WO2020192219A1 - 定位测量信息上报方法、终端和网络设备 - Google Patents

定位测量信息上报方法、终端和网络设备 Download PDF

Info

Publication number
WO2020192219A1
WO2020192219A1 PCT/CN2019/129240 CN2019129240W WO2020192219A1 WO 2020192219 A1 WO2020192219 A1 WO 2020192219A1 CN 2019129240 W CN2019129240 W CN 2019129240W WO 2020192219 A1 WO2020192219 A1 WO 2020192219A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
cell
measurement result
rsrp
beam group
Prior art date
Application number
PCT/CN2019/129240
Other languages
English (en)
French (fr)
Inventor
司晔
孙鹏
邬华明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2021557120A priority Critical patent/JP7417626B2/ja
Priority to SG11202110632SA priority patent/SG11202110632SA/en
Priority to KR1020217033484A priority patent/KR20210138076A/ko
Priority to EP19921618.5A priority patent/EP3952411A4/en
Publication of WO2020192219A1 publication Critical patent/WO2020192219A1/zh
Priority to US17/485,075 priority patent/US20220014335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, terminal, and network device for reporting positioning measurement information.
  • a positioning reference signal Positioning Reference Signal, PRS
  • PRS Positioning Reference Signal
  • RS Reference Signal
  • the terminal User Equipment, UE
  • TP Transmission Points
  • RSTD Reference Signal Time Difference
  • the UE sends the RSTD information obtained by the measurement to the positioning server, and the positioning server calculates the position of the UE.
  • the UE does not obtain the precise time of arrival (Time of Arrival, TOA), and the estimated position is determined by the time difference of arrival (TDOA) of at least three base stations (in the standard, the reference signal time difference (Time Difference of Arrival) is used).
  • Reference Signal, RSTD that is, it is determined by relative time rather than absolute time. From a principle point of view, two base stations participating in positioning can determine a hyperbolic trajectory of the UE, and three base stations participating in positioning can confine the UE to a very small area. Continue to add a base station to confine the UE to another area, and take the overlapping part to narrow the scope of the UE.
  • LTE downlink positioning the UE needs to measure the PRS from multiple base stations or multiple cells to obtain RSTD, and then report the RSTD information to the location server on the network side, and finally the location server calculates the location of the UE.
  • the PRS will be sent in the serving cell or neighboring cell by beam sweeping, so the UE may need to measure multiple signals from the serving cell or neighboring cells during positioning.
  • the PRS of the beam The complexity and cost of reporting multi-beam measurement results will increase a lot. In the case of multiple beams, how to reasonably report the measurement results of multiple beams has not been clearly defined, and it needs to be resolved urgently.
  • the embodiments of the present disclosure provide a method, a terminal, and a network device for reporting positioning measurement information to solve the problem of reporting multi-beam measurement results.
  • embodiments of the present disclosure provide a method for reporting positioning measurement information, which is applied to a terminal, and includes:
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • the embodiments of the present disclosure provide another method for reporting positioning measurement information, which is applied to network equipment, and includes:
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • the embodiments of the present disclosure provide another terminal, including:
  • the first receiving module is configured to receive first configuration information from a network device
  • the first sending module is configured to report the measurement result of the beam group according to the first configuration information
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • embodiments of the present disclosure provide still another network device, including:
  • the second sending module is configured to send the first configuration information to the terminal
  • the second receiving module is configured to receive the measurement result of the beam group from the terminal;
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • an embodiment of the present disclosure provides a terminal, including: a memory, a processor, and a program stored on the memory and capable of running on the processor, and the program is executed when the processor is executed Steps in the above method for reporting positioning measurement information.
  • the embodiments of the present disclosure provide another network device, including: a memory, a processor, and a program stored on the memory and capable of running on the processor.
  • the program is executed by the processor, The steps in the above method for reporting positioning measurement information are implemented.
  • the embodiments of the present disclosure provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method for reporting positioning measurement information on the terminal side is implemented Steps, or the steps of the method for reporting positioning measurement information on the network device side when the computer program is executed by the processor.
  • any one of RSRP and TOA may be used to determine the measurement results of N beams for reporting, thereby realizing the reporting of positioning measurement information when PRS is received by multiple beams. Since the measurement result of the reported beam can be reasonably selected according to the RSRP and TOA, the overhead of the positioning measurement information report can be reduced.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for reporting positioning measurement information provided by an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another method for reporting positioning measurement information according to an embodiment of the present disclosure
  • Figure 4 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • Figure 5 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 6 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • Fig. 7 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present disclosure should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the positioning measurement information reporting method, terminal, and network equipment provided by the embodiments of the present disclosure can be applied to a wireless communication system.
  • the wireless communication system may adopt a 5G system, or an evolved long term evolution (evolved Long Term Evolution, eLTE) system, or a subsequent evolved communication system.
  • eLTE evolved Long Term Evolution
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure. As shown in FIG. 1, it includes a terminal 11 and a network device 12.
  • the terminal 11 may be a user terminal or other terminal-side devices. , Such as: mobile phone, tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), personal digital assistant (personal digital assistant, PDA), mobile Internet device (Mobile Internet Device, MID) or wearable device (Wearable) Device) and other terminal-side devices.
  • PDA personal digital assistant
  • mobile Internet device Mobile Internet Device, MID
  • wearable device wearable device
  • the above-mentioned network device 12 may be a 5G base station, or a later version base station, or a base station in other communication systems, or called Node B, Evolved Node B, or Transmission Reception Point (TRP), or access point (Access Point, AP), or other words in the field, as long as the same technical effect is achieved, the network device is not limited to specific technical words.
  • the aforementioned network device 12 may be a master node (Master Node, MN) or a secondary node (Secondary Node, SN). It should be noted that, in the embodiments of the present disclosure, only a 5G base station is taken as an example, but the specific type of network equipment is not limited.
  • FIG. 2 is a flowchart of a method for reporting positioning measurement information according to an embodiment of the present disclosure. The method is applied to a terminal, as shown in FIG. 2, and includes the following steps:
  • Step 201 Receive first configuration information from a network device
  • the foregoing first configuration information is used to configure the terminal to report the measurement result of each cell beam participating in positioning.
  • the network device may transmit the PRS on different beams of each cell in the manner of beam scanning, and measure the PRS transmitted by all the beams of the terminal to obtain the beam measurement result.
  • the sending mode of the above-mentioned first configuration information can be set according to actual needs, which is not further limited here. For example, in an optional embodiment, it may be sent through higher layer signaling.
  • Step 202 Report the measurement result of the beam group according to the first configuration information
  • the beam group is used to transmit positioning reference signal PRS, and the beam group includes N beams determined by any one of Reference Signal Receiving Power (RSRP) and Time of Arrival TOA, and N is a positive integer
  • RSRP Reference Signal Receiving Power
  • TOA Time of Arrival TOA
  • N is a positive integer
  • the N beams are beams in the first cell, and the first cell is one of the cells participating in positioning.
  • the beam group of the first cell may be determined according to RSRP; in another optional embodiment, the beam group of the first cell may be determined according to TOA, in another optional implementation In the example, the beam group of the first cell can also be determined according to RSRP and TOA.
  • the foregoing N beam determination methods include any of the following:
  • the top N beams in the order of RSRP selected from M beams from high to low are beams with RSRP higher than the preset threshold in the first cell, and M is an integer greater than N;
  • the method for determining the N beams is that when the first L beams and the first K beams with RSRP from high to low in the order of arrival time TOA in the first cell are from small to large, the above N beams are L beams and the first K beams.
  • the first K beams from high to low RSRP may be the top K beams in the order of RSRP from high to low in the first cell, or the RSRP in the first cell is higher than a preset threshold All beams may also be the top K beams in a sorted order from high to low selected from M beams higher than a preset threshold.
  • the first L beams of the TOA from small to large may be the top L beams in the order of TOA from small to large in the first cell, and may also be the M beams whose RSRP in the first cell is higher than a preset threshold
  • the first L beams in the sorting from small to large selected from the beams.
  • the first L beams selected according to RSRP and the first K beams selected according to TOA can include the same beam.
  • N L+K
  • the first L beams and the first K beams do not have the same beam
  • N L+K
  • the top L beams in the order of TOA from small to large include beam A, beam B, and beam C
  • the top K beams from high to low RSRP include beam B, beam D, beam E, and beam F.
  • the reported content when reporting the measurement result of the beam group, can be set according to actual needs.
  • the reported content can include: beam ID, cell ID, Positioning reference signal ID (PRS ID), reference time difference (Reference time difference), additional path (Additional path), reference quality (reference quality), reference signal time difference, reference signal time difference quality (RSTD quality), RSRP, reference signal received power At least one of quality (RSRP quality) and port (port).
  • any one of RSRP and TOA may be used to determine the measurement results of N beams for reporting, thereby realizing the reporting of positioning measurement information when multiple beams receive PRS. Since the measurement result of the reported beam can be reasonably selected according to the RSRP and TOA, the overhead of the positioning measurement information report can be reduced.
  • the measurement result of the beam group includes: a first measurement result and/or a second measurement result
  • the first measurement result is a measurement associated with the Down Link Time Difference Of Arrival (DL-TDOA)
  • the second measurement result is a measurement result associated with a downlink transmission angle (Down Link Time Angle Of Departure, DL-AoD).
  • the terminal may report all or part of the measurement results.
  • the foregoing first configuration information may also be used to instruct the terminal to report the first measurement result or the second measurement result.
  • the network device can configure DL-TDOA technology and DL-AoD technology separately.
  • the terminal when the network device configures the DL-TDOA technology, the terminal only reports the measurement results associated with the DL-TDOA technology, which may include, for example, at least one of RSTD, RSTD quality, additional path, reference quality, RSRP and RSRP quality.
  • the network device configures the DL-AoD technology, the terminal only reports the measurement result associated with the DL-AoD technology, which may include, for example, at least one of RSRP and RSRP quality.
  • the network device may not separately configure the DL-TDOA technology and the DL-AoD technology.
  • the terminal can report all the measurement results of the beam regardless of the technology.
  • the measurement result associated with the DL-TDOA technology or the measurement result associated with the DL-AoD technology can be reported according to the report content configured by the network device.
  • the configuration information corresponding to the reported content may be carried in the positioning assistance data signaling field of the higher-level protocol (such as LPP), or carried in the positioning information request signaling.
  • the cells participating in positioning usually include at least three cells.
  • the cells participating in positioning include a reference cell and neighboring cells; or, the cells participating in positioning include neighboring cells.
  • the cells involved in positioning can be configured by network equipment.
  • the cells here may not be limited to physical cells, but also virtual cells, such as TP, TRP, and so on.
  • the reference cell may refer to the RSTD reference cell (using the cell as a reference to calculate the RSTD), or may be the RSRP reference cell (using the cell as a reference to calculate the relative RSRP values of other cells and other beams).
  • Neighboring cells refer to cells participating in positioning other than the reference cell.
  • the RSTD reference cell and the RSRP reference cell may be the same cell or different cells.
  • the beam in the beam group of the reference cell is a reference beam.
  • the method further includes:
  • the reference beam is used as a reference for calculating the timing of the first beam; or, the reference beam is used as a reference for calculating the timing RSRP of the first beam; or, the reference beam is used as a calculation The timing of the first beam and RSRP reference.
  • the first beam is a beam in a beam group of the reference cell or a beam in a beam group of the neighboring cell, and the first beam is different from the reference beam.
