层25的顶侧,用于封装所述像素层25;以及,所述像素层25包括呈阵列分布的像素251,各所述像素251之间具有间隙250,以供依序透过盖板层21、触控层22、偏振层23和所述封装层24的光线能藉由所述间隙250穿过所述像素层25。
特别地,所述显示屏20还包括设于所述像素层25上方的微透镜层28,其中,所述微透镜层28对应于所述像素层25中所述像素251之间的各所述间隙250,用于在该光线藉由所述间隙250穿过所述像素层25之前,将光线汇聚至各所述间隙250,以使得相对更多数量的光线能藉由所述间隙250穿过所述像素层25,通过这样的方式,所述显示屏20的整体透光率能被有效地提高。
如图2所示,在本申请实施例中,所述显示屏20被实施为OLED(Organic Light-emitting Diode,有机发光二极管)显示屏20。本领域的技术人员应知晓,OLED显示屏20具有自发光性、广视角、高对比、低耗电、高反应速度、全彩化等优点。但是,现有的OLED显示屏20普遍透光率不高。
以下对现有的OLED显示屏20进行逐“层”分析,说明现有OLED显示屏透光率低的原因。如前所述,现有的OLED显示屏20自上而下包括盖板层21P、触控层22P、偏振层23P、封装层24P、像素层25P、电路驱动层26P和背板层27P。
首先,盖板层21P通常被实施为玻璃层,其位于显示屏的最顶层,用于对位于所述盖板层21P下方的层结构进行保护。应理解,玻璃层由玻璃材料制备而成,玻璃材料为高透 光率的材料。也就是说,盖板层21P不会对显示屏的透光率造成不良影响。
位于盖板层21P下方的层结构为触控层22P,通常两者通过粘合剂相连。本领域技术人员应知晓,触控层22P是实现显示屏具有触控功能必不可少的配置。换言之,触控层22P对于显示屏的透光率的影响几乎是不可避免的。
位于触控层22P下方的层结构为偏振层23P,其通常被实施为圆偏光片等。应可以理解,诸如圆偏光片之类的偏振层23P,其自身为光学元件,具有较佳的透光率。因此,偏振层23P对显示屏的透光率影响不大。
位于偏振层23P下方的层结构为封装层24P,该封装层24P的作用在于对位于其下方的像素层25P进行封装,以使得像素层25P处于密封环境,使得像素层25P中的有机材料不被外界污染或挥发出去。具体来说,封装层24P有两种类型,其中,当显示屏为刚性屏时,该封装层24P由刚性可透光材料制备而成,例如,玻璃、塑料凳;当显示屏为柔性屏时,该封装层24P由柔性可透光材料制备而成,例如,PI膜((Polyimide Film,聚酰亚胺薄膜)。应观察到,无论是刚性屏还是柔性屏,封装层24P皆由可透光材料制备而成,其对显示屏整体的透光率影响不大。
被封装层24P包覆且位于封装层24P下方的层结构为像素层25P。对于OLED显示屏而言,像素层25中的像素单元被实施为OLED(Organic Light-emitting Diode,有机发光二极管)。本领域的技术人员应知晓,有机发光二极管具有高阻光率,也就是说,穿过盖板层21P、触控层22P、偏振层23P、封装层24P并到达像素层25的光线,难以透过有机发光二级管到达像素层25的另一侧。相应地,这部分光线只能通过各像素之间的间隙,穿过所述像素层25P。也就是说,像素层25P具有透光区和非透光区,其中,透光区由像素之间的间隙界定而成,非透光区由像素界定而成。然而,像素间隙占所述像素层25P总面积的比例较小,因此,大量光线在像素层25P被阻隔,导致显示屏整体的透光率较低。
位于像素层25P下方的层结构为电路驱动层26P,其作用在于电连接于像素层25P并驱动像素层25P工作。电路驱动层26P包括驱动电路和用于封装驱动电路的包装层,其中,包装层由透光率较好的材料制成,其对显示屏的整体透光率影响不大,但驱动电路如果设置不当则会对光线传播造成影响。具体来说,如果驱动电路的电子元器件对应于像素间隙时,则这部分驱动电路会对光线透过显示屏造成不良影响;如果驱动电路的元器件位于像素的下方,则这部分驱动不会对光线传播造成影响。
位于电路驱动层26P下方的层结构为背板层,其主要作用在加强显示屏的整体结构强度。当显示屏为OLED显示屏时,背板层透光率不低,当显示屏为LCD显示屏时,背板层用于提供光源,透光率较低。
综上可知,现有的OLED显示屏的整体透光率低的原因有:第一,像素层25P的透光区占比较低,即像素间隙占比较低,仅有少量的光线能通过像素间隙穿过像素层25P;第二,电路驱动层26P中部分驱动电路(当驱动电路的元器件对应于像素间隙时)会影响显示屏的透光性能。
相应地,在本申请实施例中,所述显示屏20设有所述微透镜层28,其设于所述像素层25上方且对应于所述像素层25中所述像素251之间的各所述间隙250。所述微透镜层28具有汇聚光线的作用,以将该光线汇聚至所述像素251之间的各所述间隙250,从而在 不改变像素间隙250大小占比的前提下有效地使得更多数量的光线能够通过像素251之间的所述间隙250穿过所述像素层25。
进一步地,由于背板层为显示屏20的非必要功能层,因此,在本申请实施例中,可选择直接去除该背板层27P。或者,在所述背板层27需要透光的位置开设开孔270。
通过上述优化,所述显示屏20的整体透光率得以有效地改善,从而外界光线能够从所述显示屏20的一侧(设为正面),依次透过所述盖板层21、所述触控层22、所述偏振层23、所述封装层24、所述微透镜层28和所述电路驱动层26,抵至所述显示屏20的另一侧(设为背面)。
图3A图示了根据本申请实施例的所述显示屏20的一变形实施。如图3所示,在该变形实施中,所述显示屏20还包括支持于所述电路驱动层26底侧的背板层27,以通过所述背板层27加强所述显示屏20的结构强度。特别地,所述背板层27在所述显示屏20需要透光处设有至少一开孔270,其中,所述开孔270对应于所述像素层25中所述像素251之间的所述间隙250,以使得通过所述像素层25的所述间隙250穿过所述像素层25的光线能藉由所述开孔270抵至所述显示屏20的背面。
值得一提的是,在本申请实施例中,可选地,所述开孔270具有与安装于所述显示屏20下方的摄像模组相一致的尺寸,这样,所述开孔270自身可作为所述摄像模组安装定位的基准孔,利于所述摄像模组的安装校准。并且,当所述摄像模组安装于所述开孔270时,藉由所述开孔270穿过所述显示屏20的光线能直接进入所述摄像模组,进行成像反应。
为了进一步地提高所述显示屏20的透光率,在本申请实施例中,还可以对所述电路驱动层26进行优化。具体来说,将所述电路驱动层26中的驱动电路的布置方式调整为:尽量避免驱动电路中的元器件布置于像素间隙250下方,以有效地避免驱动电路对所述显示屏20的整体透光率的造成不良影响。
应领会到,在本申请实施例中,所述微透镜层28的配置方式是影响所述显示屏20的透光率的核心因素。具体来说,在本申请实施例中,所述微透镜层28包括一系列微透镜单元280,优选地,所述微透镜单元280呈阵列分布,且各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250。其中,各所述微透镜单元280具有聚光的效果,即,辐射至各所述微透镜单元280的光线在各所述微透镜单元280处发生折射以向对应像素间隙250进行汇聚,从而相较于现有的显示屏20,通过各所述间隙250的光线数量得以增加,即,所述显示屏20的整体透光率得以改善。
更明确地,在本申请实施例中,各所述微透镜单元280被实施为具有汇聚光线效果的凸透镜,其中,所述凸透镜的凸面朝向所述显示屏20的正面,所述凸透镜的底表面朝向各像素间隙250,从而当外界光线抵至所述凸透镜时,外界光线在所述凸透镜的凸面处发生折射并向所述像素251之间的间隙250进行汇聚,以使得更多外界光线能够藉由所述像素251之间的间隙250穿过所述像素层25。在具体实施中,所述凸透镜可被实施为球面凸透镜、非球面凸透镜或者柱透镜(其中,所述柱透镜的凸面可被实施为球面或者非球面),如图4A和如图4B所示。对此,并不为本申请所局限。
优选地,在本发明所述微透镜层28形成于所述封装层24,即所述封装层24用于封装所述像素层25,其本身具有透光功能,现有技术中,所述封装层24基本被实施为玻璃盖板 或透光封装膜,而本发明中,参考附图5所示,所述封装层24具有一透光区域和一聚光区域,所述透光区域用以使得所述像素层25发出的光透过在屏幕上显示,并成像;而所述聚光区域则被实施为所述微透镜层28,用以聚光。进一步说明,所述封装层24在制作的过程中,在一透光区域形成所述微透镜层28,例如所述封装层24采取注塑等工艺形成时,所述透光区域对应模具被设计为所述微透镜层28的形状,从而得到所述封装层24的所述微透镜层28。
更加具体地说,所述封装层24的一预设位置被设置为分别朝下和朝上凸起以形成至少一所述微透镜单元280。所述封装层24具有一上表面和一下表面,其中所述上表面的至少部分凸出于其他的所述上表面部分,所述下表面的至少部分凸出于其他的所述下表面部分,并且凸出的所述上表面部分和所述凸出的所述下表面部分相互对应,以形成所述聚光区域,从而形成至少一所述微透镜单元280,进而在所述封装层24一体成型所述微透镜层28。
进一步地,在本申请实施例中,所述微透镜层28可一体成型于所述像素层25中所述像素251之间的各所述间隙250,以使得所述微透镜层28的各所述微透镜单元280分别直接对应于所述像素251之间的各所述间隙250,用于将更多数量的光线汇聚至所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。
例如,可采用诸如在感光芯片上形成微透镜层28的制备工艺制备本申请所涉及的所述微透镜层28。当然,还可以采用其他制备工艺在所述像素层25上形成所述微透镜层28,对此,并不为本申请所局限。相应地,成型之后的所述微透镜层28的各所述微透镜单元280的底表面贴合于各所述像素251之间的所述间隙250以遮覆所述间隙250,并且,各所述微透镜单元280的凸面相对所述间隙250向上凸起,以用于将外界光线汇聚至所述间隙250。相应地,所述封装层24则一体成型于所述微透镜层28和所述像素层25,以封装所述像素层25和所述微透镜层28,例如,可通过沉积工艺在所述微透镜层28和所述像素层25的上方形成所述封装层24。也可以是采用蚀刻方法制作本实施例中所阐明的所述显示屏。
参考附图3B所示,是根据附图3A中所示的所述显示屏20的一种制作方法被阐明。首先获得一所述封装层24、一所述像素层25以及一所述电路驱动层26,其中所述封装层24被支撑于所述像素层25,所述像素层25被支撑于所述电路驱动层。所述封装层24包括一第一封装层部分241和一第二封装层部分242,所述第一封装层部分241是由折射率较大的材料制成的,所述第二封装层部分242是由折射率较小的材料制成的。所述封装层24的所述第一封装层部分241对应于所述像素层25的相邻的所述像素251之间的间隙,以使光线能够通过所述封装层24的所述第一封装层部分241后通过所述像素层25的相邻的所述像素251之间的间隙。
进一步地,在所述封装层24一体成型所述微透镜层28。具体地说,对于所述封装层24的所述第一封装层部分241进行刻蚀处理以形成所述微透镜单元280,所述微透镜单元280的厚度可以等于所述封装层24的所述第二封装层部分242,所述微透镜单元280的厚度也可以小于所述封装层24的所述第一封装层部分241。
在本示例中,所述微透镜单元280的厚度小于所述封装层24的所述第一封装层部分241,然后可以将和所述封装层24的所述第二封装层部分242相同的材料填充于所述微透镜 单元280的上方,然后将所述偏振层23、所述触控层22以及所述盖板层21依次设置于所述封装层24的上方,带有所述开孔的所述背板层27设置于所述电路驱动层26的下方,以获得完整的所述显示屏。
参考附图3C所示,是基于附图3B所述制作方法的另一种实施方式。在本实施例中,所述微透镜层28的厚度低于所述封装层24的所述第二封装层部分242的厚度,然后直接将所述偏振层23设置于所述封装层24上方,光线通过所述偏振层23,然后通过所述偏振层23和所述微透镜单元280之间的间隙,再穿过所述微透镜层28,然后通过所述像素层25的相邻的所述像素251之间的所述间隙后达到所述电路驱动层26。
值得注意的是,蚀刻形成的所述微透镜单元280还可以被涂覆或者是喷涂增透膜或者是折射率更大的材料,以增大该位置光线的透过率和折射率。
参考附图3D所示,是基于附图3B所述制作方法的另一种实施方式。在本实施例中,所述微透镜层28的厚度低于所述封装层24的所述第二封装层部分242的厚度,然后填充可透光材料于所述微透镜单元280和所述封装层24之间,以使所述微透镜层28和所述封装层24齐平,并且填充材料和所述封装层24的所述第二封装层部分242的材料的折射率并不相同。然后将所述偏振层23设置于所述封装层24上方,光线通过所述偏振层23,然后通过所述封装层24和所述微透镜单元280之间的间隙,再穿过所述微透镜层28,然后通过所述像素层25的相邻的所述像素251之间的所述间隙后达到所述电路驱动层26。
值得注意的是,蚀刻形成的所述微透镜单元280还可以被涂覆或者是喷涂增透膜或者是折射率更大的材料,以增大该位置光线的透过率和折射率。
