WO2020191887A1 - Oled显示面板和电子设备 - Google Patents

Oled显示面板和电子设备 Download PDF

Info

Publication number
WO2020191887A1
WO2020191887A1 PCT/CN2019/086940 CN2019086940W WO2020191887A1 WO 2020191887 A1 WO2020191887 A1 WO 2020191887A1 CN 2019086940 W CN2019086940 W CN 2019086940W WO 2020191887 A1 WO2020191887 A1 WO 2020191887A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting structure
display panel
transmitting
Prior art date
Application number
PCT/CN2019/086940
Other languages
English (en)
French (fr)
Inventor
孙亮
曾勉
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/496,419 priority Critical patent/US11647659B2/en
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2020191887A1 publication Critical patent/WO2020191887A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations

Definitions

  • the present invention relates to the field of electronic display, in particular to an OLED display panel and electronic equipment.
  • organic light emitting diode organic light emitting diode
  • the surface of the OLED display panel has a large amount of metal, and the reflection of the metal on the external ambient light will affect the display effect of the OLED display panel.
  • the method currently adopted is: a polarizer is arranged on the side of the light emitting surface of the OLED display panel.
  • the principle is: the ambient light incident from the light-emitting surface of the OLED display panel is transformed into left-handed (or right-handed) polarized light after passing through the polarizer, and the left-handed (or right-handed) polarized light is reflected by the metal layer on the OLED display device ,
  • the reflected polarized light is right-handed (or left-handed), which is opposite to the polarization direction of the incident light, while right-handed (or left-handed) polarized light cannot pass through the left-handed (or right-handed) polarizer to exit, thereby eliminating the OLED display device
  • the reflection phenomenon of natural light is: the ambient light incident from the light-emitting surface of the OLED display panel is transformed into left-handed (or right-handed) polarized light after passing through the polarizer, and the left-handed (or right-handed) polarized light is reflected by the metal layer on the OLED display device ,
  • the reflected polarized light is right-handed (or left-handed), which is opposite
  • the transmittance of the existing polarizer is only about 42% to 44%. While eliminating reflection, the light transmission effect of the display panel is also seriously affected. In the latest display panels, light sensors are usually integrated under the display panel, and the decrease in light transmittance will seriously affect these light sensors.
  • the present invention provides an OLED display panel and an electronic device, which can reduce the reflection of the display panel while not affecting the light transmittance of the display panel.
  • the present invention provides an OLED display panel, which includes a substrate and a light-transmitting display area provided on the substrate.
  • the light-transmitting display area includes a plurality of pixel units arranged at intervals and a plurality of light-transmitting display areas. Unit; where,
  • Each of the pixel units includes a light emitting structure and a filter located above the light emitting structure, the color of light retained by the filter is the same as the color of light emitted by the light emitting structure;
  • the light emitting structure includes a thin film transistor and a light emitting layer corresponding to the thin film transistor;
  • the light-transmitting unit includes a light-transmitting stack formed by extending a transparent insulating layer in a light emitting structure adjacent to the light-transmitting unit, and the transparent insulating layer includes the thin film transistor and the The insulating layer in the light-emitting unit.
  • the display panel further includes an encapsulation structure covering the light-transmitting display area, and the filter is located on the encapsulation structure;
  • the light-transmitting unit further includes a first light-enhancing unit located on the packaging structure, the first light-enhancing unit is located directly above the light-transmitting laminate, and is spaced apart from the filter.
  • the light transmitting unit has an opening directly exposing the substrate.
  • the opening has a second light enhancement unit filling the opening.
  • the first light enhancement unit and the second light enhancement unit are inorganic or organic small molecules with a microcavity structure.
  • the multiple pixel units include multiple red pixel units, multiple green pixel units, and multiple blue pixel units; wherein,
  • the red pixel unit includes a red light-emitting structure
  • the green pixel unit includes a green light-emitting structure
  • the blue pixel unit includes a blue light-emitting structure
  • the red light emitting structure includes a white light emitting layer and a red light color film layer located above the white light emitting layer;
  • the blue light emitting structure includes a white light emitting layer and a blue light color film layer located above the white light emitting layer;
  • the green light emitting structure includes a white light emitting layer and a green light color film layer located above the white light emitting layer.
  • the multiple pixel units include multiple red pixel units, multiple green pixel units, and multiple blue pixel units; wherein,
  • the red pixel unit includes a red light-emitting structure
  • the green pixel unit includes a green light-emitting structure
  • the blue pixel unit includes a blue light-emitting structure
  • the red light emitting structure includes a red light emitting layer
  • the blue light emitting structure includes a blue light emitting layer
  • the green light emitting structure includes a green light emitting layer.
  • the present invention provides an OLED display panel, which includes a substrate and a light-transmitting display area provided on the substrate.
  • the light-transmitting display area includes a plurality of pixel units arranged at intervals and a plurality of light-transmitting display areas. Unit; where,
  • Each pixel unit includes a light-emitting structure and a filter located above the light-emitting structure, and the color of light retained by the filter is the same as the color of light emitted by the light-emitting structure.
  • the light emitting structure includes a thin film transistor and a light emitting layer corresponding to the thin film transistor;
  • the light-transmitting unit includes a light-transmitting stack formed by extending a transparent insulating layer in a light emitting structure adjacent to the light-transmitting unit, and the transparent insulating layer includes the thin film transistor and the The insulating layer in the light-emitting unit.
  • the display panel further includes an encapsulation structure covering the light-transmitting display area, and the filter is located on the encapsulation structure;
  • the light-transmitting unit further includes a first light-enhancing unit located on the packaging structure, the first light-enhancing unit is located directly above the light-transmitting laminate, and is spaced apart from the filter.