  • the terminal when N is equal to 1, the terminal only reports measurement information based on a certain beam of the reference cell, and this beam can be regarded as a reference beam (reference beam).
  • the network device defines the reference beam for the terminal. In this way, it is convenient for the terminal to report the timing and/or RSRP information of other beams in the reference cell or neighboring cells.
  • the terminal may determine a beam as the reference beam according to the instructions of the network device; or the terminal may directly obtain the reference beam information according to the network side configuration.
  • the reference beam is any one of the following beams:
  • a designated second beam the second beam is different from the beam with the strongest RSRP, and the second beam is different from the beam with the smallest TOA.
  • the reference beam may be a certain beam among multiple beams in the reference cell.
  • the beam can be the beam with the strongest RSRP, the beam with the smallest TOA, or one of other designated beams.
  • the method for reporting the measurement result of the beam group may be set according to actual needs.
  • the measurement result of the reported beam group may include any of the following methods:
  • Manner 2 Reporting the joint measurement result of the beam group, and the joint measurement result is the measurement result of the beam group in the beam group after joint processing.
  • reporting the measurement result of each beam in the beam group may include:
  • the third beam is a beam in a beam group of the neighboring cell
  • the first preset content includes: at least one of beam identification, cell identification, positioning reference signal identification, additional path, reference quality, reference signal time difference, reference signal time difference quality, RSRP, reference signal received power quality, and port item;
  • the second preset content includes at least one of reference time difference, beam ID, cell ID, PRS ID, additional path, reference quality, RSRP, RSRP quality, and port.
  • the joint processing method includes any one of the following:
  • J is a positive integer less than N.
  • the terminal first obtains TOA information of multiple beams in the reference cell through measurement.
  • the terminal directly processes the TOA information of the N beams according to the instructions from the network side as follows:
  • the terminal obtains TOA information of N beams of neighboring cells through measurement.
  • the terminal directly processes the TOA information of multiple beams in neighboring cells according to the instructions of the network device:
  • the terminal reports RSTD information, as well as related cell ID, beam ID, PRS ID, and port information.
  • the embodiment of the present disclosure performs joint processing on the measurement results of the beam groups, and reports the joint processor results, the size and complexity of the information reported by the terminal can be reduced, and the processing complexity of the network equipment can be reduced.
  • 1 PRS beam can be the beam with the strongest RSRP or the beam corresponding to the smallest TOA.
  • the UE reports based on a certain beam of the reference cell, and the reported content may include at least one of beam ID, cell ID, PRS ID, additional path, reference quality, RSRP, RSRP quality, port information, etc. Since the UE only reports based on one beam, this beam can be used as a reference beam.
  • the Beam ID is the ID of the beam, which is related to the PRS resource ID of the positioning reference signal resource.
  • the cell ID may be any one of a physical-layer cell identity (PCI), a global cell ID, and a target object, and the target object may be a TP ID or a TRP ID.
  • PCI physical-layer cell identity
  • the PRS ID is the ID configured for the PRS on the network side.
  • Port information indicates which PRS port the current measurement result belongs to.
  • Reference quality includes the TOA detection quality of the channel corresponding to the beam, so as to facilitate accurate positioning on the network side.
  • Additional path contains the timing information of one or more additional paths, which is relative to the path timing of the RSTD determined in the beam to facilitate more precise positioning on the network side.
  • RSRP is the reference signal received power of the beam.
  • RSRP quality refers to the quality of the RSRP estimated by the beam.
  • RSTD is the reference time difference calculated by the beam based on the reference beam of the reference cell.
  • RSRP is the RSRP value of the beam relative to the reference beam.
  • 2 PRS beams can be the beam with the strongest RSRP and the beam corresponding to the smallest TOA.
  • reporting the measurement information of the reference cell includes reporting reference beam information and information about another beam of the reference cell.
  • Reporting reference beam information includes reporting at least one of Beam ID, Cell ID, PRS ID, reference quality, Additional path, RSRP, RSRP quality, and port information.
  • the reference beam refers to a beam of the two beams in the reference cell.
  • the timing of other beams of the reference cell or neighboring cell may use the TOA of the reference beam as a reference; the RSRP of other beams of the reference cell or neighboring cell may use the RSRP of the reference beam as a reference.
  • the reference beam can be the beam with the strongest RSRP or the beam with the smallest TOA.
  • the information reported for the other beam of the reference cell includes at least one of Reference time difference, Beam ID, Cell ID, PRS ID, reference quality, Additional path, RSRP, RSRP quality, and port information.
  • Reference time difference the time difference between the TOA of the beam and the TOA of the reference beam.
  • the UE reports information based on the two beams of neighboring cells.
  • the information reported by each beam per beam includes at least one of beam ID, cell ID, PRS ID, RSTD, RSTD quality, additional path, RSRP, RSRP quality, and port information. .
  • N is greater than or equal to 2
  • the N PRS beams based on the UE report.
  • the N PRS beams can be beams determined by any of the following:
  • the top N beams in the order of RSRP selected from M beams from high to low are beams with RSRP higher than the preset threshold in the first cell, and M is an integer greater than N;
  • reporting the measurement information of the reference cell includes reporting reference beam information and information about another beam of the reference cell.
  • the reported reference beam information includes at least one of Beam ID, Cell ID, PRS ID, reference quality, Additional path, RSRP, RSRP quality, and port information.
  • the reference beam refers to a certain beam among the N beams in the reference cell.
  • the timing of other beams of the reference cell or neighboring cell may use the TOA of the reference beam as a reference; the RSRP of other beams of the reference cell or neighboring cell may use the RSRP of the reference beam as a reference.
  • the reference beam can be the beam with the strongest RSRP or the beam with the smallest TOA.
  • the information reported per beam includes at least one of: Reference time difference, Beam ID, Cell ID, PRS ID, reference quality, Additional path, RSRP, RSRP quality, and port information.
  • the UE reports information based on the strongest N beams of neighboring cells.
  • the information reported by each beam per beam includes: Beam ID, Cell ID, PRS ID, RSTD, RSTD quality, additional path, RSRP, RSRP quality and port information, etc. one of them.
  • FIG. 3 is a flowchart of another method for reporting positioning and measurement information according to an embodiment of the present disclosure. The method is applied to a network device, as shown in FIG. 3, and includes the following steps:
  • Step 301 Send first configuration information to the terminal
  • Step 302 Receive the measurement result of the beam group from the terminal
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • the manner for determining the N beams includes any one of the following:
  • the top N beams in the order of RSRP selected from M beams from high to low are beams with RSRP higher than the preset threshold in the first cell, and M is an integer greater than N;
  • the top L beams and the top K beams of RSRP from high to low N ⁇ L+K.
  • the N beams are the first L beams and the first K beams
  • N L+K
  • N is the actual number of beams.
  • the measurement result of the beam group includes: a first measurement result and/or a second measurement result, where the first measurement result is a measurement result associated with the downlink time difference of arrival DL-TDOA, and the second measurement result The measurement result is the measurement result associated with the downlink transmission angle DL-AoD.
  • the first configuration information is used to instruct the terminal to report the first measurement result or the second measurement result.
  • the cells participating in positioning include a reference cell and a neighboring cell; or, the cells participating in positioning include a neighboring cell.
  • the beam in the beam group of the reference cell is the reference beam.
  • the method further includes:
  • the reference beam is used as a reference for calculating the timing and/or RSRP of the first beam
  • the first beam is a beam in a beam group of the reference cell or a beam in a beam group of the neighboring cell
  • the first beam is different from the reference beam.
  • the reference beam is any one of the following beams:
  • a designated second beam the second beam is different from the beam with the strongest RSRP, and the second beam is different from the beam with the smallest TOA.
  • the measurement result of the beam group received from the terminal includes:
  • the joint measurement result of the beam group is received from the terminal, where the joint measurement result is a measurement result of the beam group in the beam group after joint processing.
  • the terminal reports the measurement result of each beam in the beam group in any of the following ways:
  • the third beam is a beam in a beam group of the neighboring cell
  • the first preset content includes: beam ID, cell ID, Cell ID, positioning reference signal ID PRS ID, additional path, reference quality, reference signal time difference RSTD, reference signal time difference quality RSTD quality, At least one of RSRP, reference signal received power quality RSRP quality, and port port;
  • the second preset content includes at least one of Reference time difference, Beam ID, Cell ID, PRS ID, Additional path, reference quality, RSRP, RSRP quality, and port.
  • the joint processing method includes any one of the following:
  • J is a positive integer less than N.
  • this embodiment is used as an implementation manner of a network device corresponding to the embodiment shown in FIG. 2.
  • FIG. 4 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 4, the terminal 400 includes:
  • the first receiving module 401 is configured to receive first configuration information from a network device
  • the first sending module 402 is configured to report the measurement result of the beam group according to the first configuration information
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • the manner for determining the N beams includes any one of the following:
  • the top N beams in the order of RSRP selected from M beams from high to low are beams with RSRP higher than the preset threshold in the first cell, and M is an integer greater than N;
  • the top L beams and the top K beams of RSRP from high to low N ⁇ L+K.
  • the N beams are the first L beams and the first K beams
  • N L+K
  • N is the actual number of beams.
  • the measurement result of the beam group includes: a first measurement result and/or a second measurement result, where the first measurement result is a measurement result associated with the downlink time difference of arrival DL-TDOA, and the second The measurement result is the measurement result associated with the downlink transmission angle DL-AoD.
  • the first configuration information is used to instruct the terminal to report the first measurement result or the second measurement result.
  • the cells participating in positioning include a reference cell and a neighboring cell; or, the cells participating in positioning include a neighboring cell.
  • the beam in the beam group of the reference cell is the reference beam.
  • the method further includes:
  • the reference beam is used as a reference for calculating the timing and/or RSRP of the first beam
  • the first beam is a beam in a beam group of the reference cell or a beam in a beam group of the neighboring cell
  • the first beam is different from the reference beam.
  • the reference beam is any one of the following beams:
  • a designated second beam the second beam is different from the beam with the strongest RSRP, and the second beam is different from the beam with the smallest TOA.
  • the measurement result of the reported beam group includes:
  • the first sending module 402 is specifically configured to report the measurement results of the reference beam and the third beam according to the first preset content, where the third beam is a beam group of the neighboring cell Beam; report the measurement result of the fourth beam according to the second preset content, the fourth beam being the beam other than the reference beam in the beam group of the reference beam;
  • the first preset content includes: beam ID, cell ID, Cell ID, positioning reference signal ID PRS ID, additional path, reference quality, reference signal time difference RSTD, reference signal time difference quality RSTD quality, At least one of RSRP, reference signal received power quality RSRP quality, and port port;
  • the second preset content includes at least one of Reference time difference, Beam ID, Cell ID, PRS ID, Additional path, reference quality, RSRP, RSRP quality, and port.
  • the joint processing method includes any one of the following:
  • J is a positive integer less than N.
  • the terminal provided in the embodiment of the present disclosure can implement the various processes implemented by the terminal in the method embodiment of FIG. 2. To avoid repetition, details are not described here.
  • FIG. 5 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 5, the network device 500 includes:
  • the second sending module 501 is configured to send first configuration information to the terminal
  • the second receiving module 502 is configured to receive the measurement result of the beam group from the terminal;
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • the manner for determining the N beams includes any one of the following:
  • the top N beams in the order of RSRP selected from M beams from high to low are beams with RSRP higher than the preset threshold in the first cell, and M is an integer greater than N;
  • the top L beams and the top K beams of RSRP from high to low N ⁇ L+K.
  • the N beams are the first L beams and the first K beams
  • N L+K
  • N is the actual number of beams.
  • the measurement result of the beam group includes: a first measurement result and/or a second measurement result, where the first measurement result is a measurement result associated with the downlink time difference of arrival DL-TDOA, and the second The measurement result is the measurement result associated with the downlink transmission angle DL-AoD.