参考附图3E所示,是基于附图3B所述制作方法的另一种实施方式。在本实施例中,首先获得所述封装层24,所述封装层24包括两个部分,一个部分是第一封装层部分241,另一部分是第二封装层部分242,其中所述第一封装层部分241和所述第二封装层部分242被相互间隔地设置。值得注意的是所述第一封装层部分241和所述第二封装层部分242之间间隔的大小可以由所述像素251的大小以及所述像素251的间隙值确定。所述第一封装层部分241的折射率大于所述第二封装层部分242的折射率。
然后通过蚀刻工艺在所述第一封装层部分241形成所述微透镜单元280,从而在所述封装层24一体成型所述微透镜层28。所述微透镜单元280的厚度可以低于所述封装层24的厚度,也可以等于所述封装层24的厚度。
在本示例中,所述微透镜单元280的厚度等于所述封装层24的厚度,并且具体地说,所述微透镜单元280的一上进光面和所述封装层24的一上表面在同一表面,所述微透镜单元280的一下出光面和所述封装层24的一下表面在同一表面。
在本发明的一些实施例中,所述微透镜单元280的厚度小于所述封装层24的厚度,所述微透镜单元280的一上进光面低于所述封装层24的一上表面,所述微透镜单元280的一下出光面和所述封装层24的一下表面在同一表面。在本发明的另一实施例中,所述微透镜层28的所述上进光面低于所述封装层24的所述上表面并且所述微透镜层28的所述下出光面高于所述封装层24的所述下表面。
然后填充材料于所述微透镜单元280和所述封装层24之间,并且填充材料和所述封装层24的所述第二封装层部分242的材料相同。
再将所述像素层25、所述电路驱动层26安装于所述封装层24的下方,并且将所述微透镜层28的所述微透镜单元280对准于所述像素层25的相邻的所述像素251之间的间隙。
然后安装所述偏振层23、所述触控层22以及所述盖板层21,以获得的所述显示屏。
参考附图3F所示,是根据本申请实施例的所述显示屏的所述制作方法的另一实施方式。主要不同之处在于所述微透镜厚度小于所述封装层24的厚度,并且所述微透镜的所述上进光面低于所述封装层24的所述上表面并且所述微透镜的所述下出光面等于所述封装层24的所述下表面。
填充于所述封装层24和所述微透镜单元280之间的材料的折射率大于所述封装层24的所述第二封装层部分242的材料,并且填充所述微透镜层28上方和所述封装层24齐平。
然后安装其他各层于所述封装层24以获得所述显示屏。
参考附图3G所示,是根据本申请实施例的所述显示屏的所述制作方法的另一实施方式。主要不同之处在于所述微透镜厚度小于所述封装层24的厚度并且所述微透镜的所述上进光面低于所述封装层24的所述上表面并且所述微透镜的所述下出光面高于所述封装层24的所述下表面。
然后直接安装其他各层于所述封装层24以获得所述显示屏。
在本示例中,光线通过所述偏振层23和所述微透镜层28之间的间隙,然后穿过所述微透镜层28,再通过所述微透镜层28和所述像素层25之间的间隙,以及所以所述像素层25相邻像素250之间的间隙之后,最终到达所述电路驱动层26。
图6A图示了根据本申请实施例的所述显示屏20的另一变形实施。如图6A所示,在该变形实施例中,所述微透镜层28具有膜结构,其先预制成型进而再贴附于所述像素层25,其中,所述微透镜层28的贴附位置以及所述微透镜层28的所述微透镜单元280的布置方式,使得当所述微透镜层28贴附于所述像素层25时,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。相应地,所述封装层24则一体成型于所述微透镜层28和所述像素层25,以封装所述像素层25和所述微透镜层28,例如,可通过沉积工艺在所述微透镜层28和所述像素层25的上方形成所述封装层24。附图3B、附图3C或附图3D中所阐述的所述微透镜层一体成型于所述像素层的制作方法也可被应用于本实施例中。
应注意到,在图4B和图6A所示意的所述显示屏20的具体示例中,所述微透镜层28都位于所述封装层24内。换言之,所述微透镜单元280的高度尺寸H(即,所述微透镜单元280的高度尺寸)小于或等于所述封装层24的高度尺寸。其中,当所述柱透镜的高度尺寸等于所述封装层24的高度尺寸时,所述微透镜层28与所述封装层24的顶表面之间相切。
特别地,如若所述微透镜单元280被实施为柱透镜,则优选地,所述柱透镜的底面宽度W(即,所述微透镜单元280的横向尺寸)大于所述像素251之间的所述间隙250的尺寸,以使得所述柱透镜可全面地覆盖所述像素251之间的所述间隙250。应可以理解,当所述柱透镜全面地遮覆所述像素251之间的所述间隙250时,原先落于间隙250外的光线能通过所述柱透镜的聚光作用被转向至所述像素251之间的所述间隙250,从而该部分光线可藉由所述间隙250穿过所述像素层25。
并且,优选地,所述柱透镜的底面长度L(即,所述微透镜单元280的纵向尺寸)大于或等于相邻的所述像素251之间的间隙,从而所述柱透镜可完整地覆盖各所述像素251之间的所述间隙250,以增加汇聚至像素间隙250的光线数量。更优选地,所述柱透镜的底面长度L为相邻的所述像素251的单个间隙大小的整数倍,例如,所述柱透镜的底面长度可设为一个所述间隙的尺寸,这样,所述柱透镜所形成的阵列方式能完美地对应于所述像素251所形成的阵列方式。
为了进一步地增强所述微透镜层28的光线汇聚效果,优选地,在申请实施例中,所述微透镜层28的成型材料的折射率大于所述封装层24的成型材料的折射率。应可以理解,折射率越高对光线的弯折能力越强,因此,当所述微透镜层28具有更大的折射率时,相对更大范围的原先落于所述间隙250外的光线能通过所述柱透镜的聚光作用被转向至所述像素251之间的所述间隙250。应理解,光线汇聚的效果随着所述微透镜层28的折射率与所述封装层24之间的折射率差异的增大而增加。
图6B图示了根据本申请实施例的所述显示屏20的另一变形实施。如图6B所示,在该变形实施例中,所述微透镜层28是一膜结构。
具体地说,首先在所述封装层24对应于相邻的所述像素251之间的间隙位置,蚀刻出凹陷结构,然后在凹陷结构上镀膜,也就是对于所述封装层24的朝内凹陷的所述下表面进行镀膜,以形成一膜结构,并且所述膜结构可以起到汇聚光线的作用。
所述膜结构和所述像素层25之间可以留有一定的间隙。在本示例中,所述膜结构到所述像素层25之间留有一预设的距离。也就是说,所述膜结构并没有直接接触于所述像素层25。光线通过所述偏振层23后,通过所述封装层24,然后通过所述微透镜层28的所述膜结构,然后通过所述膜结构和所述像素层25之间的间隙,再穿过所述像素层25。
图7图示了根据本申请实施例的所述显示屏20的又一变形实施。如图7所示,在该变形实施中,所述微透镜层28具有膜结构,其先预制成型进而再贴附于所述封装层24,其中,所述微透镜层28的贴附位置以及所述微透镜层28的所述微透镜单元280的布置方式,使得当所述微透镜层28贴附于所述封装层24时,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。
值得注意的是,所述偏振层23被设置为具有至少一容纳空间,其中所述容纳空间对应于所述微透镜层28的所述微透镜单元280,所述容纳空间被设置为匹配于具有膜结构的所述微透镜单元280,所述微透镜单元280的至少部分能够被容纳于所述偏振层23的所述容纳空间。
所述偏振层23的一下表面和所述微透镜层28的一上表面被设置为相互匹配。在本示例中,所述偏振层23的所述下表面被设置为至少部分朝内凹陷的,所述微透镜层28的至少部分所述上表面被设置为至少部分朝外凸出的,所述偏振层23的所述下表面能够和所述微透镜层28的所述上表面相互贴合。
应可以看出,相较于图5和图6A、6B所示意的所述显示屏20,该变形实施例中,所述微透镜层28并非直接与所述像素层25相接触,即,在所述微透镜层28和所述像素层25之间隔了一层所述封装层24,然而,所述微透镜层28的各所述微透镜单元280仍分别对应于所述像素251之间的各所述间隙250,因此,所述微透镜层28仍可以使得更多的光线 汇聚至所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。
图8A图示了根据本申请实施例的所述显示屏20的又一变形实施。如图8A所示,在该变形实施中,所述微透镜层28凹陷地一体成型于所述封装层24的顶表面(例如,通过蚀刻工艺)。具体地说,可以是对于所述偏振层23的至少部分进行蚀刻以使所述偏振层23的一底表面朝内凹陷,然后在所述偏振层23的所述底表面的凹陷位置进行填充以形成所述微透镜单元280。填充材料可以是透明的高折射率的材料。
进一步地,通过调整填充材料的量,可以使得所述微投镜单元280和所述偏振层23齐平。
所述微透镜层28的成型位置以及所述微透镜层28的所述微透镜单元280的布置方式,使得当所述微透镜层28一体成型于所述封装层24的顶表面时,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。
值得一提的是,在该变形实施中,所述微透镜层28与所述封装层24具有一体式结构,这样的结构特征利于所述显示屏20的制备。例如,在制备过程中,所述微透镜层28和所述封装层24可作为一个元件在同一工序中制备,以降低所述显示屏20的制备工序和制备成本。
图8B图示了根据本申请实施例的所述显示屏20的又一变形实施。如图8B所示,在该变形实施中,所述微透镜层28是一膜结构,并且被设置于所述偏振层23。
具体地说,首先在所述偏振层23对应于相邻的所述像素251之间的间隙位置,蚀刻出凹陷结构,然后在凹陷结构上镀膜,也就是对于所述偏振层23的朝内凹陷的所述下表面进行镀膜,以形成一膜结构,并且所述膜结构可以起到汇聚光线的作用。
所述膜结构和所述像素层25之间可以留有一定的间隙。在本示例中,所述膜结构到所述像素层25之间留有一预设的距离。也就是说,所述膜结构并没有直接接触于所述像素层25。光线通过所述偏振层23后,然后通过所述微透镜层28的所述膜结构,然后通过所述膜结构和所述封装层24之间的间隙,再穿过所述封装层24以到达所述像素层25。
图9图示了根据本申请实施例的所述显示屏20的又一变形实施。如图9所示,在该变形实施中,所述微透镜层28凸出地一体成型于所述封装层24的顶表面(例如,通过沉积工艺),其中,所述微透镜层28的成型位置以及所述微透镜层28的所述微透镜单元280的布置方式,使得当所述微透镜层28一体成型于所述封装层24的顶表面时,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。
值得一提的是,在该变形实施中,所述微透镜层28与所述封装层24具有一体式结构,这样的结构特征利于所述显示屏20的制备。例如,在制备过程中,所述微透镜层28和所述封装层24可作为一个元件在同一工序中制备,以降低所述显示屏20的制备工序和制备成本。
综上可知,本申请所采用的所述显示屏20无需对现有的显示屏20的现有结构做出大幅调整,仅需在所述显示屏20的所述像素层25上方额外设置一层对应于所述像素层25中各像素间隙250的所述微透镜层28。相应地,制备所述微透镜层28的工艺也相对简单, 制备效率高、成本较低。
示例性显示屏制备方法
根据本申请的另一方面,本申请还提供一种显示屏制备方法,用于制备具有相对较高透光率的显示屏。
图10图示了根据本申请实施例的所述显示屏20的制备过程一种示意图。如图10所示,在制备过程中,首先预制所述电路驱动层26,并在所述电路驱动层26上形成所述像素层25,其中,所述电路驱动层26电连接于所述像素层25,用于驱动所述像素层25工作。本领域技术人员应知晓,目前OLED显示屏中所述像素层25的主流生产工艺为蒸镀工艺,简单来说,蒸镀工艺就是在真空中通过电流加热,电子束轰击加热和激光加热等方法,使被蒸发材料蒸发成原子或分子,它们随即以较大的自由程作直线运动,碰撞基片表面而凝结,形成薄膜。此外,OLED屏幕中每一像素251除了采用蒸镀工艺“蒸”上去之外,还可以采用印刷工艺,即,使用印刷的方式制备显示器的有机材料薄膜。
进一步地,如图10所示,在所述像素层25上一体成型所述微透镜层28,其中,所述微透镜层28的每一微透镜单元280分别对应于所述像素层25中各像素251之间的间隙250。例如,可通过沉积工艺在所述像素层25的各所述像素251之间的所述间隙250上分别形成所述微透镜单元280,通过这样的方式,在所述像素层25上一体成型所述微透镜层28。
进一步地,如图10所示,在所述微透镜层28和所述像素层25上形成所述封装层24,以藉由所述封装层24封装所述微透镜层28和所述像素层25。例如,同样可采用沉积工艺在所述像素层25和所述微透镜层28上一体成型所述封装层24,以藉由所述封装层24封装所述像素层25和所述微透镜层28。进一步地,在所述封装层24上依次形成所述偏振层23、所述触控层22和所述盖板21,以组合形成所述显示屏20。
可选地,可进一步地在所述电路驱动层26的底侧贴装设有开孔270的背板层27,以通过所述背板层27加强所述显示屏20的结构强度。特别地,所述背板层27的所述开孔270开设于所述显示屏20的透光处。