  • the light transmitting unit has an opening directly exposing the substrate.
  • the opening has a second light enhancement unit filling the opening.
  • the first light enhancement unit and the second light enhancement unit are inorganic or organic small molecules with a microcavity structure.
  • the multiple pixel units include multiple red pixel units, multiple green pixel units, and multiple blue pixel units; wherein,
  • the red pixel unit includes a red light-emitting structure
  • the green pixel unit includes a green light-emitting structure
  • the blue pixel unit includes a blue light-emitting structure
  • the red light emitting structure includes a white light emitting layer and a red light color film layer located above the white light emitting layer;
  • the blue light emitting structure includes a white light emitting layer and a blue light color film layer located above the white light emitting layer;
  • the green light emitting structure includes a white light emitting layer and a green light color film layer located above the white light emitting layer.
  • the multiple pixel units include multiple red pixel units, multiple green pixel units, and multiple blue pixel units; wherein,
  • the red pixel unit includes a red light-emitting structure
  • the green pixel unit includes a green light-emitting structure
  • the blue pixel unit includes a blue light-emitting structure
  • the red light emitting structure includes a red light emitting layer
  • the blue light emitting structure includes a blue light emitting layer
  • the green light emitting structure includes a green light emitting layer.
  • the present invention also provides that the electronic device includes an OLED display panel and a light sensing unit arranged below the OLED display panel, the OLED display panel includes a substrate and a light-transmitting display area arranged on the substrate , The position of the light sensing unit is located directly below the transparent display area; wherein,
  • the light-transmitting display area includes a plurality of pixel units and a plurality of light-transmitting units arranged at intervals; each pixel unit includes a light-emitting structure and a filter located above the light-emitting structure, and the light retained by the filter The color is the same as the color of light emitted by the light-emitting structure.
  • the light sensing unit includes a camera.
  • the present invention provides an OLED display panel.
  • the pixel unit in the light-transmitting display area of the panel includes a filter located above a light emitting structure, and the filter can retain light of the same color as the light emitted by the light emitting structure. And filter out light that is different in color from the light emitted by the light-emitting structure. Therefore, the natural light that enters the display panel can be changed by the filter to light having the same color as the light-emitting unit under the filter, and is emitted together with the light emitted by the light-emitting unit after being reflected. The reflection phenomenon of natural light by the display panel is eliminated. Since the light transmittance of the filter is much greater than that of the polarizer, the present invention greatly improves the light transmittance of the display panel.
  • FIG. 1 is a schematic structural diagram of a light-transmitting display area of an OLED display panel in a specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a light-transmitting display area of an OLED display panel in another specific embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the thin film transistor layer under the light-transmitting display area of the OLED display panel in a specific embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure of the transparent display area of the OLED display panel in the third specific embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the transparent display area of the OLED display panel in the fourth embodiment of the present invention.
  • a polarizer is used to eliminate the reflection of natural light from the metal layer of the display panel. Since the light transmittance of the polarizer is less than 50%, the light transmittance of the display panel is seriously reduced. For electronic devices with a built-in light sensor under the screen, the low light transmittance of the display panel will seriously affect the work of the light sensor, or even make it unable to work.
  • the present invention provides an OLED display panel and an electronic device, which can reduce the reflection of the display panel without affecting the light transmittance of the display panel.
  • the display panel includes a substrate 100 and a light-transmitting display area provided on the substrate 100, and the light-transmitting display area includes a plurality of pixel units and a plurality of light-transmitting units arranged at intervals.
  • Each pixel unit includes a light-emitting structure and a filter located above the light-emitting structure, and the color of light retained by the filter is the same as the color of light emitted by the light-emitting structure.
  • the light-emitting structure includes a thin film transistor and a light-emitting layer located above the thin film transistor and corresponding to the thin film transistor.
  • the thin film transistor includes multiple insulating layers for achieving electrical isolation, such as a gate dielectric layer, an interlayer dielectric layer, and a planarization layer.
  • the light-emitting layer includes a pixel definition layer for defining a light-emitting area, and the pixel definition layer is made of an insulating material, such as silicon oxide, silicon nitride, and the like.
  • the light-transmitting unit includes a light-transmitting stack formed by extending a transparent insulating layer in a light emitting structure adjacent to the light-transmitting unit, and the transparent insulating layer includes the thin film transistor and the The insulating layer in the light-emitting unit.
  • the ratio of the number of pixel units to the number of light-transmitting units in the light-transmitting display area is 3:1 to 1:1.
  • the ratio of the number of pixel units in the light-transmitting display area to the number of light-transmitting units in FIG. 1 is 3:1.
  • the ratio of the number of pixel units in the light-transmitting display area to the number of light-transmitting units in FIG. 4 is 3:3.
  • the ratio of the number of pixel units in the light-transmitting display area to the number of light-transmitting units in FIG. 5 is also 1:1.
  • the pixel unit and the light-transmitting unit may be arranged in different ways according to needs, and the arrangement way is not limited to the arrangement way disclosed in this embodiment.
  • the technical solutions formed by changing the number and arrangement of the pixel units and light-transmitting units also fall into the protection scope of the present invention.
  • the substrate 100 includes a thin film transistor layer.
  • the thin film transistor layer includes a thin film transistor unit 10 and a metal avoidance area 20.
  • the thin film transistor unit 10 corresponds to the pixel unit in the light-transmitting display area
  • the metal avoiding area 20 corresponds to the light transmitting unit in the light-transmitting display area