  • the first configuration information is used to instruct the terminal to report the first measurement result or the second measurement result.
  • the cells participating in positioning include a reference cell and a neighboring cell; or, the cells participating in positioning include a neighboring cell.
  • the beam in the beam group of the reference cell is the reference beam.
  • the second sending module 501 is further configured to:
  • the reference beam is used as a reference for calculating the timing and/or RSRP of the first beam
  • the first beam is a beam in a beam group of the reference cell or a beam in a beam group of the neighboring cell
  • the first beam is different from the reference beam.
  • the reference beam is any one of the following beams:
  • a designated second beam the second beam is different from the beam with the strongest RSRP, and the second beam is different from the beam with the smallest TOA.
  • the measurement result of the beam group received from the terminal includes:
  • the joint measurement result of the beam group is received from the terminal, where the joint measurement result is a measurement result of the beam group in the beam group after joint processing.
  • the terminal reports the measurement result of each beam in the beam group in any of the following ways:
  • the third beam is a beam in a beam group of the neighboring cell
  • the first preset content includes: beam ID, cell ID, cell ID, positioning reference signal ID PRS ID, additional path, reference quality, reference signal time difference RSTD, reference signal time difference quality RSTD quality, At least one of RSRP, reference signal received power quality RSRP quality, and port port;
  • the second preset content includes at least one of Reference time difference, Beam ID, Cell ID, PRS ID, Additional path, reference quality, RSRP, RSRP quality, and port.
  • the joint processing method includes any one of the following:
  • J is a positive integer less than N.
  • the network device provided by the embodiment of the present disclosure can implement each process implemented by the network device in the method embodiment of FIG. 3, and to avoid repetition, details are not described herein again.
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 600 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610, and a power supply 611 and other components.
  • a radio frequency unit 601 includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, a processor 610, and a power supply 611 and other components.
  • terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the radio frequency unit 601 is configured to receive first configuration information from a network device; report the measurement result of the beam group according to the first configuration information;
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • the manner for determining the N beams includes any one of the following:
  • the top N beams in the order of RSRP selected from M beams from high to low are beams with RSRP higher than the preset threshold in the first cell, and M is an integer greater than N;
  • the top L beams and the top K beams of RSRP from high to low N ⁇ L+K.
  • the N beams are the first L beams and the first K beams
  • N L+K
  • N is the actual number of beams.
  • the measurement result of the beam group includes: a first measurement result and/or a second measurement result, where the first measurement result is a measurement result associated with the downlink time difference of arrival DL-TDOA, and the second The measurement result is the measurement result associated with the downlink transmission angle DL-AoD.
  • the first configuration information is used to instruct the terminal to report the first measurement result or the second measurement result.
  • the cells participating in positioning include a reference cell and a neighboring cell; or, the cells participating in positioning include a neighboring cell.
  • the beam in the beam group of the reference cell is the reference beam.
  • the method further includes:
  • the reference beam is used as a reference for calculating the timing and/or RSRP of the first beam
  • the first beam is a beam in a beam group of the reference cell or a beam in a beam group of the neighboring cell
  • the first beam is different from the reference beam.
  • the reference beam is any one of the following beams:
  • a designated second beam the second beam is different from the beam with the strongest RSRP, and the second beam is different from the beam with the smallest TOA.
  • the measurement result of the reported beam group includes:
  • the radio frequency unit 601 is specifically configured to: report the measurement results of the reference beam and the third beam according to the first preset content, the third beam being a beam in the beam group of the neighboring cell; 2. Reporting the measurement result of the fourth beam with preset content, where the fourth beam is a beam other than the reference beam in the beam group of the reference beam;
  • the first preset content includes: beam ID, cell ID, Cell ID, positioning reference signal ID PRS ID, additional path, reference quality, reference signal time difference RSTD, reference signal time difference quality RSTD quality, At least one of RSRP, reference signal received power quality RSRP quality, and port port;
  • the second preset content includes at least one of Reference time difference, Beam ID, Cell ID, PRS ID, Additional path, reference quality, RSRP, RSRP quality, and port.
  • the joint processing method includes any one of the following:
  • J is a positive integer less than N.
  • any one of RSRP and TOA may be used to determine the measurement results of N beams for reporting, thereby realizing the reporting of positioning measurement information when PRS is received by multiple beams. Since the measurement result of the reported beam can be reasonably selected according to the RSRP and TOA, the overhead of the positioning measurement information report can be reduced.
  • the radio frequency unit 601 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving downlink data from the base station, it is processed by the processor 610; Uplink data is sent to the base station.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 601 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 602, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 603 can convert the audio data received by the radio frequency unit 601 or the network module 602 or stored in the memory 609 into audio signals and output them as sounds. Moreover, the audio output unit 603 may also provide audio output related to a specific function performed by the terminal 600 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 603 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 604 is used to receive audio or video signals.
  • the input unit 604 may include a graphics processing unit (GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 606.
  • the image frame processed by the graphics processor 6041 may be stored in the memory 609 (or other storage medium) or sent via the radio frequency unit 601 or the network module 602.
  • the microphone 6042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 601 for output in the case of a telephone call mode.
  • the terminal 600 also includes at least one sensor 605, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 6061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 6061 and/or when the terminal 600 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 605 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 606 is used to display information input by the user or information provided to the user.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 607 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072.
  • the touch panel 6071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 6071 or near the touch panel 6071. operating).
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 610, the command sent by the processor 610 is received and executed.
  • the touch panel 6071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 607 may also include other input devices 6072.
  • other input devices 6072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 6071 can cover the display panel 6061.
  • the touch panel 6071 detects a touch operation on or near it, it is transmitted to the processor 610 to determine the type of the touch event, and then the processor 610 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 6061.
  • the touch panel 6071 and the display panel 6061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 6071 and the display panel 6061 can be integrated. Realize the input and output functions of the terminal, which are not limited here.
  • the interface unit 608 is an interface for connecting an external device with the terminal 600.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 608 can be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 600 or can be used to communicate between the terminal 600 and the external device. Transfer data between.
  • the memory 609 can be used to store software programs and various data.
  • the memory 609 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 609 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 610 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 609, and calling data stored in the memory 609. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 610.
  • the terminal 600 may also include a power source 611 (such as a battery) for supplying power to various components.
  • a power source 611 such as a battery
  • the power source 611 may be logically connected to the processor 610 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. And other functions.
  • the terminal 600 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 610, a memory 609, and a computer program stored on the memory 609 and running on the processor 610.
  • a terminal including a processor 610, a memory 609, and a computer program stored on the memory 609 and running on the processor 610.
  • the computer program is executed by the processor 610,
  • Each process of the foregoing XXXX embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • FIG. 7 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the network device 700 includes a processor 701, a transceiver 702, a memory 703, and a bus interface, in which:
  • the transceiver 702 is configured to send first configuration information to the terminal; receive the measurement result of the beam group reported by the terminal;
  • the beam group is used to transmit the positioning reference signal PRS
  • the beam group includes N beams determined by any one of the reference signal received power RSRP and the time of arrival TOA, where N is a positive integer, and the N beams are The beam in the first cell, where the first cell is one of the cells participating in positioning.
  • the manner for determining the N beams includes any one of the following:
  • the top N beams in the order of RSRP selected from M beams from high to low are beams with RSRP higher than the preset threshold in the first cell, and M is an integer greater than N;
  • the top L beams and the top K beams of RSRP from high to low N ⁇ L+K.
  • the N beams are the first L beams and the first K beams
  • N L+K
  • N is the actual number of beams.
  • the measurement result of the beam group includes: a first measurement result and/or a second measurement result, where the first measurement result is a measurement result associated with the downlink time difference of arrival DL-TDOA, and the second The measurement result is the measurement result associated with the downlink transmission angle DL-AoD.
  • the first configuration information is used to instruct the terminal to report the first measurement result or the second measurement result.
  • the cells participating in positioning include a reference cell and a neighboring cell; or, the cells participating in positioning include a neighboring cell.
  • the beam in the beam group of the reference cell is the reference beam.
  • the transceiver 702 is also used to:
  • the reference beam is used as a reference for calculating the timing and/or RSRP of the first beam
  • the first beam is a beam in a beam group of the reference cell or a beam in a beam group of the neighboring cell
  • the first beam is different from the reference beam.
  • the reference beam is any one of the following beams:
  • a designated second beam the second beam is different from the beam with the strongest RSRP, and the second beam is different from the beam with the smallest TOA.
  • the receiving the measurement result of the beam group reported by the terminal includes:
  • the terminal reports the measurement result of each beam in the beam group in any of the following ways:
  • the third beam is a beam in a beam group of the neighboring cell
  • the first preset content includes: beam ID, cell ID, cell ID, positioning reference signal ID PRS ID, additional path, reference quality, reference signal time difference RSTD, reference signal time difference quality RSTD quality, At least one of RSRP, reference signal received power quality RSRP quality, and port port;
  • the second preset content includes at least one of Reference time difference, Beam ID, Cell ID, PRS ID, Additional path, reference quality, RSRP, RSRP quality, and port.
  • the joint processing method includes any one of the following:
  • J is a positive integer less than N.
  • any one of RSRP and TOA may be used to determine the measurement results of N beams for reporting, thereby realizing the reporting of positioning measurement information when PRS is received by multiple beams. Since the measurement result of the reported beam can be reasonably selected according to the RSRP and TOA, the overhead of the positioning measurement information report can be reduced.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 702 may be a plurality of elements, that is, include a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting internally required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • the embodiment of the present disclosure further provides a network device, including a processor 701, a memory 703, a computer program stored in the memory 703 and running on the processor 701, and the computer program is executed by the processor 701
  • a network device including a processor 701, a memory 703, a computer program stored in the memory 703 and running on the processor 701, and the computer program is executed by the processor 701
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is executed by a processor, the method for reporting positioning measurement information on a network device provided by the embodiment of the present disclosure is implemented.
  • Each process in the example, or when the computer program is executed by the processor implements each process of the terminal-side positioning measurement information reporting method embodiment provided by the embodiment of the present disclosure, and can achieve the same technical effect. To avoid repetition, it will not be repeated here. Repeat.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a base station, etc.) execute the method described in each embodiment of the present disclosure.