应可以理解,所述微透镜层28形成于所述封装层24内,并且对应于各所述像素251之间的所述间隙250,从而,当光线依序透过所述盖板层21、所述触控层22、所述偏振层22和所述封装层24抵至所述微透镜层28时,所述微透镜层28将该光线汇聚至各所述像素251之间的所述间隙250,以使得相对更多数量的光线能藉由所述间隙250穿过所述像素层25。进而,穿过所述像素层25的光线能进一步地透过所述电路驱动层26,以抵至所述显示屏20的底侧。这样,所述显示屏20的整体透光率能被有效地提高。
特别地,在上述制备方法中,形成所述微透镜层28的材料的折射率大于形成所述封装层24的材料的折射率。
图11图示了根据本申请实施例的所述显示屏20的另一种制备过程的示意图。如图11所示,在该制备过程中,首先预制所述电路驱动层26,并在所述电路驱动层26上形成所述像素层25,其中,所述电路驱动层26电连接于所述像素层25,用于驱动所述像素层25工作。本领域技术人员应知晓,目前OLED显示屏中所述像素层25的主流生产工艺为蒸镀 工艺,简单来说,蒸镀工艺就是在真空中通过电流加热,电子束轰击加热和激光加热等方法,使被蒸发材料蒸发成原子或分子,它们随即以较大的自由程作直线运动,碰撞基片表面而凝结,形成薄膜。此外,OLED屏幕中每一像素251除了采用蒸镀工艺“蒸”上去之外,还可以采用印刷工艺,即,使用印刷的方式制备显示器的有机材料薄膜。
如图11所示,进一步地,预制具有膜结构的所述微透镜层28,并将所述微透镜层28贴附于所述像素层25。特别地,在本申请实施例中,所述微透镜层28的贴附位置以及所述微透镜层28的所述微透镜单元280的布置方式,使得当所述微透镜层28贴附于所述像素层25时,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。
如图11所示,进一步地,在所述微透镜层28和所述像素层25上形成所述封装层24,以藉由所述封装层24封装所述微透镜层28和所述像素层25。例如,可采用沉积工艺在所述像素层25和所述微透镜层28上一体成型所述封装层24,以藉由所述封装层24封装所述像素层25和所述微透镜层28。进一步地,在所述封装层24上依次形成所述偏振层23、所述触控层22和所述盖板21,以组合形成所述显示屏20。
可选地,可进一步地在所述电路驱动层26的底侧贴装设有开孔270的背板层27,以通过所述背板层27加强所述显示屏20的结构强度。特别地,所述背板层27的所述开孔270开设于所述显示屏20的透光处。
应可以理解,所述微透镜层28位于所述封装层24内且所述微透镜单元280对应于所述像素层25中各所述像素251间隙250,从而,当光线依序透过所述盖板层21、所述触控层22、所述偏振层23和所述封装层24抵至所述微透镜层28时,所述微透镜层28将该光线汇聚至各所述像素251之间的所述间隙250,以使得相对更多数量的光线能藉由所述间隙250穿过所述像素层25。进而,穿过所述像素层25的光线能进一步地透过所述电路驱动层26,以抵至所述显示屏20的底侧。这样,所述显示屏20的整体透光率能被有效地提高。
特别地,在上述制备方法中,形成所述微透镜层28的材料的折射率大于形成所述封装层24的材料的折射率。
图12图示了根据本申请实施例的所述显示屏20的又一种制备过程的示意图。如图12所示,在该制备过程中,首先预制所述电路驱动层26,并在所述电路驱动层26上形成所述像素层25,其中,所述电路驱动层26电连接于所述像素层25,用于驱动所述像素层25工作。本领域技术人员应知晓,目前OLED显示屏中所述像素层25的主流生产工艺为蒸镀工艺,简单来说,蒸镀工艺就是在真空中通过电流加热,电子束轰击加热和激光加热等方法,使被蒸发材料蒸发成原子或分子,它们随即以较大的自由程作直线运动,碰撞基片表面而凝结,形成薄膜。此外,OLED屏幕中每一像素251除了采用蒸镀工艺“蒸”上去之外,还可以采用印刷工艺,即,使用印刷的方式制备显示器的有机材料薄膜。
如图12所示,进一步地,在所述像素层25上一体成型一封装层24,以藉由所述封装层24封装所述像素层25。进一步地,在所述封装层24的顶表面上一体成型一微透镜层28,其中,所述微透镜层28包括呈阵列排布的微透镜单元280,并且,每一微透镜单元280分别对应于所述像素层25的所述像素251之间的间隙250。
具体来说,在该制备过程中,所述微透镜层28通过诸如沉积之类的工艺一体成型于所述封装层24的顶表面。如图12所示,成型之后的所述微透镜层28凸出地延伸于所述封装层24的顶表面,并且,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250。
值得一提的是,由于所述微透镜层28一体成型于所述封装层24的顶表面,即,所述微透镜层28和所述封装层24之间具有一体的结构,从而,在该制备过程中,所述微透镜层28可通过预先一体成型于所述封装层24的顶表面,进而,将带有所述微透镜层28的所述封装层24附着于所述像素层25上方,如图13所示。
如图12所示,进一步地,在所述微透镜层28上依次形成所述偏振层23、所述触控层22和所述盖板21,以组合形成所述显示屏20。
可选地,可进一步地在所述电路驱动层26的底侧贴装设有开孔270的背板层27,以通过所述背板层27加强所述显示屏20的结构强度。特别地,所述背板层27的所述开孔270开设于所述显示屏20的透光处。
应可以理解,所述微透镜层28形成于所述封装层24的顶侧且所述微透镜单元280对应于所述像素层25中各所述像素251之间的间隙250,从而,当光线依序透过所述盖板层21、所述触控层22和所述偏振层23抵至所述微透镜层28时,所述微透镜层28将该光线汇聚起来,并穿过所述封装层24以抵达各所述像素251之间的所述间隙250,从而相对更多数量的光线能藉由所述间隙250穿过所述像素层25。进而,穿过所述像素层25的光线能进一步地透过所述电路驱动层26,以抵至所述显示屏20的底侧。这样,所述显示屏20的整体透光率能被有效地提高。
特别地,在上述制备方法中,形成所述微透镜层28的材料的折射率大于形成所述封装层24的材料的折射率。
图14图示了根据本申请实施例的所述显示屏20的又一种制备过程的示意图。如图14所示,在该制备过程中,首先预制所述电路驱动层26,并在所述电路驱动层26上形成所述像素层25,其中,所述电路驱动层26电连接于所述像素层25,用于驱动所述像素层25工作。本领域技术人员应知晓,目前OLED显示屏中所述像素层25的主流生产工艺为蒸镀工艺,简单来说,蒸镀工艺就是在真空中通过电流加热,电子束轰击加热和激光加热等方法,使被蒸发材料蒸发成原子或分子,它们随即以较大的自由程作直线运动,碰撞基片表面而凝结,形成薄膜。此外,OLED屏幕中每一像素251除了采用蒸镀工艺“蒸”上去之外,还可以采用印刷工艺,即,使用印刷的方式制备显示器的有机材料薄膜。
如图14所示,进一步地,在所述像素层25上一体成型一封装层24,以藉由所述封装层24封装所述像素层25。进一步地,在所述封装层24的顶表面上一体成型一微透镜层28,其中,所述微透镜层28包括呈阵列排布的微透镜单元280,并且,每一微透镜单元280分别对应于所述像素层25的所述像素251之间的间隙250。
具体来说,在该制备过程中,所述微透镜层28通过诸如蚀刻之类的工艺一体成型于所述封装层24的顶表面。如图14所示,成型之后的所述微透镜层28凹陷地形成于所述封装层24的顶表面,并且,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250。
值得一提的是,由于所述微透镜层28一体成型于所述封装层24的顶表面,即,所述微透镜层28和所述封装层24之间具有一体的结构,从而,在该制备过程中,所述微透镜层28可通过预先一体成型于所述封装层24的顶表面,进而,将带有所述微透镜层28的所述封装层24附着于所述像素层25上方,如图15所示。
如图14所示,进一步地,在所述微透镜层28上依次形成所述偏振层23、所述触控层22和所述盖板21,以组合形成所述显示屏20。
可选地,可进一步地在所述电路驱动层26的底侧贴装设有开孔270的背板层27,以通过所述背板层27加强所述显示屏20的结构强度。特别地,所述背板层27的所述开孔270开设于所述显示屏20的透光处。
应可以理解,所述微透镜层28形成于所述封装层24的顶侧且所述微透镜单元280对应于所述像素层25中各所述像素251之间的间隙250,从而,部分光线依序透过所述盖板层21、所述触控层22和所述偏振层23抵至所述微透镜层28,部分光线依次通过所述盖板层21、所述触控层22、所述偏振层23、所述偏振层23和所述微透镜层28之间的间隙以及所述微透镜层28时,所述微透镜层28将该光线汇聚起来,并穿过所述封装层24以抵达各所述像素251之间的所述间隙250,从而相对更多数量的光线能藉由所述间隙250穿过所述像素层25。进而,穿过所述像素层25的光线能进一步地透过所述电路驱动层26,以抵至所述显示屏20的底侧。这样,所述显示屏20的整体透光率能被有效地提高。
特别地,在上述制备方法中,形成所述微透镜层28的材料的折射率大于形成所述封装层24的材料的折射率。
图16图示了根据本申请实施例的所述显示屏20的又一种制备过程的示意图。如图16所示,在该制备过程中,首先预制所述电路驱动层26,并在所述电路驱动层26上形成所述像素层25,其中,所述电路驱动层26电连接于所述像素层25,用于驱动所述像素层25工作。本领域技术人员应知晓,目前OLED显示屏中所述像素层25的主流生产工艺为蒸镀工艺,简单来说,蒸镀工艺就是在真空中通过电流加热,电子束轰击加热和激光加热等方法,使被蒸发材料蒸发成原子或分子,它们随即以较大的自由程作直线运动,碰撞基片表面而凝结,形成薄膜。此外,OLED屏幕中每一像素251除了采用蒸镀工艺“蒸”上去之外,还可以采用印刷工艺,即,使用印刷的方式制备显示器的有机材料薄膜。
如图16所示,进一步地,在所述像素层25上一体成型一封装层24,以藉由所述封装层24封装所述像素层25。进一步地,预制具有膜结构的所述微透镜层28,并将所述微透镜层28贴附于所述封装层24的顶表面。特别地,在本申请实施例中,所述微透镜层28的贴附位置以及所述微透镜层28的各微透镜单元280的布局方式,使得当所述微透镜层28贴附于所述封装层24时,所述微透镜层28的各所述微透镜单元280分别对应于所述像素251之间的各所述间隙250,以提高所述显示屏20的透光率。
如图16所示,进一步地,在所述微透镜层28上依次形成所述偏振层23、所述触控层22和所述盖板21,以组合形成所述显示屏20。
可选地,可进一步地在所述电路驱动层26的底侧贴装设有开孔270的背板层27,以通过所述背板层27加强所述显示屏20的结构强度。特别地,所述背板层27的所述开孔270开设于所述显示屏20的透光处。
应可以理解,所述微透镜层28形成于所述封装层24的顶侧且所述微透镜单元280对应于所述像素层25中各所述像素251之间的间隙250,从而,当光线依序透过所述盖板层21、所述触控层22和所述偏振层23抵至所述微透镜层28时,所述微透镜层28将该光线汇聚起来,并穿过所述封装层24以抵达各所述像素251之间的所述间隙250,从而相对更多数量的光线能藉由所述间隙250穿过所述像素层25。进而,穿过所述像素层25的光线能进一步地透过所述电路驱动层26,以抵至所述显示屏20的底侧。这样,所述显示屏20的整体透光率能被有效地提高。
特别地,在上述制备方法中,形成所述微透镜层28的材料的折射率大于形成所述封装层24的材料的折射率。
示例性终端设备
根据本申请又一方面,本申请还提供一种终端设备,所述终端设备可以以各种形式,例如,本申请描述的所述终端设备可以包括诸如移动电话、智能电话、笔记本电脑、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、导航装置、智能手表等移动终端,以及,诸如数字TV、台式计算机等固定终端。以下,设定所述终端设备为移动终端,并假设该移动终端为智能手机(如图17所示),对本申请进行说明。然而,本领域的技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。为了便于理解和描述,本申请实施例均以智能手机为示例进行说明,其他应用场景相互参照即可。
图17图示了根据本申请实施例的终端设备的一种具体示例,其中,在该具体示例中,所述终端设备被实施为智能手机。如图17所示,所述终端设备包括终端主体10、摄像模组30和如上所述的显示屏20。
所述终端主体10包括设定形成所述终端设备外部轮廓的壳体11和用于安装所述终端设备的控制电路及供电电路的器件的主板12,其中,所述主板12的尺寸小于所述壳体11所界定的收容空间的尺寸,从而所述主板12能够以“平放”的方式安装于所述壳体11内。所述显示屏20安装于所述壳体11,并作为所述终端设备的显示模块,其中,所述显示屏20电连接于所述主板12,以通过所述主板12为所述显示屏20供电,实现图像显示功能。特别地,在本申请实施例中,所述显示屏20安装于所述壳体11的顶部开口处,以通过所述显示屏20界定形成所述终端设定的顶表面,并且,所述摄像模组30设于所述显示屏20的下方并被收容于所述壳体11,作为所述终端设备的摄像模块。