  • the metal avoiding area 20 constitutes the light transmitting area. Laminated.
  • the multiple pixel units include multiple red pixel units, multiple green pixel units, and multiple blue pixel units.
  • the red pixel unit includes a red light-emitting structure 210
  • the green pixel unit includes a green light-emitting structure 220
  • the blue pixel unit includes a blue light-emitting structure 230.
  • the multiple red light-emitting structures 210, the multiple green light-emitting structures 220, and the multiple blue light-emitting structures 230 are separated by the pixel definition layer 200.
  • the material forming the pixel defining layer 200 is a transparent insulating material.
  • the corresponding multiple filters are: a red filter 410 located above the red light-emitting structure 210, a green filter 420 located above the green light-emitting structure 220, and a red filter 420 located above the blue light-emitting structure 230. Blue filter 430.
  • Most of the multiple filters are separated by the isolation layer 400, and the material constituting the isolation layer 400 is a black light-shielding material, such as black resin.
  • the isolation layer 400 is used to block the natural light entering the display panel from the area, and at the same time reduce the reflection of the external environment light in the area.
  • the packaging structure 300 is used to protect the light emitting structure of the display panel from corrosion by water and oxygen.
  • the packaging structure 300 is a thin-film packaging structure, which includes a laminated structure composed of at least one organic packaging film and at least one inorganic packaging film.
  • FIG. 2 is a schematic structural diagram of a light-transmitting display area of an OLED display panel in another specific embodiment of the present invention, wherein the display panel further includes the packaging structure 300 and the isolation layer. 400 between the touch layer 500.
  • the touch layer 500 includes a plurality of touch units and a plurality of insulating regions separating the touch units.
  • the multiple touch units include a first touch unit 510, a second touch unit 520, a third touch unit 530, a fourth touch unit 540, and a fifth touch unit 550.
  • the multiple touch units are located directly under the isolation layer 400.
  • Each touch unit includes at least a first touch electrode, an insulating layer, a second touch electrode, and a via bridge structure.
  • the pixel unit may be composed of a white light emitting layer and a color film structure of a corresponding color.
  • the red light emitting structure 210 includes a white light emitting layer and a red light color film layer located above the white light emitting layer.
  • the blue light emitting structure 220 includes a white light emitting layer and a blue light color film layer located above the white light emitting layer.
  • the green light emitting structure 230 includes a white light emitting layer and a green light color film layer located above the white light emitting layer.
  • the pixel unit may also be composed of light-emitting structures of corresponding colors.
  • the red light emitting structure 210 includes a red light emitting layer;
  • the blue light emitting structure 220 includes a blue light emitting layer;
  • the green light emitting structure 230 includes a green light emitting layer.
  • the light-transmitting unit 240 is a light-transmitting laminate made of transparent materials.
  • the light-transmitting laminate may be a laminate composed of silicon oxide, aluminum oxide or transparent organic materials.
  • the light-transmitting stack is that the pixel definition layers in the light-transmitting unit 240 have the same material and are formed in the same deposition process.
  • the light transmission unit 240 further includes a first light enhancement unit 440 located above the light transmission stack, and the first light enhancement unit is located directly above the light transmission stack. It is arranged spaced apart from the filter.
  • the material of the first light enhancement unit is inorganic or small organic molecules. Inorganic or organic small molecules can change the optical structure of the device and adjust its microcavity effect, thereby increasing the light transmittance of the light transmitting unit 240.
  • the inorganic substance may be zinc selenide (ZnSe), and the small organic molecule may be n-bromopropane (NPB) or other aromatic amine organic substances.
  • the light transmitting unit 240 in order to further increase the light transmittance of the light transmitting unit 240, has an opening that directly exposes the substrate 100. That is, the light-transmitting stack forming the light-transmitting unit 240 is removed by photolithography to avoid light absorption and loss, and improve the light transmittance.
  • the opening has a second light enhancement unit filling the opening.
  • the material of the second light enhancement unit is inorganic or organic small molecules.
  • Inorganic or organic small molecules can change the optical structure of the device and adjust its microcavity effect, thereby increasing the light transmittance of the light transmitting unit 240.
  • the inorganic substance may be zinc selenide (ZnSe), and the small organic molecule may be n-bromopropane (NPB) or other aromatic amine organic substances.
  • the present invention also provides that the electronic device includes an OLED display panel and a light sensing unit disposed under the OLED display panel, and the OLED display panel includes a substrate 100 and a light-transmitting unit disposed on the substrate 100.
  • the light sensing unit is located directly below the light-transmitting display area; wherein the light-transmitting display area includes a plurality of pixel units and a plurality of light-transmitting units 240 arranged at intervals; each of the pixels
  • the unit includes a light emitting structure and a filter located above the light emitting structure, and the color of light retained by the filter is the same as the color of light emitted by the light emitting structure.
  • the light sensing unit includes a camera.
  • the light sensing unit may also be an under-screen fingerprint recognition unit or other light sensors.
  • the present invention provides an OLED display panel.
  • the pixel unit in the light-transmitting display area of the panel includes a filter located above a light emitting structure, and the filter can retain light of the same color as the light emitted by the light emitting structure. And filter out light that is different in color from the light emitted by the light-emitting structure. Therefore, the natural light that enters the display panel can be changed by the filter to light having the same color as the light-emitting unit under the filter, and is emitted together with the light emitted by the light-emitting unit after being reflected. The reflection phenomenon of natural light by the display panel is eliminated. Since the light transmittance of the filter is much greater than that of the polarizer, the present invention greatly improves the light transmittance of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种OLED显示面板和电子设备。所述OLED显示面板包括基板和设置在所述基板上的透光显示区,所述透光显示区包括间隔设置的多个像素单元和多个透光单元;其中,每个所述像素单元包括发光结构和位于所述发光结构上方的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同。