Abstract

本公开实施例提供一种定位测量信息上报方法、终端及网络设备,该方法包括:从网络设备接收第一配置信息;根据所述第一配置信息上报波束组的测量结果;其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。

Description

定位测量信息上报方法、终端和网络设备
相关申请的交叉引用
本申请主张在2019年3月26日在中国提交的中国专利申请号No.201910234824.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种定位测量信息上报方法、终端和网络设备。
背景技术
长期演进型(Long Term Evolution,LTE)系统中,定位参考信号(Positioning Reference Signal,PRS)是用来做下行定位的参考信号(Reference Signal,RS)。终端(User Equipment,UE)测量来自多个小区(cell)或多个传输点(Transmission Point,TP)发送的PRS,获取多个cell或传输点之间的参考信号时间差(Reference Signal Time Difference,RSTD)。之后UE将测量得到的RSTD信息发送给定位服务器,定位服务器计算得到UE位置。
下行定位方法中,UE并不获取精确的到达时间(Time of Arrival,TOA),估计位置由至少三个基站的到达时间差(Time Difference of Arrival,TDOA)(标准中用参考信号时间差(Time Difference of Reference Signal,RSTD)来表示)来确定,即由相对时间而不是绝对时间确定。从原理来看,2个参与定位的基站可以确定UE的一条双曲线轨迹,而3个参与定位的基站就能把UE限定在极小部分区域内。继续增加一个基站可以把UE限定在另一块区域内,取重合部分即可缩小UE的范围。在LTE下行定位中,UE需要测量来自多个基站或者多个小区的PRS获取RSTD,再把RSTD信息上报给网络侧的位置服务器,最后由位置服务器计算出UE的位置。
考虑到在新空口(New Radio,NR)系统中,PRS会在服务小区或者邻小区以波束扫描(beam sweeping)的方式发送,所以UE在定位时可能要测量来自服务小区或邻小区的多个波束(beam)的PRS。多beam的测量结果上 报的复杂度和开销将增加很多。在多beam的情况下,如何合理上报多beam的测量结果目前还没有明确定定义,亟需解决。
发明内容
本公开实施例提供一种定位测量信息上报方法、终端和网络设备,以解决多beam的测量结果上报的问题。
第一方面,本公开实施例提供一种定位测量信息上报方法,应用于终端,包括:
从网络设备接收第一配置信息;
根据所述第一配置信息上报波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
第二方面,本公开实施例提供还一种定位测量信息上报方法,应用于网络设备,包括:
向终端发送第一配置信息;
从所述终端接收波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
第三方面,本公开实施例提供还一种终端,包括:
第一接收模块,用于从网络设备接收第一配置信息;
第一发送模块,用于根据所述第一配置信息上报波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
第四方面,本公开实施例提供还一种网络设备,包括:
第二发送模块,用于向终端发送第一配置信息;
第二接收模块,用于从所述终端接收波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
第五方面,本公开实施例提供还一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述定位测量信息上报方法中的步骤。
第六方面,本公开实施例提供还一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现上述定位测量信息上报方法中的步骤。
第七方面,本公开实施例提供还一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现终端侧的定位测量信息上报方法的步骤,或者所述计算机程序被处理器执行时实现网络设备侧的定位测量信息上报方法的步骤。
本公开实施例中,在定位测量信息上报时,可以采用RSRP和TOA中任一项确定N个波束的测量结果进行上报,从而实现了多波束接收PRS时,定位测量信息的上报。由于可以根据RSRP和TOA合理选择上报的波束的测量结果,因此可以减少定位测量信息上报的开销。
附图说明
图1是本公开实施例可应用的一种网络系统的结构图;
图2是本公开实施例提供的一种定位测量信息上报方法的流程图;
图3是本公开实施例提供的另一种定位测量信息上报方法的流程图;
图4是本公开实施例提供的一种终端的结构图;
图5是本公开实施例提供的一种网络设备的结构图;
图6是本公开实施例提供的另一种终端的结构图;
图7是本公开实施例提供的另一种网络设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的一种定位测量信息上报方法、终端和网络设备可以应用于无线通信系统中。该无线通信系统可以为采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
请参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括终端11和网络设备12,其中,终端11可以是用户终端或者其他终端侧设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端11的具体类型。上述网络设备12可以是5G基站,或者以后版本的基站,或者其他通信系统中的基站,或者称之为节点B,演进节点B,或者传输接收点(Transmission  Reception Point,TRP),或者接入点(Access Point,AP),或者所述领域中其他词汇,只要达到相同的技术效果,所述网络设备不限于特定技术词汇。另外,上述网络设备12可以是主节点(Master Node,MN),或者辅节点(Secondary Node,SN)。需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定网络设备的具体类型。
请参见图2,图2是本公开实施例提供的一种定位测量信息上报方法的流程图,该方法应用于终端,如图2所示,包括以下步骤:
步骤201,从网络设备接收第一配置信息;
本公开实施例中,上述第一配置信息用于配置终端上报每个参与定位的小区波束的测量结果。具体的,网络设备可以通过波束扫描的方式在每一小区的不同波束上传输PRS,由终端所有的波束传输的PRS进行测量,获得波束测量结果。具体的,上述第一配置信息的发送方式可以根据实际需要进行设置,在此不做进一步的限定。例如,在一可选实施例中,可以通过高层信令进行发送。
步骤202,根据所述第一配置信息上报波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率(Reference Signal Receiving Power,RSRP)和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
应当说明的是,在一可选实施例中,可以根据RSRP确定第一小区的波束组;在另一可选实施例中,可以根据TOA确定第一小区的波束组,在又一可选实施例中,还可以根据RSRP和TOA进行确定第一小区的波束组。例如,上述N个波束确定的方式包括以下任一项:
所述第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束;
所述第一小区内RSRP高于预设门限的所有波束;
从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
所述第一小区内TOA从小到大的排序中前N个波束;
从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波 束为所述第一小区内RSRP高于预设门限的波束;
所述第一小区内到达时间TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
应理解,N个波束确定的方式为所述第一小区内到达时间TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束时,上述N个波束为所述前L个波束和所述前K个波束。所述RSRP从高到低的前K个波束,可以是所述第一小区内RSRP从高到低的排序中前K个波束,还可以是所述第一小区内RSRP高于预设门限的所有波束,也可以是从高于预设门限的M个波束中选取的从高到低的排序中前K个波束。所述TOA从小到大的前L个波束,可以是所述第一小区内TOA从小到大的排序中前L个波束,还可以是所述第一小区内RSRP高于预设门限的M个波束中选取的从小到大的排序中的前L个波束。
其中,根据RSRP选取的前L个波束和根据TOA选取的前K个波束中可以包括相同的波束,此时,在上报的测量结果时候实际只上报一个波束的测量结果,因此N<L+K。也就是说,在所述N个波束为所述前L个波束和所述前K个波束的情况下,当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;当所述前L个波束和所述前K个波束存在相同的波束时,N为实际的波束数量。这样可以避免波束的测量结果重复上报,减小了波束测量结果上报的开销。
例如,TOA从小到大的排序中前L个波束包括波束A、波束B和波束C,RSRP从高到低的前K个波束包括波束B、波束D、波束E和波束F。此时,实际上报的波束数量为6,即N=6。
具体的,在上报波束组的测量结果时,上报的内容可以根据实际需要进行设置,例如,在本实施例中,上报的内容可以包括:波束标识(Beam ID)、小区标识(Cell ID)、定位参考信号标识(PRS ID)、参考时差(Reference time difference)、额外路径(Additional path)、参考质量(reference quality)、参考信号时间差、参考信号时间差质量(RSTD quality)、RSRP、参考信号接收功率质量(RSRP quality)和端口(port)中的至少一项。
本公开实施例中,在定位测量信息上报时,可以采用RSRP和TOA中任 一项确定N个波束的测量结果进行上报,从而实现了多波束接收PRS时,定位测量信息的上报。由于可以根据RSRP和TOA合理选择上报的波束的测量结果,因此可以减少定位测量信息上报的开销。
进一步的,波束组的测量结果包括:第一测量结果和/或第二测量结果,所述第一测量结果是与下行链路到达时间差(Down Link Time Difference Of Arrival,DL-TDOA)关联的测量结果,所述第二测量结果是与下行链路发送角度(Down Link Time Angle Of Departure,DL-AoD)关联的测量结果。
应当说明的是,对于波束的测量结果,终端可以上报全部或者部分测量结果。例如,在一可选实施例中,上述第一配置信息还可以用于指示终端上报所述第一测量结果或所述第二测量结果。
具体的,网络设备可以对DL-TDOA技术和DL-AoD技术分别进行配置。例如网络设备在配置DL-TDOA技术时,终端仅上报与DL-TDOA技术关联的测量结果,例如可以包括:RSTD、RSTD quality、additional path、reference quality、RSRP和RSRP quality中的至少一项。网络设备在配置DL-AoD技术时,终端仅上报与DL-AoD技术关联的测量结果,例如可以包括:RSRP和RSRP quality中的至少一项。
在另一可选实施例中,网络设备可以对DL-TDOA技术和DL-AoD技术不分别进行配置。此时,在一种实现方案中,可以不管什么技术,终端上报波束的全部测量结果。在另一种实现方案中,可以根据网络设备配置的上报内容,上报与DL-TDOA技术关联的测量结果或者与DL-AoD技术关联的测量结果。该上报内容对应的配置信息可以携带在高层协议(如LPP)的定位辅助数据信令字段中,或者在定位信息请求信令中携带。
通常的,参与定位的小区通常包括至少三个小区。具体的,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。参与定位的小区可以由网络设备配置。这里的小区可以不限于物理小区,还可以是虚拟小区,如TP、TRP等。该参考小区可以指RSTD的参考小区(以该小区为参考计算RSTD),也可以为RSRP的参考小区(以该小区为参考计算其他小区及其他beam的相对的RSRP值)。邻小区是指除了参考小区外的参与定位的小区。本实施例中,RSTD的参考小区和RSRP的参考小区可以为 同一小区,也可以为不同的小区。
应当说明的是,在进行RSTD和RSRP计算时,通常需要基于参考波束reference beam进行计算。以下对于N为不同的值,对应的参考波束的定义进行详细说明。
在一可选实施例中,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
在另一可选实施例中,当所述N大于1时,所述方法还包括:
从所述网络设备接收第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束。
其中,所述参考波束用于作为计算第一波束的定时(timing)的参考;或者,所述参考波束用于作为计算第一波束的定时RSRP的参考;或者,所述参考波束用于作为计算第一波束的定时和RSRP的参考。所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
本实施例中,在N等于1时,终端只基于参考小区的某1个beam上报测量信息,该beam可以被当作参考波束(reference beam)。在N大于1时,由网络设备为终端定义reference beam,这样,可以便于终端该beam的timing和/或RSRP的值,上报参考小区或邻小区中其他beam的timing和/或RSRP信息。具体的,终端可以根据网络设备的指示,确定某beam作为reference beam;或者终端根据网络侧配置,直接获得reference beam的信息。
例如,当所述N大于1时,所述参考波束为以下任一项波束:
RSRP最强的波束;
TOA最小的波束;
指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
也就是说,reference beam可以是参考小区中的多个beam中的某个beam。该beam可以是RSRP最强的那个beam、TOA最小的那个beam或其他指定的beam之一。
进一步的,上述波束组的测量结果上报方式可以根据实际需要进行设置, 例如,本实施例中,当所述N大于1时,所述上报波束组的测量结果可以包括以下任一种方式:
方式1:上报所述波束组中每一个波束的测量结果。
方式2:上报所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
在上述方式1中,上报所述波束组中每一个波束的测量结果可以包括:
按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;
按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
其中,所述第一预设内容包括:波束标识、小区标识、定位参考信号标识、额外路径、参考质量、参考信号时间差、参考信号时间差质量、RSRP、参考信号接收功率质量和端口中的至少一项;
所述第二预设内容包括:参考时差、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
在上述方式2中,所述联合处理的方式包括以下任一项:
对所述波束组中的波束的测量结果进行均值计算;
对所述波束组中的波束的测量结果进行加权平均计算;
选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结果;
其中,J为小于N的正整数。
例如,在一具体实施方案中,首先终端通过测量获得了参考小区多个beam的TOA信息。终端根据网络侧的指示直接对其中的N个beam的TOA信息做如下一项的处理:
1、对N个beam的TOA测量结果取平均;
2、对N个beam的TOA取加权平均,加权系数可与测量质量有关;
3、选取测量质量最好1个或几个beam的TOA,确定reference beam。
4、选取测量结果中数值最小的1个或几个beam的TOA,确定reference beam。
其次,终端通过测量获得了邻小区N个beam的TOA信息。终端根据网络设备的指示直接对邻小区的多个beam的TOA信息做如下任一项的处理:
1、对N个beam的TOA测量结果取平均,计算RSTD。
2、对N个beam的TOA取加权平均,计算RSTD。
3、选取测量质量最好1个或几个beam的TOA,根据reference beam计算RSTD。