应领会的是,当所述摄像模组30设于所述显示屏20下方时,所述终端设备的屏幕占比(所述显示屏20占据所述终端设备顶表面的比例)可进一步地扩增(极限可增至100%)。换言之,在本申请实施例中,所述摄像模组30被配置为屏下摄像模组30,其与所述显示屏20安装于所述壳体11的不同高度位置,以使得所述摄像模组30免于成为扩增屏幕占比的阻碍。
优选地,在本申请实施例中,所述壳体11采用“窄”边框设计,即,所述壳体11的边缘宽度尺寸相对于所述显示屏20的宽度尺寸可视为忽略。这样,所述终端设备的屏幕占比可被进一步地增加(极限可增至100%)。
应注意到,在本申请实施例中,所述摄像模组30设于所述显示屏20的下方。如前所述,传统的终端设备无法实施“屏下摄像模组30”技术方案的核心技术问题在于:当摄像模组30设于显示屏20的下方,其无法采集到足量的来自外界的成像光线,导致摄像模组30的成像功能难以实现。相应地,在本申请实施例中,所述显示屏20的透光率通过在所述显示屏20内额外设置一层微透镜层28被有效地增加,并且,所述摄像模组30安装于所述显示屏20下方的位置对应于所述微透镜层28在所述显示屏20中的位置,这样,当所述摄像模组30设于所述显示屏20的下方时,来自外界的成像光线依旧能够穿过所述显示屏20(从其正面至其背面)并抵至所述摄像模组30,以进行成像,如图18所示。
具体来说,当所述显示屏20被实施为如图2和图6所示意的所述显示屏20时,所述摄像模组30的成像路径(或者感光路径)为:首先外界光线透过所述显示屏20的盖板层21、触控层22、偏振层23和封装层24,以到达设置于所述像素层25上的所述微透镜层28,其中,所述微透镜层28的各所述微透镜单元280分别对应于所述像素层25中各所述像素251之间的间隙250;进而,到达所述微透镜层28的光线在各所述微透镜单元280处发生折射并向对应的所述像素251之间的间隙250汇聚,以使得相对更多的光线能够藉由所述像素251之间的间隙250穿过所述像素层25;继而,穿过所述像素层25的光线能够进一步地透过所述电路驱动层26,以被设置于所述电路驱动层26下方的所述摄像模组30所采集,以进行成像反应。
具体来说,当所述显示屏20被实施为如图7至图9所示意的所述显示屏20时,所述摄像模组30的成像路径(或者,感光路径)为:首先外界光线透过所述显示屏20的盖板层21、触控层22和偏振层23,以到达设置于所述封装层24上的所述微透镜层28,其中,所述微透镜层28的各所述微透镜单元280隔着所述封装层24分别对应于所述像素层25中各所述像素251之间的间隙250;进而,到达所述微透镜层28的光线在各所述微透镜单元280处发生折射并向对应的所述像素251之间的间隙250的方向汇聚;进而,这部分汇聚的光线穿过所述封装层24,然后进入对应的所述像素251之间的间隙250,通过这样的方式使得,相对更多的光线能够藉由所述像素251之间的间隙250穿过所述像素层25;继而,穿过所述像素层25的光线能够进一步地透过所述电路驱动层26,以被设置于所述电路驱动层26下方的所述摄像模组30所采集,以进行成像反应。
值得一提的是,当所述显示屏20被实施为如图3所示意的所述显示屏20时(即,所述显示屏20还包括设有开孔270的背板层27),所述摄像模组30的成像路径(或者感光路径)为:首先外界光线透过所述显示屏20的盖板层21、触控层22、偏振层23和封装层24,以到达设置于所述像素层25上的所述微透镜层28,其中,所述微透镜层28的各所述微透镜单元280分别对应于所述像素层25中各所述像素251之间的间隙250;进而,到达所述微透镜层28的光线在各所述微透镜单元280处发生折射并向对应的所述像素251之间的间隙250汇聚,以使得相对更多的光线能够藉由所述像素251之间的间隙250穿过所述像素层25;继而,穿过所述像素层25的光线能够进一步地透过所述电路驱动层26和所述背板层27的所述开孔270,以被设置于所述显示屏20底部的所述摄像模组30所采集,以进行成像反应。
或者,所述摄像模组30的成像路径(或者感光路径)为:首先外界光线透过所述显示 屏20的盖板层21、触控层22和偏振层23,以到达设置于所述封装层24上的所述微透镜层28,其中,所述微透镜层28的各所述微透镜单元280隔着所述封装层24分别对应于所述像素层25中各所述像素251之间的间隙250;进而,到达所述微透镜层28的光线在各所述微透镜单元280处发生折射并向对应的所述像素251之间的间隙250的方向汇聚;进而,这部分汇聚的光线穿过所述封装层24,然后进入对应的所述像素251之间的间隙250,通过这样的方式使得,相对更多的光线能够藉由所述像素251之间的间隙250穿过所述像素层25;继而,穿过所述像素层25的光线能够进一步地透过所述电路驱动层26和所述背板层27的所述开孔270,以被设置于所述显示屏20底部的所述摄像模组30所采集,以进行成像反应。
特别地,当所述显示屏20包括设于其底部的所述背板层27时,可选地,所述摄像模组30可安装于所述显示屏20的下方并对应于所述背板层27的所述开孔270;或者,当所述开孔270的尺寸与所述摄像模组30相匹配时,所述摄像模组30可直接安装于所述背板层27的所述开孔270,其中,将所述摄像模组30安装于所述背板层27的所述开孔270不仅能够使得穿过所述电路驱动层26的光线直接被所述摄像模组30所采集,而且,还能够缩减所述终端设备的整体高度尺寸,关于这方面会在后续的描述中进一步的阐述。
虽然得益于具有相对较高透光率的所述显示屏20,所述摄像模组30可被配置为屏下摄像模组30,以使得所述终端设备的屏幕占比可被进一步地增加。但是,在空间关系上,由于所述摄像模组30设于所述显示屏20的下方并且两者同时被收容于所述终端设备的壳体11内,导致所述壳体11的高度尺寸需增加,即,所述终端设备的整体高度尺寸需增加,这与当下终端设备往薄型化发展的趋势相悖。
相应地,前述已提供了一种减少所述终端设备整体高度尺寸的一种技术方案。具体来说,当所述显示屏20被实施为如图3所示意的所述显示屏20时,即,所述显示屏20包括设有开孔270的背板层27,其中,所述开孔270对应于所述微透镜层28。特别地,为了降低所述终端设备的整体高度尺寸,优选地,所述背板层27的所述开孔270具有与所述摄像模组30相匹配的尺寸,以使得所述摄像模组30可直接安装于所述背板层27的所述开孔270内,如图19所示。换言之,在这种情况下,所述背板层27的所述开孔270不仅是所述显示屏20的透光孔,而且还是所述摄像模组30的安装基准孔。应可以理解,当所述摄像模组30安装于所述背板层27的所述开孔270处时,所述显示屏20和所述摄像模组30的整体高度尺寸可有效地降低,从而所述终端设备的整体高度尺寸可被降低。
应可以理解,当所述背板层27的所述开孔270与所述摄像模组30的尺寸不匹配时,例如,所述开孔270的尺寸大于所述摄像模组30的尺寸,在这种情况下,所述终端设备可进一步提供辅助安装件13,所述辅助安装件13安装于所述背板的所述开孔270内,并用于安装所述摄像模组30于其内,如图20所示。例如,所述辅助安装件13可被实施为具有通孔的管状件,其中,所述管状件的外径等于所述开孔270的口径,所述管状件的通孔内径与所述摄像模组30的尺寸相匹配,从而藉由所述管状件依旧可将所述摄像模组30安装于所述背板层27的所述开孔270处。优选地,所述管状件的高度等于或略小于所述开孔270的高度尺寸,这样,当所述摄像模组30安装于所述管状件的通孔内时,所述摄像模组30和所述显示屏20的整体高度尺寸可被降低,以使得所述摄像模组30可直接安装于所述背 板层27的所述开孔270内。
为了进一步地降低所述终端设备的整体高度尺寸,优选地,在本申请实施例中,采用具有较低高度尺寸的摄像模组30。
图21图示了根据本申请实施例的所述摄像模组30的一种具体示例。如图21所示,在该具体实施中,所述摄像模组30包括线路板31、感光芯片32和透光组件33,其中,所述线路板31具有一凹槽310,所述感光芯片32被设置于所述凹槽310内并电连接于所述线路板31,所述透光组件33位于所述感光芯片32的感光路径上。这样,透过所述显示屏20的成像光线先到达所述透光组件33,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
本领域的技术人员应知晓,在现有的基于COB工艺的摄像模组中,线路板具有平整表面,并且,感光芯片直接贴附并电连接于所述线路板的平整表面上。由于每一摄像模组具有预设的光学后焦要求,因此,感光芯片的安装基准高度直接决定了所述摄像模组30的整体高度尺寸。
相应地,相较于现有的基于COB工艺的摄像模组,在该具体示例中,所述线路板31上设有所述凹槽310,以通过所述凹槽310降低所述感光芯片32的安装基准高度。换言之,在本申请实施例中,所述线路板31的顶表面为非平整的表面,其中,所述线路板31中用以安装所述感光芯片32的区域向下凹陷,以使得所述感光芯片32的安装基准高度得以降低。应可以理解,在光学后焦要求保持不变的前提下,所述光学镜头332相对于所述线路板31的安装高度可被降低,从而所述摄像模组30的整体高度尺寸可被降低。
优选地,在该具体示例中,所述凹槽310的尺寸与所述感光芯片32的尺寸相一致,从而所述凹槽310自身可用于定位并限位所述感光芯片32。具体来说,在将所述感光芯片32安装于所述凹槽310的过程中,所述感光芯片32可直接契合地嵌入至所述凹槽310内,而无需像现有的基于COB工艺摄像模组中需不断去校准和定位感光芯片于线路板的安装位置。进一步地,在将所述感光芯片32安装于所述凹槽310内并电连接于所述线路板31之后,所述感光芯片32被“拘禁”在所述凹槽310内,以防止所述感光芯片32从所述凹槽310内脱离或产生偏移。
进一步地,所述摄像模组30还包括一组引线34,其中,在所述感光芯片32贴附于所述线路板31的所述凹槽310内之后,通过所述引线34实现所述感光芯片32与所述线路板31之间的电气连接。具体来说,每一所述引线34弯曲地延伸于所述感光芯片32和所述线路板31之间,以通过所述引线34将所述感光芯片32连接于所述线路板31,从而,所述线路板31可依据所述引线34对所述感光芯片32进行供电,以及,所述感光芯片32可依据所述引线34将所采集到的信号传输出去。
值得一提的是,在该具体示例中,所述引线34的类型并不为本申请所局限,例如,所述引线34可以是金线、银线、铜线。并且,所述引线34可通过“打金线”的工艺安装于所述线路板31和所述感光芯片32之间,以用于实现两者之间的电连接。
具体来说,“打金线”工艺一般分为两种类型:“正打金线”工艺和“反打金线”工艺。“正打金线”工艺指的是在布设所述引线34的过程中,首先在所述线路板31的导电端上形成所 述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述感光芯片32的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。“反打金线”工艺指的是在布设所述引线34的过程中,首先在所述感光芯片32的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述线路板31的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。值得一提的是,通过“反打金线”工艺所形成的所述引线34向上突起的高度相对“正打金线”工艺所形成的所述引线34向上突起的高度低,因此,优选地,在该具体实施中,采用“反打金线”工艺形成所述引线34。
进一步,所述摄像模组30还包括底座35,所述底座35被设置于所述线路板31,用以支撑所述透光组件33。所述透光组件33包括一滤色元件331和一光学镜头332,所述滤色元件331和所述光学镜头332依次被设置于所述感光芯片32的感光路径上。
具体来说,在该具体示例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述线路板31的顶表面;或者,所述底座35可被实施为模塑底座,其可通过MOB(Molding on Board)、MOC(Molding on Chip)工艺一体地成型于所述线路板31和/或所述感光芯片32的相应位置。本领域的技术人员应知晓,MOB(Molding on Board)工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的所述模塑底座一体包覆所述线路板31和位于所述线路板31上的电子元器件312。MOC工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的模塑底座除了包覆所述线路板31和位于所述线路板31上的电子元器件312之外,还包覆了所述引线34的至少一部分,或者,包覆了所述引线34和所述感光芯片32的至少一部分(其中,所述感光芯片32的至少一部分区域为所述感光芯片32的非感光区域)。
在该具体示例中,所述滤色元件331设于所述光学镜头332和所述感光元件之间,以使自所述光学镜头332进入所述摄像模组30的内部的光线在被所述滤色元件331的过滤后,才能够被所述感光芯片32接收和进行光电转化,以改善所述摄像模组30的成像品质。例如,所述滤色元件331可以用来过滤自所述光学镜头332进入所述摄像模组30的内部的光线中的红外线部分。
