WO2020192204A1 - 一种脱除反应气中二氧化碳的方法、系统及其应用 - Google Patents

一种脱除反应气中二氧化碳的方法、系统及其应用 Download PDF

Info

Publication number
WO2020192204A1
WO2020192204A1 PCT/CN2019/127532 CN2019127532W WO2020192204A1 WO 2020192204 A1 WO2020192204 A1 WO 2020192204A1 CN 2019127532 W CN2019127532 W CN 2019127532W WO 2020192204 A1 WO2020192204 A1 WO 2020192204A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
decarburization
inlet
reaction gas
Prior art date
Application number
PCT/CN2019/127532
Other languages
English (en)
French (fr)
Inventor
王祥云
李海涛
张叶
徐莉
赵运生
吴小莲
于品华
Original Assignee
中国石油化工股份有限公司
中石化南京化工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化南京化工研究院有限公司 filed Critical 中国石油化工股份有限公司
Priority to EP19921666.4A priority Critical patent/EP3943473A4/en
Publication of WO2020192204A1 publication Critical patent/WO2020192204A1/zh
Priority to US17/482,415 priority patent/US11958012B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a method, system and application for removing carbon dioxide in reaction gas, in particular to a method, system and application for removing carbon dioxide in ethylene oxide reaction cycle gas.
  • the main method is to increase the split ratio of the circulating gas into the decarburization unit from 25% to 50%, and then 100% of the circulating gas enters the decarburization, that is, through Increase the amount of circulating gas that enters the decarbonization absorption tower (reduce the amount of gas that does not enter the decarbonization), and reduce the residual CO 2 concentration.
  • the circulating gas with low temperature and low water content is greatly increased to enter the high-temperature decarburization absorption tower and the decarburization aqueous solution for mass transfer, and the tower gas takes away a large amount of heat and water vapor, which makes the temperature of the rich liquid out of the absorption tower drop.
  • the amount of steam required by the regeneration tower to boil the desorption solution will inevitably increase, that is, the energy consumption will increase.
  • the Chinese patent CN 201210134232.7 mainly starts from the regeneration part and develops a new process flow to improve the desorption quality of the decarburization solution, so as to improve the decarburization efficiency and reduce energy consumption.
  • the circulating gas volume is doubled.
  • the temperature in the absorption tower exceeds 100°C, and the temperature of the circulating gas returning to the oxidation reactor is required to be less than 40°C.
  • the gas is hot and cold, bringing out a lot of heat, and the decarbonization system steam Consumption must also increase. In order to minimize the increase in steam, new processes must be further developed.
  • the purpose of the present invention is to provide a method, system and application for removing carbon dioxide in reaction gas in view of the technical problems existing in the prior art.
  • the method and system of the present invention can fully and effectively utilize the heat inside the system, Under the condition that the amount of processed gas is greatly increased, the residual carbon dioxide content of the purified gas is guaranteed to reach the standard, and the energy is greatly saved.
  • a method for removing carbon dioxide in reaction gas including:
  • step S2 Decarburizing the gas stream III obtained in step S1 with a decarburization liquid to obtain gas stream IV;
  • the washing water is first cooled by the cooling device, then exchanges heat with the air flow IV, then exchanges heat with the decarburization liquid, and finally exchanges heat with the reaction gas to be carbon dioxide removed, and then returns to the cooling device to cool down the cycle.
  • the reaction gas to be decarbonized is exchanged with the scrubbing water and the regeneration gas to heat up the reaction gas.
  • the temperature of the rich liquid can reduce the steam required for heating and desorption during the regeneration of the rich liquid, saving energy and reducing energy consumption.
  • the temperature of the reaction gas is increased to 70-100°C to fully recover the excess heat of the regeneration gas and the scrubbing water.
  • the step S1 includes the following steps:
  • the molar ratio of the gas flow I to the gas flow II is (0-70): (100-30), preferably (30-70): (70-30), more preferably (40 -60): (60-40).
  • the airflow I exchanges heat with the regeneration gas from the top of the regeneration tower, absorbs the heat therein, and the temperature is increased; the airflow II exchanges heat with the washing water, absorbs the heat therein, and the temperature is increased.
  • the heat of the regeneration gas and the scrubbing water is used to recover the heat.
  • the temperature of the gas entering the absorption tower is increased, thereby increasing the temperature of the rich liquid discharged from the absorption tower and reducing the richness.
  • the steam required for heating and desorption during liquid regeneration saves energy and reduces energy consumption.
  • the decarburization liquid is used to decarburize the gas stream III to reduce the concentration of carbon dioxide in the gas stream III to a concentration that meets the requirements of the catalyst.
  • the concentration of carbon dioxide in the gas stream III is reduced to 0.1-1.0%.
  • the decarbonization liquid is preferably a bottom lean liquid from a regeneration tower, preferably a carbonate solution, more preferably an activated hot potassium carbonate solution.
  • the step S2 includes the following steps:
  • the gas stream III is brought into countercurrent contact with the first decarburization liquid to obtain the gas stream IIIa and the first rich liquid;
  • the gas stream IIIa is brought into countercurrent contact with the second decarburization liquid to obtain the gas stream IV and the second rich liquid.
  • the washing water is first cooled to below 40°C, preferably below 33°C, through a cooling device, and then exchanges heat with the air flow IV, cools the air flow IV, and its own temperature is increased, and then is combined with the second decarburization liquid Heat exchange, the second decarburization liquid is cooled down, its temperature continues to rise, and finally it exchanges heat with the airflow II, and transfers the heat previously absorbed from the airflow IV and the second decarburization liquid to the airflow II, heating up the airflow II, Humidify, and then return to the cooling device to continue the cooling cycle.
  • the washing water is used as the medium to recycle the heat in the system, which reduces heat loss and saves energy.
  • the washing water can first exchange heat with the airflow II, then be cooled to below 40°C by a cooling device, then exchange heat with the airflow IV, and then exchange heat with the second decarburization liquid for circulation.
  • the first decarburization liquid and the second decarburization liquid respectively come from the lean liquid in the bottom of the regeneration tower; the first decarburization liquid directly contacts the gas stream III in countercurrent to obtain The first rich liquid; the second decarburization liquid first exchanges heat with a low-temperature rich liquid, then exchanges heat with the washing water, and finally contacts with the gas stream IIIa in countercurrent to obtain the second rich liquid.
  • the second decarburization liquid first exchanges heat with a stream of rich liquid with a lower temperature to cool down, and then exchanges heat with washing water to cool down to 60-95°C, preferably 65-90°C, Finally, it contacts the gas stream IIIa countercurrently to obtain the second rich liquid.
  • the first rich liquid and the second rich liquid are combined and returned to the regeneration tower for regeneration.
  • the heat exchange between the first rich liquid with a lower temperature and the second decarburization liquid can recover the heat of the second decarburization liquid on the one hand, so that the heat can be recovered, and on the other hand, it can increase the temperature of the rich liquid.
  • the steam required for heating and desorption during rich liquid regeneration can be reduced, which saves energy and reduces energy consumption.
  • the method further includes:
  • the heat contained in the regeneration gas from the top of the regeneration tower is used to power the cooling device to reduce the temperature of the washing water, and then exchange heat with the air flow IV.
  • the heat of the regeneration gas can be supplied to the heat pump to generate steam, and the lithium bromide ice machine can be used to generate 33 Chilled water below °C is supplied to cool the gas after decarburization. This can not only meet the requirements of the catalyst, but also save a large amount of steam required by the lithium bromide ice machine without increasing the energy consumption of decarbonization.
  • the method further includes the following steps:
  • reaction gas is divided into a gas stream A and a gas stream B, wherein the gas stream A is processed in accordance with steps S1-S2;
  • the gas stream B is directly combined with the purified gas obtained in step S2 and recycled back to the reactor.
  • the molar ratio of the air flow A to the air flow B is (70-100): (30-0), preferably (75-90): (25-10).
  • a system for removing carbon dioxide in reaction gas including:
  • the decarburization zone used to receive the gas from the heating zone and decarburize and cool it down.
  • the temperature rising zone includes at least one washing tower for heat exchange between the reaction gas to be removed of carbon dioxide and the washing water.
  • the water washing tower is provided with a reaction gas inlet, a reaction gas outlet, a washing water inlet, and a washing water outlet.
  • the reaction gas inlet is used to receive the reaction gas to be removed from carbon dioxide.
  • the gas outlet is connected with the reaction gas inlet of the absorption tower in the decarburization zone, the washing water inlet is connected with the washing water outlet of the lean liquid water cooler, and the washing water outlet is connected with the inlet of the washing water cooling device.
  • the reaction gas inlet of the washing tower is arranged at the lower part of its side wall
  • the reaction gas outlet of the washing tower is arranged at the top thereof
  • the washing water inlet of the washing tower is arranged at the upper part of the side wall.
  • the washing water outlet of the washing tower is arranged at the lower part of its side wall.
  • the reactant gas enters the washing tower from bottom to top, and the washing water enters the washing tower from top to bottom to contact the reactant gas countercurrently, so that the reactant gas can fully absorb the heat of the washing water to warm up and humidify, and the washing water can be used
  • the heat can increase the temperature of the gas entering the absorption tower, thereby increasing the temperature of the rich liquid discharged from the absorption tower, reducing the steam required for heating and desorption during the regeneration of the rich liquid, and reducing energy consumption.
  • the bottom of the washing tower is also provided with a waste liquid outlet for discharging the waste liquid accumulated in the washing tower.
  • the system is also provided with a washing water replenishment port connected to the washing water inlet of the water washing tower, which is used to directly add demineralized water to the water washing tower and then enter the washing water cooler for circulation.
  • the temperature rising zone further includes at least one gas heat exchanger for heat exchange between the reaction gas to be removed of carbon dioxide and the regeneration gas from the top of the regeneration tower.
  • the gas heat exchanger is provided with a reaction gas inlet, a reaction gas outlet, a regeneration gas inlet and a regeneration gas outlet, and the reaction gas inlet is used to receive the reaction gas from which carbon dioxide is to be removed.
  • the reaction gas outlet is connected to the reaction gas inlet of the absorption tower in the decarburization zone, the regeneration gas inlet is connected to the top gas outlet of the regeneration tower, and the regeneration gas outlet is connected to the inlet of the regeneration gas cooling device;
  • a reaction gas channel and a regeneration gas channel are respectively provided in the gas heat exchanger; the reaction gas channel is respectively communicated with the reaction gas inlet and the reaction gas outlet for circulating the reaction gas entering the gas heat exchanger;
  • the regeneration gas channel is respectively connected with the regeneration gas inlet and the regeneration gas outlet, and is used for circulating the regeneration gas entering the gas heat exchanger.
  • the reaction gas and the regeneration gas exchange heat in the gas heat exchanger, and the temperature of the regeneration gas is increased by using the heat of the regeneration gas, and the temperature of the gas entering the absorption tower can be increased, thereby increasing the rich liquid discharged from the absorption tower It can reduce the steam required for heating and desorption during the regeneration of rich liquid and reduce energy consumption.
  • reaction gas and the regeneration gas flow in the opposite direction in the gas heat exchanger.
  • the decarburization zone includes at least one absorption tower for decarburizing and cooling the gas from the heating zone.
  • the absorption tower is provided with a reaction gas inlet and a reaction gas outlet, the reaction gas inlet is connected to the gas outlet of the water washing tower and/or the gas heat exchanger, and the reaction gas outlet is connected to the reactor
  • the reaction gas enters from bottom to top, contacts the decarburization liquid and the washing water in countercurrent, and fully performs decarburization and cooling treatment.
  • the absorption tower includes a first absorption section, a second absorption section, and a cooling section arranged from bottom to top; the first absorption section, the second absorption section and the cooling section are separated by liquid , Only allow gas to pass.
  • the first absorbing section, the second absorbing section and the cooling section are separated by a liquid collecting pan so that liquid cannot pass through.
  • a gas riser is provided on the liquid collecting pan to allow gas to pass through. .
  • At least one layer of packing or trays are respectively arranged in the first absorption section, the second absorption section and the temperature reduction section.
  • the first absorption section is provided with a reaction gas inlet, a reaction gas outlet, a decarburization liquid inlet, and a decarburization liquid outlet, and the reaction gas inlet is connected to the reaction gas inlet of the absorption tower.
  • the reaction gas outlet is connected to the reaction gas inlet of the second absorption section (preferably a liquid-sump gas riser), the decarburization liquid inlet is connected to the lean liquid outlet of the bottom of the regeneration tower, and the decarburization liquid outlet is exchanged with the lean and rich liquid
  • the rich liquid inlet of the heater or the rich liquid inlet of the regeneration tower are connected;
  • the reaction gas inlet of the first absorption section is arranged on the lower part of its side wall, and the reaction gas outlet of the first absorption stage is arranged on the top (preferably connected with the gas riser of the collecting plate), so
  • the decarburization liquid inlet of the first absorption section is arranged at the upper part of the side wall thereof, and the decarburization liquid outlet of the first absorption section is arranged at the bottom thereof.
  • the reactant gas enters from bottom to top, contacts the first decarburization liquid entering from the upper part in countercurrent, and fully performs decarburization treatment.
  • the decarburization liquid absorbs carbon dioxide in it, and at the same time The heat is transferred to the gas, the temperature of the decarburization liquid is reduced, and the first rich liquid is obtained.
  • the second absorption section is provided with a reaction gas inlet, a reaction gas outlet, a decarburization liquid inlet, and a decarburization liquid outlet, and the reaction gas inlet is connected to the reaction gas outlet of the first absorption section,
  • the reaction gas outlet is connected with the reaction gas inlet (preferably the liquid-collecting pan riser) of the cooling section
  • the decarburization liquid inlet is connected with the decarburization liquid outlet of the lean liquid water cooler
  • the decarburization liquid outlet is connected with the lean and rich liquid.
  • the rich liquid inlet of the heat exchanger or the rich liquid inlet of the regeneration tower is connected;
  • the reaction gas inlet of the second absorption section is arranged at the bottom thereof, the reaction gas outlet of the second absorption section is arranged on the top thereof, and the decarburization liquid inlet of the second absorption section is arranged On the upper part of the side wall, the decarburization liquid outlet of the second absorption section is arranged at the lower part of the side wall.
  • the reactant gas enters from bottom to top, and contacts the second decarburization liquid entering from the upper part in countercurrent to fully carry out the decarburization treatment, and the decarburization liquid absorbs the carbon dioxide in it.
  • the temperature is increased and a second rich liquid is obtained.
  • the cooling section is provided with a reaction gas inlet, a reaction gas outlet, a washing water inlet and a washing water outlet, and the reaction gas inlet is connected to the reaction gas outlet of the second absorption section.