4、选取测量结果中数值最小的1个或几个beam的TOA,根据reference beam计算RSTD。
最后,终端上报RSTD信息,以及关联的cell ID、beam ID、PRS ID和port等信息。
由于在本公开实施例对波束组的测量结果进行联合处理后,上报联合处理器结果,这样,可以减少终端上报信息的大小和复杂度,同时可以减小网络设备处理的复杂度。
为了更好的理解本公开,以下通过N为不同的值对应的终端上报过程进行详细说明。
方案1:UE基于1个PRS beam进行上报:1个PRS beam可以是RSRP最强的beam,或者最小的TOA对应的beam。
(1)、上报参考小区测量信息:
UE基于参考小区的某1个beam上报,上报的内容可包含Beam ID、cell ID、PRS ID、additional path、reference quality、RSRP、RSRP quality、port信息等至少其中之一。由于UE只基于1个beam上报,因此该beam可以被当作reference beam。
其中,Beam ID是该Beam的ID,与定位参考信号资源标识PRS resource ID有关。
Cell ID可以物理小区标识(Physical-layer Cell Identity,PCI)、全球小区标识global cell ID和目标对象中的任一项,目标对象可以为TP ID或者TRP  ID。
PRS ID是网络侧为PRS配置的ID。
Port信息表示当前的测量结果属于哪个PRS port。
reference quality包含该beam对应的信道TOA检测的质量,以便于网络侧精确地定位。
Additional path:包含一个或多个附加path的timing信息,相对于该beam中决定RSTD的path timing,以便于网络侧更精确地定位。
RSRP是该beam的参考信号接收功率。
RSRP quality是指该beam估计的RSRP的质量。
(2)上报邻小区相关测量信息:
UE基于邻小区某1个的PRS beam上报,上报的内容可包含Beam ID、Cell ID、PRS ID、RSTD、RSTD quality、additional path、RSRP、RSRP quality、port信息等至少其中之一。
其中,RSTD是该beam基于参考小区reference beam计算的参考时间差。
RSRP是该beam的相对于reference beam的RSRP值。
方案2:UE基于2个的PRS beam上报:2个PRS beam可以是RSRP最强的beam和最小的TOA对应的beam。
(1)、上报参考小区测量信息包括上报reference beam信息和参考小区另1个beam的信息。
上报reference beam信息包括上报Beam ID、Cell ID、PRS ID、reference quality、Additional path、RSRP、RSRP quality和port信息等至少其中之一。
其中,该reference beam是指参考小区中的2个beam中的某个beam。参考小区或邻小区的其他beam的timing可以以该reference beam的TOA为参考;参考小区或邻小区的其他beam的RSRP可以以该reference beam的RSRP为参考。reference beam可以是RSRP最强的那个beam或TOA最小的那个beam。
上报参考小区另1个beam的信息包括:Reference time difference、Beam ID、Cell ID、PRS ID、reference quality、Additional path、RSRP、RSRP quality和port信息等至少其中之一。
其中,Reference time difference:该beam的TOA相对于reference beam的TOA的时间差。
(2)上报邻小区相关测量信息:
UE基于邻小区的2个beam上报信息,每一波束per beam上报的信息包含:Beam ID、Cell ID、PRS ID、RSTD、RSTD quality、additional path、RSRP、RSRP quality和port信息等至少其中之一。
方案3,N大于或等于2,UE基于的N个PRS beam上报。N个PRS beam可以是以下任一项确定的波束:
所述第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束;
所述第一小区内RSRP高于预设门限的所有波束;
从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
所述第一小区内TOA从小到大的排序中前N个波束;
从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
所述第一小区内到达时间TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
(1)、上报参考小区测量信息包括上报reference beam信息和参考小区另1个beam的信息。
上报reference beam信息包括Beam ID、Cell ID、PRS ID、reference quality、Additional path、RSRP、RSRP quality和port信息等至少其中之一。
其中,该reference beam是指参考小区中的N个beam中的某个beam。参考小区或邻小区的其他beam的timing可以以该reference beam的TOA为参考;参考小区或邻小区的其他beam的RSRP可以以该reference beam的RSRP为参考。reference beam可以是RSRP最强的那个beam或TOA最小的那个beam。
上报参考小区其他的beam中,对于per beam上报的信息包括:Reference time difference、Beam ID、Cell ID、PRS ID、reference quality、Additional path、RSRP、RSRP quality和port信息等至少其中之一。
(2)上报邻小区相关测量信息:
UE基于邻小区的最强的N个beam上报信息,每一波束per beam上报的信息包含:Beam ID、Cell ID、PRS ID、RSTD、RSTD quality、additional path、RSRP、RSRP quality和port信息等至少其中之一。
请参见图3,图3是本公开实施例提供的另一种定位测量信息上报方法的流程图,该方法应用于网络设备,如图3所示,包括以下步骤:
步骤301,向终端发送第一配置信息;
步骤302,从所述终端接收波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
可选的,所述N个波束确定的方式包括以下任一项:
第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束,所述第一小区为参与定位的小区;
所述第一小区内RSRP高于预设门限的所有波束;
从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
所述第一小区内TOA从小到大的排序中前N个波束;
从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
所述第一小区内TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
可选的,在所述N个波束为所述前L个波束和所述前K个波束的情况下,
当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;
当所述前L个波束和所述前K个波束不存在相同的波束时,N为实际的波束数量。
可选的,所述波束组的测量结果包括:第一测量结果和/或第二测量结果, 所述第一测量结果是与下行链路到达时间差DL-TDOA关联的测量结果,所述第二测量结果是与下行链路发送角度DL-AoD关联的测量结果。
可选的,所述第一配置信息用于指示所述终端上报所述第一测量结果或所述第二测量结果。
可选的,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。
可选的,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
可选的,当所述N大于1时,所述方法还包括:
向所述终端发送第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束;
其中,所述参考波束用于作为计算第一波束的定时timing和/或RSRP的参考,所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
可选的,当所述N大于1时,所述参考波束为以下任一项的波束:
RSRP最强的波束;
TOA最小的波束;
指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
可选的,当所述N大于1时,所述从所述终端接收波束组的测量结包括:
从所述终端接收所述波束组中每一个波束的测量结果;
或者,从所述终端接收所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
可选的,所述终端按照以下任一种方式上报所述波束组中每一个波束的测量结果:
按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;
按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
其中,所述第一预设内容包括:波束标识Beam ID、小区标识Cell ID、定位参考信号标识PRS ID、额外路径Additional path、参考质量reference quality、参考信号时间差RSTD、参考信号时间差质量RSTD quality、RSRP、参考信号接收功率质量RSRP quality和端口port中的至少一项;
所述第二预设内容包括:参考时差Reference time difference、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
可选的,所述联合处理的方式包括以下任一项:
对所述波束组中的波束的测量结果进行均值计算;
对所述波束组中的波束的测量结果进行加权平均计算;
选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结果;
其中,J为小于N的正整数。
需要说明的是,本实施例作为图2所示的实施例对应的网络设备的实施方式,其具体的实施方式可以参见图2所示的实施例相关说明,以及达到相同的有益效果,为了避免重复说明,此处不再赘述。
请参见图4,图4是本公开实施例提供的一种终端的结构图,如图4所示,终端400包括:
第一接收模块401,用于从网络设备接收第一配置信息;
第一发送模块402,用于根据所述第一配置信息上报波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
可选的,所述N个波束确定的方式包括以下任一项:
所述第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束;
所述第一小区内RSRP高于预设门限的所有波束;
从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
所述第一小区内TOA从小到大的排序中前N个波束;
从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
所述第一小区内TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
可选的,在所述N个波束为所述前L个波束和所述前K个波束的情况下,
当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;
当所述前L个波束和所述前K个波束存在相同的波束时,N为实际的波束数量。
可选的,所述波束组的测量结果包括:第一测量结果和/或第二测量结果,所述第一测量结果是与下行链路到达时间差DL-TDOA关联的测量结果,所述第二测量结果是与下行链路发送角度DL-AoD关联的测量结果。
可选的,所述第一配置信息用于指示所述终端上报所述第一测量结果或所述第二测量结果。
可选的,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。
可选的,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
可选的,当所述N大于1时,所述方法还包括:
从所述网络设备接收第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束;
其中,所述参考波束用于作为计算第一波束的定时timing和/或RSRP的参考,所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
可选的,当所述N大于1时,所述参考波束为以下任一项波束:
RSRP最强的波束;
TOA最小的波束;
指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
可选的,当所述N大于1时,所述上报波束组的测量结果包括:
上报所述波束组中每一个波束的测量结果;
或者,上报所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
可选的,所述第一发送模块402,具体用于:按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
其中,所述第一预设内容包括:波束标识Beam ID、小区标识Cell ID、定位参考信号标识PRS ID、额外路径Additional path、参考质量reference quality、参考信号时间差RSTD、参考信号时间差质量RSTD quality、RSRP、参考信号接收功率质量RSRP quality和端口port中的至少一项;
所述第二预设内容包括:参考时差Reference time difference、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
可选的,所述联合处理的方式包括以下任一项:
对所述波束组中的波束的测量结果进行均值计算;
对所述波束组中的波束的测量结果进行加权平均计算;
选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结果;
其中,J为小于N的正整数。
本公开实施例提供的终端能够实现图2的方法实施例中终端实现的各个 过程,为避免重复,这里不再赘述。
请参见图5,图5是本公开实施例提供的一种网络设备的结构图,如图5所示,网络设备500包括:
第二发送模块501,用于向终端发送第一配置信息;
第二接收模块502,用于从所述终端接收波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
可选的,所述N个波束确定的方式包括以下任一项:
第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束,所述第一小区为参与定位的小区;
所述第一小区内RSRP高于预设门限的所有波束;
从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
所述第一小区内TOA从小到大的排序中前N个波束;
从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
所述第一小区内TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
可选的,在所述N个波束为所述前L个波束和所述前K个波束的情况下,
当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;
当所述前L个波束和所述前K个波束不存在相同的波束时,N为实际的波束数量。
可选的,所述波束组的测量结果包括:第一测量结果和/或第二测量结果,所述第一测量结果是与下行链路到达时间差DL-TDOA关联的测量结果,所述第二测量结果是与下行链路发送角度DL-AoD关联的测量结果。
可选的,所述第一配置信息用于指示所述终端上报所述第一测量结果或 所述第二测量结果。
可选的,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。
可选的,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
可选的,当所述N大于1时,所述第二发送模块501,还用于:
向所述终端发送第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束;
其中,所述参考波束用于作为计算第一波束的定时timing和/或RSRP的参考,所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