Description

OLED显示面板和电子设备 技术领域
本发明涉及电子显示领域,尤其涉及一种OLED显示面板和电子设备。
背景技术
在现有技术中,有机发光二极管(organiclightemittingdiode, OLED)显示面板表面具有大量金属,金属对外界环境光的反射会影响OLED显示面板的显示效果。为了降低反射光线的影响,目前采用的方法为:在OLED显示面板的出光面一侧设置偏光片。其原理为:由OLED显示面板的出光面射入的环境光通过偏光片后转变为左旋(或右旋)的偏振光,左旋(或右旋)的偏振光经OLED显示器件上的金属层反射,反射的偏振光为右旋(或左旋),与入射光线的偏振方向相反,而右旋(或左旋)的偏振光不能透过左旋(或右旋)的偏光片出射,从而消除OLED显示器件上自然光的反射现象。
技术问题
现有偏光片的透过率只有42%~44%左右,在消除反射的同时,也使得显示面板的透光效果受到了严重的影响。在最新的显示面板中,显示面板下方通常集成有光传感器,透光率降低会严重影响这些光传感器。
技术解决方案
本发明提供一种OLED显示面板和电子设备,能够在降低显示面板的反射的同时不影响显示面板的透光率。
为解决上述问题,本发明提供了一种OLED显示面板,其包括基板和设置在所述基板上的透光显示区,所述透光显示区包括间隔设置的多个像素单元和多个透光单元;其中,
每个所述像素单元包括发光结构和位于所述发光结构上方的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同;其中,
所述发光结构包括薄膜晶体管和与所述薄膜晶体管对应的发光层;
所述透光单元包括透光叠层,所述透光叠层由与所述透光单元相邻的发光结构中的透明绝缘层延伸构成,所述透明绝缘层包括所述薄膜晶体管和所述发光单元中的绝缘层。
根据本发明的其中一个方面,所述显示面板还包括覆盖所述透光显示区的封装结构,所述滤光片位于所述封装结构上;其中
所述透光单元还包括位于所述封装结构上的第一光线增强单元,所述第一光线增强单元位于所述透光叠层正上方,与所述滤光片间隔设置。
根据本发明的其中一个方面,所述透光单元具有直接暴露出所述基板的开口。
根据本发明的其中一个方面,所述开口中具有填充所述开口的第二光线增强单元。
根据本发明的其中一个方面,所述第一光线增强单元和所述第二光线增强单元为具有微腔结构的无机物或有机小分子。
根据本发明的其中一个方面,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
所述红色发光结构包括白光发射层和位于所述白光发射层上方的红光彩膜层;
所述蓝色发光结构包括白光发射层和位于所述白光发射层上方的蓝光彩膜层;
所述绿色发光结构包括白光发射层和位于所述白光发射层上方的绿光彩膜层。
根据本发明的其中一个方面,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
所述红色发光结构包括红光发射层;
所述蓝色发光结构包括蓝光发射层;
所述绿色发光结构包括绿光发射层。
为解决上述问题,本发明提供了一种OLED显示面板,其包括基板和设置在所述基板上的透光显示区,所述透光显示区包括间隔设置的多个像素单元和多个透光单元;其中,
每个所述像素单元包括发光结构和位于所述发光结构上方的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同。
根据本发明的其中一个方面,所述发光结构包括薄膜晶体管和与所述薄膜晶体管对应的发光层;
所述透光单元包括透光叠层,所述透光叠层由与所述透光单元相邻的发光结构中的透明绝缘层延伸构成,所述透明绝缘层包括所述薄膜晶体管和所述发光单元中的绝缘层。
根据本发明的其中一个方面,所述显示面板还包括覆盖所述透光显示区的封装结构,所述滤光片位于所述封装结构上;其中
所述透光单元还包括位于所述封装结构上的第一光线增强单元,所述第一光线增强单元位于所述透光叠层正上方,与所述滤光片间隔设置。
根据本发明的其中一个方面,所述透光单元具有直接暴露出所述基板的开口。
根据本发明的其中一个方面,所述开口中具有填充所述开口的第二光线增强单元。
根据本发明的其中一个方面,所述第一光线增强单元和所述第二光线增强单元为具有微腔结构的无机物或有机小分子。
根据本发明的其中一个方面,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
所述红色发光结构包括白光发射层和位于所述白光发射层上方的红光彩膜层;
所述蓝色发光结构包括白光发射层和位于所述白光发射层上方的蓝光彩膜层;
所述绿色发光结构包括白光发射层和位于所述白光发射层上方的绿光彩膜层。
根据本发明的其中一个方面,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
所述红色发光结构包括红光发射层;
所述蓝色发光结构包括蓝光发射层;
所述绿色发光结构包括绿光发射层。