  • the outlet is connected with the reaction gas outlet of the absorption tower, the washing water inlet is connected with the washing water outlet of the washing water cooling device, and the washing water outlet is connected with the washing water inlet of the lean liquid water cooler;
  • the reaction gas inlet of the cooling section is arranged at the bottom thereof, the reaction gas outlet of the cooling section is arranged on the top thereof, and the washing water inlet of the cooling section is arranged on the upper part of its side wall, so The washing water outlet of the cooling section is arranged at the lower part of the side wall.
  • the system further includes a washing water cooling device for cooling the washing water;
  • the washing water cooling device includes at least one washing water-circulating water cooler and at least one washing water-chilling water Cooler;
  • the washing water-circulating water cooler is provided with an inlet and an outlet, the inlet is connected to the washing water outlet of the water washing tower, and the outlet is connected to the inlet of the washing water-chilled water cooler;
  • the washing water- The chilled water cooler is provided with an inlet and an outlet, the inlet is connected to the outlet of the wash water-circulating water cooler, and the wash water outlet is connected to the wash water inlet of the cooling section of the decarbonization zone;
  • the wash water cooler is further provided with a wash water replenishment port and a wash water discharge port, the wash water replenishment port replenishes desalinated water into the system, and the wash water discharge port is used to drain the system Contaminated washing water.
  • the washing water-circulating water cooler and/or washing water-chilling water cooler are provided with a washing water replenishment port and a washing water discharge port, and the washing water replenishment port replenishes desalinated water into the system, and the washing The water discharge port is used to drain the contaminated washing water in the system.
  • the circulating washing water is monitored by the conductivity meter in real time to determine whether it is contaminated, and then it can be discharged-supplemental replacement.
  • the washing water-chilling water cooler is composed of a lithium bromide ice machine and a heat pump, and the heat pump is connected in parallel with the regeneration gas heat exchanger; the regeneration gas from the regeneration tower enters the heat pump to supply heat The heat pump generates steam, which is supplied to the lithium bromide ice machine for refrigeration, and the generated cold energy reduces the temperature of the circulating washing water to below 33°C.
  • the above device can be used. This can not only meet the requirements of the catalyst, but also save a large amount of steam required by the lithium bromide ice machine without increasing the energy consumption of decarbonization.
  • the system further includes a decarburization liquid heat exchange device for exchanging heat of the decarburization liquid.
  • the decarburization liquid is separated from the rich liquid and the washing water in the decarburization liquid heat exchange device. Heat transfer
  • the decarburization liquid heat exchange device includes at least one lean and rich liquid heat exchanger and at least one lean liquid water cooler; the lean and rich liquid heat exchanger is used to make the second decarburization liquid and The low-temperature rich liquid in the first rich liquid or the second rich liquid performs heat exchange, and the lean liquid water cooler is used to exchange heat and cool the second decarburization liquid and the washing water.
  • the lean and rich liquid heat exchanger is provided with a decarburization liquid inlet, a decarburization liquid outlet, a rich liquid inlet, and a rich liquid outlet.
  • the liquid outlet is connected, the decarburization liquid outlet is connected to the decarburization liquid inlet of the lean liquid water cooler, the rich liquid inlet is connected to a low temperature decarburization rich liquid outlet, and the rich liquid outlet is connected to the regeneration tower
  • the rich liquid inlet is connected; a decarburization liquid channel and a rich liquid channel are respectively provided in the lean and rich liquid heat exchanger, and the decarburization liquid channel is respectively connected with the decarburization liquid inlet and the decarburization liquid outlet for circulation to enter
  • the second stream of decarburization liquid and a stream of rich liquid with a lower temperature exchange heat in the lean-rich liquid heat exchanger, and the rich liquid uses the heat of the second stream of decarburization liquid to increase its temperature , whereby reducing the steam required for heating and desorption during rich liquid regeneration, and reducing energy consumption.
  • the second decarburization liquid and the rich liquid flow countercurrently in the lean and rich liquid heat exchanger.
  • the lean liquid water cooler is provided with a decarburization liquid inlet, a decarburization liquid outlet, a washing water inlet and a washing water outlet, and the decarburization liquid inlet and the lean and rich liquid heat exchanger
  • the carbon liquid outlet is connected, the decarburization liquid outlet is connected to the decarburization liquid inlet of the second absorption section, the washing water inlet is connected to the washing water outlet of the cooling section, and the washing water outlet is connected to the washing water inlet of the washing tower
  • the decarburization liquid channel and the washing water channel are respectively provided in the lean liquid water cooler, and the decarburization liquid channel is respectively connected with the decarburization liquid inlet and the decarburization liquid outlet for circulation into the lean and rich liquid exchange
  • the second decarburization liquid of the heat exchanger; the washing water channel is respectively communicated with the washing water inlet and the washing water outlet for circulating the washing water entering the lean liquid water cooler.
  • the second decarburization liquid and washing water exchange heat in the lean liquid water cooler, the temperature of the second decarburization liquid is reduced, and then the reaction gas is decarburized and cooled.
  • the washing water uses the second The temperature of the heat of the decarburization liquid is increased, and then it enters the washing tower to heat up the reaction gas, and the heat is recovered.
  • the second decarburization liquid and the washing water flow in the opposite direction in the lean liquid water cooler.
  • the system further includes a circulating bypass pipeline that directly merges the reaction gas to be carbon dioxide removed and the purified gas, and a first regulating valve is provided on the circulating pipeline; A regulating pipe is connected in parallel at both ends of the regulating valve, and a second regulating valve is arranged on it.
  • the first regulating valve can allow up to 100% of the reactant gas to pass through; the second regulating valve can allow up to 30% of the reactant gas to pass through.
  • the application of the above system in removing carbon dioxide from the reaction gas is also provided.
  • the application includes the following steps:
  • Step (1) Exchange heat between the reaction gas to be removed of carbon dioxide and the scrubbing water in the heating zone to perform heating treatment to obtain air flow iii;
  • step (2) the gas stream iii obtained in step (1) enters the decarburization zone with a decarburization liquid to obtain gas stream iv;
  • step (3) the air flow iv is cooled to obtain a purified gas for removing carbon dioxide.
  • the step (1) includes the following steps:
  • the molar ratio of the air flow i to the air flow ii is (0-70): (100-30), preferably (30-70): (70-30), more preferably (40 -60): (60-40).
  • the gas flow i exchanges heat with the regeneration gas at the top of the regeneration tower in the gas heat exchanger, absorbs the heat therein, and the temperature is increased; the gas flow ii exchanges heat with the washing water in the water washing tower and absorbs it The heat, the temperature is raised.
  • the heat of regeneration gas and washing water is used to recover the heat.
  • the temperature of the gas entering the absorption tower is increased, which can increase the temperature of the rich liquid discharged from the absorption tower, and reduce the heating and desorption during the regeneration of the rich liquid. The required steam saves energy and reduces energy consumption.
  • the gas stream iii enters the absorption tower and contacts the decarburization liquid countercurrently.
  • the step (2) includes the following steps:
  • the gas stream iii enters the first absorption section of the absorption tower and contacts the first decarburization liquid countercurrently to obtain the gas stream iiia and the first rich liquid;
  • the gas stream iiia enters the second absorption section of the absorption tower and contacts the second decarburization liquid countercurrently to obtain the gas stream iv and the second rich liquid.
  • the washing water is desalinated water, which is first cooled to below 40°C by a cooling device, then enters the cooling section of the absorption tower to exchange heat with the airflow iv, and then enters the lean liquid water cooler and the second stream The decarburization liquid exchanges heat, and finally enters the water washing tower to exchange heat with the airflow ii, and then returns to the cooling device to cool down the cycle.
  • the washing water is first cooled to below 40°C through the cooling device, and then enters the cooling section of the absorption tower to exchange heat with the air flow iv, and the air flow iv is cooled, and its own temperature is increased, and then enters the lean liquid water cooler and The second decarburization liquid exchanges heat, cools the second decarburization liquid, and its temperature continues to rise, and finally enters the water washing tower to exchange heat with the airflow ii, and transfers the heat absorbed from the airflow iv and the second decarburization liquid
  • the airflow ii is heated, humidified, and then returned to the cooling device to continue the cooling cycle.
  • the washing water is used as the medium to recycle the heat in the system, which reduces heat loss and saves energy.
  • an ice machine can be used to cool the washing water below 33°C to cool the gas. This can not only meet the requirements of the catalyst, but also save a large amount of steam required by the lithium bromide ice machine without increasing the energy consumption of decarbonization.
  • the washing water from the outside may first exchange heat with the airflow ii, then be cooled by the cooling device, then exchange heat with the airflow iv, and then exchange heat with the second decarburization liquid for circulation.
  • the first decarburization liquid and the second decarburization liquid are lean liquids from the bottom of the regeneration tower; the first decarburization liquid directly enters the first absorption section and the gas flow iii Countercurrent contact to obtain the first rich liquid.
  • the second decarburization liquid first enters the lean-rich liquid heat exchanger to exchange heat with the lower-temperature rich liquid, and then enters the lean-liquid water cooler to exchange heat with the wash water , And finally enter the second absorption section to contact with the gas flow iiia in countercurrent to obtain the second rich liquid; the first rich liquid and the second rich liquid are combined and then returned to the regeneration tower for regeneration.
  • the low-temperature rich liquid can exchange heat with the second decarburization liquid.
  • the heat of the second decarburization liquid can be recovered, so that the heat can be recovered.
  • the temperature of the rich liquid can be increased and the enrichment can be reduced.
  • the steam required for heating and desorption during liquid regeneration saves energy and reduces energy consumption.
  • the application further includes the following steps:
  • step (0) a part of the gas flow a in the reaction gas is processed according to step (1) to step (2);
  • step (3) another part of the gas stream b in the reaction gas flows through the circulation pipeline, directly merges with the purified gas obtained in step (2), and circulates back to the reactor.
  • the first regulating valve and the second regulating valve are controlled so that the molar ratio of air flow a and air flow b is (70-100): (30-0), preferably (75-90): (25 -10).
  • Figure 1 shows a process flow diagram of a system according to an embodiment of the present invention
  • Fig. 2 shows a process flow diagram of a system according to another embodiment of the present invention.
  • the system for removing carbon dioxide in the reaction gas of the present invention includes a heating zone, a decarburization zone, a washing water cooling device, a decarburization liquid heat exchange device and a circulating gas bypass pipeline;
  • the heating zone includes a gas heat exchanger 1 and a water washing tower 6;
  • the gas heat exchanger 1 is provided with a reaction gas inlet, a reaction gas outlet, a regeneration gas inlet, and a regeneration gas outlet.
  • the reaction gas inlet is used to receive the reaction gas to be removed from carbon dioxide, and the reaction gas outlet is connected to the decarbonization zone.
  • the reaction gas inlet of the absorption tower is connected, the regeneration gas inlet is connected with the gas outlet at the top of the regeneration tower, and the regeneration gas outlet is connected with the inlet of the regeneration gas cooling device; a reaction gas channel is respectively provided in the gas heater 1 And the regeneration gas channel; the reaction gas channel is respectively connected with the reaction gas inlet and the reaction gas outlet for circulating the reaction gas entering the gas heat exchanger; the regeneration gas channel is respectively connected with the regeneration gas inlet and the regeneration gas outlet , Used to circulate the regeneration gas entering the gas heat exchanger;
  • the washing tower 6 is provided with a reaction gas inlet, a reaction gas outlet, a washing water inlet, and a washing water outlet.
  • the reaction gas inlet is used to receive the reaction gas to be removed from carbon dioxide, and the reaction gas outlet is connected to the absorption tower in the decarbonization zone.
  • the reaction gas inlet of the water washing tower is connected, the washing water inlet is connected to the washing water outlet of the lean liquid water cooler 8, and the washing water outlet is connected to the inlet of the washing water cooling device;
  • the reaction gas inlet of the water washing tower is arranged on its side wall In the lower part, the reaction gas outlet of the washing tower is arranged at the top of the tower, the washing water inlet of the washing tower is arranged at the upper part of the side wall, and the washing water outlet of the washing tower is arranged at the lower part of the side wall;
  • the bottom of the washing tower is also There is a waste liquid outlet connected to a waste liquid discharge pipe for discharging the waste liquid accumulated in the washing tower.
  • the waste liquid discharge pipe is equipped with a valve XV3;
  • the washing water inlet of the washing tower 6 is also equipped with a washing water supplement port connected to it , Used to directly add washing water to the washing tower, and then enter the washing water cooler for circulation;
  • the decarburization zone includes an absorption tower 7 for decarburizing and cooling the gas from the heating zone;
  • the absorption tower 7 is provided with a reaction gas inlet and a reaction gas outlet, the reaction gas inlet is connected with the water scrubber and/or the gas outlet of the gas heat exchanger in the decarburization zone, and the reaction gas outlet is connected with the gas inlet of the reactor
  • the absorption tower 7 includes a bottom-up first absorption section, a second absorption section and a cooling section; the first absorption section, the second absorption section and the cooling section are separated by a liquid collecting pan through which the liquid cannot pass.
  • the liquid collecting pan is provided with a gas riser, which can allow gas to pass through; the first absorption section is provided with a reaction gas inlet, a reaction gas outlet, a decarburization liquid inlet, and a decarburization liquid outlet.
  • the reaction gas inlet and the absorption tower The inlet of the reactor is connected, the outlet of the reaction gas is connected with the inlet of the reaction gas of the second absorption section (preferably a liquid collecting pan riser), the inlet of the decarburization liquid is connected with the outlet of the tower kettle of the regeneration tower, and the outlet of the decarburization liquid It is connected with the rich liquid inlet of the lean and rich liquid heat exchanger 9; the reaction gas inlet of the first absorption section is arranged at the lower part of its side wall, and the reaction gas outlet of the first absorption section is arranged on the top (preferably connected to the gas riser of the liquid collecting plate).
  • the decarburization liquid inlet of the first absorption section is arranged at the upper part of its side wall, the decarburization liquid outlet of the first absorption section is arranged at the bottom thereof;