可选的,当所述N大于1时,所述参考波束为以下任一项的波束:
RSRP最强的波束;
TOA最小的波束;
指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
可选的,当所述N大于1时,所述从所述终端接收波束组的测量结果包括:
从所述终端接收所述波束组中每一个波束的测量结果;
或者,从所述终端接收所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
可选的,所述终端按照以下任一种方式上报所述波束组中每一个波束的测量结果:
按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;
按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
其中,所述第一预设内容包括:波束标识Beam ID、小区标识Cell ID、定位参考信号标识PRS ID、额外路径Additional path、参考质量reference  quality、参考信号时间差RSTD、参考信号时间差质量RSTD quality、RSRP、参考信号接收功率质量RSRP quality和端口port中的至少一项;
所述第二预设内容包括:参考时差Reference time difference、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
可选的,所述联合处理的方式包括以下任一项:
对所述波束组中的波束的测量结果进行均值计算;
对所述波束组中的波束的测量结果进行加权平均计算;
选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结果;
其中,J为小于N的正整数。
本公开实施例提供的网络设备能够实现图3的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
图6为实现本公开各个实施例的一种终端的硬件结构示意图,
该终端600包括但不限于:射频单元601、网络模块602、音频输出单元603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、处理器610、以及电源611等部件。本领域技术人员可以理解,图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
射频单元601,用于从网络设备接收第一配置信息;根据所述第一配置信息上报波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之 一。
可选的,所述N个波束确定的方式包括以下任一项:
所述第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束;
所述第一小区内RSRP高于预设门限的所有波束;
从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
所述第一小区内TOA从小到大的排序中前N个波束;
从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
所述第一小区内TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
可选的,在所述N个波束为所述前L个波束和所述前K个波束的情况下,
当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;
当所述前L个波束和所述前K个波束存在相同的波束时,N为实际的波束数量。
可选的,所述波束组的测量结果包括:第一测量结果和/或第二测量结果,所述第一测量结果是与下行链路到达时间差DL-TDOA关联的测量结果,所述第二测量结果是与下行链路发送角度DL-AoD关联的测量结果。
可选的,所述第一配置信息用于指示所述终端上报所述第一测量结果或所述第二测量结果。
可选的,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。
可选的,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
可选的,当所述N大于1时,所述方法还包括:
从所述网络设备接收第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束;
其中,所述参考波束用于作为计算第一波束的定时timing和/或RSRP的 参考,所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
可选的,当所述N大于1时,所述参考波束为以下任一项波束:
RSRP最强的波束;
TOA最小的波束;
指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
可选的,当所述N大于1时,所述上报波束组的测量结果包括:
上报所述波束组中每一个波束的测量结果;
或者,上报所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
可选的,射频单元601,具体用于:按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
其中,所述第一预设内容包括:波束标识Beam ID、小区标识Cell ID、定位参考信号标识PRS ID、额外路径Additional path、参考质量reference quality、参考信号时间差RSTD、参考信号时间差质量RSTD quality、RSRP、参考信号接收功率质量RSRP quality和端口port中的至少一项;
所述第二预设内容包括:参考时差Reference time difference、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
可选的,所述联合处理的方式包括以下任一项:
对所述波束组中的波束的测量结果进行均值计算;
对所述波束组中的波束的测量结果进行加权平均计算;
选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结 果;
其中,J为小于N的正整数。
本公开实施例中,在定位测量信息上报时,可以采用RSRP和TOA中任一项确定N个波束的测量结果进行上报,从而实现了多波束接收PRS时,定位测量信息的上报。由于可以根据RSRP和TOA合理选择上报的波束的测量结果,因此可以减少定位测量信息上报的开销。
应理解的是,本公开实施例中,射频单元601可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器610处理;另外,将上行的数据发送给基站。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元601还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块602为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元603可以将射频单元601或网络模块602接收的或者在存储器609中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元603还可以提供与终端600执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元603包括扬声器、蜂鸣器以及受话器等。
输入单元604用于接收音频或视频信号。输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元606上。经图形处理器6041处理后的图像帧可以存储在存储器609(或其它存储介质)中或者经由射频单元601或网络模块602进行发送。麦克风6042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元601发送到移动通信基站的格式输出。
终端600还包括至少一种传感器605,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光 传感器可根据环境光线的明暗来调节显示面板6061的亮度,接近传感器可在终端600移动到耳边时,关闭显示面板6061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器605还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元606用于显示由用户输入的信息或提供给用户的信息。显示单元606可包括显示面板6061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板6061。
用户输入单元607可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板6071上或在触控面板6071附近的操作)。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器610,接收处理器610发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板6071。除了触控面板6071,用户输入单元607还可以包括其他输入设备6072。具体地,其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板6071可覆盖在显示面板6061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器610以确定触摸事件的类型,随后处理器610根据触摸事件的类型在显示面板6061上提供相应的视觉输出。虽然在图6中,触控面板6071与显示面板6061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板6071 与显示面板6061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元608为外部装置与终端600连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元608可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端600内的一个或多个元件或者可以用于在终端600和外部装置之间传输数据。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器610是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器609内的软件程序和/或模块,以及调用存储在存储器609内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器610可包括一个或多个处理单元;可选的,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
终端600还可以包括给各个部件供电的电源611(比如电池),可选的,电源611可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端600包括一些未示出的功能模块,在此不再赘述。
可选的,本公开实施例还提供一种终端,包括处理器610,存储器609,存储在存储器609上并可在所述处理器610上运行的计算机程序,该计算机程序被处理器610执行时实现上述XXXX实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
参见图7,图7是本公开实施例提供的另一种网络设备的结构图,如图7所示,该网络设备700包括:处理器701、收发机702、存储器703和总线接口,其中:
收发机702,用于向终端发送第一配置信息;接收由所述终端上报的波束组的测量结果;
其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
可选的,所述N个波束确定的方式包括以下任一项:
第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束,所述第一小区为参与定位的小区;
所述第一小区内RSRP高于预设门限的所有波束;
从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
所述第一小区内TOA从小到大的排序中前N个波束;
所述第一小区内TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
可选的,在所述N个波束为所述前L个波束和所述前K个波束的情况下,
当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;
当所述前L个波束和所述前K个波束不存在相同的波束时,N为实际的波束数量。
可选的,所述波束组的测量结果包括:第一测量结果和/或第二测量结果,所述第一测量结果是与下行链路到达时间差DL-TDOA关联的测量结果,所述第二测量结果是与下行链路发送角度DL-AoD关联的测量结果。
可选的,所述第一配置信息用于指示所述终端上报所述第一测量结果或 所述第二测量结果。
可选的,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。
可选的,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
可选的,当所述N大于1时,所述收发机702,还用于:
向所述终端发送第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束;
其中,所述参考波束用于作为计算第一波束的定时timing和/或RSRP的参考,所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
可选的,当所述N大于1时,所述参考波束为以下任一项的波束:
RSRP最强的波束;
TOA最小的波束;
指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
可选的,当所述N大于1时,所述接收由所述终端上报的波束组的测量结果包括:
接收由所述终端上报的所述波束组中每一个波束的测量结果;
或者,接收由所述终端上报的所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
可选的,所述终端按照以下任一种方式上报所述波束组中每一个波束的测量结果:
按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;
按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
其中,所述第一预设内容包括:波束标识Beam ID、小区标识Cell ID、定位参考信号标识PRS ID、额外路径Additional path、参考质量reference  quality、参考信号时间差RSTD、参考信号时间差质量RSTD quality、RSRP、参考信号接收功率质量RSRP quality和端口port中的至少一项;
所述第二预设内容包括:参考时差Reference time difference、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
可选的,所述联合处理的方式包括以下任一项:
对所述波束组中的波束的测量结果进行均值计算;
对所述波束组中的波束的测量结果进行加权平均计算;
选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结果;
其中,J为小于N的正整数。
本公开实施例中,在定位测量信息上报时,可以采用RSRP和TOA中任一项确定N个波束的测量结果进行上报,从而实现了多波束接收PRS时,定位测量信息的上报。由于可以根据RSRP和TOA合理选择上报的波束的测量结果,因此可以减少定位测量信息上报的开销。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
可选的,本公开实施例还提供一种网络设备,包括处理器701,存储器 703,存储在存储器703上并可在所述处理器701上运行的计算机程序,该计算机程序被处理器701执行时实现上述定位测量信息上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本公开实施例提供的网络设备侧的定位测量信息上报方法实施例的各个过程,或者该计算机程序被处理器执行时实现本公开实施例提供的终端侧的定位测量信息上报方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者基站等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (29)