本领域的技术人员应知晓,所述滤色元件331能够被实施为不同的类型,包括但不限于所述滤色元件331能够被实施为红外截止滤光片、全透光谱滤光片以及其他的滤光片或者多个滤光片的组合。具体来说,例如,当所述滤色元件331被实施为红外截止滤光片和全透光谱滤光片的组合,即,所述红外截止滤光片和所述全透光谱滤片能够被切换以选择性地位于所述感光芯片32的感光路径上,这样,在白天等光线较为充足的环境下使用所述摄像模组30时,可以将所述红外截止滤光片切换至所述感光芯片32的感光路径,以藉由所述红外截止滤光片过滤进入所述摄像模组30的被物体反射的光线中的红外线,并且,当夜晚等光线较暗的环境中使用所述摄像模组30时,可以将所述全透光谱滤光片切换至所述感光芯片32的感光路径,以允许进入所述摄像模组30的被物体反射的光线中的红外线部分透光。
值得一提的是,所述滤色元件331还可设于所述感光芯片32的感光路径上的其他位置,例如,所述滤色元件331设于所述光学镜头332的底部,所述光学镜头332的底部等, 对此,并不为本申请所局限。
此外,还值得一提的是,在该具体示例中,所述摄像模组30可被实施为定焦模组或者动焦模组,其中,当所述摄像模组30为动焦模组时,所述摄像模组30进一步包括一连接于所述线路板31的驱动器36,所述驱动器36用于可控制地驱动所述镜头移动,以实现自动对焦(Auto-Focus)。
图22图示了根据本申请实施例的所述摄像模组30的另一种具体示例,其中,图22所示意的所述摄像模组30为图21所示意的所述摄像模组30的一种变形实施。
具体来说,如图22所示,在该具体示例中,所述摄像模组30包括线路板31、感光芯片32、透光组件33和补强板37,其中,所述线路板31具有贯穿地形成于所述线路板31的一开孔310A,所述补强板37贴附于所述线路板31底表面,所述感光芯片32被设置于所述线路板31的开孔310A处并贴附于所述补强板37,所述感光芯片32可导通地连接于所述线路板31,所述透光组件33被设置于所述感光芯片32的感光路径上。这样,透过所述显示屏20的成像光线先到达所述透光组件33,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
换言之,相较于图21所示意的所述摄像模组30,在该具体示例中,所述线路板31具有所述开孔310A,其贯穿地形成于所述线路板31,以通过所述开孔310A降低所述感光芯片32的安装基准高度。换言之,在本申请实施例中,所述线路板31的顶表面为非平整的表面,其中,所述线路板31中用以安装所述感光芯片32的区域向下凹陷并贯穿所述线路板31,以使得所述感光芯片32的安装基准高度得以进一步地降低。应可以理解,每一摄像模组具有预设的光学后焦要求,从而在保持光学后焦要求不变的前提下,所述光学镜头332相对于所述线路板31的安装高度可进一步地降低,从而所述摄像模组30的整体高度尺寸可被进一步地降低。
如图22所示,应特别注意到,在该具体示例中,所述感光芯片32的底表面与所述线路板31底表面齐平,即,所述感光芯片32的安装基准高度为所述线路板31底表面所在高度,从而在保证预设光学后焦的前提下,可使得所述感光芯片32的安装位置进一步地得以降低,以使得所述摄像模组30的整体高度尺寸进一步的降低。
优选地,在该具体示例中,所述开孔310A的尺寸与所述感光芯片32的尺寸相一致,从而所述开孔310A自身可用于定位并限位所述感光芯片32。具体来说,在将所述感光芯片32安装于所述开孔310A的过程中,所述感光芯片32可直接契合地嵌入至所述开孔310A内并最终贴附于所述补强板37,而无需像现有的基于COB工艺摄像模组中需不断去校准和定位感光芯片32于线路板31的安装位置。进一步地,在将所述感光芯片32安装于所述开孔310A内并电连接于所述线路板31之后,所述感光芯片32被“拘禁”在所述开孔310A内,以防止所述感光芯片32从所述开孔310A内脱离或产生偏移。
进一步地,所述摄像模组30还包括一组引线34,其中,在所述感光芯片32安装于所述线路板31的所述开孔310A内之后,通过所述引线34实现所述感光芯片32与所述线路板31之间的电气连接。具体来说,每一所述引线34弯曲地延伸于所述感光芯片32和所述线路板31之间,以通过所述引线34将所述感光芯片32连接于所述线路板31,从而,所述线路板31可依据所述引线34对所述感光芯片32进行供电,以及,所述感光芯片32 可依据所述引线34将所采集到的信号传输出去。
值得一提的是,在该具体示例中,所述引线34的类型并不为本申请所局限,例如,所述引线34可以是金线、银线、铜线。并且,所述引线34可通过“打金线”的工艺安装于所述线路板31和所述感光芯片32之间,以用于实现两者之间的电连接。
具体来说,“打金线”工艺一般分为两种类型:“正打金线”工艺和“反打金线”工艺。“正打金线”工艺指的是在布设所述引线34的过程中,首先在所述线路板31的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述感光芯片32的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。“反打金线”工艺指的是在布设所述引线34的过程中,首先在所述感光芯片32的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述线路板31的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。值得一提的是,通过“反打金线”工艺所形成的所述引线34向上突起的高度相对“正打金线”工艺所形成的所述引线34向上突起的高度低,因此,优选地,在该具体实施中,采用“反打金线”工艺形成所述引线34。
进一步,所述摄像模组30还包括底座35,所述底座35被设置于所述线路板31,用以支撑所述透光组件33。所述透光组件33包括一滤色元件331和一光学镜头332,所述滤色元件331和所述光学镜头332依次被设置于所述感光芯片32的感光路径上。
具体来说,在该具体示例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述线路板31的顶表面;或者,所述底座35可被实施为模塑底座,其可通过MOB(Molding on Board)、MOC(Molding on Chip)工艺一体地成型于所述线路板31和/或所述感光芯片32的相应位置。本领域的技术人员应知晓,MOB(Molding on Board)工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的所述模塑底座一体包覆所述线路板31和位于所述线路板31上的电子元器件312。MOC工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的模塑底座除了包覆所述线路板31和位于所述线路板31上的电子元器件312之外,还包覆了所述引线34的至少一部分,或者,包覆了所述引线34和所述感光芯片32的至少一部分(其中,所述感光芯片32的至少一部分区域为所述感光芯片32的非感光区域)。
在该具体示例中,所述滤色元件331设于所述光学镜头332和所述感光元件之间,以使自所述光学镜头332进入所述摄像模组30的内部的光线在被所述滤色元件331的过滤后,才能够被所述感光芯片32接收和进行光电转化,以改善所述摄像模组30的成像品质。例如,所述滤色元件331可以用来过滤自所述光学镜头332进入所述摄像模组30的内部的光线中的红外线部分。
本领域的技术人员应知晓,所述滤色元件331能够被实施为不同的类型,包括但不限于所述滤色元件331能够被实施为红外截止滤光片、全透光谱滤光片以及其他的滤光片或者多个滤光片的组合。具体来说,例如,当所述滤色元件331被实施为红外截止滤光片和全透光谱滤光片的组合,即,所述红外截止滤光片和所述全透光谱滤片能够被切换以选择性地位于所述感光芯片32的感光路径上,这样,在白天等光线较为充足的环境下使用所述摄像模组30时,可以将所述红外截止滤光片切换至所述感光芯片32的感光路径,以藉由所 述红外截止滤光片过滤进入所述摄像模组30的被物体反射的光线中的红外线,并且,当夜晚等光线较暗的环境中使用所述摄像模组30时,可以将所述全透光谱滤光片切换至所述感光芯片32的感光路径,以允许进入所述摄像模组30的被物体反射的光线中的红外线部分透光。
值得一提的是,所述滤色元件331还可设于所述感光芯片32的感光路径上的其他位置,例如,所述滤色元件331设于所述光学镜头332的底部,所述光学镜头332的底部等,对此,并不为本申请所局限。
同样值得一提的是,在该具体示例中,所述摄像模组30可被实施为定焦摄像模组或者动焦摄像模组,其中,当所述摄像模组30为动焦摄像模组时,所述摄像模组30进一步包括电连接于所述线路板31的驱动器36,所述驱动器36用于可控制地驱动所述镜头移动,以实现自动对焦(Auto-Focus)。
图23图示了根据本申请实施例的所述摄像模组30的又一种具体示意,其中,图23所示意的所述摄像模组30为图22示意的所述摄像模组30的一种变形实施。
具体来说,相较于图22所示意的所述摄像模组30,在该具体示例中,所述底座35直接被设置安装于所述补强板37。换言之,在该具体示例中,所述底座35的安装基准高度得以缩减,从而安装于所述底座35的所述光学镜头332的安装基准高度得以缩减,以使得所述摄像模组30的整体高度尺寸可得以缩减。
相应地,在该具体实施例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述补强板37的顶表面;或者,所述底座35可被实施为模塑底座,其可通过MOB(Molding on Board)、MOC(Molding on Chip)工艺一体地成型于所述补强板37、所述线路板31和/或所述感光芯片32的相应位置。本领域的技术人员应知晓,MOB(Molding on Board)工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的所述模塑底座一体包覆所述补强板37、所述线路板31和位于所述线路板31上的电子元器件312。MOC工艺指的是,在所述线路板31上通过模塑工艺一体成型所述模塑底座,其中,成型之后的模塑底座除了包覆所述补强板37、所述线路板31和位于所述线路板31上的电子元器件312之外,还包覆了所述引线34的至少一部分,或者,包覆了所述引线34和所述感光芯片32的至少一部分(其中,所述感光芯片32的至少一部分区域为所述感光芯片32的非感光区域)。
图24图示了根据本申请实施例的所述摄像模组30的又一种具体示例,其中,图24所示意的所述摄像模组30为图22示意的所述摄像模组30的另一种变形实施。
具体来说,相较于图22所示意的所述摄像模组30,在该具体示例中,所述底座35具有向下延伸的至少二定位柱351,所述线路板31具有至少二开口311,所述定位柱351穿过所述开口311被设置于所述补强板37,通过这样的方式,使得所述底座35的安装基准高度得以缩减,以使得所述摄像模组30的整体高度可得以缩减。
图25和图26图示了根据本申请实施例的所述摄像模组30的又一种具体示例,其中,图25和图26所示意的所述摄像模组30为图22所示意的所述摄像模组30的又一种变形实施。
如图25和图26所示,在该具体示例中,所述补强板37在所述线路板31的所述开孔 310A处具有凸台371A或凹槽371,以通过所述凸台371A或所述凹槽371来调节所述感光芯片32的安装基准高度。换言之,在该具体示例中,所述感光芯片32底表面与所述线路板31底表面不齐平。
具体来说,如图25所示,当所述补强板37在所述线路板31的开孔310A处具有凹槽371时,所述感光芯片32的安装基准高度被进一步地降低,从而在满足预设光学后焦的设计要求下,所述摄像模组30的整体高度尺寸得以进一步地降低。应注意到,当所述补强板37在所述线路板31的开孔310A处具有凹槽371时,所述感光芯片32贴装于所述补强板37,届时,所述感光芯片32的底表面低于所述线路板31的底表面。
具体来说,如图26所示,当所述补强板37在所述线路板31的开孔310A处具有凸台371A时,相较于现有的基于COB工艺的摄像模组,所述感光芯片32的安装基准高度降低,从而在满足预设光学后焦的设计要求下,所述摄像模组30的整体高度尺寸得以降低。应注意到,当所述补强板37在所述线路板31的开孔310A处具有凸台371A时,所述感光芯片32贴装于所述补强板37,届时,所述感光芯片32的底表面高于所述线路板31底表面但低于所述线路板31的顶表面。
图27图示了根据本申请实施例的所述摄像模组30的又一种具体示例,其中,图27所示意的所述摄像模组30为图24示意的所述摄像模组30的一种变形实施。
具体来说,如图27所示,在该具体示例中,所述摄像模组30包括线路板31、感光芯片32、底座35、光学镜头332、滤色元件331和补强板37,其中,所述线路板31具有贯穿地形成于所述线路板31的一开孔310A,所述补强板37贴附于所述线路板31的底表面,所述感光芯片32被设置于所述线路板31的开孔310A处并贴附于所述补强板37,所述感光芯片32可导通地连接于所述线路板31,所述滤色元件331和所述光学镜头332被依次被设于所述感光芯片32的感光路径上。这样,透过所述显示屏20的成像光线先到达所述光学镜头332,被所述滤色元件331过滤之后,到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