  • the second absorption section is provided with a reaction gas inlet and a reaction gas outlet ,
  • the decarburization liquid inlet and the decarburization liquid outlet, the reaction gas inlet is connected with the reaction gas outlet of the first absorption section, and the reaction gas outlet is connected with the reaction gas inlet (preferably the liquid collector gas riser) of the cooling section, so
  • the decarburization liquid inlet is connected to the decarburization liquid outlet of the lean liquid water cooler 8, and the decarburization liquid outlet is connected to the rich liquid inlet of the regeneration tower;
  • the reaction gas inlet of the second absorption section is arranged at the bottom thereof, and the second The reaction gas outlet of the absorption section is arranged at the top of the absorption section, the decarburization liquid inlet of the second absorption section is arranged on the upper part of the
  • the reaction gas inlet is connected to the reaction gas outlet of the second absorption section, and the reaction gas outlet is connected to the reaction gas outlet of the absorption tower.
  • the water inlet is connected with the washing water outlet of the washing water cooling device, and the washing water outlet is connected with the washing water inlet of the lean liquid water cooler;
  • the reaction gas inlet of the cooling section is arranged at the bottom thereof, and the reaction gas outlet of the cooling section is arranged at On the top, the washing water inlet of the cooling section is arranged on the upper part of the side wall, and the washing water outlet of the cooling section is arranged on the lower part of the side wall;
  • the washing water cooling device is provided with a washing water inlet and a washing water outlet, including a washing water-circulating water cooler 4 and a washing water-frozen water cooler 5 connected in series.
  • the washing water-circulating water cooler is provided with an inlet and an outlet.
  • the inlet is connected with the washing water outlet of the washing tower, and the outlet is connected with the inlet of the washing water-chilled water cooler;
  • the washing water-chilled water cooler is provided with an inlet and an outlet, and the inlet is cooled with the washing water-circulating water
  • the washing water outlet is connected to the washing water inlet of the cooling section of the decarburization zone;
  • the washing water-circulating water cooler 4 is provided with a washing water replenishment port and a washing water discharge port, The washing water replenishment port replenishes desalinated water into the system, and the washing water discharge port is used to discharge contaminated washing water in the system;
  • the decarburization liquid heat exchange device includes a lean-rich liquid heat exchanger 9 and a lean-liquid water cooler 8; the lean-rich liquid heat exchanger 9 is used to exchange the second decarburization liquid with a low-temperature rich liquid. Hot, it is provided with a decarburization liquid inlet, a decarburization liquid outlet, a rich liquid inlet and a rich liquid outlet, the decarburization liquid inlet is connected to the bottom liquid outlet of the regeneration tower, and the decarburization liquid outlet is water-cooled with the lean liquid
  • the decarburization liquid inlet of the reactor is connected, the rich liquid inlet is connected with the decarburization liquid outlet of the first absorption section, and the rich liquid outlet is connected with the rich liquid inlet of the regeneration tower; in the lean and rich liquid heat exchanger, respectively
  • a decarburization liquid channel and a rich liquid channel are provided, the decarburization liquid channel is respectively connected with a decarburization liquid inlet and a decarburization liquid outlet,
  • the decarburization liquid inlet is connected to the decarburization liquid outlet of the lean and rich liquid heat exchanger, and the decarburization liquid
  • the outlet is connected with the decarburization liquid inlet of the second absorption section
  • the washing water inlet is connected with the washing water outlet of the cooling section
  • the washing water outlet is connected with the washing water inlet of the washing tower
  • a decarburization liquid channel and a washing water channel are provided, and the decarburization liquid channel is respectively connected with the decarburization liquid inlet and the decarburization liquid outlet, and is used to circulate the second decarburization liquid entering the lean and rich liquid heat exchanger
  • the washing water channel is respectively connected with the washing water inlet and the washing water outlet, and is used for circulating the washing water entering the lean liquid water cooler;
  • a first regulating valve XV1 is arranged on the bypass pipeline, a regulating pipeline with a maximum gas volume of 30% is connected in parallel at both ends of the first regulating valve, and a second regulating valve XV2 is arranged on it.
  • the reaction gas from the outlet of the reactor enters the system of the present invention through product separation.
  • a part of the reaction gas flow i enters the gas heat exchanger 1, where it exchanges heat with the regeneration gas from the top of the regeneration tower to heat up, and obtains the flow ia.
  • ii enters the water washing tower 6, where it exchanges heat with the washing water to heat up and humidify to obtain air flow iia; air flow ia and air flow iia are combined to obtain air flow iii; air flow iii enters the first absorption section of absorption tower 7, and is removed from the first
  • the carbon liquid is in countercurrent contact to obtain the gas stream iiia and the first rich liquid.
  • the gas stream iiia enters the second absorption section of the absorption tower 7 upward, and contacts the second decarburization liquid countercurrently to obtain the gas stream iv and the second rich liquid, the gas stream iv Continue to enter the cooling section of the absorption tower 7 upward, exchange heat with the washing water to cool down, and obtain the purified gas from which carbon dioxide is removed, and the purified gas is recycled back to the reactor.
  • the lean liquid from the bottom of the regeneration tower is divided into two streams, namely the first decarburization liquid and the second decarburization liquid; the first decarburization liquid directly enters the first absorption section and comes into contact with the gas flow iii in countercurrent, Obtain the first rich liquid.
  • the second decarburization liquid first enters the lean and rich liquid heat exchanger 9 to exchange heat with the first rich liquid, then enters the lean liquid water cooler 8 to exchange heat with the washing water, and finally enters the second
  • the absorption section is in countercurrent contact with the airflow iiia to obtain a second rich liquid; the temperature of the first rich liquid and the second rich liquid are increased, and they return to the regeneration tower for regeneration after confluence.
  • the washing water is first cooled to below 40°C by the cooling device, then enters the cooling section of the absorption tower 7 and exchanges heat with the air flow iv, then enters the lean liquid water cooler 8 to exchange heat with the second decarburization liquid, and finally enters the washing tower 6 and the air flow ii Heat exchange, and then pressurize the washing water circulating pump 2 to return to the cooling device cooling cycle; use the real-time monitoring result of the conductivity meter to judge the impurity content in the washing water, if it exceeds the set value, open the valve XV3, discharge part of the waste liquid, and then pass The washing water replenishment port replenishes new demineralized water.
  • valve XV1 is closed and the valve XV2 is adjusted so that the amount of reaction gas entering the heating zone is 70% to 100% of the total amount of reaction gas.
  • the system shown in Fig. 2 for removing carbon dioxide from the reaction gas is basically the same as the system shown in Fig. 1, except that the heating zone is only composed of the washing tower 6 and the heat pump-lithium bromide ice machine system 5'is used instead of washing water- Chilled water cooler 5, the heat pump of the system 5'is connected in parallel with the gas heat exchanger; the regeneration gas from the regeneration tower enters the heat pump and supplies heat to the heat pump to generate steam.
  • the steam is supplied to the lithium bromide ice machine for refrigeration, and the generated cold will be washed The temperature of the water dropped below 33°C.
  • the reaction gas from the outlet of the reactor enters the system of the present invention after product separation.
  • the reaction gas enters the washing tower 6 where it exchanges heat with the washing water to increase temperature and humidify to obtain the air flow iii; the air flow iii enters the first absorption section of the absorption tower 7 , Come into contact with the first decarburization liquid in countercurrent to obtain the gas stream iiia and the first rich liquid.
  • the gas stream iiia enters the second absorption section of the absorption tower 7 upwards, and contacts the second decarburization liquid countercurrently to obtain the gas stream iv and the second
  • the rich liquid the gas stream iv continues to enter the cooling section of the absorption tower 7, exchanges heat with the washing water to cool down, obtains the purified gas from which carbon dioxide is removed, and the purified gas circulates back to the reactor.
  • the lean liquid from the bottom of the regeneration tower is divided into two streams, namely the first decarburization liquid and the second decarburization liquid; the first decarburization liquid directly enters the first absorption section and comes into contact with the gas flow iii in countercurrent, Obtain the first rich liquid.
  • the second decarburization liquid first enters the lean and rich liquid heat exchanger 9 to exchange heat with the first rich liquid, then enters the lean liquid water cooler 8 to exchange heat with the washing water, and finally enters the second
  • the absorption section is in countercurrent contact with the airflow iiia to obtain a second rich liquid; the temperature of the first rich liquid and the second rich liquid are increased, and they return to the regeneration tower for regeneration after confluence.
  • the washing water is first cooled to below 33°C through the washing water-circulating water cooler 4 and the ice machine 5', and then enters the cooling section of the absorption tower 7 to exchange heat with the air flow iv, and then enters the lean liquid water cooler 8 and the second decarburization
  • the liquid heat exchanges and finally enters the water washing tower 6 to exchange heat with the airflow ii, and then is pressurized by the washing water circulation pump 2 to return to the cooling device for cooling cycle; use the real-time monitoring result of the conductivity meter to judge the impurity content in the washing water, if it exceeds the set value, then Open the valve XV3, discharge part of the waste liquid, and then replenish new desalinated water through the washing water replenishment port.
  • valve XV1 is closed and the valve XV2 is adjusted so that the amount of reaction gas entering the heating zone is 70% to 100% of the total amount of reaction gas.
  • the regeneration gas from the regeneration tower enters the heat pump of the ice machine 5'to supply heat to the heat pump to generate steam, and the steam is supplied to the lithium bromide ice machine for cooling.
  • the amount of reaction tail gas entering the decarburization system is increased from 50% to 100%, that is, from 83654.2 kg/ h increased to 164284.7kg/h.
  • the exhaust gas is pressurized by the compressor, and the reaction gas with a pressure of 1.82MPa(A) and a temperature of 56.5°C enters the system of the present invention.
  • the gas volume is 164284.7kg/h, in which the concentration of CO 2 is 1.59 mol%, the concentration of ethylene is 28.02 mol%, and the concentration of O 2 5.86mol%, the rest is CH 4 , C 2 H 6 , N 2 , Ar, and a small amount of water vapor and MEG.
  • the gas with a mole fraction of about 50% is heated to about 90°C to recover the heat of the regeneration gas through the gas heat exchanger [1]; the remaining gas enters the washing tower [6] for heating and humidification, and the temperature is raised to about 85.5°C to recover the washing water The heat.
  • the two gases are combined and mixed at 87°C into the absorption tower [7], and the first decarburization liquid pumped in by the carbonate pump [11] is counter-currently mass-transferred and absorbed in the packing of the first absorption section and exchanges heat.
  • the temperature of the first rich liquid of the tower is about 88.77°C, and it exchanges heat with the second decarburization liquid of 115°C through the lean and rich liquid heat exchanger [9].
  • the temperature rises to about 103°C and the second absorption stage After the two rich liquids are mixed, they enter the flash tank at the top of the regeneration tower.
  • the temperature of the mixed rich liquid is 103.5°C, which is about 5°C higher than before the transformation.
  • the ordinary hot potassium carbonate decarburization process is to make the reaction gas enter the absorption tower [7], and the first decarburization liquid pumped by the carbonate pump [11] transfers mass countercurrently in the packing of the first absorption section, and the second The decarburization liquid enters the second absorption section of the absorption tower and further countercurrently contacts the gas from the first absorption section to remove CO 2 , the absorption rich liquid descends in the tower, and merges with the first rich liquid and returns to the regeneration tower for desorption and regeneration .
  • the circulating washing water from the washing tower [6] is pressurized by the washing water circulation pump [2] and then enters the washing water-circulating water cooler [4] for cooling, and then is cooled to below 35°C by the washing water-chilling water cooler [5], It enters the cooling section of the absorption tower, contacts the carbonate mist in the scrubbing gas countercurrently with the purified gas from the absorption tower and transfers heat, and reduces the temperature of the gas returning from the tower to the synthesis system below 37°C.
  • the purpose is to reduce the saturated water vapor content in the gas. (Less than 0.3%), meeting the requirements of the catalyst.
  • the CO 2 concentration in the inlet gas of the reactor is less than 1.0% (after the catalyst selectivity is increased, the CO 2 concentration is less than 0.5%).
  • the ordinary hot potassium carbonate decarbonization process has no water circulation system. The circulating gas enters the absorption tower directly, and the outgoing gas is cooled by the circulating water heat exchanger, and all the heat is taken out by the circulating water; the decarburization liquid entering the absorption tower is also cooled by circulating water, instead of heat exchange with washing water, and no heat recovery.
  • the washing water from the cooling section exchanges heat with the decarburization liquid in the lean liquid water cooler [8], and the washing water heated to 88°C is returned to the washing tower [6], and it is in countercurrent contact with the reactant gas entering the system in the packing to transfer heat and mass.
  • the trace organic matter in the circulating gas is washed away, the gas is heated and humidified, and the outgoing gas heated to about 85.5°C merges with another reaction gas into the absorption tower.
  • valve XV1 is closed, and the valve XV2 is adjusted so that the amount of reaction gas entering the heating zone is about 86% of the total amount of reaction gas to be processed.
  • the exhaust gas is pressurized by the compressor, and the reaction gas with a pressure of 1.82MPa(A) and a temperature of 56.5°C enters the decarburization system.
  • the circulating gas volume is 164284.7kg/h, of which the concentration of CO 2 is 1.59mol%, the concentration of ethylene is 28.02mol%, and O 2 The concentration is 5.86 mol%, and the rest are CH 4 , C 2 H 6 , N 2 , Ar, and a small amount of water vapor and MEG.
  • reaction tail gas entering the decarburization system was increased from 50% to 100%, that is, the gas volume was increased from 83654.2kg/h to 164284.7kg/h h.
  • the reaction gas with a mole fraction of about 50% of the gas volume is directly returned to the reactor through the XV1 bypass (without entering the decarburization system), and about 50% of the gas volume is heated to about 90°C through the gas heat exchanger [1] After recovering the heat of the regeneration gas, it enters the carbon dioxide absorption tower.
  • the tower is divided into two upper and lower sections. The upper and lower sections are connected (without liquid isolation).
  • the decarburization liquid pumped by the carbonate pump is countercurrently transferred and absorbed in the upper and lower packings.
  • the decarburization liquid at the inlet of the upper stage is cooled to 91°C with external circulating cooling water (heat loss), and the gas out of the absorption tower is cooled to 57.7°C (heat loss) in the heat exchanger with external circulating cooling water, and then it does not enter the decarburization the reaction gas returned to the reaction system combined system, the gas CO 2 concentration of about 2.0%, can not meet the requirements of high selectivity catalyst CO 2 concentration of less than 1.0%.