  1. 一种定位测量信息上报方法,应用于终端,包括:
    从网络设备接收第一配置信息;
    根据所述第一配置信息上报波束组的测量结果;
    其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
  2. 根据权利要求1所述的方法,其中,所述N个波束确定的方式包括以下任一项:
    所述第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束;
    所述第一小区内RSRP高于预设门限的所有波束;
    从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
    所述第一小区内TOA从小到大的排序中前N个波束;
    从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
    所述第一小区内TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
  3. 根据权利要求2所述的方法,其中,在所述N个波束为所述前L个波束和所述前K个波束的情况下,
    当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;
    当所述前L个波束和所述前K个波束存在相同的波束时,N为实际的波束数量。
  4. 根据权利要求1所述的方法,其中,所述波束组的测量结果包括:第一测量结果和/或第二测量结果,所述第一测量结果是与下行链路到达时间差DL-TDOA关联的测量结果,所述第二测量结果是与下行链路发送角度DL-AoD关联的测量结果。
  5. 根据权利要求4所述的方法,其中,所述第一配置信息用于指示所述终端上报所述第一测量结果或所述第二测量结果。
  6. 根据权利要求1所述的方法,其中,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。
  7. 根据权利要求6所述的方法,其中,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
  8. 根据权利要求6所述的方法,其中,当所述N大于1时,所述方法还包括:
    从所述网络设备接收第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束;
    其中,所述参考波束用于作为计算第一波束的定时timing和/或RSRP的参考,所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
  9. 根据权利要求8所述的方法,其中,所述参考波束为以下任一项波束:
    RSRP最强的波束;
    TOA最小的波束;
    指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
  10. 根据权利要求8所述的方法,其中,所述上报波束组的测量结果包括:
    上报所述波束组中每一个波束的测量结果;
    或者,上报所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
  11. 根据权利要求10所述的方法,其中,所述上报所述波束组中每一个波束的测量结果包括:
    按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;
    按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
    其中,所述第一预设内容包括:波束标识Beam ID、小区标识Cell ID、定位参考信号标识PRS ID、额外路径Additional path、参考质量reference quality、参考信号时间差RSTD、参考信号时间差质量RSTD quality、RSRP、参考信号接收功率质量RSRP quality和端口port中的至少一项;
    所述第二预设内容包括:参考时差Reference time difference、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
  12. 根据权利要求10所述的方法,其中,所述联合处理的方式包括以下任一项:
    对所述波束组中的波束的测量结果进行均值计算;
    对所述波束组中的波束的测量结果进行加权平均计算;
    选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
    选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
    选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结果;
    其中,J为小于N的正整数。
  13. 一种定位测量信息上报方法,应用于网络设备,包括:
    向终端发送第一配置信息;
    从所述终端接收波束组的测量结果;
    其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
  14. 根据权利要求13所述的方法,其中,所述N个波束确定的方式包括以下任一项:
    第一小区内参考信号接收功率RSRP从高到低的排序中前N个波束,所述第一小区为参与定位的小区;
    所述第一小区内RSRP高于预设门限的所有波束;
    从M个波束内选取的RSRP从高到低的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于所述预设门限的波束,M为大于N的整数;
    所述第一小区内TOA从小到大的排序中前N个波束;
    从M个波束内选取的TOA从小到大的排序中前N个波束,所述M个波束为所述第一小区内RSRP高于预设门限的波束;
    所述第一小区内TOA从小到大的排序中前L个波束和RSRP从高到低的前K个波束,N≤L+K。
  15. 根据权利要求14所述的方法,其中,在所述N个波束为所述前L个波束和所述前K个波束的情况下,
    当所述前L个波束和所述前K个波束不存在相同的波束时,N=L+K;
    当所述前L个波束和所述前K个波束不存在相同的波束时,N为实际的波束数量。
  16. 根据权利要求13所述的方法,其中,所述波束组的测量结果包括:第一测量结果和/或第二测量结果,所述第一测量结果是与下行链路到达时间差DL-TDOA关联的测量结果,所述第二测量结果是与下行链路发送角度DL-AoD关联的测量结果。
  17. 根据权利要求16所述的方法,其中,所述第一配置信息用于指示所述终端上报所述第一测量结果或所述第二测量结果。
  18. 根据权利要求13所述的方法,其中,所述参与定位的小区包括参考小区和邻小区;或者,所述参与定位的小区包括邻小区。
  19. 根据权利要求18所述的方法,其中,当所述N等于1时,所述参考小区的波束组中的波束为参考波束。
  20. 根据权利要求18所述的方法,其中,当所述N大于1时,所述方法还包括:
    向所述终端发送第二配置信息,所述第二配置信息用于配置参考波束,所述参考波束为所述参考小区的波束组中的一个波束;
    其中,所述参考波束用于作为计算第一波束的定时timing和/或RSRP的参考,所述第一波束为所述参考小区的波束组中的波束或者所述邻小区的波束组中的波束,且所述第一波束与所述参考波束不同。
  21. 根据权利要求20所述的方法,其中,所述参考波束为以下任一项的波束:
    RSRP最强的波束;
    TOA最小的波束;
    指定的第二波束,所述第二波束与所述RSRP最强的波束不同,且所述第二波束与所述TOA最小的波束不同。
  22. 根据权利要求20所述的方法,其中,所述从所述终端接收波束组的测量结果包括:
    从所述终端接收所述波束组中每一个波束的测量结果;
    或者,从所述终端接收所述波束组的联合测量结果,所述联合测量结果为所述波束组中波束的测量结果进行联合处理后的测量结果。
  23. 根据权利要求22所述的方法,其中,所述终端按照以下任一种方式上报所述波束组中每一个波束的测量结果:
    按照第一预设内容上报所述参考波束和第三波束的测量结果,所述第三波束为所述邻小区的波束组中的波束;
    按照第二预设内容上报第四波束的测量结果,所述第四波束为所述参考波束的波束组中除所述参考波束之外的波束;
    其中,所述第一预设内容包括:波束标识Beam ID、小区标识Cell ID、定位参考信号标识PRS ID、额外路径Additional path、参考质量reference quality、参考信号时间差RSTD、参考信号时间差质量RSTD quality、RSRP、参考信号接收功率质量RSRP quality和端口port中的至少一项;
    所述第二预设内容包括:参考时差Reference time difference、Beam ID、Cell ID、PRS ID、Additional path、reference quality、RSRP、RSRP quality和port中的至少一项。
  24. 根据权利要求22所述的方法,其中,所述联合处理的方式包括以下任一项:
    对所述波束组中的波束的测量结果进行均值计算;
    对所述波束组中的波束的测量结果进行加权平均计算;
    选取所述波束组中测量质量从高到低的排序中前J个波束的测量结果;
    选取所述波束组中测量结果数值从大到小的排序中前J个波束的测量结果;
    选取所述波束组中测量结果数值从小到大的排序中前J个波束的测量结果;
    其中,J为小于N的正整数。
  25. 一种终端,包括:
    第一接收模块,用于从网络设备接收第一配置信息;
    第一发送模块,用于根据所述第一配置信息上报波束组的测量结果;
    其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
  26. 一种网络设备,包括:
    第二发送模块,用于向终端发送第一配置信息;
    第二接收模块,用于从所述终端接收波束组的测量结果;
    其中,所述波束组用于传输定位参考信号PRS,所述波束组包括由参考信号接收功率RSRP和到达时间TOA中任一项确定的N个波束,N为正整数,所述N个波束为第一小区内的波束,所述第一小区为参与定位的小区之一。
  27. 一种终端,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至12中任一项所述的定位测量信息上报方法中的步骤。
  28. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求13至24中任一项所述的定位测量信息上报方法中的步骤。
  29. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的定位测量信息上报方法的步骤,或者所述计算机程序被处理器执行时实现如权利要求13至24中任一项所述的定位测量信息上报方法的步骤。
PCT/CN2019/129240 2019-03-26 2019-12-27 定位测量信息上报方法、终端和网络设备 WO2020192219A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021557120A JP7417626B2 (ja) 2019-03-26 2019-12-27 ポジショニング測定情報の報告方法、端末及びネットワーク機器
SG11202110632SA SG11202110632SA (en) 2019-03-26 2019-12-27 Method for reporting positioning measurement information, terminal, and network device
KR1020217033484A KR20210138076A (ko) 2019-03-26 2019-12-27 측위 측정 정보 보고 방법, 단말 및 네트워크 장치
EP19921618.5A EP3952411A4 (en) 2019-03-26 2019-12-27 METHOD FOR REPORTING POSITIONING MEASUREMENT INFORMATION, TERMINAL, AND NETWORK DEVICE
US17/485,075 US20220014335A1 (en) 2019-03-26 2021-09-24 Method for reporting positioning measurement information, terminal, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910234824.8A CN111182579B (zh) 2019-03-26 2019-03-26 定位测量信息上报方法、终端和网络设备
CN201910234824.8 2019-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/485,075 Continuation US20220014335A1 (en) 2019-03-26 2021-09-24 Method for reporting positioning measurement information, terminal, and network device