特别地,在该具体实施中,所述光学镜头332和所述底座35具有一体式结构,即,所述光学镜头332和所述底座35在参与到所述摄像模组30组装之前已被组装成一整体。换言之,在该具体示例中,所述光学镜头332为一体式镜头333,其与所述底座35组装形成一个元件单元。进一步地,在该具体示例中,所述底座35具有向下延伸的至少二定位柱,所述线路板31具有至少二开口,所述定位柱穿过所述开口被设置于所述补强板37,通过这样的方式,使得所述一体式镜头333和所述感光芯片32具有相同的安装基准面(即,所述补强板37的顶表面)。这样,在满足预设光学后焦的设计要求下,所述摄像模组30的整体高度尺寸得以降低。
值得一提的是,在申请该具体示例中,所述一体式镜头333可进一步地包括所述滤色单元331,即,在该具体实施中,所述光学镜头332、所述底座35和所述滤色单元331具有一体式结构,即,所述光学镜头332、所述底座35和所述滤色单元331在参与到所述摄像模组30组装之前已被组装成一整体。这样,可使得所述摄像模组30的组装方式更为紧凑,以使得所述摄像模组30的整体高度尺寸得以降低。
图28图示了根据本申请实施例的所述摄像模组30的又一种具体示例。如图28所示, 在该具体示例中,所述摄像模组30包括光学镜头332、底座35、滤色元件331、感光芯片32和线路板31,其中,所述感光芯片32可导通地设置于所述线路板31,所述底座35设置于所述线路板31,所述镜头和所述滤色元件331依次设置于所述感光芯片32的感光路径上,其中,所述底座35用于支撑所述滤色元件331。这样,透过所述显示屏20的成像光线先到达光学镜头332,经所述滤色元件331过滤之后,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
进一步地,所述摄像模组30还包括一组引线34,其中,在所述感光芯片32贴附于所述线路板之后,通过所述引线34实现所述感光芯片32与所述线路板31之间的电气连接。具体来说,每一所述引线34弯曲地延伸于所述感光芯片32和所述线路板31之间,以通过所述引线34将所述感光芯片32连接于所述线路板31,从而,所述线路板31可依据所述引线34对所述感光芯片32进行供电,以及,所述感光芯片32可依据所述引线34将所采集到的信号传输出去。
值得一提的是,在该具体示例中,所述引线34的类型并不为本申请所局限,例如,所述引线34可以是金线、银线、铜线。并且,所述引线34可通过“打金线”的工艺安装于所述线路板31和所述感光芯片32之间,以用于实现两者之间的电连接。
具体来说,“打金线”工艺一般分为两种类型:“正打金线”工艺和“反打金线”工艺。“正打金线”工艺指的是在布设所述引线34的过程中,首先在所述线路板31的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述感光芯片32的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。“反打金线”工艺指的是在布设所述引线34的过程中,首先在所述感光芯片32的导电端上形成所述引线34的一端,进而弯曲地延伸所述引线34,并最终在所述线路板31的导电端上形成所述引线34的另一端,通过这样的方式,在所述感光芯片32和所述线路板31之间形成所述引线34。值得一提的是,通过“反打金线”工艺所形成的所述引线34向上突起的高度相对“正打金线”工艺所形成的所述引线34向上突起的高度,因此,优选地,在该具体实施中,采用“反打金线”工艺形成所述引线34。
在所述线路板31上还设有一组电子元器件312,其中,每个所述电子元器件312可以通过诸如SMT(Surface Mount Technology)工艺被相互间隔地贴装于所述线路板31的边缘区域(相较于感光芯片32的贴装位置)。所述电子元器件312包括但不限于电阻、电容、电感等。值得一提的是,所述感光芯片32和每个所述电子元器件312可以分别位于所述线路板31的同侧或者相反侧。例如,所述感光芯片32和每个所述电子元器件312可以分别位于所述线路板31的同一侧,并且每个所述电子元器件312分被相互间隔地贴装于所述线路板31的边缘区域。
特别地,如图28所示,在该具体示例中,所述底座35支持于所述线路板31的顶表面,并且,所述底座35包括一主体352和沿着所述主体352往下延伸的侧壁353,所述主体352和所述侧壁353界定形成一容纳腔354。当所述底座35被设置于所述线路板31时,所述侧壁353支持于所述线路板31,所述底座35底表面、所述线路板31上表面和所述侧壁353一起界定形成所述容纳腔354,其中,设置于所述线路板31的电子元器件312被容纳于所述容纳腔354内。优选地,所述容纳腔354的高度尺寸小于0.2mm,例如0.1mm。
进一步地,如图28所示,在该具体示例中,所述底座35还具有至少一容置孔355,所述容置孔355贯设于所述底座35,以连通于所述容纳腔354与外部环境。值得理解的是,在该具体实施例中,所述容纳腔354高度低于尺寸较高的电子元器件312,例如电容等。因此,当所述底座35被设置于所述线路板31时,由于所述底座35的所述主体352底表面至所述线路板31顶表面高度小于电容等尺寸较高的电子元器件312,如果没有设置所述容置孔355,上述电子元器件312无法被容纳。也就是说,所述容置孔355的作用在于为了避让高尺寸的电子元器件312,以使得在所述底座35高度降低情况下,所述电子元器件312还可以被容纳于所述底座35。换言之,通过在所述底座35上设置所述容置孔355,可将降低所述底座35的整体设计高度,以使得所述摄像模组30的整体高度尺寸得以下降。
举例但不限定,例如,所述电子元器件312中电容的高度为0.38mm,所述容纳腔354高度为0.1mm,所述底座35的所述主体352厚度被设置为0.4mm,即,所述容置孔355高度为0.4mm。这样,当所述底座35被设置于所述线路板31时,所述电子元器件312中的电容无法完全被容纳于所述容纳腔354内,相应地,所述电子元器件312中的电容的上端延伸至所述容置孔355内,并被容纳于所述容置孔355。应可以理解,在本申请实施例中,所述容置孔355应当匹配于所述线路板31的所述电子元器件312设置,所述电子元器件312水平大小决定所述容置孔355尺寸,即所述电子元器件312应当确保可被容纳于所述容置孔355。
进一步地,如图28所示,在该具体示例中,所述底座35进一步具有一通光孔356,所述通光孔356形成于所述底座35的所述主体352并对应于所述感光芯片32,其中,所述通光孔356用于放置所述滤色元件331。相应地,所述底座35的所述主体352还具有一悬臂357,所述悬臂357一体延伸于所述主体352并界定所述通光孔356的尺寸,其中,所述滤色元件331被放置于所述悬臂357,并对所述模组接收的光进行过滤。特别注意到,在该具体示例中,当所述底座35被设置于所述线路板31,再将所述滤色元件331放置于所述主体352的所述悬臂357,至少一所述电子元器件312上端被容纳于所述容置孔355内时,可观察到部分所述电子元器件312的顶表面高于所述滤色元件331的底表面。
值得一提的是,在该具体示例中,所述滤色元件331能够被实施为不同的类型,包括但不限于所述滤色元件331能够被实施为红外截止滤光片、全透光谱滤光片以及其他的滤光片或者多个滤光片的组合。具体来说,例如,当所述滤色元件331被实施为红外截止滤光片和全透光谱滤光片的组合,即,所述红外截止滤光片和所述全透光谱滤片能够被切换以选择性地位于所述感光芯片32的感光路径上,这样,在白天等光线较为充足的环境下使用所述摄像模组30时,可以将所述红外截止滤光片切换至所述感光芯片32的感光路径,以藉由所述红外截止滤光片过滤进入所述摄像模组30的被物体反射的光线中的红外线,并且,当夜晚等光线较暗的环境中使用所述摄像模组30时,可以将所述全透光谱滤光片切换至所述感光芯片32的感光路径,以允许进入所述摄像模组30的被物体反射的光线中的红外线部分透光。
当然,所述滤色元件331还可设于所述感光芯片32的感光路径上的其他位置,例如,所述滤色元件331设于所述光学镜头332的底部,所述光学镜头332的底部等,对此,并不为本申请所局限。
特别地,如图28所示,在该具体示例中,所述底座35可被实施为传统的塑料支架,其预制成型并贴附于所述线路板31的顶表面;或者,所述底座35可被实施为模塑底座,其可通过注塑工艺一体成型并贴附于所述线路板31的顶表面。然而,由于受限于所述底座35成型工艺,所述容置孔355被设置为通孔,即,所述容置孔355连通于所述容纳腔354和外界环境。应可以想到,在组装所述摄像模组30时,脏污容易通过所述容置孔355进入,对所述感光芯片32造成污点。
因此,如图28所示,在该具体示例中,所述摄像模组30进一步包括一保护件38,所述保护件38从所述主体352一体往下延伸,当所述底座35被设置于所述线路板31时,所述保护件38围绕于所述感光芯片32周围,所述保护件38、所述底座35的所述主体352和设置于所述主体352的所述滤色元件331形成密封空间,预防脏污进入所述感光芯片32。
在具体实施中,所述保护件38可被实施为所述底座35的所述主体352的一部分,其自所述主体352一体地往下延伸,其中,当所述底座35被设置于所述线路板31时,所述保护件38围绕于所述感光芯片32周围,所述保护件38、所述底座35的所述主体352和设置于所述主体352的所述滤色元件331形成密封空间,预防脏污进入所述感光芯片32。或者,所述保护件38和所述底座35为分体设置,如图29所示,例如,所述保护件38是通过粘接等工艺,贴附于所述底座35,从而降低所述底座35成型难度。
优选地,所述容置孔355上端可再用膜或者灌胶等实现密封,以一方面防止电子元器件312受到损坏,另一方面进一步地增强密封效果,以预防脏污进入所述感光芯片32。
值得一提的是,在该具体示例中,所述摄像模组30可被实施为定焦模组或者动焦模组,其中,当所述摄像模组30为动焦模组时,所述摄像模组30进一步包括电接于所述线路板31的一驱动器36(举例但不限定,所述驱动件可实施为马达等),所述驱动器36用于可控制地驱动所述镜头移动,以实现自动对焦(Auto-Focus),如图30所示。
特别地,如图30所示,所述驱动器36包括至少一定位柱361,所述定位柱延伸于所述驱动器36下端,并且,至少一所述定位柱361形成于所述驱动器36的位置对应于至少一所述容置孔355,以使得当所述驱动器36安装于所述底座35时,所述定位柱采取插销方式卡合于所述容置孔355。这样,通过所述定位柱361和所述容置孔355配合可提高所述驱动件安装精度,同时所述定位柱和所述容置孔355之间的配合也可提高所述驱动器36的可靠性。
图31图示了根据本申请实施例的所述摄像模组30的又一种具体示例,其中,图31所示意的所述摄像模组30为图28所示意的所述摄像模组30的一种变形实施。
具体来说,如图31所示,在该具体示例中,所述保护件38被实施为一保护膜,所述保护膜贴于所述容置孔355上端(所述主体352的顶表面),从而当所述底座35被设置于所述线路板31时,所述保护膜确保所述容置孔355和所述容纳腔354是一密闭空间,因此同样可预防脏污进入所述感光芯片32,并且,所述保护膜也可以保护电子元器件312。例如,所述保护膜可实施为贴膜,或者,通过灌胶等工艺在所述容置孔355的上端形成所述保护膜,以对所述容置孔355进行密封。
图32图示了根据本申请实施例的所述摄像模组30的又一种具体示例,其中,图32所 示意的所述摄像模组30为图28所示意的所述摄像模组30一种变形实施。
具体来说,如图32所示,在该具体示例中,设置于所述线路板31的所述电子元器件312被设置于所述线路板31两侧,即,所述感光芯片32被设置于所述线路板31,所述电子元器件312位于所述感光芯片32两侧。本领域的技术人员应知晓,现有的摄像模组中位于线路板31上的所述电子元器件312大多数布设于所述线路板31的四周(或四侧)。
进一步地,如图32所示,在该具体示例中,所述保护件38一体成型于所述主体352并自所述主体352向下延伸。优选地,所述保护件38相对于所述侧壁353平行地自所述主体352向下延伸,以在所述侧壁353和所述保护件38之间形成一收容腔358,并且,所述容置孔355形成于所述侧壁353与所述保护件38之间并与所述收容腔358导通。
特别地,如图32所示,在该具体示例中,所述电子元器件312布设于所述线路板31上的位置,使得当所述底座35附着于所述线路板31的顶表面时,所述电子元器件312被收容于所述收容腔358,并且,高于所述收容腔358高度的部分所述电子元器件312可被收容于所述容置孔355。
应可以理解,在该具体示例中,所述侧壁353与所述保护件38的位置应当由所述电子元器件312于所述线路板31布设方式决定。例如,当所述电子元器件312成一矩阵排布于所述线路板31的两侧时,所述保护件38相对于所述侧壁353平行地自所述主体352向下延伸,并形成于所述电子元器件312和所述感光芯片32之间,用于隔离所述感光芯片32并预防脏污通过所述容置孔355进入到所述感光芯片32。