  • the decarbonized rich liquid from the absorption tower, at a temperature of about 98.2°C (without heat recovery), directly enters the flash tank at the top of the regeneration tower.
  • the CO 2 concentration in the inlet gas of the reactor is less than 1.0%, and 85-100% of the circulating gas must be decarburized. If the decarburization process is not modified according to Example 1, the original process is still used. Consumption must be increased by about 10 tons (about 40%) from the current 15 tons per hour.
  • the oxidation synthesis reaction is completed under the action of a silver catalyst, and the CO 2 removal unit of the reaction by-reaction product adopts a hot potassium carbonate decarbonization process.
  • the circulating gas volume is 668822.04kg/h, in which the concentration of CO 2 is 1.44 mol%, the concentration of ethylene is 28.61 mol%, the concentration of O 2 is 5.68 mol%, and the rest is CH 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor and MEG.
  • the gas enters the washing tower [6] for heating and humidification, and the temperature is raised to about 69°C to recover the heat of the washing water, and then enters the absorption tower [7], the second absorption section of the absorption tower [7] and the first absorption There is no liquid partition between the sections.
  • the gas under the absorption tower is first connected with the 105°C decarburization liquid pumped by the carbonate pump [11] in the packing of the absorption tower to countercurrent mass transfer, absorption and heat exchange.
  • the liquid temperature is about 72°C.
  • the lean and rich liquid heat exchanger [9] exchanges heat with the 105°C decarburization liquid, the temperature rises to about 95°C and enters the flash tank at the top of the regeneration tower. The lean liquid is recovered and the temperature must be lowered and removed. The heat.
  • the decarburization liquid pumped by the carbonate pump [10] exchanges heat to 75°C in the lean and rich liquid heat exchanger [9], it enters the lean liquid water cooler [8] to exchange heat with the circulating washing water, and transfer the heat to the washing After the water, the temperature is further lowered to 65°C, and it enters the absorption tower to further countercurrent contact with the gas to remove CO 2 to reach the decarbonization index.
  • the circulating washing water from the washing tower [6] is pressurized by the washing water circulating pump [2] and then enters the washing water-circulating water cooler [4] for cooling, and then is cooled by the lithium bromide ice machine to reduce the temperature of the washing water to below 33°C, and then enters the absorption tower In the cooling section, it contacts the carbonate mist in the scrubbing gas countercurrently with the purified gas from the absorption tower and transfers heat to reduce the temperature of the gas returning from the tower to the synthesis system below 37°C.
  • the purpose is to reduce the saturated water vapor content in the gas (less than 0.3 %) to meet the requirements of the catalyst.
  • the CO 2 concentration in the inlet gas of the reactor is less than 0.3%.
  • the washing water exiting the cooling section exchanges heat with the decarburization liquid in the lean liquid water cooler [8], and the washing water heated to 70°C returns to the washing tower [6], where it is in countercurrent contact with the reactant gas entering the system to transfer heat and mass in the packing ,
  • the trace organic matter in the circulating gas is washed away, the gas is heated and humidified, and the outgoing gas heated to about 69°C enters the absorption tower.
  • valve XV1 is closed and the valve XV2 is adjusted so that the amount of reactant gas entering the heating zone is about 85% of the total amount of reactant gas to be processed.
  • the steam consumption is reduced from the ordinary hot potassium carbonate decarbonization process (that is, the reaction gas is directly decarbonized with the decarbonization liquid, without heat recovery measures), which is 40 tons/hour. Below 20 tons/hour, the steam can be saved by about 50%.
  • the oxidation synthesis reaction is completed under the action of a silver catalyst.
  • the CO 2 removal unit of the reaction by-reaction product adopts a hot potassium carbonate decarbonization process .
  • the reaction gas with a pressure of 2.40MPa(A) and a temperature of 56.6°C enters the decarburization system.
  • the circulating gas volume is 1774479.3kg/h, of which the concentration of CO 2 is 1.71 mol%, the concentration of ethylene is 28.50 mol%, the concentration of O 2 is 5.97 mol%, and the rest is CH 4.
  • the process is basically the same as that in Example 2.
  • the difference is: the circulating washing water from the washing tower [6] is pressurized into the washing water-circulating water cooler [4] through the washing water circulating pump [2], and then is cooled by the heat pump-lithium bromide ice machine system [5'], and regenerated
  • the waste heat in the gas generates steam for the heat pump, and a lithium bromide ice machine is provided to reduce the temperature of the washing water to below 33°C. It enters the cooling section of the absorption tower and contacts the carbonate mist in the scrubbing gas in countercurrent with the purified gas from the absorption tower and transfers heat.
  • the temperature of the gas returning from the tower to the synthesis system is reduced to below 37°C in order to reduce the saturated water vapor content (less than 0.3%) in the gas to meet the requirements of the catalyst.
  • the CO 2 concentration in the inlet gas of the reactor is less than 1.0% (after the catalyst selectivity is increased, the CO 2 concentration is less than 0.3%).
  • the oxidation synthesis is completed under the action of a silver catalyst, and the CO 2 removal unit of the reaction by-reaction product adopts the potassium carbonate decarbonization process.
  • the reaction gas with a pressure of 2.26MPa(A) and a temperature of 48.4°C enters the decarburization system.
  • the circulating gas volume is 112696.23kg/h, of which the concentration of CO 2 is 2.0 mol%, the concentration of ethylene is 24.96 mol%, the concentration of O 2 is 5.99 mol%, and the rest is CH 4.
  • the process is the same as in Example 3. Under the condition that the same carbon dioxide removal effect is achieved, the steam consumption is higher than that of the ordinary hot potassium carbonate decarbonization process (that is, the reaction gas is directly decarbonized with the decarbonization liquid, and Do not use heat recovery measures) to reduce about 36%.
  • a newly-built vinyl acetate plant with a capacity of 330,000 tons/year uses ethylene, oxygen and acetic acid vapor under the action of precious metal Pd-Au(Pt) catalyst and potassium acetate promoter at 160-200°C, 0.6-0.8MPa conditions ,
  • the reaction product is separated and rectified to obtain the product.
  • the CO 2 removal unit of the side reaction product of the oxidation synthesis reaction adopts a potassium carbonate decarbonization process.
  • the exhaust gas is pressurized by the compressor, and the circulating gas with a pressure of 1.2MPa(A) and a temperature of 84°C enters the decarburization system.
  • the gas volume is 20455.07kg/h, of which the CO 2 concentration is 14.94 mol%, the ethylene concentration is 62.09 mol%, and the O 2 concentration is 3.24 mol%, the rest is CH 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as in Example 3. Under the condition that the same carbon dioxide removal effect is achieved, the steam consumption is higher than that of the ordinary hot potassium carbonate decarbonization process (that is, the reaction gas is directly decarbonized with the decarbonization liquid, and Without heat recovery measures) about 35% less.
  • a newly-built coal-to-liquid plant with a scale of 1 million tons/year uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry-bed reactor at 250-280°C and 3.2-3.5MPa. Separation, hydrogenation, rectification to obtain diesel and other series products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the exhaust gas is pressurized by a compressor, and the circulating gas with a pressure of 3.5MPa(A) and a temperature of 64°C enters the decarburization system.
  • the gas volume is 337403.19kg/h, of which the CO 2 concentration is 12.93 mol%, the CO concentration is 7.99 mol%, and the H 2 concentration is 58.72 mol%, the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as in Example 3, but the washing water-circulating water cooler and the washing water-chilling water cooler in Example 3 are replaced by an air cooling device; combined with the decarburization liquid composition and composition of Chinese patent CN 200610166303.6
  • the decarburization liquid regeneration process achieves the same carbon dioxide removal effect, and the steam consumption is higher than that of the ordinary hot potassium carbonate decarburization process (that is, the decarburization liquid is directly used to decarburize the reaction gas without heat recovery measures) Reduced by about 37%.
  • a coal-to-liquid plant with a capacity of 2 million tons/year uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry-bed reactor at 260-280°C and 2.8-3.0 MPa, and the reaction products are separated , Hydrogenation and rectification to obtain diesel and other products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the circulating gas with a pressure of 2.72MPa(A) and a temperature of 40°C enters the decarburization system.
  • the gas volume is 430402.82kg/h, in which the CO 2 concentration is 14.71mol%, the CO concentration is 7.12mol%, the H 2 concentration is 60.55mol%, and the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as that of Example 6, combined with the decarburization liquid composition of Chinese patent CN 200610166303.6 and the decarburization liquid regeneration process, under the condition of achieving the same carbon dioxide removal effect, the steam consumption is higher than ordinary hot potassium carbonate decarburization
  • the process (that is, the reaction gas is directly used for decarburization treatment with decarburization liquid without heat recovery measures) is reduced by about 36%.
  • a coal-to-liquid plant with a capacity of 1 million tons/year uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry-bed reactor at 240-280°C and 2.6-2.8MPa, and the reaction products are separated , Hydrogenation and rectification to obtain diesel and other products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the circulating gas with a pressure of 1.8MPa(A) and a temperature of 40°C enters the decarburization system.
  • the gas volume is 376081.41kg/h, of which the CO 2 concentration is 15.8 mol%, the CO concentration is 19.18 mol%, the H 2 concentration is 34.86 mol%, and the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as that of Example 6, combined with the decarburization liquid composition of Chinese patent CN 200610166303.6 and the decarburization liquid regeneration process, under the condition of achieving the same carbon dioxide removal effect, the steam consumption is higher than ordinary hot potassium carbonate decarburization
  • the process (that is, the reaction gas is directly used for decarburization with decarburization liquid without heat recovery measures) is reduced by about 30%.
  • a newly built 1 million tons/year coal-to-liquid plant uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry-bed reactor at 250-280°C and 3.2-3.5MPa.
  • the reaction products are separated, Hydrogenation and rectification to obtain diesel and other products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the exhaust gas is pressurized by a compressor, and the circulating gas with a pressure of 3.45MPa(A) and a temperature of 77.2°C enters the decarburization system.
  • the gas volume is 2080141.11kg/h, in which the CO 2 concentration is 14.31 mol%, the CO concentration is 7.07 mol%, and the H 2 concentration is 58.86. mol%, the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as that of Example 6, combined with the decarburization liquid composition of Chinese patent CN 200610166303.6 and the decarburization liquid regeneration process, under the condition of achieving the same carbon dioxide removal effect, the steam consumption is higher than ordinary hot potassium carbonate decarburization
  • the process (that is, the reaction gas is directly used for decarburization with decarburization liquid without heat recovery measures) is reduced by about 33%.
  • a coal-to-liquid plant with a capacity of 1 million tons/year uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry-bed reactor at 260-280°C and 2.70-2.80MPa, and the reaction products are separated , Hydrogenation and rectification to obtain diesel and other products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the circulating gas with a pressure of 2.72MPa(A) and a temperature of 42°C enters the decarburization system.
  • the gas volume is 220411.71kg/h, of which the CO 2 concentration is 11.86 mol%, the CO concentration is 8.09 mol%, the H 2 concentration is 66.98 mol%, and the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as that of Example 6, combined with the decarburization liquid composition of Chinese patent CN 200610166303.6 and the decarburization liquid regeneration process, under the condition of achieving the same carbon dioxide removal effect, the steam consumption is higher than ordinary hot potassium carbonate decarburization
  • the process (that is, the reaction gas is directly used for decarburization with decarburization liquid without heat recovery measures) is reduced by about 35%.
  • a coal-to-liquid plant with a capacity of 1 million tons/year uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry bed reactor at 260-280°C and 2.8-3.0 MPa, and the reaction products are separated , Hydrogenation and rectification to obtain diesel and other products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the circulating gas with a pressure of 2.72MPa(A) and a temperature of 42.6°C enters the decarburization system with a gas volume of 20,464.42 kg/h, of which the CO 2 concentration is 14.16 mol%, the CO concentration is 7.50 mol%, the H 2 concentration is 64.46 mol%, and the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as that of Example 6, combined with the decarburization liquid composition of Chinese patent CN 200610166303.6 and the decarburization liquid regeneration process, under the condition of achieving the same carbon dioxide removal effect, the steam consumption is higher than ordinary hot potassium carbonate decarburization
  • the process (that is, the reaction gas is directly used for decarburization treatment with decarburization liquid without heat recovery measures) is reduced by about 36%.
  • a coal-to-liquid plant with a capacity of 2 million tons/year uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry-bed reactor at 250-280°C and 3.2-3.5 MPa, and the reaction products are separated , Hydrogenation and rectification to obtain diesel and other products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the exhaust gas is pressurized by the compressor, and the circulating gas with a pressure of 3.53MPa(A) and a temperature of 85.6°C enters the decarburization system.
  • the gas volume is 379240.51kg/h, of which the CO 2 concentration is 13.99 mol%, the CO concentration is 7.75 mol%, and the H 2 concentration is 61.15 mol%, the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as that of Example 6, combined with the decarburization liquid composition of Chinese patent CN 200610166303.6 and the decarburization liquid regeneration process, under the condition of achieving the same carbon dioxide removal effect, the steam consumption is higher than ordinary hot potassium carbonate decarburization
  • the process (that is, the reaction gas is directly used for decarburization with decarburization liquid without heat recovery measures) is reduced by about 32%.
  • a coal-to-liquid plant with a capacity of 600,000 tons/year uses carbon monoxide and hydrogen under the action of an iron catalyst to react in a slurry-bed reactor at 260-280°C and 2.8-3.0MPa, and the reaction products are separated , Hydrogenation and rectification to obtain diesel and other products.
  • the CO 2 removal unit of the side reaction product of the synthesis reaction adopts a potassium carbonate decarbonization process.
  • the circulating gas with a pressure of 2.63MPa(A) and a temperature of 41.8°C enters the decarburization system.
  • the gas volume is 145378.06kg/h, of which the CO 2 concentration is 12.85 mol%, the CO concentration is 9.04 mol%, the H 2 concentration is 61.49 mol%, and the rest is CH 4 , C 2 H 4 , C 2 H 6 , N 2 , Ar and a small amount of water vapor.
  • the process is the same as that of Example 6, combined with the decarburization liquid composition of Chinese patent CN 200610166303.6 and the decarburization liquid regeneration process, under the condition of achieving the same carbon dioxide removal effect, the steam consumption is higher than ordinary hot potassium carbonate decarburization
  • the process (that is, the reaction gas is directly used for decarburization treatment with decarburization liquid without heat recovery measures) is reduced by about 38%.
  • any numerical value mentioned in the present invention if there is only a two-unit interval between any lowest value and any highest value, it includes all values from the lowest value to the highest value increased by one unit at a time.
  • the amount of a component is declared, or the value of process variables such as temperature, pressure, time, etc. is 50-90, in this specification it means specifically listing 51-89, 52-88... and 69 -71 and 70-71 and other values.
  • 0.1, 0.01, 0.001 or 0.0001 can be considered as a unit.