相应的,本发明还提供了,所述电子设备包括OLED显示面板和设置在所述OLED显示面板下方的光线感应单元,所述OLED显示面板包括基板和设置在所述基板上的透光显示区,所述光线感应单元的位置位于所述透光显示区的正下方;其中,
所述透光显示区包括间隔设置的多个像素单元和多个透光单元;每个所述像素单元包括发光结构和位于所述发光结构上方的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同。
根据本发明的其中一个方面,所述光线感应单元包括摄像头。
有益效果
本发明提供了一种OLED显示面板,所述面板的透光显示区中的像素单元包括位于发光结构上方的滤光片,滤光片能够保留与所述发光结构发出的光线颜色相同的光线,并滤除与所述发光结构发出的光线颜色不同的光线。因此,射入显示面板的自然光能够被所述滤光片改变为与所述滤光片下方的发光单元具有相同颜色的光线,并且在被反射后与所述发光单元发出的光线一同射出,从而消除了显示面板对自然光的反射现象。由于滤光片的透光性远远大于偏光片的透光性,因此本发明极大地提高了显示面板的透光率。
附图说明
图1为本发明的一个具体实施例中的OLED显示面板的透光显示区的结构示意图;
图2为本发明的另一个具体实施例中的OLED显示面板的透光显示区的结构示意图;
图3为本发明的一个具体实施例中的OLED显示面板的透光显示区的下方的薄膜晶体管层的结构示意图;
图4为本发明的第三个具体实施例中的OLED显示面板的透光显示区的结构示意图;
图5为本发明的第四个具体实施例中的OLED显示面板的透光显示区的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
如前所述,现有技术中采用偏光片消除显示面板的金属层对自然光的反射。由于偏光片的透光率只有不到50%,严重降低了显示面板的透光率。对于内置屏下光传感器的电子设备,显示面板的透光率低下会严重影响光传感器的工作,甚至使其无法工作。
为了解决这一问题,本发明提供一种OLED显示面板和电子设备,能够在降低显示面板的反射的同时不影响显示面板的透光率。
下面将结合附图和具体实施例对本发明进行详细说明。
参见图1,图1为本发明的一个具体实施例中的OLED显示面板的结构示意图。本实施例中,所述显示面板包括基板100和设置在所述基板100上的透光显示区,所述透光显示区包括间隔设置的多个像素单元和多个透光单元。每个所述像素单元包括发光结构和位于所述发光结构上方的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同。
在本实施例中,所述发光结构包括薄膜晶体管和位于所述薄膜晶体管上方,与所述薄膜晶体管对应的发光层。所述薄膜晶体管包括多层用于实现电学隔离的绝缘层,例如栅极介质层、层间介质层以及平坦化层。所述发光层包括用于限定发光区域的像素定义层,所述像素定义层为绝缘材料构成,例如氧化硅,氮化硅等。所述透光单元包括透光叠层,所述透光叠层由与所述透光单元相邻的发光结构中的透明绝缘层延伸构成,所述透明绝缘层包括所述薄膜晶体管和所述发光单元中的绝缘层。
优选的,所述透光显示区的像素单元的个数和透光单元的个数的比值为3:1~1:1。参见图1,图1中透光显示区的像素单元的个数和透光单元的个数的比值为3:1。参见图4,图4中的透光显示区的像素单元的个数和透光单元的个数的比值为3:3。参见图5,图5中的透光显示区的像素单元的个数和透光单元的个数的比值也为1:1。在实际中,所述像素单元和透光单元可以按照根据需要采用不同的排列方式,所述排列方式不限于本实施例中公开的排列方式。对所述像素单元和透光单元的数量和排列方式进行变动而形成的技术方案同样落入本发明的保护范围中。
优选的,所述基板100中包含薄膜晶体管层。参见图3,所述薄膜晶体管层包括薄膜晶体管单元10和金属避让区20。所述薄膜晶体管单元10与所述透光显示区中的像素单元对应,所述金属避让区20与所述透光显示区中的透光单元对应,所述金属避让区20构成所述透光叠层。
在本实施例中,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元。如图1所示所述红色像素单元包括红色发光结构210,所述绿色像素单元包括绿色发光结构220,所述蓝色像素单元包括蓝色发光结构230。所述多个红色发光结构210、多个绿色发光结构220和多个蓝色发光结构230之间被像素定义层200间隔开来。形成所述像素定义层200的材料为透明绝缘材料。
对应的多个滤光片分别为:位于所述红色发光结构210上方的红色滤光片410,位于所述绿色发光结构220上方的绿色滤光片420,位于所述蓝色发光结构230上方的蓝色滤光片430。多数多个滤光片被隔离层400间隔开来,构成所述隔离层400的材料为黑色遮光材料,例如黑色树脂。所述隔离层400用于遮挡从该区域进入显示面板的自然光,同时降低该区域对外界环境光的反射。
优选的,所述发光结构和所述隔离层400之间具封装结构300。所述封装结构300用于保护所述显示面板的发光结构不被水和氧气腐蚀。优选的,所述封装结构300为薄膜封装结构,包括由至少一层有机封装薄膜和至少一层无机封装薄膜组成的叠层结构。