Publications (1)

Publication Number Publication Date
WO2020192219A1 true WO2020192219A1 (zh) 2020-10-01

Family

ID=70655355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129240 WO2020192219A1 (zh) 2019-03-26 2019-12-27 定位测量信息上报方法、终端和网络设备

Country Status (7)

Country Link
US (1) US20220014335A1 (zh)
EP (1) EP3952411A4 (zh)
JP (1) JP7417626B2 (zh)
KR (1) KR20210138076A (zh)
CN (1) CN111182579B (zh)
SG (1) SG11202110632SA (zh)
WO (1) WO2020192219A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390580A (zh) * 2020-10-20 2022-04-22 维沃移动通信有限公司 波束上报方法、波束信息确定方法及相关设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4138312A4 (en) * 2020-05-12 2023-10-11 LG Electronics, Inc. METHOD FOR TRANSMITTING AND RECEIVING SIGNALS IN A WIRELESS COMMUNICATION SYSTEM AND APPARATUS TO SUPPORT THE SAME
WO2021240477A1 (en) * 2020-05-29 2021-12-02 Lenovo (Singapore) Pte. Ltd. Reporting positioning measurements
BR112022026987A2 (pt) * 2020-07-31 2023-01-24 Beijing Xiaomi Mobile Software Co Ltd Método, aparelho e dispositivo de gerenciamento de feixe, e, mídia de armazenamento legível por computador não transitória
CN116801339A (zh) * 2020-10-26 2023-09-22 Oppo广东移动通信有限公司 Ntn中的测量上报方法、接收方法、装置、设备及介质
CN114584916A (zh) * 2020-11-30 2022-06-03 上海华为技术有限公司 一种通信方法及相关设备
CN114828205A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 终端定位方法及设备
WO2022165695A1 (zh) * 2021-02-04 2022-08-11 华为技术有限公司 一种波束选择的方法及装置
WO2022205478A1 (zh) * 2021-04-02 2022-10-06 Oppo广东移动通信有限公司 定位测量结果上报方法、装置、通信设备及存储介质
CN116896401B (zh) * 2023-02-01 2024-01-16 武汉世炬信息技术有限公司 用户终端通信波束的确定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459930A (zh) * 2007-12-11 2009-06-17 大唐移动通信设备有限公司 定位测量信息交互方法、系统、基站及无线网络控制器
CN105850055A (zh) * 2013-12-26 2016-08-10 联发科技(新加坡)私人有限公司 具有多天线系统基于定位的波束成形方法
CN108260133A (zh) * 2016-12-28 2018-07-06 维沃移动通信有限公司 一种波束测量上报的方法、网络侧设备及移动终端
US20180324738A1 (en) * 2017-05-05 2018-11-08 Futurewei Technologies, Inc. System and Method for Network Positioning of Devices in a Beamformed Communications System

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209475B (zh) * 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
CN103703841B (zh) * 2012-07-30 2018-03-09 华为技术有限公司 用户设备的定位方法、数据发送方法、装置及用户设备
CN103856894B (zh) * 2012-12-06 2019-05-07 北京三星通信技术研究有限公司 基于波束的定位方法及设备
US10557919B2 (en) * 2014-03-28 2020-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Observed time difference of arrival angle of arrival discriminator
US10225759B2 (en) * 2015-02-13 2019-03-05 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus for the method
RU2704618C2 (ru) * 2015-07-08 2019-10-30 Телефонактиеболагет Лм Эрикссон (Пабл) Информация о местоположении в сетях связи
CN106341882A (zh) * 2015-07-17 2017-01-18 北京信威通信技术股份有限公司 一种lte系统的终端定位方法
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
TWI644582B (zh) * 2016-08-10 2018-12-11 華碩電腦股份有限公司 無線通訊系統中波束操作的路徑損耗推導的方法和設備
EP3282782B1 (en) * 2016-08-12 2019-11-06 Nokia Technologies Oy Transmission of position reference signals within wireless telecommunication network
EP3306337A1 (en) * 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
US10154496B2 (en) * 2016-11-10 2018-12-11 Futurewei Technologies, Inc. System and method for beamformed reference signals in three dimensional multiple input multiple output communications systems
US11122455B2 (en) * 2017-02-28 2021-09-14 Lg Electronics Inc. Method for positioning terminal in wireless communication system and apparatus therefor
US10736074B2 (en) 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
CN109392000A (zh) * 2017-08-09 2019-02-26 电信科学技术研究院 一种定位、测量上报方法及装置
US10054661B1 (en) * 2017-08-14 2018-08-21 Sprint Spectrum L.P. Method and system for updating configuration record of base station antenna
CN111052627B (zh) * 2017-09-11 2024-03-15 联想(新加坡)私人有限公司 用于发送设备能力信息的方法和设备
CN112586024A (zh) * 2018-08-24 2021-03-30 华为技术有限公司 数据传输方法和装置
KR102625811B1 (ko) * 2018-09-27 2024-01-16 소니그룹주식회사 멀티빔 동작을 지원하는 기지국들을 갖는 무선 네트워크들에서의 사용자 장비 포지셔닝 추정
EP3648496A1 (en) * 2018-11-01 2020-05-06 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Beam management methods and apparatuses for positioning measurements in a communications network
CN111314952B (zh) * 2018-12-11 2021-11-09 成都华为技术有限公司 一种测量上报的方法及装置
US11310762B2 (en) * 2019-01-11 2022-04-19 Nokia Technologies Oy Method for idle-mode positioning of UEs using observed time difference of arrival
WO2020146891A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Ue to ue crosslink interference measurement and reporting
WO2020146890A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Method for measurement of ue-to-ue reference signal in new radio networks with cross-link interference
WO2020146820A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Resource allocation, reference signal design, and beam management for new radio (nr) positioning
EP3895347A1 (en) * 2019-02-14 2021-10-20 Apple Inc. Measuring nr reference signal receive power (rsrp) by over the air signals
CN113412600A (zh) * 2019-02-14 2021-09-17 苹果公司 用于ue触发的csi-rs的系统和方法
CN113728692A (zh) * 2019-04-30 2021-11-30 高通股份有限公司 用于新无线电定位的波束组报告的系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459930A (zh) * 2007-12-11 2009-06-17 大唐移动通信设备有限公司 定位测量信息交互方法、系统、基站及无线网络控制器
CN105850055A (zh) * 2013-12-26 2016-08-10 联发科技(新加坡)私人有限公司 具有多天线系统基于定位的波束成形方法
CN108260133A (zh) * 2016-12-28 2018-07-06 维沃移动通信有限公司 一种波束测量上报的方法、网络侧设备及移动终端
US20180324738A1 (en) * 2017-05-05 2018-11-08 Futurewei Technologies, Inc. System and Method for Network Positioning of Devices in a Beamformed Communications System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952411A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390580A (zh) * 2020-10-20 2022-04-22 维沃移动通信有限公司 波束上报方法、波束信息确定方法及相关设备

Also Published As

Publication number Publication date
CN111182579A (zh) 2020-05-19
US20220014335A1 (en) 2022-01-13
EP3952411A4 (en) 2022-05-11
KR20210138076A (ko) 2021-11-18
SG11202110632SA (en) 2021-10-28
EP3952411A1 (en) 2022-02-09
JP7417626B2 (ja) 2024-01-18
JP2022528836A (ja) 2022-06-16
CN111182579B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2020192219A1 (zh) 定位测量信息上报方法、终端和网络设备
WO2021023061A1 (zh) 准共址qcl信息确定方法、配置方法及相关设备
WO2020164594A1 (zh) 测量处理方法、参数配置方法、终端和网络设备
WO2021179965A1 (zh) 信息上报方法、接入方式确定方法、终端和网络设备
WO2020140935A1 (zh) 信息上报方法及终端
US11729680B2 (en) Cell management method, trigger condition configuration method, terminal device, and network-side device
WO2020001530A1 (zh) 测量方法、终端和网络侧设备
WO2020156436A1 (zh) 测量方法、终端、测量指示方法及网络侧设备
WO2021109955A1 (zh) 邻小区csi报告发送方法、接收方法及相关设备
CN110278587B (zh) 小区配置方法、终端和网络节点
WO2021004522A1 (zh) 调度请求发送方法、调度请求接收方法、终端和网络设备
WO2021088970A1 (zh) 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
WO2021179966A1 (zh) 信号传输方法、信息指示方法和通信设备
US20210092630A1 (en) Method for cell management, terminal, and network-side device
WO2020253587A1 (zh) Srs功率控制方法、srs功率控制的配置方法及相关设备
WO2021027713A1 (zh) 上行传输方法、上行传输控制方法及相关设备
WO2020253746A1 (zh) 上报方法、配置方法、终端及网络侧设备
US20220110036A1 (en) Random access method and terminal
US20210219247A1 (en) Power headroom reporting method and terminal device
WO2021155806A1 (zh) 参考时间信息的获取方法、信息收发方法及相关设备
WO2020253744A1 (zh) 信息上报、获取方法、终端及网络侧设备
WO2020249116A1 (zh) 测量方法、设备及系统
WO2020199919A1 (zh) 上报方法、配置方法、终端和网络设备
WO2021000778A1 (zh) 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
WO2020239087A1 (zh) 信息的上报方法、信息的获取方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021557120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021019133

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217033484

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019921618

Country of ref document: EP

Effective date: 20211026

ENP Entry into the national phase

Ref document number: 112021019133

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210924