值得指出的是,在该具体示例中,所述保护件38只需成分别成型于所述感光芯片32与所述电子元器件312之间,用于隔离所述感光芯片32,即所述保护件38无需设置于所述感光芯片32四周,只需形成于所述感光芯片32两侧。换言之,在该具体示例中,所述摄像模组30拥有一极窄侧,其中,所述极窄侧形成于所述线路板31不布置所述电子元器件312的一侧,所述感光芯片32、所述光学镜头332的安装位置都靠近于所述线路板31的边缘。特别地,所述极窄侧可使得所述摄像模组30可被设置于智能手机的边缘。
图33图示了根据本申请实施例的所述摄像模组30的又一种具体示例。如图33所示,在该具体示例中,所述摄像模组30包括光学镜头332、底座35、滤色元件331、感光芯片32和线路板31,其中,所述感光芯片32可导通地设置于所述线路板31,所述底座35通过模塑工艺一体成型于所述线路板31,所述光学镜头332和所述滤色元件331依次设置于所述感光芯片32的感光路径上,其中,所述底座35用于支持所述滤色元件331。这样,透过所述显示屏20的成像光线先到达光学镜头332,经所述滤色元件331过滤之后,再到达所述感光芯片32以被所述感光芯片32所感知,用于进行成像反应。
特别地,该具体示例为现有的基于模塑工艺的摄像模组的一种优化方案。本领域的技术人员应知晓,在现有的基于模塑工艺的摄像模组中,通常先将感光芯片和电子元器件贴装在线路板上,再通过模塑工艺在线路板上形成模塑基座,接着在将滤光片贴装于镜座之后,再将镜头贴装于滤光组件上,以使镜头被保持在芯片的感光路径上,如图34所示。但现有技术的这种组装方式对摄像模组的高度有极大地限制。
详细地说,虽然通过模塑基座来替代传统的镜座,可减小摄像模组的横向尺寸和高度,但是由于在模塑工艺中,所使用的模具需要避让线路板上的电容、电阻等电子元器件(特别 是电容的尺寸较大,目前最小的电容的高度也有0.38mm),并且还要在模具和各种电子元器件之间预留一定的安全距离,因此,模塑基座的高度至少也要大于0.4mm;另一方面,滤光片通常与一支撑件组成一滤光片组件,而后再将滤光片组件贴装在该模塑基座上,由于该支撑件通常由注塑工艺制成,要求该支撑件上用以支撑该滤光片的部分的厚度基本上要大于0.15mm,而该滤光片自身的厚度通常在0.21mm以上,因此,该滤光片组件的厚度至少要大于0.36mm。
也就是说,镜头和线路板31之间的距离等于模塑基座的高度和滤光片组件的厚度之和(至少大于0.76mm),而受到上述所有因素的限制,现有技术的摄像模组的镜头与线路板31之间的距离无法再进一步减小,也就是说,现有技术的摄像模组的高度无法再进一步减小,从而无法满足市场对摄像模组的轻薄化和小型化的需求。
相应地,如图33所示,在该具体示例中,所述模塑基座具有下陷的台阶部,用于安装所述滤色元件331于其上。也就是说,相较于现有的的基于模塑工艺的摄像模组,在该具体示例中,所述模塑基座的顶表面为非平整表面,其具有下陷的台阶部。相应地,通过将所述滤色元件331安装于所述模塑基座的下陷台阶部上,可取消滤色元件支撑件、降低滤色元件331与线路板31的间距,从而实现降低模组高度的效果。
具体来说,如图33所示,在该具体示例中,所述模塑基座具有阶梯式周缘槽350,其中,所述透光组件33的所述滤色元件331被设置于所述模塑基座的所述阶梯式周缘槽350。通过这样的方式,所述光学镜头332和所述线路板31之间的距离不再受到所述滤色元件331自身厚度的限制,也就是说,所述光学镜头332和所述线路板31之间的距离能被减小,以小于所述滤色元件331的厚度与所述模塑基座的高度之和,以减小所述摄像模组30的整体高度尺寸。
图35图示了根据本申请实施例的所述摄像模组30的又一具体实施。如图35所示,在该具体示例中,所述摄像模组30从所述感光芯片自身结构的角度进行优化,以降低所述摄像模组30的整体高度尺寸。换言之,在该具体实施中,所述摄像模组30可被实施为如图21至图33中任一所述的摄像模组及其变形实施。
具体来说,在该具体示例中,所述摄像模组30采用量子点薄膜323A感光芯片32A替代传统的CMOS/CCD感光芯片。相较于传统CMOS/CCD感光芯片,所述量子点薄膜323A感光芯片32A拥有平面尺寸和高度尺寸的双重优势。
首先,采用所述量子点薄膜323A感光芯片32A可使得感光芯片在Z轴方向的尺寸减小。如图35所示,所述量子点薄膜323A感光芯片32A从上到下分别包括滤色器321A,顶部电极322A,量子点薄膜323A,底部电极324A和像素电路325A,其中,所述顶部电极322A、所述量子点薄膜323A、所述底部电极324A组成所述量子点薄膜323A感光芯片32A的光敏层,所述量子点薄膜323A电连接两个电极,两个电极之间的电流和/或电压与所述量子点薄膜323A所接收的光的强度有关;所述像素电路325A包括电荷存储和读取电路。特别地,所述滤色其可被实施为Bayer滤镜或者Mono滤镜,对此,并不为本申请所局限。
在工作过程中,经过所述滤色器321A的光照射在所述光敏层上,所述光敏层在给定的偏压下在所述顶电极和所述底电极之间产生电荷,使得电压在积分时段在电荷存储中累积, 像素电路325A读取电信号传送给芯片,该电信号反应了在积分周期内光敏层吸收的光强度的信号,该电信号是经由所述滤色器321A的光所产生的光强,因此该电信号能与所述滤色器321A所通过的光对应,即,如果该滤色器321A为红色,表示只有红光能透过,那么该滤色器321A下所对应的所述光敏层所产生的电信号代表了该位置光线中红光的强度。
相较于现有的CMOS或CCD芯片,所述量子点薄膜323A感光芯片32A具有相对较小的厚度尺寸。
图36图示了根据本申请实施例的所述摄像模组30的感光芯片又一种具体示意,其中,图36所示意的所述感光芯片为图35所示意的所述感光芯片的一种变形实施。
具体来说,如图36所示,在该具体示例中,所述光敏层的所述量子点薄膜323A配置成响应所选择的颜色或颜色组的光,例如,可以组合光电导材料和波长选择吸收材料(诸如形成滤色器321A阵列的材料)形成一色敏像素来实现所述颜色的敏感度。相应地,可将所述量子点薄膜323A分别配置成对红(R)、绿(G)、蓝(B)三种颜色敏感,这样,可以直接取消所述感光芯片中的滤色器321A。
在工作过程中,当光经过该色敏像素时,色敏像素会吸收所对应的光,将该种波长或者波段的光的光强转化为电信号,经过像素电路325A传送到芯片,处理成像,而其余的光继续向前传播,不会影响该像素点的光电转换。相应地,这种技术方案不仅可以减小感光芯片的Z向尺寸,同时由于没有滤色器321A对光的过滤,所述感光芯片可以接受到更多的光,所述感光芯片的成像更清晰。
进一步地,采用所述量子点薄膜323A感光芯片32A可使得所述感光芯片在XY轴方向的尺寸减小。具体来说,由于所述量子点薄膜323A的透光率高,在配置成能对某一波长或波段敏感的材料后,所述量子点薄膜323A可以只吸收所对应的光,而其他的光则会透光该层薄膜,继续向前传播,因此,可以将多个对某一波长或波段光敏感的量子点薄膜323A垂直排列。
换言之,在一个像素点位置即可同时获取多种波长或波段的光强信息。例如,将红色色敏像素、绿色色敏像素、蓝色色敏像素三种量子点薄膜323A垂直排列,当光经过红色色敏像素后红光被吸收并转化成电信号,剩余的光线继续向前传播,经过绿色色敏像素后,绿光被吸收并转化成电信号,剩余的光线继续向前传播,到蓝色色敏像素后,蓝光也被吸收,转化成电信号。因此,在一个像素点大小的点可以同时获取多种波长或波段光的光强信息。
值得一提的是,在本申请该具体示例中所介绍的RGB三种颜色并不是限制,每一层量子点薄膜323A可以对任意一种所需要的光进行吸收转化,只需要将该量子点薄膜323A配置为对所需要的光敏感。
并且,在该具体示例中,由于不使用传统的滤色器321A,这样不仅可以获得更强的光强,还能使同样规格的感光芯片获得更高的分辨率。换言之,在同样的分辨率下,本方案所采用的方法可以使感光芯片的XY方向尺寸减小,从而进一步减小所述摄像模组30的平面尺寸。
并且,本申请所涉及的所述量子点薄膜323A芯片中的所述量子点薄膜323A可通过如下工艺制备而成。
在一个形成方式中,可以通过熔潭铸来处理量子点材料以形成所述量子点薄膜323A。 熔潭铸可以包括将测量的量子点材料沉积到衬底上并且允许溶液蒸发,所产生的膜可以裂开或者可以不裂开。
在一个形成方式中,可以通过电沉积来处理量子点材料以形成所述量子点薄膜323A。
在一个形成方式中,可以通过气相沉积处理量子点材料来形成所述量子点薄膜323A。
在一个形成方式中,可以通过喷枪喷射处理量子点材料来形成所述量子点薄膜323A。喷枪喷射可以包括从气体处理。喷枪喷射可包括溶剂中的夹带。
在一个形成方式中,可以通过来自溶液的生长来处理量子点材料以形成所述量子点薄膜323A。来自溶液的膜的生长可以包括交联(cross-linking)。交联剂可以附连到衬底的至少部分以交联量子点。当将具有附连的交联剂的衬底浸入量子点溶液中时,量子点可以变成交联的并且在衬底上交联剂所附连的位置生长,生长的过程可以类似于晶种生长的过程。由于生长发生在交联剂已经附连的位置,因此可以通过沿着具有图案的衬底沉积交联剂来实现在衬底上的图案化膜的形成。
在一个形成方式中,可以通过疏水系统处理量子点材料来形成膜。疏水系统可以使得能够沉积量子点的单层所述量子点薄膜323A,可以以图案沉积单层所述量子点薄膜323A。
在一个形成方式中,可以通过气相下的加速或蒸发处理量子点材料来形成所述量子点薄膜323A。
在一个形成方式中,可以通过影印方法处理量子点材料来形成所述量子点薄膜323A。
在一个形成方式中,可以通过喷墨打印方法处理量子点材料来形成所述量子点薄膜323A。
综上,设置于所述显示屏下方的所述摄像模组30能采用但不限于如上列举的技术方案及其变形实施,使得所述摄像模组30在其高度方向上的尺寸得以缩减,以满足智能手机薄型化的需求。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (25)

  1. 一种显示屏,其特征在于,自上而下包括:盖板层(21)、触控层(22)、偏振层(23)、封装层(24)、像素层(25)以及电路驱动层(26);
    所述电路驱动层(26)形成于所述像素层(25)的底侧,并电连接于所述像素层(25),用于驱动所述像素层(25)工作;
    所述封装层(24)形成于所述像素层(25)的顶侧,用于封装所述像素层(25);
    所述像素层(25)包括呈阵列分布的像素,各所述像素之间具有间隙,以供依序透过盖板层(21)、触控层(22)、偏振层(23)和所述封装层(24)的光线能藉由所述间隙穿过所述像素层(25);
    其中,所述显示屏还包括设于所述像素层(25)上方的微透镜层,其中,所述微透镜层对应于所述像素层(25)中所述像素之间的各所述间隙,用于在该光线藉由所述间隙穿过所述像素层(25)之前,将光线汇聚至各所述间隙,以增加所述显示屏的透光率。
  2. 根据权利要求1所述的显示屏,其中,所述微透镜层包括呈阵列分布的微透镜单元,其中,各所述微透镜单元分别对应于各所述间隙。
  3. 根据权利要求2所述的显示屏,其中,所述微透镜层的所述微透镜单元一体成型于所述像素层(25)中所述像素之间的各所述间隙,所述封装层(24)一体成型于所述微透镜层和所述像素层(25),以封装所述像素层(25)和所述微透镜层。
  4. 根据权利要求2或3所述的显示屏,其中,所述微透镜层凸出地一体成型于所述封装层(24)的顶表面。
  5. 根据权利要求2或3所述的显示屏,其中,所述微透镜层凹陷地一体成型于所述封装层(24)的顶表面。
  6. 根据权利要求2-5任一所述的显示屏,其中,所述微透镜单元的高度尺寸小于或等于所述封装层(24)的高度尺寸。
  7. 根据权利要求2-6任一所述显示屏,其中,所述微透镜单元的横向尺寸大于所述间隙的尺寸。
  8. 根据权利要求2-7任一所述的显示屏,其中,所述微透镜单元的纵向尺寸大于或等于相邻的所述像素之间的间隙的尺寸。
  9. 根据权利要求2-8任一所述的显示屏,其中,形成所述微透镜层的材料的折射率大于形成所述封装层(24)的材料的折射率。
  10. 根据权利要求1-9任一所述的显示屏,其中,形成所述封装层(24)的材料为可透 光刚性材料。
  11. 根据权利要求1-9任一所述的显示屏,其中,形成所述封装层(24)的材料为可透光柔性材料。
  12. 根据权利要求1-11任一所述的显示屏,还包括具有一开孔的背板层(27),其中,所述开孔对应于所述像素层(25)中所述像素之间的所述间隙。
  13. 根据权利要求2-12任一所述的显示屏,其中,其中所述微透镜单元包括一膜结构,光线穿过所述膜结构后被汇聚。
  14. 根据权利要求13所述的显示屏,其中所述膜结构形成于所述封装层(24)的凹陷的底表面。
  15. 根据权利要求13所述的显示屏,其中所述膜结构形成于所述偏振层(23)的凹陷的底表面。
  16. 一种显示屏制备方法,其特征在于,包括:
    在显示屏的像素层(25)上形成一微透镜层,其中,所述微透镜层的所述微透镜单元对应于所述像素层(25)中各像素之间的间隙,其中,在所述像素层(25)的底侧设有一层电路驱动层(26),所述电路驱动层(26)电连接于所述像素层(25),用于驱动所述像素层(25)工作;以及