优选的,参见图2,图2为本发明的另一个具体实施例中的OLED显示面板的透光显示区的结构示意图,其中,所述显示面板还包括设置在所述封装结构300和隔离层400之间的触控层500。所述触控层500包括多个触控单元和多个隔离所述触控单元的绝缘区。本实施例中,所述多个触控单元包括第一触控单元510,第二触控单元520,第三触控单元530,第四触控单元540和第五触控单元550。所述多个触控单元位于所述隔离层400正下方。每一个所述触控单元至少包括第一触控电极、绝缘层、第二触控电极和过孔桥接结构。
具体的,所述像素单元可以由白光发射层和对应颜色的彩膜结构构成。例如,所述红色发光结构210包括白光发射层和位于所述白光发射层上方的红光彩膜层。所述蓝色发光结构220包括白光发射层和位于所述白光发射层上方的蓝光彩膜层。所述绿色发光结构230包括白光发射层和位于所述白光发射层上方的绿光彩膜层。可选的,所述像素单元也可以由对应颜色的发光结构构成。例如,所述红色发光结构210包括红光发射层;所述蓝色发光结构220包括蓝光发射层;所述绿色发光结构230包括绿光发射层。
优选的,在本实施例中,所述透光单元240为由透明材料构成的透光叠层。所述透光叠层可以为氧化硅、氧化铝或透明有机材料构成的叠层。优选的,所述透光叠层为所述透光单元240中的像素定义层具有相同的材料,并在同一淀积工艺中形成。
优选的,在本实施例中,所述透光单元240还包括位于所述透光叠层上方的第一光线增强单元440,所述第一光线增强单元位于所述透光叠层正上方,与所述滤光片间隔设置。所述第一光线增强单元的材料为无机物或有机小分子。无机物或有机小分子能够改变器件光学结构,调节其微腔效应,从而提高透光单元240透光率。所述无机物可以是硒化锌(ZnSe),所述有机小分子可以是正溴丙烷( NPB )或其他芳香胺类有机物。
优选的,在本实施例中,为了进一步提高所述透光单元240的透光率,所述透光单元240具有直接暴露出所述基板100的开口。即,通过光刻去除形成所述透光单元240的透光叠层,避免光线被吸收和损耗,提高透光率。
进一步的,在本实施例中,所述开口中具有填充所述开口的第二光线增强单元。与第一光线增强单元相同,所述第二光线增强单元的材料为无机物或有机小分子。无机物或有机小分子能够改变器件光学结构,调节其微腔效应,从而提高透光单元240透光率。所述无机物可以是硒化锌(ZnSe),所述有机小分子可以是正溴丙烷( NPB )或其他芳香胺类有机物。
相应的,本发明还提供了,所述电子设备包括OLED显示面板和设置在所述OLED显示面板下方的光线感应单元,所述OLED显示面板包括基板100和设置在所述基板100上的透光显示区,所述光线感应单元的位置位于所述透光显示区的正下方;其中,所述透光显示区包括间隔设置的多个像素单元和多个透光单元240;每个所述像素单元包括发光结构和位于所述发光结构上方的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同。
优选的,在本实施例中,所述光线感应单元包括摄像头。当然,所述光线感应单元也可以是屏下指纹识别单元或其他光线传感器。
本发明提供了一种OLED显示面板,所述面板的透光显示区中的像素单元包括位于发光结构上方的滤光片,滤光片能够保留与所述发光结构发出的光线颜色相同的光线,并滤除与所述发光结构发出的光线颜色不同的光线。因此,射入显示面板的自然光能够被所述滤光片改变为与所述滤光片下方的发光单元具有相同颜色的光线,并且在被反射后与所述发光单元发出的光线一同射出,从而消除了显示面板对自然光的反射现象。由于滤光片的透光性远远大于偏光片的透光性,因此本发明极大地提高了显示面板的透光率。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种OLED显示面板,其中,所述显示面板包括基板和设置在所述基板上的透光显示区,所述透光显示区包括间隔设置的多个像素单元和多个透光单元;其中,
    每个所述像素单元包括发光结构和位于所述发光结构上的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同;其中,
    所述发光结构包括薄膜晶体管和与所述薄膜晶体管对应的发光层;
    所述透光单元包括透光叠层,所述透光叠层由与所述透光单元相邻的发光结构中的透明绝缘层延伸构成,所述透明绝缘层包括所述薄膜晶体管和所述发光单元中的绝缘层。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板还包括覆盖所述透光显示区的封装结构,所述滤光片位于所述封装结构上;其中
    所述透光单元还包括位于所述封装结构上的第一光线增强单元,所述第一光线增强单元位于所述透光叠层正上方,与所述滤光片间隔设置。
  3. 根据权利要求2所述的显示面板,其中,所述透光叠层中具有直接暴露出所述基板的开口。
  4. 根据权利要求3所述的显示面板,其中,所述开口中具有填充所述开口的第二光线增强单元。