Abstract

本发明公开了一种脱除反应气中二氧化碳的方法,包括:S1.使待脱除二氧化碳的反应气与洗涤水换热以对其进行升温处理,得到气流III;S2.采用脱碳液对步骤S1得到的气流III进行脱碳处理,得到气流IV;S3.对所述气流IV进行降温处理,得到脱除二氧化碳的净化气体;其中,所述洗涤水首先经冷却装置降温,然后与气流IV换热,接着与脱碳液换热升温,最后用来加热待脱除二氧化碳的反应气,再返回冷却装置降温循环。本发明将脱碳系统内各部分可以利用的热量充分地利用起来,减少与外部的换热;这不仅使返回反应器气体中二氧化碳含量明显降低,并可大幅度减少脱碳富液再生时的蒸汽消耗。本发明还公开了一种脱除反应气中二氧化碳的系统及其应用。

Description

一种脱除反应气中二氧化碳的方法、系统及其应用
本申请要求享有2019年3月22日提交的发明名称为“一种脱除反应气中二氧化碳的方法、系统及其应用”,申请号为CN201910222351.X的中国专利申请的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及一种脱除反应气中二氧化碳的方法、系统及其应用,尤其涉及一种脱除环氧乙烷反应循环气中二氧化碳的方法、系统及其应用。
背景技术
采用高纯度乙烯与纯氧气氧化反应生成环氧乙烷(EO),在乙烯氧化生成环氧乙烷过程中产生一定量CO 2,必须将其从合成循环气中脱除,才能保持催化反应效率。
随着新型高选择性氧化催化剂的开发应用使生产环氧乙烷的乙烯用量不断下降,同时也要求循环气中CO 2浓度更低,从原来5mol%降低到2mol%,进而要求低于1mol%。在原有循环气脱碳的溶剂和工艺条件下进行改造,主要办法就是加大循环气进脱碳单元的分流比例,从25%增加到50%,再到100%循环气进入脱碳,即通过增加进入脱碳吸收塔的循环气量(减少不进脱碳的气量),降低残留的CO 2浓度。然而,大幅度增加低温、低水含量的循环气进入高温的脱碳吸收塔与脱碳水溶液传质,出塔气体带走大量热量和水蒸汽,使得出吸收塔釜的富液温度下降,在再生塔煮沸解吸溶液需要的蒸汽量必然增多,即能耗上升。
由于环氧乙烷合成循环气脱碳过程中CO 2分压始终比较低,即脱碳处于贫液循环操作状态,因此,溶液中的CO 2解吸更加困难,要降低吸收塔出口净化气中CO 2残留量,就要使得贫液解吸再生更加彻底,也就需要消耗更多的蒸汽。
中国专利CN 201210134232.7,主要是从再生部分着手,开发新的工艺流程,提高脱碳溶液的解吸质量,实现脱碳效率提高,同时降低能耗。
由于全气量通过脱碳,循环气量成倍增加,在吸收塔内温度超过100℃,而 返回氧化反应器循环气温度要求小于40℃,气体一热一冷,带出大量热,脱碳系统蒸汽消耗也必然增加。为了尽可能减少蒸汽增加量,必须进一步开发新的工艺。
发明内容
本发明的目的是针对现有技术存在的技术问题,提供一种脱除反应气中二氧化碳的方法、系统及其应用,本发明的方法和系统能够充分、有效地利用系统内部的热量,在大幅度提高处理气体量的条件下,保证净化气体残留二氧化碳含量达到标准的同时,大幅度节能。
根据本发明的一个方面,提供了一种脱除反应气中二氧化碳的方法,包括:
S1.使待脱除二氧化碳的反应气与洗涤水换热以对其进行升温处理,得到气流III;
S2.采用脱碳液对步骤S1得到的气流III进行脱碳处理,得到气流IV;
S3.对所述气流IV进行降温处理,得到脱除二氧化碳的净化气体;
其中,所述洗涤水首先经冷却装置降温,然后与气流IV换热,接着与脱碳液换热,最后与待脱除二氧化碳的反应气换热,之后再返回冷却装置降温循环。
根据本发明的一些实施方式,所述步骤S1中,使待脱除二氧化碳的反应气与洗涤水和再生气换热以对其进行升温处理。
根据本发明的优选实施例,使反应气的温度提高的越多越好,这样既可以充分回收再生气和洗涤水中多余的热量,又可以提高进入吸收塔的气体温度,进而可提高吸收塔排出富液的温度,可减少富液再生时加热解吸所需的蒸汽,节约了能量,降低了能耗。
在一些具体的实施例中,将所述反应气的温度提高到70-100℃,充分回收再生气和洗涤水中多余的热量。
根据本发明的优选实施方式,所述步骤S1包括如下步骤:
1A.将待脱除二氧化碳的反应气分为气流I和气流II;
1B.使气流I与来自再生塔塔顶的出塔再生气换热升温得到气流Ia;
1C.使气流II与洗涤水换热升温得到气流IIa;
1D.将气流Ia和气流IIa合并后得到气流III。
根据本发明的优选实施方式,所述气流I与气流II的摩尔比为(0-70):(100-30),优选为(30-70):(70-30),更优选为(40-60):(60-40)。
根据本发明的方法,气流I与来自再生塔塔顶的出塔再生气换热,吸收其中的热量,温度得到升高;气流II与洗涤水换热,吸收其中的热量,温度得到升高。根据本发明的方法,一方面利用了再生气和洗涤水的热量,使热量得到了回收,另一方面提高了进入吸收塔的气体温度,进而可提高吸收塔排出富液的温度,可减少富液再生时加热解吸所需的蒸汽,节约了能量,降低了能耗。
根据本发明的一些实施方式,所述步骤S2中使用脱碳液对气流III进行脱碳处理,将气流III中的二氧化碳浓度降低到符合催化剂要求的浓度。
在一些具体的实施例中,将气流III中的二氧化碳浓度降低到0.1~1.0%。
根据本发明的优选实施方式,优选所述脱碳液为来自于再生塔的塔釜贫液,优选为碳酸盐溶液,更优选为活化热碳酸钾溶液。
根据本发明的优选实施方式,所述步骤S2包括如下步骤:
2A.使气流III与第一股脱碳液逆流接触,得到气流IIIa和第一股富液;
2B.使气流IIIa与第二股脱碳液逆流接触,得到气流IV和第二股富液。
根据本发明的方法,洗涤水首先经冷却装置降温到40℃以下,优选33℃以下,然后与气流IV换热,对气流IV降温,其自身温度得到升高,然后与第二股脱碳液换热,对第二股脱碳液降温,自身温度继续升高,最后与气流II换热,将之前吸收自气流IV和第二股脱碳液的热量传递给气流II,对气流II升温、增湿,之后再返回冷却装置继续降温循环。在此过程中,以洗涤水作为介质,对系统内的热量循环回收利用,减少了热损失,节约了能量。
根据本发明的优选实施方式,也可使洗涤水首先与气流II换热,然后经冷却装置降温到40℃以下,再与气流IV换热,接着与第二股脱碳液换热进行循环。
根据本发明的优选实施方式,所述第一股脱碳液和第二股脱碳液分别来自于再生塔的塔釜贫液;所述第一股脱碳液直接与气流III逆流接触,得到第一股富液;所述第二股脱碳液首先与温度较低的一股富液换热,然后与洗涤水换热,最后与气流IIIa逆流接触,得到第二股富液。
根据本发明的优选实施方式,所述第二股脱碳液首先与温度较低的一股富液换热降温,然后与洗涤水换热降温到60~95℃,优选为65~90℃,最后与气流IIIa逆流接触,得到第二股富液。
根据本发明的优选实施方式,所述第一股富液和第二股富液汇合后返回再生塔再生。使温度较低的第一股富液与第二股脱碳液换热,一方面可回收利用第二 股脱碳液的热量,使热量得到了回收,另一方面提高了富液的温度,可减少富液再生时加热解吸所需的蒸汽,节约了能量,降低了能耗。
根据本发明的优选实施方式,所述方法还包括:
利用来自再生塔塔顶的出塔再生气所含有的热量对所述冷却装置供能,降低洗涤水的温度,然后与气流IV换热。
对于催化剂要求循环气水含量低于0.3%、必须提供冷冻水来降低返回反应器的净化气体中饱和水含量的情况,可以采用将再生气的热量提供给热泵产生蒸汽,供给溴化锂冰机生成33℃以下的冷冻水供给脱碳后气体降温。由此既可满足催化剂要求,又可以节省溴化锂冰机需要的大量蒸汽,不增加脱碳能耗。
根据本发明的一些实施方式,所述方法还包括如下步骤:
S0.将反应气分为气流A和气流B,其中气流A按照步骤S1-S2进行处理;
S3.将气流B与步骤S2得到的净化气体直接合并,循环回反应器。
根据本发明的优选实施方式,所述气流A和气流B摩尔比为(70-100):(30-0),优选为(75-90):(25-10)。
本发明人在研究过程中发现,将气流A和气流B比例限定在上述范围内,可明显降低循环回反应器的气体中二氧化碳的含量,或降低富液再生时消耗的蒸汽量。
根据本发明的另一个方面,提供了一种脱除反应气中二氧化碳的系统,包括:
用于对待脱除二氧化碳的反应气进行升温处理的升温区;
用于接收来自于升温区的气体并对其进行脱碳和降温处理的的脱碳区。
根据本发明的一些实施方式,所述升温区包括至少一个用于使待脱除二氧化碳的反应气与洗涤水换热的水洗塔。
根据本发明的一些实施方式,所述水洗塔上设置有反应气进口、反应气出口、洗涤水进口和洗涤水出口,所述反应气进口用于接收待脱除二氧化碳的反应气,所述反应气出口与脱碳区的吸收塔的反应气进口相连,所述洗涤水进口与贫液水冷器的洗涤水出口相连,所述洗涤水出口与洗涤水冷却装置的入口相连。
根据本发明的优选实施方式,所述水洗塔的反应气进口设置于其侧壁下部,所述水洗塔的反应气出口设置于其顶部,所述水洗塔的洗涤水进口设置于其侧壁上部,所述水洗塔的洗涤水出口设置于其侧壁下部。
根据本发明的系统,反应气自下而上进入水洗塔,洗涤水自上而下进入水洗 塔与反应气逆流接触,使反应气充分吸收洗涤水的热量升温、增湿,既可利用洗涤水的热量,又可提高进入吸收塔的气体温度,进而提高吸收塔排出富液的温度,减少富液再生时加热解吸所需的蒸汽,降低能耗。
根据本发明的优选实施方式,所述水洗塔的底部还开有废液出口,用于排出水洗塔内积攒的废液。
根据本发明的优选实施方式,所述系统还设置有水洗塔的洗涤水进口相连的洗涤水补充口,用于直接向水洗塔内补充加入脱盐水,然后进入洗涤水冷却器进行循环。
根据本发明的优选实施方式,所述升温区还包括至少一个用于使待脱除二氧化碳的反应气与来自再生塔塔顶的出塔再生气换热的气体换热器。
根据本发明的优选实施方式,所述气体换热器上设置有反应气进口、反应气出口、再生气进口和再生气出口,所述反应气进口用于接收待脱除二氧化碳的反应气,所述反应气出口与脱碳区的吸收塔的反应气进口相连,所述再生气进口与再生塔塔顶出气口相连,所述再生气出口与再生气冷却装置的入口相连;
在所述气体换热器内分别设有反应气通道和再生气通道;所述反应气通道分别与反应气进口和反应气出口连通,用于流通进入所述气体换热器的反应气;所述再生气通道分别与再生气进口和再生气出口连通,用于流通进入气体换热器的再生气。
根据本发明的系统,反应气与再生气在气体换热器内进行换热,利用了再生气的热量其温度得到升高,又可提高进入吸收塔的气体温度,进而提高吸收塔排出富液的温度,减少富液再生时加热解吸所需的蒸汽,降低能耗。
根据本发明的优选实施方式,所述反应气与再生气在气体换热器内逆向流动。
根据本发明的一些实施方式,所述脱碳区包括至少一个用于对来自于升温区的气体进行脱碳和降温处理的吸收塔。
根据本发明的优选实施方式,所述吸收塔设置有反应气进口和反应气出口,所述反应气进口与水洗塔和/或气体换热器的气体出口相连,所述反应气出口与反应器的进气口相连,在所述吸收塔内,反应气自下而上进入,与脱碳液和洗涤水逆流接触,充分进行脱碳和降温处理。
根据本发明的优选实施方式,所述吸收塔包括自下而上设置的第一吸收段、 第二吸收段和降温段;所述第一吸收段、第二吸收段和降温段之间液体隔离,仅允许气体通过。
根据本发明的优选实施方式,所述第一吸收段、第二吸收段和降温段之间通过集液盘隔离,液体不能通过,在所述集液盘上设置有升气管,可允许气体通过。
根据本发明的优选实施例,所述第一吸收段、第二吸收段和降温段内分别设置有至少一层填料或塔板。
根据本发明的一些实施方式,所述第一吸收段设置有反应气进口、反应气出口、脱碳液进口和脱碳液出口,所述反应气进口与吸收塔的反应气进口相连,所述反应气出口与第二吸收段的反应气进口(优选为集液盘升气管)相连,所述脱碳液进口与再生塔的塔釜贫液出口相连,所述脱碳液出口与贫富液换热器的富液入口或再生塔的富液入口相连;
根据本发明的优选实施方式,所述第一吸收段的反应气进口设置于其侧壁下部,所述第一吸收段的反应气出口设置于其顶部(优选与集液盘升气管相连),所述第一吸收段的脱碳液进口设置于其侧壁上部,所述第一吸收段的脱碳液出口设置于其底部。
根据本发明的系统,在第一吸收段内,反应气自下而上进入,与从上部进入的第一股脱碳液逆流接触,充分进行脱碳处理,脱碳液吸收其中的二氧化碳,同时热量传递给气体,脱碳液温度有所降低,得到第一股富液。
根据本发明的一些实施方式,所述第二吸收段设置有反应气进口、反应气出口、脱碳液进口和脱碳液出口,所述反应气进口与第一吸收段的反应气出口相连,所述反应气出口与降温段的反应气进口(优选为集液盘升气管)相连,所述脱碳液进口与贫液水冷器的脱碳液出口相连,所述脱碳液出口与贫富液换热器的富液入口或再生塔的富液入口相连;
根据本发明的优选实施方式,所述第二吸收段的反应气进口设置于其底部,所述第二吸收段的反应气出口设置于其顶部,所述第二吸收段的脱碳液进口设置于其侧壁上部,所述第二吸收段的脱碳液出口设置于其侧壁下部。
根据本发明的系统,在第二吸收段内,反应气自下而上进入,与从上部进入的第二股脱碳液逆流接触,充分进行脱碳处理,脱碳液吸收其中的二氧化碳,同时温度被提高,得到第二股富液。
根据本发明的一些实施方式,所述降温段设置有反应气进口、反应气出口、 洗涤水进口和洗涤水出口,所述反应气进口与第二吸收段的反应气出口相连,所述反应气出口与吸收塔的反应气出口相连,所述洗涤水进口与洗涤水冷却装置的洗涤水出口相连,所述洗涤水出口与贫液水冷器的洗涤水进口相连;
根据本发明的优选实施方式,所述降温段的反应气进口设置于其底部,所述降温段的反应气出口设置于其顶部,所述降温段的洗涤水进口设置于其侧壁上部,所述降温段的洗涤水出口设置于其侧壁下部。
根据本发明的一些实施方式,所述系统还包括用于对洗涤水进行降温的洗涤水冷却装置;所述洗涤水冷却装置包括至少一个洗涤水-循环水冷却器和至少一个洗涤水-冷冻水冷却器;所述洗涤水-循环水冷却器设置有进口和出口,所述进口与水洗塔的洗涤水出口相连,所述出口与洗涤水-冷冻水冷却器的进口相连;所述洗涤水-冷冻水冷却器设置有进口和出口,所述进口与洗涤水-循环水冷却器的出口相连,所述洗涤水出口与脱碳区降温段的洗涤水进口相连;
根据本发明的优选实施方式,所述洗涤水冷却器还设置有洗涤水补充口和洗涤水排放口,所述洗涤水补充口向系统内补充脱盐水,所述洗涤水排放口用于排出系统中被污染的洗涤水。
优选地,所述洗涤水-循环水冷却器和/或洗涤水-冷冻水冷却器设置有洗涤水补充口和洗涤水排放口,所述洗涤水补充口向系统内补充脱盐水,所述洗涤水排放口用于排出系统中被污染的洗涤水。
循环的洗涤水由电导仪实时监控水质,确定是否被污染,而后可以进行排放-补充置换。
根据本发明的优选实施方式,所述洗涤水-冷冻水冷却器由溴化锂冰机和热泵组成,所述热泵与再生气气体换热器并联;来自于再生塔的再生气进入热泵,将热量供给热泵,产生蒸汽,该蒸汽供给溴化锂冰机制冷,产生的冷量将循环洗涤水的温度降至33℃以下。
对于催化剂要求循环气水含量低于0.3%、必须提供冷冻水来降低返回反应器的净化气体中饱和水含量的情况,可以采用上述装置。由此既可满足催化剂要求,又可以节省溴化锂冰机需要的大量蒸汽,不增加脱碳能耗。
根据本发明的一些实施方式,所述系统还包括用于使脱碳液进行换热的脱碳液换热装置所述脱碳液在脱碳液换热装置内与富液和洗涤水分别进行换热;
根据本发明的优选实施方式,所述脱碳液换热装置包括至少一个贫富液换热 器和至少一个贫液水冷器;所述贫富液换热器用于使第二股脱碳液和第一股富液或者第二股富液当中温度低的富液进行换热,所述贫液水冷器用于使第二股脱碳液和洗涤水进行换热降温。
根据本发明的优选实施方式,所述贫富液换热器上设置有脱碳液进口、脱碳液出口、富液进口和富液出口,所述脱碳液进口与再生塔的塔釜贫液出口相连,所述脱碳液出口与贫液水冷器的脱碳液进口相连,所述富液进口与温度较低的一股脱碳富液出口相连,所述富液出口与再生塔的富液进口相连;在所述贫富液换热器内分别设有脱碳液通道和富液通道,所述脱碳液通道分别与脱碳液进口和脱碳液出口连通,用于流通进入所述贫富液换热器的第二股脱碳液;所述富液通道分别与富液进口和富液出口连通,用于流通进入所述贫富液换热器的富液。
根据本发明的系统,第二股脱碳液与温度较低的一股富液在贫富液换热器内进行换热,富液利用第二股脱碳液的热量使其温度得到升高,进而减少富液再生时加热解吸所需的蒸汽,降低能耗。
根据本发明的优选实施方式,所述第二股脱碳液与富液在贫富液换热器内逆向流动。