    在所述微透镜层和所述像素层(25)上形成一封装层(24),以通过所述封装层(24)封装所述微透镜层和所述像素层(25),其中,在所述封装层(24)上还依次设有偏振层(23)、触控层(22)和盖板层(21)。
  17. 根据权利要求16所述的显示屏制备方法,其中,所述微透镜层的所述微透镜单元一体成型于所述像素层(25)中各所述像素之间的所述间隙。
  18. 根据权利要求16或17所述的显示屏制备方法,其中,所述封装层(24)通过沉积工艺一体成型于所述微透镜层和所述像素层(25)。
  19. 根据权利要求16-18任一所述的显示屏制备方法,其中,形成所述微透镜层的材料的折射率大于形成所述封装层(24)的材料的折射率。
  20. 一种显示屏制备方法,其特征在于,包括:
    在封装层(24)上一体成型一微透镜层;
    将所述封装层(24)设于像素层(25)的上方,其中,所述微透镜层的所述微透镜单元 对应于所述像素层(25)中各像素之间的间隙,其中,在所述像素层(25)的底侧设有一层电路驱动层(26),所述电路驱动层(26)电连接于所述像素层(25),用于驱动所述像素层(25)工作;以及
    在所述封装层(24)上依次设置偏振层(23)、触控层(22)和盖板层(21)。
  21. 根据权利要求20所述的显示屏制备方法,其中,所述微透镜层凸出地一体成型于所述封装层(24)的顶表面。
  22. 根据权利要求20所述的显示屏制备方法,其中,所述微透镜层凹陷地一体成型于所述封装层(24)的顶表面。
  23. 根据权利要求20-22任一所述的显示屏制备方法,其中,形成所述微透镜层的材料的折射率大于形成所述封装层(24)的材料的折射率。
  24. 一种终端设备,其特征在于,包括:
    终端主体;
    摄像模组;以及
    如权利要求1-15任一所述的显示屏,其中,所述显示屏安装于所述终端主体,所述摄像模组设于所述显示屏的底侧,以使得所述摄像模组能够接收到依序透过所述显示屏的所述盖板层(21)、所述触控层(22)、所述偏振层(23)、所述封装层(24)和所述微透镜层,所述像素层(25)的所述间隙和所述电路驱动层(26)的光线。
  25. 根据权利要求24所述的终端设备,其中,所述摄像模组安装于位于所述显示屏底部的所述背板层(27)的所述开孔处。
PCT/CN2020/078952 2019-03-28 2020-03-12 终端设备及其显示屏和显示屏制备方法 WO2020192436A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/599,268 US20220190294A1 (en) 2019-03-28 2020-03-12 Terminal device and display screen thereof, and preparation method for display screen
EP20776741.9A EP3951567A4 (en) 2019-03-28 2020-03-12 TERMINAL DEVICE AND ASSOCIATED DISPLAY SCREEN, AND DISPLAY SCREEN PREPARATION METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910243137.2 2019-03-28
CN201920412018.0U CN209928406U (zh) 2019-03-28 2019-03-28 终端设备及其显示屏
CN201910243137.2A CN111756884A (zh) 2019-03-28 2019-03-28 终端设备及其显示屏和显示屏制备方法
CN201920412018.0 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020192436A1 true WO2020192436A1 (zh) 2020-10-01

Family

ID=72610201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078952 WO2020192436A1 (zh) 2019-03-28 2020-03-12 终端设备及其显示屏和显示屏制备方法

Country Status (3)

Country Link
US (1) US20220190294A1 (zh)
EP (1) EP3951567A4 (zh)
WO (1) WO2020192436A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111681541B (zh) * 2020-06-28 2021-08-06 武汉华星光电技术有限公司 显示装置
CN114994905B (zh) * 2022-07-14 2023-08-25 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063163A (ja) * 2012-09-21 2014-04-10 Electronics And Telecommunications Research Institute マイクロレンズアレイフィルム及びこれを含むディスプレー装置
CN108650443A (zh) * 2018-05-29 2018-10-12 Oppo广东移动通信有限公司 电子装置及其控制方法
CN108682295A (zh) * 2018-05-29 2018-10-19 珠海格力电器股份有限公司 一种显示屏装置及一种移动终端
CN108732801A (zh) * 2018-05-28 2018-11-02 武汉华星光电技术有限公司 全面屏模组及智能手机
CN108803146A (zh) * 2018-07-03 2018-11-13 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN209928406U (zh) * 2019-03-28 2020-01-10 宁波舜宇光电信息有限公司 终端设备及其显示屏

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8390671B2 (en) * 2006-05-25 2013-03-05 I2Ic Corporation Display with gaps for capturing images
WO2010141235A1 (en) * 2009-06-01 2010-12-09 Nitto Denko Corporation Light-emitting divice comprising a dome-shaped ceramic phosphor
KR102352283B1 (ko) * 2014-11-03 2022-01-18 삼성디스플레이 주식회사 유기발광 디스플레이 장치
US9887359B2 (en) * 2015-03-31 2018-02-06 Industrial Technology Research Institute Organic electro-luminescence device and fabricating method thereof
US9843736B2 (en) * 2016-02-26 2017-12-12 Essential Products, Inc. Image capture with a camera integrated display
KR102610023B1 (ko) * 2016-09-30 2023-12-06 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조방법
WO2019177755A1 (en) * 2018-03-13 2019-09-19 Apple Inc. Displays with direct-lit backlight units
US11699687B2 (en) * 2018-04-25 2023-07-11 Intel Corporation Micro light-emitting diode display driver architecture and pixel structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063163A (ja) * 2012-09-21 2014-04-10 Electronics And Telecommunications Research Institute マイクロレンズアレイフィルム及びこれを含むディスプレー装置
CN108732801A (zh) * 2018-05-28 2018-11-02 武汉华星光电技术有限公司 全面屏模组及智能手机
CN108650443A (zh) * 2018-05-29 2018-10-12 Oppo广东移动通信有限公司 电子装置及其控制方法
CN108682295A (zh) * 2018-05-29 2018-10-19 珠海格力电器股份有限公司 一种显示屏装置及一种移动终端
CN108803146A (zh) * 2018-07-03 2018-11-13 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN209928406U (zh) * 2019-03-28 2020-01-10 宁波舜宇光电信息有限公司 终端设备及其显示屏

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951567A4 *

Also Published As

Publication number Publication date
US20220190294A1 (en) 2022-06-16
EP3951567A1 (en) 2022-02-09
EP3951567A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
CN210349840U (zh) 光学传感器
CN209928406U (zh) 终端设备及其显示屏
TWI765170B (zh) 光學感測器、光學感測系統及其製造方法
CN111628111B (zh) 一种显示面板及其制备方法、显示装置
EP1389804B1 (en) CMOS image sensor using gradient index chip scale lenses
US7550812B2 (en) Camera module and method of fabricating the same
CN113485054B (zh) 减少杂散光的摄像模组及其感光组件
CN211089753U (zh) 影像感测模块
KR100596104B1 (ko) Cmos형 이미지 센서
WO2020192436A1 (zh) 终端设备及其显示屏和显示屏制备方法
US20040256687A1 (en) Optical module, method of manufacturing the same, and electronic instrument
JP2010287619A (ja) 固体撮像装置
US20150163384A1 (en) Camera module and manufacturing method thereof
US20140284746A1 (en) Solid state imaging device and portable information terminal
WO2020192434A1 (zh) 终端设备及其显示屏和应用
JP2010045082A (ja) 表示素子・電子素子モジュールおよびその製造方法、電子情報機器
US20230329036A1 (en) Image display device and electronic device
CN209881831U (zh) 终端设备及其显示单元
US20230232693A1 (en) Image display device and electronic device
CN217087989U (zh) 光电模组和电子设备
CN111756883B (zh) 终端设备及其显示屏和应用
CN209881832U (zh) 终端设备及其显示屏和应用
CN210157219U (zh) 终端设备及其显示屏和应用
CN111756884A (zh) 终端设备及其显示屏和显示屏制备方法
CN111756885A (zh) 终端设备及其显示屏和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776741

Country of ref document: EP

Effective date: 20211028