  5. 根据权利要求4所述的显示面板,其中,所述第一光线增强单元和所述第二光线增强单元为具有微腔结构的无机物或有机小分子。
  6. 根据权利要求1所述的显示面板,其中,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
    所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
    所述红色发光结构包括白光发射层和位于所述白光发射层上方的红光彩膜层;
    所述蓝色发光结构包括白光发射层和位于所述白光发射层上方的蓝光彩膜层;
    所述绿色发光结构包括白光发射层和位于所述白光发射层上方的绿光彩膜层。
  7. 根据权利要求1所述的显示面板,其中,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
    所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
    所述红色发光结构包括红光发射层;
    所述蓝色发光结构包括蓝光发射层;
    所述绿色发光结构包括绿光发射层。
  8. 一种OLED显示面板,其中,所述显示面板包括基板和设置在所述基板上的透光显示区,所述透光显示区包括间隔设置的多个像素单元和多个透光单元;其中,
    每个所述像素单元包括发光结构和位于所述发光结构上的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同。
  9. 根据权利要求8所述的显示面板,其中,所述发光结构包括薄膜晶体管和与所述薄膜晶体管对应的发光层;
    所述透光单元包括透光叠层,所述透光叠层由与所述透光单元相邻的发光结构中的透明绝缘层延伸构成,所述透明绝缘层包括所述薄膜晶体管和所述发光单元中的绝缘层。
  10. 根据权利要求9所述的显示面板,其中,所述显示面板还包括覆盖所述透光显示区的封装结构,所述滤光片位于所述封装结构上;其中
    所述透光单元还包括位于所述封装结构上的第一光线增强单元,所述第一光线增强单元位于所述透光叠层正上方,与所述滤光片间隔设置。
  11. 根据权利要求10所述的显示面板,其中,所述透光叠层中具有直接暴露出所述基板的开口。
  12. 根据权利要求11所述的显示面板,其中,所述开口中具有填充所述开口的第二光线增强单元。
  13. 根据权利要求12所述的显示面板,其中,所述第一光线增强单元和所述第二光线增强单元为具有微腔结构的无机物或有机小分子。
  14. 根据权利要求8所述的显示面板,其中,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
    所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
    所述红色发光结构包括白光发射层和位于所述白光发射层上方的红光彩膜层;
    所述蓝色发光结构包括白光发射层和位于所述白光发射层上方的蓝光彩膜层;
    所述绿色发光结构包括白光发射层和位于所述白光发射层上方的绿光彩膜层。
  15. 根据权利要求8所述的显示面板,其中,所述多个像素单元包括多个红色像素单元、多个绿色像素单元和多个蓝色像素单元;其中,
    所述红色像素单元包括红色发光结构,所述绿色像素单元包括绿色发光结构,所述蓝色像素单元包括蓝色发光结构;
    所述红色发光结构包括红光发射层;
    所述蓝色发光结构包括蓝光发射层;
    所述绿色发光结构包括绿光发射层。
  16. 一种电子设备,其中,所述电子设备包括OLED显示面板和设置在所述OLED显示面板下的光感应单元,所述OLED显示面板包括基板和设置在所述基板上的透光显示区,所述光线感应单元的位置位于所述透光显示区的正下方;其中,
    所述透光显示区包括间隔设置的多个像素单元和多个透光单元;每个所述像素单元包括发光结构和位于所述发光结构上方的滤光片,所述滤光片保留的光线颜色与所述发光结构发出的光线颜色相同。
  17. 根据权利要求16所述的电子设备,其中,所述光感应单元包括摄像头。
PCT/CN2019/086940 2019-03-26 2019-05-15 Oled显示面板和电子设备 WO2020191887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/496,419 US11647659B2 (en) 2019-03-26 2019-05-05 Organic light emitting diode display and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910231670.7 2019-03-26
CN201910231670.7A CN110021644B (zh) 2019-03-26 2019-03-26 Oled显示面板和电子设备