根据本发明的优选实施方式,所述贫液水冷器上设置有脱碳液进口、脱碳液出口、洗涤水进口和洗涤水出口,所述脱碳液进口与贫富液换热器的脱碳液出口相连,所述脱碳液出口与第二吸收段的脱碳液进口相连,所述洗涤水进口与降温段的洗涤水出口相连,所述洗涤水出口与水洗塔的洗涤水进口相连;在所述贫液水冷器内分别设有脱碳液通道和洗涤水通道,所述脱碳液通道分别与脱碳液进口和脱碳液出口连通,用于流通进入所述贫富液换热器的第二股脱碳液;所述洗涤水通道分别与洗涤水进口和洗涤水出口连通,用于流通进入所述贫液水冷器的洗涤水。
根据本发明的系统,第二股脱碳液与洗涤水在贫液水冷器内进行换热,第二股脱碳液的温度降低,进而对反应气进行脱碳和降温,洗涤水利用第二股脱碳液的热量其温度得到升高,进而进入水洗塔对反应气升温,回收了热量。
根据本发明的优选实施方式,所述第二股脱碳液与洗涤水在贫液水冷器内逆向流动。
根据本发明的一些实施方式,所述系统还包括使待脱除二氧化碳的反应气与净化气体直接合并的循环旁路管道,在所述循环管道上设置有第一调节阀;在所 述第一调节阀的两端并联有一条调节管道,其上设置有第二调节阀。
根据本发明的优选实施方式,所述第一调节阀最大可允许100%反应气通过;所述第二调节阀最大可允许30%反应气通过。
根据本发明的另一个方面,还提供了上述系统在脱除反应气中二氧化碳方面的应用。
根据本发明的一些实施方式,所述应用包括如下步骤:
步骤(1)使待脱除二氧化碳的反应气与洗涤水在升温区内换热以对其进行升温处理,得到气流iii;
步骤(2)采用脱碳液对步骤(1)得到的气流iii进入脱碳区进行脱碳处理,得到气流iv;
步骤(3)对所述气流iv进行降温处理,得到脱除二氧化碳的净化气体。
根据本发明的优选实施方式,所述步骤(1)包括如下步骤:
(1A)使进入升温区的待脱除二氧化碳的反应气的一部分气流i进入气体换热器,在此与再生塔顶出塔再生气换热,得到气流ia;
(1B)使进入升温区的待脱除二氧化碳的反应气的另一部分气流ii进入水洗塔,在此与洗涤水换热,得到气流iia;
(1C)将气流ia和气流iia合并后得到气流iii,送出升温区。
根据本发明的优选实施方式,所述气流i与气流ii的摩尔比为(0-70):(100-30),优选为(30-70):(70-30),更优选为(40-60):(60-40)。
根据本发明的应用,使气流i在气体换热器内与再生塔顶出塔再生气换热,吸收其中的热量,温度得到升高;气流ii在水洗塔内与洗涤水换热,吸收其中的热量,温度得到升高。一方面利用了再生气和洗涤水的热量,使热量得到了回收,另一方面提高了进入吸收塔的气体温度,进而可提高吸收塔排出富液的温度,可减少富液再生时加热解吸所需的蒸汽,节约了能量,降低了能耗。
根据本发明的一些实施方式,所述步骤(2)中使气流iii进入吸收塔与脱碳液逆流接触。
根据本发明的优选实施方式,所述包括步骤(2)如下步骤:
(2A)使气流iii进入吸收塔的第一吸收段,与第一股脱碳液逆流接触,得到气流iiia和第一股富液;
(2B)使气流iiia进入吸收塔的第二吸收段,与第二股脱碳液逆流接触,得 到气流iv和第二股富液。
根据本发明的优选实施方式,所述洗涤水为脱盐水,其首先经冷却装置降温到40℃以下,然后进入吸收塔的降温段与气流iv换热,接着进入贫液水冷器与第二股脱碳液换热,最后进入水洗塔与气流ii换热,之后再返回冷却装置降温循环。
根据本发明的应用,洗涤水首先经冷却装置降温到40℃以下,然后进入吸收塔的降温段与气流iv换热,对气流iv降温,其自身温度得到升高,然后进入贫液水冷器与第二股脱碳液换热,对第二股脱碳液降温,自身温度继续升高,最后进入水洗塔与气流ii换热,将之前吸收自气流iv和第二股脱碳液的热量传递给气流ii,对气流ii升温、增湿,之后再返回冷却装置继续降温循环。在此过程中,以洗涤水作为介质,对系统内的热量循环回收利用,减少了热损失,节约了能量。
对于催化剂要求循环气的水含量低于0.3%、必须提供冷冻水来降低返回反应器的净化气体中饱和水含量的情况,可以采用冰机将洗涤水降温到33℃以下,以给气体降温。由此既可满足催化剂要求,又可以节省溴化锂冰机需要的大量蒸汽,不增加脱碳能耗。
根据本发明的优选实施方式,也可使来自外界的洗涤水首先与气流ii换热,然后经冷却装置降温,然后与气流iv换热,接着与第二股脱碳液换热进行循环。
根据本发明的一些实施方式,所述第一股脱碳液和第二股脱碳液为来自于再生塔的塔釜贫液;所述第一股脱碳液直接进入第一吸收段与气流iii逆流接触,得到第一股富液,所述第二股脱碳液首先进入贫富液换热器与温度较低的一股富液换热,然后进入贫液水冷器与洗涤水换热,最后进入第二吸收段与气流iiia逆流接触,得到第二股富液;所述第一股富液和第二股富液汇合后返回再生塔再生。
使温度较低的富液与第二股脱碳液换热,一方面可回收利用第二股脱碳液的热量,使热量得到了回收,另一方面提高了富液的温度,可减少富液再生时加热解吸所需的蒸汽,节约了能量,降低了能耗。
根据本发明的一些实施方式,,所述应用还包括如下步骤:
步骤(0)使反应气中的一部分气流a按照步骤(1)-步骤(2)进行处理;
步骤(3)使反应气中的另一部分气流b流经循环管道,与步骤(2)得到的净化气体直接合并,循环返回反应器。
根据本发明的优选实施方式,控制第一调节阀和第二调节阀,使气流a和气 流b摩尔比为(70-100):(30-0),优选为(75-90):(25-10)。
本发明人在研究过程中发现,将气流a和气流b比例限定在上述范围内,可明显降低循环回反应器的气体中二氧化碳的含量,或降低富液再生时消耗的蒸汽量。
研究发现,采用本发明的技术方案,不仅可以大大降低净化气中CO 2的残留量,满足新型催化剂的运行要求,还可以使溶液再生热耗降低30%以上。
附图说明
图1示出了根据本发明一个实施例系统的工艺流程图;
图2示出了根据本发明另一个实施例系统的工艺流程图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
如图1所示,根据本发明的一个实施例,本发明脱除反应气中二氧化碳的系统包括升温区、脱碳区、洗涤水冷却装置、脱碳液换热装置和循环气旁路管道;
其中,升温区包括气体换热器1和水洗塔6;
气体换热器1上设置有反应气进口、反应气出口、再生气进口和再生气出口,所述反应气进口用于接收待脱除二氧化碳的反应气,所述反应气出口与脱碳区的吸收塔的反应气进口相连,所述再生气进口与再生塔塔顶出气口相连,所述再生气出口与再生气冷却装置的入口相连;在所述气体热器1内分别设有反应气通道和再生气通道;所述反应气通道分别与反应气进口和反应气出口连通,用于流通进入所述气体换热器的反应气;所述再生气通道分别与再生气进口和再生气出口连通,用于流通进入气体换热器的再生气;
水洗塔6上设置有反应气进口、反应气出口、洗涤水进口和洗涤水出口,所述反应气进口用于接收待脱除二氧化碳的反应气,所述反应气出口与脱碳区的吸收塔的反应气进口相连,所述洗涤水进口与贫液水冷器8的洗涤水出口相连,所述洗涤水出口与洗涤水冷却装置的入口相连;所述水洗塔的反应气进口设置于其侧壁下部,所述水洗塔的反应气出口设置于其顶部,所述水洗塔的洗涤水进口设置于其侧壁上部,所述水洗塔的洗涤水出口设置于其侧壁下部;水洗塔的底部还开有废液出口,连接废液排出管道,用于排出水洗塔内积攒的废液,废液排出管 道上设有阀门XV3;水洗塔6的洗涤水进口还设有与其相连的洗涤水补充口,用于直接向水洗塔内加入洗涤水,然后进入洗涤水冷却器进行循环;
脱碳区包括用于对来自于升温区的气体进行脱碳和降温处理的吸收塔7;
吸收塔7设置有反应气进口和反应气出口,所述反应气进口与脱碳区的水洗塔和/或气体换热器的气体出口相连,所述反应气出口与反应器的进气口相连;吸收塔7包括自下而上设置的第一吸收段、第二吸收段和降温段;第一吸收段、第二吸收段和降温段之间通过由集液盘隔离,液体不能通过,在所述集液盘上设置有升气管,可允许气体通过;第一吸收段设置有反应气进口、反应气出口、脱碳液进口和脱碳液出口,所述反应气进口与吸收塔的反应器进口相连,所述反应气出口与第二吸收段的反应气进口(优选为集液盘升气管)相连,所述脱碳液进口与再生塔的塔釜液体出口相连,所述脱碳液出口与贫富液换热器9的富液入口相连;第一吸收段的反应气进口设置于其侧壁下部,所述第一吸收段的反应气出口设置于其顶部(优选与集液盘升气管相连),所述第一吸收段的脱碳液进口设置于其侧壁上部,所述第一吸收段的脱碳液出口设置于其底部;第二吸收段设置有反应气进口、反应气出口、脱碳液进口和脱碳液出口,所述反应气进口与第一吸收段的反应气出口相连,所述反应气出口与降温段的反应气进口(优选为集液盘升气管)相连,所述脱碳液进口与贫液水冷器8的脱碳液出口相连,所述脱碳液出口与再生塔的富液入口相连;第二吸收段的反应气进口设置于其底部,所述第二吸收段的反应气出口设置于其顶部,所述第二吸收段的脱碳液进口设置于其侧壁上部,所述第二吸收段的脱碳液出口设置于其侧壁下部;降温段设置有反应气进口、反应气出口、洗涤水进口和洗涤水出口,所述反应气进口与第二吸收段的反应气出口相连,所述反应气出口与吸收塔的反应气出口相连,所述洗涤水进口与洗涤水冷却装置的洗涤水出口相连,所述洗涤水出口与贫液水冷器的洗涤水进口相连;降温段的反应气进口设置于其底部,所述降温段的反应气出口设置于其顶部,所述降温段的洗涤水进口设置于其侧壁上部,所述降温段的洗涤水出口设置于其侧壁下部;
洗涤水冷却装置设有洗涤水进口和洗涤水出口,包括串联的洗涤水-循环水冷却器4和洗涤水-冷冻水冷却器5,洗涤水-循环水冷却器设置有进口和出口,所述进口与水洗塔的洗涤水出口相连,所述出口与洗涤水-冷冻水冷却器的进口相连;所述洗涤水-冷冻水冷却器设置有进口和出口,所述进口与洗涤水-循环水冷却器 的出口相连,所述洗涤水出口与脱碳区降温段的洗涤水进口相连;根据本发明的优选实施方式,洗涤水-循环水冷却器4设置有洗涤水补充口和洗涤水排放口,所述洗涤水补充口向系统内补充脱盐水,所述洗涤水排放口用于排出系统中被污染的洗涤水;
脱碳液换热装置包括贫富液换热器9和贫液水冷器8;所述贫富液换热器9用于使第二股脱碳液和温度较低的一股富液进行换热,其上设置有脱碳液进口、脱碳液出口、富液进口和富液出口,所述脱碳液进口与再生塔的塔釜液体出口相连,所述脱碳液出口与贫液水冷器的脱碳液进口相连,所述富液进口与第一吸收段的脱碳液出口相连,所述富液出口与再生塔的富液进口相连;在所述贫富液换热器内分别设有脱碳液通道和富液通道,所述脱碳液通道分别与脱碳液进口和脱碳液出口连通,用于流通进入所述贫富液换热器的第二股脱碳液;所述富液通道分别与富液进口和富液出口连通,用于流通进入所述贫富液换热器的富液;贫液水冷器8用于使第二股脱碳液和洗涤水进行换热,其上设置有脱碳液进口、脱碳液出口、洗涤水进口和洗涤水出口,所述脱碳液进口与贫富液换热器的脱碳液出口相连,所述脱碳液出口与第二吸收段的脱碳液进口相连,所述洗涤水进口与降温段的洗涤水出口相连,所述洗涤水出口与水洗塔的洗涤水进口相连;在所述贫液水冷器内分别设有脱碳液通道和洗涤水通道,所述脱碳液通道分别与脱碳液进口和脱碳液出口连通,用于流通进入所述贫富液换热器的第二股脱碳液;所述洗涤水通道分别与洗涤水进口和洗涤水出口连通,用于流通进入所述贫液水冷器的洗涤水;
在所述旁路管道上设置有第一调节阀XV1,在所述第一调节阀的两端并联有一条最大可以通过30%气量的调节管道,其上设置有第二调节阀XV2。
如图1所示的系统的工作过程如下:
来自反应器出口的反应气经过产品分离进入本发明的系统,反应气的一部分气流i进入气体换热器1,在此与再生塔顶出塔再生气换热升温,得到气流ia,另一部分气流ii进入水洗塔6,在此与洗涤水换热升温、增湿,得到气流iia;气流ia和气流iia合并后得到气流iii;气流iii进入吸收塔7的第一吸收段,与第一股脱碳液逆流接触,得到气流iiia和第一股富液,气流iiia向上进入吸收塔7的第二吸收段,与第二股脱碳液逆流接触,得到气流iv和第二股富液,气流iv继 续向上进入吸收塔7的降温段,与洗涤水换热降温,得到脱除了二氧化碳的净化气体,净化气体循环返回反应器。
来自于再生塔的塔釜贫液分为两股,分别为第一股脱碳液和第二股脱碳液;所述第一股脱碳液直接进入第一吸收段与气流iii逆流接触,得到第一股富液,所述第二股脱碳液首先进入贫富液换热器9与第一股富液换热,然后进入贫液水冷器8与洗涤水换热,最后进入第二吸收段与气流iiia逆流接触,得到第二股富液;第一股富液和第二股富液温度得到提升,汇合后返回再生塔再生。
洗涤水首先经冷却装置降温到40℃以下,然后进入吸收塔7的降温段与气流iv换热,接着进入贫液水冷器8与第二股脱碳液换热,最后进入水洗塔6与气流ii换热,之后再经洗涤水循环泵2增压返回冷却装置降温循环;利用电导仪实时监测的结果判断洗涤水中杂质含量,如果超出设定值,则打开阀门XV3,排出部分废液,然后通过洗涤水补充口补充新的脱盐水。
正常运行时,关闭阀门XV1,调节阀门XV2,使进入升温区的反应气量为反应气总量70%~100%。
图2所示的脱除反应气中二氧化碳的系统与图1所示的系统基本相同,不同之处在于升温区仅由水洗塔6组成,且用热泵—溴化锂冰机系统5’代替洗涤水-冷冻水冷却器5,系统5’的热泵与气体换热器并联;来自于再生塔的再生气进入热泵,将热量供给热泵,产生蒸汽,该蒸汽供给溴化锂冰机制冷,产生的冷量将洗涤水的温度降至33℃以下。
如图2所示的系统的工作过程如下:
来自反应器出口的反应气经过产品分离进入本发明的系统,反应气进入水洗塔6,在此与洗涤水换热升温、增湿,得到气流iii;气流iii进入吸收塔7的第一吸收段,与第一股脱碳液逆流接触,得到气流iiia和第一股富液,气流iiia向上进入吸收塔7的第二吸收段,与第二股脱碳液逆流接触,得到气流iv和第二股富液,气流iv继续向上进入吸收塔7的降温段,与洗涤水换热降温,得到脱除了二氧化碳的净化气体,净化气体循环返回反应器。
来自于再生塔的塔釜贫液分为两股,分别为第一股脱碳液和第二股脱碳液;所述第一股脱碳液直接进入第一吸收段与气流iii逆流接触,得到第一股富液,所述第二股脱碳液首先进入贫富液换热器9与第一股富液换热,然后进入贫液水冷 器8与洗涤水换热,最后进入第二吸收段与气流iiia逆流接触,得到第二股富液;第一股富液和第二股富液温度得到提升,汇合后返回再生塔再生。
洗涤水首先经洗涤水-循环水冷却器4和冰机5’降温到33℃以下,然后进入吸收塔7的降温段与气流iv换热,接着进入贫液水冷器8与第二股脱碳液换热,最后进入水洗塔6与气流ii换热,之后再经洗涤水循环泵2增压返回冷却装置降温循环;利用电导仪实时监测的结果判断洗涤水中杂质含量,如果超出设定值,则打开阀门XV3,排出部分废液,然后通过洗涤水补充口补充新的脱盐水。
正常运行时,关闭阀门XV1,调节阀门XV2,使进入升温区的反应气量为反应气总量70%~100%。
来自于再生塔的再生气进入冰机5’的热泵,将热量供给热泵,产生蒸汽,该蒸汽供给溴化锂冰机制冷。
实施例1
某规模为7万吨/年的乙烯在银催化剂作用下合成环氧乙烷装置,其氧化合成反应副反应产物CO 2的脱碳单元采用碳酸钾脱碳工艺。为了采用高选择性催化剂,需将反应器入口循环气中CO 2浓度从2%降低到小于1%,为此进入脱碳系统的反应尾气量从50%提高到100%,即从83654.2kg/h提高到164284.7kg/h。尾气经过压缩机增压,压力1.82MPa(A)、温度56.5℃的反应气进入本发明的系统,气量为164284.7kg/h,其中CO 2浓度1.59mol%,乙烯浓度28.02mol%,O 2浓度5.86mol%,其余为CH 4、C 2H 6、N 2、Ar以及少量水蒸气和MEG。采用本发明工艺,摩尔分数约50%气量经过气体换热器[1]升温到约90℃回收再生气热量;其余气体进入水洗塔[6]加热、增湿,升温到约85.5℃回收洗涤水的热量。两股气体合并混合温度87℃进入吸收塔[7],与碳酸盐泵[11]泵入的第一股脱碳液在第一吸收段的填料中逆流传质吸收并换热,出吸收塔的第一股富液温度约88.77℃,经过贫富液换热器[9]与115℃的第二股脱碳液换热,温度升高到约103℃与第二吸收段出来的第二股富液混合后,进再生塔顶闪蒸罐,混合富液温度为103.5℃,比改造前提高约5℃。普通热碳酸钾脱碳工艺为使反应气进入吸收塔[7],与碳酸盐泵[11]泵入的第一股脱碳液在第一吸收段的填料中逆流传质,第二股脱碳液进入吸收塔的第二吸收段段与从第一吸收段上来的气体进一步逆流接触脱除 CO 2,吸收富液在塔内下降,并与第一股富液汇合后返回再生塔解吸再生。
碳酸盐泵[10]泵入的第二股脱碳液在贫富液换热器[9]换热后,进入贫液水冷器[8]与循环洗涤水换热,将热量传递给洗涤水后,进一步降温到约80℃,进入吸收塔的第二吸收段与从第一吸收段上来的气体进一步逆流接触脱除CO 2,得到第二股富液,与第一股富液汇合后返回再生塔解吸再生。
来自水洗塔[6]的循环洗涤水经洗涤水循环泵[2]增压进入洗涤水-循环水冷却器[4]冷却,再经洗涤水-冷冻水冷却器[5]降温到35℃以下,进入吸收塔降温段,与出吸收塔净化气逆流接触洗涤气体中碳酸盐雾沫并传热,将出塔返回合成系统的气体温度降低到37℃以下,目的是减少气体中饱和水蒸汽含量(小于0.3%),满足催化剂要求。反应器入口气体中CO 2浓度小于1.0%,(催化剂选择性提高后,CO 2浓度小于0.5%)。普通热碳酸钾脱碳工艺没有水循环系统。循环气直接进入吸收塔,出塔气体经循环水换热器冷却,热量全部由循环水带出去;进吸收塔的脱碳液也是用循环水降温,不是与洗涤水换热,没有热量回收。
出降温段的洗涤水在贫液水冷器[8]与脱碳液换热,升温到88℃的洗涤水返回水洗塔[6],在填料中与进系统反应气逆流接触传热、传质,循环气中微量有机物被洗去、气体被加热、增湿,升温到约85.5℃的出塔气体与另一路反应气合并进入吸收塔。
正常运行时,关闭阀门XV1,调节阀门XV2,使进入升温区的反应气量为待处理的反应气总量的约86%。
50%反应尾气脱碳时,溶液再生需要的蒸汽约15t/h;100%反应尾气脱碳时,采用本发明工艺,不必因为气量增加而增加蒸汽量,实际节省蒸汽约10t/h。
对比例1:
某规模为7万吨/年的乙烯在银催化剂作用下合成环氧乙烷装置,其氧化合成反应副反应产物CO 2的脱碳单元采用碳酸钾脱碳工艺。尾气经过压缩机增压,压力1.82MPa(A)、温度56.5℃的反应气进入脱碳系统,循环气量为164284.7kg/h,其中,CO 2浓度1.59mol%,乙烯浓度28.02mol%,O 2浓度5.86mol%,其余为CH 4、C 2H 6、N 2、Ar以及少量水蒸气和MEG。为了将反应器入口循环气中CO 2浓度从目前2%,降低到小于1%,将进入脱碳系统的反应尾气从50%提高到100%,即气量 从83654.2kg/h提高到164284.7kg/h。
采用现有工艺,反应气中摩尔分数约50%气量的气体通过XV1旁路直接返回反应器(不进入脱碳系统),另外约50%气量经过气体换热器[1]升温到约90℃回收再生气热量后进入二氧化碳吸收塔,该塔分为上下两段,上下两段相通(并未液体隔离),与碳酸盐泵泵入的脱碳液在上下段填料中逆流传质吸收并换热,上段入口脱碳液用外界循环冷却水冷到91℃(热量损失),出吸收塔气体用外界循环冷却水在换热器中冷到57.7℃(热量损失),然后与没有进入脱碳系统的反应气合并返回反应系统,气体中CO 2浓度约2.0%,不能满足高选择性催化剂CO 2浓度小于1.0%的要求。出吸收塔脱碳富液,温度约98.2℃(没有回收热量),直接进再生塔顶闪蒸罐。
为了满足催化剂要求,反应器入口气体中CO 2浓度小于1.0%,必须将循环气的85~100%进行脱碳处理,如果脱碳流程不按照实施例1进行改造,仍采用原工艺,则蒸汽消耗必须从目前每小时15吨基础上,增加10吨左右(约40%)。
实施例2
某新建规模为20万吨/年的乙烯制精环氧乙烷装置,其氧化合成反应在银催化剂作用下完成,反应副反应产物CO 2的脱除单元采用热碳酸钾脱碳工艺。
压力2.38MPa(A)、温度49.2℃的反应循环气进入脱碳系统,循环气量为668822.04kg/h,其中CO 2浓度1.44mol%,乙烯浓度28.61mol%,O 2浓度5.68mol%,其余为CH 4、C 2H 6、N 2、Ar以及少量水蒸气和MEG。采用本发明工艺,气体进入水洗塔[6]加热、增湿,升温到约69℃回收洗涤水的热量,然后进入吸收塔[7],吸收塔[7]的第二吸收段与第一吸收段之间未设置液体隔板,气体在吸收塔下塔首先与碳酸盐泵[11]泵入的105℃脱碳液在吸收塔的填料中逆流传质吸收并换热,出吸收塔的富液温度约72℃,经过贫富液换热器[9]与105℃的脱碳液换热,温度升高到约95℃进入再生塔顶闪蒸罐,回收了贫液必须降低温度而移出的热量。
碳酸盐泵[10]泵入的脱碳液在贫富液换热器[9]换热到75℃后,进入贫液水冷器[8]与循环洗涤水换热,将热量传递给洗涤水后,进一步降温到65℃,进入吸收塔与气体进一步逆流接触脱除CO 2达到脱碳指标。
来自水洗塔[6]的循环洗涤水经洗涤水循环泵[2]增压进入洗涤水-循环水冷却器[4]冷却,再经溴化锂冰机使洗涤水温度降低到33℃以下,进入吸收塔降温段,与出吸收塔净化气逆流接触洗涤气体中碳酸盐雾沫并传热,将出塔返回合成系统的气体温度降低到37℃以下,目的是减少气体中饱和水蒸汽含量(小于0.3%),满足催化剂要求。反应器入口气体中CO 2浓度小于0.3%。
出降温段的洗涤水在贫液水冷器[8]与脱碳液换热,升温到70℃的洗涤水返回水洗塔[6],在填料中与进系统反应气逆流接触传热、传质,循环气中微量有机物被洗去、气体被加热、增湿,升温到约69℃的出塔气体进入吸收塔。
正常运行时,关闭阀门XV1,调节阀门XV2,使进入升温区的反应气量为待处理的反应气总量的约85%。
在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗从普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)40吨/时,降到20吨/时以下,节省蒸汽约50%。
实施例3
某新建规模为80万吨/年的乙烯制环氧乙烷/乙二醇装置,其氧化合成反应在银催化剂作用下完成,反应副反应产物CO 2的脱除单元采用热碳酸钾脱碳工艺。压力2.40MPa(A)、温度56.6℃的反应气进入脱碳系统,循环气量为1774479.3kg/h,其中CO 2浓度1.71mol%,乙烯浓度28.50mol%,O 2浓度5.97mol%,其余为CH 4、C 2H 6、N 2、Ar以及少量水蒸气和MEG。采用本发明工艺,流程与实施例2基本相同。区别是:自水洗塔[6]的循环洗涤水经洗涤水循环泵[2]增压进入洗涤水-循环水冷却器[4]冷却,再经热泵—溴化锂冰机系统[5’],利用再生气中余热给热泵产生蒸汽,提供溴化锂冰机使洗涤水温度降低到33℃以下,进入吸收塔降温段,与出吸收塔净化气逆流接触洗涤气体中碳酸盐雾沫并传热,将出塔返回合成系统的气体温度降低到37℃以下,目的是减少气体中饱和水蒸汽含量(小于0.3%),满足催化剂要求。反应器入口气体中CO 2浓度小于1.0%,(催化剂选择性提高后,CO 2浓度小于0.3%)。
达到同样的二氧化碳脱除效果的情况下,蒸汽消耗从普通热碳酸钾脱碳工艺的76吨/时降到为46吨/时,减少约30吨/时(约40%)。
实施例4
某规模为5万吨/年的乙烯制环氧乙烷/乙二醇装置,其氧化合成在银催化剂作用下完成,反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。压力2.26MPa(A)、温度48.4℃的反应气进入脱碳系统,循环气量为112696.23kg/h,其中CO 2浓度2.0mol%,乙烯浓度24.96mol%,O 2浓度5.99mol%,其余为CH 4、C 2H 6、N 2、Ar以及少量EO和水蒸气。采用本发明工艺,流程与实施例3相同,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约36%。
实施例5
某新建规模为33万吨/年的醋酸乙烯装置,用乙烯、氧气和醋酸蒸汽在贵金属Pd-Au(Pt)催化剂及醋酸钾助催化剂作用下,在160-200℃,0.6-0.8MPa条件下,反应产物经分离,精馏得到产品。该氧化合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。尾气经过压缩机增压,压力1.2MPa(A)、温度84℃的循环气进入脱碳系统,气量为20455.07kg/h,其中CO 2浓度14.94mol%,乙烯浓度62.09mol%,O 2浓度3.24mol%,其余为CH 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例3相同,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)少约35%。
实施例6
某新建规模为100万吨/年的煤制油装置,用一氧化碳、氢气在铁催化剂作用下,在250-280℃,3.2-3.5MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。尾气经过压缩机增压,压力3.5MPa(A)、温度64℃的循环气进入脱碳系统,气量为337403.19kg/h,其中CO 2浓度12.93mol%,CO浓度7.99mol%,H 2浓度58.72mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例3相同,但用空气冷却装置替换实施例3中的洗涤水-循环水冷却器和洗涤水-冷冻水冷却器;结合中国专利CN  200610166303.6的脱碳液组成和脱碳液再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约37%。
实施例7
某规模为200万吨/年的煤制油装置,用一氧化碳、氢气在铁催化剂作用下,在260-280℃,2.8-3.0MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。压力2.72MPa(A)、温度40℃的循环气进入脱碳系统,气量为430402.82kg/h,其中CO 2浓度14.71mol%,CO浓度7.12mol%,H 2浓度60.55mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例6相同,结合中国专利CN 200610166303.6的脱碳液组成和脱碳液再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约36%。
实施例8
某规模为100万吨/年的煤制油装置,用一氧化碳、氢气在铁催化剂作用下,在240-280℃,2.6-2.8MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。压力1.8MPa(A)、温度40℃的循环气进入脱碳系统,气量为376081.41kg/h,其中CO 2浓度15.8mol%,CO浓度19.18mol%,H 2浓度34.86mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例6相同,结合中国专利CN 200610166303.6的脱碳液组成和脱碳液再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约30%。
实施例9
某新建规模100万吨/年煤制油装置,用一氧化碳、氢气在铁催化剂作用下, 在250-280℃,3.2-3.5MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。尾气经过压缩机增压,压力3.45MPa(A)、温度77.2℃的循环气进入脱碳系统,气量为208014.11kg/h,其中CO 2浓度14.31mol%,CO浓度7.07mol%,H 2浓度58.86mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例6相同,结合中国专利CN 200610166303.6的脱碳液组成和脱碳液再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约33%。
实施例10
某规模为100万吨/年的煤制油装置,用一氧化碳、氢气在铁催化剂作用下,在260-280℃,2.70-2.80MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。压力2.72MPa(A)、温度42℃的循环气进入脱碳系统,气量为220411.71kg/h,其中CO 2浓度11.86mol%,CO浓度8.09mol%,H 2浓度66.98mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例6相同,结合中国专利CN 200610166303.6的脱碳液组成和脱碳液再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约35%。
实施例11
某规模为100万吨/年的煤制油装置,用一氧化碳、氢气在铁催化剂作用下,在260-280℃,2.8-3.0MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。压力2.72MPa(A)、温度42.6℃的循环气进入脱碳系统,气量为204644.42kg/h,其中CO 2浓度14.16mol%,CO浓度7.50mol%,H 2浓度64.46mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例6相同,结合中国专利CN 200610166303.6的脱碳液组成和脱碳液 再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约36%。
实施例12
某规模为200万吨/年的煤制油装置,用一氧化碳、氢气在铁催化剂作用下,在250-280℃,3.2-3.5MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。尾气经过压缩机增压,压力3.53MPa(A)、温度85.6℃的循环气进入脱碳系统,气量为379240.51kg/h,其中CO 2浓度13.99mol%,CO浓度7.75mol%,H 2浓度61.15mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例6相同,结合中国专利CN 200610166303.6的脱碳液组成和脱碳液再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约32%。
实施例13
某规模为60万吨/年的煤制油装置,用一氧化碳、氢气在铁催化剂作用下,在260-280℃,2.8-3.0MPa条件下,在浆态床反应器中反应,反应产物经分离、加氢、精馏得到柴油等系列产品。该合成反应副反应产物CO 2的脱除单元采用碳酸钾脱碳工艺。压力2.63MPa(A)、温度41.8℃的循环气进入脱碳系统,气量为145378.06kg/h,其中CO 2浓度12.85mol%,CO浓度9.04mol%,H 2浓度61.49mol%,其余为CH 4、C 2H 4、C 2H 6、N 2、Ar以及少量水蒸气。采用本发明工艺,流程与实施例6相同,结合中国专利CN 200610166303.6的脱碳液组成和脱碳液再生流程,在达到同样的二氧化碳脱除效果的情况下,蒸汽消耗比普通热碳酸钾脱碳工艺(即直接用脱碳液对反应气进行脱碳处理,而不采用热量回收措施)减少约38%。
在本发明中的提到的任何数值,如果在任何最低值和任何最高值之间只是有两个单位的间隔,则包括从最低值到最高值的每次增加一个单位的所有值。例如, 如果声明一种组分的量,或诸如温度、压力、时间等工艺变量的值为50-90,在本说明书中它的意思是具体列举了51-89、52-88……以及69-71以及70-71等数值。对于非整数的值,可以适当考虑以0.1、0.01、0.001或0.0001为一单位。这仅是一些特殊指明的例子。在本申请中,以相似方式,所列举的最低值和最高值之间的数值的所有可能组合都被认为已经公开。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。
附图标记说明
1……气体换热器
2……洗涤水循环泵
3……脱盐水增压泵
4……洗涤水-循环水冷却器
5……洗涤水-冷冻水冷却器
5’……热泵—溴化锂冰机系统
6……水洗塔
7……吸收塔
8……贫液水冷器
9……贫富液换热器
10……脱碳液泵-2
11……脱碳液泵-1
A……待脱除二氧化碳的反应器
B……净化气体
C……脱盐水
D……来自再生塔塔顶的再生气
E……返回再生气冷却器的再生气
F……废液去处理
G……来自再生塔釜的贫液
H……来自再生塔釜的贫液
I……富液去再生塔
J……循环洗涤水进水
K……循环洗涤水排水