Publications (1)

Publication Number Publication Date
WO2020191887A1 true WO2020191887A1 (zh) 2020-10-01

Family

ID=67189977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086940 WO2020191887A1 (zh) 2019-03-26 2019-05-15 Oled显示面板和电子设备

Country Status (3)

Country Link
US (1) US11647659B2 (zh)
CN (1) CN110021644B (zh)
WO (1) WO2020191887A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110688004A (zh) * 2019-09-10 2020-01-14 武汉华星光电半导体显示技术有限公司 显示面板和电子装置以及电子装置的操作方法
CN112825126A (zh) * 2019-11-20 2021-05-21 上海箩箕技术有限公司 指纹识别装置及其检测方法
CN111799311B (zh) * 2020-07-14 2022-07-01 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN113571552B (zh) * 2021-07-02 2023-10-31 武汉华星光电技术有限公司 一种显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293564A (zh) * 2016-04-12 2017-10-24 上海和辉光电有限公司 一种oled显示面板及其制备方法
CN207338380U (zh) * 2017-07-21 2018-05-08 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
KR20180061902A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 발광 영역 및 투과 영역을 포함하는 유기 발광 표시 장치
CN108493211A (zh) * 2017-12-28 2018-09-04 友达光电股份有限公司 显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672695B2 (ja) 2009-12-18 2015-02-18 セイコーエプソン株式会社 表示装置
CN103972267B (zh) * 2014-04-16 2016-09-14 京东方科技集团股份有限公司 一种有机发光显示装置
KR20160017396A (ko) * 2014-08-05 2016-02-16 삼성디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조방법
CN105353533B (zh) * 2014-08-20 2019-11-12 群创光电股份有限公司 显示面板及使用其的显示设备
CN107359185B (zh) * 2017-07-27 2021-05-14 京东方科技集团股份有限公司 一种显示面板及显示装置
US20190207164A1 (en) 2017-12-28 2019-07-04 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Mirror display device and manufacturing method thereof
CN108198839A (zh) * 2017-12-28 2018-06-22 深圳市华星光电半导体显示技术有限公司 镜面显示装置及其制作方法
CN110021640A (zh) * 2018-01-08 2019-07-16 三星显示有限公司 电致发光装置
CN109411522A (zh) 2018-11-06 2019-03-01 京东方科技集团股份有限公司 一种透明显示面板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293564A (zh) * 2016-04-12 2017-10-24 上海和辉光电有限公司 一种oled显示面板及其制备方法
KR20180061902A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 발광 영역 및 투과 영역을 포함하는 유기 발광 표시 장치
CN207338380U (zh) * 2017-07-21 2018-05-08 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
CN108493211A (zh) * 2017-12-28 2018-09-04 友达光电股份有限公司 显示面板

Also Published As

Publication number Publication date
US11647659B2 (en) 2023-05-09
CN110021644B (zh) 2020-12-08
US20220052117A1 (en) 2022-02-17
CN110021644A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2020191887A1 (zh) Oled显示面板和电子设备
WO2020037907A1 (zh) 有机发光显示面板及其制造方法
US11329104B2 (en) Display panel and display device
WO2021017320A1 (zh) 有机发光器件、显示装置及有机发光器件的制作方法
US10950669B2 (en) Display device
US10388705B2 (en) Display panel and method for manufacturing thereof
US20200312927A1 (en) Display panel and a display apparatus including the same
JP7517864B2 (ja) 表示装置、及び表示装置の製造方法
WO2020134007A1 (zh) 显示面板、电子设备及显示面板的制作方法
KR102632619B1 (ko) 유기발광 디스플레이 장치
KR20170092737A (ko) 표시 장치
KR20210032599A (ko) 표시 장치
KR102278876B1 (ko) 표시 장치 및 이의 제조 방법
KR20160007359A (ko) 표시장치 및 그 제조 방법
KR101429942B1 (ko) 유기전계발광표시장치 및 그 제조방법
WO2020124423A1 (zh) 显示面板及其制造方法、显示装置
KR20220047460A (ko) 표시 패널 및 이를 구비하는 표시 장치
KR20220026002A (ko) 표시 패널 및 이를 구비하는 표시 장치
US20160195760A1 (en) Liquid crystal display apparatus
CN117062473A (zh) 显示面板和包括该显示面板的显示设备
CN217134378U (zh) 显示面板和包括该显示面板的显示装置
KR101957145B1 (ko) 유기발광소자표시장치 및 그 제조방법
KR20160039745A (ko) 유기 발광 표시 장치
CN218004860U (zh) 显示面板
US20230119532A1 (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920756

Country of ref document: EP

Kind code of ref document: A1