Claims (21)

  1. 一种脱除反应气中二氧化碳的方法,包括:
    S1.使待脱除二氧化碳的反应气与洗涤水换热以对其进行升温处理,得到气流III;
    S2.采用脱碳液对步骤S1得到的气流III进行脱碳处理,得到气流IV;
    S3.对所述气流IV进行降温处理,得到脱除二氧化碳的净化气体;
    其中,所述洗涤水首先经冷却装置降温,然后与气流IV换热,接着与脱碳液换热,最后与待脱除二氧化碳的反应气换热,之后再返回冷却装置降温循环。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤S1中,使待脱除二氧化碳的反应气与洗涤水和再生气换热以对其进行升温处理;优选地,所述步骤S1包括如下步骤:
    1A.将待脱除二氧化碳的反应气分为气流I和气流II;
    1B.使气流I与来自再生塔塔顶的出塔再生气换热升温得到气流Ia;
    1C.使气流II与洗涤水换热升温得到气流IIa;
    1D.将气流Ia和气流IIa合并后得到气流III。
  3. 根据权利要求2所述的方法,其特征在于,所述气流I与气流II的摩尔比为(0-70):(100-30),优选为(30-70):(70-30),更优选为(40-60):(60-40)。
  4. 根据权利要求1所述的方法,其特征在于,所述脱碳液为来自于再生塔的塔釜贫液,优选为碳酸盐溶液;优选地,所述步骤S2包括如下步骤:
    2A.使气流III与第一股脱碳液逆流接触,得到气流IIIa和第一股富液;
    2B.使气流IIIa与第二股脱碳液逆流接触,得到气流IV和第二股富液。
  5. 根据权利要求4所述的方法,其特征在于,所述第一股脱碳液和第二股脱碳液为来自于再生塔的塔釜贫液;所述第一股脱碳液直接与气流III逆流接触,得到第一股富液;所述第二股脱碳液首先与温度较低的一股富液换热降温,然后与循环洗涤水换热,最后与气流IIIa逆流接触,得到第二股富液;所述第一股富液和第二股富液返回再生塔再生。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    利用来自再生塔塔顶的出塔再生气所含有的热量对所述冷却装置供能,降低洗涤水的温度,然后与气流IV换热。
  7. 根据权利要求1-6中任意一项所述的方法,其特征在于,所述方法还包括如下步骤:
    S0.将反应气分为气流A和气流B,其中气流A按照步骤S1-S3进行处理;
    S3.将气流B与步骤S2得到的净化气体直接合并,循环回反应器;
    优选地,所述气流A和气流B摩尔比为(70-100):(30-0),优选为(75-90):(25-10)。
  8. 一种脱除反应气中二氧化碳的系统,包括:
    用于对待脱除二氧化碳的反应气进行升温处理的升温区;
    用于接收来自于升温区的气体并对其进行脱碳和降温处理的的脱碳区。
  9. 根据权利要求8所述的系统,其特征在于,
    所述升温区包括至少一个用于使待脱除二氧化碳的反应气与洗涤水换热的水洗塔;
    优选地,所述水洗塔上设置有反应气进口、反应气出口、洗涤水进口和洗涤水出口,所述反应气进口用于接收待脱除二氧化碳的反应气,所述反应气出口与脱碳区的吸收塔的反应气进口相连,所述洗涤水进口与贫液水冷器的洗涤水出口相连,所述洗涤水出口与洗涤水冷却装置的入口相连;
    优选地,所述水洗塔的反应气进口设置于其侧壁下部,所述水洗塔的反应气出口设置于其顶部,所述水洗塔的洗涤水进口设置于其侧壁上部,所述水洗塔的洗涤水出口设置于其侧壁下部。
  10. 根据权利要求9所述的系统,其特征在于,所述升温区还包括至少一个用于使待脱除二氧化碳的反应气与来自再生塔塔顶的出塔再生气换热的气体换热器;
    优选地,所述气体换热器上设置有反应气进口、反应气出口、再生气进口和再生气出口,所述反应气进口用于接收待脱除二氧化碳的反应气,所述反应气出口与脱碳区的吸收塔的反应气进口相连,所述再生气进口与再生塔塔顶出气口相连,所述再生气出口与再生气冷却装置的入口相连;
    优选地,在所述气体换热器内分别设有反应气通道和再生气通道;所述反应气通道分别与反应气进口和反应气出口连通,用于流通进入所述气体换热器的反应气;所述再生气通道分别与再生气进口和再生气出口连通,用于流通进入气体换热器的再生气。
  11. 根据权利要求8所述的系统,其特征在于,所述脱碳区包括至少一个用于对来自于升温区的气体进行脱碳和降温处理的吸收塔;
    优选地,所述吸收塔设置有反应气进口和反应气出口,所述反应气进口与脱碳区的水洗塔和/或气体换热器的气体出口相连,所述反应气出口与反应器的进气口相连,在所述吸收塔内,反应气与液体逆流接触,以对反应气进行脱碳和降温处理;
    优选地,所述吸收塔包括自下而上设置的第一吸收段、第二吸收段和降温段;更优选所述第一吸收段、第二吸收段和降温段之间液体隔离。
  12. 根据权利要求11所述的系统,其特征在于,所述第一吸收段设置有反应气进口、反应气出口、脱碳液进口和脱碳液出口,所述反应气进口与吸收塔的反应气进口相连,所述反应气出口与第二吸收段的反应气进口相连,所述脱碳液进口与脱碳液再生塔的塔釜液体出口相连,所述脱碳液出口与贫富液换热器的富液入口相连;
    所述第一吸收段的反应气进口设置于其侧壁下部,所述第一吸收段的反应气出口设置于其顶部,所述第一吸收段的脱碳液进口设置于其侧壁上部,所述第一吸收段的脱碳液出口设置于其底部。
  13. 根据权利要求11所述的系统,其特征在于,所述第二吸收段设置有反应气进口、反应气出口、脱碳液进口和脱碳液出口,所述反应气进口与第一吸收段的反应气出口相连,所述反应气出口与降温段的反应气进口相连,所述脱碳液进口与贫液水冷器的脱碳液出口相连,所述脱碳液出口与再生塔的富液入口相连;
    所述第二吸收段的反应气进口设置于其底部,所述第二吸收段的反应气出口设置于其顶部,所述第一吸收段的脱碳液进口设置于其侧壁上部,所述第二吸收段的脱碳液出口设置于其侧壁下部。
  14. 根据权利要求11所述的系统,其特征在于,所述降温段设置有反应气进口、反应气出口、洗涤水进口和洗涤水出口,所述反应气进口与第二吸收段的反应气出口相连,所述反应气出口与吸收塔的反应气出口相连,所述洗涤水进口与洗涤水冷却装置的洗涤水出口相连,所述洗涤水出口与贫液水冷器的洗涤水进口相连;
    所述降温段的反应气进口设置于其底部,所述降温段的反应气出口设置于其顶部,所述降温段的洗涤水进口设置于其侧壁上部,所述降温段的洗涤水出口设 置于其侧壁下部。
  15. 根据权利要求8所述的系统,其特征在于,所述系统还包括用于对洗涤水进行降温的洗涤水冷却装置;所述洗涤水冷却装置包括至少一个洗涤水-循环水冷却器和至少一个洗涤水-冷冻水冷却器;所述洗涤水-循环水冷却器设置有进口和出口,所述进口与水洗塔的洗涤水出口相连,所述出口与洗涤水-冷冻水冷却器的进口相连;所述洗涤水-冷冻水冷却器设置有进口和出口,所述进口与洗涤水-循环水冷却器的出口相连,所述洗涤水出口与水洗塔降温段的洗涤水进口相连;
    优选地,所述洗涤水冷却器还设置有洗涤水补充口和洗涤水排放口,所述洗涤水补充口向系统内补充脱盐水,所述洗涤水排放口用于排出系统中被污染的洗涤水。
  16. 根据权利要求15所述的系统,其特征在于,所述洗涤水-冷冻水冷却器由溴化锂冰机和热泵组成,所述热泵与再生气气体换热器并联;来自于再生塔的再生气进入热泵,将热量供给热泵,产生蒸汽,该蒸汽供给溴化锂冰机制冷,产生的冷量将循环洗涤水的温度降至33℃以下。
  17. 根据权利要求8所述的系统,其特征在于,所述系统还包括用于使脱碳液进行换热的脱碳液换热装置,所述脱碳液在脱碳液换热装置内与富液和洗涤水分别进行换热;
    优选地,所述脱碳液换热装置包括至少一个贫富液换热器和至少一个贫液水冷器;所述贫富液换热器用于使第二股脱碳液和第一股富液或者第二股富液当中温度较低的一股富液进行换热,所述贫液水冷器用于使第二股脱碳液和洗涤水进行换热。
  18. 根据权利要求17所述的系统,其特征在于,所述贫富液换热器上设置有脱碳液进口、脱碳液出口、富液进口和富液出口,所述脱碳液进口与再生塔的塔釜液体出口相连,所述脱碳液出口与贫液水冷器的脱碳液进口相连,所述富液进口与第一股富液或者第二股富液当中温度较低的一股富液出口相连,所述富液出口与再生塔的富液进口相连;在所述贫富液换热器内分别设有脱碳液通道和富液通道,所述脱碳液通道分别与脱碳液进口和脱碳液出口连通,用于流通进入所述贫富液换热器的第二股脱碳液;所述富液通道分别与富液进口和富液出口连通,用于流通进入所述贫富液换热器的温度较低的一股富液。
  19. 根据权利要求17所述的系统,其特征在于,所述贫液水冷器上设置有脱 碳液进口、脱碳液出口、洗涤水进口和洗涤水出口,所述脱碳液进口与贫富液换热器的脱碳液出口相连,所述脱碳液出口与第二吸收段的脱碳液进口相连,所述洗涤水进口与降温段的洗涤水出口相连,所述洗涤水出口与水洗塔的洗涤水进口相连;在所述贫液水冷器内分别设有脱碳液通道和洗涤水通道,所述脱碳液通道分别与脱碳液进口和脱碳液出口连通,用于流通进入所述贫富液换热器的第二股脱碳液;所述洗涤水通道分别与洗涤水进口和洗涤水出口连通,用于流通进入所述贫液水冷器的洗涤水。
  20. 根据权利要求8-19中任意一项所述的系统,其特征在于,所述系统还包括使待脱除二氧化碳的反应气与净化气体直接合并的循环旁路管道,在所述循环管道上设置有第一调节阀;在所述第一调节阀的两端并联有一条调节管道,其上设置有第二调节阀。
  21. 权利要求8-20中任意一项所述的系统在脱除反应气中二氧化碳方面的应用。
PCT/CN2019/127532 2019-01-24 2019-12-23 一种脱除反应气中二氧化碳的方法、系统及其应用 WO2020192204A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19921666.4A EP3943473A4 (en) 2019-01-24 2019-12-23 METHOD AND SYSTEM FOR REMOVAL OF CARBON DIOXIDE FROM REACT GASES AND RELATED APPLICATION
US17/482,415 US11958012B2 (en) 2019-01-24 2021-09-22 Method and system for removing carbon dioxide from reaction gas, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910066957 2019-01-24
CN201910222351.XA CN111467940B (zh) 2019-01-24 2019-03-22 一种脱除反应气中二氧化碳的方法、系统及其应用
CN201910222351.X 2019-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/482,415 Continuation-In-Part US11958012B2 (en) 2019-01-24 2021-09-22 Method and system for removing carbon dioxide from reaction gas, and use thereof

Publications (1)

Publication Number Publication Date
WO2020192204A1 true WO2020192204A1 (zh) 2020-10-01

Family

ID=71744831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127532 WO2020192204A1 (zh) 2019-01-24 2019-12-23 一种脱除反应气中二氧化碳的方法、系统及其应用

Country Status (4)

Country Link
US (1) US11958012B2 (zh)
EP (1) EP3943473A4 (zh)
CN (1) CN111467940B (zh)
WO (1) WO2020192204A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680256A (zh) * 2020-12-14 2021-04-20 长春东狮科技(集团)有限责任公司 一种高炉煤气湿法脱氯脱硫的装置和方法
CN112694399A (zh) * 2021-01-07 2021-04-23 太原理工大学 一种节能型直接压缩式热泵醋酸精馏工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112604456A (zh) * 2020-10-27 2021-04-06 中石化南京化工研究院有限公司 一种煤制油装置脱碳单元中脱除有机物的方法
CN116063157A (zh) * 2021-10-29 2023-05-05 中石化南京化工研究院有限公司 环氧乙烷/乙二醇(eo/eg)装置脱碳单元降低eg损耗的方法
CN115285994B (zh) * 2022-08-12 2023-07-25 青岛大学 一种高效低能耗船舶co2捕集-膜解吸-矿化固定系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210186A (zh) * 2006-12-26 2008-07-02 南化集团研究院 一种费托合成循环气脱除二氧化碳的溶剂和方法
CN102641653A (zh) * 2012-04-25 2012-08-22 中国石油化工股份有限公司 一种醋酸乙烯反应循环气脱除二氧化碳的工艺
CN102671510A (zh) * 2011-11-29 2012-09-19 中国石油化工股份有限公司 烟道气co2的回收工艺
JP5639814B2 (ja) * 2010-08-10 2014-12-10 バブコック日立株式会社 脱co2設備付き火力発電システム
CN108129254A (zh) * 2018-01-09 2018-06-08 中国石油工程建设有限公司 一种从乙烷气体中脱除二氧化碳的装置及方法
US10005021B1 (en) * 2016-12-22 2018-06-26 General Electric Technology Gmbh System and method for recovering ammonia from a gas stream

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056482B2 (en) * 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
CN1232500C (zh) * 2003-12-04 2005-12-21 华东理工大学 再生塔热量回收方法
CN102675248B (zh) * 2008-10-13 2015-03-25 南化集团研究院 一种环氧乙烷/乙二醇合成循环气脱除二氧化碳的方法
US9133407B2 (en) * 2011-02-25 2015-09-15 Alstom Technology Ltd Systems and processes for removing volatile degradation products produced in gas purification
CN102133499A (zh) * 2011-03-03 2011-07-27 杨东 一种烟气中酸性气体捕集系统和方法
US8647421B2 (en) * 2011-03-17 2014-02-11 Mitsubishi Heavy Industries, Ltd. CO2 recovery apparatus
JP5693368B2 (ja) * 2011-05-13 2015-04-01 日立造船株式会社 二酸化炭素回収方法における二酸化炭素吸収液の再生方法
JP2015163381A (ja) * 2014-02-28 2015-09-10 株式会社東芝 二酸化炭素回収装置および二酸化炭素回収方法
CN208218733U (zh) * 2017-12-29 2018-12-11 三江化工有限公司 环氧乙烷脱碳系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210186A (zh) * 2006-12-26 2008-07-02 南化集团研究院 一种费托合成循环气脱除二氧化碳的溶剂和方法
JP5639814B2 (ja) * 2010-08-10 2014-12-10 バブコック日立株式会社 脱co2設備付き火力発電システム
CN102671510A (zh) * 2011-11-29 2012-09-19 中国石油化工股份有限公司 烟道气co2的回收工艺
CN102641653A (zh) * 2012-04-25 2012-08-22 中国石油化工股份有限公司 一种醋酸乙烯反应循环气脱除二氧化碳的工艺
US10005021B1 (en) * 2016-12-22 2018-06-26 General Electric Technology Gmbh System and method for recovering ammonia from a gas stream
CN108129254A (zh) * 2018-01-09 2018-06-08 中国石油工程建设有限公司 一种从乙烷气体中脱除二氧化碳的装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943473A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680256A (zh) * 2020-12-14 2021-04-20 长春东狮科技(集团)有限责任公司 一种高炉煤气湿法脱氯脱硫的装置和方法
CN112680256B (zh) * 2020-12-14 2022-06-14 长春东狮科技(集团)有限责任公司 一种高炉煤气湿法脱氯脱硫的装置和方法
CN112694399A (zh) * 2021-01-07 2021-04-23 太原理工大学 一种节能型直接压缩式热泵醋酸精馏工艺

Also Published As

Publication number Publication date
EP3943473A1 (en) 2022-01-26
US20220032230A1 (en) 2022-02-03
EP3943473A4 (en) 2023-01-25
CN111467940B (zh) 2022-02-01
US11958012B2 (en) 2024-04-16
CN111467940A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2020192204A1 (zh) 一种脱除反应气中二氧化碳的方法、系统及其应用
TWI801782B (zh) 電解水生產高純氫氣和/或氧氣之裝置及方法
CN103058187B (zh) 一种改进的食品级液体二氧化碳产品的生产方法
CN218779045U (zh) 电解水制氢装置
JPS62167207A (ja) 濃硫酸の製造方法及びこれに使用する三酸化硫黄吸収装置
CN107266289A (zh) 一种利用二氧化碳生产正丙醇的装置和方法
CN102675248B (zh) 一种环氧乙烷/乙二醇合成循环气脱除二氧化碳的方法
CN111690449A (zh) 一种节能型天然气mdea脱碳系统及其脱碳工艺
CN104673417B (zh) 用于煤制天然气的预冷却和干燥净化的系统和方法
CN109078349A (zh) 一种低温甲醇洗节能装置及工艺
CN210559373U (zh) 一种利用酸冷方式实现节能的新型氟化氢制备装置
CN209778301U (zh) 一种硫磺回收设备
CN207671691U (zh) 制备一氧化碳的装置
CN111482069A (zh) 节能型烟气二氧化碳回收系统及回收工艺
CN101659420B (zh) 一种氨合成新鲜气的干燥净化方法和装置
CN218653728U (zh) 一种具有闪蒸气回收装置的液氮洗系统
CN220478148U (zh) 一种酯化法环己酮装置内氢气综合利用系统
CN212425918U (zh) 一种利用低温甲醇洗处理膜分离非渗透气制甲醇系统及包括其的甲醇生产系统
CN212327892U (zh) 节能型烟气二氧化碳回收系统
CN219879497U (zh) 脱氢工段氢气净化单元再生氢尾气回收系统
CN107245034A (zh) 一种利用二氧化碳生产醋酸正丙酯的装置和方法
CN214764437U (zh) 一种新型低功率原料气再生净化设备
CN212833551U (zh) 甲醇制备系统
CN212740757U (zh) 一种变换工艺冷凝液资源化处理装置
CN217392339U (zh) 一种氢气循环的2-甲基呋喃生产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019921666

Country of ref document: EP